
1

ENOVIA DesignSync
Access Control Guide

3DEXPERIENCE 2022

Guide Organization

4

©2021 Dassault Systèmes. All rights reserved. 3DEXPERIENCE®, the Compass icon, the 3DS logo, CATIA, SOLIDWORKS, ENOVIA, DELMIA, SIMULIA, GEOVIA, EXALEAD, 3D VIA, BIOVIA, NETVIBES,
IFWE and 3DEXCITE are commercial trademarks or registered trademarks of Dassault Systèmes, a French “société européenne” (Versailles Commercial Register # B 322 306 440), or its subsidiaries in the
United States and/or other countries. All other trademarks are owned by their respective owners. Use of any Dassault Systèmes or its subsidiaries trademarks is subject to their express written approval.

i

Table Of Contents
Guide Organization ... 1

ACAdmin ... 1

Access Controls ... 1

Access Control Basics ... 2

Introduction to Access Control ... 2

How Access Controls Work .. 2

How the Access Controls Are Implemented ... 2

Access Control Definition Files... 3

Using Secure Access Mode ... 4

How Secure Access Control Works ... 4

About the Access Control Vault.. 4

How Access Commands Work with Secure Access Control Enabled 5

Secure Access Control Revision Control Notes ... 6

Related Topics ... 6

Setting Up Access Controls ... 6

Customizing AccessControl Files ... 6

Access Control Search Order .. 8

Using Access Commands .. 11

The access Commands ... 11

Action Definition Commands .. 12

Access Rule Commands .. 15

Access Command Details .. 18

Table Of Contents

ii

Using Access Command Qualifiers ... 18

User Qualifiers ... 19

Parameter Qualifiers .. 21

The * Parameter Qualifier .. 22

The -because Qualifier ... 23

Creating New Access Definitions ... 24

Creating Access Definitions while Using DesignSync ACAdmin 24

Creating Access Definitions while using DesignSync without ACAdmin 25

Related Topics ... 25

Enterprise DesignSync Access Maps .. 25

Mapping DesignSync Commands for use with the Enterprise System 25

Examples of Access Controls .. 26

Access Administrator (ACAdmin) .. 27

Access Administrator Overview ... 27

Permission Management ... 27

Object-Oriented AccessControl Management .. 27

Permission Definitions .. 29

Update Permission Definitions ... 32

User Group Management .. 32

User Group Management ... 32

Create User Groups ... 34

Existing User Group ... 36

Preview Pending User Group Updates .. 36

ENOVIA Synchronicity Access Control Guide

iii

Modify User Groups ... 36

Delete User Groups ... 38

Special User Groups .. 40

Command Category Management ... 40

Category Management ... 40

Create Command Category ... 41

Existing Command Categories ... 43

Modify Command Category ... 44

Delete Command Category .. 46

Preview Pending Command Category Updates ... 48

Custom Command and Filter Management ... 48

Custom Command Management ... 48

Custom Command Definitions.. 49

Command Filter Management .. 51

Custom Command Filter Definitions ... 52

Edit Custom Command Filter Definitions ... 53

ACAdmin Reset ... 54

Customizing ACAdmin ... 54

Customizing ACAdmin ... 54

Defining External Users using the aca_xusers.def File .. 55

Defining External Groups Using the aca_common_groups.def File 56

Customizing Adaptable Functions using the acaCallbacks.tcl File 56

Defining Custom Access Control Commands with the aca_commands.def File 59

Table Of Contents

iv

Setting Tunable Parameters in the acaConfigCustom.tcl File 60

Custom AccessControl Extension Filters ... 62

Access Controls for DesignSync Commands .. 63

DesignSync Action Definitions ... 63

DesignSync Action Definitions ... 63

Access Controls for Browsing the Server ... 67

Access Controls for Checking Out ... 70

Access Controls for Changing a Lock Owner ... 75

Access Controls for Checking In .. 77

Access Controls for Changing a Checkin Comment .. 80

Access Controls for Creating Branches ... 82

Access Controls for Creating Folders ... 84

Access Controls for Deleting .. 85

Access Controls for Moving a File .. 87

Access Controls For Object Caching ... 89

Access Controls for Retiring ... 90

Access Controls for Setting Owners ... 91

Access Controls for Tagging .. 92

Access Controls for Unlocking ... 95

Access Controls for Unretiring ... 96

Access Controls for Upload .. 97

Access Controls for Workspace Duplication .. 98

Access Controls for Groups of Commands .. 99

ENOVIA Synchronicity Access Control Guide

v

Predefined Variables .. 99

Custom-Defined Variables ... 100

Example DesignSync Access Controls .. 101

Sample Access Controls .. 101

Access Control Scripting .. 105

Access Controls for Modules ... 117

Modules Action Definitions .. 117

Modules Action Definitions ... 117

Access Controls for Module Views ... 121

Access Controls for Export/Import Operations ... 122

Access Controls for Adding Hierarchical References ... 125

Access Controls for Adding Logins .. 128

Access Controls for Locking a Module Branch ... 129

Access Controls for Creating Merge Edges ... 130

Access Controls for Creating Modules ... 132

Access Controls for Moving Module Members ... 132

Access Controls for Removing Module Members .. 134

Access Controls for Removing Merge Edges ... 136

Access Controls for Removing Hierarchical References 138

Access Controls for Removing Logins ... 140

Access Controls for Removing a Module ... 141

Access Controls for Reconnecting a Module ... 142

Access Controls for Rolling Back a Module ... 142

Table Of Contents

vi

Access Controls for Showing Logins .. 143

Access Controls for Upgrading to Modules .. 145

HCM Action Definitions for legacy modules ... 146

Access Controls for Groups of Commands .. 150

Predefined Variables .. 150

Custom-Defined Variables ... 151

Using DesignSync Access Controls with Modules ... 152

Browsing Modules on a Server .. 152

Fetching a Module .. 154

Locking Module Data ... 157

Changing a Module's Lock Owner ... 158

Unlocking a Module .. 160

Creating a New Version of a Module .. 162

Branching a Module ... 165

Tagging a Module .. 165

Tagging a Module Snapshot .. 166

Rolling Back a Module ... 166

Making a Module Edge .. 167

Access Controls for the Enterprise Design System ... 169

Access Controls for Enterprise Design Push to DesignSync 169

Examples ... 169

Access Controls for Enterprise Design Synchronization .. 170

Access Controls for Enterprise Design Administration Reference Workspace Creation
... 171

ENOVIA Synchronicity Access Control Guide

vii

Access Controls for ProjectSync ... 172

ProjectSync Action Definitions ... 172

ProjectSync Action Definitions ... 172

Access Controls for Email Administration .. 173

Access Controls for Notes and Note Types ... 174

Access Controls for Projects and Configurations ... 180

Access Controls for Server Administration ... 181

Access Controls for Triggers .. 182

Access Controls for User Profiles ... 184

Access Controls for Stored Reports ... 185

Access Controls for Groups of Commands .. 186

Predefined Variables .. 186

Custom-Defined Variables ... 188

Example ProjectSync Access Controls .. 188

Sample Access Controls .. 188

Access Controls for the Data Replication System ... 194

Access Control for Replication ... 194

Replicate .. 194

ReplicateAdd .. 194

ReplicateData... 195

ReplicateRemove ... 195

Related Topics ... 196

Access Controls for Groups of Data Replication Commands 196

Table Of Contents

viii

Predefined Variables .. 196

Access Controls for the Mirror System .. 198

Access Controls for Mirrors ... 198

Access Controls for Groups of Commands .. 201

Predefined Variables .. 201

Access Controls for DesignSync Projects ... 203

Access Controls for DesignSync Projects .. 203

DesignSyncProjects ... 203

AddProjectInstance .. 203

ModifyProjectInstance .. 203

DeleteProjectInstance .. 204

Access Controls for Groups of DesignSync Projects Commands 204

Predefined Variables .. 204

Access Controls for the Server .. 206

Server Action Definitions ... 206

Server Action Definitions .. 206

Suspending Server Activity Access Control ... 207

User Authentication Access Controls ... 207

User Authentication Action Definitions ... 209

Access Controls for Secure Communications .. 210

Example Server Access Controls .. 211

Sample Server Access Controls ... 211

Access Control for ACAdmin ... 215

ENOVIA Synchronicity Access Control Guide

ix

ACAdmin Action Definitions ... 215

Access Controls for Groups of Commands .. 215

Access Control Commands ... 217

Access Command Details .. 217

Secure Access Control .. 218

Subscribing to Secure Access Control Revision Control Notes 218

Enabling/Disabling Secure Access Control .. 219

Format of Consolidated Rule Set ... 219

Globals ... 220

Actions ... 220

Related Topics ... 220

Sample Consolidated Rule Set .. 220

Troubleshooting Access Controls .. 223

Troubleshooting Access Controls .. 223

Resetting Access Controls ... 223

Checking Access Control File Syntax .. 223

Reviewing Log Files ... 224

Using Filter Scripts to Get Access Control Parameter Values 225

Additional Information .. 227

Command Buttons ... 227

Getting Assistance .. 228

Using Help ... 228

Getting a Printable Version of Help.. 228

Table Of Contents

x

Contacting ENOVIA ... 228

Index ... 230

1

Guide Organization
The Access Control guide provides the access controls that allow and deny access to
commands and GUI interfaces.

ACAdmin
The DesignSync Web Interface features a GUI interface to create and manage access
controls. This section of the guide documents the ACAdmin interface. For information
on getting started with the ACAdmin interface, see Access Administrator Overview.

Access Controls
The documentation for Access Controls is organized by major topic area, for example,
Mirrors, Data Replication, Modules, etc. and shows you how the Access Controls are
defined and used, including examples and usage tips. Before you begin to customize
the Access Controls, familiarize yourself with the Access Control Basics by starting with
Introduction to Access Control.

Note: References from the ENOVIA Synchronicity Access Control Guide to the ENOVIA
Synchronicity Command Reference guide always link to the ALL version of the guide,
which contain information about all working methodologies for DesignSync. For more
information about the available working methodologies, see ENOVIA Synchronicity
Command Reference.

2

Access Control Basics
Introduction to Access Control
The access control system determines which users can access specific functionality in
ENOVIA Synchronicity DesignSync Data Manager products. You can customize access
controls to meet the needs of your organization.

How Access Controls Work

Access controls let you limit access to certain DesignSync, ProjectSync, and module
operations, or actions:

• For DesignSync, you can control access to most DesignSync actions, such as
checking in files, checking out files, removing locks, tagging files, retiring files,
and deleting versions from a vault. In addition, you can specify the level of user
authentication required when accessing DesignSync data.

• For modules, you can control access to most module actions, including creating
and removing modules and hierarchical references, and upgrading DesignSync
vaults or legacy modules to the current module format.

• For ProjectSync, you can use access controls to prevent users from performing
certain operations or allow only specified users to perform operations. For
example, you can use access controls to ensure that users can edit only their
own user profiles.

In most cases, operations that the user does not have access to perform are
removed from the ProjectSync GUI. For instance, if you do not have permission
to edit projects, the ProjectSync menu does not list that option.

Options are removed from the GUI only when an operation is completely
inaccessible to a user. For example, if the user can edit some projects, but not all
of them, the menu option for modifying a project remains available. However, if a
user attempts an operation for which permission is denied, a standard error panel
displays.

How the Access Controls Are Implemented

DesignSync implements access control using AccessControl files, which contain stcl
commands that define actions, as well as stcl commands that allow or deny these
actions to particular users.

DesignSync also provides a web-based interface to control the Access permissions,
users and groups who have access to design data and commands. The web-based
interface, Access Administrator is described in Access Administrator Overview.

ENOVIA Synchronicity Access Control Guide

3

By default, all users have access to all ProjectSync and DesignSync actions except for
deleting vaults (rmvault command), deleting versions (rmversion command), rolling
back a module version (rollback), and changing lock owners (switchlocker
command). All users have access to all module actions except for deleting modules
(rmmod command). For these operations, access is denied to everyone, by default.

A primary AccessControl file is shipped with DesignSync:
$SYNC_DIR/share/AccessControl. This file contains code that sources additional
Access Controls Files:

• System provided TCL utility procedures and variable definitions for Access Control. This
file is located $SYNC_DIR/share/tcl/AC.tcl. This file that should not be
modified.

• System AccessControl.* files that define actions for each subset of the DesignSync
products. These individual files are in contained in the following
directory $SYNC_DIR/share/AC_Components. These files should not be modified.

• Custom TCL utility procedures and variable definitions for Access Control. These files
are applicable to the server, site, or enterprise-wide. For information on creating and
maintaining the custom Access Control TCL file, see Setting Up Access Controls.

• Custom AccessControl.* files that define rules for each subset of the DesignSync
products. For information on creating and maintaining the custom Access Control files,
see Setting Up Access Controls.

Access Control Definition Files

The access control definitions are divided into subsets for ease of use. DesignSync
provides the following Access Control definition files:

• AccessControl.auth - Contains server-level access control definitions, such
as the access controls that govern server security.

• AccessControl.ds - Contains DesignSync access control definitions.
• AccessControl.hcm - Contains module access control definitions.
• AccessControl.ps - Contains ProjectSync access control definitions, such as

the access controls that govern projects and configurations.
• AccessControl.psipg - Contains ProjectSync access control definitions that

are shared with IP Gear. (Customization of IP Gear access controls is not yet
supported.)

Important: Do not edit any of the default AccessControl files supplied with
DesignSync; any changes to these files will be lost upon upgrading. Instead, edit the
site or server custom AccessControl file (see Setting Up Access Controls).

AccessControl files are read by the SyncServer, not by client applications (dss, dssc,
stcl, stclc, DesignSync), and are used to control access to team data in a remote vault.
Local vaults are unaffected by AccessControl files.

Access Control Basics

4

Note: When ACAdmin is used, there are additional files that are automatically or
manually created to support ACAdmin. For more information, see Access Administrator
Overview.

Related Topics

Setting Up Access Controls

Using Access Commands

Access Administrator Overview

Using Secure Access Mode
When the Access Control files are read into the DesignSync system, either at server
startup or after an Access Reset, the access control definitions and rules, in the
appropriate processing order are read into the system. When using Access Control in
secure mode, an additional protection is added to the process; the access control
definitions and rules are only updated by running the Access Reset command explicitly.

How Secure Access Control Works

When a server is started for the very first time, or an ‘access reset’ is performed, all the
AccessControl files included with DesignSync and maintained in the custom ares are
processed and the entire set of definitions, and rules are captured into a single
consolidated file in the correct processing order. This single consolidated file is checked
into the ‘AccessControlVault’.

Note: When a new version of the secure revision control file is created, a
RevisionControl note is created which can be subscribed to as usual, so notification of
the update can be sent out to all interested users. For more information on subscribing
to revision control notes, see

About the Access Control Vault

The consolidated access control file is maintained in an access controlled vault within
DesignSync. Every time the Access Reset command is performed, the DesignSync
vault records any changes to the access control vault, providing a full history of the
Access Reset usage. If there are no changes, DesignSync still creates a new version in
the vault (though there are no content changes to the rules captured in the vault.)

The Access Control Vault cannot be operated on outside of the Access Reset
command. For example a user could not populate the vault into a workspace, modify
the files, and check them in. Changes are made to the custom access control files

ENOVIA Synchronicity Access Control Guide

5

ONLY by performing the modifications to the files and then running the Access Reset.
This provides complete traceability by:

• restricting access to the Access Control files and the Access Reset command ensuring
that no unauthorized changes are made.

• capturing the full history of changes, including who authorized the reset and when.
• capturing the full of set of rules associated with the access control changes.

The Access Control Vault is located on the server at the following SYNC URL:

sync://<host>:<port>/SYNC/AccessControl/RuleSet;

where:

• host - name of the machine hosting the server
• port - port number used by the server.

This is a regular files-based vault, but access is restricted by the following access
control:

access deny $DesignSyncWriteActions everyone when Object
“sync:///SYNC/AccessControl/*”

The ‘read’ actions are allowed, and, by default, all users are allowed populate the vault
or request a vhistory. The administrator can restrict that by adding an action to restrict
read actions, for example:

access deny $DesignSyncReadActions everyone when Object
“sync:///SYNC/AccessControl/*”

How Access Commands Work with Secure Access Control Enabled

The custom access rules are defined using ‘access deny’, ‘access allow’, and ‘access
filter’ commands. These commands may have been used in server-side tcl scripts to
bypass Access Reset and change the access rules on the server. None of the actions
are permitted in general-purpose TCL scripts when Secure Access Control is enabled.
 These commands are available only when read from the custom Access Control files
by an Access Reset. The list of restricted commands are:

• access define
• access allow
• access deny
• access decline
• access filter
• access db_filter

Access Control Basics

6

Notes::

• During Access Reset, when the rules are re-read into the access control vault, these
commands are active.

• Any access sub-commands commands not explicitly listed as denied are allowed. These
are the commands that allow you to view access controls.

Secure Access Control Revision Control Notes

Whenever an Access Reset is performed, a new version of the consolidated rules set is
checked in to the Access Control Vault, and ‘ci’ Revision Control (RC) Note will be
created. This note is always created, even if checkins on your system don't normally
create RC notes. As with any other revision control notes, the administrator can create
subscriptions to get email updates whenever the Access Control Vault is updated.

For information on subscribing to Secure Access Control Revision Notes, see
Subscribing to Secure Access Control Revision Notes.

Related Topics

Enabling/Disabling Secure Access Control

Format of Consolidated Rule Set

Sample Consolidated Rule Set

Setting Up Access Controls
To control access to an operation, you add stcl access control commands to a custom
AccessControl file. Access controls are applied using a predefined set of access
stcl commands. Each access command includes a keyword representing a particular
DesignSync, ProjectSync, or module action. See Using Access Commands for a list of
the access commands and examples of how to use them.

By default, the default access control files, included with DesignSync, set up open
permissions for all users. These files contain the definitions for all operations that you
can control and set the default access controls. See Introduction to Access Control for
details on the individual files used to define access controls.

Important: Do not edit the default AccessControl.* files; changes will be lost upon
upgrading. Instead, edit your site or server custom AccessControl file.

Customizing AccessControl Files

ENOVIA Synchronicity Access Control Guide

7

During installation, the DesignSync sync_setup script copies the
$SYNC_DIR/share/examples/ExampleAccessControl file to the following
locations:

• $SYNC_SITE_CUSTOM/share/AccessControl

where $SYNC_SITE_CUSTOM defaults to $SYNC_CUSTOM_DIR/site.

The site AccessControl file sets access controls for an entire site.

• $SYNC_CUSTOM_DIR/servers/<host>/<port>/share/AccessControl

The server AccessControl file sets access controls for a specific SyncServer.

You use one of the custom AccessControl files to make your customizations. These
files contain commented-out access commands that you can use as examples for
creating your own access controls.

To create custom access controls:

1. Make your access control changes in the site-wide or server-specific
AccessControl file in the custom area.

Using the custom area ensures that your AccessControl files are not
overwritten when you reinstall or upgrade DesignSync software and guarantees
that the default AccessControl file correctly implements the baseline access
control behavior. However, because your custom AccessControl files are not
overwritten by new installations, you should check the
ExampleAccessControl file for new additions after each upgrade.

2. Force the SyncServer to reread the AccessControl file using one of the
following methods:

o Execute the access reset command in a server-side Tcl script.
o Click Access Reset on your ProjectSync menu.

This option lets you update access controls without having to reset the
SyncServer. The Access Reset option appears on the menu only when
you have permission to reset the access controls. (See Access Controls
for Server Administration for details.)

o Click Reset Server on your ProjectSync menu.

This option gracefully resets the SyncServer, causing the server to refresh
its in-memory cache with information about the current server files on disk,
including AccessControl files. The Reset Server option appears on the

Access Control Basics

8

menu only when you have administration permission for the server. (See
Access Controls for Server Administration for details.)

Important: In Secure Access Mode, you must perform an Access Reset in order for
changes to the access control to take effect

Note: DesignSync automatically updates the consolidated Access Controls and
records any changes to the access control vault, providing a full history of the Access
Control changes. The consolidated Access Controls are are stored in a vault located on
the server at the following SYNC URL
sync://<host>:<port>/SYNC/AccessControl/RuleSet. When using secure
mode, this update only occurs when performing an Access Reset. Otherwise it occurs
when resetting or restarting the server as well.

Errors in an AccessControl file can cause your server to become unresponsive if the
errors are not corrected quickly. To avoid this problem, correct access control errors
immediately and reset the access controls. See Troubleshooting Access Controls for
more information.

Note: When you are using ACAdmin and creating new access control definitions, those
definitions are stored in a special custom location. For more information, see Creating a
New Access Definition.

Access Control Search Order

On startup, the SyncServer loads AccessControl files in the following order:

1. The default access control files for the individual products in:

$SYNC_DIR/share/AC_Components

2. The enterprise-wide file in:

$SYNC_ENT_CUSTOM/share

where $SYNC_ENT_CUSTOM defaults to $SYNC_CUSTOM_DIR/enterprise.

The custom enterprise area is a placeholder for future development of enterprise-
wide customizations.

3. The site-wide file in:

$SYNC_SITE_CUSTOM/share

4. The server-specific file in:

ENOVIA Synchronicity Access Control Guide

9

$SYNC_CUSTOM_DIR/servers/<host>/<port>/share

Conceptually, these files are concatenated together, in the order the files are listed
above.

When a user attempts an action to which more than one access rule is applicable, the
order in which the rules are defined becomes important. The central principle to keep in
mind is that the last applicable rule within this conceptually concatenated file wins.

For example, consider a sequence of rules, which may have been spread across the
various AccessControl files, but which conceptually concatenate as follows:

1. access allow Checkin everyone

2. access deny Checkin users {joe}

3. access filter Checkin everyone {
 if {[string match "guest-*" $user]} {
 return DENY
 } else {
 return UNKNOWN
 }
 }

4. access filter Checkin everyone when url
sync:///Projects/Public/* {
 if {[string match "*.txt" $url] {
 return ALLOW
 } else {
 return DENY
 }
 }

The rules are processed from last to first. Let's look at a few examples.

If user mike attempts to check in a file named foo.txt inside project Ajax:

• The fourth rule does not apply, since the project name Ajax does not match the
when clause; processing continues.

• The third rule does apply since its user and when clauses match the parameters
of the action being attempted. Thus, the tcl filter needs to be evaluated. In the
filter script, $user (joe) is found not to match the pattern, and the filter script
returns UNKNOWN. This is not a definitive allow or deny result, so processing
continues.

• The second rule does not apply, because this user is not joe ; processing
continues.

Access Control Basics

10

• The first rule does apply, and it allows the action.

Therefore, user mike is ultimately allowed to check in to project Ajax.

Next, user mike attempts to check in the file x.txt inside project Public,

• The fourth rule is applicable this time, and the filter script runs. In the script, the
file name is found to match the pattern, and the script returns ALLOW.

Since this last applicable rule returned a definitive result (that is, to allow the action)
there is no need for any further rules to be evaluated. The result is once again to allow
the checkin.

Now user joe attempts to check in a file named foo.txt in the Ajax project.

• The fourth rule does not apply, since the project name Ajax does not match the
when clause; processing continues.

• The third rule applies, the filter runs, and it returns UNKNOWN. Processing
continues.

• The second rule does apply to joe, and it denies him the checkin.

Since this last applicable rule returned a definitive result (that is, to deny the action)
there is no need for any further rules to be evaluated. Therefore, joe is not allowed to
check in to project Ajax.

Now, joe attempts to check in a file named foo.exe into the Public project.

• The fourth rule does apply, and the filter script runs. In the if statement, the
pattern is found not to match; the else clause runs, and returns DENY.

Since this last applicable rule returned a definitive result (that is, to deny the action)
there is no need for any further rules to be evaluated. Therefore, joe is allowed to check
the file in to project Public.

Finally, joe attempts to check in a file named foo.txt into the Public project.

• Once again, the fourth rule applies, but this time when its tcl script is evaluated, it
returns ALLOW.

Since this last applicable rule returned a definitive result (that is, to allow the action)
there is no need for any further rules to be evaluated. Therefore, joe is allowed to
check the file in to project Public.

ENOVIA Synchronicity Access Control Guide

11

Note that in each case, rules keep getting evaluated, in reverse order, until an
applicable rule returns a "definitive" result (ALLOW or DENY), and that a filter that returns
UNKNOWN is treated the same way as if the rule were not applicable at all.

Also note that if there are multiple applicable filters, not all of them will necessarily have
their tcl executed. Knowing this can be helpful in optimizing your custom access control
files by strategically ordering the filters. It is also worth mentioning that filters that have
side effects, such as logging, will not always have their tcl executed if they are
"eclipsed" by another rule.

A return of DECLINE causes subsequent access rules to be applied. Return values
from access rules are defined in Access Rule Commands.

If no custom access filter or custom access rule results in an explicit ALLOW,
DENY, or DECLINE, the default access for that action is returned.

Out-of-the-box, most actions are allowed. See Introduction to Access Control for the
exceptions.

Related Topics

Introduction to Access Control

Using Access Commands

Working with Server stcl Scripts in the stcl Programmer's Guide

Using Access Commands
You use the stcl programming language (a combination of the DesignSync command
set and the Tcl language constructs) to define access controls. You can use these
commands in your custom AccessControl file to define actions to be controlled and
to create rules that control access.

The majority of your needs should be satisfied with simple one- or two-line commands.
However, you also can use access commands in Tcl scripts outside an
AccessControl file.

See Setting Up Access Controls for information on creating your own custom
AccessControl files.

The access Commands

Access Control Basics

12

The most important concept for using the access control system is action, which is an
operation performed by a user. An action is verified by the access control system,
together with all the information needed for the verification.

Two types of commands are used in AccessControl files:

• Action definition commands, which define the actions that can be controlled.
• Access rule commands, which specify who can perform the actions and under

what circumstances.

You use the action definitions with access rule commands to specify the access limits
you need. For example, the following action definition command defines the action of
adding a project.

access define AddProject

In your custom AccessControl file, you can use this action definition within an access
rule command to control who can add a project:

access allow AddProject only users chris

This access rule command states that only Chris can add a project.

Most action definition commands include optional parameters that you can use in when
clauses in your access rule commands. For example, the following action definition
defines the action of editing a project:

access define ModifyProject <project>

When you create an access rule that uses the ModifyProject action, you can specify
a project name as part of your rule. For example:

access deny ModifyProject everyone
access allow ModifyProject only users chris \
 when project "sync:///Projects/ASIC"

The first access rule command prevents all users from editing projects. The second
access rule command, which builds on the first, states that only Chris can modify the
project ASIC.

Note: When you are using ACAdmin and creating new access control definitions, those
definitions are stored in a special custom location. For more information, see Creating a
New Access Definition.

Action Definition Commands

ENOVIA Synchronicity Access Control Guide

13

An AccessControl.* file contains three kinds of action definitions:

• The access define statements, which define individual actions and optional
parameters that can be passed to the action.

• The set statements, which define variables to represent multiple actions that can
be access-controlled as a group.

• The access init statements, which let you create your own variables in a
custom AccessControl file.

You use these action and variable definitions in access rule commands to control
access to operations. (See Introduction to Access Control for details on the individual
files used to define access controls.)

The action keywords (such as AddProject and Checkout) are case sensitive.

Do not redefine the already defined actions using access define statements in your
site and server AccessControl files. You will not be able to access the server if it
detects duplicate access define statements. You can, however, define new actions
within your site or server custom AccessControl files.

See the Access Command Details for complete information on using these commands.

access define Commands for Individual Actions

The AccessControl.* files define most of the actions that you need to control access
to DesignSync, ProjectSync, and module operations. (See Introduction to Access
Control for details on the individual files used to define access controls.) For example,
the ProjectSync AccessControl.ps file contains the following definition for the action
of editing a user profile:

access define EditUser {username isSelf}

In this example, EditUser is the action of editing a user profile. The optional
parameters are:

• username, which stands for the name of a user, as defined at sync:///Users.
• isSelf, a Boolean that takes the value 1 for the current user or 0 for any other

user.

Like the username argument in the preceding example, the value of some parameters
is assumed to be relative to a Sync URL. For example:

access define EditNote {system type id}

Access Control Basics

14

This definition controls who can edit notes. The system argument is always
sync:///Note/SyncNotes. This parameter is ignored, but is included for future
extensibility. The type argument takes a note type name relative to
sync:///Note/SyncNotes. The id argument stands for the note ID number.

set Commands for Groups of Actions

The AccessControl.* files also define sets of actions that control related groups of
commands. (See Introduction to Access Control for details on the individual files used to
define access controls.) You can use the variable you set for these groups of actions in
access rule commands to control access to all the defined commands.

 For example, the AccessControl file contains:

set UserActions {AddUser EditUser DeleteUser EmailSubscribe}

AddUser, EditUser, DeleteUser, and EmailSubscribe are individual actions
defined with the access define command. You use the defined variable
$UserActions in access allow or access define statements to control access
to adding, editing, and deleting users and for creating email subscriptions for users.

For example, to ensure that only your project leaders (Chan, Lynch, and Kapoor) can
perform these actions, you could create the following access rule:

access allow $UserActions only users {chan lynch kapoor}

In your custom AccessControl files, you also can use this syntax to create variables
for your own sets of user actions.

See Access Controls for Groups of Commands (ProjectSync) and Access Controls for
Groups of Commands (DesignSync) for details on the predefined sets of commands for
these applications.

access init Commands for Custom Variables

You can define your own variables for use in access rule commands by specifying the
variables inside access init blocks in your custom AccessControl file. For
example:

access init{
 set admin {syncmgr}
 set projectLeaders {chan lynch kapoor}
}

ENOVIA Synchronicity Access Control Guide

15

You now can use the variables $admin and $projectLeaders in your access rule
commands. Using the preceding example, it makes more sense to create your access
rule command using the $projectLeaders variable than using the individual user
names:

access allow $UserActions only users $projectLeaders

You also can use access init to create variables and procs for use in access filters.
However, when access init is used in filters, the access init statement is
sourced each time the filter is run. This behavior can introduce performance penalties
for operations such as viewing a note because the statement is sourced for each note.
The access global command is used inside filter scripts and is sourced only once,
when the access control system is initialized. See the access init and access
global command descriptions and Sample Access Controls (DesignSync) for more
information.

Access Rule Commands

There are four possible outcomes of access rules checking:

• ALLOW

Access is explicitly granted.

• DENY

Access is explicitly denied.

• DECLINE

Access to perform the requested operation on an entire module is not granted
nor denied. Subsequent access rules will be applied to the module's individual
members. See the Declining Access section below for details.

• UNKNOWN

Access is not explicitly allowed, denied, or declined. The custom access
filter that returned the UNKNOWN value had no effect. The result is
delegated to other applicable access rules that will be evaluated next. This
delegation will continue in order until an access filter explicitly allows, denies, or
declines access. If no custom access filter or custom access rule results in
an explicit ALLOW, DENY, or DECLINE, the default access for that action is
returned.

Out-of-the-box, most actions are allowed. See Introduction to Access Control for
the exceptions.

Access Control Basics

16

Corresponding Tcl return codes are provided in the access verify command
documentation.

Allowing and Denying Access

You create access rules using the access allow and access deny commands to
specify the access granted to users. You can allow or deny access to:

• everyone - Applies to all users on the server.
• users - Applies to the users specified in the list.
• only users - Applies only to the users in the list; people not in the list are

excluded.

For example:

access allow {AddTrigger EditTrigger} only users $admin

In this example, only users defined as administrators can add or edit triggers; all other
users are denied permission.

You optionally can include parameters with when clauses to further refine control. For
example:

access allow $NoteActions only users $admin
 when type "AdminNote"

In this example, only administrators can perform the set of actions described by the
variable $NoteActions (a group of methods for interacting with notes) when the note
type is AdminNote.

The parameters specified in when clauses are the parameters declared in action
definitions. The NoteActions actions have Type parameters that store the type of
note. See ProjectSync Action Definitions to find out the parameters for each
ProjectSync action; see DesignSync Action Definitions to find parameters for each
DesignSync action. See User Authentication Action Definitions for the parameters
defined for user authentication access controls.

You can use multiple when statements. For example:

access deny ModifyNoteProperty everyone \
 when type "SyncDefect" \
 when field "AuditTrail"

In this example, no one can edit the Audit Trail field of the SyncDefect note type.

ENOVIA Synchronicity Access Control Guide

17

Access control rules are order-dependent, so later rules qualify earlier ones. You can
use this behavior to refine your access controls. For example:

access allow $UserActions only users $admin
access allow EditUser everyone when isSelf 1

In this example, only administrators can perform the set of actions described by the
variable $UserActions (working with user profiles and email subscriptions); however,
users can edit their own user profiles.

See Using Access Command Qualifiers for more information on the qualifiers you can
use with access rules.

Declining Access

The DECLINE outcome defined above is used with module data. When you operate on
a non-legacy module, you are operating on the module as well as on the module's
individual members. Access control rules can apply at the module level, and also at the
individual module member level. This is accomplished by using the access decline
command. The access decline command documentation includes sample access
controls showing how to use the access decline command.

An operation on module data first checks module-level access. If the module-level
access is allowed or denied, then no further checks are necessary. However, if the
module-level access is declined, then an access check is needed for each individual
module member participating in the operation.

For example, ci of a module first checks module-level access via the Checkin access
control. Permission to add or remove hierarchical references may also be checked. See
Creating a New Version of a Module for details. If module-level Checkin access is
declined, then ci permission of each module member to be included in the new version
of the module is checked, via the MemberCheckin access control. If Checkin access
for the module is declined, and there isn't an applicable custom access statement for
MemberCheckin, all of the module's members will be granted MemberCheckin
access. That is because out-of-the-box, most actions are allowed. See Introduction to
Access Control for the exceptions.

Access controls for DesignSync commands that operate on module data are described
in the sub-book "Using DesignSync Access Controls with Modules", within the book
"Access Controls for Modules". Attempting to decline access for a command that does
not support the DECLINE outcome returns DENY.

Filtering Access Controls

You can put optional arguments into access filter scripts and combine them with
Tcl scripts to control specific events. For example:

Access Control Basics

18

access filter ModifyNoteProperty \
 when type "HW-Defect-1" \
 when field "Status" \
 when newval "Closed" \
{
 if {[lsearch $projectleaders $user] != -1} {
 return ALLOW
 }
 return DENY
}

In this example, the access control allows only a project leader to change the state of a
HW-Defect-1 note to "Closed." The Tcl script in the curly braces searches a list of
project leaders for $user. If the user name is found, the operation is allowed; if not, the
operation is denied.

Access Command Details

A list of access commands and their descriptions is in Access Command Details.

Related Topics

Modules Action Definitions

Introduction to Access Control

ProjectSync Action Definitions

DesignSync Action Definitions

Setting Up Access Controls

User Authentication Action Definitions

Using Access Command Qualifiers

Using Access Command Qualifiers
 When creating access control rules, you use qualifiers to specify:

• The user who performs the action governed by the rule.
• The parameters that limit the scope of the rule (when clauses).
• The visibility of ProjectSync GUI options when an action is partially restricted.
• The explanatory message that appears when a DesignSync access fails (-

because clauses).

ENOVIA Synchronicity Access Control Guide

19

See Setting Up Access Controls for information on creating your own custom
AccessControl files.

User Qualifiers

All access control rules require information on the user performing the action. The user
qualifiers follow the action keyword in an access rule. You can use one of three user
qualifiers in an access rule:

• users - Lets you allow or deny access to the specified users but does not
exclude others from the same type of access. For example, suppose you have
the following access rules:

access deny Delete users {george martha}
access deny Delete users {bonnie clyde}

In this case, none of the four specified users is allowed to delete objects.

• only users - Lets you allow or deny access only to the specified users and
excludes all others from the rule. For example, suppose you have the following
access rules:

access deny Delete only users {george martha}
access deny Delete only users {bonnie clyde}

In this case, the second rule overrides the first and only Bonnie and Clyde are
prevented from deleting objects.

• everyone - Lets you allow or deny access to all users. For example:

access deny Delete everyone

This rule prevents everyone from deleting objects.

Using access allow|deny without the only Qualifier

Many access allow and access deny examples use the only qualifier to allow or
deny a user or group of users access to an operation. A common use of the only
qualifier is to deny access to everyone while allowing access only for specified users.

Access control qualifiers such as everyone and only users are very useful for
defining the basic access rights, but are not useful for handling special cases. In many
scenarios it is more convenient to modify the access rights incrementally than to set
them for everyone in a single rule.

Access Control Basics

20

Here are some scenarios that illustrate when you might use access allow and
access deny statements without the only qualifier:

• Ensuring that access controls of separate teams do not conflict.

Suppose that your server supports multiple teams of users and each team has its
own section of the AccessControl file. Another likely scenario is that each
team has its own file that is sourced by the central AccessControl file. If each
team uses the only qualifier to modify the access rights, only the team whose
file is sourced last has any rights to access the server. Thus, using access
allow and access deny statements without the only qualifier lets users on
one team add their own rights without interfering with the access rights of other
teams.

• Ensuring that an access filter is not overridden.

Suppose the access rights are determined by a chain of two rules: the first is an
access filter script and the second is an access allow|deny statement.
Whether a user is granted access by the filter depends on the filter code and the
values of the filter's parameters; therefore, the filter's result is variable and not
fixed. Yet, if the subsequent access allow|deny statement uses an only
qualifier, then the result of the filter is always ignored. Specifying the subsequent
access allow|deny statement without the only qualifier lets you add rights
for a single user without overriding the previous rule.

• Adding a 'superuser' without modifying existing rules.

The easiest way to add a 'superuser' to your server is to add a rule at the end of
the AccessControl file that grants access to the actions you want to allow the
'superuser' the right to perform:

access allow $NoteActions users jackson

This additional access control rule has no effect on previous access controls.

• Adding a rule to prevent a user from performing operations.

Just as you can add a single statement at the end of the AccessControl file to
allow permissions for a 'superuser', you can add a single access deny
statement to the end of the AccessControl file to prevent a user from
performing particular operations:

access deny $DesignSyncActions users delano

ENOVIA Synchronicity Access Control Guide

21

The alternative to this single access deny statement is to edit every rule that
uses an only qualifier.

See Sample Access Controls for other examples of using user qualifiers. See Access
Control Scripting for examples of using qualifiers in scripts.

Parameter Qualifiers

Most action definitions include one or more parameters. You can use these parameters
in access rules by putting them in when clauses in access allow and access deny
commands.

For example, the action definition for deleting a note is:

access define DeleteNote {system type id isAuthor}

You can use the <isAuthor> parameter in a when clause in an access rule to ensure
that only the authors of a note can delete the note:

access deny DeleteNote everyone

access allow DeleteNote everyone when isAuthor 1

In this example, the first rule prevents everyone from deleting notes. The second rule
builds on the first and uses the Boolean <isAuthor> parameter to allow the author of
the note to delete it.

You can use multiple when clauses in an access rule. For example:

access allow DeleteNote everyone \
when type SyncDefect \
when isAuthor 1

In this example, only the note author can delete a note and only if it is a SyncDefect.

See ProjectSync Action Definitions to find out the parameters for each ProjectSync
action; see Revision Control Action Definitions to find parameters for each DesignSync
action; and see User Authentication Action Definitions for the parameters defined for
user authentication access controls.

See Sample Access Controls (DesignSync) for other examples of using when clauses
with DesignSync action definition parameters. See Sample Access Controls
(ProjectSync) for other examples of using when clauses with ProjectSync action
definition parameters.

Access Control Basics

22

You also can access parameters within filter scripts you create using access filter
statements. For each action, implied parameters, <user> and <action>, also are
passed to filter scripts. The <user> parameter contains the user name of the user
attempting the action. The <action> parameter contains the type of action that has
triggered the filter script. See Access Control Scripting for examples of access filter
scripts that include these action parameters.

The * Parameter Qualifier

In ProjectSync, selections for an action do not appear in the GUI when the user does
not have permission to perform the action. However, when the action is partially
accessible to the user, the selection is displayed. For example, if a user cannot modify
any projects, the Project - Edit menu selection is removed from the user's version of
the ProjectSync menu. But if the user can modify any project, the Project Edit is
displayed.

To support this behavior, an asterisk (*) is used as a special parameter qualifier in
ProjectSync access rules. If access to an action is allowed for any value of a parameter,
it is allowed for the special value * of that parameter.

For example, you might create the following access rules to specify that test2 is the only
configuration that users are allowed to edit:

access deny ModifyConfig everyone

access allow ModifyConfig everyone when config test2

access allow ModifyConfig everyone when config {[*]}

In this example, if users are allowed to edit the test2 config parameter value, you also
need to allow edit access for the * value of that parameter. Using the * parameter
ensures that the GUI displays the selections that allow users to edit configurations.
However, if users attempt to edit any configuration other than test2, they see a message
telling them that they do not have permission to edit the configuration.

When using * in a when clause, you must escape the * character as shown in the
preceding example: when config {[*]}. If you do not escape the asterisk, it is
treated as a wildcard and the when clause matches all configurations.

The * qualifier is most useful in access control scripts that use the access verify
command. When you use the * qualifier with the access verify command,
ProjectSync verifies the * and does not need to verify each project separately to see
whether it can be modified:

access verify ModifyProject *

ENOVIA Synchronicity Access Control Guide

23

When you write filters, follow this convention to prevent parts of the ProjectSync GUI
from becoming inaccessible to users who have permission to perform actions under
certain circumstances.

The following sample filter allows any user to modify only configurations named
scratch (of any project):

access filter ModifyConfig {
 if {$config == "*"} {
 return ALLOW
 } elseif {$config == "scratch"} {
 return ALLOW
 } else {
 return DENY
 }
}

In this example, if the check for $config == "*" is removed, the GUI selections for
modifying configurations are removed, even though the user has permission to modify
some configurations.

You also can use the * mechanism in the Edit note panel. Here, each field is verified as
follows:

access verify ModifyNoteProperty <sys> <type> <id> <field>
<oldval> *

This example can be paraphrased as "May I change this field at all?" If the verification
returns DENY, the field displays as non-editable text on the panel.

The -because Qualifier

When you create an access rule for a DesignSync operation, you optionally can include
a -because qualifier to give users information on the operation. For example:

access deny Unlock everyone \
-because "To unlock, you must be the lock owner or an admin."

access allow Unlock everyone when IsLockOwner "yes"

access allow Unlock users $admin

The first rule prevents all users from unlocking an object. The -because clause
generates an explanatory message to users who are denied permission to unlock a file.
The second and third rules build on the first rule to allow the lock owner and
administrators to unlock files.

Access Control Basics

24

A -because clause generates the message in the command area of the DesignSync
GUI or on the command line when you run DesignSync from a shell. You do not need to
add -because clauses to ProjectSync, which has its own built-in set of messages.

Related Topics

Sample Access Controls (DesignSync)

Sample Access Controls (ProjectSync)

Setting Up Access Controls

Using Access Commands

Using Access Command Qualifiers

Creating New Access Definitions
In addition to assigning existing access definitions to users and groups and creating
categories of commands by grouping existing access definitions, you can also create
your own access definitions which can then be used individually or grouped into a
category and assigned to users or groups for their use. This allows you to extend the
functionality of access controls beyond what is provided by DesignSync.

Where you define the access definitions depends on whether you are using ACAdmin or
manually creating your access controls with the included Access Controls files.

Note: This file is only used when ACAdmin is in use.

Creating Access Definitions while Using DesignSync ACAdmin

When you create access definitions while using ACAdmin, you store the custom access
control definition in the AccessControl.aca_definitions file. This file is located in the
$SYNC_CUSTOM_DIR/servers/<ServerName>/<PortNumber>/share/AC_Components

Creating Access Definitions:

1. Create or edit the access control definitions file:
$SYNC_CUSTOM_DIR/servers/<ServerName>/<PortNumber>/share/AC
_Components/AccessControl.aca_definitions

2. Add the definition to the file in the folowing format:
access define <CommandName> [<Arguments>]

3. Reset Access Controls.

ENOVIA Synchronicity Access Control Guide

25

Creating Access Definitions while using DesignSync without
ACAdmin

When you create access definitions while not using ACAdmin, you store the custom
access control definition in the access controls file. This file is located in one of two
possible locations depending on the applicable of the access controls:
$SYNC_CUSTOM_DIR/site/share/AcessControl
 $SYNC_CUSTOM_DIR/server/<host>/<port>/share/AcessControl

Creating Access Definitions:

1. Select the appropriate Access Control file to store change as described in Setting Up
Access Controls

2. Add the definition to the file in format:
access define <CommandName> [<Arguments>]

3. Reset Access Controls

Related Topics

Setting Up Access Controls

Access Administrator Overview

Enterprise DesignSync Access Maps
When DesignSync is used as part of an enterprise system, DesignSync and Enterprise
Development objects are maintained, in synchronization, across both platforms. In
order to best support this, DesignSync provides access maps to map from the
DesignSync to the ENOVIA Enterprise commands.

Note: The platform server must have Access Control mapping delegations enabled.
 For more information see the DesignSync Administrator's Guide: SyncAdmin Enterprise
Servers.

Mapping DesignSync Commands for use with the Enterprise
System

When using DesignSync as part of your comprehensive Enterprise solution, and the
Enterprise server is defined as managing access control, DesignSync provides some
default mappings and some sample mapping to support the delegation functionality.

The DesignSync server platform access maps are included in the default
AccessControl.hcm file.

Access Control Basics

26

By default, the following access maps are enabled when access control delegation is
enabledl.

• Access Controls for Checking In
• Access Controls for Adding Hierarchical References
• Access Controls for Removing Hierarchical References

Additional access maps are provided as samples and located in the custom server
directory access controls file:
$SYNC_CUSTOM_DIR/servers/<serverName>/<portNumber>/share/AccessC
ontrol

Examples of Access Controls
All custom access controls should be placed in custom AccessControl files. See
Customizing AccessControl Files for details.

For examples of access controls, see

• Sample Access Controls for DesignSync
• Sample Access Controls for ProjectSync
• Sample Access Controls for SyncServer access

There are also sample access controls in the installed
<SYNC_DIR>/share/examples/ExampleAccessControl file. During DesignSync
installation, the sync_setup script creates site-wide and server-specific
AccessControl files by copying the installed ExampleAccessControl file to a site
or server AccessControl file, if an AccessControl file does not already exist in
those locations.

27

Access Administrator (ACAdmin)
Access Administrator Overview
The Access Control Admin provides a graphical web interface to create, remove,
maintain, and manage access controls. This provides a simpler, more intuitive interface
to customizing the access controls for DesignSync. By default, the Access Administrator
functionality is disabled. In order to use the Access Control Administrator (ACAdmin),
you must enable it using the Access Control registry setting: Enable ACAdmin
described in the ENOVIA Synchronicity DeisgnSync Data Manager Administrator's
Guide.

Important: Access Control processing order (precedence) is determined by the priority
set on the command category. The higher the priority, the higher the precedence.

When you enter commands through the Access Administrator tool, you have full control
over the priority settings in the command category. If you need to change the
processing order, change the priority setting for the command category and reset
ACAdmin.

Using ACAdmin provides a graphical interface for organizing existing definitions into
command categories, and assigning existing definitions to users and groups. Any new
definitions must be created as described in Creating a New Access Definition before
they can be used by ACAdmin.

IMPORTANT: In order to use the Access Administrator tool, you must enable the
functionality. For more information on enabling the Access Administrator tool, see the
Access Control Registry Settings.

Permission Management

Object-Oriented AccessControl Management

This section controls access policies for objects on the server. Permissions are the
access rights granted for users at various objects or areas of the vault. The access
rights granted at each object or area of the vault are expressed using a set of users and
user groups for each category.

Once the changes have been made, they are immediately available for DesignSync.

Click on the fields in the following illustration for information.

Access Administrator (ACAdmin)

28

View/Modify

Launches the Permissions Definitions page for the selected object.

Object Selection

Enter the Sync URL of the object on which to set the permissions. You can set the
permissions for any object on the server. You may specify objects as follows:

Object URL Description
sync:/// Controls the default permissions for all

object-independent actions on the
server. For example, user creation and
removal actions do not depend on
specific server objects. (Default)

sync:///* Controls the default permissions for all
object-dependent actions on the server.
 For example, browsing objects on the
server, creating or modifying modules,
etc. depend on having access to related
server objects.

sync:///Projects[/ProjectName]/
[pathtoObject]

Controls the permission for the specified
project or the entire project area on the
server.

sync:///Modules[/Category
[...]][/ModName]

Controls the permission for the specified
module, category, or entire module area

ENOVIA Synchronicity Access Control Guide

29

on the server.

Notes:

• You can use wildcards, such as * to specify all matching objects within the
specified path, for example:

sync:///Modules/Chip/*.c

controls access to all .c files within the module Chip. If Chip was a category
and you wanted to specify all modules within the category, you could specify
the URL either of the following ways:

sync:///Modules/Chip/*

sync:///Modules/Chip

• The first two URLs in the table are generic Sync URLs that can be used to
provide default access for the server.

Select

Contains a drop-down list of all Sync URLs with defined access permissions. Select a
Sync URL from the list to populate the Object Selection box.

Note: Use the Select drop-down to select the object definitions to modify or remove.
To create a new access definition, use the Browse button, or manually enter the Sync
URL.

Browse

Allows you to select specific objects, including files, folders, vaults, or modules. For
more information on using the Browse to navigate your server, or a different server,
see ENOVIA Synchronicity ProjectSync User's Guide: Using the Object Browser.

Remove

Removes the permission definitions for the selected object.

Note: You may only remove one object definition at a time using this interface.

Permission Definitions

Access Administrator (ACAdmin)

30

This page allows you to create or modify access policies for specified objects on the
server.

To define permissions:

1. Enter the object in the Object AccessControl Management section of the Access
Administrator and click on the View/Modify button. The Permission Definitions
page launches and displays a list of the defined categories containing the
permissions to associate with the object.

2. Select the appropriate categories and users or user groups to apply to the object.
3. Press Submit to accept the changes or Reset to clear any changes made.

Submit sends all modifications made on the page to the server, not just the ones
for the particular section containing the selected Submit button. Selecting
Submit launches the preview pending updates page.

4. On the preview pending updates page, you can review the list of changes. To
commit the changes, select Submit. To refine the permissions further, select
Back to return to the Permission Definitions page.

Click on the fields in the following illustration for information.

ENOVIA Synchronicity Access Control Guide

31

Category

The name of a defined command category. You may apply any command category to
the selected object.

Permissions

Defines the grant level of this permissions definition. The grant level is one of the
following options:

• Everyone - Grant all users the defined access to the commands included in the
command category for the specified object.

• Nobody - Grant no users the defined access to the commands included in the
command category for the specified object.

• Users - Grant specified user groups and users access to defined commands
included in the command category for the specified object. If the user group or

Access Administrator (ACAdmin)

32

user is on the list, then operation is allowed. If not, the AccessControl system
continues processing remaining AccessControl directives to see if any other rule
grants the permission.

• Only Users - Grant only the specified user groups or user access to defined
commands included in the command category for the specified object. If the user
is not on this list, the AccessControl system immediately denies access to the
user and does not process additional AccessControl directives.

• No Effect - Do not apply this command category to the specified object. (Default)

Important: How access controls are defined can affect processing order. Use the
command categories priorities to set processing order. Commands with higher priority
are processed first.

Commands

A list of the commands contained in the command category. To change the commands
associated with the command category, you must modify the command category.

Users

The user group or specific users associated with the command category for the
specified object. You may specify as many users or user groups as desired.

Using the pick list beneath the text box, you may view the entire list of defined users
and groups. You can select one and press Add to add it to the text box, or type a user
or group name in the text box to add a user.

To remove a user, highlight the user or group name and press the Delete key.

To create user groups, see Create User Groups. To modify existing user groups, see
Modify User Groups. To create user profiles, see ENVOIA Synchronicity DesignSync
Data Manager Administration Guide: Creating User Profiles.

Update Permission Definitions

This page allows you to review the changes you've made to the permissions definitions.

Accept the listed changes by pressing the Submit button, or modify the changes by
pressing the back button to return to the Permissions Definitions page.

User Group Management

User Group Management

ENOVIA Synchronicity Access Control Guide

33

User groups allow you to group users will similar roles into one element that can be
used in an access definition. These defined groups can now be used when defining the
access to categories on objects.

Once the users are defined, the Project Managers use the Object-Oriented
AccessControl Management screens to assign permissions to the user groups.

User Groups are used in access definitions for objects and command categories like
any other user on the system. User groups can be associated with an organizing "filter"
tag that allows you to group users and groups into a logical group, for example by
project team, or department.

Click on the fields in the following illustration for information.

Create

Select this option to create a new user group.

Modify

Click the Modify button to modify user groups from the list of available user groups.

Delete

Click the Delete button to delete user groups from the list of available user groups.

filter for group

Select one of the available filters. By default, there are no filters available in this list.
Filters become available when associated with a user group. When you select a filter,
only user groups associated with that filter show up

When you have a large number of defined users and groups, it can be difficult to
locate the specific users to modify in the list. The filter organization provides a way to
identify users who are associated with a project or module so that you can restrict the
view to show you only possible target user groups.

Access Administrator (ACAdmin)

34

Note: The filter does not restrict the user group to, for example, a specific module,
category, or project. It is strictly a display filter.

Create User Groups

This page allows you to create user groups. These user groups are then available to be
assigned to command categories. Grouping users into groups allows you to define and
assign roles and maintain the roles and functions easily even when individual group
members change.

IMPORTANT: External group names cannot collide with existing group names. To
avoiding naming collisions, it is highly recommended that you use a consistent naming
convention for both internal and external names. One example of a naming convention
would be:

• Internal users - username in all lower case (ie: rsmith)
• Internal groups - group name begins with capital letter, or each significant piece

of the group names begins with a capital letter: (Admins, ModuleAdmins)
• External groups - being with a fixed prefix (SITE_Admins, SITE_ProjectLeaders)

This will prevent a collisions as well as being obvious visually to the user whether the
user is seeing a group or user, and whether a group is internal to the ACadmin system
on the server or available across servers.

Notes:

• Usually only the DesignSync administrators should have permission to create or modify
user group definitions. The access control that determines whether a user can create or
modify user group definitions is AcaProjUserGroupDef, This is included in the
command group ACAactions assigned to the SVR_ADMIN category. For more
information on ACActions, see Access Controls for Groups of Commands.

• There are three dynamic (or virtual) user groups that should never be manipulated
manually. They are All-Module-Owners, All-Project-Owners, and All-Server-Users.
These groups are automatically generated when ACAdmin is reset. If you have made
changes that affect these groups, you should perform an ACAdmin Reset. For more
information on these dynamic user groups, see Special User Groups.

To create User Groups:

1. Select Create in the User Management section of the Access Administrator.
2. Name the user group and select the desired options on the Create User

Category page.
3. Select Submit to review your selections on the Preview Pending Command

Category Update page.
4. To accept the changes, press Submit. If the command is successful, you see a

confirmation page. If the command was not successful, you see an error page

ENOVIA Synchronicity Access Control Guide

35

explaining the failure. If you do not accept the changes, you may click Reset to
cancel the changes.

Click on the fields in the following illustration for information.

Group Name

Name of the user group. This name should correspond to DesignSync naming
conventions. For a list of reserved characters that should not be used in the user
group name, see the ENOVIA Synchronicity DesignSync Data Manager User's Guide:
URL Syntax.

Tip: To allow you to easily differentiate between user groups and individual users,
you should implement a naming convention such as prefixing the user group with a
standard prefix like Group- or by creating group names in all capital letters. For
example:

DEVELOPERS

or

GROUP-Developers

Filter

An identifier that corresponds to a project, group of projects, category, module, or
group of modules. By default, the filter list contains all projects and modules defined

Access Administrator (ACAdmin)

36

on the server. This list can be changed by providing a custom method for defining
available filters. For information on defining custom filters, see Customizing Adaptable
Functions using the acaCallbacks.tcl File.

The filter is used to provide a meaningful association for the user group.

Users

Lists the users associated with the user group. You may associate individual users or
other user groups. For example, you may have a group called ProjectManagers that
contains defined project manager user groups from different product groups.

Existing User Group

This list displays the existing user groups and their properties.

Select Dismiss to close the window.

Preview Pending User Group Updates

This page allows you to review the changes you've made to user groups by creating,
modifying, or deleting user groups and confirm the changes before committing them to
the server.

Accept the listed changes by pressing the Submit button, or modify the changes by
pressing the Back button to return to the Create User Groups, Modify User Groups or
Delete User Groups page.

Modify User Groups

ENOVIA Synchronicity Access Control Guide

37

This page allows you to modify existing user groups. Grouping users into groups allows
you to define and assign roles and maintain the roles and functions easily even when
specific group members change.

Note: Usually only the DesignSync administrators should have permission to create or
modify user group definitions. The access control that determines whether a user can
create or modify user group definitions is AcaProjUserGroupDef, This is included in
the command group ACAactions assigned to the SVR_ADMIN category. For more
information on ACActions, see Access Controls for Groups of Commands.

To modify User Groups:

1. Select Modify in the User Group Management section of the Access
Administrator. This loads the Modify User Groups page with a list of all the
defined users and groups.

2. Select the desired options on the Modify User Groups page.
3. Select Submit to review your selections on the Preview Pending User Group

Update page.
4. To accept the changes, press Submit. If the command is successful, you see a

confirmation page. If the command was not successful, you see an error page
explaining the failure. If you do not accept the changes, you may click Reset to
refresh the form from the server, erasing any unsaved modifications.

Click on the fields in the following illustration for information.

Access Administrator (ACAdmin)

38

Group Name

Name of the user group. You cannot modify the user group name.

Users

Lists the users associated with the user group. You may associate individual users or
other user groups. For example, you may have a group called ProjectManagers that
contains defined project manager user groups from different product groups.

To add a user to the list, you may type the user or user group name in the text box, or
select it from the drop-down list and click the Add button.

To remove a user from the list, highlight the username and press the Delete key.

Delete User Groups

This page allows you to delete existing user groups. This deletes the group definition
and removes it from any access controls. The access controls remain in place in the
same processing order.

ENOVIA Synchronicity Access Control Guide

39

Note: Usually only the DesignSync administrators should have permission to create,
modify, or delete user group definitions. The access control that determines whether a
user can create or modify user group definitions is AcaProjUserGroupDef, This is
included in the command group ACAactions assigned to the SVR_ADMIN category. For
more information on ACActions, see Access Controls for Groups of Commands.

To delete User Groups:

1. Select Delete in the User Management section of the Access Administrator. This
loads the Delete User Groups page with a list of all the defined users.

2. Click the Delete checkbox to mark the user group for deletion.
3. Select Submit to review your selections on the Preview Pending User Group

Update page.
4. To accept the changes, press Submit. If the command is successful, you see a

confirmation page. If the command was not successful, you see an error page
explaining the failure. If you do not accept the changes, you may click Back to
return to the Delete User Categories page.

Click on the fields in the following illustration for information.

Delete

Click this checkbox to delete this user group. Unclick the checkbox to leave this user
group unmodified.

Group Name

Name of the user group.

Filter

Access Administrator (ACAdmin)

40

An identifier that corresponds to a project, group of projects, category, module, or
group of modules.

Users

Lists the users associated with the user group.

Special User Groups

DesignSync provides some predefined virtual user groups for use. These groups are
dynamically maintained when AC Admin is reset. These groups can be used when
defining the access to categories on objects, like other user groups, but they can not be
modified, renamed, or removed.

You should never manually add or remove users from these groups. They are
dynamically maintained. If you want to exclude an included user from permissions
assigned to one of these groups, create a new access rule with a higher priority that
uses the desired permissions.

Note: You can hide special user groups by using tuning the
 acaCreateDynamicGroups parameter. For more information on tuning ACAdmin
parameters, see Setting Tunable Parameters in the acaConfigCustom.tcl File.

The predefined virtual user groups are:

• All-Module-Owners - a list of all the module owners' usernames. You can use this group
to create a set of minimal permissions for all module owners, who are usually the module
administrators.

• All-Project-Owners - a list of all the project owners' usernames. You can use this group
to create a set of minimal permissions for all project owners, who are usually the project
administrators.

• All-Server-Users - a list of all the user accounts on the server. You can use this group to
create a set of minimal permissions for all defined users on a server.

These groups are automatically generated when ACAdmin is reset. If you have made
changes that affect these groups, such as adding or removing user accounts on the
server, you should perform an ACAdmin Reset.

Command Category Management

Category Management

This section controls command category management. Access Control commands are
grouped into command categories. Usually only the DesignSync Administrators are
granted permission to create or modify command category definitions.

ENOVIA Synchronicity Access Control Guide

41

Once the categories are defined, the Project Managers use the Object AccessControl
Management screens to assign permissions to users or groups by category.

AcaProjCatPrmDef

Changes to the command categories affect access control settings for all objects hosted
by the server.

Click on the fields in the following illustration for information.

Create

Select this option to create a new command category.

Modify

Select a command category using the Select drop-down box, and click the Modify
button to edit the command category. If you do not specify a command, the Modify
page displays all command categories.

Delete

Select a command category using the Select drop-down box, and click the Delete
button to delete the command category. If you do not specify a command, the Delete
page displays all command categories.

Select

Contains a drop-down list of all existing command categories.

Note: Use the Select drop-down to select a command category definition to modify or
delete.

Create Command Category

Access Administrator (ACAdmin)

42

This page allows you to create command categories. Grouping the rights into a category
allows you to grant permissions on a per-function basis.

Note: Usually only the DesignSync administrators should have permission to create or
modify command category definitions. The access control that determines whether a
user can create or modify category definitions is AcaProjCatPrmDef, This is included
in the command group ACAactions assigned to the SVR_ADMIN category. For more
information on ACActions, see Access Controls for Groups of Commands.

To create Command Categories:

1. Select Create in the Category Management section of the Access Administrator.
2. Name the command category and select the desired options on the Create

Command Category page.
3. Select Submit to accept the options. If the command is successful, you see a

success page showing that the category was created. If the command was not
successful, you see an error page explaining the failure. The success page also
contains a link to the Modify Command Category which allows you to view all
existing categories and make any desired modifications.

Click on the fields in the following illustration for information.

ENOVIA Synchronicity Access Control Guide

43

Category

Name of the command category. This name should correspond to DesignSync
naming conventions. For a list of reserved characters that should not be used in the
command category name, see the ENOVIA Synchronicity DesignSync Data Manager
User's Guide: URL Syntax.

Priority

Priority of the command category within the processing order. The higher the priority,
the greater the priority given to the command category.

Note: Access restrictions need to be positioned with high priority in order to be
enforced.

Grant

Permissions grant for a category on a specific object is one of five types:

• Everybody - Grants permission for all defined users to access the specified
command.

• No Effect - Does not create an access-control for the specified command, but
allows the server to dictate the access control.

• Nobody - Denies permissions for all defined users to access the specified
command. If certain users or groups are permitted to access the command,
that access priority must be higher than this one.

Object Independent

Indicates whether the group of actions is server-specific or object-dependent.

• Object dependent - These actions apply to specific objects on the server, for
example, a project or module. (Default) To specify object-dependant, do not
check the Object Independent box.

• Object independent - These actions are server-wide, not applicable to specific
objects, for example, user creation. To specify object-independent, check the
Object Independent box.

Commands

Lists the access controls associated with the category. You may either type the
command name or select the command from the drop-down list and press Add to add
the command to the list. To remove a command you added, highlight the command
and delete it.

Existing Command Categories

Access Administrator (ACAdmin)

44

This list displays the existing command categories, including the default category
definitions created when Access Administrator is activated, and the category properties.

Select Dismiss to close the window.

Modify Command Category

This page allows you to modify the existing command categories. You may re-prioritize,
change the grant assignment or change the list of commands in the category.

By default, the list displayed is the existing command categories. Or, to limit the list, you
can select the command category to modify.

Note: Usually only the DesignSync administrators should have permission to create or
modify command category definitions. The access control that determines whether a
user can create or modify category definitions is AcaProjCatPrmDef, This is included
in the command group ACAactions assigned to the SVR_ADMIN category. For more
information on ACActions, see Access Controls for Groups of Commands.

To modify Command Categories:

1. Select Modify in the Category Management section of the Access Administrator.
 If you have selected a specific category, the Modify Command Category page
displays only that category. If you have not selected a category, the page
displays all the defined categories

2. Select the desired options on the Modify Command Category page.
3. Select Submit to accept the options. DesignSync allows you to review your

selections on the Preview Pending Command Category Update page.
4. To accept the changes, press Submit. If the command is successful, you see a

confirmation page. If the command was not successful, you see an error page
explaining the failure. If you do not want to accept the changes, you may click
Reset to cancel the changes.

Click on the fields in the following illustration for information.

Note: The page displays all defined categories. The image below is a small sampling,
and not intended to show the complete page.

ENOVIA Synchronicity Access Control Guide

45

Category

Name of the command category. This name should correspond to DesignSync
naming conventions. For a list of reserved characters that should not be used in the
command category name, see the ENOVIA Synchronicity DesignSync Data Manager
User's Guide: URL Syntax.

Priority

Priority of the command category within the processing order. The higher the
number, the greater the priority given to the command category.

Note: Access restrictions need to be positioned with high priority in order to be
enforced.

Grant

Permissions granted for a category on a specific object is one of the following types:

• Everybody - Grants permission for all defined users to access the specified
command.

• No Effect - Does not create an access-control for the specified command, but
allows the server to dictate the access control.

• Nobody - Denies permissions for all defined users to access the specified
command. If certain users or groups are permitted to access the command,
that access priority must be higher than this one.

Object Independent

Indicates whether the group of actions is server-specific or object-dependent.

Access Administrator (ACAdmin)

46

• Object dependent - These actions apply to specific objects on the server, for
example, a project or module. (Default) To specify object-dependant, do not
check the Object Independent box.

• Object independent - These actions are server-wide, not applicable to specific
objects, for example, user creation. To specify object-independent, check the
Object Independent box.

Commands

Lists the access controls associated with the category. You may either type the
command name or select the command from the drop-down list and press Add to add
the command to list. To remove a command you added, highlight the command and
delete it.

Delete Command Category

This page allows you to delete command categories. These categories are then
removed from the system and any object definitions they were associated with.

Note: Usually only the DesignSync administrators should have permission to delete
command category definitions. The access control that determines whether a user can
create or modify category definitions is AcaProjCatPrmDef, This is included in the
command group ACAactions assigned to the SVR_ADMIN category. For more
information on ACActions, see Access Controls for Groups of Commands.

To delete Command Categories:

1. Select Delete in the Category Management section of the Access Administrator.
You can specific a command category to delete or, if you do not specify a
command category, the Delete page displays the complete list of command
categories.

2. Click the checkbox next to the command category to delete.
3. Select Submit to accept the options. DesignSync allows you to review your

selections on the Preview Pending Command Category Update page.
4. To accept the changes, press Submit. If the command is successful, you see a

confirmation page. If the command was not successful, you see an error page
explaining the failure. If you do not accept the changes, you may click Reset to
cancel the changes.

Click on the fields in the following illustration for information.

Note: The page displays all defined categories. The image below is a small sampling,
and not intended to show the complete page.

ENOVIA Synchronicity Access Control Guide

47

Delete

Click this checkbox to delete this command category. Unclick the checkbox to leave
this command category unmodified.

Category

Name of the command category.

Priority

Priority of the command category within the processing order. The higher the priority,
the greater the priority given to the command category.

Grant

Permissions granted for a category on a specific object is one of the following types:

• Everybody - Grants permission for all defined users to access the specified
command.

• No Effect - Does not create an access-control for the specified command, but
allows the server to dictate the access control.

• Nobody - Denies permissions for all defined users to access the specified
command. If certain users or groups are permitted to access the command,
that access priority must be higher than this one.

Object Independent

Indicates whether the group of actions is object-independent or object-dependent.

• Object dependent - These actions apply to specific objects on the server, for
example, a project or module. (Default) To specify object-dependant, do not
check the Object Independent box.

Access Administrator (ACAdmin)

48

• Object independent - These actions are server-wide, not applicable to specific
objects, for example, user creation. To specify object-independent, check the
Object Independent box.

Commands

Lists the access controls associated with the category.

Preview Pending Command Category Updates

This page allows you to review the changes you've made to the command categories
either by modifying or deleting a command category and confirm the changes before
committing them to the server.

Accept the listed changes by pressing the Submit button, or modify the changes by
pressing the back button to return to the Modify Command Category or Delete
Command Category page.

Custom Command and Filter Management

Custom Command Management

ENOVIA Synchronicity Access Control Guide

49

Using custom commands, you can create an access control command that includes an
access control with all the desired optional modifiers such as:

• a single filter file
• unlimited when clauses
• a single because clause

This allows a finer granularity of control over the command definition.

Custom command can be directly associated with access filters that grant or deny
permissions.

Like all the access controls, when you create the custom command, you can make it
available enterprise wide, site wide, or server wide. There is one definition file for each
of these locations.

Select the location and then press Manage to edit the command definitions for the
location.

Custom Command Definitions

The custom command interface provides two methods for editing. You may directly type
tcl-formated code to call the command(s) in the Command Definitions text box, or you
may fill in the sections below the Command Definitions text box and press the Insert
button to have the command created for you and inserted at the end of the text box.

When you have completed your modifications, press Submit to recreate the custom
command definitions file for the location. If you do not wish to save your changes, press
Reset to refresh the command definitions file from the server.

Click on the fields in the following illustration for information.

Access Administrator (ACAdmin)

50

Visibility

Shows the location of the custom command definitions. The commands can be
enterprise wide, site-wide, or server specific.

Command Definitions

Displays the contents of the custom command definitions for the location. You can
manually edit the contents of the Command Definitions text box; adding, removing, or
modifying the commands as required.

To add a comment to the command definitions file, prefix the line with the hash (#)
symbol.

Command Name

Enter the name of the command to automatically generate.

Access Command

ENOVIA Synchronicity Access Control Guide

51

Select the access control associated with the custom command from the drop-down list.

Object Dependence

Indicates whether the group of actions is object-independent or object-dependent.

• Object dependent - These actions apply to specific objects on the server, for
example, a project or module. (Default) To specify object-dependant, select the
Object Dependent radio button.

• Object independent - These actions are server-wide, not applicable to specific
objects, for example, user creation. To specify object-independent, select the
Object Independent radio button.

Access Statement Controls

The parameter qualifiers for the access control statements. These parameters limit the
scope of the command (when clauses) or provide an explanatory message for users
when a DesignSync access fails (-because clauses) For more information on
parameter qualifiers, see Using Access Command Qualifiers.

Filter File

File containing the Custom Command Filter Definition.

Command Filter Management

Custom command filters allow for the formation of complex decision making algorithms
to determine access policies for a given operation. A custom command filter is a tcl
procedure associated with a custom command.

Note: A custom command can only be associated with one filter.

Like all the access controls, when you create the custom command, you can make it
available enterprise wide, site wide, or server wide. There is one definition file for each
of these locations.

Select the location and then press Manage to edit the command definitions for the
location.

Access Administrator (ACAdmin)

52

Custom Command Filter Definitions

This page allows you to specify which filter to modify. You can select an existing filter
file or create a new one.

Click on the fields in the following illustration for information.

Visibility

Shows the location of the custom command definitions. The commands can be
enterprise wide, site-wide, or server specific.

Commands Using Filters

Lists the custom command definitions using filters and the following properties:

• Command name - name of the defined custom command.
• Access Control Name - access control command contained in the defined

custom command.
• Access Arguments - parameter qualifiers for the access control statements,

including where and because clauses.
• Object Independent - indicates whether the command is object-independent or

object-dependent.
• Yes - command is object-independent.
• No - command is object-dependent.

• Filter file - Name of the filter file associated with the defined custom command.

ENOVIA Synchronicity Access Control Guide

53

Filter Files

Select Add to create a new filter file, or select the desired file to edit and press Edit.

Open in Command Editor

Press this button to open the Custom Command Definition page which allows you to
edit the custom commands for that location.

Filter Files: Add

Creates a new filter file.

Filter Files: Edit

Select a defined filter file from the drop-down list and press Edit to edit an existing filter
file.

Edit Custom Command Filter Definitions

This page allows you to create and edit custom command filter definitions for use with
custom commands.

Click on the fields in the following illustration for information.

Visibility

Shows the location of the custom command definitions. The commands can be
enterprise wide, site-wide, or server specific.

Access Administrator (ACAdmin)

54

File Name

For new files, allows you to type in the file name. For existing files, displays the name
of the file being modified.

File Contents

Displays the contents of the custom command filter. You can manually edit the
contents of the file contents text box; adding ,removing, or modifying the filters as
required.

To add a comment to the filter definition, prefix the line with the hash (#) symbol.

ACAdmin Reset
When you Submit your changes to the Access Administrator, most of them effective
immediately. The only changes that require a reset are changes to dynamic user
groups, for example if you change the users assigned to a group, or the roles of a user
group on the server.

You can reset the server by selecting the ACAdmin Reset command from the
ProjectSync menu. The command updates the AccessControl file and reloads the
access controls so that DesignSync users can use them.

Customizing ACAdmin

Customizing ACAdmin

In ACAdmin you can change certain aspects of the default behavior by providing
custom settings and custom implementation for some functions. DesignSync provides
custom files for modifying the default behavior.

Note: These files are stored in the custom file areas as described in Setting Up Access
Controls. Unless noted otherwise this means that the server custom path is searched
first, then the site custom area, and finally we look into the enterprise custom directory.
The first found file is sourced and no further attempt is made to continue searching.
Other files are, where noted, sourced in the reverse order and accumulated.

The custom files are listed in the following table:

Click on the file name in the following table for the full description of the file and
its usage.

File Name Location Brief Description
aca_xusers.def share/config/ Provides a list of external users.

ENOVIA Synchronicity Access Control Guide

55

acaCallbacks.tcl share/tcl/ Provides custom versions of adaptable funct

aca_commands.def share/config/
Provides custom command definitions.

Note: Reversed search and accumulate

acaConfigCustom.tcl share/tcl/
Provides custom definitions for a numbe
tunable parameters.

Note: Reversed search and accumula

AccessControl.acaACFilterExtension share/AC_Components/ A custom filter file.

AccessControl.acaACFilterExtensionCustom share/AC_Components/

A custom filter file, like
AccessControl.acaACFilterExte
that is reserved searched and
accumulated.

Note: Reversed search and accumulated.

Defining External Users using the aca_xusers.def File

This file is used to define a list of external users, people who do not have an account on
the ProjectSync server.

In the aca_xusers.def file, external users should be added to the list variable called
projgroup. This can be done using either of these two formats:

set projgroup {user1 user2...}

or

set projgroup {}

lappend projgroup user1 user2...}

lappend projgroup user3 user4 user5 user7

...

These usernames are displayed in the ACAdmin graphical web interface along with the
defined groups and existing users, so they can be added to groups or individually
referenced in permissions.

Note: There is only one instance of any given username. Even if the user is defined
both internally and externally, the username will appear only once in the select list and
all access accorded to that username will be available to that user.

Access Administrator (ACAdmin)

56

Defining External Groups Using the aca_common_groups.def File

This file is used to define a list of external groups, groups of users who do not
necessarily have an account on the ProjectSync server.

In the aca_common_groups.def file, external groups should be added to the list
constant called UserGroups. The format for adding groups is:

set UserGroups(<GroupName>) {<UserName> [...]}

Note: User names are entered in a TCL list

These group names are displayed in the ACAdmin graphical web interface along with
the defined groups and existing users, so they can be added to groups or individually
referenced in permissions.

IMPORTANT: External group names cannot collide with existing group names. To
avoiding naming collisions, it is highly recommended that you use a consistent naming
convention for both internal and external names. One example of a naming convention
would be:

• Internal users - username in all lower case (ie: rsmith)
• Internal groups - group name begins with capital letter, or each significant piece

of the group names begins with a capital letter: (Admins, ModuleAdmins)
• External groups - being with a fixed prefix (SITE_Admins, SITE_ProjectLeaders)

This will prevent a collisions as well as being obvious visually to the user whether the
user is seeing a group or user, and whether a group is internal to the ACadmin system
on the server or available across servers.

Customizing Adaptable Functions using the acaCallbacks.tcl File

This file provides custom implementation for certain adaptable methods. These
implementations override the default ACAdmin procedures.

The acaCallbacks.tcl file may contain valid TCL proc definitions for any of the
following procedures:

• Provide a custom filter list using cbGetGroupFilter
• Provide list of external users using cbGetExtUsers
• Provide list of external users groups using cbGetExtUserGroupscbGetExtUserGroups

Provide a custom filter list using cbGetGroupFilter

The default method returns a list of all Projects and Modules defined on the server.
These values are used by ACAdmin to build a pick list for User Group filters.

ENOVIA Synchronicity Access Control Guide

57

You can customize the proc to return an arbitrary Tcl formatted list of strings.

Important: Do not use reserved characters in your string list. For a list of reserved
characters that should not be used, see the ENOVIA Synchronicity DesignSync Data
Manager User's Guide: URL Syntax.

To modify the proc, add your code after the following line in the file:

proc cbGetGroupFilter {}{

 # return a TCL list

}

Provide list of external users using cbGetExtUsers

This method is used to provide a list of external users, people who do not have
accounts on the ProjectSync server. You can either modify this method, or use the
custom file aca_xusers.def to provide a fixed list of external users. For more information
on the aca_xusers.def file, see Defining External Users using the aca_xusers.def File.
To provide a list external user groups, see cbGetExtUserGroups.

Note: If your situation requires something more complex than a fixed list of external
users make sure that your custom method returns a valid TCL list. If your situation only
requires a fixed list of external users, use the aca_xusers.def File.

You can customize the proc to return an Tcl formatted list of strings.

To modify the proc, add your code after the following line in the file:

proc cbGetExtUsers {}{

 # return a TCL list

}

Note: There is only one instance of any given username. Even if the user is defined
both internally and externally, the username will appear only once in the select list and
all access accorded to that username will be available to that user.

Provide list of external users groups using cbGetExtUserGroups

The default method returns an empty list. Use the custom proc to define any external
user groups using users who do not have accounts on the ProjectSync server. This
should be used in conjunction with defined external users. You can define external

Access Administrator (ACAdmin)

58

users You can either modify this the cbGetExtUsers proc, or by using the custom file
aca_xusers.def to provide a fixed list of external users.

Note: You can also create or modify user groups containing defined externals groups
using the ACAdmin. For more information, see User Group Management.

IMPORTANT: External group names cannot collide with existing group names. To
avoiding naming collisions, it is highly recommended that you use a consistent naming
convention for both internal and external names. One example of a naming convention
would be:

• Internal users - username in all lower case (ie: rsmith)
• Internal groups - group name begins with capital letter, or each significant piece

of the group names begins with a capital letter: (Admins, ModuleAdmins)
• External groups - being with a fixed prefix (SITE_Admins, SITE_ProjectLeaders)

This will prevent a collisions as well as being obvious visually to the user whether the
user is seeing a group or user, and whether a group is internal to the ACadmin system
on the server or available across servers.

Adding External Groups

To modify the proc, add your code after the following line in the file:

proc cbGetExtUserGroups {host port}

Example of Adding External Groups with cbGetExtUserGroups

This example shows a simplified modification to cbGetExtUserGroups.

proc cbGetExtUserGroups {host port} {

 # could make use of host and port args and

 # generate different groups for different servers

 set extgrps(ExtAdmins) {name1 name2 }

 set extgrps(ExtDesigners) {name3 name4}

 set extgrps(ExtUsers) {name5 name6 name7}

 return [array get extgrps]

}

ENOVIA Synchronicity Access Control Guide

59

Defining Custom Access Control Commands with the
aca_commands.def File

This file is used to provide a list of custom Access Control commands. Using the
external file, instead of the ACAdmin web interface to create custom commands, allows
you to provide and maintain the same set of custom commands for multiple servers on
your site. For information on using the AcAdmin custom commands web interface, see
Custom Command Management.

You can define an unlimited number of custom commands in the aca_commands.def
file. As with the ACAdmin’s AddCommand syntax, you define one command per line
within the file.

AddCommand <Alias> <ACName> OBJ|NOOBJ {<extra-spec>} [filter-file]

Where:

• Alias is the name of your command. The name should be descriptive and easy to
remember for ease of use.

Important: Do not use reserved characters in your alias. For a list of reserved
characters that should not be used, see the ENOVIA Synchronicity DesignSync
Data Manager User's Guide: URL Syntax.

• ACName is a valid access name, such as AddNote, Checkin, BrowseServer, Checkout,
etc.

• OBJ or NOOBJ is one of two values that indicates whether the command is object-
dependant (OBJ) or object-independant (NOOBJ).

• extra-spec contains parameter qualifiers for the access control statements. These
parameters limit the scope of the command (when clauses) or provide an explanatory
message for users when a DesignSync access fails (-because clauses) For more
information on parameter qualifiers, see Using Access Command Qualifiers. If no
parameter qualifiers are needed, this string must be empty {}

• filter-file is an optional argument that allows you to specify the file containing the
Custom Command Filter Definition.

Tip: To avoid potential command name collisions, DesigSync recommends that you
choose a naming convention such as a common prefix, for example SITE for external
commands. Thus if you had an command that grouped maintenance permissions (such
as backup, restore, freezemod, etc), the alias might be SITE_Maintenance.

Example

This shows a simple example of a custom command.

Access Administrator (ACAdmin)

60

AddCommand SITE_BrowsePermission BrowserServer OBJ {when user
Admin} ModBrowse.acfilter

Setting Tunable Parameters in the acaConfigCustom.tcl File

This file can be used to set any of the tunable parameters available in ACAdmin.

Common tunable parameters

The following table lists the most commonly used tunable parameters.

Variable Name Definition Default Value

acaDefaultPermission Defines default permission for new Categories.
 By default, the server sets the default. SERVDEF

acaDisplayExternalGroups
Determines whether to show or hide external
groups. To hide external groups, set the
parameter to 0. To show external groups, set
the parameter to 1.

1

acaShowGroups
Determines whether to include all defined
groups in the Users Select-box. To hide
defined groups, set the parameter to 0. To
show defined groups, set the parameter to 1.

1

acaImportFilter

Determines whether to incorporate filter code
directly into ACAdmin’s AccessControl file or
use the `source` command in the ACadmin
AccessControl file to source the filter code
stored in a different file.

Embedding filters may provide a better
performance, while sourcing a separate file
avoids any potential discrepancy if the
embedded code and the actual file become out
of sync.

To use the source command in the ACAdmin
AccessControl file to source the filter code, set
the parameter to 0. To embed the filters into
the ACAdmin AccessControl file, set the
parameter to 1.

0

acaDoBackup

Determines whether to rename and save the
current AccessControl file, or other *.def file
before writing a new version of it. To disable
backup file creation, set the parameter to 0. To
enable backup file creation, set the parameter
to 1.

1

acaServerUsers Alias for dynamic User Group representing all
server users.

All-Server-
Users

acaModuleOwners Alias for dynamic User Group representing all All-Module-

ENOVIA Synchronicity Access Control Guide

61

Module owners. Owners

acaProjectOwners Alias for dynamic User Group representing all
Project owners.

All-Project-
Owners

acaCreateDynamicGroups

Whether to create the three dynamic groups:

• acaServerUsers
• acaModuleOwners
• acaProjectOwners

Disabling this feature might be an advantage
for some LDAP configurations, where,
depending on the use model, only a subset of
user records may exist on the database at any
given time.

1

Internal parameters

These parameters are generally used only internally. You can modify them, but their
usage is less common.

Variable Name Definition Default
Value

acaDenyOnNONE

Determines whether to put `access deny`
statements for OBJECT on Permission NONE.

To put access deny statements an object when the
permission is set to NONE, set the parameter to 1.

1

acaBecauseExpandUserList

Determines whether to expand the User Groups in
a -because statement.

To pass the UserGroup without expanding it in a -
because statement, set the parameter to 0. To
expand the user group to the members of the
group in a -because statement, set the parameter
to 1.

0

acaRemovePermForDeletedGroups

Determines whether to automatically remove
permissions (if any) for deleted groups.

To not remove any permissions set for removed
groups, set the parameter to 0. To remove any
permissions set for removed groups, set the
parameter to 1.

Note: If the parameter is set to 1, the
aca_perms.def file is updated when the user
group is deleted.

1

Access Administrator (ACAdmin)

62

Command Related Settings

These parameters control command behavior.

Variable Name Definition Default Value

acaSuppressObjWildcards

List of Commands that do not need
the wildcard extension (".../*") for
Objects.

The default is an empty list (pictured
in the Default Value column).

{}

acaEnforceObjWildcards
List of Commands that do need an
access statement with and without
the wildcard extension (".../*") for
Objects

{BrowseServer
AcaProjCatPrmDef
AcaProjUserGroupDef}

Custom AccessControl Extension Filters

In addition to the filters created via the ACAdmin web interface, DesignSync supports
extra filters defined in the following optional custom files. These files can be sources by
the AcAdmin:

• AccessControl.acaACFilterExtension - This is a single file that is located and sourced
DesignSync. Once DesignSync has found the file, it does not continue looking for
additional versions.

• AccessControl.acaACFilterExtensionCustom - DesignSync searches for and sources
all instances of this file.

Related Topics

Custom Command Filter Definitions

63

Access Controls for DesignSync Commands
DesignSync Action Definitions

DesignSync Action Definitions

You set up access controls on particular DesignSync actions, or operations. To set up
an access control on an operation, the operation must have an action definition
specified with an access define command. If an action definition exists for an
operation, you can control access to that operation using the stcl access allow,
access deny, and access filter commands. You can also control access to
operations on module data by using the access decline command.

DesignSync provides predefined actions corresponding to most operations you might
want to access control. These actions are defined in the default access control file for
DesignSync:

$SYNC_DIR/share/AC_Components/AccessControl.ds

See Introduction to Access Control for details on the individual files used to define
access controls.

Important: Do not edit the
$SYNC_DIR/share/AC_Components/AccessControl.ds file; changes will be lost
upon upgrading. Instead, edit your site or server custom AccessControl file (see
Setting Up Access Controls).

DesignSync actions governed by access controls:

To control access to this
DesignSync operation...

Customize this DesignSync access
control...

cancel Unlock

See Access Controls for Unlocking for
details.

caching disable Caching

See Access Controls For Object
Caching for details.

caching enable Caching

See Access Controls For Object
Caching for details.

ci Checkin

Access Controls for DesignSync Commands

64

See Access Controls for Checking In for
details.

A ci that creates a new branch (ci
-new of an unmanaged object, or
auto-branching)

Checkin and MakeBranch

See Access Controls for Checking In
and
Access Controls for Creating Branches
for details.

A co that creates a new branch (co
-lock while auto-branching)

Checkout and MakeBranch

See Access Controls for Checking Out
and Access Controls for Creating
Branches for details.

co -[share|mirror] when the
requested object is already in the
cache or mirror directory,
or
co -reference (without also
specifying the -lock option)

BrowseServer

See Access Controls for Browsing the
Server for details.

(Checkout access is not required.)

compare

Note: The compare command reads
and obeys the access controls set at
the directory level. Access controls
applies at the object level may not be
obeyed.

BrowseServer

See Access Controls for Browsing the
Server for details.

contents

Note: The contents command
reads and obeys the access controls
set at the directory level. Access
controls applies at the object level
may not be obeyed.

BrowseServer

See Access Controls for Browsing the
Server for details.

datasheet BrowseServer

See Access Controls for Browsing the
Server for details.

ls BrowseServer

See Access Controls for Browsing the
Server for details.

mkbranch MakeBranch

See Access Controls for Creating

ENOVIA Synchronicity Access Control Guide

65

Branches for details.
mkfolder MakeFolder

See Access Controls for Creating
Folders for details.

mvfile without specifying the -
allconfigs option

Retire and Checkin

See Access Controls for Retiring and
Access Controls for Checking In for
details.

mvfile -allconfigs Move

See Access Controls for Moving a File
for details.

mvfolder MakeFolder and Delete when Type
FOLDER

See Access Controls for Creating
Folders and Access Controls for
Deleting for details.

populate Checkout

See Access Controls for Checking Out
for details.

A populate that creates a new
branch (populate -lock while
auto-branching)

Checkout and MakeBranch

See Access Controls for Checking Out
and Access Controls for Creating
Branches for details.

populate -share when the
requested object is already in the
cache
or
populate -reference (without
also specifying the -lock option)

Note: populate -mirror does not
check access controls

BrowseServer

See Access Controls for Browsing the
Server for details.

(Checkout access is not required.)

purge Delete when Type VERSION

See Access Controls for Deleting for
details.

retire (without specifying the -
unretire option)

Retire

See Access Controls for Retiring for

Access Controls for DesignSync Commands

66

details.
retire -unretire Unretire

See Access Controls for Unretiring for
details.

rmfolder Delete when Type FOLDER

See Access Controls for Deleting for
details.

rmvault Delete when Type VAULT

See Access Controls for Deleting for
details.

rmversion Delete when Type VERSION

See Access Controls for Deleting for
details.

setowner SetOwner

See Access Controls for Setting Owners
for details.

setvault BrowseServer

See Access Controls for Browsing the
Server for details.

showlocks BrowseServer

See Access Controls for Browsing the
Server for details.

switchlocker SwitchLocker

See Access Controls for Changing a
Lock Owner for details.

tag Tag

See Access Controls for Tagging for
details.

unlock Unlock

See Access Controls for Unlocking for
details.

url setprop of a version's log
property; which is the comment
associated with the version.

ChangeComment

See Access Controls for Changing a
Checkin Comment

ENOVIA Synchronicity Access Control Guide

67

vhistory BrowseServer

See Access Controls for Browsing the
Server for details.

You can create access rules for predefined DesignSync actions. You also can create
access rules for multiple actions that are grouped into a set of commands. See Access
Controls for Groups of Commands for details.

Although most DesignSync actions are predefined in the default AccessControl.ds
file, you might want to create your own action definitions for custom operations. Do not
redefine the existing actions in your site and server AccessControl files. You will not
be able to access the server if it detects duplicate access define statements. You
can, however, define new actions within your site or server custom AccessControl
files.

See Access Control Scripting for an example of a custom action definition.

Related Topics

Module Action Definitions

ProjectSync Action Definitions

Setting Up Access Controls

User Authentication Access Controls

User Authentication Action Definitions

Access Controls for Browsing the Server

The , BrowseServer access control access to browsing both the DesignSync and
ProjectSync server.

Defining and Using the Access Control

The BrowseServer access control is located in the default DesignSync access control
file:

$SYNC_DIR/share/AC_Components/AccessControl.ds

You can use the BrowseServer action to control user-initiated browse operations such
as using ls on a server-side object, requesting a data sheet, viewing a data replication
root, module view, or vault using the DesignSync graphical interface. BrowseServer

Access Controls for DesignSync Commands

68

also controls other operations, such as checking out files, where the server must
browse the vault.

If you use the BrowseServer access control to restrict browsing of an object rather
than a folder, DesignSync List View and the ls command output still list the object.
However, users will not be able to view details of the restricted object.

For ProjectSync, BrowseServer lets you control access to objects other than notes
through the data sheet or browser pop-up window.

The BrowseServer action also restricts email notifications. If a user does not have
permission to access a project, the user does not receive email when a note associated
with that project is created or modified, even when the user is on the note's CC list.

If you restrict browsing, you probably want to use the $DesignSyncActions or
$AllActions variables to restrict access to all operations. (See Access Controls for
Groups of Commands for details on these variables.)

See Browsing Modules on a Server to learn how the BrowseServer access control
applies to module data.

Note: Setting a BrowseServer access control at a directory level does not set
permissions for browsing for paths below the directory. In order to control how an entire
directory structure is browsed, you must specify the access control in the form
"...<path>/*", as shown in the example below.

The access control definition is:

access define BrowseServer <Object>

Where <Object> is the path to the object on the server.

Examples using Access Control Files

The following access control rules ensure that only members of the ASIC team can
browse the server containing the ASIC project:

access init {
 set ASICteam { chan lynch kapoor vega }
}

access deny BrowseServer everyone when Object
"sync:///Projects/ASIC/*" \
-because "To perform this operation, you must be a member of the
ASIC team."

ENOVIA Synchronicity Access Control Guide

69

access allow BrowseServer only users $ASICteam when Object
"sync:///Projects/ASIC/*"

The first rule closes the server to everyone, and the -because clause prints an error
message when access fails.

The second rule builds on the first and opens the server to members of the ASIC team,
$ASICteam, as specified by the access init definition. (See Using Access
Commands for details on using access init to create custom variables.)

The following access control rule prevents users from browsing the layout subproject
under the ASIC project:

access deny BrowseServer everyone when Object
"sync:///Projects/ASIC/layout/*"

To allow only a certain group of users (for example, layout team members) to browse
the layout subproject, add the line:

access allow BrowseServer only users $layout_team_members when
Object "sync:///Projects/ASIC/layout/*"

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

To allow browsing across the server, for example, to allow the users to view the data
replication roots (DRR)s located on a MAS server, enter the server root in the custom
access control that governs access to the server on which the MAS runs:

access allow BrowseServer admins when Object sync:///

Defining Enterprise Access Map

When access control is delegated, you can enable the BrowseServer access map. A
sample version of the access map is provided, commented out, in the custom
DesignSync access control file for the server,
$SYNC_CUSTOM_DIR/servers/<serverName>/<portNumber>/share/AccessC
ontrol.

access map BrowseServer {

 lappend checkmasks [list read $Object]

Access Controls for DesignSync Commands

70

 return [list "masks" $checkmasks]

}

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

Browsing Modules on a Server

Access Controls for Checking Out

The default DesignSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.ds

defines two actions, Checkout and CheckoutLock to control check-outs from the
DesignSync vault:

The CheckoutLock access control is invoked whenever a checkout operation is
performed with a lock. If there are no CheckoutLock access controls granted,
DesignSync uses the Checkout access control settings, including the option Lock
property to determine if the user is allowed to perform a checkout with a lock.

Using Checkout and CheckoutLock Access Controls

Checkout Access Control

CheckoutLock Access Control

Enterprise Access Design Map

Using Checkout and CheckoutLock Access Controls

Both the Checkout and CheckoutLock access controls are used to control DesignSync
vault checkouts. Using the CheckoutLock access control allows the administrator to
finely control the ability to modify vaults by locking an object on modification. This model
is especially useful when you want to provide read access to DesignSync objects used
by different development teams as part of their designs, but not actually intended to be
modified by those teams. The administrator can define an access control for the

ENOVIA Synchronicity Access Control Guide

71

referencing teams that provides Checkout access and a different access control for the
owning team, who is responsible for the modifications to the objects, that includes the
CheckoutLock ability and other vault modification access, such as tag, Checkin, etc.

Note: If there is a conflict in permissions, for example, if you have the following two
access controls defined:

access allow Checkout everyone when Lock “yes”

access deny CheckoutLock everyone

DesignSync enforces the more restrictive access control and denies all users the
ability to perform a Checkout with a lock.

Access controls on the Checkout/CheckoutLock actions also affect populate
operations because populating a folder involves checking out files. Checking out with or
without a lock, and therefore populating with or without a lock, can be restricted based
on access control definitions. You cannot define different access controls for checkout
and populate operations.

When users are denied the ability to check out files, they still can "check out" a file
under certain circumstances:

• When they check out from a mirror. This operation is permitted because it only
creates a link to an existing file in the mirror directory.

• When they check out a reference, which does not transfer the contents of the file
from the server.

Note, however, that users cannot check out locked references when they do not
have Checkout or CheckoutLock access. See the ENOVIA Synchronicity
Command Reference: co Command and populate Command for more
information.

See Fetching a Module to learn how the Checkout access controls apply to module
data.

Note: Pattern matching for Checkout and CheckoutLock is slightly different for module
members. DesignSync vault objects and modules use a format like this:

sync:///Projects/<Path to Vault Objects>/*

sync:///Modules/<path to module>/<Module<<<<<<<="" local=""
class="Mono">>;<version>

Module members use a format like this:

Access Controls for DesignSync Commands

72

sync:///Modules/<path to module>/<Module>;*

Access to module members may also be controlled with module specific access
controls, such as MemberCheckin; discussed in Creating a New Version of a
Module; MemberCheckout, and MemberCheckoutLock, discussed in Fetching a
Module.

Checkout Access Control

access define Checkout {<Object> <Lock> <Merge> <NewBranchName>
<Branch> <ViewName>}

Where:

• <Object> is the URL of the object being checked out. For example,
sync:///Projects/ASIC/layout/spec.doc;1.5.

• <Lock> is yes for checkout with lock and no for checkout without lock (fetch).
• <Merge> is yes if a merge has been requested and is needed and no otherwise.

<Merge> is yes only if a merge is needed. For example, suppose the Latest
version of a file in the vault is 1.3 and a user has an unmodified local copy of
version 1.2. If the user executes co -merge -nocomment <filename>, then
<Merge> is no because no merge is attempted. If version 1.2 had been locally
modified, then <Merge> would be yes, indicating a merge would be attempted.

• <NewBranchName> is the name of a new branch that is created upon branching
checkout.

Use the <NewBranchName> parameter to allow or deny branching checkouts on
particular branches - where the branch is created upon checkout. For
nonbranching checkouts, the <NewBranchName> parameter is the empty string
("").

• <Branch> is the URL of the branch the object is being checked out from.

<Branch> is the URL of the branch where the object will be checked out from,
when the operation is a non-branching checkout.

Use the <Branch> parameter to allow or deny nonbranching check-outs on
particular branches where the object already exists and is not autobranched.

The <Branch> parameter is not sufficient to control checking out from particular
branches because new or autobranched objects do not have a <Branch> URL
until after they are checked in; thus, you need to control the <NewBranchName>
parameter for new or autobranched objects.

ENOVIA Synchronicity Access Control Guide

73

• <ViewName> is the name of the single view, or a Tcl list of multiple views being
used. Use this parameter to allow or deny view usage for module checkout. For
more information on module views, see ENOVIA Synchronicity DesignSync:
Understanding Module Views.

(See DesignSync User's Guide: Autobranching: Exploring "What-If" Scenarios for a
description of autobranching.)

Example

The following access control rule prevents a particular set of users from checking out
with a lock from the ASIC project:

access deny Checkout everyone when Lock "yes" \
 when Object "sync:///Projects/ASIC/*"

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

The following access control rule prevents a particular set of users from checking out
with a lock from any version of the CPU module:

access deny Checkout everyone when Lock "yes" \
 when Object "sync:///Modules/Components/CPU; \

 *"

CheckoutLock Access Control

access define CheckoutLock {<Object> <Merge> <NewBranchName>
<Branch> <ViewName>}

Where:

• <Object> is the URL of the object being checked out. For example,
sync:///Projects/ASIC/layout/spec.doc;1.5.

• <Merge> is yes if a merge has been requested and is needed and no otherwise.

<Merge> is yes only if a merge is needed. For example, suppose the Latest
version of a file in the vault is 1.3 and a user has an unmodified local copy of
version 1.2. If the user executes co -merge -nocomment <filename>, then
<Merge> is no because no merge is attempted. If version 1.2 had been locally
modified, then <Merge> would be yes, indicating a merge would be attempted.

Access Controls for DesignSync Commands

74

• <NewBranchName> is the name of a new branch that is created upon branching
checkout.

Use the <NewBranchName> parameter to allow or deny branching checkouts on
particular branches - where the branch is created upon checkout. For
nonbranching checkouts, the <NewBranchName> parameter is the empty string
("").

• <Branch> is the URL of the branch the object is being checked out from.

<Branch> is the URL of the branch where the object will be checked out from,
when the operation is a non-branching checkout.

Use the <Branch> parameter to allow or deny nonbranching check-outs on
particular branches where the object already exists and is not autobranched.

The <Branch> parameter is not sufficient to control checking out from particular
branches because new or autobranched objects do not have a <Branch> URL
until after they are checked in; thus, you need to control the <NewBranchName>
parameter for new or autobranched objects.

• <ViewName> is the name of the single view, or a Tcl list of multiple views being
used. Use this parameter to allow or deny view usage for module checkout. For
more information on module views, see ENOVIA Synchronicity DesignSync:
Understanding Module Views.

(See DesignSync User's Guide: Autobranching: Exploring "What-If" Scenarios for a
description of autobranching.)

Example

The following access control rule prevents users from checking out with a lock from the
ASIC project:

access deny CheckoutLock ASICDevGroup \
 when Object "sync:///Projects/ASIC/*"

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

Enterprise Design Access Map

When Enterprise Design access map is enabled for the server, you can enable the
Checkout and CheckoutLock access maps. Sample versions of the access maps are
provided, commented out, in the custom DesignSync access control file for the server,

ENOVIA Synchronicity Access Control Guide

75

$SYNC_CUSTOM_DIR/servers/<serverName>/<portNumber>/share/AccessC
ontrol.

Note: This example shows CheckoutLock being access control verified, locally and on
the Enterprise Server.

access map Checkout {

 # verify checkout

 lappend checkmasks [list read $Object]

 return [list "masks" $checkmasks]

}

access map CheckoutLock {

 # verify checkout and lock

 lappend checkmasks [list read $Object]

 return [list "masks" $checkmasks "localcheck" "yes"]

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

Fetching a Module

Access Controls for Changing a Lock Owner

The default DesignSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.ds

defines a single action, SwitchLocker, to control changing the owner of a locked
object:

Access Controls for DesignSync Commands

76

access define SwitchLocker <Object> <CurrentLockOwner>
<NewLockOwner>

Where:

• <Object> is the URL of the branch (for example,
sync:///Projects/ASIC/layout/spec.doc;1).

• <CurrentLockOwner> is the user name of the person who currently owns the
lock.

• <NewLockOwner> is the user name of the person who should get the new lock.

Because changing lock ownership is an unusual and potentially dangerous action, the
default access control for SwitchLocker is to deny access to everyone.

See Changing a Module's Lock Owner to learn how the SwitchLocker access control
applies to module data.

Example

The following access control rule permits the Admin to change the locks held by Jackie,
who recently left the company and forgot to unlock a number of files:

access init {
 set admin { chan kapoor }
}

access deny SwitchLocker everyone

access allow SwitchLocker
 when CurrentLockOwner jackie \
 when NewLockOwner $admin \
 when Object "sync:///Projects/ASIC/*"

The first rule prevents everyone from switching lock owners.

The second rule builds on the first and let administrators change lock owners. The
$admin variable is specified by the access init definition. (See Using Access
Commands for details on using access init to create custom variables.)

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

Related Topics

Access Control Scripting

ENOVIA Synchronicity Access Control Guide

77

Sample Access Controls

Setting Up Access Controls

Changing a Module's Lock Owner

Access Controls for Checking In

DesignSync Checkin access is controlled by the Checkin access control. Because
hierarchical references changes also require a checkin, the checkin access control can
be called by the Checkin command or any of commands that create, modify, or remove
hierarchical references.

DesignSync Access Controls.

Enterprise Design Access Map.

DesignSync Access Controls

The default DesignSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.ds

 defines the action Checkin, to control check-ins to a DesignSync vault:

access define Checkin <Object> <Comment> <CommentLen> <Branch>
<NewBranchName> <Action>

Where:

• <Object> is the URL of the object being checked in. For example:
sync:///Projects/ASIC/layout/spec.doc;1.5.

• <Comment> is the check-in comment string.
• <CommentLen> is the comment length (for example, "20").

Note: The value of CommentLen is a per byte character value. Comments
entered in a language that uses multibyte characters may be visually shorter than
the defined minimum comment length, but still meet the minimum comment
length. (for example, this Korean phrase "이것은 코멘트입니다" visually appears
as 10 characters, but is understood by the system as 28 characters long.)

• <Branch> is the URL of the branch where the object will be checked in.

Use the <Branch> parameter to allow or deny nonbranching check-ins on
particular branches where the object already exists and is not autobranched.

Access Controls for DesignSync Commands

78

The <Branch> parameter is not sufficient to control checking in on particular
branches because new or autobranched objects do not have a <Branch> URL
until after they are checked in; thus, you need to control the <NewBranchName>
parameter for new or autobranched objects.

• <NewBranchName> is the name of the new branch.

Use the <NewBranchName> parameter to allow or deny branching check-ins on
particular branches where the object is new or the object is to be autobranched
upon check-in. For nonbranching check-ins, the <NewBranchName> parameter
is the empty string ("").

• <Action> the origin of the revison control command that initiated the need to
check an access control. The possible values are:

• Addhref - Access Controls for addhref
• Edithref - access for the edithref operations is provided for individual

operations within the edithref command. The edithref command adds and
removes the hrefs, and are subject to those access controls.

• Rmhref - Access Controls for rmhref
• Checkin

(See DesignSync User's Guide: Autobranching: Exploring "What-If" Scenarios for a
description of autobranching.)

Notes:

• Moving or renaming a managed object (see the mvfile command) requires
Checkin permission in order to create the vault for the moved or renamed
object.

• Tagging a file during the checkin operation (ci -tag), requires ADD permission
for the tag command.

See Creating a New Version of a Module to learn how the Checkin access control
applies to module data.

Example using Access Control Files

The following access control rules ensure that only members of the ASIC team can
check into the ASIC project:

access init {
 set ASICteam { chan lynch kapoor vega }
}

access deny Checkin everyone when Object
"sync:///Projects/ASIC/*"

ENOVIA Synchronicity Access Control Guide

79

access allow Checkin only users $ASICteam when Object
"sync:///Projects/ASIC/*"

The first rule prevents everyone from checking into the project. The second rule builds
on the first and permits members of the ASIC team, as specified by the access init
definition, to check into the project. (See Using Access Commands for details on
creating variables using access init.)

See Access Control Scripting for a filter script that shows how you use the <Branch>
and <NewBranchName> parameters to prevent check-ins on a particular branch. Also,
see Sample Access Controls for examples of requiring comments.

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

Enterprise Design Access Map

When access control is delegated, the checkin access map is automatically available.
The access map is located in the default DesignSync access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm.

Tip: The checkin access map has the ability to process commands coming in from
addhref or rmhref (initiated through edithref, addhref, or rmhref), but DesignSync
recommends that you leave the addhref and rmhref maps active to process those
commands, rather than using the Checkin access map. The code sample below shows
that Checkin declines access control when the Action originator is Addhref or Rmhref.

access map Checkin {

 # start with checkin, if action has to do with hrefs

 # add appropriate masks. we are limited to the 'from'

 # object, because here we do not have the target.

 lappend checkmasks [list revise $Object]

 if { $Action == "Addhref" } {

 lappend checkmasks [list fromconnect $Object]

 } elseif { $Action == "Rmhref" } {

Access Controls for DesignSync Commands

80

 lappend checkmasks [list fromdisconnect $Object]

 }

 return [list "masks" $checkmasks]

access filter Checkin {

 if { $Action == "Addhref" || $Action == "Rmhref" } {

 if { $IsPlatformDelegated == "yes" } {

 return DECLINE

 }

 }

 return UNKNOWN

}

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

Access Controls for Changing a Checkin Comment

Creating a New Version of a Module

Access Controls for Tagging

Access Controls for Changing a Checkin Comment

 The ChangeComment access control allows access to for checkin comments.

ENOVIA Synchronicity Access Control Guide

81

Defining and Using the Access Control

The ChangeComment access control is defined in the default DesignSync access
control file:

$SYNC_DIR/share/AC_Components/AccessControl.ds:

Because access controls affect only server operations, you cannot access control
changing checkin comments of versions of client-side vaults.

By default, ChangeComment is included in the group definition DesignSyncActions and
DesignSyncWriteActions.

Note: This access control was formerly set by an access control called
SetUrlProperty. If you have references to SetUrlProperty, you must update
them ChangeComment.

access define ChangeComment <Object> <Comment> <IsOwner>

Where:

• <Object> is the URL of the object whose property (comment) is being set. For
example: sync:///Projects/ASIC/layout/spec.doc;1.5.

• <Comment> is the text of the comment. If the comment contains spaces,
surround the comment with quotation marks (" ")

• <IsOwner> is a boolean set to yes or no depending on who is changing the
checkin comment. <IsOwner> is yes if the user performing the operation is the
object owner; otherwise, no.

Example

The following access filter ensures that you will be denied changing checkin comment in
cases your new comment is less than 20 characters:

access filter ChangeComment {

 if {[string length $Comment] > 19} {

 return UNKNOWN

 }

 return "You must enter a comment of at least 20 characters."

}

Access Controls for DesignSync Commands

82

The return of the UNKNOWN defers to any other access controls that might be set up.

In the example above, access is denied if the comment string has less than 20
characters, in which case you will see the message "You must enter a comment
of at least 20 characters.".

Defining the Enterprise Access Map

When access control is delegated, you can enable the ChangeComment access map. A
sample version of the access map is provided, commented out, in the custom
DesignSync access control file for the server,
$SYNC_CUSTOM_DIR/servers/<serverName>/<portNumber>/share/AccessC
ontrol.

access map ChangeComment {

 lappend checkmasks [list modify $Object]

 return [list "masks" $checkmasks]

}

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

Access Controls for Checking In

Access Controls for Creating Branches

Defining and Using the Access Control

The default DesignSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.ds

defines a single action, MakeBranch, to control who can create new branches:

ENOVIA Synchronicity Access Control Guide

83

access define MakeBranch <Object> <BranchName>

Where:

• <Object> is the URL of the version from which the branch emanates (the
branch-point version). For example:
sync:///Projects/ASIC/layout/spec.doc;1.5.

• <BranchName> is the name (tag) of the branch being created.

The MakeBranch action is obeyed by any command that creates a branch: mkbranch,
ci (with autobranching), co (with autobranching).

See Branching a Module to learn how the MakeBranch access control applies to
module data.

Example

The following access rules ensure that only project leaders can create new branches:

access init {
 set projectLeaders { chan kapoor }
}

access deny MakeBranch everyone

access allow MakeBranch only users $projectLeaders

The first access rule prevents everyone from making branches. The second rule builds
on the first and allows only project leaders, as defined using access init, to make
branches. (See Using Access Commands for details on using access init to create
custom variables.)

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

Defining the Enterprise Access Map

When access control is delegated, you can enable the MakeBranch access map. A
sample version of the access map is provided, commented out, in the custom
DesignSync access control file for the server,
$SYNC_CUSTOM_DIR/servers/<serverName>/<portNumber>/share/AccessC
ontrol.

access map MakeBranch {

Access Controls for DesignSync Commands

84

 lappend checkmasks [list majorReviseAccess $Object]

 return [list "masks" $checkmasks]

 }

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

Branching a Module

Access Controls for Creating Folders

The default DesignSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.ds

defines a single action, MakeFolder, to control for creating folders on the server:

access define MakeFolder <Object>

Where <Object> is the URL of the folder being created. For example:
sync:///Projects/ASIC/layout.

Because access controls only affect server operations, you cannot access control
operations in users' local workspaces. For example, mkfolder
/usr1/Projects/ASIC/layout creates a local folder so this action cannot be
access controlled. However, mkfolder sync:///Projects/ASIC/layout creates
a server-side folder, so this action can be access controlled.

Example

The following access rules prevent everyone but project leaders from creating new
folders for the ASIC project:

access init {
 set projectLeaders { chan kapoor }
}

ENOVIA Synchronicity Access Control Guide

85

access deny MakeFolder everyone when Object
"sync:///Projects/ASIC/*"

access allow MakeFolder only users $projectLeaders when Object
"sync:///Projects/ASIC/*"

The first access rule prevents everyone from making folders in the ASIC project. The
second rule builds on the first and allows only project leaders, as defined using access
init, to make folders. (See Using Access Commands for details on using access
init to create custom variables.)

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

Access Controls for Deleting

The default DesignSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.ds

defines a single action, Delete, to control deleting an object:

access define Delete <Object> <Type> <Owner> <IsOwner>

Where:

• <Object> is the URL of the object being deleted. For example:
sync:///Projects/ASIC/layout/spec.doc;1.5.

• <Type> is one of the following object types: VERSION, FOLDER, VAULT.
• <Owner> is:

o The owner of the vault (when <Type> is VAULT).

The owner of a vault is defined as the owner of the main branch (branch
1) of the design object. The default owner of a branch is the creator of the

Access Controls for DesignSync Commands

86

branch's initial version but ownership can be changed using the
setowner command.

Deleting a vault removes all versions of a design object from the
SyncServer. Because of the potential danger of this operation, the default
AccessControl.ds file denies everyone the ability to delete a vault.
This default access control can be modified using a site or server
AccessControl file.

o The author of the version (when <Type> is VERSION).

The AccessControl.ds file included with DesignSync denies everyone
the ability to delete a version except for its owner. This default access
control can be modified using a site or server AccessControl file.

o The owner of the SyncServer process (when <Type> is FOLDER).
• <IsOwner> is yes if the user performing the operation is the owner; otherwise,

no.

Because access controls affect only server operations, you cannot access control the
deletion of local folders, local files, and client vaults. The FOLDER and VAULT types
refer to server-side folders and vaults.

purge uses rmversion to delete versions. By default, users can only rmversion
versions that they created. This limits users' ability to remove a branch, because they
will only be allowed to remove versions that they created. A user will be able to remove
a branch, if the user created all of the versions on the branch. You can prevent the
removal of branches, disallowing users from removing branches even when the user
created all versions on the branch. This is shown in the Examples section below.

Examples

The following access rules control who can delete objects:

access init {
 set admin { lynch vega }
}

access deny Delete everyone

access allow Delete everyone when Type FOLDER \
when IsOwner "yes"

access allow Delete only users $admin when Type VAULT

ENOVIA Synchronicity Access Control Guide

87

The first rule prevents everyone from deleting any object. The second rule builds on the
first and allows users to delete folders when they are the owner. The third rule specifies
that only an Admin can delete vaults.

The following access rule prevents the removal of branches, even if the user created all
of the versions on the branch. This is accomplished by disallowing removal of the first
(".1") version on the branch.

access filter Delete {
if { $Type != "VERSION" } {
return UNKNOWN
}
if { [string match "*.1" $Object] } {
return "Removing the .1 version and the branch is not allowed"
}
return UNKNOWN
}

To allow some users to remove branches, modify the above access filter, allowing those
users to remove the .1 version. Those users should also be allowed to remove versions
that they did not create:

access allow Delete only users $admin when Type VERSION

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

Access Controls for Moving a File

The default DesignSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.ds

defines a single action, Move, to control moving a vault file:

Access Controls for DesignSync Commands

88

access define Move <Object> <Type> <Owner> <IsOwner>

Where:

• <Object> is the file being moved. For example, the URL of a managed file
being moved would be:
sync:///Projects/ASIC/layout/spec.doc;1.5.

• <Type> is always VAULT.
• <Owner> is:

o The owner of the vault (when <Type> is VAULT).

The owner of a vault is defined as the owner of the main branch (branch
1) of the design object. The default owner of a branch is the creator of the
branch's initial version but ownership can be changed using the
setowner command.

By default, it gives access to everyone, and can be modified using a site
or server AccessControl file.

• <IsOwner> is yes if the user performing the operation is the owner; otherwise,
no.

Because access controls affect only server operations, you cannot access control the
moving of files in local workspaces. The type VAULT refer to server-side vaults.

Example

The following access rules control who can move a file:

access init {
set admin { kapoor }
}
access deny Move everyone

access allow Move everyone when Type VAULT when IsOwner "yes"

access allow Move only users $admin when Type VAULT

The first rule prevents everyone from moving a file. The second rule builds on the first
and allows users to move files only when the type is vault and when they are the owner
of the vault. The third rule specifies that only an Admin can move files when the type is
vault.

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

ENOVIA Synchronicity Access Control Guide

89

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

Access Controls For Object Caching

The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.ds defines whether users
can turn on or off caching for individual objects. This is an administrative feature that
should be reserved for the mirror administrator. By disabling caching for specific
objects, you are able to finely control access to that IP.

 defines a single action, Caching, to control changing checkin comments:

access define Caching <Object> Enable|Disable

Where:

• <Object> is the URL of the object whose property (comment) is being set. For
example: sync:///Modules/ChipDesign/Chip.

• Enable|Disable string representing the action which is either enable or
disable.

Because these access controls affect only server operations, you cannot access control
of caching on client-side vaults.

By default, access to the caching enable/disable commands is denied to everyone:

access deny Caching everyone -because "Default access controls
disallow changing the cacheable state of a vault.\nContact your
Synchronicity tool administrator to enable this capability."

Note: Access to the caching status command is allowed for all users with
BrowseServer access.

Example

The following access controls caching enable/disable access for your DesigSync
administrators.:

Access Controls for DesignSync Commands

90

access init {
 set SyncAdmin { admin syncowner syncmgr }
}

access allow Caching only users $SyncAdmin when Object
"sync:///Projects/ASIC/*"

Related Topics

DesignSync Action Definitions

Access Controls for Retiring

The default DesignSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.ds

defines a single action, Retire, to control retiring an object:

access define Retire <Object>

Where <Object> is the URL of the branch being retired. For example,
sync:///Projects/ASIC/layout/spec.doc;1 might be the main branch for
spec.doc.

Moving or renaming a managed object (see the mvfile command) requires Retire
permission in order to retire the current branch of the existing vault.

Example

The following access rules control who can retire objects in the ASIC project:

access init {
 set projectLeaders { chan kapoor }
}

access deny Retire everyone when Object
"sync:///Projects/ASIC/*"

access allow Retire only users $projectLeaders when Object
"sync:///Projects/ASIC/*"

The first rule ensures that no one can retire any object in the ASIC project. The second
rule builds on the first and allows the project leaders, as defined using access init,
to retire objects. (See Using Access Commands for details on using access init to
create custom variables.)

ENOVIA Synchronicity Access Control Guide

91

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

Access Controls for Setting Owners

The action, SetOwner, controls setting the owner of an object.

Defining and Using the SetOwner Access Control

The setOwner definition is defined in the default DesignSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.ds

access define SetOwner <Object> <NewOwner> <IsOwner>

Where:

• <Object> is the URL of the object for which the owner is being set. For
example: sync:///Projects/ASIC/*

• <NewOwner> is the user name of the desired owner.
• <IsOwner> is yes if the user performing the operation is the same as the

current owner; otherwise no.

Example

The following access rules ensure that only the owner of an object or an administrator
can set a new owner for an object:

access init {
 set admin { lynch vega }
}

access deny SetOwner everyone when IsLockOwner "no"

Access Controls for DesignSync Commands

92

access allow SetOwner users $admin

The first rule specifies that only the owner of an object can set a new owner. The
second rule builds on the first to also allow administrators, as defined using access
init, to set a new owner. (See Using Access Commands for details on using access
init to create custom variables.)

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

Defining the Access Map

When access control is delegated, you can enable the setOwner access map. A
sample version of the access map is provided, commented out, in the custom
DesignSync access control file for the server,
$SYNC_CUSTOM_DIR/servers/<serverName>/<portNumber>/share/AccessC
ontrol.

access map SetOwner {

 # verify changeOwner

 lappend checkmasks [list changeOwner $Object]

 return [list "masks" $checkmasks]

}

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

Access Controls for Tagging

The Tag access control defines a single action to allow adding, deleting, or replacing a
tag on an object:

Defining and Using the Access Control

ENOVIA Synchronicity Access Control Guide

93

The Tag access control is defined in the default DesignSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.ds

Note: The ci command allows you to tag objects on checkin. In order to use this
feature, users must be allowed to ADD a Tag.

See Tagging a Module to learn how the Tag access control applies to module data.

access define Tag <Object> <NewTag> <Action> <Type> <Mutability>

Where:

• <Object> is the URL of the object being tagged. For example:
sync:///Projects/ASIC/layout/spec.doc;1.5.

• <NewTag> is the name of the tag.
• <Action> the action you want to perform:

o ADD - <NewTag> is added to <Object>.
o DELETE - <NewTag> is deleted from <Object>. A tag can exist on only

one version or branch of an object, so specifying a version or branch
number for <Object> is ignored.

o REPLACE - <NewTag> is moved to <Object>. The access-control action
is REPLACE only when an actual replace is required (<NewTag> already
exists). If a user tries to replace a nonexistent tag from the command line
or graphical interface, then the access-control action is ADD and the type
of object whose tag is being deleted is <Type>.

• <Type> - the type of object you want to operate on:

o VERSION - A version tag is being added, moved, or deleted.
o BRANCH - A branch tag is being added, moved, or deleted.

• <Mutability> - this parameter pertains only to module data
o MUTABLE - the tag is mutable
o IMMUTABLE - the tag is immutable

Notes:

o If a tag is being replaced, and is being changed from mutable to
immutable at the same time, then the <Mutability> value will be
IMMUTABLE.

o For non-module data, the <Mutability> value is MUTABLE.

Example

The following access rule ensures that only project leaders can delete or replace tags:

Access Controls for DesignSync Commands

94

access init {
 set projectLeaders { chan kapoor }
}

access allow Tag only users $projectLeaders \
 when Action DELETE

access allow Tag only users $projectLeaders \
when Action REPLACE

The two actions cannot be specified in a single access allow rule because the
actions are ANDed. You cannot have an operation in which a tag is simultaneously
deleted and replaced.

The $projectLeaders variable is defined using an access init command. See
Access Commands for details on using access init to create custom variables.

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

Defining the Enterprise Access Map

When access control is delegated, you can enable the Tag access map. A sample
version of the access map is provided, commented out, in the custom DesignSync
access control file for the server,
$SYNC_CUSTOM_DIR/servers/<serverName>/<portNumber>/share/AccessC
ontrol.

access map Tag {

 lappend checkmasks [list modify $Object]

 return [list "masks" $checkmasks]

}

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

ENOVIA Synchronicity Access Control Guide

95

Tagging a Module

Access Controls for Checking In

Access Controls for Unlocking

The single action, Unlock, controls unlocking an object or canceling the lock on an
object:default

Defining and Using the Unlock Access Control

The Unlock defintion is located in the DesignSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.ds

access define Unlock <Object> <IsLockOwner>

Where:

• <Object> is the URL of the object being unlocked. For example:
sync:///Projects/ASIC/layout/spec.doc;1.5.

• <IsLockOwner> is yes if the user performing the unlock operation is the owner,
otherwise no.

The Unlock action refers to a server-side operation, in this case unlocking a branch.
You can initiate the unlocking of a branch with both the cancel and unlock
commands, so both commands are access controlled through the Unlock action.

See Unlocking Module Data to learn how the Unlock access control applies to module
data.

Example

The following access rules prevent everyone except lock owners and administrators
from canceling the lock on an object in the ASIC project:

access init {
 set admin { lynch vega }
}

access deny Unlock everyone \
 when Object "sync:///Projects/ASIC/*" \
 -because "To unlock, you must be the lock owner or an admin."

access allow Unlock everyone when IsLockOwner "yes"

Access Controls for DesignSync Commands

96

access allow Unlock users $admin

The firs access rule prevents everyone from canceling a lock on an object in the project.
The second rule builds on the first and lets lock owners cancel their own locks. The third
rule builds on the first two rules and lets administrators, as defined using access
init, cancel locks. (See Using Access Commands for details on using access init
to create custom variables.)

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

Defining the Access Map

When access control is delegated, you can enable the Unlock access map. A sample
version of the access map is provided, commented out, in the custom DesignSync
access control file for the server,
$SYNC_CUSTOM_DIR/servers/<serverName>/<portNumber>/share/AccessC
ontrol.

access map Unlock {

 # verify unlock

 lappend checkmasks [list unlock $Object]

 return [list "masks" $checkmasks]

}

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

Unlocking Module Data

Access Controls for Unretiring

The default DesignSync access control file:

ENOVIA Synchronicity Access Control Guide

97

$SYNC_DIR/share/AC_Components/AccessControl.ds

defines a single action, Unretire, to control unretiring an object:

access define Unretire <Object>

Where <Object> is the URL of the branch being unretired. For example,
sync:///Projects/ASIC/layout/spec.doc;1 is the main branch for spec.doc.

Example

The following access rules ensure that users can retire objects in the ASIC project, but
not in any other project:

access deny Unretire everyone

access allow Unretire everyone when Object
"sync:///Projects/ASIC/*"

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

Access Controls for Upload

The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.ds defines a set of actions
to control upload actions.

The action TransferFile, controls whether a user can upload a compressed archive
file (tar or zip) into DesignSync and uses the abilities of DesignSync to update only the
differences between the files in the archive from version to version. (using the upload
command). The access control definition is:

access define TransferFile {Destination}

Access Controls for DesignSync Commands

98

where

• Destination takes a value of Tmp and indicates the location of the temporary
storage of the uncompressed file while the comparison operations are in process
if the upload command is specified with the -vault option. The comparison is
done in the server tmp area SYNC_TMP_DIR.

Note: When the upload command is run with -workspace, the comparison operations
are performed in the workspace. You still require access to the TransferFile command.

By default, access to TransferFile is denied to everyone.

access deny TransferFile everyone -because "Default access
controls disallow file transfer to the server.\nContact your
Synchronicity tool administrator to enable this capability."

Additional Access Controls Required

The user may also need the following additional permissions and the appropriate
permissions for the vault type (Module or Files based)

• Checkin - for all upload operations.
• Tag - for all upload operations.
• Checkout - for upload operations after the initial upload.
• Mkmod -for the initial upload only, if you are checking the IP into a module
• MemberRemove - for upload operations on a module after the initial upload. An upload

operation requires this permission in case an object was removed from newest version of
the archive.

• MakeFolder - for the initial upload only, if the vault folder doesn't exist.
• Retire - for file-based operations after the initial upload. An upload operation requires

this permission in case an object was removed from newest version of the archive.
• MakeBranch - for file-based operations that upload to a new branch.

Access Controls for Workspace Duplication

The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.ds defines actions to control
duplicating a workspace actions.

The action DuplicateWorkspace controls whether a user can duplicate a workspace
that is designated for duplication. The access control definition is:

access define DuplicateWorkspace {Object Path}
where

ENOVIA Synchronicity Access Control Guide

99

• Object is the string representation of the URL of the module including the
selector,
for example: syncs:///Modules/ChipDesign/ChipNZ7;Trunk .

• Path is the String representing the path of the Module in workspace.

By default, access to DuplicateWorkspace is allowed for all users .

access allow DuplicateWorkspace everyone

Additional Access Controls Required

The user also needs the following additional permissions:

• Browse access required for the module being duplicated.

Defining Enterprise Access Map

When access control is delegated, you can enable the BrowseServer access map. A
sample version of the access map is provided, commented out, in the custom
DesignSync access control file for the server,
$SYNC_CUSTOM_DIR/servers/<serverName>/<portNumber>/share/AccessC
ontrol.

access map DuplicateWorkspace {
verify checkout
lappend checkmasks [list read $Object]
return [list "masks" $checkmasks]
}

Access Controls for Groups of Commands
You may want to grant or deny complete access to DesignSync actions to some set of
users. Variables defined in the default DesignSync access control file
($SYNC_DIR/share/AC_Components/AccessControl.ds) make it more
convenient to set the same access rights on DesignSync actions.

You also can create your own variables for sets of commands in your custom
AccessControl file.

Predefined Variables

The default AccessControl.ds file defines some default variables which can be used
by the user:

Variable Description DesignSync Commands Included

Access Controls for DesignSync Commands

100

$DesignSyncActions

Controls all the
commands
defined in the
AccessControl.ds
file By default
access to this .

BrowseServer Unlock
Checkin Checkout Tag
Delete Retire Unretire
MakeFolder Move
SwitchLocker MakeBranch
SetOwner ChangeComment
Lock

$DesignSyncWriteActions

Controls all
DesignSync
commands that
perform
modifications.

Unlock Lock Checkin
MakeBranch Tag Delete
Retire Unretire
MakeFolder SetOwner
ChangeComment Move
SwitchLocker

$DesignSyncReadActions

Controls all
DesignSync
commands that
allow you to read
DesignSync data.

BrowseServer Checkout
DuplicateWorkspace

$DesignSyncDevelopmentActions

Controls all the
DesignSync
commands that
work on
Enterprise
Developments.

DesignSyncDevelopments
AddDevelopmentInstance
ModifyDevelopmentInstance
DeleteDevelopmentInstance

Note: While access is granted to all commands defined in the AccessControl.ds file by
default, immediately afterwards, access is denied for the following operations:

• Deleting a vault
• Deleting a version you do not own
• Switching owner
• Writing directly to the access control vault

Another variable, $AllActions, controls all ProjectSync, DesignSync and Module
actions. The $AllActions variable is defined in the AccessControl.ps file. See
Access Controls for Groups of Commands in the ProjectSync section for details.

For example, you could use the $DesignSyncActions variable to prevent users from
performing any DesignSync operations while you are upgrading your server. In your
custom AccessControl file, you could specify:

access deny $DesignSyncActions everyone

Custom-Defined Variables

ENOVIA Synchronicity Access Control Guide

101

In your custom AccessControl file, you can use the set command to create
variables that represent your own groupings of access control actions.

For example, to create a variable that controls the ability to retire, unretire, and delete
objects, you could specify:

set RetireActions {Retire Unretire Delete}

You can then use the variable $RetireActions in your access control rules.

You also can create variables that include other variables. However, when declaring a
list that requires variable substitution, you must enclose the list in quotation marks, not
curly braces. (Curly braces prevent variable substitution.) For example:

set AdminActions "$RetireActions Tag"

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

Example DesignSync Access Controls

Sample Access Controls

Sample access controls are provided in:

$SYNC_DIR/share/examples/ExampleAccessControl

You can use this sample ExampleAccessControl file as a template for creating
access control files.

This topic provides examples of revision-control access controls that you might put in
your custom AccessControl file:

Denying or Allowing Access by Users

Using when Clauses

Using access filter with an access init Block

Access Controls for DesignSync Commands

102

Requiring Check-in Comments

Using access filter to Check an Action

Providing an Error message When Permission Is Denied

See Access Control Scripting for more advanced examples.

Note: Do not edit any of the access control files in the $SYNC_DIR/share area; you
edit the site or server AccessControl file. See Setting Up Access Controls for the
locations of these AccessControl files.

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

Denying or Allowing Access by Users

Everyone but bob can check files in
access deny Checkin users bob

jack and jill can't check files in or out
access deny {Checkin Checkout} users {jack jill}

only frida can tag anything
access allow Tag only users frida

Using when Clauses

Only 'bmeister' can check in Makefiles.
Note that the initial wildcard (*) matches any path so
that any Makefile in your hierarchy is a match. The second
wildcard ensures a match against any version of Makefile.

access allow Checkin only users bmeister \
 when Object "*/Makefile;*"

No one but owner can unlock files
access deny Unlock everyone when IsLockOwner "no"

Deny Bob all access to the Projects/ASIC project. Uses the
$DesignSyncAccess variable to simplify the specification,
otherwise a deny statement would be needed for each
DesignSync action (Checkin, Tag, and so on).

ENOVIA Synchronicity Access Control Guide

103

access deny $DesignSyncActions users bob \
 when Object "sync:///Projects/ASIC/*"

Multiple when clauses are ANDed; this access control
verifies that the user is rick if the RELEASE tag is being
applied to files in 'Code' directories.

access allow Tag only users rick when NewTag "RELEASE" \
 when Object "sync:///*/Code/*" when Action ADD

Using access filter with an access init Block

set up a variable that defines who the project leader is
access init {
 set projectLeader jane
}

Only the project leader can checkin
access filter Checkin {
 if {$user == $projectLeader} {
 return ALLOW
 }
 return DENY
}

For access filters, you may get better performance using access global instead of
access init to define variables and procs.

When access init is used in filters, the access init statement is sourced each
time the filter is run. This behavior can introduce performance penalties for operations
such as viewing a note because the statement is sourced for each note. The access
global is used inside filter scripts and is sourced only once, when the access control
system is initialized. See the access init and access global command
descriptions for more information.

Requiring Check-in Comments

A common project requirement is that every check-in must include a comment of a
given length. You can define access control statements to enforce this requirement. The
Require the specification of a Check In comment option from the
Tools=>Options=>General dialog box helps users comply with the comment-length
requirement that you define.

Here are two examples of access controls for requiring check-in comments:

Access Controls for DesignSync Commands

104

Deny check-in when there is no comment (length is 0).
Return a message string if access denied.
access deny Checkin everyone when CommentLen "0" \
 -because "You must enter a comment."

Deny check-in when the comment is less than 20 characters.
The return value of UNKNOWN defers to any other access
controls that might be set up. Returns a message string
if access is denied.
access filter Checkin {
 if {[expr $CommentLen > 19]} {
 return UNKNOWN
 }
 return "You must enter a comment of at least 20 characters."
}

Using access filter to Check an Action

This example checks the action and, depending on the action, performs a lock check or
a comment check.

access init {
 set admin "elaine"
}

access filter { Checkin Checkout } {
 if { $action == "Checkout" } {
 puts "action = $action"
 # allow only admin users to Checkout with lock
 if { $Lock == "yes" } {
 if { [lsearch -exact $admin $user] >= 0 } {
 return ALLOW
 }
 return "You do not have rights to Checkout with a lock"
 }
 }
 if { $action == "Checkin" } {
 if {[expr $CommentLen > 19]} {
 return ALLOW
 }
 return "You must enter a comment of at least 20 \
 characters."
 }
}

Providing an Error message When Permission Is Denied

ENOVIA Synchronicity Access Control Guide

105

You can provide an error message when permission is denied by using a -because
switch for an access deny statement or returning a message in place of the DENY
value in an access filter statement:

Prevent user george from checking in and provide a message
access deny Checkin users {george} \
 -because "george is not allowed to check in."

Related Topics

Access Control Scripting

Setting Up Access Controls

Using Access Commands

Revision Control Action Definitions

Sample Access Controls (ProjectSync)

Sample Server Access Controls

User Authentication Action Definitions

Using Access Command Qualifiers

Access Control Scripting

For many security requirements, access allow and access deny rules are
sufficient. These rules let you allow or deny access to DesignSync actions, such as
Checkin. If you have more complex security requirements, you might need to develop
access filter scripts. This section provides examples of access controls
implemented using access filter scripts, as well as examples of some general
access control solutions:

Preventing Users From Checking into a Particular Branch

Preventing Check-Ins of Unlocked Files (Forced Locking Model)

Setting Up Access Controls for Projects

Restricting Access to Parts of a Project

Access Controls for DesignSync Commands

106

Allowing Project Owners to Delete Project Vaults

Note: Do not edit any of the access control files in the $SYNC_DIR/share area; you
edit the site or server AccessControl file. See Setting Up Access Controls for the
locations of these AccessControl files.

Preventing Users From Checking into a Particular Branch

Problem

You want to prevent users from checking into a branch, while allowing them to check
into other branches. Closing off branches is a useful operation when you are merging
branches. In cases of merging branches, you might want to prevent all users from
checking objects into a branch. In other cases, you might want to allow a specified
group of users, such as administrators, to check objects into a branch.

Solution

The following access filter prevents all users from checking into the "Trunk" branch:

access filter Checkin {
 #
 # Check if this command creates a new branch.
 if {$NewBranchName != ""} {
 # This is a new branch, so check for Trunk
 if {$NewBranchName == "Trunk"} {
 return "You are not allowed to create new \
 files on Trunk."
 }
 # New branch is not tagged with "Trunk", so don't deny.
 return UNKNOWN
 }
 #
 # Not a new branch so extract all the
 # branch tags associated with this branch.
 set tags [url tags -btags $Branch]
 if {[lsearch [split $tags " ,"] "Trunk"] < 0} {
 # Trunk tag is not found.
 return UNKNOWN
 }
 # Trunk tag is found.
 return "You are not allowed to check in to Trunk."
}

Discussion

ENOVIA Synchronicity Access Control Guide

107

The access filter above applies to the Checkin action. Access filters restrict the
specified action based on the script provided within the access filter. The return value of
UNKNOWN defers to any other Checkin access controls that have been set up; thus, the
user has satisfied the filter script if the value returned is UNKNOWN. Any other return
value besides ALLOW and UNKNOWN, such as DENY or a text string, denies access to the
action.

Parameters are passed into the script based on the type of action specified. For
example, the predefined Checkin action has the following definition:

Checkin:
Arguments:
Object == string representation of the URL of the object
being checked in. eg:
sync:///Projects/ASIC/layout/spec.doc;1.5
Comment == description comment that was entered for this
check-in.
CommentLen == length (number of characters) in Comment
Branch == Url of the branch where the file will be
checked into, in case of a
non-branching check-in
NewBranchName == Name of the new branch to create, in
case of a branching check-in. If not a branching
check-in, then NewBranchName will be empty
string ("")

access define Checkin {Object Comment CommentLen Branch
NewBranchName}

For an access filter restricting the Checkin action, the access control system passes
the script the <Object>, <Comment>, <CommentLen>, <Branch>, and
<NewBranchName> parameters.

The script above accesses both the <Branch> parameter and the <NewBranchName>
parameter. A check-in can be:

• A nonbranching check-in, where you are checking into an existing branch. For
this case, the script checks that the <Branch> parameter does not contain
"Trunk".

• A branching check-in, where you are checking in a new object or autobranching
(creating new branches automatically during check-ins). For these cases, the
script checks that the <NewBranchName> parameter does not include the
"Trunk" branch.

Access Controls for DesignSync Commands

108

Note that the <Branch> parameter is not sufficient to prevent checking in on particular
branches because new or autobranched objects do not have a <Branch> URL until
after they are checked in; thus, you need to examine the <NewBranchName>
parameter for new or autobranched objects. (See DesignSync User's Guide:
Autobranching: Exploring "What If" Scenarios for details of autobranching.)

As an example, assume a user tries to check in an object,
"sync://holzt:2647/Projects/Asic/x.v;1.4", thus creating a new object,
"sync://holzt:2647/Projects/Asic/x.v;1.5". The script determines the
object's branch, "sync://holzt:2647/Projects/Asic/x.v;1", then gathers the
tags associated with that branch. In this case, the branch is "Trunk", so the check-in is
prevented.

In addition to restricting check-ins to an existing branch, you can also restrict the
creation of new branches, by setting up an access control for the MakeBranch action.

You can enhance this script by allowing a select group of users to check into the closed
branch or create new objects on the closed branch. The following access init
statement defines the members of the release engineering team:

access init {
 set ReleaseTeam {user1 user2}
}

To allow the release engineering team to check into the closed branch, add the
following lines to the beginning of the Checkin access filter script. This code checks
whether the <user> variable, a variable passed implicitly to all access filter scripts, is
included in the <ReleaseTeam> namespace variable:

If the user is a member of the Release Team, return
without restricting access. The "lsearch" command below
returns -1 if $user is not found in $ReleaseTeam.
if {[lsearch $ReleaseTeam $user] >= 0 } {
 # Must be a member of the Release Team - No Controls
 return UNKNOWN
}

Preventing Check-Ins of Unlocked Files (Forced Locking Model)

Problem

You want to enforce a locking model where a user must have a lock on an object to be
able to check it in.

Solution

ENOVIA Synchronicity Access Control Guide

109

The following script enforces a locking development model, where users can only check
in files when they have them checked out with locks.

This filter should be added to the AccessControl file
in the custom area.

Notes:
- This will affect performance, as checks will be
conducted before the server allows the check-in.

Filter function to deny check-in unless the branch
is locked:

access filter Checkin {
 # If new branch, allow its creation
 if {$NewBranchName != ""} {
 return UNKNOWN
 }

 # Branch exists, so now allow check-in
 # only if locked, else deny
 url properties $Branch props
 if { $props(locked) == 0 } {
 return "File must be locked for Checkin."
 } else {
 return UNKNOWN
 }
}

Discussion

A lock is applied to a branch of an object (so that different users can lock different
branches of an object).

Setting Up Access Controls for Projects

Problem

You would like to customize the access controls for each project.

Solution

The following access commands prevent any users not on the Asic team from checking
objects into the Asic project.

Set up a variable that defines the Asic team
access init {

Access Controls for DesignSync Commands

110

 set AsicTeam {mgeorge mmartin lsmith fpaul}
}

Only the Asic team members can check into Project Asic
access allow Checkin only users $AsicTeam \
 when Object "sync:///Projects/Asic/*" \
 -because "You are not a member of the Asic project team."

Discussion

Each DesignSync or ProjectSync action takes an <Object> parameter that can be
used with a wildcard to match entire projects. For example, assume the Asic project
has been checked into sync://{host}:{port}/Projects/Asic. The access
init statement above creates a variable, AsicTeam, containing the members of the
Asic team. Then, the access allow rule limits access to the Asic project based on the
AsicTeam variable.

Notice that the host and port are not included in the project URL,
sync:///Projects/Asic/*. Because access control scripts are server-side scripts,
you leave out the host and port in the project URL.

Restricting Access to Parts of a Project

Problem

You would like to have fine-grained control over which members of your project team
can access specific projects, modules within projects, or Cadence view types.

Solution

The following access commands deny BrowseServer access to all projects, then
selectively allow access for specific users:

access deny BrowseServer everyone \
 when Object sync:///Projects/*

access allow BrowseServer users {kdalton} \
 when Object sync:///Projects/verif*

access allow BrowseServer users {cdent} \
 when Object sync:///Projects/*

The vault directory structure corresponding to the access control rules follows:

ENOVIA Synchronicity Access Control Guide

111

$SERVER_ROOT/
 Projects/
 desACS/
 top/alu/alu.gv
 top/alu/alu.v
 top/alu/mult8.gv
 top/alu/mult8.v
 verification/
 jtag.v
 test.v

Because of the first access control rule, user kdalton can browse at the top level of
the server, but cannot browse into Projects and cannot set vault to Projects (using
the setvault command) :

stcl> url contents sync://acae220:2647
sync://acae220:2647/Projects sync://acae220:2647/Partitions
sync://acae220:2647/sync_server_trace.log

stcl> url contents sync://acae220:2647/Projects
som-E-199: Permission denied by the AccessControl system.

stcl> pwd
/home/kdalton/Projects

stcl> setvault sync://acae220:2647/Projects .
An error occurred while setting the Vault URL.
The error was: som: Error 199: Permission denied by
the AccessControl system.

Please verify that:
 The vault URL is correct.
 The SyncServer is running.
 You have write permission for the parent directory
 of the directory for which you are setting the vault.

The second access control rule selectively overrides the BrowseServer access
deny rule for user kdalton who can browse into the Projects/verification vault
directory, but no other vault directories:

stcl> url contents sync://acae220:2647/Projects
som-E-199: Permission denied by the AccessControl system.

stcl> url projects sync://acae220:2647/Projects
som-E-199: Permission denied by the AccessControl system.

Access Controls for DesignSync Commands

112

stcl> url contents sync://acae220:2647/Projects/verification
{sync://acae220:2647/Projects/verification/test.v;}
{sync://acae220:2647/Projects/verification/jtag.v;}
sync://acae220:2647/Projects/verification/sync_project.txt

stcl> pwd
/home/kdalton/Projects/verification

stcl> setvault sync://gilmour:30048/Projects/verification .

Beginning Setvault operation...

Setting Vault URL sync://acae220:2647/Projects/verification
on folder file:///home/kdalton/Projects/verification

Finished Setvault operation.

stcl> populate -get -recur
Beginning Populate operation...

test.v : Success - Fetched version: 1.1
jtag.v : Success - Fetched version: 1.1

Populate operation finished:
/home/kdalton/Projects/verification

{Objects succeeded (2)} {}

The third access control rule provides user cdent with complete BrowseServer
access to the Projects vault directory structure:

stcl> pwd
/home/cdent/Projects

stcl> setvault sync://acae220:2647/Projects .
Beginning Setvault operation...
Setting Vault URL sync://acae220:2647/Projects on
folder file:///home/cdent/Projects

Finished Setvault operation.

stcl> populate -get -recur
Beginning Populate operation...
desACS/top/alu/alu.v : Success - Fetched version: 1.1
desACS/top/alu/mult8.v : Success - Fetched version: 1.1
desACS/top/alu/mult8.gv : Success - Fetched version: 1.1
desACS/top/alu/alu.gv : Success - Fetched version: 1.1

ENOVIA Synchronicity Access Control Guide

113

verification/test.v : Success - Fetched version: 1.1
verification/jtag.v : Success - Fetched version: 1.1

Populate operation finished: /home/cdent/Projects

{Objects succeeded (6)} {}

Discussion

This example shows how you can restrict access to all users and then use wildcards to
allow access to particular projects for particular users. You also can use access init
statements to specify the groups of users that are allowed access to particular projects,
subprojects, or view types. For example, the following access controls allow only layout
engineers to edit layout views:

access init {
 set layoutusers "jdonne mleni snardeau"
}

access allow Checkout only users $layoutusers \
 when Lock "yes" when Object "*/layout.sync.cds;*"

Note: This method of restricting editing based on view type depends on a consistent
naming convention for cell view objects. (Cadence does not require views to be named
according to their type.) For example, if layout views are always named layout then
"*/layout.sync.cds;*" pertains to layout views. The first "*" wildcard matches the
vault path leading to the object. The second "*" wildcard matches any version of the
object.

You can also specify that all DesignSync actions be controlled for a particular project
and group of users, as in the following example:

access init {
 set ASIC1team {psmith mabraham gtarbox}
 set ASIC2team {jboswell cdent}
}

access allow $DesignSyncActions only users $ASIC1team \
 when Object "sync:///Projects/ASIC1/*"
access allow $DesignSyncActions only users $ASIC2team \
 when Object "sync:///Projects/ASIC2/*"

For each project in this example, corresponding access control rules allow only the
project's team to perform any DesignSync actions on that project's data. The
DesignSyncActions variable is defined in the access control file,

Access Controls for DesignSync Commands

114

 <SYNC_DIR>/share/AC_Components/AccessControl.ds included with
DesignSync.

Note: This method differs from the BrowseServer access controls above in that the
BrowseServer access controls deny access to the top level of the SyncServer for all
users, whereas the method used in the DesignSyncActions access controls allows
all users to retain access to the top level of the SyncServer. This method of keeping the
SyncServer accessible to all users has two advantages:

• DesignSync DFII users can continue to use the Server Browser.

Access to the top level of the SyncServer is required for DesignSync DFII users;
the DesignSync DSII's Server Browser must recognize that the server is active.

• All users can obtain a list of the projects on the SyncServer.

This method of allowing all users access to the top level of the SyncServer
enables them to use the url projects command to list out all of the projects
on the SyncServer. The access controls prevent them only from accessing those
projects they do not have permission to access.

Allowing Project Owners to Delete Project Vaults

Problem

The access control file included with DesignSync denies access to the Delete action for
all users. The Delete action controls the deletion of vaults, versions, and vault folders on
SyncServers; client-side objects are not access-controlled by the Delete action.

Many sites modify their custom AccessControl files to allow administrators to remove
vaults, versions, and vault folders, as in the following access control rules:

access init {
 set admin { syncmgr }
}

access allow Delete only users $admin

These access controls allow only authorized users, defined in the admin list, to perform
the rmvault, rmversion, and rmfolder commands on server-side objects.

These access controls prevent project owners from deleting server-side vaults,
versions, and folders from their own projects. You might want to allow project owners to
be able to delete objects within their own projects.

ENOVIA Synchronicity Access Control Guide

115

Note: You set up projects by associating a project name with an owner, a DesignSync
vault, and an optional configuration using ProjectSync. See ProjectSync Help to learn
how to set up and manage projects.

Solution

The following access controls allow project owners to delete vaults within their projects:

access init {
 set admin { mkaley gmining pquinn mskelley }
}

Procedures and variables for Delete filter.
access init Delete {

##

getSyncProjOwner

This procedure returns the project owner for the object
URL passed. It returns an empty string if this is not
an official project (as defined in ProjectSync).

##

proc getSyncProjOwner {objectURL} {
 url properties $objectURL props
 set type $props(type)
 if { $type == "Project" } {
 return [url owner $objectURL]
 } else {
 # recurse on parent
 set parent [url container $objectURL]
 if { $parent != $objectURL } {
 return [getSyncProjOwner $parent]
 }
 }

 # Here if no project found (as defined in ProjectSync),
 # and thus no owner.
 return ""
 }
}

Access Controls for DesignSync Commands

116

access filter Delete when Type VAULT {

This filter allows the vault delete function if the
invoking user is a $admin, or the owner of the project
containing the vault.

By default, the delete function is not allowed for vaults.
Thus we only need to return ALLOW or UNKNOWN.

 if { [lsearch -exact $admin $user] >= 0 } { return ALLOW }
 set proj_owner [getSyncProjOwner $Object]
 if { "$proj_owner" == "$user" } { return ALLOW }
 return UNKNOWN
}

Discussion

The Delete access filter in this example calls the getSyncProjOwner procedure to
determine the project owner of the vault being removed. If the user attempting to delete
the vault is either the project owner (as defined using ProjectSync) or is included in the
admin list, he or she can delete the vault.

Related Topics

Access Control Scripting

Using Access Commands

Revision Control Action Definitions

Sample Access Controls (DesignSync)

Sample Access Controls (ProjectSync)

Sample Server Access Controls

Setting Up Access Controls

117

Access Controls for Modules
Modules Action Definitions

Modules Action Definitions

You set up access controls on particular module actions, or operations. To set up an
access control on an operation, the operation must have an action definition specified
with an access define command. If an action definition exists for an operation, you
can control access to that operation using the stcl access allow, access deny, and
access filter commands. You can control access to operations on module data by
using the access decline command.

DesignSync provides predefined actions corresponding to most module operations you
might want to access control. These actions are defined in the default access control file
for modules:

$SYNC_DIR/share/AC_Components/AccessControl.hcm

See Introduction to Access Control for details on the individual files used to define
access controls.

Important: Do not edit the
$SYNC_DIR/share/AC_Components/AccessControl.hcm file; changes will be lost
upon upgrading. Instead, edit your site or server custom AccessControl file (see
Setting Up Access Controls).

The AccessControl.hcm file contains module-specific access control actions for most
module commands. However, a few module commands are governed by DesignSync or
ProjectSync access controls:

Module Actions Governed by access controls

To control access to this module
operation...

Customize this access control...

addhref Checkin (a DesignSync access control)
and Addhref

See Creating a New Version of a Module
and Access Controls for addhref for
details.

hcm addlogin Addlogin

See Access Controls for addlogin for

Access Controls for Modules

118

details.
exportmod Exportmodule

See Access Controls for Export/Import
Operations.

freezemod Freezemodule

See Access Controls for Export/Import
Operations.

get (for use with legacy modules) Checkout (a DesignSync access
control)

See Access Controls for Checking Out
for details.

importmod Importmodule

See Access Controls for Export/Import
Operations.

lock Lock

See Locking Module Data for details.

migratetag HcmUpgrade and Mkmod

See Access Controls for upgrade and
Access Controls for mkmod for details.

mkedge Checkin (a DesignSync access control)
and Mkedge

See Creating a New Version of a Module
and Access Controls for mkedge for
details.

mkmod Mkmod

See Access Controls for mkmod for
details.

mvmember Checkin (a DesignSync access control)
and MemberRename

See Creating a New Version of a Module
and Access Controls for mvmember for
details.

mvmod MoveMod on both servers and MkMod on
the destination server.

See Access Controls for Export/Import

ENOVIA Synchronicity Access Control Guide

119

Operations for details.
hcm put (for use with legacy modules) Put

See Access Controls for put for details.

reconnectmod Reconnectmodule

See Access Controls for reconnectmod.
hcm release (for use with legacy
modules)

Release

See Access Controls for release for
details.

remove Checkin (a DesignSync access control)
and MemberRemove

See Creating a New Version of a Module
and Access Controls for remove for
details.

hcm rmalias (for use with legacy
modules)

Rmalias

See Access Controls for rmalias for
details.

hcm rmconf (for use with legacy
modules)

Rmconf

See Access Controls for rmconf for
details.

rmedge Checkin (a DesignSync access control)
and Rmedge

See Creating a New Version of a Module
and Access Controls for rmedge.

rmhref Checkin (a DesignSync access control)
and Rmhref

See Creating a New Version of a Module
and Access Controls for rmhref for
details.

hcm rmlogin Rmlogin

See Access Controls for rmlogin for
details.

rmmod Delete (a DesignSync access control)
and Rmmod

See Access Controls for Deleting and
Access Controls for rmmod for details.

Access Controls for Modules

120

rollback Checkin (a DesignSync access control)
and Rollback

See Creating a New Version of a Module
and Access Controls for rollback for
details.

showconfs (for use with legacy
modules)

BrowseServer (a DesignSync access
control).

See Access Controls for Browsing the
Server for details.

showhrefs BrowseServer (a DesignSync access
control).

See Access Controls for Browsing the
Server for details.

hcm showlogins Showlogins

See Access Controls for hcm showlogins
for details.

showmods BrowseServer (a DesignSync access
control).

See Access Controls for Browsing the
Server for details.

showstatus BrowseServer (a DesignSync access
control).

See Access Controls for Browsing the
Server for details.

unfreezemod Freezemodule

See Access Controls for Export/Import
Operations.

upgrade HcmUpgrade

See Access Controls for upgrade for
details.

view Commands BrowseServer (a DesignSync access
control). Checkout (a DesignSync
access control), and ModuleView.

See Access Controls for Browsing the
Server, Access Controls for Checking
Out, and Access Controls for Module

ENOVIA Synchronicity Access Control Guide

121

Views.

Related Topics

ProjectSync Action Definitions

DesignSync Action Definitions

Setting Up Access Controls

User Authentication Action Definitions

Access Controls for Module Views

The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm, defines the action
ModuleView, to control the maintenance (creating, deleting, viewing, and changing) of
module view definitions.

access define ModuleView (<Object> <ViewName> <Action>)

where:

 <Object> is the path to the object on the server. .

<ViewName> the name of the view.

<Action> is the permitted actions. If this value is omitted in the access control, the
permissions granted or denied apply to all possible actions. the Possible values are

• read- grants/denies permission to read the view definition.
• add - grants/denies permission to create a view.
• replace- grants/denies permission to modify the view definition..
• delete - grants/denies permission to delete a view.

Note: You may also need to make sure the user has BrowseServer access for the
module. You can also use the Checkout access control to grant/deny populate access
for specific module views.

Related Topics

Setting Up Access Controls

Access Controls for Modules

122

Using Access Commands

Access Control Scripting

Access Controls for Export/Import Operations

The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm, defines a set of actions
to control module export, import, move, and freeze/unfreeze actions.

Export/Import Actions Group

In order to grant or deny access to the entire set of Export/Import actions in a single
access control, DesignSync provides a predefined access group,
HcmExportImportActions. This is part of a set of module administration actions,
HcmAdministrationActions. For more information on predefined access groups for
modules, see Access Controls for Groups of Commands.

ExportMod

The action ExportMod, controls whether a user can export a module to a compressed
file to move to a different server (using the exportmod command). The access control
definition is:

access define ExportModule {Object}

where

• <Object> is the module URL

By default, access to ExportMod is denied to everyone.

access deny ExportModule everyone -because "Default access
controls disallow module export.\nContact your Synchronicity
tool administrator to enable this capability."

Additional Access Controls Required

The user will require BrowseServer access for the module.

ImportMod

The action ImportMod, controls whether a user can export a module to a compressed
file to move to a different server (using the importmod command). The access control
definition is:

ENOVIA Synchronicity Access Control Guide

123

access define ImportModule {Object}

where

• <Object> is the module URL

By default, access to ImportModule is denied to everyone.

access deny ImportModule everyone -because "Default access
controls disallow module import.\nContact your Synchronicity
tool administrator to enable this capability."

Additional Access Controls Required

The user will require BrowseServer access for the module.

MoveMod

The action MoveModule, controls whether a user can move a module to a different
virtual location (using the mvmod command). The access control definition is:

access define MoveModule {Object}

where

• <Object> is the module URL

By default, access to MoveModule is denied to everyone.

access deny MoveModule everyone -because "Default access
controls disallow module moves.\nContact your Synchronicity tool
administrator to enable this capability."

Additional Access Controls Required

The user will require MkMod access for the new module location.

Enterprise Access Map

When access control is delegated, you can enable the MoveModule access map. A
sample version of the access map is provided, commented out, in the custom
DesignSync access control file for the server,
$SYNC_CUSTOM_DIR/servers/<serverName>/<portNumber>/share/AccessC
ontrol.

access map MoveModule {

Access Controls for Modules

124

 # verify create/modify

 lappend checkmasks [list create $Object]

 lappend checkmasks [list modify $Object]

 return [list "masks" $checkmasks]

}

FreezeMod

The action FreezeModule controls whether a user can move a module to a different
virtual location (using the mvmod command). The access control definition is:

access define FreezeModule {Object Action}

where

• <Object> is the module URL
• <Action> is the permitted actions. If this value is omitted in the access control,

the permissions granted or denied apply to all possible actions. the Possible
values are

• FREEZE- grants/denies freeze a module, preventing any
modifications from being made to the module.

• UNFREEZE - grants/denies permission to unfreeze a module,
allowing it to be used normally.

By default, access to FreezeModule is denied to everyone.

access deny FreezeModule everyone -because "Default access
controls disallow freezing and unfreezing of modules.\nContact
your Synchronicity tool administrator to enable this
capability."

Additional Access Controls Required

The user will require BrowseServer access for the module.

Enterprise Access Map

When access control is delegated, you can enable the FreezeModule access map. A
sample version of the access map is provided, commented out, in the custom
DesignSync access control file for the server,
$SYNC_CUSTOM_DIR/servers/<serverName>/<portNumber>/share/AccessC
ontrol.

ENOVIA Synchronicity Access Control Guide

125

access map FreezeModule {

 if { $Action == "FREEZE" } {

 lappend checkmasks [list freeze $Object]

 } else {

 lappend checkmasks [list thaw $Object]

 }

 return [list "masks" $checkmasks]

}

Access Controls for Adding Hierarchical References

DesignSync addhref access is controlled by the Addhref access control. A successful
addhref operation results in a new version of the module. Consequently, Checkin
access for the module is the first access control checked, to determine whether
subsequent access checks are necessary for the href. See Creating a New Version of a
Module for details.

If Checkin access for the module is allowed, then it is not necessary to check
Addhref access. Similarly, if Checkin access for the module is denied, then it is not
necessary to check Addhref access.

If Checkin access for the module is declined, then Addhref access is checked. If
Addhref access is allowed, that will result in a new version of the module.

DesignSync Access Controls.

Enterprise Design Access Map.

DesignSync Access Controls

The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm, defines the action
Addhref, to control whether a user can add a hierarchical reference to a module
version (using the addhref command):

access define Addhref <Object> <ToTarget> <Relpath>

Access Controls for Modules

126

where:

• <Object> is the string representation of the URL of the from-target to which the
href is being added.

• <ToTarget> is the string representation of the URL of the to-target of the href
• <Relpath> is the relative path of the href being added

A successful addhref operation results in a new version of the module. Consequently,
Checkin access for the module is the first access control checked, to determine
whether subsequent access checks are necessary for the href. See Creating a New
Version of a Module for details.

If Checkin access for the module is allowed, then it is not necessary to check
Addhref access. Similarly, if Checkin access for the module is denied, then it is not
necessary to check Addhref access.

If Checkin access for the module is declined, then Addhref access is checked. If
Addhref access is allowed, that will result in a new version of the module.

Examples

access init {
 set ProjectLeads {ProjLead1 ProjLead2}
 set TeamMembers {ProjLead1 ProjLead2 john jane}
 set Team1 {ProjLead1 john}
 set Team2 {ProjLead2 jane}
 set admin { syncmgr }
}

Restrict adding and removing hrefs to only project leaders

access allow {Addhref Rmhref} only users $ProjectLeads \
 -because "only Project leaders can add or remove hrefs"

In this scenario we wish to allow individual users to
be able to add hrefs to modules with selectors that indicate they
are experimental branches, but not other branches.
Using a naming convention, all experimental
branches are identified by the selectors starting with 'Expt'
Project leaders can change (addhref, rmhref) any configuration.

access filter Addhref {
get the selector extention
 set selector ""
 set clist [split $Object ";@"]

ENOVIA Synchronicity Access Control Guide

127

 # get the first part of the selector, which is the
 # part we will check.
 if { [llength $clist] > 1 } { set selector [lindex $clist 1] }
 if { [string match Expt* $selector] || \
 [lsearch $ProjectLeads $user] >= 0 } {
 # ok allowed
 return UNKNOWN
 }

 # not Expt* and not project lead
 return "Only Project Lead allowed to add hrefs on this branch"
}

Enterprise Design Access Map

When Enterprise Design access map is enabled for the server, the addhref access map
is automatically available. The access map is located in the default DesignSync access
control file, $SYNC_DIR/share/AC_Components/AccessControl.ds.

Tip: The checkin access map has the ability to process commands coming in from
addhref or rmhref (initiated through edithref, addhref, or rmhref), but DesignSync
recommends that you leave the addhref and rmhref maps active to process those
commands, rather than using the Checkin access map.

access map Addhref {

 # verify checkin, fromconnect and toconnect access

 lappend checkmasks [list revise $Object]

 lappend checkmasks [list fromconnect $Object]

 lappend checkmasks [list toconnect $ToTarget]

 return [list "masks" $checkmasks]

Related Topics

Setting Up Access Controls

Using Access Commands

Access Control Scripting

Access Controls for Modules

128

Access Controls for rmhref

Enterprise Design Access Maps

Access Controls for Adding Logins

The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm, defines the action
Addlogin, to control storing a server login (using the addlogin command):

access define Addlogin <ToTarget> <FromUser> <ToUser> IsSelf>

Where:

• <ToTarget> is the URL of the referenced server.

Specify ALLTARGETS to indicate that the -toalltargets option was specified
and that the login being stored will apply to all referenced servers.

• <FromUser> is the username for which this login is being stored.

Specify ALLUSERS to indicate that the -fromallusers option was specified
and that the login being stored will apply to all users on the server.

• <ToUser> is the username of the login on the referenced server.
• <IsSelf> is yes if the user performing the addlogin operation is the same as

<FromUser> and no otherwise.

Examples

access init {
 set ProjectLeads {ProjLead1 ProjLead2}
 set TeamMembers {ProjLead1 ProjLead2 john jane}
 set Team1 {ProjLead1 john}
 set Team2 {ProjLead2 jane}
 set admin { syncmgr }
}

We would like users to be able to add/remove/view login
information only for themselves, and allow admins to be
able to add/remove/view login information for all users.

This can be done by denying the action for 'everyone'
and then selectively allowing for 'admin', and for 'self'.

ENOVIA Synchronicity Access Control Guide

129

access deny Addlogin everyone
access allow Addlogin only users $admin
access allow Addlogin everyone when IsSelf yes
access deny Rmlogin everyone
access allow Rmlogin only users $admin
access allow Rmlogin everyone when IsSelf yes
access deny Showlogins everyone
access allow Showlogins only users $admin
access allow Showlogins everyone when IsSelf yes

Related Topics

Setting Up Access Controls

Using Access Commands

Access Control Scripting

Access Controls for Locking a Module Branch

The Lock, access control governs locking a module branch, using the lock command.

Defining and Using the Lock Access Control

The default DesignSync access control file,
$SYNC_DIR/share/AC_Components/AccessControl.ds, defines the action:

access define Lock <Object>

where <Object> is the URL of the module branch.

Examples

access init {

 set ProjectLeads {ProjLead1 ProjLead2}
 set TeamMembers {ProjLead1 ProjLead2 john jane}
 set Team1 {ProjLead1 john}
 set Team2 {ProjLead2 jane}
 set admin { syncmgr }
}

Lock of module members, using the 'populate -lock' operation,
is controlled by the MemberCheckout access control. Locking of
a whole branch is controlled by the Lock access control.

Access Controls for Modules

130

Allow users to lock their private modules, but only ProjectLeads
to lock other module branches.
access deny Lock everyone
access allow Lock only users $ProjectLeads
access filter Lock {
 if {[string match sync:///Modules/users/$user/* $Object]} {
 return ALLOW
 }
 return UNKNOWN
}

Defining the Access Map

When access control is delegated, you can enable the Lock access map. A sample
version of the access map is provided, commented out, in the custom DesignSync
access control file for the server,
$SYNC_CUSTOM_DIR/servers/<serverName>/<portNumber>/share/AccessC
ontrol.

access map Lock {

 # verify lock

 lappend checkmasks [list lock $Object]

 return [list "masks" $checkmasks]

}

Related Topics

Setting Up Access Controls

Using Access Commands

Access Control Scripting

Access Controls for Creating Merge Edges

The Mkedge access control allows the creation of merge edges (using the mkedge
command) when merging modules across branches:

Defining and Using the Access Control

TheMkedge access control is located in the default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm:

ENOVIA Synchronicity Access Control Guide

131

access define Mkedge {<Object> <VersionFrom>}

where <Object> is the full module URL to which the merge edge is being added.

<versionFrom> is the numeric version from which the merge edge is being added.

Examples

access init {
 set ProjectLeads {ProjLead1 ProjLead2}
 set TeamMembers {ProjLead1 ProjLead2 john jane}
 set Team1 {ProjLead1 john}
 set Team2 {ProjLead2 jane}
 set admin { syncmgr }
}
 # Mkedge:
Arguments:
Object == string representation of the full module version URL
to which the edge is being added
VersionFrom == string representation of the numeric version
from which the edge is being added
access define Mkedge {Object VersionFrom}
access allow Mkedge only users $ProjectLeads \
 -because "only Project leaders can create merge edges"

Defining the Enterprise Access Map

When access control is delegated, you can enable the Mkedge access map. A sample
version of the access map is provided, commented out, in the custom DesignSync
access control file for the server,
$SYNC_CUSTOM_DIR/servers/<serverName>/<portNumber>/share/AccessC
ontrol.

access map Mkedge {

 lappend checkmasks [list modify $Object]

 return [list "masks" $checkmasks]

}

Related Topics

Setting Up Access Controls

Using Access Commands

Access Controls for Modules

132

Access Control Scripting

Access Controls for Creating Modules

The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm, defines the action
Mkmod, to control the creation of a new module (using the mkmod command):

access define Mkmod <Object>

where <Object> is the URL of the module to be created.

Examples

access init {
 set ProjectLeads {ProjLead1 ProjLead2}
 set TeamMembers {ProjLead1 ProjLead2 john jane}
 set Team1 {ProjLead1 john}
 set Team2 {ProjLead2 jane}
 set admin { syncmgr }
}

Prevent all uses except the project leads from creating new modules
outside of the sync:///Modules/users/$user category.

access filter Mkmod {
 set parent [url container $Object]
 if { ![string match sync:///Modules/users/$user/* $parent] && \
 ("$parent" != "sync:///Modules/users/$user") } {
 if {[lsearch -exact $ProjectLeads $user] == -1} {
 return "Not allowed to create a module outside of the users/$user category"
 }
 }
 return UNKNOWN
}

Related Topics

Setting Up Access Controls

Using Access Commands

Access Control Scripting

Access Controls for Moving Module Members

ENOVIA Synchronicity Access Control Guide

133

The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm, defines the action
MemberRename, to control changing the " natural path" of a module member (using the
mvmember command):

access define MemberRename <Object> <NaturalPath>
<NewNaturalPath> <Type>

Where:

• <Object> is the module branch URL
• <NaturalPath> is the original value of the module member's natural path
• <NewNaturalPath> is the new value of the module member's natural path
• <Type> is one of the following object types: FILE, FOLDER

DesignSync only checks the access controls if the command accesses the server.
Thus, if the only module members being renamed are workspace items that have never
been checked into the module, the mvmember command does not access the server,
and the access controls are not checked.

If at least one of the module members being renamed is already in a version of the
module, the mvmember operation will result in a new version of the module.
Consequently, Checkin access for the module is the first access control checked, to
determine whether subsequent access checks are necessary at the member level. See
Creating a New Version of a Module for details.

If Checkin access for the module is allowed, it is not necessary to check individual
MemberRename access. Similarly, if Checkin access for the module is denied, it is not
necessary to check individual MemberRename access.

If Checkin access for the module is declined, MemberRename access is checked for
each member being renamed (by the mvmember command). If MemberRename access
is allowed for at least one module member, a new version of the module is created.

Examples

access init {
 set ProjectLeads {ProjLead1 ProjLead2}
 set TeamMembers {ProjLead1 ProjLead2 john jane}
 set Team1 {ProjLead1 john}
 set Team2 {ProjLead2 jane}
 set admin { syncmgr }
}

For the commands that creates a new module version:

Access Controls for Modules

134

ci, addhref/rmhref and remove/mvmember,
a check is first made for Checkin access, and the
check for the sub-command only performed if the
Checkin access returns a value of "decline"

So, first "decline" the Checkin access for everyone,
so that the the member check is called for all users

access decline Checkin everyone

Now can restrict the Team2 users to only checking in
objects with Natural Paths under /src area

access deny MemberCheckin only users $Team2
access allow MemberCheckin only users $Team2 \
 when NaturalPath /src/*

Similarly, we can restrict Team2 to not removing anything
outside their area
access deny MemberRemove only users $Team2
access allow MemberRemove only users $Team2 \
 when NaturalPath /src/*

And can restrict Team2 to moving things where BOTH the
paths are in their area.
access deny MemberRename only users $Team2
access allow MemberRename only users $Team2 \
 when NaturalPath /src/* \
 when NewNaturalPath /src/*

And can restrict adding hrefs to only project leaders

access allow {Addhref Rmhref} only users $ProjectLeads \
 -because "only Project leaders can add or remove hrefs"

Related Topics

Setting Up Access Controls

Using Access Commands

Access Control Scripting

Access Controls for Removing Module Members

ENOVIA Synchronicity Access Control Guide

135

The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm, defines the action
MemberRemove, to control removing a module member from a module version (using
the remove command):

access define MemberRemove <Object> <NaturalPath>

where:

• <Object> is the module branch URL
• <NaturalPath> is the natural path of the module member

If the only module members being removed are workspace items that have never been
checked into the module, (they were only added locally with the add command) then
access controls are not checked, because the remove command does not access the
server in this case.

If at least one of the module members being removed is already in a version of the
module, the remove operation will result in a new version of the module. Consequently,
Checkin access for the module is the first access control checked, to determine
whether subsequent access checks are necessary at the member level. See Creating a
New Version of a Module for details.

If Checkin access for the module is allowed, then it is not necessary to check individual
MemberRemove access. Similarly, if Checkin access for the module is denied, then it
is not necessary to check individual MemberRemove access.

If Checkin access for the module is declined, then MemberRemove access is checked
for each member that is being removed (by the remove command). If MemberRemove
access is allowed for at least one module member, that will result in a new version of
the module.

Examples

access init {
 set ProjectLeads {ProjLead1 ProjLead2}
 set TeamMembers {ProjLead1 ProjLead2 john jane}
 set Team1 {ProjLead1 john}
 set Team2 {ProjLead2 jane}
 set admin { syncmgr }
}

For the commands that creates a new module version:
ci, addhref/rmhref and remove/mvmember,
a check is first made for Checkin access, and the

Access Controls for Modules

136

check for the sub-command only performed if the
Checkin access returns a value of "decline"

So, first "decline" the Checkin access for everyone,
so that the the member check is called for all users

access decline Checkin everyone

Now can restrict the Team2 users to only checking in
objects with Natural Paths under /src area

access deny MemberCheckin only users $Team2
access allow MemberCheckin only users $Team2 \
 when NaturalPath /src/*

Similarly, we can restrict Team2 to not removing anything
outside their area
access deny MemberRemove only users $Team2
access allow MemberRemove only users $Team2 \
 when NaturalPath /src/*

And can restrict Team2 to moving things where BOTH the
paths are in their area.
access deny MemberRename only users $Team2
access allow MemberRename only users $Team2 \
 when NaturalPath /src/* \
 when NewNaturalPath /src/*

And can restrict adding hrefs to only project leaders

access allow {Addhref Rmhref} only users $ProjectLeads \
 -because "only Project leaders can add or remove hrefs"

Related Topics

Setting Up Access Controls

Using Access Commands

Access Control Scripting

Access Controls for Removing Merge Edges

The Rmedge access control allows the removal of merge edges (using the rmedge
command) when merging modules across branches:

ENOVIA Synchronicity Access Control Guide

137

Defining and Using the Access Control

The RmEdge access control is located in the default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm:

access define Rmedge {<Object> <VersionFrom>}

where <Object> is the full module URL to which the merge edge is being removed.

<versionFrom> is the numeric version from which the merge edge is being removed.

Examples

access init {
 set ProjectLeads {ProjLead1 ProjLead2}
 set TeamMembers {ProjLead1 ProjLead2 john jane}
 set Team1 {ProjLead1 john}
 set Team2 {ProjLead2 jane}
 set admin { syncmgr }
}
 # Rmedge:
Arguments:
Object == string representation of the full module version URL
to which the edge was added
VersionFrom == string representation of the numeric version
from which the edge was added
access define Rmedge {Object VersionFrom}
access allow Rmedge only users $ProjectLeads \
 -because "only Project leaders can remove merge edges"

Defining the Enterprise Access Map

When access control is delegated, you can enable the Rmedge access map. A sample
version of the access map is provided, commented out, in the custom DesignSync
access control file for the server,
$SYNC_CUSTOM_DIR/servers/<serverName>/<portNumber>/share/AccessC
ontrol.

access map Rmedge {

 lappend checkmasks [list modify $Object]

 return [list "masks" $checkmasks]

}

Access Controls for Modules

138

Related Topics

Setting Up Access Controls

Using Access Commands

Access Control Scripting

Access Controls for Removing Hierarchical References

DesignSync rmhref access is controlled by the Rmhref access control. A successful
rmhref operation results in a new version of the module. Consequently, Checkin
access for the module is the first access control checked, to determine whether
subsequent access checks are necessary for the href. See Creating a New Version of a
Module for details.

If Checkin access for the module is allowed, then it is not necessary to check Rmhref
access. Similarly, if Checkin access for the module is denied, then it is not necessary
to check Rmref access.

If Checkin access for the module is declined, then Rmhref access is checked. If
Rmhref access is allowed, that will result in a new version of the module.

DesignSync Access Controls.

Enterprise Design Access Map.

DesignSync Access Controls

The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm, defines the action
Rmhref to control removing a hierarchical reference between modules (using the
rmhref command):

access define Rmhref <Object> <ToTarget> <Relpath>

where:

• <Object> is the string representation of the URL of the from-target from which
the href is to be removed.

• <ToTarget> is the string representation of the URL pattern of the to-target of
the href(s) to be removed.

• <Relpath> is the relative path (pattern) of the href(s) to be removed.

Examples

ENOVIA Synchronicity Access Control Guide

139

access init {
 set ProjectLeads {ProjLead1 ProjLead2}
 set TeamMembers {ProjLead1 ProjLead2 john jane}
 set Team1 {ProjLead1 john}
 set Team2 {ProjLead2 jane}
 set admin { syncmgr }
}

Restrict adding and removing hrefs to only project leaders

access allow {Addhref Rmhref} only users $ProjectLeads \
 -because "only Project leaders can add or remove hrefs"

Enterprise Design Access Map

When Enterprise Design access map is enabled for the server, the rmhref access map
is automatically available. The access map is located in the default DesignSync access
control file, $SYNC_DIR/share/AC_Components/AccessControl.ds.

Tip: The checkin access map has the ability to process commands coming in from
addhref or rmhref (initiated through edithref, addhref, or rmhref), but DesignSync
recommends that you leave the addhref and rmhref maps active to process those
commands, rather than using the Checkin access map.

access map Rmhref {

 # verify checkin, fromdisconnect and todisconnect access

 lappend checkmasks [list revise $Object]

 lappend checkmasks [list fromdisconnect $Object]

 lappend checkmasks [list todisconnect $ToTarget]

 return [list "masks" $checkmasks]

Related Topics

Setting Up Access Controls

Using Access Commands

Access Control Scripting

Access Controls for Modules

140

Access Controls for Removing Logins

The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm, defines the action
Rmlogin to control removing a login stored on the server (using the hcm rmlogin
command):

access define Rmlogin <ToTarget> <FromUser> <IsSelf>

where:

• <ToTarget> is the URL of the referenced server.

Specify the ALLTARGETS value to indicate that the -toalltargets option was
specified and the stored login being removed applies to all referenced servers.

• <FromUser> is the username for which this stored login is being removed.

Specify the ALLUSERS value to indicate that the -fromallusers option was
specified and the login being removed applies to all users on this server.

• <IsSelf> is yes if the user performing the hcm rmlogin operation is the same
as <FromUser> and no otherwise.

Examples

access init {
 set ProjectLeads {ProjLead1 ProjLead2}
 set TeamMembers {ProjLead1 ProjLead2 john jane}
 set Team1 {ProjLead1 john}
 set Team2 {ProjLead2 jane}
 set admin { syncmgr }
}

We would like users to be able to add/remove/view login
information only for themselves, and allow admins to be
able to add/remove/view login information for all users.

This can be done by denying the action for 'everyone'
and then selectively allowing for 'admin', and for 'self'.

access deny Addlogin everyone
access allow Addlogin only users $admin
access allow Addlogin everyone when IsSelf yes
access deny Rmlogin everyone
access allow Rmlogin only users $admin

ENOVIA Synchronicity Access Control Guide

141

access allow Rmlogin everyone when IsSelf yes
access deny Showlogins everyone
access allow Showlogins only users $admin
access allow Showlogins everyone when IsSelf yes

Related Topics

Setting Up Access Controls

Using Access Commands

Access Control Scripting

Access Controls for Removing a Module

 The access control Rmmod controls removing a module and its configurations from a
server (using the rmmod command):

Defining and Using the Access Control

The Rmmod action is defined in the default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm,

access define Rmmod <Object>

where <Object> is the URL of the module that is being removed.

This command does not obey ProjectSync's EditNote and DeleteNote access
controls (see Access Controls for Notes and Note Types). You should take this behavior
into consideration when granting access to this command.

Examples

access init {
 set ProjectLeads {ProjLead1 ProjLead2}
 set TeamMembers {ProjLead1 ProjLead2 john jane}
 set Team1 {ProjLead1 john}
 set Team2 {ProjLead2 jane}
 set admin { syncmgr }
}

Restrict module removal to project leaders.

access allow Rmmod only users $ProjectLeads \
 -because "only Project leaders can delete modules"

Access Controls for Modules

142

Defining the Access Map

When access control is delegated, you can enable the Rmod access map. A sample
version of the access map is provided, commented out, in the custom DesignSync
access control file for the server,
$SYNC_CUSTOM_DIR/servers/<serverName>/<portNumber>/share/AccessC
ontrol.

access map Rmmod {

 # verify delete

 lappend checkmasks [list delete $Object]

 return [list "masks" $checkmasks]

Related Topics

Setting Up Access Controls

Using Access Commands

Access Control Scripting

Access Controls for Reconnecting a Module

The reconnectmod command does not require a unique access control. In order to run
reconnectmod, which is used to reconnect hierarchical references to a module that has
changed locations, you need the following access:

• BrowseServer access for the module.
• Checkin access to the module.

Related Topics

Access Controls for Export/Import Operations

Access Controls for Rolling Back a Module

The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm, defines the action
Rollback to control reverting a module (or rolling the module back) to a previous
module version (using the rollback command):

access define Rollback <Object>

ENOVIA Synchronicity Access Control Guide

143

where <Object> is the URL of the module branch.

A successful rollback operation results in a previously existing module being set to
the Trunk:Latest version. The first access control checked is Checkin, to determine
whether subsequent access checks are necessary. See Creating a New Version of a
Module for details.

If Checkin access for the module is denied, then it is not necessary to check
Rollback access, the command fails immediately.

If Checkin access for the module is allowed, then Rollback access is checked. If
Rollback access is allowed, the module rollback succeeds.

Examples

access init {
 set ProjectLeads {ProjLead1 ProjLead2}
 set TeamMembers {ProjLead1 ProjLead2 john jane}
 set Team1 {ProjLead1 john}
 set Team2 {ProjLead2 jane}
 set admin { syncmgr }
}

Example for 'rollback' command.

Restrict rollback to Project Leads only.
Remember that rollback is denied to all users by default.
access allow Rollback only users $ProjectLeads \
-because "Only ProjectLeaders can rollback modules "

Defining Enterprise Access Map

When access control is delgated, you can enable the Rollback access map. A sample
version of the access map is provided, commented out, in the custom DesignSync
access control file for the server,
$SYNC_CUSTOM_DIR/servers/<serverName>/<portNumber>/share/AccessC
ontrol.

Related Topics

Rolling Back a Module

Access Controls for Showing Logins

Access Controls for Modules

144

The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm, defines the action
Showlogins to control the display of logins stored on a server (using the hcm
showlogins command):

access define Showlogins <FromUser> <IsSelf>

where:

• <FromUser> is used to restrict the set of stored logins displayed. This parameter
can take the following values to determine what the showlogins operation
displays:

" " : Displays all stored logins.

ALLUSERS : Displays only logins stored using the -fromallusers option.

<username> : Displays only logins stored using the -fromuser <username>
option.

• <IsSelf> is yes if the user performing the showlogins operation is the same
as <FromUser> and no otherwise.

Examples

access init {
 set ProjectLeads {ProjLead1 ProjLead2}
 set TeamMembers {ProjLead1 ProjLead2 john jane}
 set Team1 {ProjLead1 john}
 set Team2 {ProjLead2 jane}
 set admin { syncmgr }
}

We would like users to be able to add/remove/view login
information only for themselves, and allow admins to be
able to add/remove/view login information for all users.

This can be done by denying the action for 'everyone'
and then selectively allowing for 'admin', and for 'self'.

access deny Addlogin everyone
access allow Addlogin only users $admin
access allow Addlogin everyone when IsSelf yes
access deny Rmlogin everyone
access allow Rmlogin only users $admin
access allow Rmlogin everyone when IsSelf yes

ENOVIA Synchronicity Access Control Guide

145

access deny Showlogins everyone
access allow Showlogins only users $admin
access allow Showlogins everyone when IsSelf yes

Related Topics

Setting Up Access Controls

Using Access Commands

Access Control Scripting

Access Controls for Upgrading to Modules

The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm, defines the action
HcmUpgrade to control upgrading a DesignSync vault hierarchy or a legacy module
(pre-DesignSync 5.x) to the current module format (using the upgrade command):

access define Upgrade <Object> <ModuleURL>

where:

• <Object> is the URL of the object to be upgraded. The object to be upgraded is
a DesignSync vault folder URL. That URL can be the location of a legacy
module.

• <ModuleURL> is the URL of the module to be created.

Example

access init {
set admin { syncmgr }
}

Allow only admins to upgrade pre-5.0 data to 5.0 modules
access allow Upgrade only users $admin

Related Topics

Setting Up Access Controls

Using Access Commands

Access Control Scripting

Access Controls for Modules

146

HCM Action Definitions for legacy modules

Access Controls for hcm put

The hcm put command, and its corresponding access control, only applies to legacy
modules that meet all three of these conditions:

• The legacy module was created on the server prior to the server's upgrade use
the new modules format.

• The module has not been upgraded to the new modules format. (The upgrade
command was not run on the module.)

• The module is being operated on by a DesignSync 4.X client.

The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm, defines the action Put,
to control checking in a configuration (using the put command):

access define Put <Object>

where <Object> is the URL of the configuration to put.

Non-legacy modules use DesignSync's ci command to checkin data. See Creating a
New Version of a Module for access controls pertaining to the checkin of non-legacy
module data.

Example

Deny put access to everyone for the CPU and all of its
configurations.

access filter Put {
if {[string match "*/Projects/CPU" $Object] || [string
match "*/Projects/CPU@*" $Object]} {
return "CPU can not be modified."
}
return UNKNOWN
}

Related Topics

Setting Up Access Controls

Using Access Commands

Access Control Scripting

ENOVIA Synchronicity Access Control Guide

147

Access Controls for hcm release

The hcm release command, and its corresponding access control, only applies to
legacy modules that meet all three of these conditions:

• The legacy module was created on the server prior to the server's upgrade to use
the new modules format.

• The legacy module has not been upgraded. (The upgrade command was not
run on the module.)

• The module is being operated on by a DesignSync 4.X client.

The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm, defines the action
Release, to control creating a release configuration (using the release command):

access define Release <Object> <Name>

where:

• <Object> is the URL of the module being released.
• <Name> is the name of the release being created.

Non-legacy modules use DesignSync's tag command for configuration management.
See Tagging a Module for access controls pertaining to the tagging of non-legacy
module data.

Example

access init {
set ProjectLeads {ProjLead1 ProjLead2}
}
We would like to allow uses to create releases for their own
and for internal sharing purposes. But we wish to enforce a
policy
that reserved release names (all prefixed with 'Rel') can be
created
only by project leaders.

access filter Release {

if { [string match Rel* $Name] && \
[lsearch $ProjectLeads $user] == -1 } {
Is a reserved release name, and user is not
a project leader, so deny

Access Controls for Modules

148

return "Only project lead is allowed to create 'Rel'
releases"
}
return UNKNOWN
}

Related Topics

Setting Up Access Controls

Using Access Commands

Access Control Scripting

Access Controls for hcm rmalias

The hcm rmalias command, and its corresponding access control, only applies to
legacy modules that meet all three of these conditions:

• The legacy module was created on the server prior to the server's upgrade to
DesignSync 5.x.

• The legacy module has not been upgraded. (The upgrade command was not
run on the module.)

• The legacy module is being operated on by a DesignSync 4.X client.

The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm, defines the action
Rmalias, to control removing an alias for a release (using the rmalias command):

access define Rmalias <Object>

where <Object> is the URL of the alias that is being removed.

This command does not obey ProjectSync's EditNote and DeleteNote access
controls (see Access Controls for Notes and Note Types). Take this behavior into
consideration when granting access to this command.

Non-legacy modules use DesignSync's tag command for configuration management.
See Tagging a Module for access controls pertaining to the tagging of non-egacy
module data.

Example

ENOVIA Synchronicity Access Control Guide

149

access init {
set ProjectLeads {ProjLead1 ProjLead2}
}

Restrict object removal to project leaders.

access allow {Rmconf Rmalias} only users $ProjectLeads \
-because "only Project leaders can delete
configurations and aliases"

Related Topics

Setting Up Access Controls

Using Access Commands

Access Control Scripting

Access Controls for hcm rmconf

The hcm rmconf command, and its corresponding access control, only applies to
legacy modules that meet all three of these conditions:

• The legacy module was created on the server prior to the server's upgrade to use
the new module format introduced in DesignSync 5.x.

• The legacy module has not been upgraded. (The upgrade command was not
run on the module.)

• The legacy module is being operated on by a DesignSync 4.X client.

The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm, defines the action
Rmconf, to control removing a configuration from a server (using the rmconf
command):

access define Rmconf <Object>

where <Object> is the URL of the module configuration that is being removed.

This command does not obey ProjectSync's EditNote and DeleteNote access
controls (see Access Controls for Notes and Note Types). Take this behavior into
consideration when granting access to this command.

Non-legacy modules use DesignSync's tag command for configuration management.
See Tagging a Module for access controls pertaining to the tagging of Non-legacy
module data.

Access Controls for Modules

150

Example

access init {
set ProjectLeads {ProjLead1 ProjLead2}
}

Restrict object removal to project leaders.

access allow {Rmconf Rmalias} only users $ProjectLeads \
-because "only Project leaders can delete
configurations and aliases"

Related Topics

Setting Up Access Controls

Using Access Commands

Access Control Scripting

Access Controls for Groups of Commands
You might want to grant or deny complete access to module actions for some set of
users. Variables defined in the default module access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm, make it more
convenient to set the same access rights on module actions.

You also can create your own variables for sets of commands in your custom
AccessControl file.

Predefined Variables

The default AccessControl.hcm file defines these variables to control module
actions:

set HcmWriteActions "Mkmod Addhref Rmhref Release Rmmod Rmconf
Rmalias Put MemberCheckin MemberRemove MemberRename MemberUnlock
MemberLock MemberSwitchLocker MemberTag Mkedge Rmedge"

set HcmReadActions "MemberCheckout"

set HCMLoginActions "Addlogin Rmlogin Showlogins"

set HCMCmdActions "Rmmod Mkmod HcmUpgrade"

ENOVIA Synchronicity Access Control Guide

151

set HCMActions "$HCMCmdActions $HCMLoginActions"

set HcmExportImportActions "ExportModule ImportModule
FreezeModule MoveModule"

set HcmAdministrationActions "$HcmExportImportActions"

Note: The module groupings do not include general DesignSync actions that operate on
module data. See Access Controls for Groups of Commands in the DesignSync section
for the DesignSync command group variables.

For example, you might use the LoginActions variable to restrict the manipulation of
ProjectSync accounts used by modules. To do so, in your custom AccessControl file,
specify:

access allow $LoginActions only users syncmgr

Another variable, $AllActions, controls all ProjectSync actions, as well as all
DesignSync and module actions that have an Object parameter ($CmdActions). The
$AllActions variable is defined in the AccessControl.ps file. See Access Controls
for Groups of Commands in the ProjectSync section for details.

Custom-Defined Variables

In your custom AccessControl file, you can use the set command to create
variables that represent your own groupings of access control actions.

For example, to create a variable that controls the ability to move and remove module
members, you could specify:

set ModuleMoveActions {MemberRename MemberRemove}

You can then use the variable $ModuleMoveActions in your access control rules.

You also can create variables that include other variables. However, when declaring a
list that requires variable substitution, you must enclose the list in quotation marks, not
curly braces. (Curly braces prevent variable substitution.) For example:

set ModuleDesignerActions "$CmdActions $ModuleMoveActions Tag"

Related Topics

Access Control Scripting

Sample Access Controls

Access Controls for Modules

152

Setting Up Access Controls

Using Access Commands

Using DesignSync Access Controls with Modules

Browsing Modules on a Server

The BrowseServer action, defined in Access Controls for Browsing the Server, applies
to all operations that access modules or module data on the server. Those operations
include:

• addbackref command
• contents command
• compare command
• module view commands
• mkedge command
• rollback command
• rmedge command
• showhrefs command
• showmods command
• showstatus command
• showlocks command
• vhistory command
• whereused command

BrowseServer access can be used in two different ways.

• It can be set at on the entire Modules category, or on an individual category level
to control access to actions involving all of the modules, or all the modules within
a category. These actions allow activities that operate on the module as a unit,
such as showstatus, which shows the status of the module. When an access
control is set on a module or module category, you may need two access control
to manage access; one to control access to the top level, and one to control
access to the sublevels. See Accessing Modules for more information.

• It can be set on an individual module level to control access to actions involving
the module objects, such as contents which examines the module contents.

Note: Because you can have different access levels for the Modules folder, the
category folders, and individual modules, you may see situations where you can
examine the module as a whole, but cannot see the contents of a module.

Accessing Modules

ENOVIA Synchronicity Access Control Guide

153

DesignSync provides browsing access at multiple levels, each able to be controlled with
its own access control. Like directories, categories, including the Modules category
itself, can be restricted either at the directory level, with lower levels controlled by
different access controls, or recursively (also with the possibility of different access
controls at lower levels.)

For example specifying an access controls that controls the access level at :

sync:///Modules/Category1

would enable or disable the ability to view what modules or categories were contained
in Category1, but would have no effect on whether the modules or categories within
Category1 were viewable.

sync:///Modules/Category1/*

would enable or disable the ability to view all the contents of Category1, recursively, but
would not control whether you could see what modules or categories were contained
within Category1.

Thus to deny access to both browse the modules or categories contained within
Category1 as well as the contents of those modules and sub-categories, you would use
two access controls:

access deny BrowseServer everyone when Object
sync:///Modules/Category1
access deny BrowseServer everyone when Object
sync:///Modules/Category1/*

You could then add back access, selectively, to the users and groups who need them.

access allow BrowseServer ProjGroup when Object
sync:///Modules/Category1/Module1

Examples

access init {
 set ProjectLeads {ProjLead1 ProjLead2}
 set TeamMembers {ProjLead1 ProjLead2 john jane}
 set Team1 {ProjLead1 john}
 set Team2 {ProjLead2 jane}
 set admin { syncmgr }
}

Restrict access to Team Members, to be able to view what
modules are available on this server.

Access Controls for Modules

154

access deny BrowseServer everyone when Object sync:///Modules/
access deny BrowseServer everyone when Object sync:///Modules/*
access allow BrowseServer only users $TeamMembers when Object sync:///Modules

Team1 works on Modules in category 'Proj1'. Restrict viewing of
'Proj1' modules and retrieval of 'Proj1' hrefs to only members of Team1.
This will also limit the ability of non Team1 members to perform any
DesignSync actions on 'Proj1'.

access filter BrowseServer {
 if { $Object == "sync:///Modules/Proj1" || \
 1 == [string match sync:///Modules/Proj1/* $Object] } {
 if { [lsearch $Team1 $user] == -1 } {
 return "Only Proj1 team members are allowed access to Proj1 modules"
 }
 }
 return UNKNOWN
}

Related Topics

Setting Up Access Controls

Using Access Commands

Access Control Scripting

Fetching a Module

The populate command can be used to fetch the contents of an individual module, or
the contents of an entire module hierarchy. The contents of a module (the individual
module members) can be locked by using the -lock option to populate. The lock
command is used to lock a branch of a module. For access controls pertaining to the
lock command, see the topic Locking Module Data.

When a request to populate module data is made, Checkout access for the module
version is the first access control checked, to determine whether subsequent access
checks are necessary. The Checkout/CheckoutLock actions are defined in Access
Controls for Checkout Out. The module version URL is used as the Object parameter
for the Checkout action.

If Checkout/CheckoutLock access for the module version is allowed, then no additional
access checks are necessary for that module version; DesignSync fetches the module
version's member objects. Similarly, if Checkout access for the module version is

ENOVIA Synchronicity Access Control Guide

155

denied, then no additional access checks are necessary for that module version; the
attempt to fetch the module version fails.

Note: If CheckoutLock or CheckoutLockMember are denied, the non-locking fetch may
still work.

However, if Checkout access for the module version is declined, then additional access
checks are necessary; MemberCheckoutLock/MemberCheckout access is checked
for each member object to be fetched.

The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm, defines the actions
MemberCheckout and MemberCheckoutLock.

Using the Member Checkout Access Controls

Both the MemberCheckout and MemberCheckoutLock access controls are used to
control DesignSync module member checkouts. Using the MemberCheckoutLock
access control allows the administrator to finely control the ability to modify module
members by locking an object on modification. This model is especially useful when you
want to provide read access to DesignSync module members that are used by different
development teams as part of their designs, but are not actually intended to be modified
by those teams. The administrator can define an access control for the referencing
teams that provides MemberCheckout access and an access for the owning team, who
is responsible for the modifications to the objects, that includes the
MemberCheckoutLock ability and other vault modification access, such as tag, Checkin,
etc.

Note: If there is a conflict in permissions, for example, if you have the following two
access controls defined:

access allow MemberCheckout everyone when Lock “yes”

access deny MemberCheckoutLock everyone

DesignSync enforces the more restrictive access control and denies all users the
ability to perform a MemberCheckout with a lock.

MemberCheckout Access Control

access define MemberCheckout <Object NaturalPath Lock>

where:

• <Object> is the version URL of the module.
• <NaturalPath> is the natural path of the module member.

Access Controls for Modules

156

• <Lock> is yes if this is a "locking" populate, no if it is not a "locking" populate.
See the populate command for the definition of a "locking" populate as it
pertains to module data.

If MemberCheckout access is allowed for a member object, DesignSync fetches the
member object.

Examples

access init {
 set ProjectLeads {ProjLead1 ProjLead2}
 set TeamMembers {ProjLead1 ProjLead2 john jane}
 set Team1 {ProjLead1 john}
 set Team2 {ProjLead2 jane}
 set admin { syncmgr }
}

To restrict the contents (members) of a module that
can be fetched, we must first make the Checkout
access control return a "decline" value, so that the
MemberCheckout control is then called for each member

Let Team2 only fetch the members in the src area
First, decline the overall checkout of the module
access decline Checkout only users $Team2

And then allow MemberCheckout only for the items we
want them to have access to
access deny MemberCheckout only users $Team2
access allow MemberCheckout only users $Team2 \
 when NaturalPath /src/*

MemberCheckoutLock Access Control

access define MemberCheckoutLock <Object NaturalPath>

where:

• <Object> is the version URL of the module.
• <NaturalPath> is the natural path of the module member

If MemberCheckoutLock access is allowed for a member object, DesignSync fetches
and locks the member object as long as it is not denied by a MemberCheckout access
control..

Examples

ENOVIA Synchronicity Access Control Guide

157

access init {
 set ProjectLeads {ProjLead1 ProjLead2}
 set TeamMembers {ProjLead1 ProjLead2 john jane}
 set Team1 {ProjLead1 john}
 set Team2 {ProjLead2 jane}
 set admin { syncmgr }
}

To restrict the contents (members) of a module that
can be fetched, we must first make the Checkout
access control return a "decline" value, so that the
MemberCheckoutLock control is then called for each member

First, decline the overall checkout of the module
access decline Checkout only users {$Team1 $Team2}

And then allow MemberCheckoutLock for the owning team, Team1
and allow MemberCheckout (no lock) for the team that needs only
read access $Team2
access allow MemberCheckoutLock only users $Team1
access allow MemberCheckout only users $Team2 when Lock "no"

Related Topics

Setting Up Access Controls

Using Access Commands

Access Control Scripting

Locking Module Data

The lock command is used to lock a branch of a module. For its corresponding access
control, see the topic Access Controls for lock.

The contents of a module (the individual module members) can be locked by using the
-lock option to populate. For its corresponding access control, see the topic
Fetching a Module.

Examples

access init {
 set ProjectLeads {ProjLead1 ProjLead2}
 set TeamMembers {ProjLead1 ProjLead2 john jane}
 set Team1 {ProjLead1 john}
 set Team2 {ProjLead2 jane}

Access Controls for Modules

158

 set admin { syncmgr }
}

Lock of module members, using the 'populate -lock' operation,
is controlled by the MemberCheckout access control, but
control of locking of a whole branch is controlled by the Lock
control

Allow users to lock their private modules, but only ProjectLeads
to lock other module branches.
access deny Lock everyone
access allow Lock only users $ProjectLeads
access filter Lock {
 if {[string match sync:///Modules/users/$user/* $Object]} {
 return ALLOW
 }
 return UNKNOWN
}

Changing a Module's Lock Owner

The lock owner of a module member branch and its module branch must be the same
user. Therefore, an attempt to change the lock owner of a module branch, if any of the
module members on that branch are locked, will fail immediately. Similarly, an attempt
to change the lock owner of a module member, if the module's branch is locked, will fail
immediately.

If the switchlocker attempt does not fail for the above reasons, then the access
checks described below take place.

Changing a module branch's lock owner

If the switchlocker attempt is made for a module branch, SwitchLocker access
for the module branch is checked. The SwitchLocker action is defined in Access
Controls for Changing a Lock Owner. The module branch URL is used as the Object
parameter of the SwitchLocker action. If SwitchLocker access is allowed, the lock
owner of the module branch is changed. If SwitchLocker access is denied, the
switchlocker attempt fails.

Changing a module member's lock owner

If the switchlocker attempt is made for module members, SwitchLocker access
for the module branch is the first access control checked to determine whether
subsequent access checks are necessary. The SwitchLocker action is defined in

ENOVIA Synchronicity Access Control Guide

159

Access Controls for Changing a Lock Owner. The module branch URL is used as the
Object parameter of the SwitchLocker action.

If SwitchLocker access for the module branch is allowed, then no additional access
checks are necessary. The module members' lock owners are changed. Similarly, if
SwitchLocker access for the module branch is denied, then no additional access
checks are necessary. The switchlocker attempt fails.

However, if SwitchLocker access for the module branch is declined, then additional
access checks are necessary. MemberSwitchLocker access is checked for each
member whose lock owner is to be changed.

The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm, defines the action
MemberSwitchLocker:

access define MemberSwitchLocker <Object NaturalPath
CurrentLockOwner NewLockOwner>

where:

• <Object> is the module branch URL
• <NaturalPath> is the natural path of the module member
• <CurrentLockOwner> is the user name of the person who currently owns the

lock
• <NewLockOwner> is the user name of the person applying for the new lock.

If MemberSwitchLocker access is allowed for a module member, DesignSync
changes the lock owner of the module member.

Examples

access init {
 set ProjectLeads {ProjLead1 ProjLead2}
 set TeamMembers {ProjLead1 ProjLead2 john jane}
 set Team1 {ProjLead1 john}
 set Team2 {ProjLead2 jane}
 set admin { syncmgr }
}

Restrict the ability unlock a module member, and to change
the lock owner of a module member, to project leaders.

access deny MemberUnlock everyone
access allow MemberUnlock only users $ProjectLeads
access deny MemberSwitchLocker everyone

Access Controls for Modules

160

access allow MembeSwitchLocker only users $ProjectLeads

But allow unlock if the user is the lock owner.
access allow MemberUnlock everyone when IsLockOwner "yes"

Defining the Enterprise Access Map

When access control is delegated, you can enable the SwitchLocker access map. A
sample version of the access map is provided, commented out, in the custom
DesignSync access control file for the server,
$SYNC_CUSTOM_DIR/servers/<serverName>/<portNumber>/share/AccessC
ontrol.

access map SwitchLocker {

 lappend checkmasks [list changeOwner $Object]

 return [list "masks" $checkmasks]

}

Related Topics

Setting Up Access Controls

Using Access Commands

Access Control Scripting

Unlocking a Module

The lock command is used to lock a branch of a module. The lock on a module branch
is released by using the unlock command. See Unlocking a Module Branch. The
contents of a module (the individual module members) can be locked by using the -
lock option to populate. The lock on a module member is released by using the
cancel command. See Unlocking Module Contents.

Unlocking a Module Branch

When attempting to unlock a module branch, Unlock access for the module branch
is checked. The Unlock action is defined in Access Controls for Unlocking. The module
branch URL is used as the Object parameter of the Unlock action. If Unlock access
is allowed, the module branch is unlocked. If Unlock access is denied, the unlock
attempt fails.

Unlocking Module Contents

ENOVIA Synchronicity Access Control Guide

161

When attempting to cancel a lock on a module member, DesignSync first checks the
Unlock access for the module branch to determine whether subsequent access checks
are necessary. The Unlock action is defined in Access Controls for Unlocking. The
module branch URL is used as the Object parameter of the Unlock action. (If there
are multiple module members whose locks are being cancelled, those module members
will all be on the same branch of the module.)

If Unlock access for the module branch is allowed, then no additional access checks
are necessary. Locks on the module members are cancelled. Similarly, if Unlock
access for the module branch is denied, then no additional access checks are
necessary. The cancel attempt fails.

However, if Unlock access for the module branch is declined, additional access checks
are necessary for the module members whose locks are to be cancelled;
MemberUnlock access is checked for each of the module's members whose locks are
to be cancelled.

The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm, defines the action
MemberUnlock:

access define MemberUnlock <Object NaturalPath IsLockOwner>

where:

• <Object> is the module branch URL
• <NaturalPath> is the natural path of the module member
• <IsLockOwner> is yes if the user performing the unlock operation is the owner,

otherwise no.

If MemberUnlock access is allowed for a module member, DesignSync cancels the
module member's lock.

Examples

access init {
 set ProjectLeads {ProjLead1 ProjLead2}
 set TeamMembers {ProjLead1 ProjLead2 john jane}
 set Team1 {ProjLead1 john}
 set Team2 {ProjLead2 jane}
 set admin { syncmgr }
}

Restrict the ability unlock a module member, and to change
the lock owner of a module member, to project leaders.

Access Controls for Modules

162

access deny MemberUnlock everyone
access allow MemberUnlock only users $ProjectLeads
access deny MemberSwitchLocker everyone
access allow MemberSwitchLocker only users $ProjectLeads

But allow unlock if the user is the lock owner.
access allow MemberUnlock everyone when IsLockOwner "yes"

Related Topics

Setting Up Access Controls

Using Access Commands

Access Control Scripting

Creating a New Version of a Module

A new version of a module is created when any of these operations occur:

• Data is checked into the module (using the ci command, or the -checkin
option to the mkmod command)

• An href is added to a module version (using the addhref command)
• An href is removed from a module version (using the rmhef command)
• A member object is removed from a module (using the remove command)
• A member object is renamed (using the mvmember command)

When any of the operations above take place, DesignSync first checks the Checkin
access for the module, to determine whether subsequent access checks are necessary.
The Checkin action is defined in Access Controls for Checking In. Note that when the
Object is a module URL, the Branch and NewBranchName parameters are not
applicable.

If Checkin access for the module is allowed, no additional access checks are
necessary. The operation succeeds, creating a new version of the module. Similarly, if
Checkin access for the module is denied, no additional access checks are necessary.
The operation fails.

However, if Checkin access for the module is declined, additional access checks are
necessary:

• If the operation is addhref, DesignSync checks Addhref access. See Access
Controls for addhref for details, including the outcome of the access check.

ENOVIA Synchronicity Access Control Guide

163

• If the operation is rmhref, DesignSync checks Rmhref access. See Access
Controls for rmhref for details, including the outcome of the access check.

• If the operation is remove, DesignSync checks MemberRemove access. See
Access Controls for remove for details, including the outcome of the access
check.

• If the operation is mvmember, DesignSync checks MemberRename access. See
Access Controls for mvmember for details, including the outcome of the access
check.

• If the operation is ci, DesignSync checks MemberCheckin access for each
member being checked in.

If the operation is mkmod with the -checkin option, then the initial step where the
module is created on the server will be verified for Mkmod access. If access is allowed to
make the module, the module is created on the server. The next step is to verify module
level Checkin access. If that access is granted, then the -checkin operation
proceeds. Otherwise, no checkin will occur with the module's creation.

MemberCheckin Access

Conceptually, a ci operation has two steps:

1. Pre-checkin checks, which include access control checks
2. Transfer of data to the server

If Checkin access for the module is declined, DesignSync checks MemberCheckin
access for each member object participating in the checkin. DesignSync checks the
member object because it might have changed, or it might have been newly added or
re-added.

The first MemberCheckin access that is denied terminates the ci operation.
DesignSync does not check access controls for the remaining items. If
MemberCheckin access is allowed for all member objects participating in the checkin,
the ci operation proceeds.

The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm, defines the
MemberCheckin action:

access define MemberCheckin <Object NaturalPath Skip>

where:

• <Object> is the module branch URL
• <NaturalPath> is the natural path of the module member

Access Controls for Modules

164

• <Skip> is yes if this is a "skipping" checkin, no if it is not a "skipping" checkin.
See the ci command documentation for the definition of a "skipping" checkin as
it pertains to module data.

Examples

access init {
 set ProjectLeads {ProjLead1 ProjLead2}
 set TeamMembers {ProjLead1 ProjLead2 john jane}
 set Team1 {ProjLead1 john}
 set Team2 {ProjLead2 jane}
 set admin { syncmgr }
}

For the commands that creates a new module version:
ci, addhref/rmhref and remove/mvmember,
a check is first made for Checkin access, and the
check for the sub-command only performed if the
Checkin access returns a value of "decline"

So, first "decline" the Checkin access for everyone,
so that the the member check is called for all users

access decline Checkin everyone

Now can restrict the Team2 users to only checking in
objects with Natural Paths under /src area

access deny MemberCheckin only users $Team2
access allow MemberCheckin only users $Team2 \
 when NaturalPath /src/*

Similarly, we can restrict Team2 to not removing anything
outside their area
access deny MemberRemove only users $Team2
access allow MemberRemove only users $Team2 \
 when NaturalPath /src/*

And can restrict Team2 to moving things where BOTH the
paths are in their area.
access deny MemberRename only users $Team2
access allow MemberRename only users $Team2 \
 when NaturalPath /src/* \
 when NewNaturalPath /src/*

And can restrict adding hrefs to only project leaders

ENOVIA Synchronicity Access Control Guide

165

access allow {Addhref Rmhref} only users $ProjectLeads \
 -because "only Project leaders can add or remove hrefs"

Related Topics

Setting Up Access Controls

Using Access Commands

Access Control Scripting

Branching a Module

DesignSync checks access to the MakeBranch action (defined in Access Controls for
Creating Branches) when creating a branch of a module object. Note that MakeBranch
access is never checked for module members, which are never explicitly branched.

Related Topics

mkbranch command

Tagging a Module

DesignSync checks access to the Tag action (defined in Access Controls for Tagging)
when tagging module data. Note that when a module is tagged, DesignSync checks
Tag access only once, with the module as the Object; Tag access is not checked for
each of the module's member objects.

Examples

access init {
 set ProjectLeads {ProjLead1 ProjLead2}
 set TeamMembers {ProjLead1 ProjLead2 john jane}
 set Team1 {ProjLead1 john}
 set Team2 {ProjLead2 jane}
 set admin { syncmgr }
}

Module tags are mutable (may be removed/moved) or immutable (may not)
Anyone can add immutable tags, but only our project leads are allowed
to remove/move them.
access filter Tag {
 if {("$Mutability" == "IMMUTABLE") && ("$Action" != "ADD")} {
 if {[lsearch -exact $ProjectLeads $user] == -1} {
 return "Only project leads may $Action immutable tags."

Access Controls for Modules

166

 }
 }
 return UNKNOWN
}

Related Topics

tag command

Tagging a Module Snapshot

DesignSync checks access to the Tag action (defined in Access Controls for Tagging)
and the MemberTag action when tagging module data in a module snapshot. Unlike
Module tag, each member participating in the tagged snapshot is checked to determine
that the access is valid.

The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm, defines the action
MemberTag to control access to individual module members for snapshot views.

MemberTag:
Arguments:
Object: string representation of the URL of the Module,
which member is being tagged.
eg: sync:///Modules/ALU
NaturalPath: string representation of the natural path of
the module member being tagged.
Version: string representation of the member's numeric
version being tagged.
NewTag: value of the tag being added, replaced, or deleted.
Action: type of action being performed. Possible values
are:
ADD => 'NewTag' is being added to 'Object'.
DELETE => 'NewTag' is being deleted from
'Object' vault.
REPLACE => 'NewTag' present on some other
version/branch is being moved to 'Object'.

access define MemberTag {Object NaturalPath Version NewTag
Action}

Related Topics

tag command

Rolling Back a Module

ENOVIA Synchronicity Access Control Guide

167

DesignSync checks access to the Rollback action when attempting to roll-back a
module to a previous module version.

Example

access init {
 set ProjectLeads {ProjLead1 ProjLead2}
 set TeamMembers {ProjLead1 ProjLead2 john jane}
 set Team1 {ProjLead1 john}
 set Team2 {ProjLead2 jane}
 set admin { syncmgr }
}

Example for 'rollback' command.

Allow rollback of modules in the ProjA area to the
team members
Remember that rollback is denied to all users by default.
access allow Rollback only users $TeamMembers when Object sync:///Modules/ProjA/*

Related Topics

Access Controls for Rollback

Making a Module Edge

DesignSync checks access to the Mkedge action when attempting to create a merge
edge on a module .

Example

access init {
 set ProjectLeads {ProjLead1 ProjLead2}
 set TeamMembers {ProjLead1 ProjLead2 john jane}
 set Team1 {ProjLead1 john}
 set Team2 {ProjLead2 jane}
 set admin { syncmgr }
}

Example for 'Mkedge' command.

Allow Mkedge on modules in the ProjA area to the
Project leads
Remember that Mkedge is denied to all users by default.
access allow Mkedge only users $ProjectLeads when Object sync:///Modules/ProjA/*

Access Controls for Modules

168

Related Topics

Access Controls for Creating Merge Edges

169

Access Controls for the Enterprise Design System
Access Controls for Enterprise Design Push to
DesignSync
If the data structure for the Enterprise Design System is maintained on the Enterprise
Design system, not in DesignSync, you should adjust the access controls to deny
structure editing from a DesignSync client, but allow for changes to push from ENOVIA
clients. To facilitate this working model, DesignSync stores a property on the module or
the branch to indicate that the data is managed in ENOVIA.

To prevent modification from a DesignSync client, you must disable Checkin access to
the module, but allow checkin of module members.

Examples

access decline Checkin everyone when Object sync:///Modules/*
...
access allow MemberCheckin everyone
...

This filter for Addhref/Rmhref prevents href modification
when the module branch in question is recorded as being managed
by the Enterprise platform.
NOTE: to use this, you must also "decline" Checkin access, as
the filter for Addhref/Rmhref is only called if the Checkin is
declined.

access filter {Addhref Rmhref} {

First, check whether the operation is
being performed from the platform, which means that
an "export" is being run. In that case, we want to
allow the operation.

if {$agent == "Platform"} {

 return UNKNOWN

}

Access Controls for the Enterprise Design System

170

Otherwise, see whether the branch being operated on is
recorded as managed.

For that, we need the branch numeric, which we can get from the
version passed in. The Object always has the version at the
end by this point.

foreach {objectUrl version} [split $Object ";"] {}
set branchNum [string range $version 0 [expr [string last "." $version] - 1]]
set branchUrl "$objectUrl\;$branchNum"
if {[entobj isplatformmanaged $branchUrl]} {

return "Cannot modify hrefs for $branchUrl : The structure for this item is
being managed by the Enterprise Platform"

}
return UNKNOWN

}

Access Controls for Enterprise Design Synchronization
The default access control file,
$SYNC_DIR/share/AC_Components/AccessControl.hcm, defines the action
EnterpriseSynchonrize to control whether a user can perform Enterprise Design actions
(commands that use the entobj command prefix):

access define EnterpriseSynchronize

This command takes no arguments. By default, this is enabled for all users.

Examples

access init {
 set ProjectLeads {ProjLead1 ProjLead2}
 set TeamMembers {john jane}
 set Team1 {ProjLead1 john}
 set Team2 {ProjLead2 jane}
 set admin { syncmgr }
}

ENOVIA Synchronicity Access Control Guide

171

Restrict Enterprise Synchronization commands to only project leaders

access deny {EnterpriseSynchronize} only users $TeamMembers \
 -because "only Project leaders can perform synchronize actions"

Related Topics

Access Controls for Enterprise Design Push to DesignSync

Access Controls for Enterprise Design Administration
Reference Workspace Creation
There is no explicit control for creating a reference workspace for Enterprise Design
Administration, however, in order to create a reference workspace for an Enterprise
Development, you need the following access:

• Browse access required for the module being duplicated.
• AddMirrors access.

172

Access Controls for ProjectSync
ProjectSync Action Definitions

ProjectSync Action Definitions

You set up access controls on particular ProjectSync actions, or operations. To set up
an access control on an operation, the operation must have an action definition
specified with an access define command. If an action definition exists for an
operation, you can control access to that operation using the stcl access allow,
access deny, and access filter commands.

If a custom access control rule affects whether menu items are displayed or hidden from
users, users will need to refresh their browsers, for their ProjectSync menu to reflect the
new access control rules. If the user no longer has permission to access a currently
displayed menu item, clicking that menu item will display an Operation Failed panel,
with a permission error.

ProjectSync provides a number of predefined actions corresponding to many of the
commands you might want to access control. These actions are defined in the default
access control files for ProjectSync:

• Project and configuration action definitions:

$SYNC_DIR/share/AC_Components/AccessControl.ps

• Other action definitions (for example, for notes and note types, server
administration, and user administration):

$SYNC_DIR/share/AC_Components/AccessControl.psipg

See Introduction to Access Control for details on the individual files used to define
access controls.

Important: Do not edit the AccessControl.ps or AccessControl.psipg file;
changes will be lost upon upgrading. Instead, edit your site or server custom
AccessControl file (see Setting Up Access Controls).

You can set access controls for the following types of predefined ProjectSync actions:

Email administration Secure communications
Groups of commands Server administration
Notes and note types Triggers
Projects and configurations User profiles

ENOVIA Synchronicity Access Control Guide

173

Although most ProjectSync actions are predefined in the default AccessControl.ps
and AccessControl.psipg files, you might want to create your own action definitions
for custom operations. Do not redefine the existing actions using access define
statements in your site and server AccessControl files. You will not be able to access
the server if it detects duplicate access define statements. You can, however, define
new actions within your site or server AccessControl files. See Access Control
Scripting for an example of a custom action definition.

Related Topics

Module Action Definitions

Revision Control Action Definitions

Setting Up Access Controls

User Authentication Action Definitions

Access Controls for Email Administration

The default ProjectSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.psipg

defines two actions, EmailSubscribe and EmailMgrAdmin, that control email
subscriptions:

access define EmailSubscribe <isSelf>

access define EmailMgrAdmin

The EmailSubscribe action controls whether the user can create email subscriptions.
The optional argument isSelf is a Boolean that takes the value 1 for the current user
or 0 for any other user.

The EmailMgrAdmin action controls whether the user can access the Email
Administrator.

Example

The following access control rule allows users to create email subscriptions only for
themselves:

access allow EmailSubscribe everyone when isSelf 1

Access Controls for ProjectSync

174

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

Access Controls for Notes and Note Types

The default ProjectSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.psipg

 defines the following actions to control access to notes:

access define ViewNote <system> <type> <id>

access define EditNote <system> <type> <id>

access define EditNoteAttachments <system> <type> <id>
<attachType>

access define AddNote <system> <type>

access define DeleteNote <system> <type> <id> <isAuthor>

access define SetNoteProperty <system> <type> <field>

access define ModifyNoteProperty <system> <type> <id> <field>
<oldval> <newval>

access define ReviseNoteHistory <system> <type> <id> <isAuthor>

access define AdministrateNoteTypes <system>

Where:

ENOVIA Synchronicity Access Control Guide

175

• <system> is always SyncNotes. This parameter is ignored, but is included for
future extensibility of ProjectSync.

• <type> is the name of the note type to which you are trying to control access,
for instance "BugReport".

• <id> is the note ID number of the note that you are trying to modify, for example
125.

• <attachType> is the specific "type" of attachment. The type can be
"ProjectName", "ProjectConfiguration" or "Other".

• <isAuthor> is a Boolean that takes the value 1 for the author of the note or 0
for any other user.

• <field> is the name of the property used to generate a field on the GUI.
• <oldval> is the old value of a property that you want to modify.
• <newval> is the new value of a property that you want to modify.

These parameters are used in when clauses in access allow and access deny
statements. (See Using Access Commands for details.)

The $NoteActions variable can be used to control access to all of these actions
except for AdministrateNoteTypes. See Access Controls for Groups of Commands
for details.

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

The ViewNote Action

The ViewNote action controls whether users can view notes. If users do not have
permission to view notes, they cannot display the View or Edit panel for any note. In
addition, they cannot run queries on notes or view reports stored on the server. Stored
reports are saved in a StoredReport note type that is governed by this access control.
Disabling ViewNote permission removes all access to notes and reports.

The ViewNote action also restricts email notifications when notes are created or
modified. For example, if a user does not have permission to view SyncDefects, he or
she will not receive email when a SyncDefect is created or modified. This is the case
even when the individual's username appears in a SyncUserList field, such as
Responsible.

The EditNote Action

The EditNote action controls whether users can edit notes and reports stored on the
server. Stored reports are saved in a StoredReport note type that is governed by this
access control.

Access Controls for ProjectSync

176

The ViewNote and EditNote actions together control access to notes and reports on
a per-user basis. It is possible to use the access db_filter command to limit
access to notes or reports that have particular characteristics. For example, suppose a
note has a Boolean field called private. If this field is set to True, only some users
can view the note.

You also can use the access filter command for limiting access to notes. However,
using this command for this purpose can cause noticeable performance degradation in
note queries. For every note that matches the query, a Tcl shell is started to run the
filter that decides whether to list the note.

The EditNoteAttachments Action

The EditNoteAttachments action controls whether users can select Project,
Configuration or Other Attachments, when adding or editing a note.

The AddNote Action

The AddNote action controls whether users can add notes.

The DeleteNote Action

The DeleteNote action controls whether a user can delete notes. If a user does not
have permission to delete notes, the Delete Note button does not display on the Edit
Note panel of any note.

The following sample access control rule allows users to delete notes they created, but
not other users' notes:

access deny DeleteNote everyone when isAuthor 0

The SetNoteProperty Action

The SetNoteProperty action controls whether users can edit specified properties of a
note when adding a note for the first time. This action normally is used in conjunction
with the ModifyNoteProperty action.

For example, the following access control rule prevents everyone from editing the Audit
Trail field on the Add Note panel:

access deny SetNoteProperty everyone when field AuditTrail

If this command is added to your custom AccessControl file, users adding a note can
see the AuditTrail field, but cannot edit it. With this example, you also would use a
corresponding ModifyNoteProperty access control.

ENOVIA Synchronicity Access Control Guide

177

In the GUI, fields that are made non-editable in this way are displayed as non-editable.
Currently, the only way remove a field from the Add Note panel is to use custom
templates for the note type. (See ProjectSync User's Guide: Generating HTML
Templates for a Note Type for details.)

The ModifyNoteProperty Action

The ModifyNoteProperty action controls whether users can modify a field of a note.

If a field cannot be modified because of an access restriction, it displays as non-editable
text in the Edit Note panel. If a Choice List field can be modified, but some of the values
in the choice type are not allowed, then those values will not appear in the choice
pulldown menu in the Edit Note panel. The same applies to State Machine fields.

This access control does not apply to the attachments of a note; the
EditNoteAttachments action controls the attachment of objects to a note.

The following examples show different ways you can apply this action.

Example 1

Some note types are set up with an AuditTrail field that is automatically updated by the
system and should not be edited manually. You could enforce this policy as follows:

access deny ModifyNoteProperty everyone \
 when type "SyncDefect" \
 when field "AuditTrail"

Example 2

Suppose you want to enforce the policy that only a BugReport's author can close the
bug. In this case, you can define an access filter similar to the following:

access filter ModifyNoteProperty \
 when type "BugReport" \
 when field "State" \
 when newval "closed" \
{
 set note_url "sync:///Note/$system/$type/$id"
 if {[url getprop $note_url Author] == "$user"} {
 return ALLOW
 } else {
 return DENY
 }
}

Access Controls for ProjectSync

178

This example uses url getprop, but another less-efficient option is url
properties. The when clauses can be moved down into the body of the filter
definition as a Tcl if statement. Either method is acceptable, but the method used in
the example avoids the overhead of firing up a Tcl interpreter in most cases. Because
the ModifyNoteProperty access control is accessed often, you should make the
code as efficient as possible.

Example 3

Suppose you have installed the packaged SyncDefect note type. By default, open to
closed is not a valid transition for the State state machine. An interim state, such as
verified, is required. However, you want to allow a few users to move SyncDefects
directly from open to closed.

First use the Property Type Manager to edit the SD-State State Machine. (See
ProjectSync User's Guide: Editing Property Types for details.) Select closed as a valid
state transition from open and submit your change.

At this point, all users can move SyncDefects from open to closed. To limit this
capability to selected users, add the following access filter to your custom
AccessControl file:

access init {
 set QA "tester1 tester2 tester3"
}
access filter ModifyNoteProperty \
 when type SyncDefect \
 when field State \
 when oldval open \
 when newval closed \
{
Allow test engineers to transition SyncDefects from "open" to
"closed", as they will perform the necessary verification.
if {[lsearch $QA $user] != -1} {
 return ALLOW
}
Get the note's properties
set author [url getprop "sync:///Note/$system/$type/$id" Author]
Allow anyone to close a SyncDefect that they submitted
if {$user == $author} {
 return ALLOW
}
Otherwise...
 return DENY
}

ENOVIA Synchronicity Access Control Guide

179

You can create similar access controls for fields of type Choice List using the newval
parameter.

The ReviseNoteHistory Action

The ReviseNoteHistory action controls whether users can make a change the
history of a note.

For example, to give a note's author, but not other users, the ability to rewrite history,
add the rule:

access deny ReviseNoteHistory everyone when isAuthor 0

To limit access to a list of trusted users, add the rule:

access allow ReviseNoteHistory only users $trusted_users

To prevent access for all users, add the rule:

access deny ReviseNoteHistory everyone

The AdministrateNoteTypes Action

The AdministrateNoteTypes action controls whether users can perform the tasks
handled by the Note Type Manager in ProjectSync:

• Install a new note type in the system
• Modify an existing note type
• Create a custom note type
• Import a note type from a DEF file
• Delete a note type
• Rename a note type
• Generate an HTML template from a note type
• Add or modify property types used in note types

Note: The AdministrateNoteTypes action replaces the AddNoteType action.
Access control rules that use AddNoteType in existing scripts do not cause errors,
although the use is ignored.

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Access Controls for ProjectSync

180

Using Access Commands

Access Controls for Projects and Configurations

The default ProjectSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.ps

defines the following actions to control access to projects and configurations.

Project Access Controls

access define AddProject

access define ModifyProject <project>

access define DeleteProject <project>

access define ImportProject <project>

access define ExportProject <project>

These access controls are applied as follows:

• The AddProject action controls who can create new projects.
• The ModifyProject action controls who can edit projects.
• The DeleteProject action controls whether you can remove projects from

ProjectSync. This access control also determines whether you can clean up data
exported from a server. See ProjectSync User's Guide: Exporting Projects for
details. By default, this access control is turned off for all users.

• The ImportProject action controls who can import a project onto a server.
• The ExportProject action controls who can export a project for transfer to

another server

Configuration Access Controls

access define CreateConfig <project>

access define ModifyConfig <project config>

access define DeleteConfig <project config>

These access controls are applied as follows:

ENOVIA Synchronicity Access Control Guide

181

• The CreateConfig action controls who can create configurations.
• The ModifyConfig action controls who can edit configurations.
• The DeleteConfig action controls who can remove configurations. By default,

this access control is turned off for all users.

The <project> parameter, when present, specifies a project name such as ASIC or
CPU. The config parameter in the ModifyConfig action specifies a configuration
name such as rel12 or stable.

The $ProjectActions variable can be used to control access to all project-related
actions; the $ConfigActions variable can be used to control access to all
configuration-related actions. The $ProjAndConfigActions variable controls access
to all the project and configuration actions. See Access Controls for Groups of
Commands for details.

Example

The following access control rule lets only project leaders create, edit, or delete
configurations:

access init {
 set projectLeaders { chan kapoor }
}

access allow {CreateConfig ModifyConfig DeleteConfig} only users
$projectLeaders

ProjectSync sometimes passes in the "*" qualifier for project and config to access
verify. See Using Access Command Qualifiers for more information.

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

Access Controls for Server Administration

Access Controls for ProjectSync

182

The actions available from the Server section of the ProjectSync menu are controlled
by two different actions:

• The default ProjectSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.psipg

defines a single action, AdministrateServer, to control whether a user can
access the Administer Server and Reset Server options on the ProjectSync
menu:

access define AdministrateServer

• The default ProjectSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.ps

defines a single action, ResetAccessControls, to control whether a user can
access the Access Reset options on the ProjectSync menu:

access define ResetAccessControls

Example

To allow only administrators to access the Administer Server panels and Reset Server
menu option, add the following rule to your custom AccessControl file:

access allow AdministrateServer only users $admin

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

Access Controls for Triggers

The default ProjectSync access control file:

ENOVIA Synchronicity Access Control Guide

183

$SYNC_DIR/share/AC_Components/AccessControl.psipg

defines three actions for controlling access to triggers:

access define AddTrigger

access define EditTrigger

access define DeleteTrigger

These actions let you control who can add, edit, or delete triggers. The commands do
not need arguments.

If a user does not have AddTrigger or EditTrigger access, the corresponding
options do not appear on the ProjectSync menu. If a user does not have
DeleteTrigger access, the Delete button does not appear on the Edit Trigger panel.

The $TriggerActions variable can be used to control access to all of these actions
as well as access to the Email Administrator. See Access Controls for Groups of
Commands for details.

Example

For example, to allow only administrators to add or edit triggers, add the following rule
to your custom AccessControl file:

access init {
 set admin { lynch vega }
}

access allow {AddTrigger EditTrigger} only users $admin

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

Access Controls for ProjectSync

184

Access Controls for User Profiles

The default ProjectSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.psipg

defines three actions to control access to user profiles:

access define AddUser

access define EditUser <username <isSelf>

access define DeleteUser <username <isSelf>

Where:

• <username> is the login name (not the full name) of the user that you are trying
to edit or delete.

• <isSelf> is a Boolean that takes the value 1 for the current user or 0 for any
other user.

The $UserActions variable can be used to control access to all of these actions as
well as access to the email subscriptions. See Access Controls for Groups of
Commands for details.

Example

The following access control rule lets users to modify their own passwords but not other
users' passwords:

access deny EditUser everyone when isSelf 0

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

ENOVIA Synchronicity Access Control Guide

185

Access Controls for Stored Reports

The default ProjectSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.psipg

defines two actions, AddStoredReport and DeleteStoredReport, that control
reports stored on the server:

access define AddStoredReport <noteType <visibility>

access define DeleteStoredReport <id> <visibility> <isAuthor>

Stored reports are saved in a StoredReport note type that is governed by these access
controls.

The AddStoredReport action controls whether the user can create stored reports on
the server, where:

• <noteType> is the name of the note type for which reports can be stored.
• <visibility> is the accessibility of the report, either private or public.

The DeleteStoredReport action controls whether the user can remove reports
stored on the server, where:

• <id> is the note ID number of the report.
• <visibility> is the accessibility of the report, either private or public.
• <isAuthor> is a Boolean that takes the value 1 for the author of the note or 0

for any other user.

By default, all users can view, edit, or delete public reports stored on the server, but
only the author can view, edit, or delete private reports. See ProjectSync Help: Saving a
Standard Query for details on storing reports on the server.

A user's ability to view or edit a stored report is controlled by the ViewNote and
EditNote access control rules. See Access Controls for Notes and Note Types for
details on these actions.

Examples

The following access control rule prevents all users from creating stored reports on the
SecretResearch note type:

Access Controls for ProjectSync

186

access allow AddStoredReport everyone
access deny AddStoredReport everyone when noteType
SecretResearch

The following access control rule prevents all users except the author from deleting
public stored reports:

access allow DeleteStoredReport everyone
access deny DeleteStoredReport everyone when visibility public
when isAuthor 0

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

Access Controls for Groups of Commands
A number of variables defined in the default ProjectSync access control files make it
more convenient to set the same access rights on groups of related commands. These
variables are defined in the default ProjectSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.ps

You also can create your own sets of commands in your custom AccessControl file.

Predefined Variables

The variables defined in the default AccessControl.ps file are:

set NoteActions {ViewNote EditNote EditNoteAttachments AddNote
DeleteNote SetNoteProperty ModifyNoteProperty ReviseNoteHistory}
;#excludes AdministrateNoteTypes

set ProjectActions {AddProject ModifyProject DeleteProject
ImportProject ExportProject}

ENOVIA Synchronicity Access Control Guide

187

set ConfigActions {CreateConfig ModifyConfig DeleteConfig}

set ProjAndConfigActions "$ProjectActions $ConfigActions"

set UserActions {AddUser EditUser DeleteUser EmailSubscribe}

set TriggerActions {AddTrigger EditTrigger DeleteTrigger
EmailMgrAdmin}

set ProjectSyncReadActions {ViewNote BrowseServer}

set ProjectSyncWriteActions {AddNote EditNote
EditNoteAttachments DeleteNote SetNoteProperty
ModifyNoteProperty ReviseNoteHistory AddProject ModifyProject
DeleteProject ImportProject ExportProject CreateConfig
ModifyConfig DeleteConfig AddUser EditUser DeleteUser
EmailSubscribe EmailMgrAdmin AddTrigger EditTrigger
DeleteTrigger AdministrateNoteTypes AdministrateServer
ResetAccessControls}

set ProjectSyncActions "AdministrateNoteTypes AdministrateServer
BrowseServer $NoteActions $ProjAndConfigActions $UserActions
$TriggerActions"

set AllActions "$DesignSyncActions $ProjectSyncActions
$HCMActions $MirrorActions"

set ProjectAndConfigWriteActions {ModifyProject DeleteProject
ImportProject CreateConfig ModifyConfig DeleteConfig}

Examples

The following access control rule specifies that only the user psadmin can perform the
actions defined by the $UserActions variable -- adding, editing, or deleting user
profiles and creating subscriptions for users:

access allow $UserActions only users psadmin

The following access control rule specifies that only project leaders (as defined by the
variable $projectLeaders) can create or edit projects and configurations:

access allow $ProjAndConfigActions only users $projectLeaders

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

Access Controls for ProjectSync

188

See Access Controls for Groups of Commands in the DesignSync section for
information on the predefined variables defined for DesignSync.

Custom-Defined Variables

You can use the set command to create variables that represent your own groupings of
access control actions.

For example, to create a variable that controls the ability to delete objects, you could
specify:

set DeleteActions {DeleteNote DeleteProject DeleteConfig
DeleteTrigger}

You can then use the variable $DeleteActions in your access control statements.

You also can create variables that include other variables. However, when declaring a
list that requires variable substitution, you must enclose the list in quotation marks, not
curly braces. (Curly braces prevent variable substitution.) For example:

set AdminActions "$ProjAndConfigActions $TriggerActions
BrowseServer"

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

Example ProjectSync Access Controls

Sample Access Controls

The following examples demonstrate ways you can apply ProjectSync access controls
in your custom AccessControl files. You can find other examples in the file:

$SYNC_DIR/share/examples/ExampleAccessControl

This topic provides examples of access controls implemented using access filter
and access db_filter scripts, as well as examples of some general access control
solutions:

ENOVIA Synchronicity Access Control Guide

189

Controlling who can perform specified operations

Controlling who can edit defects

Controlling who can close defects

Defining custom actions to conditionalize Tcl code

Note: Do not edit any of the access control files in the $SYNC_DIR/share area; you
edit the site or server AccessControl file. See Setting Up Access Controls for the
locations of these AccessControl files.

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

Controlling Who Can Perform Operations

In this example, the variables $admin, $projectLeaders, and $engineers are
defined inside an access init statement. These variables are then used to control
who can perform certain operations.

access init {
 set admin {syncmgr}
 set projectLeaders {bob}
 set engineers {tom dick harry sally dave}
}

Only administrators can add or manipulate NoteTypes
access allow AdministrateNoteTypes only users $admin

Only those on the project can edit AdminNote Notes
access allow EditNote only users "$projectLeaders $engineers"
 when type "AdminNote"

Only project leaders can manipulate projects
access allow {AddProject ModifyProject DeleteProject}
 only users $projectLeaders

Only project leaders can create or delete configurations
access allow {CreateConfig ModifyConfig DeleteConfig}
 only users $projectLeaders

Only administrators can edit triggers
access allow {AddTrigger EditTrigger} only users $admin

Access Controls for ProjectSync

190

Only administrators can add/delete/modify any user's
profile or email subscription
access allow $UserActions only users $admin

But individuals can edit their own profiles
and email subscriptions
access allow {EditUser EmailSubscribe} everyone when isSelf 1

Only administrators can administrate email
access allow EmailMgrAdmin only users $admin

Controlling Who Can Edit Defects

In this example, a Tcl script is used with an access db_filter statement to control
who can edit a HW-Defect-1 note. The access db_filter command is used in
preference to access filter because access db_filter performs better for
operations that involve verifying more than one note.

The script first checks whether the user ($user) is a project leader. If so, the user can
edit the note. If $user is not a project leader, the script sets up a query, AC_squery,
and calls the FILTERED_IDS function to check whether $user is the author of the note
or the person responsible for the note. If $user is the author or person responsible for
the note, the user is allowed to edit it. If $user does not fit into these categories, the
user cannot edit the note.

The AC_squery query that gets passed to the FILTERED_IDS function is defined
using SQL syntax. The naming conventions require that property names in the query
have a 'f_' prefix, for example, you specify the 'Author' property in queries as
'f_Author'.

access init {
 set projectLeaders { smith jones karen }
}

Allow editing notes only to project leaders,
the note's author, and its responsible.

access db_filter EditNote when type "HW-Defect-1" {

 CHECK_STAR

 # CHECK_STAR checks if first note Id == '*' and
 # allows action if so; this is used so that the

ENOVIA Synchronicity Access Control Guide

191

 # note type shows up in the Quick View panel.

 if {[lsearch $projectLeaders $user] != -1} {
 ALLOW_ALL
 }

 # Set up an SQL filter query; only the Resp or
 # Author of the note is allowed.

 set AC_squery "f_Author = [sq $user] \
 OR f_Resp = [sq $user]"

 # The FILTERED_IDS function runs a subquery, which
 # is the original query with the AC_squery tacked
 # onto it.

 set AC_ids [FILTERED_IDS $type $sqlquery $dbquery \
 $attached $AC_squery]

 # Notes that we got back above passed both the user's
 # query criteria and the filter criteria, so let's
 # ALLOW them.

 foreach noteId $AC_ids {
 ALLOW $noteId
 }

 # Now that we've ALLOWed some notes, we call the
 # FOREACH_UNKNOWN function to DENY those notes
 # that did not match our query criteria and are now
 # in an indeterminate state (not ALLOWed or DENYed).

 FOREACH_UNKNOWN noteId {
 DENY $noteId
 }
}

Controlling Who Can Close Defects

In this example, a Tcl script is used with an access filter statement to control who
can close a HW-Defect-1 note. The script first checks whether the user ($user) is a
project leader. If so, the user can close the note.

If $user is not a project leader, the script uses the url properties command to get
the properties for the note. If the properties show that $user is the author of the note or

Access Controls for ProjectSync

192

the person responsible for the note, the user is allowed to close it. If $user does not fit
into these categories, the user cannot close the note.

access filter ModifyNoteProperty \
 when type "HW-Defect-1" \
 when field "Status" \
 when newval "Closed" \
{
 # If the user is a project leader, he or she can close it
 if {[lsearch $projectLeaders $user] != -1} {
 return ALLOW
 }
 # Get the note's properties
 url properties "sync:///Note/$system/$type/$id" props
 # If the user is the note's Author, he or she can close it
 if {$user == $props(Author)} {
 return ALLOW
 }
 # If the user is 'Responsible,' he or she can close it
 if {$user == $props(Resp)} {
 return ALLOW
 }
 # The user is not allowed to close the HW-Defect-1
 return DENY
}

See the ENOVIA Synchronicity Command Reference for further information on the url
properties command and other commands that you can use in Tcl scripts for access
controls.

Defining Custom Actions to Conditionalize Tcl Code

In this example, you want to conditionalize segments of stcl code, so that particular
users have access to that code while other users are restricted. For example, you might
want a ProjectSync panel to be viewable by only a particular set of users.

You can create custom actions that you later use to conditionalize your code. To do so,
you define the new action in your site or server AccessControl file using the access
define statement. You also specify the users who will have access to this
conditionalized segment of stcl code using the access allow statement:

Define new actions.
access define DisplayCustomPanel
access allow DisplayCustomPanel only users {syncmgr}

ENOVIA Synchronicity Access Control Guide

193

Then you can conditionalize your stcl code, using the access verify statement, as in
this excerpt of a server-side script:

set allowDef [access verify DisplayCustomPanel $SYNC_User]
...

if {$allowDef} {
 ...
} else {
 ...
}

This example uses the access verify command to verify that a user is allowed
access to a particular segment of code. The access commands are server-side-only
commands; thus, this method of conditionalizing code works for server-side scripts, not
for client-side scripts. As with all server-side scripts, you can invoke the script from a
client using the rstcl (remote stcl) command.

This example shows how to create custom action definitions; however, you can set up
most access rights based on the predefined action definitions located in the default
access control files. (See Introduction to Access Control for a description of these files.)
For a description of the ProjectSync predefined actions, see ProjectSync Action
Definitions. For a description of the DesignSync predefined actions, see Revision
Control Action Definitions; for server-related predefined actions, see User
Authentication Action Definitions and Access Controls for Secure Communications.

Related Topics

Access Control Scripting

Using Access Commands

ProjectSync Action Definitions

Sample Access Controls (DesignSync)

Sample Server Access Controls

Setting Up Access Controls

194

Access Controls for the Data Replication System
Access Control for Replication
The default DesignSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.ds

defines the following actions to control management of the data replication system:

Note: Viewing DRRs on an MAS is controlled by the Access Controls for Browsing the
Server.

Important: On CAS-enabled servers with AuthUnm enabled, the Data Replication
cannot use the default username and password. If you are using data replication with
CAS-enabled DesignSync servers, you must use AuthPwd. For more information on
setting AuthPwd, see User Authentication Access Controls.

Replicate

Replicate provides browse access to the Replicate menus in the DesignSync Web
interface and the replicate commands within the non-graphical DesignSync clients.
 Users who need to create or manage data replications must be granted Replicate
access.

access define Replicate

ReplicateAdd

ReplicateAdd determines who can add new data replication repository (DRR)
definitions.

Note: In addition to this permission, users adding new replications must also have
Replicate access.

access define ReplicateAdd {Object Name ReadMode}

Where:

 Object is the path for the ‘drr’

Name is name being used for the ‘drr’

ReadMode is the read mode specified. Possible values are ‘all’ or ‘group’

ENOVIA Synchronicity Access Control Guide

195

For information on setting up Data Replication,, see the ENOVIA Synchronicity
DesignSync Administrator's Guide : Setting Up Data Replication.

ReplicateData

ReplicateData determines who can add, reset, and enable replication for modules in the
DRR.

Note: In addition to this permission, users managing data replications must also have
Replicate access.

access define ReplicateData {<Object> <Selector> <Name> <Root>
<Action>}

Where:

Object: is the vault url of the data being replicated

Selector is value of the selector for the data being replicated

Name: is the specified name (if no name is specified, then this is an empty string)

Root: is the name of the DRR.

Action is the permitted actions. If this value is omitted in the access control, the
permissions granted or denied apply to all possible actions. the Possible values
are

• add - grants/denies permission to add a module to the DRR.
• enable - grants/denies permission to turn on replication for a module in the

DRR
• disable - grants/denies permission to turn off replication for a module in the

DRR
• reset - grants/denies permission to reset the DRR.

For information on controlling Data Replication, see the ENOVIA Synchronicity
DesignSync Administrator's Guide : Introduction to Data Replication.

ReplicateRemove

ReplicateRemove determines who can replicated modules from a DRR and remove
DRR definitions.

Note: In addition to this permission, users removing replications must also have
Replicate access.

Access Controls for the Data Replication System

196

access define ReplicateRemove {<Object> <Root> <Name> <Vault>
<Selector>}

Where:

Object is the url of the path to the ‘drr’

Root is the name of the ‘drr’

Name is the name of the replicated data hierarchy. This option is only applicable
to removing a replicated module from a DRR and should be left empty when
removing a DRR from a MAS..

Vault is the vault url of the data being replicated. This option is only applicable to
removing a replicated module from a DRR and should be left empty when
removing a DRR from a MAS..

Selector is the selector of the data being replicated. This option is only applicable
to removing a replicated module from a DRR and should be left empty when
removing a DRR from a MAS.

For information on removing Data Replications, see the ENOVIA Synchronicity
DesignSync Administrator's Guide: Cleaning and Removing Data Replication.

Related Topics

Access Controls for Browsing the Server

Overview of DesignSync Project Management

Access Controls for Groups of Data Replication
Commands
You may want to grant or deny complete access to data replication actions, to some set
of users. Variables defined in the default DesignSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.ds

make it more convenient to set the same access rights on data replication actions.

Predefined Variables

ENOVIA Synchronicity Access Control Guide

197

The default AccessControl.ds file defines the variable $ReplicateActions,to control
most of the mirror actions:

set ReplicateActions "ReplicateAdd ReplicateData ReplicateRemove
Replicate"

For example, you could use this variable to ensure that only your Admin can add, edit,
delete, modify, or view data replication repositories:

access allow $ReplicateActions everyone
access allow $ReplicateActions only users $admin

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

198

Access Controls for the Mirror System
Access Controls for Mirrors
The default DesignSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.ds

defines the following actions to control management of mirrors:

access define Mirrors

access define AddMirror <Object> <MirrorDir> <Vault> <Category>
<Type> <Description>

access define EditMirror <Object> <OldMirrorDir> <NewMirrorDir>
<OldVault> <NewVault> <Category> <Type> <Description>

access define ModifyMirror <Object> <MirrorDir> <Vault>
<Category>

access define DeleteMirror <Object> <MirrorDir> <Vault>
<Category>

access define ViewMirror

access define PrimaryMirrorFetch <Object> [<FullCacheName>]

Where:

• <Object> is the name of the mirror.
• <MirrorDir> is the absolute path of the mirror directory. For example:

/home/projects/mirror/ASIC/layout.
• <Vault> is the URL of the repository vault. For example:

sync://host.mycom.com:5000/Projects/ASIC/layout.
• <Category> is the category defined for the mirror.
• <Type> is the type of the mirror, either Normal, Primary, or Secondary.
• <Description> is the description given to the mirror.
• <OldMirrorDir> is the absolute path of the old mirror directory when you are

controlling who can move a mirror. For example:
/home/projects/mirror/ASIC/layout1.

• <NewMirrorDir> is the absolute path of the new mirror directory when you are
controlling who can move a mirror. For example:
/home/Projects/ASIC/layout2.

ENOVIA Synchronicity Access Control Guide

199

• <OldVault> is the URL of the old repository vault when you are controlling who
can move a vault. For example:
sync://host.mycom.com:5000/Projects/ASIC/layout1.

• <NewVault> is the URL of the new repository vault when you are controlling
who can move a vault. For example:
sync://host.mycom.com:5000/Projects/ASIC/layout2.

These parameters are used in when clauses in access allow and access deny
statements. (See Using Access Commands for details.)

The $MirrorActions variable can be used to control access to most of these actions.
See Access Controls for Groups of Commands for details.

The Mirrors Action

The Mirrors action controls whether users can access the mirror commands within the
DesignSync web interface or use them within the DesignSync command line clients.
Any users who create or maintain mirrors must be granted access to this action.

The AddMirror Action

The AddMirror action controls whether users can create mirrors. Users without
AddMirror access cannot create mirrors using the Create Mirror panel in the
ProjectSync GUI and cannot execute the mirror create command.

Note: In addition to this permission, users adding new mirrors must also have
Mirrors access.

The EditMirror Action

The EditMirror action controls whether users can edit a mirror definition. Users
without EditMirror access cannot edit mirrors using the Edit Mirror panel in the
ProjectSync GUI and cannot execute the mirror edit command.

Note: In addition to this permission, users editing mirrors must also have Mirrors
access.

The ModifyMirror Action

The ModifyMirror action controls whether users can enable, disable, rename, or
reset a mirror. Users without ModifyMirror access cannot perform these operations
from the ProjectSync GUI and cannot execute the mirror enable, mirror
disable, mirror rename, or mirror reset commands.

Access Controls for the Mirror System

200

Note: In addition to this permission, users modifying mirrors must also have Mirrors
access.

The DeleteMirror Action

The DeleteMirror action controls whether users can delete a mirror. Users without
DeleteMirror access cannot perform this operation from the ProjectSync GUI and
cannot execute the mirror delete command.

Note: In addition to this permission, users deleting mirrors must also have Mirrors
access.

The ViewMirror Action

The ViewMirror action controls whether users can view a mirror definition or status.
Users without ViewMirror access cannot view mirrors or get mirror status from the
ProjectSync GUI and cannot execute the mirror ismirror, mirror isenabled,
mirror list, mirror get, mirror status or mirror wheremirrored
commands.

Note: In addition to this permission, users viewing mirrors must also have Mirrors
access.

The PrimaryMirrorFetch Action

The PrimaryMirrorFetch action controls how secondary mirrors fetch versions from
the cache. The optional FullCacheName option is reserved for future use.

Note: In addition to this permission, users fetching mirrors must also have Mirrors
access.

Example

The following access rules ensure that only the project leaders can create a mirror of
the ASIC project:

access init {
 set projectLeaders { chan kapoor }
}

access deny AddMirror everyone when Vault
"sync://host.mycom.com:5000/Projects/ASIC/*"

access allow AddMirror only users $projectLeaders \
 when Vault "sync://host.mycom.com:5000/Projects/ASIC/*"

ENOVIA Synchronicity Access Control Guide

201

The first rule ensures that no one can create a mirror for the ASIC project. The second
rule builds on the first and allows project leaders, as defined using access init, to
create mirrors of the project. (See Using Access Commands for details on using
access init to create custom variables.)

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them. See the
$SYNC_DIR/share/examples/ExampleAccessControl file for more examples of
using access controls with mirrors.

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

Access Controls for Groups of Commands
You may want to grant or deny complete access to Mirror actions, to some set of users.
Variables defined in the default DesignSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.ds

make it more convenient to set the same access rights on Mirror actions.

Predefined Variables

The default AccessControl.ds file defines the variable $MirrorActions,to
control most of the mirror actions:

set MirrorActions "AddMirror EditMirror DeleteMirror
ModifyMirror ViewMirror Mirrors"

For example, you could use this variable to ensure that only your Admin can add, edit,
delete, modify, or view mirrors:

access deny $MirrorActions everyone
access allow $MirrorActions only users $admin

Related Topics

Access Controls for the Mirror System

202

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

203

Access Controls for DesignSync Projects
Access Controls for DesignSync Projects
The default DesignSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.ds

defines the following actions to control management of DesignSync Projects.

DesignSyncProjects

DesignSyncProjects provides browse access to the DesignSync Project menus in the
DesignSync Web interface and the sws commands within the OS shell. Users who
need to create or manage DesignSync Projects must be granted DesignSyncProjects
access.

access define DesignSyncProjects

By default, DesignSyncProjects access is enabled for everyone.

AddProjectInstance

AddProjectInstance determines who can add a new DesignSync Project instance.

Note: In addition to this permission, users adding DesignSync Project instances must
also have DesignSyncProjects access.

access define AddProjectInstance {Object Vault Path}

Where:

 Object is the project instance name

Vault is the URL of the vault/module

Path is the path to the project instance

By default, everyone is allowed to add DesignSync Project instances.

ModifyProjectInstance

ModifyProjectInstance determines who can modify a DesignSync Project instance.

Access Controls for DesignSync Projects

204

Note: In addition to this permission, users modify DesignSync Project instances must
also have DesignSyncProjects access.

access define ModifyProjectInstance {Object Vault Path}

Where:

 Object is the project instance name

Vault is the URL of the vault/module

Path is the path to the project instance

By default, everyone is allowed to modify DesignSync Project instances.

DeleteProjectInstance

DeleteProjectInstance determines who can delete a DesignSync Project instance.

Note: In addition to this permission, users delete DesignSync Project instances must
also have DesignSyncProjects access.

access define DeleteProjectInstance {Object}

Where:

 Object is the project instance name

By default, everyone is allowed to modify DesignSync Project instances.

Access Controls for Groups of DesignSync Projects
Commands
You may want to grant or deny complete access to DesignSync Projects actions, to
some set of users. Variables defined in the default DesignSync access control file:

$SYNC_DIR/share/AC_Components/AccessControl.ds

make it more convenient to set the same access rights on DesignSync Project actions.

Predefined Variables

ENOVIA Synchronicity Access Control Guide

205

The default AccessControl.ds file defines the variable
$DesignSyncProjectActions,to control most of the mirror actions:

set DesignSyncProjectActions “DesignSyncProjects
AddProjectInstance ModifyProjectInstance DeleteProjectInstance”

For example, you could use this variable to ensure that only your Project Administrators
can access, add, delete, or modify, DesignSync Projects.

access allow $DesignSyncProjectActions everyone
access allow $DesignSyncProjectActions only users $ProjAdmin

Related Topics

Access Control Scripting

Sample Access Controls

Setting Up Access Controls

Using Access Commands

206

Access Controls for the Server
Server Action Definitions

Server Action Definitions

You set up access controls on particular actions, or operations related to server
processes. To set up an access control on an operation, the operation must have an
action definition specified with an access define command. If an action definition
exists for an operation, you can control access to that operation using the stcl access
allow, access deny, and access filter commands. You can control access to
operations on module data by using the access decline command.

DesignSync provides predefined actions corresponding to most server operations you
might want to access control. These actions are defined in the default access control file
for sever authentication:

$SYNC_DIR/share/AC_Components/AccessControl.auth

See Introduction to Access Control for details on the individual files used to define
access controls.

Important: Do not edit the
$SYNC_DIR/share/AC_Components/AccessControl.auth file; changes will be
lost upon upgrading. Instead, edit your site or server custom AccessControl file (see
Setting Up Access Controls).

Server Actions Governed by access controls

To control access to this operation... Customize this access control...
suspend suspend

See Suspending Server Activity Access
Control for details.

Server User Authentication See User Authentication Access
Controls and User Authentication Action
Definitions for details.

Non-SSL Server Authentication See Access Controls for Secure
Communications for details.

Related Topics

ProjectSync Action Definitions

DesignSync Action Definitions

ENOVIA Synchronicity Access Control Guide

207

Modules Action Definitions

Suspending Server Activity Access Control

The default server-level access control file:

$SYNC_DIR/share/AC_Components/AccessControl.auth

 defines a single access-control actions for suspending server activity.

Do not edit the AccessControl.auth file; changes will be lost upon upgrading.
Instead, edit your site or server custom AccessControl file (see Setting Up Access
Controls).

The access control action for suspending server activity is:

access define Suspend {Mode}

By default, all users are granted suspend access:

access allow Suspend everyone

Note: If you restrict the suspend access and you run automated backups, you must
allow suspend access for the user 'nobody,' the "user" who runs the automated
backups. For more information see the ENOVIA Synchronicity DesignSync
Administrator's Guide: Procedure for Defining Automatic Backups

Example

This examples allows access for 'nobody' who runs the automated backup scripts, and
the syncmgr account.

access allow Suspend only users {nobody,sysmgr} -because "Only
Administrators are allowed to suspend the server"

User Authentication Access Controls

You can use access controls to define the level of user authentication required to
access project data on a SyncServer. You cannot set up user authentication to control
access to client vaults.

User authentication is defined on a per-SyncServer basis. The first time a user tries to
access server data, the user must satisfy the level of authentication required by that

Access Controls for the Server

208

server. Authentication takes place each time a user starts a new server session or
accesses a different server.

The default server-level access control file is:

$SYNC_DIR/share/AC_Components/AccessControl.auth

For DesignSync, the default access controls allow username-only authentication for any
user, from any IP address. For ProjectSync, the default access controls allow
username/password authentication for any user, from any IP address.

DesignSync provides the following access-control actions for user authentication:

• AuthUnm - Controls username-only authentication.

In username-only mode, users are never prompted for authentication information.
The user's login account name is automatically passed to the server. Users do
not need a ProjectSync user profile on the server for username-only access.

ProjectSync does not allow username-only authentication.

If AuthUnm is allowed only for certain users and if a user's operating system
login name is not on the allowed list, then that user is prompted to log in. The
login username and password must match the username and password in that
user's ProjectSync user profile.

• AuthPwd - Controls username/password authentication.

In username/password mode, users are prompted for their username and
password the first time they attempt to access a server. The user's username
and password must correspond to a ProjectSync user profile. All users accessing
the server must have user profiles, as created from ProjectSync, on that server.

• AuthAll - Lets you set the same access control for both username-only and
username/password authentication.

For both username-only and username/password authentication, you can further
restrict access to a server based on the IP address of the users' machines.

The sample access control file,
<SYNC_DIR>/share/examples/ExampleAccessControl, contains examples of
user-authentication access controls. See Sample Server Access Controls for additional
examples.

Related Topics

ENOVIA Synchronicity Access Control Guide

209

Sample Server Access Controls

Setting Up Access Controls

User Authentication Action Definitions

Using Access Commands

User Authentication Action Definitions

The default server-level access control file:

$SYNC_DIR/share/AC_Components/AccessControl.auth

 defines the access-control actions for user authentication.

Do not edit the AccessControl.auth file; changes will be lost upon upgrading.
Instead, edit your site or server custom AccessControl file (see Setting Up Access
Controls).

The following are the access-control action definitions for user authentication:

• Username-only authentication:

access define AuthUnm {client_ip}

• Username/password authentication:

access define AuthPwd {client_ip}

• Both username-only and username/password authentication.

set AuthAll {AuthUnm AuthPwd}

The AuthAll variable lets you set the same access control on both AuthUnm
and AuthPwd actions.

where <client_ip> is the IP address for the client you want to grant or deny access.

You can use these actions in your custom AccessControl file to specify how users
are authenticated.

Example

The following access rules ensure that only users from a trusted IP address can access
the DesignSync server:

Access Controls for the Server

210

access deny $AuthAll everyone
access allow AuthPwd everyone when client_ip 10.1.1.*

In this example, the first rule denies access to all users for all types of authentication.
The second rule then opens username and password access to all users who access
the server from an IP address beginning with 10.1.1.

See the sample access control file,
$SYNC_DIR/share/examples/ExampleAccessControl, for more examples of
how to set up user authentication. See Sample Server Access Controls for additional
examples.

Related Topics

Access Control Scripting

DesignSync Action Definitions

Sample Access Controls

Sample Server Access Controls

Setting Up Access Controls

User Authentication Access Controls

Using Access Commands

Access Controls for Secure Communications

The default server-level access control file:

$SYNC_DIR/share/AC_Components/AccessControl.auth

defines a single action to control cleartext (Non-SSL) communications:

access define NonSSL <client_ip>

Where <client_ip> is the IP address of the system accessing the ProjectSync
server.

By default, SyncServers allow cleartext (non SSL) communications for every user, from
any IP address. When the non-SSL access control is set and communications require
the use of a secure port, the SyncServer automatically redirects the communications to
the SSL port.

ENOVIA Synchronicity Access Control Guide

211

Example

The following access rules require that communications from outside networks be SSL
(secure) communications, except for communications from a local network address:

access deny NonSSL everyone

access allow NonSSL everyone when client_ip 10.1.1.*

The first rule ensures that all system accessing the ProjectSync server must use SSL.
The second rules builds on the first to allow cleartext access from within the local
network.

See Sample Server Access Controls for additional examples.

For additional information on secure communications, see ENOVIA Synchronicity
Administrator's Guide: Overview of Secure Communications.

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

Related Topics

Access Control Scripting

DesignSync Action Definitions

Sample Access Controls

Sample Server Access Controls

Setting Up Access Controls

User Authentication Access Controls

Using Access Commands

Example Server Access Controls

Sample Server Access Controls

Sample access controls are provided in:

$SYNC_DIR/share/examples/ExampleAccessControl

Access Controls for the Server

212

You can use this sample ExampleAccessControl file as a template for creating
access control files.

This topic provides examples of server-level access controls and scripts that you might
put in your custom AccessControl file:

Setting Up User Name and Password Authentication

Requiring Log Ins and Restricting Revision Control to Project Leaders

Denying or Allowing Access by Users

Granting Access to Specific Clients

Restricting Operations Based on Client IPs

Setting Up User Name and Password Authentication

The following statement in your site or server AccessControl file turns on user name
and password authentication. The server's administrator creates a ProjectSync user
profile for each user who is allowed access to the server. Only users whose name and
password match a user profile are allowed to access the server.

access deny AuthUnm everyone

Requiring Log Ins and Restricting Revision Control to Project Leaders

Including the statements below in your site or server AccessControl file restricts
server access to a selected list of users. Then, of those users, only those listed as
project leaders can perform revision control operations.

Define a list of privileged users
access init {
 set projectLeaders user1 user2 user3
}

Require everyone to log in based on their ProjectSync
User Profile by preventing user name-only authentication
access deny AuthUnm everyone

Once successfully logged in, only project leaders can
access the server for revision control operations
access allow $DesignSyncActions only users $projectLeaders

Denying or Allowing Access by Users

ENOVIA Synchronicity Access Control Guide

213

To use the purge command, users must have access to the Delete action when the
type is VERSION. To set up this access, enter an access control like the following in
your site or server AccessControl file:

Only users specified on the delversusrs list can delete
versions
access init {
set delversusrs [list syncmgr jane tjones]
}
access allow Delete only users $delversusrs when Type VERSION

This statement permits only the users syncmgr, jane, and tjones to delete versions,

Granting Access to Specific Clients

The following statements in your site or server AccessControl file turn off all access
to a server and then selectively grant access to specific clients:

access deny AuthAll everyone
access allow AuthPwd everyone when client_ip 10.1.1.*

Restricting Operations Based on Client IPs

Problem

To secure your server's data, you might want to restrict particular operations based on
the client's IP address, specified by the <client_ip> parameter. However, most
actions you might try to restrict, such as Checkin and Checkout, do not pass the
<client_ip> parameter; only the AuthUnm and AuthPwd actions pass the
<client_ip> parameter.

Solution

The following script restricts check-ins and checkouts on objects within the Asic project
to the client whose IP address is 9.9.9.9:

Allow only IP number 9.9.9.9 for project Asic
access filter {Checkin Checkout} {
 puts "CLIENTIP is $::SyncAC::CLIENTIP, Object is $Object"
 if {[string match *:///Projects/Asic/* $Object]} {
 if {![string match 9.9.9.9 $::SyncAC::CLIENTIP]} {
 return DENY
 }
 }
 return UNKNOWN
}

Access Controls for the Server

214

Set up filter for AuthUnm which sets a var CLIENTIP
access filter [list AuthUnm AuthPwd] {
set ::SyncAC::CLIENTIP $client_ip
return UNKNOWN
}

Discussion

The AuthUnm and AuthPwd access filter is a user and password authorization access
filter that passes the <client_ip> variable to the filter script. This access filter script
creates the CLIENTIP global variable within the SyncAC namespace (denoted with the
::SyncAC Tcl syntax) . You use the ::SyncAC namespace rather than the global
namespace (denoted with the :: Tcl syntax) because the global namespace is reset
upon every request whereas the SyncAC namespace persists.

Note that this AuthUnm and AuthPwd access filter must be the last access filter
processed for the AuthUnm and AuthPwd actions in order for the CLIENTIP global
variable to be set. All access filters with side effects such as setting this global variable
must be the last filter of their type processed. Thus, you might want to include a filter
with side effects such as this at the end of the server AccessControl file, rather than the
site AccessControl file since the server AccessControl has precedence over the site
AccessControl file.

Also note that UNKNOWN is used instead of ALLOW.

The Checkin and Checkout access filter script checks this CLIENTIP global variable
against the allowed client IP address, 9.9.9.9. The script checks whether the <Object>
(passed from the Checkin and Checkout actions) is included in the Asic project.

You can enhance this script by setting up an access init statement to specify a list
of valid client IP addresses:

access init {
 set ValidClientIPs "9.9.9.9 20.6.5.3"
}

You can then use a Tcl lsearch statement within the access filter script to verify that
the <client_ip> parameter is included in the <ValidClientIPs> namespace
variable.

215

Access Control for ACAdmin
ACAdmin Action Definitions

Access Controls for Groups of Commands

You might want to grant or deny complete access to ACAdmins actions for users or
groups who set up and maintain ACAdmin definitions. ACAdmin provides a a command
group that contains all the Access rights needed for full access to ACAdmin
functionality.

You also can create your own variables for sets of commands in your custom
AccessControl file.

Predefined Command Groups

The default command groups defines these command to control ACAdmin actions:

set ACAEditActions {AcaCatPrmDef AcaCmdCatDef AcaCmdDef
AcaCmdFilterDef AcaUserGroupDef}

set ACAActions "$ACAEditActions AcaViewDef ResetAccessControls"

Another variable, $AllActions, controls all ProjectSync actions, as well as all
DesignSync and module actions that have an Object parameter ($CmdActions). The
$AllActions variable is defined in the AccessControl.ps file. See Access Controls
for Groups of Commands in the ProjectSync section for details.

Custom-Defined Variables

In your custom AccessControl file, you can use the set command to create
variables that represent your own groupings of access control actions.

For example, to create a variable that controls the ability to move and remove module
members, you could specify:

set ModuleMoveActions {MemberRename MemberRemove}

You can then use the variable $ModuleMoveActions in your access control rules.

You also can create variables that include other variables. However, when declaring a
list that requires variable substitution, you must enclose the list in quotation marks, not
curly braces. (Curly braces prevent variable substitution.) For example:

set ModuleDesignerActions "$CmdActions $ModuleMoveActions Tag"

Access Control for ACAdmin

216

Related Topics

Modify User Groups

Modify Command Category

Customizing ACAdmin

217

Access Control Commands
Access Command Details
The following table lists the access commands. Select a linked access command name
to view the description of the command.

Action Definition Commands

access define Defines new actions to be access controlled. Most actions are
predefined in the AccessControl file included with
DesignSync.

access init Defines namespace variables and procedures for use in
access filter statements.

access global Defines global variables and procedures that can be called
within access filter statements.

set <group_action> Defines a variable used to represent a group of individual
actions.

.
Access Rule Commands

access allow | deny Allows or denies access to a specified list of actions.
access decline Causes additional access rules to be invoked.
access db_filter Allows or denies access to viewing or editing notes based on

specified filters.
access filter Allows or denies access based on specified filters. (Use access

db_filter for viewing or editing more than one note.)

Access Commands Used Outside the AccessControl File

access reset Updates access controls without forcing you to stop and restart
the SyncServer.

access verify Checks whether the specified user is allowed to perform an
action.

218

Secure Access Control
Subscribing to Secure Access Control Revision Control
Notes
Whenever an Access Reset is performed, a new version of the consolidated rules set is
checked in to the Access Control Vault, and ‘ci’ Revision Control (RC) Note will be
created. You can subscribe to this RC note to receive an email update whenever the
Access Control vault is updated.

Subscribing to Secure Access Control RC Notes:

1. Open the DesignSync WebUI and log in as the administrator or user with
permission to create RC note subscriptions.

2. Select the Admin Menu and open the User Profiles section.
3. Select Email Subscriptions | Add New Subscriptions.
4. Select the following options as shown in the image

When the following command are executed... ci
...on any of the following objects
sync:///SYNC/AccessControl

Tip: If you Browse for The Access Control vault, it is located in the SYNC object.
5. Click Subscribe to save the subscription.

ENOVIA Synchronicity Access Control Guide

219

Unsubscribing to Secure Access Control RC Notes:

1. Open the DesignSync WebUI and log in as the administrator or user with
permission to create RC note subscriptions.

2. Select the Admin Menu and open the User Profiles section.
3. Select Email Subscriptions.
4. Your subscription will appear in the Subscription status list. Click the checkbox

next to Delete.
5. Submit Deletions to remove the subscription.

Enabling/Disabling Secure Access Control
Secure Access Control is enabled when the server is started or reset with a .ac file in
the Access Control directory. When DesignSync sees this file, it starts Access Control in
secure mode.

IMPORTANT: The permissions on the file should be set so that only authorized
administrators can remove the file.

To enable secure access control, create the .ac file in the syncdata directory:

$> touch
syncdata/<host>/<post>/server_vault/SYNC/AccessControl/.ac

where:

• host is the simple server name of the server.
• port is the port number configured for the server.

To disable secure access control, remove the .ac file from the syncdata directory:

$> rm
syncdata/<host>/<post>/server_vault/SYNC/AccessControl/.ac

where:

• host is the simple server name of the server.
• port is the port number configured for the server.

Format of Consolidated Rule Set
The consolidated rules set includes all the components of the AccessControl files:

Secure Access Control

220

• access definitions
• global procedures/variables
• initialization procedure/variables
• allow/deny/decline/filter/db_filter rules

The majority of the changes to the access control rules will be made to the original files
and the system will then create the consolidated file, however the format of the file is
provided here for reference purposes.

The consolidated rule set users the following format:

<GLOBALS SECTION>

<ACTION SECTION> [...]

Globals

The Globals section contains any global procedures or variables defined using the
access globals coimmand.

Actions

Each action section includes the following:

• Name of the Action
• Access Definition, including a comment showing the full path of the file from which the

definition comes.
• Initialization Procedures, including a comment showing the full path of the file from

which this initialization procedure comes.
• Rules for Processing including the full path of the file from which the rule comes, and, if

the access control rule loads another file, the path to that file as well.

The order of the set of rules as read from the original Access Control files is significant
and is preserved in the consolidated rule set so that the rules are correctly applied.

Related Topics

Sample Consolidated Rule Set

Sample Consolidated Rule Set
This is a sample of what the consolidated rule set file might look like. It is not intended
as an example of how you should set up your Access Control rules. Your access
control rules should be set up as usual, in the custom Access Control files..

ENOVIA Synchronicity Access Control Guide

221

Source the common utilities for access db_filter

the individual acLeaves files also defined there

foreach ACtcl [locate -all -reverse share/tcl/AC.tcl] {

 source $ACtcl

}

File: /home/syncadmin/syncinc/linux_a64/share/tcl/AC.tcl

access global {
 # Setup db_filter API for all actions
 access init {
 if { [info exists __accName] } {
 # Alias all API functions
 set api [list ALLOW_ALL DENY_ALL ALLOW DENY FOREACH_NOTE
FOREACH_UNKNOWN SINGLE_NOTE]
 foreach fn$api {
 interp alias {} $fn {} ::SyncAC::$fn $__accName
 }
 set api [list GET_NOTES FILTERED_IDS]
 foreach fn $api {
 interp alias {} $fn {} ::SyncAC::$fn
 }
 }
 }
}

#########################
Action: MemberCheckoutLock
#########################

File:
/home/syncadmin/syncinc/linux_a64/share/AC_Components/AccessCont
rol.hcm

access define MemberCheckoutLock {Object NaturalPath}

File:
/home/syncadmin/syncinc/linux_a64/share/AC_Components/AccessCont
rol.hcm

access allow MemberCheckoutLock everyone

Secure Access Control

222

#########################

...

#-----------------------------

Action: Mkmod

#------------------------------

File:
/home/syncadmin/syncinc/linux_a64/share/AC_Components/AccessCont
rol.hcm

access define Mkmod {Object}

File:
/home/syncadmin/syncinc/linux_a64/share/AC_Components/AccessCont
rol.hcm

access allow Mkmod everyone

File:
/home/syncadmin/syncinc/linux_a64/custom/servers/serv1/2647/shar
e/AccessControl.freeze

access deny Mkmod everyone when Object
{sync:///Modules/SYNC/DevelopmentSettings/Templates/ENOVIA/Analo
g;*} -because {The module is frozen so cannot be modified.}

#---------------------------

...

223

Troubleshooting Access Controls
Troubleshooting Access Controls
The following sections contain hints for debugging problems with your custom access
controls

Resetting Access Controls

When you customize the custom AccessControl files, you must reset the access
controls to reapply the changes. So, if you have recently modified an AccessControl
file and you do not see the changes, reset your access controls using one of the
following methods:

• Execute the access reset command in a server-side Tcl script.
An access reset lets you update access controls without forcing you to stop
and restart the SyncServer

• Click the Access Reset option in the ProjectSync menu if you are a ProjectSync
user.
The Reset Server option (in the ProjectSync menu) also updates access
controls, along with other customizations.

Note: These options appear in the ProjectSync menu only if you have
permissions to reset the access controls. (See Access Controls for Server
Administration for details.)

Since AccessControl files are also read when server child processes are
spawned, you must Access Reset or Reset Server after modifying custom
access controls. Otherwise the end users might see inconsistent access control
behavior.

• Stopping and restarting the SyncServer.

Checking Access Control File Syntax

If your access control rules are not working, review the syntax and check for typos. The
elements of AccessControl files are case sensitive, so take care when typing in
command strings.

If one of your custom AccessControl files contains a syntax error, you see an
Operation Failed panel with some Tcl stack information. This information includes path
to the AccessControl file and the line number where the error was encountered. For
example:

Troubleshooting Access Controls

224

Tcl Stack:
access deny: action everyone is not defined
 while executing
"access deny everyone AddUser"
 (file "/u1/ProjSync/custom/site/share/AccessControl" line
368)

ProjectSync sometimes passes in the asterisk (*) qualifier to the access verify
command when the value of a parameter is not yet known; therefore, your access
commands must account for this value. See Using Access Command Qualifiers for
more information.

See Setting Up Access Controls for information on creating your own custom
AccessControl files. See Using Access Commands for a list of the access
commands and examples of how to use them.

Reviewing Log Files

When you first create or later change a custom AccessControl file, check for errors in
the error log files after invoking the server for the first time. You can check both the
server metadata log file and the main Apache server log file.

Server Metadata Log File

You can find access control error messages in the SyncServer's error_log file. The
default location for <ServerMetaDataRoot> is:

$SYNC_DIR/../syncdata/<host>/<port>/server_metadata

If the log file is not at the above default location, look in the PortRegistry.reg file for
the server metadata directory:

$SYNC_CUSTOM_DIR/servers/<host>/<port>/PortRegistry.reg

This file contains the registry key:

HKEY_LOCAL_MACHINE/Software/Synchronicity/Directories/ServerMeta
DataRoot

The value of this key is the location of the server metadata directory containing the log
file.

Apache Server Log File

The SyncServer is built on top of the Apache server. Therefore, access control error
messages also are written to the default Apache server log file:

ENOVIA Synchronicity Access Control Guide

225

$SYNC_CUSTOM_DIR/servers/<host>/<port>/logs/error_log

Using Filter Scripts to Get Access Control Parameter Values

If an access control is not behaving as intended, you can print out the values of the
parameters of the access control action.

For example, the following access control rules are intended to allow only users in the
teamleaders group to check out and lock a Makefile for editing.

access init {
 set teamleaders {george linda}
}

access allow Checkout only users $teamleaders \
 when Object "*/Makefile" \
 when Lock "yes"

Unfortunately, this access allow rule fails to prevent team members who are not
team leaders from checking out Makefile objects with locks. To discover why the
access rule is not working, use the access filter command to print the values of the
Checkout action parameters to the SyncServer's error_log file.

For the Makefile example, the filter used to print out the Checkout parameters is:

access filter Checkout {
 puts "Lock = $Lock"
 puts "Object =$Object"
 return UNKNOWN
}

Note that the filter returns UNKNOWN instead of ALLOW. The ALLOW return value
overrides other rules. Instead, the UNKNOWN return value simply does not deny the
action; UNKNOWN defers to existing access control results for the action.

After resetting the access controls to apply the access filter above and having a team
member who is not a team leader successfully check out a Makefile with a lock, the
SyncServer's error_log file contains the following results:

Wed Nov 7 14:49:18 2001 | AccessControl: Lock = yes

Wed Nov 7 14:49:18 2001 | AccessControl: Object
=sync:///Projects/Asic/Makefile;1.1

Troubleshooting Access Controls

226

Notice that the "Object" value printed to the SyncServer's error_log file is of the form
"sync:///Project/<ProjName>/Makefile;1.1". Because the ";1.1" version is
specified at the end of the object's path, the when clause of the Checkout access
control (when Object "*/Makefile") does not match the actual Makefile object
being checked out.

To fix the Checkout access control, the object value must be edited as follows:

access allow Checkout only users $teamleaders \
 when Object "*/Makefile;*" \
 when Lock "yes"

Related Topics

access filter

Setting Up Access Controls

Using Access Command Qualifiers

Using Access Commands

227

Additional Information
Command Buttons
Button Description
Reset Resets the settings on the form back to their original default

values and clears any text fields.
Submit Sends the information on the form to the server.
Back Reloads the previous page without processing any of the

settings in the dialog.
Help Invokes help information for the dialog in a separate browser

window.
Show [type] Shows you a list of existing user groups or command

categories, as appropriate for the calling page.

228

Getting Assistance
Using Help
ENOVIA Synchronicity DesignSync Data Manager Product Documentation provides
information you need to use its products effectively. The Online Help is delivered
through WebHelp® , an HTML-based format.

When the Online Help is open, you can find information in several ways:

• Use the Contents tab to see the help topics organized hierarchically.
• Use the Index tab to access the keyword index.
• Use the Search tab to perform a full-text search.

Within each topic, Show and Hide buttons toggle the display of the navigation (left)
pane of WebHelp, which contains the Contents, Index, and Search tabs. Hiding the
navigation pane gives more screen real estate to the displayed topic. Showing the
navigation pane givens you access to the Contents, Index, and Search navigation tools.

You can also use your browser navigation aids, such as the Back and Forward
buttons, to navigate the help system.

Related Topics

Getting a Printable Version of Help

Getting a Printable Version of Help
The ENOVIA Synchronicity Access Control Guide is available in book format from the
ENOVIA Documentation CD or the DSDocumentation Portal available on the 3ds
support website (http://media.3ds.com/support/progdir/). The content of the book is
identical to that of the help system. Use the book format when you want to print the
documentation, otherwise the help format is recommended so you can take
advantage of the extensive hyperlinks available in the DesignSync Help.

You must have Adobe® Acrobat® Reader™ Version 8 or later installed to view the
documentation. You can download Acrobat Reader from the Adobe web site.

Contacting ENOVIA
For solutions to technical problems, please use the 3ds web-based support system:

http://media.3ds.com/support/

ENOVIA Synchronicity Access Control Guide

229

From the 3ds support website, you can access the Knowledge Base, General Issues,
Closed Issues, New Product Features and Enhancements, and Q&A's. If you are not
able to solve your problem using this information, you can submit a Service Request
(SR) that will be answered by an ENOVIA Synchronicity Support Engineer.

If you are not a registered user of the 3ds support site, send email to ENOVIA Customer
Support requesting an account for product support:

enovia.matrixone.help@3ds.com

Related Topics

Using Help

230

Index
A

Access Administrator 27

access controls

AdministrateServer 181

ResetAccessControls 181

SetOwner 91

command category

create 41

permission definitions 29

update 32

user groups

create 34

reset 54

Access Commands 217

access allow command 11, 217

access db_filter command 11, 217

access deny command 11, 217

access filter command 11, 217

access global command 11, 217

access init command 11, 217

access reset command 11, 217

access rules 11, 217

access verify command 11, 217

using 11

Access Controls 2

Enterprise DesignENOVIA push to
DesignSync 169

Enterprise synchronization 170

setting up 6

troubleshooting 223

AccessControl Files 2

creating custom files 6

B

Branch

access controls 82

modules 165

C

Cache

access controls 89

Check In

access controls 77, 80

Checkout

access controls 70

Command

ENOVIA Synchronicity Access Control Guide

231

Buttons 227

Command Categories

create 41

delete 46

existing 43

management 40

modify 44

update 48

Configurations

access controls 180

D

Data Replication

access controls 194, 196

Deleting

access controls 85

DesignSync

action definitions 63

groups of commands 99

projects

access controls 203, 204

duplicate workspace

access control 98

duplicatews

access control 98

E

Email

access controls 173

Enterprise Design

access controls 169, 170

Enterprise Design synchronization

access controls 170

Enterprise Development

createrefws 171

F

File

access controls 87

Folders

access controls 84

G

Groups of Commands

access controls 99, 150, 186, 201

creating 11

data replication 196

DesignSync Projects 204

Guide Organization 1

232

H

HCM

action definitions 117

Help

contacting ENOVIA 228

printing 228

using 228

Hierarchical References

access controls 125, 138, 142

L

Legacy Modules

access controls 146, 147, 148, 149

Lock Owners

access controls 75

module lock owner 158

Locking

access controls 75, 95, 129

locking module data 157

unlocking module data 160

Login

access controls 128, 140, 143

M

Merge Edge

access controls 130, 136

Mirrors

access controls 198

groups of commands 201

Module

access controls 117, 150

branching 165

browsing on the server 152

creating a new version 162

fetching content into a workspace 154

locking 157, 158, 160

members

tagging 166

module edge 167

rolling back 166

tagging 165

Module Views

access controls 121

N

NonSSL

access controls 210

Note Types

access controls 174

ENOVIA Synchronicity Access Control Guide

233

Notes

access controls 174

O

Owner

setting 91

P

Projects

access controls 180, 203

ProjectSync

action definitions 172

groups of commands 99, 186

Purge Command 211

Put 146

Q

Qualifiers

access command 18

R

Reports

access controls 185

Retiring

access controls 90, 96

Rollback 142

S

Scripts

access controls 105

troubleshooting 223

Secure Access

using 4

Server

access controls 67, 206, 207, 209,
210

T

Tag

access controls 92

module 165

module snapshots 166

Triggers

access controls 182, 186

Troubleshooting

access controls 223

U

Upgrade 145

Upload

access control 97

User Authentication

access controls 207

234

action definitions 209

User Groups

create 34

delete 38

existing 36

external 55, 56

management 32

modify 36

special 40

User Profiles

access controls 184

	Guide Organization
	ACAdmin
	Access Controls

	Access Control Basics
	Introduction to Access Control
	How Access Controls Work
	How the Access Controls Are Implemented
	Access Control Definition Files

	Using Secure Access Mode
	How Secure Access Control Works
	About the Access Control Vault
	How Access Commands Work with Secure Access Control Enabled
	Secure Access Control Revision Control Notes
	Related Topics

	Setting Up Access Controls
	Customizing AccessControl Files
	Access Control Search Order

	Using Access Commands
	The access Commands
	Action Definition Commands
	access define Commands for Individual Actions
	set Commands for Groups of Actions
	access init Commands for Custom Variables

	Access Rule Commands
	Allowing and Denying Access
	Declining Access
	Filtering Access Controls

	Access Command Details

	Using Access Command Qualifiers
	User Qualifiers
	Using access allow|deny without the only Qualifier

	Parameter Qualifiers
	The * Parameter Qualifier
	The -because Qualifier

	Creating New Access Definitions
	Creating Access Definitions while Using DesignSync ACAdmin
	Creating Access Definitions while using DesignSync without ACAdmin
	Related Topics

	Enterprise DesignSync Access Maps
	Mapping DesignSync Commands for use with the Enterprise System

	Examples of Access Controls

	Access Administrator (ACAdmin)
	Access Administrator Overview
	Permission Management
	Object-Oriented AccessControl Management
	Permission Definitions
	Update Permission Definitions

	User Group Management
	User Group Management
	Create User Groups
	Existing User Group
	Preview Pending User Group Updates
	Modify User Groups
	Delete User Groups
	Special User Groups

	Command Category Management
	Category Management
	Create Command Category
	Existing Command Categories
	Modify Command Category
	Delete Command Category
	Preview Pending Command Category Updates

	Custom Command and Filter Management
	Custom Command Management
	Custom Command Definitions
	Command Filter Management
	Custom Command Filter Definitions
	Edit Custom Command Filter Definitions

	ACAdmin Reset
	Customizing ACAdmin
	Customizing ACAdmin
	Defining External Users using the aca_xusers.def File
	Defining External Groups Using the aca_common_groups.def File
	Customizing Adaptable Functions using the acaCallbacks.tcl File
	Provide a custom filter list using cbGetGroupFilter
	Provide list of external users using cbGetExtUsers
	Provide list of external users groups using cbGetExtUserGroups
	Adding External Groups
	Example of Adding External Groups with cbGetExtUserGroups

	Defining Custom Access Control Commands with the aca_commands.def File
	Example

	Setting Tunable Parameters in the acaConfigCustom.tcl File
	Common tunable parameters
	Internal parameters
	Command Related Settings

	Custom AccessControl Extension Filters
	Related Topics

	Access Controls for DesignSync Commands
	DesignSync Action Definitions
	DesignSync Action Definitions
	Access Controls for Browsing the Server
	Defining and Using the Access Control
	Examples using Access Control Files

	Defining Enterprise Access Map
	Related Topics

	Access Controls for Checking Out
	Using Checkout and CheckoutLock Access Controls
	Checkout Access Control
	CheckoutLock Access Control
	Enterprise Design Access Map

	Access Controls for Changing a Lock Owner
	Access Controls for Checking In
	DesignSync Access Controls
	Example using Access Control Files

	Enterprise Design Access Map

	Access Controls for Changing a Checkin Comment
	Defining and Using the Access Control
	Example

	Defining the Enterprise Access Map

	Access Controls for Creating Branches
	Defining and Using the Access Control
	Defining the Enterprise Access Map
	Related Topics

	Access Controls for Creating Folders
	Access Controls for Deleting
	Access Controls for Moving a File
	Access Controls For Object Caching
	Related Topics

	Access Controls for Retiring
	Access Controls for Setting Owners
	Defining and Using the SetOwner Access Control
	Defining the Access Map

	Access Controls for Tagging
	Defining and Using the Access Control
	Example

	Defining the Enterprise Access Map

	Access Controls for Unlocking
	Defining and Using the Unlock Access Control
	Defining the Access Map

	Access Controls for Unretiring
	Access Controls for Upload
	Additional Access Controls Required

	Access Controls for Workspace Duplication
	Additional Access Controls Required
	Defining Enterprise Access Map

	Access Controls for Groups of Commands
	Predefined Variables
	Custom-Defined Variables

	Example DesignSync Access Controls
	Sample Access Controls
	Denying or Allowing Access by Users
	Using when Clauses
	Using access filter with an access init Block
	Requiring Check-in Comments
	Using access filter to Check an Action
	Providing an Error message When Permission Is Denied

	Access Control Scripting
	Preventing Users From Checking into a Particular Branch
	Preventing Check-Ins of Unlocked Files (Forced Locking Model)
	Setting Up Access Controls for Projects
	Restricting Access to Parts of a Project
	Allowing Project Owners to Delete Project Vaults

	Access Controls for Modules
	Modules Action Definitions
	Modules Action Definitions
	Module Actions Governed by access controls

	Access Controls for Module Views
	Access Controls for Export/Import Operations
	Export/Import Actions Group
	ExportMod
	Additional Access Controls Required

	ImportMod
	Additional Access Controls Required

	MoveMod
	Additional Access Controls Required
	Enterprise Access Map

	FreezeMod
	Additional Access Controls Required
	Enterprise Access Map

	Access Controls for Adding Hierarchical References
	DesignSync Access Controls
	Examples

	Enterprise Design Access Map

	Access Controls for Adding Logins
	Access Controls for Locking a Module Branch
	Defining and Using the Lock Access Control
	Defining the Access Map

	Access Controls for Creating Merge Edges
	Defining and Using the Access Control
	Examples

	Defining the Enterprise Access Map
	Related Topics

	Access Controls for Creating Modules
	Access Controls for Moving Module Members
	Access Controls for Removing Module Members
	Access Controls for Removing Merge Edges
	Defining and Using the Access Control
	Examples

	Defining the Enterprise Access Map

	Access Controls for Removing Hierarchical References
	DesignSync Access Controls
	Examples

	Enterprise Design Access Map

	Access Controls for Removing Logins
	Access Controls for Removing a Module
	Defining and Using the Access Control
	Examples

	Defining the Access Map

	Access Controls for Reconnecting a Module
	Related Topics

	Access Controls for Rolling Back a Module
	Defining Enterprise Access Map

	Access Controls for Showing Logins
	Access Controls for Upgrading to Modules
	HCM Action Definitions for legacy modules
	Access Controls for hcm put
	Access Controls for hcm release
	Access Controls for hcm rmalias
	Access Controls for hcm rmconf

	Access Controls for Groups of Commands
	Predefined Variables
	Custom-Defined Variables

	Using DesignSync Access Controls with Modules
	Browsing Modules on a Server
	Accessing Modules
	Examples
	Related Topics

	Fetching a Module
	Using the Member Checkout Access Controls
	MemberCheckout Access Control
	MemberCheckoutLock Access Control

	Locking Module Data
	Changing a Module's Lock Owner
	Changing a module branch's lock owner
	Changing a module member's lock owner
	Examples

	Defining the Enterprise Access Map

	Unlocking a Module
	Unlocking a Module Branch
	Unlocking Module Contents

	Creating a New Version of a Module
	MemberCheckin Access

	Branching a Module
	Tagging a Module
	Tagging a Module Snapshot
	Rolling Back a Module
	Related Topics

	Making a Module Edge
	Related Topics

	Access Controls for the Enterprise Design System
	Access Controls for Enterprise Design Push to DesignSync
	Examples

	Access Controls for Enterprise Design Synchronization
	Access Controls for Enterprise Design Administration Reference Workspace Creation

	Access Controls for ProjectSync
	ProjectSync Action Definitions
	ProjectSync Action Definitions
	Access Controls for Email Administration
	Access Controls for Notes and Note Types
	The ViewNote Action
	The EditNote Action
	The EditNoteAttachments Action
	The AddNote Action
	The DeleteNote Action
	The SetNoteProperty Action
	The ModifyNoteProperty Action
	The ReviseNoteHistory Action
	The AdministrateNoteTypes Action

	Access Controls for Projects and Configurations
	Access Controls for Server Administration
	Access Controls for Triggers
	Access Controls for User Profiles
	Access Controls for Stored Reports

	Access Controls for Groups of Commands
	Predefined Variables
	Custom-Defined Variables

	Example ProjectSync Access Controls
	Sample Access Controls
	Controlling Who Can Perform Operations
	Controlling Who Can Edit Defects
	Controlling Who Can Close Defects
	Defining Custom Actions to Conditionalize Tcl Code

	Access Controls for the Data Replication System
	Access Control for Replication
	Replicate
	ReplicateAdd
	ReplicateData
	ReplicateRemove
	Related Topics

	Access Controls for Groups of Data Replication Commands
	Predefined Variables

	Access Controls for the Mirror System
	Access Controls for Mirrors
	The Mirrors Action
	The AddMirror Action
	The EditMirror Action
	The ModifyMirror Action
	The DeleteMirror Action
	The ViewMirror Action
	The PrimaryMirrorFetch Action

	Access Controls for Groups of Commands
	Predefined Variables

	Access Controls for DesignSync Projects
	Access Controls for DesignSync Projects
	DesignSyncProjects
	AddProjectInstance
	ModifyProjectInstance
	DeleteProjectInstance

	Access Controls for Groups of DesignSync Projects Commands
	Predefined Variables

	Access Controls for the Server
	Server Action Definitions
	Server Action Definitions
	Server Actions Governed by access controls

	Suspending Server Activity Access Control
	User Authentication Access Controls
	User Authentication Action Definitions
	Access Controls for Secure Communications

	Example Server Access Controls
	Sample Server Access Controls
	Setting Up User Name and Password Authentication
	Requiring Log Ins and Restricting Revision Control to Project Leaders
	Denying or Allowing Access by Users
	Granting Access to Specific Clients
	Restricting Operations Based on Client IPs

	Access Control for ACAdmin
	ACAdmin Action Definitions
	Access Controls for Groups of Commands
	Predefined Command Groups
	Custom-Defined Variables
	Related Topics

	Access Control Commands
	Access Command Details

	Secure Access Control
	Subscribing to Secure Access Control Revision Control Notes
	Enabling/Disabling Secure Access Control
	Format of Consolidated Rule Set
	Globals
	Actions
	Related Topics

	Sample Consolidated Rule Set

	Troubleshooting Access Controls
	Troubleshooting Access Controls
	Resetting Access Controls
	Checking Access Control File Syntax
	Reviewing Log Files
	Server Metadata Log File
	Apache Server Log File

	Using Filter Scripts to Get Access Control Parameter Values

	Additional Information
	Command Buttons

	Getting Assistance
	Using Help
	Getting a Printable Version of Help
	Contacting ENOVIA

	Index

