Advanced Mathematics Functions Functions

This package deals with advanced mathematical functions

This page discusses:

*

Signature

*(a1 : Real, a2 : Matrix) : Matrix

Arguments

NameInput / OutputRequired?TypeComment
a1InYesReal-
a2InYesMatrix-

ReturnType

Matrix

*

Signature

*(a1 : Matrix, a2 : Real) : Matrix

Arguments

NameInput / OutputRequired?TypeComment
a1InYesMatrix-
a2InYesReal-

ReturnType

Matrix

*

Signature

*(a1 : Matrix, a2 : Matrix) : Matrix

Arguments

NameInput / OutputRequired?TypeComment
a1InYesMatrix-
a2InYesMatrix-

ReturnType

Matrix

+

Signature

+(a1 : Real, a2 : Matrix) : Matrix

Arguments

NameInput / OutputRequired?TypeComment
a1InYesReal-
a2InYesMatrix-

ReturnType

Matrix

+

Signature

+(a1 : Matrix, a2 : Matrix) : Matrix

Arguments

NameInput / OutputRequired?TypeComment
a1InYesMatrix-
a2InYesMatrix-

ReturnType

Matrix

+

Signature

+(a1 : Matrix, a2 : Real) : Matrix

Arguments

NameInput / OutputRequired?TypeComment
a1InYesMatrix-
a2InYesReal-

ReturnType

Matrix

-

Signature

-(a1 : Matrix, a2 : Matrix) : Matrix

Arguments

NameInput / OutputRequired?TypeComment
a1InYesMatrix-
a2InYesMatrix-

ReturnType

Matrix

-

Signature

-(a1 : Matrix, a2 : Real) : Matrix

Arguments

NameInput / OutputRequired?TypeComment
a1InYesMatrix-
a2InYesReal-

ReturnType

Matrix

<>

Signature

<>(a1 : Matrix, a2 : Matrix) : Boolean

Arguments

NameInput / OutputRequired?TypeComment
a1InYesMatrix-
a2InYesMatrix-

ReturnType

Boolean

==

Signature

==(a1 : Matrix, a2 : Matrix) : Boolean

Arguments

NameInput / OutputRequired?TypeComment
a1InYesMatrix-
a2InYesMatrix-

ReturnType

Boolean

CrossProduct

Function used to compute a vectorial product between two vectors of the same dimension.

Signature

CrossProduct(iVector1 : Vector, iVector2 : Vector) : Vector

Arguments

NameInput / OutputRequired?TypeComment
iVector1InYesVectorFirst vector.
iVector2InYesVectorSecond vector.

ReturnType

Vector

Matrix

Function used to create a matrix.

Signature

Matrix(x : Integer, y : Integer, initVal : Real) : Matrix

Arguments

NameInput / OutputRequired?TypeComment
xInYesIntegerNumber of rows
yInYesIntegerNumber of columns
initValInYesRealValue of the entry
  • Matrix entries are separated by spaces
  • ";" is the equivalent of a carriage return
  • "," is used to move from one column to the next.

ReturnType

Matrix

MatrixIdent

Function used to create a n × n square matrix with ones on the main diagonal and zeros elsewhere.

Signature

MatrixIdent(x : Integer) : Matrix

Arguments

NameInput / OutputRequired?TypeComment
xInYesIntegerNumber of rows and columns

ReturnType

Matrix

TransformationMatrix

Function used to generate a transformation matrix according to a translation vector, an angle, a rotation axis and a scale vector entered by the user.

Signature

TransformationMatrix([Translation : Vector, Angle : Real, RotationAxis : Vector, Scale : Vector]) : Matrix

Arguments

NameInput/OutputRequired?TypeComment
TranslationInNoVectorVector that represents the translation.
AngleInNoRealRotation angle in degrees.
RotationAxisInNoVectorVector that represents the rotation axis.
ScaleInNoVectorVector that represents the scale. The default value is (1,1, 1)

ReturnType

Matrix

Example

let T, R, S (Vector)
let A (Real)
let M (Matrix)
T = [2, 2, 2]
A = 0
R = [1, 0, 0]
S = [3, 3, 3]
M = TransformationMatrix (T, A, R)
M = TransformationMatrix (T, A, R, S)
T = [1, 1, 1]
A = 90
M = TransformationMatrix (T, A, R)