Gumbel Distribution

The Gumbel distribution is also known as extreme value distribution type I for the largest or smallest number of values.

See Also
About Probability Distributions

The Gumbel probability density function for the largest element is as follows:

fX(x)=βexp[β(xα)exp[β(xα)]]x,β>0

The Gumbel probability density function for the smallest element is similarly:

fX(x)=βexp[β(xα)exp[β(xα)]]x,β>0

In both cases the parameter α is a measure of location and β is a measure of dispersion.

The Gumbel distribution function for the largest element is as follows:

FX(x)=exp{exp[β(xα)]}x,α>0

The Gumbel distribution function for the smallest element is similarly:

FX(x)=1exp[β(xα)]x,α>0

The mean value and standard deviation of the random variable X for the Gumbel distribution for the largest element is as follows:

μX=α+γβα+0.5772β.

The mean value and standard deviation of the random variable X for the Gumbel distribution for the smallest element is similarly:

μX=α+γβα0.5772β

and

σX=π6β.

where γ0.5772 is Euler’s constant.

The Gumbel probability density function, as shown in the figure below, is often used to describe the breaking strength of materials, breakdown voltage in capacitors, and gust velocities encountered by an aircraft.