Axisymmetric solid elements with twist

This problem contains basic test cases for one or more Abaqus elements and features.

This page discusses:

ProductsAbaqus/Standard

Elements tested

CGAX3

CGAX3H

CGAX3HT

CGAX3T

CGAX4

CGAX4H

CGAX4HT

CGAX4R

CGAX4RH

CGAX4RHT

CGAX4RT

CGAX4T

CGAX6

CGAX6H

CGAX6M

CGAX6MH

CGAX6MHT

CGAX6MT

CGAX8

CGAX8H

CGAX8HT

CGAX8R

CGAX8RH

CGAX8RHT

CGAX8RT

CGAX8T

Problem description



Material:

Linear elastic, Young's modulus = 106, Poisson's ratio = 0.3.

Boundary conditions:

uzA=uzB=uzC=uzD=0; urA=urC=0; ϕA=ϕB=0.

Step 1

A concentrated moment loading equivalent to a distributed moment loading M of 6042 is applied on top face CD.

Analytical solution (L=1):
Twist

ϕ=2ML/μπa4 = 0.01 (on top face CD).

Stresses

σzθ=μϕr/L.

Results and discussion

All elements yield the analytical solution.

Section output requests to the results (.fil) file and to the data (.dat) file are used in some of the input files to output accumulated quantities on the face CD. The area of the face is 3.142.

Input files

eca3gfs3.inp

CGAX3 elements.

eca3ghs3.inp

CGAX3H elements.

eca3hhs3.inp

CGAX3HT elements.

eca3hfs3.inp

CGAX3T elements.

eca4gfs3.inp

CGAX4 elements.

eca4ghs3.inp

CGAX4H elements.

eca4hhs3.inp

CGAX4HT elements.

eca4grs3.inp

CGAX4R elements.

eca4gys3.inp

CGAX4RH elements.

eca4hys3.inp

CGAX4RHT elements.

eca4hrs3.inp

CGAX4RT elements.

eca4hfs3.inp

CGAX4T elements.

eca6gfs3.inp

CGAX6 elements.

eca6ghs3.inp

CGAX6H elements.

eca6gks3.inp

CGAX6M elements.

eca6gls3.inp

CGAX6MH elements.

eca6hls3.inp

CGAX6MHT elements.

eca6hks3.inp

CGAX6MT elements.

eca8gfs3.inp

CGAX8 elements.

eca8ghs3.inp

CGAX8H elements.

eca8hhs3.inp

CGAX8HT elements.

eca8grs3.inp

CGAX8R elements.

eca8gys3.inp

CGAX8RH elements.

eca8hys3.inp

CGAX8RHT elements.

eca8hrs3.inp

CGAX8RT elements.

eca8hfs3.inp

CGAX8T elements.