Continuum pore pressure elements

This problem contains basic test cases for one or more Abaqus elements and features.

This page discusses:

ProductsAbaqus/Standard

Plane strain elements with pore pressure

Problem description

Model:

Planar dimension 3 × 5
Gravity load vector (1, 1, 0)

Material:

Young's modulus 1 × 108
Poisson's ratio 0.0
Density 1.4142
Permeability 1 × 10−5
Specific weight of fluid 1.0

Initial conditions

Initial void ratio 1.0
Hydrostatic pressure datum 5.0
Hydrostatic pressure elevation 0.0
Sink pore pressure 14.7

Results and discussion

The calculated reactions are in agreement with the applied loads.

Input files

CPE4P element load tests:
ece4pfde.inp

CENTRIF, BX, BY, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, S1, S2, S3, S4.

ece4pfdl.inp

P, HP, Q, S.

ece4pfdr.inp

ROTA.

CPE4PH element load tests:
ece4phde.inp

CENTRIF, BX, BY, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, S1, S2, S3, S4.

ece4phdl.inp

P, HP, Q, S.

ece4phdr.inp

ROTA.

CPE4RP element load tests:
ece4prde.inp

CENTRIF, BX, BY, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, S1, S2, S3, S4.

ece4prdl.inp

P, HP, Q, S.

ece4prdr.inp

ROTA.

CPE4RPH element load tests:
ece4pyde.inp

CENTRIF, BX, BY, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, S1, S2, S3, S4.

ece4pydl.inp

P, HP, Q, S.

ece4pydr.inp

ROTA.

CPE6MP element load tests:
ece6pkde.inp

CENTRIF, BX, BY, GRAV, P1, P2, P3, HP1, HP2, HP3, Q1, Q2, Q3, S1, S2, S3.

ece6pkdl.inp

P, HP, Q, S.

ece6pkdr.inp

ROTA.

CPE6MPH element load tests:
ece6plde.inp

CENTRIF, BX, BY, GRAV, P1, P2, P3, HP1, HP2, HP3, Q1, Q2, Q3, S1, S2, S3.

ece6pldl.inp

P, HP, Q, S.

ece6pldr.inp

ROTA.

CPE8P element load tests:
ece8pfde.inp

CENTRIF, BX, BY, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, Q1D, Q2D, Q3D, Q4D, S1, S2, S3, S4.

ece8pfdl.inp

P, HP, Q, QD, S.

ece8pfdr.inp

ROTA.

CPE8PH element load tests:
ece8phde.inp

CENTRIF, BX, BY, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, Q1D, Q2D, Q3D, Q4D, S1, S2, S3, S4.

ece8phdl.inp

P, HP, Q, QD, S.

ece8phdr.inp

ROTA.

CPE8RP element load tests:
ece8prde.inp

CENTRIF, BX, BY, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, Q1D, Q2D, Q3D, Q4D, S1, S2, S3, S4.

ece8prdl.inp

P, HP, Q, QD, S.

ece8prdr.inp

ROTA.

CPE8RPH element load tests:
ece8pyde.inp

CENTRIF, BX, BY, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, Q1D, Q2D, Q3D, Q4D, S1, S2, S3, S4.

ece8pydl.inp

P, HP, Q, QD, S.

ece8pydr.inp

ROTA.

Axisymmetric elements with pore pressure

Problem description

Model:

Planar dimension 3 × 5
Inside radius 1.0
Gravity load vector (1, 1, 0)

Material:

Young's modulus 1 × 108
Poisson's ratio 0.0
Density 1.4142
Permeability 1 × 10−5
Specific weight of fluid 1.0

Initial conditions

Initial void ratio 1.0
Hydrostatic pressure datum 5.0
Hydrostatic pressure elevation 0.0
Sink pore pressure 14.7

Results and discussion

The calculated reactions are in agreement with the applied loads.

Input files

CAX4P element load tests:
eca4pfde.inp

CENTRIF, BR, BZ, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, S1, S2, S3, S4.

eca4pfdl.inp

P, HP, Q, S.

CAX4PH element load tests:
eca4phde.inp

CENTRIF, BR, BZ, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, S1, S2, S3, S4.

eca4phdl.inp

P, HP, Q, S.

CAX4RP element load tests:
eca4prde.inp

CENTRIF, BR, BZ, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, S1, S2, S3, S4.

eca4prdl.inp

P, HP, Q, S.

CAX4RPH element load tests:
eca4pyde.inp

CENTRIF, BR, BZ, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, S1, S2, S3, S4.

eca4pydl.inp

P, HP, Q, S.

CAX6MP element load tests:
eca6pkde.inp

CENTRIF, BR, BZ, GRAV, P1, P2, P3, HP1, HP2, HP3, Q1, Q2, Q3, S1, S2, S3.

eca6pkdl.inp

P, HP, Q, S.

CAX6MPH element load tests:
eca6plde.inp

CENTRIF, BR, BZ, GRAV, P1, P2, P3, HP1, HP2, HP3, Q1, Q2, Q3, S1, S2, S3.

eca6pldl.inp

P, HP, Q, S.

CAX8P element load tests:
eca8pfde.inp

CENTRIF, BR, BZ, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, Q1D, Q2D, Q3D, Q4D, S1, S2, S3, S4.

eca8pfdl.inp

P, HP, Q, QD, S.

CAX8PH element load tests:
eca8phde.inp

CENTRIF, BR, BZ, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, Q1D, Q2D, Q3D, Q4D, S1, S2, S3, S4.

eca8phdl.inp

P, HP, Q, QD, S.

CAX8RP element load tests:
eca8prde.inp

CENTRIF, BR, BZ, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, Q1D, Q2D, Q3D, Q4D, S1, S2, S3, S4.

eca8prdl.inp

P, HP, Q, QD, S.

CAX8RPH element load tests:
eca8pyde.inp

CENTRIF, BR, BZ, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, Q1D, Q2D, Q3D, Q4D, S1, S2, S3, S4.

eca8pydl.inp

P, HP, Q, QD, S.

Three-dimensional elements with pore pressure

Problem description

Model:

Cubic dimension 3 × 5 × 1
Gravity load vector (1, 1, 1)

Material:

Young's modulus 1 × 108
Poisson's ratio 0.0
Density 1.7321
Permeability 1 × 10−5
Specific weight of fluid 1.0

Initial conditions

Initial void ratio 1.0
Hydrostatic pressure datum 5.0
Hydrostatic pressure elevation 0.0
Sink pore pressure 14.7

Results and discussion

The calculated reactions are in agreement with the applied loads.

Input files

C3D4P element load tests:
elem_load_c3d4p_1.inp

CENTRIF, BX, BY, BZ, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, S1, S2, S3, S4.

elem_load_c3d4p_2.inp

P, HP, Q, S.

elem_load_c3d4p_3.inp

ROTA.

C3D6P element load tests:
elem_load_c3d6p_1.inp

CENTRIF, BX, BY, BZ, GRAV, P1, P2, P3, P4, P5, HP1, HP2, HP3, HP4, HP5, Q1, Q2, Q3, Q4, Q5, S1, S2, S3, S4, S5.

elem_load_c3d6p_2.inp

P, HP, Q, S.

elem_load_c3d6p_3.inp

ROTA.

C3D8P element load tests:
ec38pfde.inp

CENTRIF, BX, BY, BZ, GRAV, P1, P2, P3, P4, P5, P6, HP1, HP2, HP3, HP4, HP5, HP6, Q1, Q2, Q3, Q4, Q5, Q6, S1, S2, S3, S4, S5, S6.

ec38pfdl.inp

P, HP, Q, S.

ec38pfdr.inp

ROTA.

C3D8PH element load tests:
ec38phde.inp

CENTRIF, BX, BY, BZ, GRAV, P1, P2, P3, P4, P5, P6, HP1, HP2, HP3, HP4, HP5, HP6, Q1, Q2, Q3, Q4, Q5, Q6, S1, S2, S3, S4, S5, S6.

ec38phdl.inp

P, HP, Q, S.

ec38phdr.inp

ROTA.

C3D8RP element load tests:
ec38prde.inp

CENTRIF, BX, BY, BZ, GRAV, P1, P2, P3, P4, P5, P6, HP1, HP2, HP3, HP4, HP5, HP6, Q1, Q2, Q3, Q4, Q5, Q6, S1, S2, S3, S4, S5, S6.

ec38prdl.inp

P, HP, Q, S.

ec38prdr.inp

ROTA.

C3D8RPH element load tests:
ec38pyde.inp

CENTRIF, BX, BY, BZ, GRAV, P1, P2, P3, P4, P5, P6, HP1, HP2, HP3, HP4, HP5, HP6, Q1, Q2, Q3, Q4, Q5, Q6, S1, S2, S3, S4, S5, S6.

ec38pydl.inp

P, HP, Q, S.

ec38pydr.inp

ROTA.

C3D10MP element load tests:
ec3apkde.inp

CENTRIF, BX, BY, BZ, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, S1, S2, S3, S4.

ec3apkdl.inp

P, HP, Q, S.

ec3apkdr.inp

ROTA.

C3D10MPH element load tests:
ec3aplde.inp

CENTRIF, BX, BY, BZ, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, S1, S2, S3, S4.

ec3apldl.inp

P, HP, Q, S.

ec3apldr.inp

ROTA.

C3D20P element load tests:
ec3kpfde.inp

CENTRIF, BX, BY, BZ, GRAV, P1, P2, P3, P4, P5, P6, HP1, HP2, HP3, HP4, HP5, HP6, Q1, Q2, Q3, Q4, Q5, Q6, Q1D, Q2D, Q3D, Q4D, Q5D, Q6D, S1, S2, S3, S4, S5, S6.

ec3kpfde.f

User subroutines FLOW and DFLOW used in ec3kpfde.inp.

ec3kpfdl.inp

P, HP, Q, QD, S.

ec3kpfdr.inp

ROTA.

C3D20PH element load tests:
ec3kphde.inp

CENTRIF, BX, BY, BZ, GRAV, P1, P2, P3, P4, P5, P6, HP1, HP2, HP3, HP4, HP5, HP6, Q1, Q2, Q3, Q4, Q5, Q6, Q1D, Q2D, Q3D, Q4D, Q5D, Q6D, S1, S2, S3, S4, S5, S6.

ec3kphdl.inp

P, HP, Q, QD, S.

ec3kphdr.inp

ROTA.

C3D20RP element load tests:
ec3kprde.inp

CENTRIF, BX, BY, BZ, GRAV, P1, P2, P3, P4, P5, P6, HP1, HP2, HP3, HP4, HP5, HP6, Q1, Q2, Q3, Q4, Q5, Q6, Q1D, Q2D, Q3D, Q4D, Q5D, Q6D, S1, S2, S3, S4, S5, S6.

ec3kprdl.inp

P, HP, Q, QD, S.

ec3kprdr.inp

ROTA.

C3D20RPH element load tests:
ec3kpyde.inp

CENTRIF, BX, BY, BZ, GRAV, P1, P2, P3, P4, P5, P6, HP1, HP2, HP3, HP4, HP5, HP6, Q1, Q2, Q3, Q4, Q5, Q6, Q1D, Q2D, Q3D, Q4D, Q5D, Q6D, S1, S2, S3, S4, S5, S6.

ec3kpydl.inp

P, HP, Q, QD, S.

ec3kpydr.inp

ROTA.

CAXA elements with pore pressure

Problem description

Model:

Planar dimension 3 × 5
Inside radius 1.0
Gravity load vector (1, 1, 0)

Material:

Young's modulus 1 × 108
Poisson's ratio 0.0
Density 1.4142
Permeability 1 × 10−5
Specific weight of fluid 1.0

Initial conditions

Initial void ratio 1.0
Hydrostatic pressure datum 5.0
Hydrostatic pressure elevation 0.0
Sink pore pressure 14.7

Results and discussion

The calculated reactions are in agreement with the applied loads.

Input files

ecnwpfde.inp

CAXA8P1: BX, BZ, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, Q1D, Q2D, Q3D, Q4D, S1, S2, S3, S4.

ecnwprde.inp

CAXA8RP1: BX, BZ, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, Q1D, Q2D, Q3D, Q4D, S1, S2, S3, S4.

ecnxpfde.inp

CAXA8P2: BX, BZ, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, Q1D, Q2D, Q3D, Q4D, S1, S2, S3, S4.

ecnxprde.inp

CAXA8RP2: BX, BZ, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, Q1D, Q2D, Q3D, Q4D, S1, S2, S3, S4.

ecnypfde.inp

CAXA8P3: BX, BZ, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, Q1D, Q2D, Q3D, Q4D, S1, S2, S3, S4.

ecnyprde.inp

CAXA8RP3: BX, BZ, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, Q1D, Q2D, Q3D, Q4D, S1, S2, S3, S4.

ecnzpfde.inp

CAXA8P4: BX, BZ, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, Q1D, Q2D, Q3D, Q4D, S1, S2, S3, S4.

ecnzprde.inp

CAXA8RP4: BX, BZ, GRAV, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, Q1D, Q2D, Q3D, Q4D, S1, S2, S3, S4.

Plane strain pore-thermal elements

Problem description

Model:

Planar dimension 3 × 5
Gravity direction (1, 1, 0)

Material:

Young's modulus 1 × 108
Poisson's ratio 0.0
Density 1.4142
Permeability 1 × 10-5
Thermal conductivity 0.1

Initial conditions

Initial void ratio 1.0
Initial temperature 0.0
Initial pore pressure 0.0

Results and discussion

The calculated reactions are in agreement with the applied loads.

Input files

cpe4pt_mech_loads.inp

CPE4PT: BX, BY, GRAV, CENTRIF, P1, P2, P3, P4, HP1, HP2, HP3, HP4.

cpe4pt_surf_mech_loads.inp

CPE4PT: P, HP.

cpe4rpt_mech_loads.inp

CPE4RPT: BX, BY, GRAV, CENTRIF, P1, P2, P3, P4, HP1, HP2, HP3, HP4.

cpe4rpt_surf_mech_loads.inp

CPE4RPT: P, HP.

cpe4pht_mech_loads.inp

CPE4PHT: BX, BY, GRAV, CENTRIF, P1, P2, P3, P4, HP1, HP2, HP3, HP4.

cpe4pht_surf_mech_loads.inp

CPE4PHT: P, HP.

cpe4rpht_mech_loads.inp

CPE4RPHT: BX, BY, GRAV, CENTRIF, P1, P2, P3, P4, HP1, HP2, HP3, HP4.

cpe4rpht_surf_mech_loads.inp

CPE4RPHT: P, HP.

Plane strain pore-thermal elements with flow loads

Problem description

Model:

Planar dimension 3 × 5

Material:

Young's modulus 1 × 108
Poisson's ratio 0.0
Density 1.4142
Permeability 1 × 10-5
Thermal conductivity 0.1
Specific heat 0.39

Initial conditions

Initial void ratio 1.0
Initial temperature 0.0
Initial pore pressure 0.0

Results and discussion

The calculated reactions are in agreement with the applied loads.

Plane strain pore-thermal elements with heat loads

Problem description

Model:

Planar dimension 7 × 7

Material:

Young's modulus 30 × 106
Poisson's ratio 0.3
Permeability 1 × 10-5
Coefficient of thermal expansion 0.0
Thermal conductivity 3.77 × 10-5
Density 82.9
Specific heat 0.39
Coefficient of thermal expansion, pore fluid 0.0
Thermal conductivity, pore fluid 3.77 × 10-5
Density, pore fluid 82.9
Specific heat, pore fluid 0.39

Initial conditions

Initial void ratio 1.0
Initial temperature 0.0
Initial pore pressure 0.0

Results and discussion

The calculated reactions are in agreement with the applied loads.

Input files

cpe4pt_heat_loads.inp

CPE4PT: BF, S1, S2, S3, S4, F1, F2, F3, F4, R1, R2, R3, R4.

cpe4pt_surf_heat_loads.inp

CPE4PT: S, F, R.

cpe4rpt_heat_loads.inp

CPE4RPT: BF, S1, S2, S3, S4, F1, F2, F3, F4, R1, R2, R3, R4.

cpe4rpt_surf_heat_loads.inp

CPE4RPT: S, F, R.

cpe4pht_heat_loads.inp

CPE4PHT: BF, S1, S2, S3, S4, F1, F2, F3, F4, R1, R2, R3, R4.

cpe4pht_surf_heat_loads.inp

CPE4PHT: S, F, R.

cpe4rpht_heat_loads.inp

CPE4RPHT: BF, S1, S2, S3, S4, F1, F2, F3, F4, R1, R2, R3, R4.

cpe4rpht_surf_heat_loads.inp

CPE4RPHT: S, F, R.

Three-dimensional pore-thermal elements

Problem description

Model:

Cubic dimension 7 × 7 × 7
Gravity direction (1, 0, 0)

Material:

Modulus 3 × 106
Density 10.0
Expansion 0.0001
Specific heat 1.0
Conductivity 0.1
Density, pore fluid 10.0
Expansion, pore fluid 0.0001
Specific heat, pore fluid 1.0
Conductivity, pore fluid 0.1
Permeability 0.01
Specific weight of fluid 1.0

Initial conditions

Initial void ratio 1.0
Initial temperature 0.0
Initial pore pressure 0.0

Results and discussion

The calculated reactions are in agreement with the applied loads.

Input files

c3d4pt_loads.inp

C3D4PT: BX, BY, BZ, GRAV, CENT, CENTRIF, P1, P2, P3, P4, P5, P6, HP1, HP2, HP3, HP4, HP5, HP6.

c3d8pt_loads.inp

C3D8PT: BX, BY, BZ, GRAV, CENT, CENTRIF, P1, P2, P3, P4, P5, P6, HP1, HP2, HP3, HP4, HP5, HP6.

c3d8rpt_loads.inp

C3D8RPT: BX, BY, BZ, GRAV, CENT, CENTRIF, P1, P2, P3, P4, P5, P6, HP1, HP2, HP3, HP4, HP5, HP6.

c3d8rpht_loads.inp

C3D8RPHT: BX, BY, BZ, GRAV, CENT, CENTRIF, P1, P2, P3, P4, P5, P6, HP1, HP2, HP3, HP4, HP5, HP6.

c3d10pt_loads.inp

C3D10PT: BX, BY, BZ, GRAV, CENT, CENTRIF, P1, P2, P3, P4, HP1, HP2, HP3, HP4.

c3d10mpt_loads.inp

C3D10MPT: BX, BY, BZ, GRAV, CENT, CENTRIF, P1, P2, P3, P4, HP1, HP2, HP3, HP4.

Three-dimensional pore-thermal elements with flow loads

Problem description

Model:

Cubic dimension 5 × 3 × 1
Gravity direction (1, 1, 1)

Material:

Modulus 1 × 108
Density 1.7321
Expansion 0.0
Specific heat 10.0
Conductivity 1.0
Density, pore fluid 1.7321
Expansion, pore fluid 0.0
Specific heat, pore fluid 10.0
Conductivity, pore fluid 1.0
Permeability 1 × 10−5
Specific weight of fluid 1.0

Initial conditions

Initial void's ratio 1.0
Initial temperature 0.0
Initial pore pressure 0.0

Results and discussion

The calculated reactions are in agreement with the applied loads.

Input files

c3d4ph_dsflow_loads.inp

C3D4PH: P, HP, Q, S.

c3d4pt_dsflow_loads.inp

C3D4PT: P, HP, Q, S.

c3d8pt_dflow_loads.inp

C3D8PT: BX, BY, BZ, GRAV, CENT, CENTRIF, P1, P2, P3, P4, P5, P6, HP1, HP2, HP3, HP4, HP5, HP6, Q1, Q2, Q3, Q4, Q5, Q6, S1, S2, S3, S4, S5, S6.

c3d8pt_sflow_loads.inp

C3D8PT: P, HP, Q, S.

c3d8rpt_dflow_loads.inp

C3D8RPT: BX, BY, BZ, GRAV, CENT, CENTRIF, P1, P2, P3, P4, P5, P6, HP1, HP2, HP3, HP4, HP5, HP6, Q1, Q2, Q3, Q4, Q5, Q6, S1, S2, S3, S4, S5, S6.

c3d8rpht_dflow_loads.inp

C3D8RPHT: BX, BY, BZ, GRAV, CENT, CENTRIF, P1, P2, P3, P4, P5, P6, HP1, HP2, HP3, HP4, HP5, HP6, Q1, Q2, Q3, Q4, Q5, Q6, S1, S2, S3, S4, S5, S6.

c3d10mpt_flow_loads.inp

C3D10MPT: BX, BY, BZ, GRAV, CENT, CENTRIF, P1, P2, P3, P4, HP1, HP2, HP3, HP4, Q1, Q2, Q3, Q4, S1, S2, S3, S4.

c3d10p_dsflow_loads.inp

C3D10P: P, HPQ, S.

c3d10pt_dsflow_loads.inp

C3D10PT: P, HPQ, S.

c3d10mpt_dsflow_loads.inp

C3D10MPT: P, HPQ, S.

Three-dimensional pore-thermal elements with heat loads

Problem description

Model:

For this set of verification problems both the solid and the pore fluid used identical heat transfer properties so that results could be compared with conventional heat transfer elements.

Cubic dimension 7 × 7 × 7

Material:

Modulus 3 × 106
Density 82.9
Expansion 0.0
Specific heat 0.39
Conductivity 3.77 × 10−5
Density, pore fluid 82.9
Expansion, pore fluid 0.0
Specific heat, pore fluid 0.39
Conductivity, pore fluid 3.77 × 10−5
Permeability 0.001
Specific weight of fluid 10.0

Initial conditions

Initial void's ratio 1.0
Initial temperature 0.0
Initial pore pressure 0.0

Results and discussion

The calculated reactions are in agreement with the applied loads.

Axisymmetric pore-thermal elements

Problem description

Model:

Cubic dimension 3 × 3

Material:

Modulus 3 × 106
Density 5 × 10−5
Expansion 0.0001
Specific heat 1.0
Conductivity 0.1
Density, pore fluid 5 × 105
Expansion, pore fluid 0.0001
Specific heat, pore fluid 1.0
Conductivity, pore fluid 0.1
Permeability 0.01
Specific weight of fluid 1.0

Initial conditions

Initial void's ratio 1.0
Initial temperature 0.0
Initial pore pressure 0.0

Results and discussion

The calculated reactions are in agreement with the applied loads.

Input files

cax4pt_loads.inp

CAX4PT: CENT, CENTRIF, BR, GRAV,HP1, HP2, HP3, HP4, P1, P2, P3, P4.

cax4rpt_loads.inp

CAX4RPT: CENT, CENTRIF, BR, GRAV,HP1, HP2, HP3, HP4, P1, P2, P3, P4.

cax4rpht_loads.inp

CAX4RPHT: CENT, CENTRIF, BR, GRAV,HP1, HP2, HP3, HP4, P1, P2, P3, P4.

Axisymmetric pore-thermal elements with flow loads

Problem description

Model:

Cubic dimension 3 × 5

Material:

Modulus 1 × 108
Density 1.4142
Expansion 0.0
Specific heat 10.0
Conductivity 1.0
Density, pore fluid 1.4142
Expansion, pore fluid 0.0
Specific heat, pore fluid 10.0
Conductivity, pore fluid 1.0
Permeability 1 × 10−5
Specific weight of fluid 1.0

Initial conditions

Initial void's ratio 1.0
Initial temperature 0.0
Initial pore pressure 0.0

Results and discussion

The calculated reactions are in agreement with the applied loads.

Axisymmetric pore-thermal elements with heat loads

Problem description

Model:

For this set of verification problems both the solid and the pore fluid used identical heat transfer properties so that results could be compared with conventional heat transfer elements.

Cubic dimension 7 × 7

Material:

Modulus 30 × 106
Density 82.9
Expansion 0.0
Specific heat 0.39
Conductivity 3.77 × 10−5
Density, pore fluid 82.9
Expansion, pore fluid 0.0
Specific heat, pore fluid 0.39
Conductivity, pore fluid 3.77 × 10−5
Permeability 0.001
Specific weight of fluid 10.0

Initial conditions

Initial void's ratio 1.0
Initial temperature 0.0
Initial pore pressure 0.0

Results and discussion

The calculated reactions are in agreement with the applied loads.