Studio Modeling Platform™

Embedding MQL Guide

3DEXPERIENCE R2018x

3DEXPERIENCE

3DEXPERIENCE Platform is based on the V6 Architecture © 2007-2018 Dassault Systémes.

The 3DEXPERIENCE Platform for 2018x is protected by certain patents, trademarks, copyrights, and other restricted
rights, the full list of which is available at the 3DS support site: http://help.3ds.com/.

Certain portions of the 3DEXPERIENCE Platform R2018x contain elements subject to copyright owned by third party,
the full list of which is also available at the 3DS support site mentioned above.

You will require an account with support in order to view this page. From the support page, select your desired product
version and language to launch the appropriate help. Select Legal Notices from left frame. This displays the full list of
patents, trademarks and copyrights for this product.

Any copyrights not listed belong to their respective copyrights owners.

http://help.3ds.com/2017x/English/DSDoc/Frontmatter/spenot.htm?ContextScope=all&id=fe3ebdcf1077405eb89ec31d4deb130b#Pg0&ProductType=&ProductName

Table of Contents

(OF 0= o] (=] o A =11V = 1 4 1Y, [SRS 3
LY =N 1Y, [] P PPPPPPPPN 3

L= To (1= 41T PSSP 4
KNOWN ISSUEBS.....cciiiiiee e 5
C++ Studio CustomMIzZation TOOIKIL..........ueeiiiiiiiiiiiiee e e e eeees 6
C++ Studio Customization Toolkit Library StruCtUIe...........ccooviiiiiiiiieeiee e 6
Setting Up a Client Machine to Run an eMatrixMQL Application...........cccveeeeeeiiiiiiiiiee e, 6
C++ Studio Customization TOOIKIt FilE€S.........ccccuiiiiiieieiii e 7
Running the eMatrixMQL Test APPICALION..........ciiiiiiiiiiiiii et 9
Setting Up to Run the Test APPlICALIONuvviiiiiiiiiiiiec e 9

B (0101 o] L= T o] 1o SRR PRI 11

S e= T 1] a0 = BT =21 (o] o PP PP R PR 12
ISSUING @ COMIMEANGetiiiiiiee ettt e e e s e e e e s s s bbb e e e e e e e s aab b bt e e e e e e s s aabbbaeeeeeessnnneeeaaeeas 13
Processing Output With CallDACKSuueiiieiiiiiiiiiiiie s e e e e nnnne s 14
Processing Pending OULPULoouiiiiiiie ettt s st e e e e s ee e e e e e s st e e e e e e e s s nnnbaaeeeeeeesennnnees 16
A SMAIL CONVEISALIONuiiiiiiieiiiite ettt e e s e e e e e e s s bbb e e et e e e s s sabb b b e e e e e e e s nneeeeaeeas 17
Library Of FUNCLIONS ...t e s e e e e s s bbb e e e s e anebbnees 19
(] o] 2= 1 VA 1 1 Vo TP PP PP PP PPPP 19
Library of eMatriXMQL FUNCHONScciiiiiiiiiiie et e e e e sabre e e e e e e e ennnnees 19
Synopsis of eMatriXMQL FUNCLONSooiiiiiiiiiiiee et abraee e 20
TErMINALING @ SESSION ..ttiiiiiee ittt et e e e e st e e e e e s s et e et e e e e s saa b b reeeaaeessanataaeeeeeesssseeeaaeeas 28
CoNVersationNal StrAtEGIES.........c.coiuuiieiiiie e s e e e e 29
YT o [U] = Tl =Tt = o |1 o o PP PPPR PR 32
WOTKING WIth @ DLL ...ttt e e e st et e e e s s st e e e e e e e s e nabbbeeeeeesntbaneaaaeeas 35
USING DLLS WIth € OF CH 1ottt ettt e e e e e e s s st e e e e e s s snnbbaeeeeaeesnnnnnes 35

(@] 41T [T To J=TaTo N o1 (] o S SRR PUSPPP 36
Compiling @ CustomM APPIICALIONviieiiei et 36
Distributing a Custom APPLICALIONcueiiiiiiie e 36

S F= 1001 o] L= @ oo = PP PP PP PPPPPPRN 39
eMatriXMQLTESt SAMPIE COUEuviiiiiieiiiiiiiiiee et e e e e e s 39
Example makefile for Studio Customization TOOIKItooccvuviiiiieeiiiiiiie e 39

Table of Contents 1

Embedding MQL Guide

eMatrixMQL

eMatrixMQL

Overview of eMatrixMQL

With eMatrixMQL, an application sends MQL commands to the Live Collaboration
Server, which accesses the ENOVIA Live Collaboration database and returns
corresponding output.

eMatrixMQL is distributed with the ENOVIA Studio Customization Toolkit.

eMatrixMQL ARCHITECTURE

Client IoP <
HTTP/XML <« — —>

Application Disk I/0 o—o0

\\»\
AN
AN
AN
N Server

Collaboration
Server
(XMLServlet)

Database

Requirements

In order to build applications with eMatrixMQL functions, you must have:
* Aninstalled ENOVIA Live Collaboration database, from which to access data
e The eMatrixMQL function library installed

In addition, eMatrixMQL requires:

» The Java 1.3.1 or greater Runtime must be installed

* The path of any calling program must include the jre/bin and jre/bin/class paths of
Java

e The environment variable CLASSPATH must include the .jar file that contains the
ENOVIA Collaboration Live Collaboration Server classes.

The minimum compiler version for eMatrixMQL functions for Windows is Microsoft

Visual C** 6.0 or higher.

Dassault Systéemes Software Prerequisites x86

Before using eMatrixMQL, verify that Dassault Systemes Software Prerequisites x86 is
located in the control panel of your machine. This prerequisite contains
Microsoft.VC80.CRT (C++ runtime) and other required libraries.

Usually Dassault Systémes Software Prerequisites x86 is automatically installed with
either the ENOVIA Live Collaboration Server or the ENOVIA Studio Modeling Platform.
The prerequisite may not be installed if Microsoft Visual Studio 6.0 Enterprise Edition

Embedding MQL Guide

Known Issues

already exists on the machine. If this is the case, manually run
InstallDSSoftwarePrerequisites_x86.msi.

Do Not Use mqglOpen Function More than Once

Using the mglOpen function more than once in a program will cause your program to
fail. Do not use mgqlOpen more than once even if you use mqlClose before calling the
second mglOpen. To prevent the need for calling mqlOpen a second time, don’t use
mglClose until your program has no further business with ENOVIA Live Collaboration.
For example, call mq10pen on initialization and mqlClose on termination of the entire
Studio Customization Toolkit program.

Chapter 1: eMatrixMQL

C++ Studio
Customization
Toolkit Library
Structure

Setting Up a Client
Machine to Run an

C++ Studio Customization Toolkit

Installing the ENOVIA Live Collaboration Applet XML Studio Customization Toolkit
with the C++ option installs eMatrixMQL libraries and example source code in the
INSTALL_DIR\adk\ directory structure. eMatrixMQL is a C++ XML client that can
interact with the Live Collaboration Server running on the server.

Refer to the sections that follow for additional requirements for creating and using custom
C++ programs.

When you install the C++ Studio Customization Toolkit, the following directory structure
is created.

adk
| - - -PLATFORM (e.g., win_b64, linux_a64, linux_b64, solaris_a64, solaris_b64)
| | - --code
| | ---bin Executables and DLLs for the respective platform
| |---lib Contains the eMatrixMq| static libraries
| - --samples
|- - - eMatrixApplet Applet wizards, embedded objects, and swing classes
|- - - eMatrixMq| eMatrixMQL sample source
|- - - eMatrixMglTest Include files and programs that can be used as a test

harness for invoking the eMatrixMQL libraries

This section describes how to set up a client machine to run an application compiled with
eMatrixMQL. It assumes that:

eMatrixMQL « The client machine does not have the Live Collaboration Server, Studio
Application Customization Toolkit, or any other ENOVIA Live Collaboration component
installed.
» The custom application was compiled on a separate server machine that has the
Collaboration Server and the C++ Studio Customization Toolkit installed.
The instructions below list the main steps for setting up a Windows client machine for an
eMatrixMQL application built on a Windows server machine using the Live Collaboration
server Studio Customization Toolkit. The steps are the same for UNIX except:
» The directory references should be / instead of \.
» Instead of win_bh64, the subdirectories within the Studio Customization ToolKkit
installation directories are named according to the platform. See eMatrixMQL Files
(Live Collaboration Server only).
* The eMatrixMQL shared library is called eMatrixMgl.a for AIX and eMatrixMql.so
for Solaris and Linux.
6 Embedding MQL Guide

C++ Studio
Customization
Toolkit Files

To configure a client machine to run an eMatrixMQL application

1. Copy the Matrix jar file, eMatrixServletRMI.jar from the server machine and paste it
to the client machine. You can find the jar file in
ENOVIA_INSTALL\PLATFORM\docs\javaserver\.

Make sure the jar file is the exact same version as the Studio Customization Toolkit
used to compile the program.

2. On the client machine, add the path and filename of the ENOVIA Live Collaboration
jar file to CLASSPATH.

The specific name of the file is needed in addition to the full path. Adding only the
path produces the error message “Can't find com.matrixone.jdl.MatrixSession”.

3. Copy eMatrixMql.dll from the ADK_INSTALL\PLATFORM\code\bin\ directory to
the client machine directory that contains the eMatrixMQL application.

4. Copy mxUtil.dll, vgalaxy7u.dll, and vgalaxy7.vr from the
ENOVIA_INSTALL\PLATFORMN\code\bin\ directory to the client machine directory
that contains the eMatrixMQL application.

5. Make sure that the client machine has the correct version of the JDK or the Java
Runtime Environment (JRE). Refer to the Program Directory for the given release for
supported patch levels.

6. Add the path that includes the Java jvm.dll to the PATH.

7. Now you can run your custom application. For initial testing, you can run the test
application that comes with the eMatrixMQL installation. See “Running the
eMatrixMQL Test Application”.

eMatrixMQL Files (Live Collaboration Server only)

In the following, PLATFORM = aix_a64 (AlX, Live Collaboration Server only),
linux_a64 (Red Hat Enterprise Linux), linux_bh64 (Suse Linux), solaris_a64 (Solaris 4),
solaris_b64 (Solaris x86), or win_h64 (Windows). All are 64-bit.

The HP 9000 platform (hp9000s800) is no longer supported.

ADK_INSTALL\samples\eMatrixMgl\eMatrixMqgl .cpp
ADK_INSTALL\samples\eMatrixMgl\eMatrixMgl .h
ADK_INSTALL\samples\eMatrixMgl\eMatrixMglUtils.h
ADK__INSTALL\samples\eMatrixMgl\StringMacros.h

eMatrixMql DLL libraries (Windows only)
ADK_INSTALL\PLATFORM\code\bin\eMatrixMgl .d1 1 (DLL)
ADK_INSTALL\PLATFORM\code\bin\eMatrixMglU.dll(Unicode DLL)

eMatrixMgl Static libraries (Windows only)
ADK_INSTALL\PLATFORM\code\lib\eMatrixMgl . 1ib(DLL stub library)

ADK_INSTALL\PLATFORM\code\lib\eMatrixMglU.lib(Unicode DLL stub
library)

eMatrixMql Test Executables
ADK_INSTALL\samples\eMatrixMglTest\eMatrixMglTest.h
ADK_INSTALL\samples\eMatrixMglTest\eMatrixMqlTest.cpp

Chapter 1: eMatrixMQL

ADK_INSTALL\PLATFORM\code\bin\eMatrixMQLTest_exe(Test program)
ADK_INSTALL\PLATFORM\code\bin\eMatrixMQLTestU.exe(Unicode test
program)

You must also have access to the following Galaxy DLLs via the PATH setting:
vgalaxy7u.dll
vgalaxy7.vr

Embedding MQL Guide

Setting Up to Run
the Test
Application

Running the Test
Application

Running the eMatrixMQL Test Application

The eMatrixMQL installation includes sample executables (one for unicode and one for
non-unicode environments) that you can use as a test harness for invoking the
eMatrixMQL libraries. The include files and exe files needed for the test application are in
ADK_INSTALL\PLATFORM\code\bin\. This section describes how to set up and run the
test application.

This section lists the main steps for setting up a Windows system to run the test
eMatrixMQL applications. The steps are the same for UNIX except the directory
references should be / instead of \.

To install and configure a server to run the test application
1. Install the ENOVIA Live Collaboration Server.

2. Install the Applet Studio Customization Toolkit and choose the C++ Studio
Customization Toolkit. Make sure the Studio Customization ToolKkit version matches
the version of the Live Collaboration Server that you installed.

3. Copy mxuUtil.dll, vgalaxy7u.dll, and vgalaxy7.vr from
ENOVIA_INSTALL\PLATFORM\code\bin\ to the directory that contains the test
application ADK_INSTALL\PLATFORM\code\bin\.

The system can find the DLL if it is located in any directory that is in the operating
system’s search path for exe files. But placing the DLL in the directory with the test exe
files ensures it picks up the correct version, in case you have other versions of the DLL.

4. Add ENOVIA_INSTALL\PLATFORM\docs\javaserver\eMatrixServletRMI.jar to
the CLASSPATH.

5. Include Java jvm.dll in the PATH.

Now run the test application using the steps in the following section.

To run the test application for eMatrixMQL

1. Create atext file in the ADK_INSTALL\PLATFORM\code\bin\ directory with
whatever MQL commands you want to run. This is the script you will pass to the test
application.

For example, you can create a file with the simple command “version;” (which
works on any database) and save it as version.mql. The resulting
ADK _INSTALL\PLATFORM\code\bin\ directory would now contain these files:

e mxuUtil.dll

» eMatrixMql.dll

* eMatrixMqlTest.exe

* eMatrixMglTestU.exe
* vgalaxy7u.dll

e vgalaxy7.vr

Chapter 1: eMatrixMQL

e version.mql

2. Inthe same directory, issue the command to run the test application
eMatrixMqglTest.exe. The exe accepts the following arguments:

Command Argument Description Example
eMatrixMqlTest <host server Name of the host server, prefixed with //hostname:1099/enovia
name> http:// and appended with a colon and the

port number and web application name.
Make sure the port number is the Live
Collaboration Server port (for example,
1099) for the Live Collaboration Server.

-s <mglscript> Name of the mql script to pass to the -s version.mgq|
program (stdin).

-1 <outputlog> Name of log file to send output to -1 version.log
(stdout).

-d <level> Set level of eMatrixMQL diagnostics: -d1
0,1,2; default=1.

-h Display help -h

-p Use pending vs. DDE callbacks (=default) | -p

-u <username>[/<pswd>] Set context to the specified username and | -u creator
password.

-V Turn on verbose output. -v

For example, to run the version.mql script, you could issue the command:
eMatrixMglTest http://hostname:1099/enovia -s version.mgl -1
version.log -d 2 -u creator -v

The output window will look as follows:

Calling mglSetVerbose()

Calling mglSetTrace()

Calling mgllnit(Q)

Calling mglSetContext() initially
Calling mglSetContext() again

Calling mglOpen()

Calling mglOpenLog()

Calling mglCommand()

Calling mglCallback()

Calling mglOutputLine() through callback
Calling mglErrorsQ

Calling mglCommand()

Calling mglCallback()

Calling mglErrors()

Calling mglCommand()

Calling mglCallback()

Calling mglErrorsQ

Calling mglCloseLog()

Calling mglClose()

eMatrixMqlTest Completed.

10 Embedding MQL Guide

3. If the application runs successfully, you should find the output log file in the same
directory. Open the file to check its contents.

For example, the version.log file would contain something similar to this:
Input:version;
Output:10.5-Global

Input:
Input:
Troubleshooting Use this troubleshooting table to help resolve problems with running the test or a custom
application.
Error Remedy

Can’t find or load mxUtil.dll

Copy mxUltil.dll from ENOVIA_INSTALL\PLATFORMN\code\bin\ to the same
directory as the calling program.

Unable to load eMatrixMgl.dll

Copy eMatrixMql.dll from ADK_INSTALL\PLATFORM\code\bin\ to the same
directory as the calling program.

Can’t find jvm.dll

The system environment PATH variable is pointing to the wrong jvm.dIl. Make sure
the JDK or JRE directory that contains the jvm.dll is in your PATH. For example,
for JDK 1.6.0_24, the DLL is in the directory \jre\bin\server\.

Can’t create Java vm

The CLASSPATH is pointing to the wrong jvm.dIl.

Can't find
com.matrixone.jdl.MatrixSession

Make sure the CLASSPATH is defined and includes the full pathname and
filename, for example "Set CLASSPATH=\PATHNAME\eMatrixServletRMI.jar"

Dr. Watson errors running the
eMatrixMQL application

Be sure that the JRE or JDK is correctly installed and that the system environment
PATH variable points to the correct Java binary path.

File checkin / checkout does not work

Need to add the keyword "client” to the checkin and “server” for the checkout
command to specify where the operation will occur. For checkin the default is
server and for checkout the default is client.

Also, the checkout command requires that a target directory specified. Refer to the
MQL Guide for more information.

Chapter 1: eMatrixMQL

11

Starting a Session

A session is started using the mqlOpen command. The mglOpen command will open
communications between your client application and MQL or the server. eMatrixMQL
uses XML wrapped by HTTP.

In order to track any errors that may occur, it is recommended that a log file be opened as
well, using the mglOpenLog command after mqlOpen is called. The log file will contain
all input to and output from MQL or the server.

A session might begin as follows:

if (mglSetContext(“WebServer”,”JSmith”,”xyzzy”,”Engineering”) == MQLERROR)
{
fprintf(stderr, “ERROR: Cannot Set Context....”);
}
if (mqlOpen() == MQLERROR)
{
fprintf(stderr, “ERROR: Cannot Open MQL Interface\n™);
exit(-1);
}

mqg10pen returns one of the following:
« MQLOK (0) The session has been established.
e MOQLERROR (-1) The session was unable to be established.

ifT (mgqlOpenLog(“example.log”) == MQLERROR)

fprintf(stderr, “ERROR: Cannot Open Log File\n”);
exit(-1);
}

mqlOpenLog returns one of the following:
* MQLOK (0) The log file was created without any problems.
* MQLERROR (-1) The log file could not be created.

See mglOpen, mglClose, mqlOpenLog, mglCloseLog for further information.

Embedding MQL Guide

Issuing a Command

There is an MQL command length limit of 8K.

Commands are issued to the MQL process using the mqlCommand routine. The parameters
used to format the commands are just like the C Language printf routine, in that it takes
multiple parameters and uses format strings to control the layout of the command.

if (mgqlCommand(“print businessobject \”%s\” \”%s\” \”%s\” *“, type. name.
revision) == MQLERROR)

{
}

return FAILURE;

Assuming that type is equal to ‘Assembly’ and name is equal to ‘Engine’ and revision is
equal to ‘A’, this is equivalent to issuing a print businessobject “Assembly”
“Engine” <A~ command from the MQL prompt.

In the above example, the return of MQLERROR from mqlCommand does NOT mean
that the print businessobject command failed, but that the mqlCommand
function failed. Some reasons for failure are (a) the interface has not been initialized or
(b) an input error occurred.

mg I Command returns one of the following:
e MQLOK (0) The sent command was successfully invoked.
* MQLERROR (-1) The sent command was not successfully invoked.

If a callback function is not used when issuing a command, output should be checked with
the mqlPending command.

The C++ Studio Customization Toolkit interface mglCommand requires multibyte input to
be in Unicode format.

Chapter 1: eMatrixMQL

13

Processing Output with Callbacks

In most programming situations, an application program calls the application
programming interface (API), and then the API executes the function called by the
application program and returns control, and possibly a value, to the calling program.

In some instances, however, it is necessary for the API to call the application program,
either to request additional information or to allow the application program to process

some data. The calling of an application program by an API is referred to as a callback
(thus named because the API is called by the application program and then calls back).

Callbacks are often used to handle output or error conditions. To set up a callback, the
application program usually registers, that is passes to the API, a pointer to a user-defined
function. The API generally provides a registration function that accepts a function
address as one of its parameters for this purpose. When the specific condition occurs, the
API calls the user-defined function (through the registered function pointer) and passes
control to that function for execution.

The mglCal Iback function of eMatrixMQL is a flexible way to extract data from the
ENOVIA Live Collaboration database using MQL commands. The mglCal Iback
function requires four parameters:

» A pointer to a function to handle output

e A pointer to an output data area

* A pointer to a function to handle error output

* A pointer to an error output data area

The functions to handle output data and error output data are supplied by the programmer.

Simple examples of functions to print data to standard output are given below. They use
the eMatrixMQL commands mqlOutputLine and mqlErrorLine.

/* outputCallback.cpp -- function to handle output callback. */

/**/

#include <stdio.h>

#include "outputCallback.h" /* Function prototype */
#include "eMatrixMmQL.h"
/’n *h Xk * AKX khxk *hdhkkhk * Kk /

#define LINEBUFFERSIZE 8192
/**/
int outputCallback(void *outData)

/* Function to handle output callback.

** jnput: none.

** output: Data from MQL output.

** returns: MQLOK....output callback was handled.
** returns: MQLERROR output callback could not be handled.
*/
{
char buffer[LINEBUFFERSIZE]; /* Buffer */

ifT (nqlOutputLine(buffer,LINEBUFFERSIZE))

fprintf(stdout,"%s" ,buffer);

by
return MQLOK;

14

Embedding MQL Guide

/* errorCallback.cpp -- function to handle error output callback. */

Y delalalaialaiale iolalalaiaiale /
#include <stdio.h>
#include "errorCallback.h" /* Function prototype */

#include "eMatrixmQL.h"

/**/

#define LINEBUFFERSIZE 8192

int errorCallback(void *errData)

/* Function to handle error output callback.

** jnput: none.

** output: Data from MQL error output.

** returns: MQLOK....... error output callback was handled.

** returns: MQLERRORerror output callback could not be handled.
*/

{
char buffer[LINEBUFFERSIZE]; /* Buffer */
ifT (nqlErrorLine(buffer,LINEBUFFERSIZE))
fprintf(stderr,”%s",buffer);
}
return MQLOK;
}
The mglCal Iback call would be:
int iStat;

iStat = mqglCallback(outputCallback, NULL, errorCallback, NULL);

mqglCal Iback returns one of the following:
e MQLOK (0) The callback was successful.
* MQLERROR (-1) The callback failed.

See also mglCallback.

Chapter 1: eMatrixMQL

15

Processing Pending Output

MQL output can also be processed using mqlPending to determine if output is available

for processing.

int status;
for (;3)
{
status = mqlPending(Q);
while (status == MQLOK)
{
sleep(1);
status = mgqlPending(Q);
}
switch (status)
{
case MQLOUTPUTPENDING:
mqlOutputLine(buffer,size);

break;
case MQLERRORPENDING:
mglErrorLine(buffer,size);

break;
default:
break;

*kkx%k [

There are four possible returns:

* MQLERRORPENDING (2) There is error output pending.

e MQLOUTPUTPENDING (1) There is pending output.
* MQLOK (0) There isno pending output.
* MOQLERROR (-1) The process timed out.

See also mqglPending.

16

Embedding MQL Guide

A Small Conversation

Here are two examples of a simple conversation, the first using mqlCal Iback, the second
using mglPending. The conversation requests the list of vaults using the MQL command
list vault. All output will be printed to standard out or standard error.

/x
/*

/*

AAXAAAXAAXAAAXAAAAAAAAAAAAAAAAX% *X*x /
mqglCallback */

char cmd = "list vault';

if (mglCommand(cmd)== MQLERROR)

{
fprintf(stderr,”ERROR: mglCommand() routine has failed\n™);
return FAILURE;

}

if (mglCallback(outputCallback, NULL, errorCallback, NULL) == MQLERROR)

{
fprintf(stderr,”ERROR: mglCallback() routine has failed\n");

return FAILURE;
}

if (mqlErrorsQ))

{
fprintf(stderr, "ERROR: MQL Command %s failed\n"”, cmd);

return FAILURE;
}

See the example in the Processing Pending Output Section, above, for the
outputCallback and errorCal Iback function definitions.

mglPending */

char cmd = "list vault";
int errorCnt = 0;

int outputCnt = O;

int status;

int done;

if (nqlCommand(cmd) == MQLERROR)

{ fprintf(stderr, "ERROR: mglCommand() routine has failed\n");
return FAILURE;

}

for (3D

{

status = mgqlPending();
while (status == MQLOK)
{

it (mglEOFQ))

{

done = TRUE;
break;

3
sleep(l);
status = mglPending(Q);

Chapter 1: eMatrixMQL 17

/

it (done)
break;

switch (status)

{
case MQLOUTPUTPENDING:
mglOutputLine(buffer,size);
fprintf(stdout, "%s\n'", buffer);
outputCnt++;
break;
case MQLERRORPENDING:
mglErrorLine(buffer,size);
fprintf(stderr, "%s\n", buffer);
errorCnt++;
break;
default:
break;
}
}
if (errorCnt)
{
fprintf(stderr, "MQL Command %s failed\n', cmd);
return FAILURE;
}
falaiaiaiaiaie * /

18

Embedding MQL Guide

Library Listing

Library of Functions

The following files are the distributed for use with eMatrixMQL applications:

File Usage
eMatrixMQL.h Header File
eMatrixMQL.dll Windows DLL

eMatrixMQL.lib

Windows DLL stub library (this gets linked to your application
vs. the DLL)

Library of
eMatrixMQL
Functions

This section lists and describes the public functions in the eMatrixMQL library. Syntax
and output, as well as additional notes where applicable, are provided in the following

section.

Function Description

mqlCallback This function is a setup routine to handle MQL or the Collaboration
Server output and errors. The user passes in a pointer to a function
that returns an integer and a storage location for any results. This is
done for both normal and error output.

mqlClose Ends an open session by terminating the MQL process or the
Collaboration Server connection.

mqlCloseLog Closes the log file opened using mglOpenLog.

mglCommand

Sends an MQL command to MQL or the Collaboration Server,
using printf style syntax.

mqlDisableLog

Disables writing to the log file.

mqlEnableLog

Enables writing to the log file.

mqlError

Used by mglCallback to receive error data from MQL or the
Collaboration Server.

mqlErrorLine

Used by mglCallback to receive a line of error data from MQL or
the Collaboration Server. It breaks on new line.

mqlErrorMessage

Prints an error message.

mqlErrors Maintains a counter of the number of times the user-supplied error
Callback routine has been called.

mqlExecute Sends an MQL command to the MQL process or the Collaboration
Server session for execution.

mqlInit Resets all static string variables for the host, user ID, password, and

vault to blank values.

Chapter 1: eMatrixMQL

19

Function

Description

mqlinput

Used by mglCommand to send the contents of the input buffer to
MQL or the Collaboration Server.

mqlOpen

Starts a session and establishes communications with MQL or the
Collaboration Server. eMatrixMQL uses HTTP/XML.

mqlOpenLog

Opens a log file filename for the current session. It reads the input
and output buffers and keeps a record of input to MQL or the
Collaboration Server and output from MQL or the Collaboration
Server.

mqlOutput

Used by mglCallback to receive data from MQL or the
Collaboration Server.

mqlOutputLine

Used by mglCallback to receive a line of data from MQL or the
Collaboration Server. It breaks on new line.

mqlOutputs Maintains a counter of the number of times the user-supplied
outputCallback routine has been called, by recording the number of
outputs from mqlCallback.

mqlPending Checks for any output data that is waiting to be processed. It is

useful for commands that generate a large amount of output,
because it begins to process the output data as soon as it is available.
mqlCallback is the better function to use.

mqlSetContext

Sets the context with User, Password and Vault parameters. It is the
first eMatrixMQL function your program calls. An additional
parameter is required for the Collaboration Server host name.

mqlSetQuote

Turns MQL quoting on.

mqlTimeout

Sets the sleep function: sleeps for x seconds.

mqlWriteToLogFile

Writes data to the log file.

Synopsis of The tables that follow provide syntax and additional notes on eMatrixMQL functions.
eMatrixMQL
Functions
Function mqlOpen
Synopsis int mglOpen(void);
Description This function starts a session and establishes communications with MQL or the
Collaboration Server. eMatrixMQL uses HTTP/XML.
Returns MQLOK means that the session has been established.
MQLERROR means that session has not been established.
20 Embedding MQL Guide

Function mglClose

Synopsis int mglClose(void);

Description This function ends an open session by terminating the MQL process.

Returns MQLOK means the session was shutdown successfully.
MQLERROR means the session shutdown encountered a problem.

Note Once you have opened a session using mqlOpen, you must call mglClose to end
the session before exiting your program.

Function mqlnit

Synopsis void mglInit(void);

Description Resets all static string variables for the host, user ID, password, and vault to blank
values.

Returns void

Function mgqlSetContext

Synopsis void mglSetContext(MQLBOS_STR_PTR host, MQLBOS_STR_PTR

user, MQLBOS_STR_PTR password, MQLBOS_STR_PTR vault);

Description Sets the context variables with the User, Password and Vault parameters. It is the
first eMatrixMQL function your program calls. The additional parameter,
MQLBOS_STR_PTR host, provides the Live Collaboration Server host name.

Returns void

Function mqlOpenLog

Synopsis int mglOpenLog(char * filename);
char * filename is a pointer to a character string containing the path and
name of the log file to be opened.

Description This function opens a log file (filename) for the current session. It reads the input
and output buffers and keeps a record of input to MQL and the Collaboration
Server and output from MQL and the Collaboration Server.

Returns MQLOK means the log file was opened successfully.

MQLERROR means the log file could not be opened.

Chapter 1: eMatrixMQL

21

Function mqlCloseLog

Synopsis int mglCloseLog(void);

Description This function closes the log file opened using mqglOpenLog.

Returns MQLOK means the log file was closed successfully.

MQLERROR means the log file was not properly closed.

Function mqlPending

Synopsis int mglPending (void);

Description This function checks for any output data that is waiting to be processed. It is useful
for commands that generate a large amount of output, because it begins to process
the output data as soon as it is available. mglCallback is the better function to use.

Returns MQLERRORPENDING (2) means that error output is pending.
MQLOUTPUTPENDING (1) means output is pending.

MQLOK (0) means that no output is pending.
MQLERROR (-1) means that a time-out has occurred.

Function mqlTimeout

Synopsis int mglTimeout (int seconds);

Description Sets the sleep function: sleeps for int seconds.

Returns MQLOK means the timeout was set successfully.

22 Embedding MQL Guide

Function mgqlCallback
Synopsis int mglCallback (int (*outputCallback) (void *
outData),
void * outputData, int (*errorCallback) (void *
errData),
void * errorData);
int (*outputCallback) (void * outData) isa pointertoa
user-supplied output handling function that returns an integer and has outData as a
parameter.
void * outputData is an output data storage location passed to mqlCallback
from the output handling function.
int (*errorCallback) (void * errData) isa pointertoa
user-supplied error handling function that returns an integer and has errData as a
parameter.
void * errorData is the error data storage location passed to mglCallback
from the error handling function.

Description This function is a setup routine to handle output and errors. The user passes in a
pointer to a function that returns an integer and a storage location for any results.
This is done for both normal and error output.

Returns MQLOK means that callback completed successfully.

MQLERROR means that callback failed.

Note The return values for mglCallback do not reflect the status of the MQL command
for which output is being processed; they reflect the execution status of the
mqlCallback function itself.

Function mqlOutputs

Synopsis int mqlOutputs (void);

Description This function maintains a counter of the number of times the user-supplied
outputCallback routine has been called, by recording the number of outputs from
mqlCallback.

Returns The number of times that mglCallback called the outputCallback routine.

Note The counter is reset each time mqlCallback is called.

Chapter 1: eMatrixMQL

23

Function mglErrors

Synopsis int mglErrors (void);

Description This function maintains a counter of the number of times the user-supplied
errorCallback routine has been called.

Returns The numbers of times that mqlCallback called the error callback routine.

Note The counter is reset each time mqlCallback is called.

Function mglinput

Synopsis int mgllnput (char * buffer, iInt size);

Description This function is used by mglCommand to send the contents of the input buffer to
MQL or the Collaboration Server.
char * bufTfer is the input buffer.
int size isa buffer size.

Returns The size of the buffer written or MQLERROR for failure.

Function mqlOutput

Synopsis int mglOutput(char * buffer, int limit);

Description This function is used by mglCallback to receive data from MQL or the
Collaboration Server.
char * buffer is a pointer to the output buffer.
int limitis the buffer size limit.

Returns The size of the buffer received or MQLERROR on failure.

Function mqlOutputLine

Synopsis char * mqlOutputLine(char * buffer,int limit);

Description This function is used by mglCallback to receive a line of data from MQL or the
Collaboration Server. It breaks on new line.
char * buffer is a pointer to the output buffer.
int limitis the buffer size limit.

Returns A line of data or NULL if nothing could be output.

24 Embedding MQL Guide

Function mqlError
Synopsis int mglError(char * buffer,int limit);
Description This function is used by mqlCallback to receive error data from MQL or the
Collaboration Server.
char * buffer is a pointer to the error output buffer.
int limitis the buffer size limit.
Returns Number of bytes successfully read or MQLERROR on failure.
Function mgqlErrorLine
Synopsis char * mqlErrorLine(char * buffer,int limit);
Description This function is used by mglCallback to receive a line of error data from MQL or
the Collaboration Server. It breaks on new line.
char * buffer is a pointer to the error output buffer.
int limitisabuffer size limit.
Returns A line of data or NULL if nothing could be read.
Function mqlErrorMessage
Synopsis void mqlErrorMessage(MQLBOS_STR_FAR_PTR message, const
MQLBOS_STR_FAR_PTR segment);
Description Prints formatted error message to stdout.
Returns void

Chapter 1: eMatrixMQL

25

Function mqglCommand

Synopsis int mglCommand(MQLBOS_STR_FAR_PTR format, ...);

Description This function writes an MQL command to MQL or the Collaboration Server using
printf style syntax.

Returns MQLOK means that the sent command(s) was successfully invoked.
MQLERROR means that the sent command(s) could not be invoked.

Note Do not put a semi-colon (;) at the end of the format string. The mglCommand
function appends a semi-colon automatically. The extra semi-colon will cause
mqlCallback to be invoked a second time, resetting the mglErrors and mqlOutputs
counters.

When using mglCommand without a callback function, output should be checked
with the mqlPending command

Function mqlExecute

Synopsis int mqlExecute(MQLBOS_STR_FAR_PTR format);

Description Sends an MQL command to the MQL or the Collaboration Server for execution.

Returns MQLOK means that the command executed successfully.

MQLERROR means that the command execution failed.

Function mgqlDisableLog

Synopsis int mglDisableLog(void);

Description This function turns off the log function started with mglOpenLog. Use this to
prevent your log file from becoming too large, for example, if you are listing
50,000 objects.

Returns 0 indicates that the log function has been turned off.

-1 indicates that the log function has not been turned off.
26 Embedding MQL Guide

Function mqlEnableLog

Synopsis int mglEnablelLog(void);

Description This function turns on the log function again, after a mqlDisableLog function has
been called.

Returns 0 indicates that the log function has been turned on.
-1 indicates that the log function has not been turned on.

Function mqlWriteToLogFile

Synopsis int mglWriteToLogFile(int dataType, MQLBOS_STR_FAR_PTR

buffer, int size);
Description This function writes data (i.e., errors) to the log file.
Returns MQLOK means that data was successfully written to the log file.

MQLERROR means that data was not written to the log file.

Chapter 1: eMatrixMQL

27

Terminating a Session

A session is terminated using the mglClose command. mglClose issues a quit
command to the MQL process or server session started with mglOpen. Any open log files
should also be closed using mgICloselLog.

it (mglCloseLog() == MQLERROR)
{

fprintf(stderr, “ERROR: Can not Close MQL Log File\n™);
exit(-1);
}

it (mglClose() == MQLERROR)

fprintf(stderr, “ERROR: Can not Close MQL Interface\n™);
exit(-1);
}

mglClose and mglCloseLog have the same possible returns:
* MQLOK (0) The session or log file was closed properly.

e MOQLERROR (-1) The session or log file encountered a problem when attempting
to close.

See also mglClose and mqlCloseLog.

28

Embedding MQL Guide

Conversational Strategies

There are many different strategies a programmer can use to retrieve data from MQL or
the server. For example, a list of character pointers can be allocated to hold the data from a
command and expand as needed.

/% AR AR SRR SRR R TR SRR ANN snRREAK [
#define ALLOCATIONBLOCK 64
/% List. */

typedef struct stringlList stringlList;

struct stringlList
{
int size;
int allocated;
int iter;
char **base;
}:
/* isisiaisisisisisisisisisisisisisisisisisisisiaisisisiaiaiale Ferx /
stringList * createStringList(void)

/* Function to create string list.
** input: none.
** output: none.
** returns: stringlList
*/
{
stringList *list = NULL;
char **base = NULL;
if (base = (char **)malloc(ALLOCATIONBLOCK*sizeof(char *)))

{
if (list = (stringList *)malloc(sizeof(stringList)))
{
list->size = 0;
list->allocated = ALLOCATIONBLOCK;
list->iter = -1;
list->base = base;
}
else
{
if (base) free((void *)base);
}
¥
return list;
}
Functions to append to the stringList can also be added.
/** iolalaiaiaiole ilaiaiaiaiale */

int appendStringList(stringList * list,char * string)

/* Function to append item to string list.

** jnput: list..... list pointer.

** jnput: string..... string pointer.

** output: none.

** returns: O...... item was successfully appended.
** returns: -1..... item could not be appended.

Chapter 1: eMatrixMQL 29

*/

int item;
char **newbase = NULL;

if (list && list->base && string)
if (list->size >= list->allocated)

{
if (newbase = (char **)malloc((list->allocated
+ALLOCATIONBLOCK)*sizeof(char *)))
{
memcpy((char *)newbase, (char *)list->base, list-
allocated*sizeof(char *));
free((void *)list->base);
list->base = newbase;
list->allocated += ALLOCATIONBLOCK;

b
item = list->size;

if(list->base[item]=(char *)malloc(strlen(string)+1))

{
strcpy(list->base[item],string);
list->size++;
return O;
}
}
return -1;
}
Y Ssiaioiaie /

An output function for use with mglCommand would look like this:
/* stringListOutputCallback.cpp -- function to handle string list output
** callback. */

Vs B R Hokk /

#include <string.h>

#include "stringListOutputCallback.h"
#include "stringList_h"

#include "eMatrixMQL.h""

Y foiaiaiale /

#define LINEBUFFERSIZE 8192

/* isieiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiolaiaiaialaiaiale ialale /
int stringListOutputCallback(void * list)

/* Handle string list output callback.

** jnput: list..._._.. string list.

** output: none.

** returns: MQLOK......... output was successfully handled.
** returns: MQLERROR....... output could not be handled.

*/

Embedding MQL Guide

char buffer[LINEBUFFERSIZE]; /* Buffer */
char *eol; /* End of line */

if (mglOutputLine(buffer,LINEBUFFERSIZE))
{

if (eol = strchr(buffer,”™ \n"))

*eol = "\0";

if (strien(buffer))
appendStringList((stringList *)list,buffer);

¥
return MQLOK;

Chapter 1: eMatrixMQL

31

Modular Packaging

The use of MQL commands through the eMatrixMQL interface leads to easy
modularization of functions. Any MQL sequence can be placed in a wrapper function for
easy re-use. It is recommended that the mgIClose function be placed in a function that
would be used in place of exit().

/* isisisisisisisisisisisisisisisisisisiaisiaisiaisiaiaiale Fexx /
void ExitApplication(int status)
{
if (nqlCloseLog() == MQLERROR)
{
fprintf(stderr,”ERROR: Can Not Close Log File \n");
exit(status);
}

if (nqlClose() == MQLERROR)

fprintf(stderr,"”ERROR: Can Not Close MQL Interface\n');
exit(status);

}

exit(status);
In the application, an error condition could then be handled easily.
if (strcmp(objectType, "Assembly™) 1= 0)

fprintf(stderr, "Can"t find an Assembly!\n');
ExitApplication(NO_ASSEMBLY);

Another common MQL usage is to test the existence of an object.
/* testObject.cpp -- function to test if an eMatrix object exists.*/

/* isisisisiaisisisisisisisisisisisisisisisiaisiaisiaiaiale Fxx /
#include <stdio.h>

#include "testObject.h"

#include "eMatrixMQL.h"
/***************************7\-***************************/
#define SUCCESS (0)

#define FAILURE (1)

#define ERROR (-1)

#define LINEBUFFERSIZE 8192

int ignoreOutputCallback(void * outData);

int ignoreErrorCallback(void * errData);

/* isiaisiaisisisiaiaiale Fxx /

int testObject(char * type, char * name, char * revision, char * user)

/* Test for object in Matrix.

** input: type.......... object type.
** jnput: name....._...... object name.
** jnput: revision...... object revision.

** output: none.

32

Embedding MQL Guide

*x

returns: SUCCESS....... object already exists.

** returns: FAILURE....... object does not exist.
** returns: ERROR......... error.
*/
{
if (mglCommand(*'print bus \"%s\" \"%s\" \"%s\" select name dump', type,
name, revision)
== MQLERROR)
{
return ERROR;
3
if (mglCallback(ignoreOutputCallback, NULL, 1ignoreErrorCallback, NULL)
== MQLERROR)
{
return ERROR;
3
/* If mqlErrors returns zero (0) the object exists return success. */
if (mqlErrors() == 0)
{
return SUCCESS;
¥
else
{
return FAILURE;
¥

}

/***/

int ignoreOutputCallback(void * outData)

/* Function to handle output callback.

input: none.

output: none.

returns: MQLOK. .output callback was handled.

returns: MQLERROR..output callback could not be handled.

*x
*x
*x

*x

*/

{

}

char buffer[LINEBUFFERSIZE]; /* Buffer */

it (mgqlOutputLine(buffer, LINEBUFFERSIZE))

{
}

/* ignore any output */

return MQLOK;

/x

int ignoreErrorCallback(void * errData)

/* Function to handle error callback.

input: none.

output: none.

returns: MQLOK..error callback was handled.

returns: MQLERROR..error callback could not be handled.

**
*x
*x

*x

*/

{

Chapter 1: eMatrixMQL

33

char buffer[LINEBUFFERSIZE]; /* Buffer */

if (mqlErrorLine(buffer, LINEBUFFERSIZE))
{

}

return MQLOK;

/* ignore any error output */

T
The function could be used as follows:
int status;

status = testObject('Assembly™, "AAAA™, "1, "Fred™);

switch (status)

{
case FAILURE :

createObject('Assembly', "AAAA™, "1", "Fred"™);
break;

case SUCCESS :
fprintf(stderr, "Object: %s %s %s exists\n",
"ASSembly", IIAAAAII’ lllll, llFredll);
break;

case ERROR :
fprintf(stderr, "eMatrixMQL Failure\n");
break;

default :
fprintf(stderr, "Unknown Return Code %d\n', status);
break;

34

Embedding MQL Guide

Working with a DLL

Using a DLL is a convenient method of accessing MQL from another application, since
you can perform runtime linking with your C or C++ program, or call it externally from
another program:

DLL Format Use With Protocol

eMatrixMQL.dll 64-bit eMatrixMQL HTTP/XML

Using DLLs with C When using eMatrixMQL.dlIl with a C or C** program, you can use the LoadLibrary()

or C** function to access any of the exported functions, or link in the DLL Stub Library
(recommended) as long as the appropriate DLL is in the same path as the executable for
your program. When statically linking, eMatrixMQL.h must be included, and the .lib files
must appear in the project.

The include file for eMatrixMQL is eMatrixMQL.h.

Chapter 1: eMatrixMQL 35

Compiling a
Custom
Application

Distributing a
Custom
Application

Compiling and
Linking with UNIX

Compiling and Linking

To Compile Using Visual C++

1.
2.
3.

Create a new project as “Win32 Console Application” in Visual studio.
Add the custom *.cpp source code file(s)

Link with eMatrixMql.lib. Under Project Settings -> Link tab, add the library to the
end of the line “Object/library modules”.

Add the directory where your header files are located under “preprocessor, additional
include directories”.

Under Project Settings -> C/C++ tab, set Category drop down list to Preprocessor,
and add the path to the header file(s)

Make sure the eMatrixMql.dll is available to the compiler, which might mean to place
it in the default directory

To run your test application from the client machine

1.

Be sure that the full JRE (or JDK) distribution is installed, and that the system
environment PATH variable points to the location of the Java binaries, for example:
Set PATH=%PATH%;\JAVA_HOME\jre\bin\server

Be sure that all Components needed are on the client computer:
e the program you made (e.g., "test.exe")

o eMatrixMQL.dII: in the same directory as the above program, or in another
location (but be sure to set your PATH environment variable to point to it)

« mxUtil.dll, vgalaxy7u.dll, and vgalaxy7.vr: copy from
ENOVIA_INSTALL\PLATFORMN\code\bin\ to the same directory, or to the
other location (but be sure to set your PATH environment variable to point to it).

» eMatrixServletRMI.jar: put this anywhere, and be sure to define your
CLASSPATH var to point to it, including full path and filename, (set
CLASSPATH=/programs/eMatrixServletRMI jar)

Makefiles will vary slightly on each UNIX platform. The following is an example
Makefile for a Red Hat workstation:

HHHH R R R
CC = cc

ADK_INSTALL = /usr/DassaultSystemes/enoviaV6R2013/adk
ENOVIA_INSTALL = /usr/DassaultSystemes/enoviaV6R2013/server
JAVA _HOME = /usr/java/jdkl.6.0_24

CFLAGS = -fPIC —D_POSIX_ -D_LINUX_SOURCE —I. —1$(ADK_INSTALL)”/
samples/eMatrixMgl

36

Embedding MQL Guide

Compiling and
Linking on
Windows

LDFLAGS = -L$(ADK_INSTALL)/linux_a64/code/bin
-L$(ENOVIA_INSTALL)/linux_a64/code/bin -L$(JAVA_HOME)/jre/lib/

amd64/server
LIBS = -leMatrixMgl -1jvm -ImxUtil -lvgalaxy7u
SRCS = examplel.cpp \
testObject.cpp \
errorCallback.cpp \
ignoreErrorCallback.cpp \
ignoreOutputCal lback.cpp
0OBJS = examplel.o \

testObject.o\
errorCallback.o \
ignoreErrorCal lback.o\
ignoreOutputCal lback.o

all: examplel

examplel: $(0BJS)

clean:

cc -0 examplel $(LDFLAGS) $(CFLAGS) $(0BJS) $(LIBS)

rm - $(OBJIS) examplel

HHHHAH R AR A AR AR A AR

Note: The library supplied for the eMatrixMQL interface is in object format (.0). Using
the -1 option will NOT work. Use the full path name instead.

When using the eMatrixMQL.dll, you can link any of the eMatrixMQL functions using
dllimport, as shown below:

#include <windows.h>

#ifdef MatrixMQL

__declspec (dllimport) int mgqlSetContext(char *, char *, char *,
char *);

#endif

__declspec (dllimport) int mglOpen(void);

__declspec (dllimport) int mglClose(void);

__declspec (dllimport) int mglExecute(char *);
__declspec (dllimport) int mglPending(void);

__declspec (dllimport) int mglOutput(char *,int);

int WINAPI WinMain(HINSTANCE hlnstance, HINSTANCE hPrev
Instance, LPSTR

IpszCmdLine, int nCmdShow)

{

int nResult, status;
char * retbuf = "*;
char * host = "WebServer";
char * userlID = "JSmith";

Chapter 1: eMatrixMQL

37

char * password = "xyzzy";
char * vault = "Engineering";

#ifdef EMATRIXMQL
mglSetContext(host, userlID, password, vault);
#endif

nResult = mglOpen();

mglExecute(*'set context user creator™);
status = mglPending(Q);

mglExecute("list vault'™);

mqlOutput (retbuf, 1000);

MessageBox (NULL, retbuf, "Title™, MB_OK);
mqlClose();

return 1;

38

Embedding MQL Guide

eMatrixMQLTest
Sample Code

Example makefile
for Studio
Customization
Toolkit

Sample Code

Sample code for eMatrixMQL is provided on the distributed CDs. The filenames and
locations are listed below.

The eMatrixMQLTest sample code can be found on the Studio Customization Toolkit
distributed CD. The following files are included:

* eMatrixMQLTest.cpp
e eMatrixMQLTest.h

The following is an example using C++ Studio Customization Toolkit classes to create a
command line interface to access the database via the collaboration server.

This example (eMatrixMqlTest.cpp) is for the Red Hat Enterprise Linux platform.
#

Makefile.gnu - example makefile for eMatrixMglTest example
(compatible with GNU make)

#
Usage : make - Makefile._gnu
#

ADK__INSTALL = /home/ds-hchang/enovia/R213/adk
ENOVIA_INSTALL = /usr/DassaultSystemes/enoviaV6R2013/server
JAVA_HOME = /usr/java/jdkl1.6.0_24

EXE = eMatrixMglTest

CXX = cc

CXXFLAGS = —fPIC -D_POSIX_ -D_LINUX_SOURCE -1I. -1$(ADK_INSTALL)/
samples/eMatrixMgl

LDFLAGS = -L$(ADK_INSTALL)/linux_a64/code/bin
-LS(ENOVIA_INSTALL)/linux_a64/code/bin -L$(JAVA_HOME)/jre/lib/
amd64/server

LIBS = -leMatrixMgl -Ijvm -ImxUtil -lvgalaxy7u

all: $(EXE)

$(EXE):
$(CXX) $(CXXFLAGS) $(LDFLAGS) $(LIBS) $(EXE).cpp -0 $(EXE)

Chapter 1: eMatrixMQL

39

40

Embedding MQL Guide

Index

AIBICIDIE|F|IG|H[I|J|IK|ILIM|[NJO[P[QIR[S|TJU[V|W]Y

C++
files 7
library structure 6
Studio Customization Toolkit 6
commands, issuing 13
compiling and linking
on Windows 37
with UNIX 36
conversation 17
conversational strategies 29

DLL
eMatrixMQL.dIl 35
using with C or C++ 35

files
C++ 7

functions
mqlCallback 19, 23
mqlClose 19, 21, 28

use on termination 5

mqlCloseLog 19, 22
mglCommand 19, 26
mqlDisableLog 19, 26
mqglEnableLog 19, 27
mqlError 19, 25
mqlErrorLine 19, 25

mqlErrorMessage 19, 25
mqlErrors 19, 24
mqlExecute 19, 26
mqlinit 19, 21
mqlinput 20, 24
mqlOpen

description 20

do not use twice 5

start a session 12

synopsis 20
mqglOpenLog 12, 20, 21
mqlOutput 20, 24
mqlOutputLine 20, 24
mqlOutputs 20, 23
mqlPending 16, 20, 22
mqlSetContext 20, 21
mqlSetQuote 20
mqlTimeout 20, 22
mqlWriteToLogFile 20, 27

galaxy dll 8

library functions 19
library listing 19
library structure, C++ 6

41

starting 12

MatrixMQL t_erminating 28 .
files 7 Studio Customization Toolkit
setup 6 C++ files 7

modular packaging 32

mglCallback function 19, 23 T

mqlClose function 19, 21, 28
use on termination 5
mqlCloseLog function 19, 22

terminating a session 28

mglCommand function 19, 26 U
mglCommand routine 13 unicode format 13
multibyte input 13 UNIX 36
mqlDisableLog function 19, 26
mqlEnableLog function 19, 27 W
mqlError function 19, 25
mgqlErrorLine function 19, 25 Windows, compiling and linking on 37

mqlErrorMessage function 19, 25
mqlErrors function 19, 24
mqlExecute function 19, 26
mqlinit function 19, 21
mqlinput function 20, 24
mqlOpen function

description 20

do not use twice 5

start a session 12

synopsis 20
mqlOpenLog function 12, 20, 21
mqlOutput function 20, 24
mqlOutputLine function 20, 24
mqlOutputs function 20, 23
mqlPending 16
mqlPending function 20, 22
mqlSetContext function 20, 21
mqlSetQuote function 20
mqlTimeout function 20, 22
mqlWriteToLogFile function 20, 27
multibyte input 13

output 14

pending output 16
processing output with callbacks 14
processing pending output 16

sample code 39
session

Embedding MQL Guide

	Table of Contents
	eMatrixMQL
	Overview of eMatrixMQL
	eMatrixMQL
	Requirements
	Dassault Systèmes Software Prerequisites x86

	Known Issues
	Do Not Use mqlOpen Function More than Once

	C++ Studio Customization Toolkit
	C++ Studio Customization Toolkit Library Structure
	Setting Up a Client Machine to Run an eMatrixMQL Application
	C++ Studio Customization Toolkit Files
	eMatrixMQL Files (Live Collaboration Server only)

	Running the eMatrixMQL Test Application
	Setting Up to Run the Test Application
	Troubleshooting

	Starting a Session
	Issuing a Command
	Processing Output with Callbacks
	Processing Pending Output
	A Small Conversation
	Library of Functions
	Library Listing
	Library of eMatrixMQL Functions
	Synopsis of eMatrixMQL Functions

	Terminating a Session
	Conversational Strategies
	Modular Packaging
	Working with a DLL
	Using DLLs with C or C++

	Compiling and Linking
	Compiling a Custom Application
	Distributing a Custom Application

	Sample Code
	eMatrixMQLTest Sample Code
	Example makefile for Studio Customization Toolkit

	Index

