Orthotropic Elasticity

Linear elasticity in an orthotropic material can also be defined by giving the nine independent elastic stiffness parameters, as functions of temperature and other predefined fields, if required.

See Also
In Other Guides
Linear Elastic Behavior

In this case, the stress-strain relations are of the form

{ σ 11 σ 22 σ 33 σ 12 σ 13 σ 23 } = [ D 1111 D 1122 D 1133 0 0 0 D 2222 D 2233 0 0 0 D 3333 0 0 0 D 1212 0 0 s y m D 1313 0 D 2323 ] { ε 11 ε 22 ε 33 γ 12 γ 13 γ 23 } = D e l { ε 11 ε 22 ε 33 γ 12 γ 13 γ 23 } .

The restrictions on the elastic constants due to material stability are

D 1111 , D 2222 , D 3333 , D 1212 , D 1313 , D 2323 > 0
| D 1122 | < ( D 1111 D 2222 ) 1 / 2
| D 1133 | < ( D 1111 D 3333 ) 1 / 2
| D 2233 | < ( D 2222 D 3333 ) 1 / 2
det ( D e l ) = D 1111 D 2222 D 3333 + 2 D 1122 D 1133 D 2233 D 2222 D 1133 2 D 1111 D 2233 2 D 3333 D 1122 2 > 0.
These restrictions in terms of the elastic stiffness parameters are equivalent to the restrictions in terms of the "engineering constants."

Parameters

Input Data Description
Dnnnn Nine independent elastic stiffness parameters D i j k l .
Use temperature-dependent data Specifies material parameters that depend on temperature. A Temperature field appears in the data table. For more information, see Specifying Material Data as a Function of Temperature and Independent Field Variables.
Number of field variables Specifies material parameters that depend on field variables. Field columns appear in the data table for each field variable you add. For more information, see Specifying Material Data as a Function of Temperature and Independent Field Variables.