
1

ENOVIA DesignSync
CTS™ Programmer’s Guide

3DEXPERIENCE 2022

Release Information

4

©2021 Dassault Systèmes. All rights reserved. 3DEXPERIENCE®, the Compass icon, the 3DS logo, CATIA, SOLIDWORKS, ENOVIA, DELMIA, SIMULIA, GEOVIA, EXALEAD, 3D VIA, BIOVIA, NETVIBES,
IFWE and 3DEXCITE are commercial trademarks or registered trademarks of Dassault Systèmes, a French “société européenne” (Versailles Commercial Register # B 322 306 440), or its subsidiaries in the
United States and/or other countries. All other trademarks are owned by their respective owners. Use of any Dassault Systèmes or its subsidiaries trademarks is subject to their express written approval.

i

Table Of Contents
Release Information .. 1

Documentation .. 1

Selecting the appropriate release .. 1

Available Release-Specific Documentation ... 1

Locating the Release Specific Documentation .. 1

Introduction to the DesignSync Custom Type System .. 3

Installing Custom Type Packages ... 5

Installing Custom Type Packages ... 5

Developing Custom Type Packages ... 9

DesignSync Recognition of Custom Type Packages .. 9

Developing Custom Type Packages ... 12

Types Versus Object Types ... 12

CTP Namespaces .. 13

Required and Optional Procedures in CTPs .. 13

sctp Procedures ... 14

Utility Procedures for Recognizing Collection Data.. 14

Local Version Methodology ... 14

Ensuring Windows Compatibility.. 15

CTP Object Type Properties ... 17

CTP Object Properties .. 22

Debugging Custom Type Packages .. 25

Debugging Custom Type Packages .. 25

Table Of Contents

ii

Custom Procedures in CTPs ... 29

Custom Procedures in CTPs ... 29

mapViews Procedure .. 31

updateObject Procedure ... 33

members Procedure .. 35

Optional Custom Procedures in CTPs ... 37

Optional Custom Procedures in CTPs ... 37

contentsChanged Procedure ... 39

determineFolderType Procedure ... 40

getCurrentLocalVersion Procedure ... 42

getLocalVersionFromTags Procedure ... 45

localVersionChanged Procedure ... 47

operationBegin Procedure ... 48

operationEnd Procedure ... 49

processKeyFiles Procedure .. 50

recurse Procedure ... 51

relations Procedure ... 52

sctp Procedures Used in CTPs ... 55

sctp Procedures Used in CTPs ... 55

Object Info Procedures .. 57

Object Info Procedures .. 57

sctp::obj::collectionexists Procedure ... 58

sctp::obj::getprop Procedure ... 59

DesignSync Custom Type System Programmer's Guide

iii

sctp::obj::getprops Procedure ... 60

sctp::obj::name Procedure .. 61

sctp::obj::setprop Procedure ... 62

sctp::obj::setprops Procedure .. 63

sctp::obj::type Procedure ... 64

Object Set Procedures ... 65

Object Set Procedures .. 65

sctp::objset::addobject Procedure ... 66

sctp::objset::contains Procedure ... 67

sctp::objset::foreachfile Procedure .. 68

sctp::objset::foreachfolder Procedure .. 69

sctp::objset::getinfo Procedure .. 70

sctp::objset::names Procedure .. 71

General sctp Procedures ... 72

sctp::fileExists Procedure .. 72

sctp::getFolderType Procedure ... 73

sctp::glob Procedure ... 74

sctp::setKeyFiles Procedure .. 75

sctp::setTypeProps Procedure .. 76

Case Studies ... 77

Case Study Examples ... 77

Collection Example.. 78

Example: collection.ctp .. 79

Table Of Contents

iv

Library-View-Cell Example .. 84

Example: lvc.ctp .. 85

Local Version Example .. 99

Example: local.ctp ... 100

Index ... 107

1

Release Information
Documentation
Release-specific information is located on the Dassault Systèmes support website in the
Program Directory (http://media.3ds.com/support/progdir/). The Program Directory
contains release-specific information for all major DesignSync releases beginning with
V6R2009x.

Selecting the appropriate release
1. Open the Program Directory (http://media.3ds.com/support/progdir/). You may be

required to enter your username and password to access information on the 3ds support
site.

2. Select the following options in the top bar:

Select Line: Version 6
Select Level: V6R2014
Select Sub-Level: (use default)

Note: By default, the sub-level is always the most current version of the Program
Directory files for the selected Level. There should never be a reason that
information you need for a release is not in the most current version.

Available Release-Specific Documentation
The documents listed in the following table are available.

Product Enhancement
Overview

Contains the list of new features and enhancements
for the release.

General and Open Issues Contains any known release issues, platform
support information, platform configuration
information, and system configuration
recommendations for the release.

Closed Issues Contains a complete list of closed issues for the
release.

Installation Installation instructions for DesignSync clients on all
supported platforms. For server configuration
information, see the ENOVIA Synchronicity
DesignSync Administrator's Guide.

Locating the Release Specific Documentation

Release Information

2

Product Enhancement Overview

1. In the left frame, select ENOVIA in the Product Enhancement Overview Section. This
opens the Product Enhancement Overview index in the right frame.

2. Navigate to the IP Work-in-Progress section and select Synchronicity DesignSync Data
Manager, or use your browser search functionality to search for Synchronicity
DesignSync Data Manager. Selecting Synchronicity DesignSync Data Manager
opens the Product Enhancement Overview for DesignSync.

General and Open Issues

1. In the left frame, select ENOVIA in the General and Open Issues Section
2. Navigate to the IP Work-in-Progress: Semiconductor EDA section and select

Synchronicity DesignSync Data Manager (SYN), or use your browser search
functionality to search for Synchronicity DesignSync Data Manager. Selecting
Synchronicity DesignSync Data Manager (SYN) opens the General and Open Issues
for DesignSync.

Closed Issues

1. In the left frame, select List of Closed Issues in the Closed Issues Section.
2. Use your browser search functionality to search for Synchronicity. This will bring you to

the section of the closed issues list that includes the following products:

Synchronicity DesignSync (including DSclipse, and DSVS plug-ins)
Synchronicity DesignSync Add-On for DFII
Synchronicity DesignSync Add-On for DSMW
Synchronicity DesignSync Add-On for DSCC
Synchronicity DesignSync Add-On for CTS
Synchronicity ProjectSync

Note: Not all releases include closed issues for all DesignSync products.

Installation

1. In the left frame, select ENOVIA Server in the Installation Section
2. Select ENOVIA Synchronicity DesignSync Data Manager in the navigation links at

the top of the page or use your browser search functionality to search for ENOVIA
Synchronicity DesignSync Data Manager.

3. Select the Installing Synchronicity DesignSync Data Manager link to open the
Installation document.

3

Introduction to the DesignSync Custom Type
System
ENOVIA Synchronicity DesignSync® CTS(TM) is a programming interface used to
customize DesignSync to manage your unique design data. DesignSync lets you define
special object types and group files into abstract objects, such as a design view
encompassing a number of files. You can check in, check out, and tag this abstract
object, called a collection, as a single object. DesignSync safeguards your data by
preventing users from checking in the constituent parts of a collection. Instead, users
have to operate on the collection as a whole.

The Custom Type System can also be used to define special object types (files or
folders). For example, particular object types might need to be checked in together or
listed in a special way.

In effect, you use the Custom Type System to instruct DesignSync on the nature of your
design data. In this way, DesignSync can efficiently traverse your data hierarchy,
performing revision control operations on special objects or collections of your data.

To model your data, you create a Custom Type Package (CTP), a Tcl file containing
procedures that recognize and traverse your custom data hierarchy, creating new object
types and grouping the data into collections. You install the CTP within the DesignSync
custom hierarchy. When next you invoke a DesignSync client, the DesignSync Custom
Type System registers the CTP so that each revision control operation can now
recognize and manage the special types and collections defined in your CTP.

In order to create CTPs, you must develop Tcl procedures. This document assumes in-
depth knowledge of the Tcl programming language.

Important: When writing CTPs, you should not use any DesignSync commands that
depends on object recognition such as the URL commands or primary DesignSync
commands such as ci or populate. These commands rely on CTPs within DesignSync
and can set up a recursive loop situation.

Note on the use of this guide: References from the ENOVIA Synchronicity
DesignSync Data Manager Custom Designer User's Guide to the ENOVIA
Synchronicity Command Reference guide always link to the ALL version of the guide,
which contain information about all working methodologies for DesignSync. For more
information about the available working methodologies, see ENOVIA Synchronicity
Command Reference.

5

Installing Custom Type Packages

Installing Custom Type Packages
A Custom Type Package (CTP) is defined in a file with a .ctp extension, containing
the procs that recognize and handle a collection of data. By installing a CTP in the site
or project ctp area of your custom hierarchy, you register the CTP with the DesignSync
Custom Type System (CTS). If you make changes to the CTP, you need to restart your
client to force DesignSync to reread your .ctp file.

The following scenario shows how to install a sample CTP provided with this document.
 To create your own CTP, see Developing Custom Type Packages.

Where to install custom type packages

You can define a Custom Type Package for a particular project or for an entire site.
 You store the CTPs in the following locations in your DesignSync custom hierarchy:

• Project-level CTP:

<SYNC_PROJECT_CFGDIR>/ctp/<ctp_file>.ctp

• Site-level CTP:

<SYNC_SITE_CUSTOM>/share/client/ctp/<ctp_file>.ctp

<SYNC_PROJECT_CFGDIR> has no default; no project information is loaded if this
environment variable is not set. <SYNC_SITE_CUSTOM> is equivalent to
<SYNC_CUSTOM_DIR>/site; if <SYNC_SITE_CUSTOM> is not set, but
<SYNC_CUSTOM_DIR> is set, DesignSync can still access the site-wide CTP.

Note:

Unlike registry files and access control files, there is no implied search order for CTPs. If
you include a CTP of the same name in both the project and site ctp directories, CTP
registration fails. Also, if a CTP of the same name exists already in the DesignSync ctp
area (<SYNC_DIR>/share/client/ctp), CTP registration fails. Do not store custom
CTPs in the DesignSync <SYNC_DIR>/share/client/ctp area because your CTPs
will be overwritten if you reinstall DesignSync.

When are CTP files sourced?

Each .ctp file is sourced during initialization, or whenever a new client-sideTcl
interpreter is created. The DesignSync Custom Type System invokes the custom CTP

Installing Custom Type Packages

6

procedures (in the .ctp file) as appropriate during revision control operations and other
operations that traverse the data hierarchy.

To register a CTP:

The following steps show how to install and thus register a sample CTP.

1. Create a ctp directory to store your CTPs if the ctp directory has not yet been
created:

$ cd $SYNC_SITE_CUSTOM/share/client

$ mkdir ctp

$ cd ctp

This example shows how to store the CTP in the site ctp area, but you can store
the CTP in your project ctp area, as well: <SYNC_PROJECT_CFGDIR>/ctp.

2. Copy the collection.ctp sample CTP from the examples directory to your
custom ctp area:

$ cp $SYNC_DIR/share/examples/doc/ctsguide/collection.ctp .

Note: By default, $SYNC_SITE_CUSTOM resolves to
$SYNC_CUSTOM_DIR/site.

If you take a look at the contents of the collection.ctp file, you will notice the
following namespace eval command:

namespace eval collectionCTP {}

For a CTP to be registered, the namespace name must correspond to the CTP
filename. For example, if the CTP is named mycollectionCTP, it must be
stored in a file named mycollection.ctp. Notice that the procedures defined
in the collection.ctp file are in the collectionCTP namespace, for
example:

proc collectionCTP::getBase {filename} {
...
}

3. Invoke a DesignSync client (DesSync, stclc, stcl, dssc, or dss).

$ stclc

DesignSync Custom Type System Programmer's Guide

7

The DesignSync client is now configured to recognize the data represented by the
collection.ctp CTP.

See DesignSync Data Manager User's Guide to learn how to set vaults and check in
new design data. DesignSync will recognize the file structure of the data directory as
being a collection. The Custom Type System then maps this system view into a custom
view. The Custom Type System creates a collection object to represent the group of
files.

The collection object is visible within DesignSync, but not by listing the contents of the
file-system directory outside of DesignSync. Use the DesignSync graphical interface
List View or the DesignSync ls -report OX command to view the collection object and its
members. The collection is checked in as a whole; its constituent members are not
checked in separately. This process is called view mapping and for custom collections,
the CTP's custom mapView procedure performs this process. See DesignSync
Recognition of Custom Type Packages: What Is View Mapping?

What if the CTP was not installed before check-in?

If you check in your design files before the CTP is installed, DesignSync does not
recognize your design files as collections of related data. You can recover from this
circumstance by installing the CTP and checking in the data again using the ci -new
option (or the Allow check in of new items check box in the Check In dialog of the
DesignSync graphical interface). DesignSync recognizes the data as a collection
representing the CTP and checks in the collection as a single entity.

9

Developing Custom Type Packages

DesignSync Recognition of Custom Type Packages
DesignSync recognizes custom object types, collections, and collection members by
applying the object recognition procedures the CTP developer includes in the .ctp file.
 The CTP developer creates procedures that traverse the data hierarchy and recognize
data objects and collection members. Two important procedures the CTP developer
creates are the mapViews and updateObject procedures which recognize specific
file and directory attributes as those of a particular collection and perform view
mapping.

What Is View Mapping?

There are two types of view mapping performed by the CTP:

• View mapping of a directory

The mapViews procedure performs view mapping on the objects in a directory.
 The mapViews procedure detects data that matches particular criteria for
special objects or collections. The mapViews procedure performs view mapping
each time a DesignSync command browses a directory.

• View mapping of a single object

The updateObject procedure performs view mapping on a single object.
 DesignSync commands invoke the updateObject procedure to request
information on a specific object.

If the mapViews or updateObject procedures detect data that matches the special
object or collection criteria, they map the system view of the data onto a custom view.
The view mapping process generates this custom view by creating new objects, called
collections, and assigning custom properties to existing objects, for example, by
marking existing objects as special objects or collection members.

The Custom View of the Collection Data

The view mapping process generates a custom view of the data containing:

• Special objects

CTPs can define special object types (files or folders) recognized by the view
mapping algorithm. The view mapping algorithm assigns special properties to
these objects.

DesignSync Recognition of Custom Type Packages

10

• Collection objects

Collection objects are new objects the mapViews procedure generates.
 Collection objects are named with the format
<object>.sgc.<collectiontype>, where:

<object> is the base name of the object, for example, a cell or view name.

sgc indicates a custom collection defined in a Custom Type Package.

<collectiontype> is the collection name defined in a Custom Type Package
(CTP).

An example of a custom generic collection object is symbol.sgc.mytool.

This collection object is the handle by which DesignSync accesses all of the
members of the collection. DesignSync performs revision control operations on
the collection object, not its constituent members. The collection object does not
exist as a regular file on the file system; you can only manage or view the object
using DesignSync commands. Use the DesignSync List View or the ls -
report OX text command to view collection objects.

• Collection members

Collection members are the constituent objects of a collection. During view
mapping, the mapViews procedure applies properties to the members, including
their object types (objtype), such as "mytool Member". The developer of the
mapViews procedure decides which properties to set during the view mapping
process. Specifically, the CTP developer must ensure that the object type for
collection member files is non-versionable by either defining its objtype
property such that it ends in " Member" (note the space before the M) or by
using sctp::setTypeProps to set its versionable property to 0. See CTP
Object Properties and CTP Object Type Properties for details.

Collection members are regular files on the file system. DesignSync does not
perform revision control operations explicitly upon collection members, but
instead operates upon the collection object as a whole. The collection members
do not display as managed objects in the DesignSync List View or the stclc/dssc
ls listing. Instead DesignSync lists them with their object types, which typically
includes the name of the member's owner collection.

• Non-member objects

DesignSync Custom Type System Programmer's Guide

11

Non-member files are regular files on the file system that are related to a
collection, but not part of the collection. Non-member files are not operated on
with the collection, but can be operated on by DesignSync commands as
individual files. For example, non-member files might be derived files that do not
need to be managed but are related to a collection.

• Non-versionable objects

The CTP developer might want to mark some objects as non-versionable to
prevent DesignSync from performing revision control operations on these
objects. To do so, the CTP developer can set the versionable property to
false. See CTP Object Type Properties for a description of the versionable
property.

You view this custom view of the data using the DesignSync List View or the ls -
report O command.

Exception Handling in View Mapping Procedures

If the mapViews or updateObject procedures throw an error, DesignSync assigns the
error property to the affected objects. For a mapViews exception, DesignSync
assigns the error property to all objects in the folder. If the CTP contains no
mapViews procedure, DesignSync assigns the error property to all objects. You must
add a mapViews procedure to the CTP before DesignSync can successfully check in
any objects. For an updateObject exception, DesignSync assigns the error property
to the object being updated.

If objects contain the error property, DesignSync prevents check-in operations on the
affected objects to ensure the integrity of your collection data. In this case, DesignSync
displays an error message indicating why the check-in operation failed.

For more information on the error property, see CTP Object Properties.

Developing Custom Type Packages

12

Developing Custom Type Packages
A Custom Type Package (CTP) defines special objects as well as generic collections --
groups of data files and folders that you want DesignSync to check in and out as a
single entity. To create a CTP, you develop the procedures that recognize special
objects and collection members and map them into abstract types and collections. For
more information about this mapping process, see DesignSync Recognition of Custom
Type Packages.

You store the CTP procedures in a Tcl file with a .ctp extension placed in the project
or site ctp area of your custom hierarchy:

• Project-level CTP:

<SYNC_PROJECT_CFGDIR>/ctp/<ctp_file>.ctp

• Site-level CTP:

<SYNC_SITE_CUSTOM>/share/client/ctp/<ctp_file>.ctp

<SYNC_PROJECT_CFGDIR> has no default; no project information is loaded if this
environment variable is not set. <SYNC_SITE_CUSTOM> is equivalent to
<SYNC_CUSTOM_DIR>/site; if <SYNC_SITE_CUSTOM> is not set, but
<SYNC_CUSTOM_DIR> is set, DesignSync can still access the site-wide CTP.

Types Versus Object Types
DesignSync has three distinct notions of types:

• The basic type, such as File, Folder or Collection, which is used internally and
not reported to the user.

• The objtype type, which is a property set in the CTP to identify particular types of
objects, such as "EDA Cell View". The -report O option to the DesignSync ls
command shows the object type.

• The label value, which is a property set in the CTP, per object, to differentiate
items of the same objtype. For instance, two "EDA Cell View" objects may be
labeled "EDA Schematic" and "EDA Symbol". Both objects are cell views, but
they are different kinds of cell views.

The DesignSync object type is defined by the objtype property that CTP developers
set in the mapViews and updateObject procedures. As a CTP developer, you can
set the objtype property to a specific string for specific objects that your traversal
algorithms can then use to more efficiently traverse the data hierarchy. For example, if
a view is the most primitive object level in your data hierarchy, then an objtype

DesignSync Custom Type System Programmer's Guide

13

property string that ends in 'View' might indicate that the algorithm need not traverse
any deeper into the data hierarchy. Your traversal algorithms can take advantage of
this knowledge and perform a more efficient traversal. Or if your search algorithm
seeks a library file named '*.lib' but you find an object with an objtype property of
"EDAtool Cell", your algorithm need not search for a library file in the directory
above the object. This type of algorithm is illustrated in the Library-View-Cell Example.

To learn more about setting object properties such as the objtype property, see CTP
Object Properties.

CTP Namespaces
For your CTP procedures, you must create a Tcl namespace. For a CTP in a file named
<collection>.ctp you would create procedures in the <collection>CTP Tcl
namespace.

For example, for the eda.ctp CTP, you create the edaCTP namespace as follows:

namespace eval edaCTP {}

DesignSync interprets eda.ctp as a CTP in the edaCTP namespace. To invoke the
mapViews proc defined in eda.ctp, you indicate the edaCTP namespace as follows:

edaCTP::mapViews

Required and Optional Procedures in CTPs
In order for DesignSync to recognize files and folders as the special objects and generic
collections defined in a CTP, you define a number of required Tcl procedures in the
.ctp file. These procedures instruct DesignSync to recognize particular files or folders
as special objects or collection members. The procedures also indicate how to map the
file-system view into a custom view by setting properties and grouping objects into
collections. DesignSync invokes these custom CTP procedures to create and manage
these special objects and collections. In this way, DesignSync is able to perform
revision control operations on a collection object as a single entity rather than individual
files.

The topic Custom Procedures in CTPs lists the key custom procedures needed in your
CTPs. Some of these custom procedures are required procedures. If a required
procedure is missing from the .ctp file, DesignSync fails to register the CTP during
initialization. In this case, DesignSync issues an error message. If you continue to use
DesignSync with an unregistered CTP, DesignSync fails to recognize your data as
collection data. In this case, your data files might be interpreted as separate entities to
be checked in rather than a collection of data. See Debugging Custom Type Packages
for assistance in working through issues such as these with your CTP.

Developing Custom Type Packages

14

You can also develop optional procedures to be included in the CTP. DesignSync uses
these procedures if they exist. In some cases, you include the optional procedures
because they provide more efficient methods for DesignSync to handle your collection
data. See Optional Custom Procedures in CTPs for a list and description of these
procedures.

sctp Procedures
Within your custom required and optional procedures, you use the Custom Type
System sctp procedures to manage CTP data. The sctp procedures let you manipulate
collection objects. You can apply properties, query for properties, add objects to
collections, and traverse design data hierarchies. See sctp Procedures Used in CTPs
for descriptions of each of the sctp Procedures.

Utility Procedures for Recognizing Collection Data
As a CTP developer, you might want to create utility, or helper, procedures to be shared
by your CTP procedures. For example, both the mapViews and updateObject
procedures need utilities for recognizing collection data to determine which objects
DesignSync is to handle as collection members. You can also develop shared utilities
for updating the properties of objects or for traversing the data hierarchy.

Local Version Methodology
Some design tools implement their own basic version management by making local
copies of design objects. A local copy of a design object is referred to as a 'local
version', to distinguish it from the DesignSync version, which is created in the
DesignSync vault upon checkin (a vault version).

 Where DesignSync manages such data either through a predefined recognition
package or through a developer's Custom Type Package (CTP), DesignSync
incorporates the local version number into a tag name it applies upon checkin of the
object.

If you intend to support your own local version methodology, the following topics will
help you manage your CTPs:

Topic Overview For More Information
DesignSync
localversion
commands

These commands let you save and
restore local versions, list the saved
local versions, and delete local
versions.

localversion delete

localversion list

localversion restore

DesignSync Custom Type System Programmer's Guide

15

localversion save

Custom CTP
local version
procedures

You create your own local version
management routines the CTS then
invokes upon collection objects that
use local versions.

getCurrentLocalVersion
Procedure

getLocalVersionFromTags
Procedure

localVersionChanged
Procedure

obsmembers Procedure
Local version
properties

You can set the obsmembers
property and create your own
custom properties if necessary to
help you manage local versions.

CTP Object Properties

Local Version
Case Study
Example

This case study implements a local
version methodology.

Local Version Example

Ensuring Windows Compatibility
Because Windows and UNIX path formats differ, in some cases you must take steps to
ensure that the paths are built correctly for each operating system:

Build paths that are appropriate for both UNIX an Windows platforms.

Collection objects have properties whose values are set in custom Tcl procedures. For
the owner and members property, you must build the paths in such a way that they will
be compatible for both UNIX and Windows platforms. In the case where members are in
a folder below the collection object itself, your procedures must build the members path
in a platform-dependant fashion. This means that you must use "/" on UNIX and "\" on
Windows. Your procedures can use the DesignSync url path command to convert a
path to the correct form and the Tcl file separator command to find the appropriate
separator for the current platform. However, do not use the Tcl file join command
to build these values, as that function always uses the UNIX "/" character to join the
path elements. See CTP Object Properties for more information about properties.

Use the provided sctp::glob procedure rather than the Tcl glob command.

For pattern matching, the CTS provides the sctp::glob procedure which returns
appropriate results for both the UNIX and Windows operating systems. For Windows
operating systems, the sctp::glob procedure returns a list of filenames containing

Developing Custom Type Packages

16

backslash '\' characters rather than forward slash '/' characters. See the Case Study
Examples to see how you can use the sctp::glob procedure in CTPs.

DesignSync Custom Type System Programmer's Guide

17

CTP Object Type Properties
Your CTP objects obtain properties through:

• The Object Type Catalog: Your CTP objects inherit the properties of their object
types as defined in the Object Type Catalog.

• Individual Object Properties: You can also set custom properties on individual
objects. To set properties on individual objects, see CTP Object Properties.

Object Type Catalog

Each object type handled by a CTP has an associated type catalog. A type catalog
defines the characteristics of the object type as properties.

The table below lists the properties you can assign to object types. The Custom Type
System accesses these properties during revision control operations. CTP developers
can also create custom properties to be stored in the object type catalog. These custom
properties are not used by the Custom Type System. Instead, the CTP developer
accesses them in custom CTP procedures. To learn how to set properties and values
for the object type catalog, see the sctp::setTypeProps Procedure description.

Object Type Catalog Properties

Each object type can have the following properties:

Name Applies to Purpose
icon All objects Specifies the icon that DesignSync

displays in its List View for this object
type. See Predefined CTP Icons for a
list of default icons you can specify.

You can specify the icon as the name of
a .gif in a .jar file or you can specify
the path to a .gif or .jpg file.

Create icons as 16x20 pixel .gif or
.jpg files. The DesignSync graphical
interface also supports the use of large
(32x32 pixel) icons. Indicate a larger-
sized icon by specifying the filename as:
 <Icon>.L.gif. If you specify this
<Icon>.L.gif filename and the file
does not exist, DesignSync
programmatically enlarges the existing
<Icon>.gif file.

CTP Object Type Properties

18

openIcon Folders only Specifies the icon indicating an open
folder that DesignSync displays in its
List View for this object type. See
Predefined CTP Icons for a list of
default icons you can specify.

You can specify the icon as the name of
a .gif in a .jar file or you can specify
the path to a .gif or .jpg file.

Create icons as 16x20 pixel .gif or
.jpg files. The DesignSync graphical
interface also supports the use of large
(32x32 pixel) icons. Indicate a larger-
sized icon by specifying the filename as:
 <Icon>.L.gif. If you specify this
<Icon>.L.gif filename and the file
does not exist, DesignSync
programmatically enlarges the existing
<Icon>.gif file.

versionable Files only Specifies whether files of this object
type can be revision-controlled. Set to 0
if the object is not versionable. Set to
any other value if the object is
versionable.

Note: Collection members should be
revision-controlled only as part of their
collection and not separately. The CTP
developer must ensure that the object
type for collection member files is non-
versionable by either setting its
versionable property to 0 or by
defining its objtype property such that
it ends in " Member" (note the space
before the M).

recurse Folders only Specifies whether revision-control
operations are to recurse into folders of
this object type. Set to 0 if revision-
control operations should not recurse
into folders. Set to any other value if
revision-control operations should
recurse into folders.

DesignSync Custom Type System Programmer's Guide

19

Notes:

• The recurse property overrides
the recurse procedure;
DesignSync does not invoke the
recurse procedure on folders
whose recurse property is set
to 0.

• If enabled, the recurse property
prevents DesignSync commands
from recursing into a folder with
one exception: If you invoke the
ls command within a folder that
has the recurse property
enabled, the ls command does
recurse, although it does not
recurse into subfolders in which
the recurse property is
enabled.

opNotify Folders only Specifies whether the
contentsChanged notification
procedure is called during revision
control operations. Set to 1 for operation
notification.

cntxMenu All objects Specifies the context menu for objects
to this type. See Custom Context
Menus for details.

Custom Context Menus

Each object type can have its own context menu. Within the DesignSync List View, a
user positions the cursor over an object and clicks the right-mouse button to bring up
the object type's context menu.

The following table lists the attributes you can define for context menus.

Name Purpose
name Specifies the item name as it will appear in the context menu
icon Specifies the name of the .gif file that should appear in the

menu. See Predefined CTP Icons for a list of default icons you
can specify.

description Specifies the description of the entry, which displays in the
status bar of the DesignSync graphical interface when a user

CTP Object Type Properties

20

highlights the entry in the context menu.
tclAction Specifies the Tcl command to be executed if a user selects the

context menu entry.
shellAction Specifies the shell command to be executed if a user selects

the context menu entry.

You set up the context menu by defining a Tcl list of menu entries using the
sctp::setTypeProps procedure.

You define the context menu in a Tcl list with a sublist for each context menu entry.

The following example creates a context menu for objects of objtype "Test Member".
 The context menu has three entries: "Open", "Unix listing", and "DS listing". The "Open"
item opens the member in the emacs editor. The "Unix listing" item executes a shell
command, the Unix ls command. The "DS listing" item runs a Tcl command, in this
case the DesignSync ls command.

sctp::setTypeProps "Test Member" {icon "CTP_member.gif"
 cntxMenu {
 {name "Open" icon "open.gif" description \
 "Open in an editor" shellAction \
 "/usr/local/bin/emacs"}
 {name "Unix listing" description "Unix ls command" \
 shellAction "/bin/ls"}
 {name "DS listing" description "DS ls command" \
 tclAction "ls"}
 }
}

Notes:

• The attributes (listed in the table above) are name-value pairs you include in your
cntxMenu Tcl list.

• The name attribute is required.
• The icon and description attributes are optional.
• The tclAction and shellAction attributes are mutually exclusive; define

exactly one of these attributes for each context menu entry.
• The first item in the context menu has a special behavior such that the action

listed by the shellAction or tclAction attribute becomes the default action
for that particular object type. DesignSync adopts this default action under two
circumstances: if the user double-clicks on the object or if the user selects
File=>Open. Typically, the first item in a context menu is an open action, as in
the example above.

• If no context menu is specified, the default action is for DesignSync to open the
default editor if the user double-clicks on the object or select File=>Open.

DesignSync Custom Type System Programmer's Guide

21

• To use the "File Open" icon for an entry, specify "open.gif" using the icon
attribute.

Predefined CTP Icons

The following icons are provided in the jar file supplied with DesignSync. You can
specify these icons using the icon property:

Icons
CTP_collection
CTP_file
CTP_folder
CTP_folder_open
CTP_library
CTP_member
CTP_unmanaged
GEN_collection

CTP Object Properties

22

CTP Object Properties
Your CTP objects obtain properties through:

• The Object Type Catalog: Your CTP objects inherit the properties of their object
types as defined in the Object Type Catalog. See CTP Object Type Properties to
learn more about the Object Type Catalog.

• Individual Object Properties: You can also set custom properties on individual
objects. Your CTP procedures can access these properties in triggers for custom
behavior.

The table below lists the properties you can assign to objects. The Custom Type
System accesses these properties during revision control operations. CTP developers
can also create custom properties for objects. These other properties are not used by
the Custom Type System. Instead, the CTP developer accesses them in custom CTP
procedures. To learn how to set properties and values on objects, see the
sctp::obj::setProp and sctp::obj::setProps procedure descriptions. See
also the Object Info Procedures topic for a description of other procedures you can use
to manage properties.

Name Purpose
objtype Specifies the custom object type defined for an object. See

Developing Custom Type Packages: Types Versus Object Types
to understand the difference between types and objects types.

Note: Collection members should be revision-controlled only as
part of their collection and not separately. The CTP developer
must ensure that the object type for collection member files is non-
versionable by either defining its objtype property such that it
ends in " Member" (note the space before the M) or by setting its
versionable property to 0.

ciTag Specifies a list of tags to be attached to a version of a collection
when it is checked in. Following are examples of ciTag strings:

"tag1 tag2 tag3"

[list tag1 tag2 tag3]

Note: The ciTag property is required if you are implementing a
local version methodology. See Developing Custom Type
Packages: Local Version Methodology for details.

owner Specifies the collection object to which the object belongs. The
owner property is required for collection member objects. Specify

DesignSync Custom Type System Programmer's Guide

23

a full path or URL to the collection object.

Note: In the case where members are in a folder below the
collection object itself, your procedures must build the owner path
in a platform-dependant fashion. This means that you must use "/"
on UNIX and "\" on Windows. Your procedures can use the
DesignSync url path command to convert a path to the correct
form and the Tcl file separator command to find the
appropriate separator for the current platform. However, do not
use the Tcl file join command to build these values, as that
function always uses the UNIX "/" character to join the path
elements.

error Indicates that a collection is invalid. If the error property exists, it
prevents a collection or file from being checked in. The error
property also marks files that the CTS recognizes as potential
collection members, but an environment problem prevents the
CTS from determining definitively that the object is a collection
member. See DesignSync Recognition of Custom Type
Packages: Exception Handling in View Mapping Procedures to
learn more about how the CTS uses the error property.

members Specifies a list of objects that are members of a collection. You
can set the members property in the mapViews procedure if the
members of the collection are a fixed set of objects your
mapViews procedure can determine during view mapping. By
doing so, you can omit the members procedure from your CTP.

Note: In the case where members are in a folder below the
collection object itself, your procedures must build the members
path in a platform-dependant fashion. This means that you must
use "/" on UNIX and "\" on Windows. Your procedures can use the
DesignSync url path command to convert a path to the correct
form and the Tcl file separator command to find the
appropriate separator for the current platform. However, do not
use the Tcl file join command to build these values, as that
function always uses the UNIX "/" character to join the path
elements.

obsmembers Specifies a list of objects that are obsolete collection members.
 These objects are members of prior local versions of a collection;
DesignSync's revision control operations handle only the current
local version of a collection.

The obsmembers list has the following format:

{1 {fileA:1 fileB:1}} {2 {fileA:2 fileB:2}}

CTP Object Properties

24

where each sublist has two members: the local version number
followed by a list of the files that comprise that local version.

Notes:

• The files must be provided as full paths or as paths relative
to the directory containing the collection.

• The current local version must not be included in the
obsmembers list.

Use this property if your CTP uses a local version methodology.
 Rather than assigning the obsmembers property, you can
develop an obsmembers procedure. See also the
localversion commands and the Local Version Example.

label Specifies a subtype name used in reports about an object. For
example, a collection of type Cadence View might have a label of
type "Cadence Symbol View".

icon Specifies an object-specific icon, which overrides the object type
icon described in CTP Object Type Properties. See Predefined
CTP Icons for a list of default icons you can specify. This icon
property is typically used with the label property.

namespace Specifies the CTP that customized the object. The namespace
property is automatically attached to an object whenever a
property is added or when a collection is created.

25

Debugging Custom Type Packages

Debugging Custom Type Packages
DesignSync helps you find the errors in your CTPs before you use these procedures on
your production data. During development of your CTPs, you run the ctp verify
command to test your CTP procedures. This command tests for inconsistencies among
the CTP's procedures.

DesignSync also safeguards your collection design data by preventing check-in
operations of objects in folders where the collection mapping by a CTP has failed. See
DesignSync Recognition of Custom Type Packages: Exception Handling in View
Mapping Procedures for details.

Using the 'ctp' Commands

DesignSync provides ctp commands to help you manage your CTPs. To check to see
which CTPs are installed, use the ctp list command. To verify and debug your
CTPs, use the ctp verify command. The ctp verify command validates all of the
installed CPTs using either the data in the directory from which you invoke the
command or against the data in a specified path. The command lists:

• The installed and active CTPs
• The folder and subfolders being validated
• A status of the collection members in the folder and its subfolder

The command lists the objects that are not members of any of the installed
CTPs. It also lists the collections that have no members. These occurrences
might flag an error in a CTP. See Invalid CTPs for a list of other ways in which
ctp verify checks for invalid CTPs.

Invalid CTPs

There are several ways in which a CTP can be defined such that it is not valid. For
performance reasons, the system does not check for all of these errors during regular
revision control operations. Instead, as the CTP developer, you validate your CTP
before employing the CTP on production data by running the DesignSync ctp verify
command against test data.

The ctp verify command checks that the CTP is internally consistent. For a CTP to
be internally consistent, all type and property information is the same regardless of the
path or command used to obtain that information. For example, if the ls command
returns a CTP object's type as "Library File" but the url getprop command returns

Debugging Custom Type Packages

26

"Special File", the CTP is not internally consistent. Among the ways a CTP can be
internally inconsistent are:

• The mapViews and updateObject procedures perform view mapping of
objects differently, thus generating inconsistent results for the same data.

• The mapViews and determineFolderType procedures return different values
for a given folder.

• The mapViews procedure identifies an object as a member, but it is not returned
by any collection’s members procedure.

• The mapViews procedure fails to identify an object as a member when it is
returned by a collection’s members procedure.

• A collection member has an owner property identifying a collection, but that
collection does not identify it as a member.

• More than one collection identifies a file as a member.
• The members custom property and the members procedure are inconsistent. In

some cases, such as a broken symbolic, cache, or mirror link, an object might
not be detected as a collection object and therefore the CTS does not set its
custom members property. In this case, the members procedure would be called
when the CTS encounters the object.

To learn more about the ctp verify command, see ENOVIA Synchronicity Command
Reference: ctp verify Command.

Tips for Validating Your CTP

The following tips will help you use the ctp verify command and other methods to
discover and resolve issues with your CTPs.

Verify one CTP at a time.

The ctp verify command validates all of the installed CTPs against the current data.
You might want to move the other CTPs out of the custom ctp area of your installation
hierarchy (<SYNC_PROJECT_CFGDIR>/ctp for project-level CPTs or
<SYNC_SITE_CUSTOM>/share/client/ctp for site-level CTPs). If you move the
other CTPs out of the custom ctp area, the ctp verify command operates only upon
the single CTP, thus simplifying the diagnostic output of the ctp verify command.

Comment out the updateObject procedure until the CTP is verified.

One of the checks the ctp verify command makes is to verify that the mapViews
and updateObjects procedures behave consistently. It might be easier to first verify
that mapViews works correctly and then add the updateObject procedure back in
and reverify the CTP using ctp verify again.

Execute individual CTP procedures from the command line.

DesignSync Custom Type System Programmer's Guide

27

A good method of isolating the behavior within a CTP is to execute a single CTP
procedure from the command line. For a CTP named myCTP, you might enter the
myCTP::getCurrentLocalVersion procedure on the command line. You can apply
the procedure to particular objects to ensure that the CTP is handling local versions as
expected for the workspace data.

Important: To use the CTP commands from the command line, you must be in an
stcl/stclc shell and not in a dss/dssc shell.

The following example shows the invocation of a members custom procedure from the
stcl command line:

stcl> lvcCTP::members ../schematic NAND.sgc.lvc "LVC Cell View"
 NAND/sch.db NAND/sch.prop NAND/lvc.celltype.schematic

Use DesignSync commands to verify output.

In addition to applying ctp verify to your CTPs, use the following DesignSync
commands:

• ls -report OX: List objects and their collection owners
• url members: List a collection's members.
• url exists: Determine if collections and collection members exist
• ci, co, populate: Apply revision control operations and ensure that diagnostic

messages contain no errors.

These commands will help ensure that your CTP is managing your data as intended.

Develop robust test data.

Your test data should exercise your CTP effectively to ensure that ctp verify, as well
as your custom CTPs procedures, run cleanly on a complete set of test data. In
addition to test data that exercises your unique CTP, your test data should handle the
following types of general test cases:

• Valid collections
• CTP procedures that contain errors that should be flagged
• Collections with one or more members missing
• A collection that is a file on disk
• Collections or custom objects that are expected to be files but are folders, as well

as objects that are expected to be folders but are files
• Empty folders, or workspaces that contain empty folders in the sub-hierarchy
• Collections with managed symbolic links
• Collections in cache and mirror mode
• Collections with missing cache, mirror, or symbolic links
• Collections in reference mode

Debugging Custom Type Packages

28

• Data should include examples of all valid filenames, for example filenames with
spaces, extra dots, or other special characters.

See DesignSync Data Manager User's Guide to learn how DesignSync manages
symbolic links, cache links, mirror links, and references.

Use full paths for the owner property and to check whether files exist.

If a procedure is failing, you might have neglected to specify a full path where one is
needed. For example, the owner property requires an absolute path. You must also
use a full path when using the file exists Tcl command. For the members and
obsmembers procedures, the directory must be a full or relative path.

29

Custom Procedures in CTPs

Custom Procedures in CTPs
As CTP developer, you create a number of Tcl procedures that DesignSync's Custom
Type System (CTS) calls during revision control operations to recognize and manage
collection data. You create these Tcl procedures in a Tcl namespace as described in
Developing Custom Type Packages.

Note:

The procedures described in this section, as well as those described in the Optional
Custom Procedures in CTPs section, are the procedures you, as the CTP developer,
implement. These procedures are then called by the CTS (DesignSync) whenever
appropriate.

Following are the key procedures you should include in your CTP:

Procedure Description
mapViews Maps a system view of a directory into a custom view with

collections, applying appropriate custom properties to the objects.
updateObject Performs view mapping like the mapViews procedure, but for

individual objects. Applies any appropriate custom properties to
the object.

members Returns the members of a collection.

You can find examples of custom CTP procedures in the Case Study Examples.

Required Procedures for your CTP

In order for your CTP to be registered by the Custom Type System, you must include
the mapViews and members procedures; however, you can omit the members
procedure if either of the following are true:

• The members of a collection are fixed and known during view mapping so that
your mapViews procedure assigns the members custom property for each
collection.

• The CTP defines custom types for files but does not define any collections. For
example a CTP might define a custom type, icon, and a context menu for
"*.cpp" and "*.html" files.

You do not need to include the updateObject procedure for your CTP to be
registered; however, you should include the updateObject procedure in your
production CTP. If the updateObject procedure does not exist and the CTS needs to

Custom Procedures in CTPs

30

determine the nature of an object, it calls the mapViews procedure from the parent
directory and extracts information about the object. Using the mapViews procedure in
this way is less efficient because mapViews handles a complete directory, so most
CTPs include an updateObject procedure. See the updateObject Procedure for
more information.

DesignSync Custom Type System Programmer's Guide

31

mapViews Procedure
proc mapViews {dir contents}
 => return value unused

Description

The mapViews procedure is a required procedure that you must include in your CTP for
the CTP collections to be recognized. Your mapViews procedure performs the view
mapping of the CTP. View mapping is the process of mapping the system view of the
collection data onto a custom view. To create this custom view, your mapViews
procedure should

• Update the properties of objects as appropriate, using the
sctp::obj::setprop or sctp::obj::setprops procedures.

• Add new objects, such as collections. To add collections, use the
sctp::objset::addobject procedure.

For example, the mapViews procedure might scan a directory (folder), performing a
pattern matching algorithm to detect potential members of a collection. If found, the
mapViews procedure updates those objects with properties and creates the collection
object for those objects. See DesignSync Recognition of Custom Type Packages for
more information about view mapping.

The mapViews procedure is called by DesignSync whenever DesignSync traverses a
directory and handles objects in the directory by:

• Browsing in the DesignSync graphical interface using the List View.
• Using the ls command in DesignSync.
• Executing any revision control operation, such as ci, co, populate, and tag.

Each time DesignSync traverses a directory, the CTS invokes the mapViews
procedures for every installed CTP. If one of your CTPs has already assigned a custom
folder type to a directory, DesignSync invokes only the mapViews procedure specified
in that CTP. This is one way to ensure the efficiency of your custom code.

Within your mapViews procedure, you set properties on the objects deemed to be
collection members, as well as the newly created collection objects, using the
sctp::obj::setprop or sctp::obj::setprops procedures. You can also apply
properties to directories. Examples of properties include:

• owner: The name of the collection containing the member object.
• error: The property applied to invalid collection objects.

mapViews Procedure

32

• members: A list containing the members of the collection. Set this property if the
members are a fixed set of objects your mapViews procedure can determine
during view mapping.

See CTP Object Properties for the full set of properties you can apply to the objects.

The mapViews procedure performs the process of determining whether objects are
collection members and updating their properties for all of the objects in a directory. To
perform this same process on a single object, the CTS calls the updateObject
procedure. If you do not develop an updateObject procedure, the CTS calls
mapViews when it needs to recognize a single object -- a more inefficient method of
obtaining the same information. An effective method of coding these two procedures is
to develop a number of helper procedures that perform the mapping tasks. Then both
the mapViews and updateObject procedures call these same routines. In this way,
you are ensured consistent results from both procedures. Consistency between these
two procedures is also one of the criteria used by the ctp verify command to
validate CTPs.

You can find examples of custom mapViews procedures in the Case Study Examples.

Arguments

dir Specifies the path (not the URL) of the directory to be mapped.
contents Stores the contents of the directory. The contents argument is

an Object Set object. See Object Set Procedures for
descriptions of the procedures you use to manage Object Set
objects.

The contents argument is an in-out parameter. The
procedure must modify it in place.

DesignSync Custom Type System Programmer's Guide

33

updateObject Procedure
proc updateObject {dir objInfo}
 => return value unused

Description

The updateObject procedure is an optional procedure you can develop to recognize
individual objects. The CTS performs two types of view mapping:

• View mapping of a complete directory, performed by the mapViews procedure to
recognize the objects in a directory.

• View mapping of a single object, performed by the updateObject procedure to
recognize individual objects.

 Note: Although the updateObject procedure is optional, you should include the
updateObject procedure in order to optimize DesignSync's operations. If the
updateObject procedure does not exist and the CTS needs to determine the nature
of an object, it calls the mapViews procedure from the parent directory and extracts
information about the object. Using the mapViews procedure in this way is less efficient
because mapViews handles a complete directory, so most CTPs include an
updateObject procedure. You might want to develop shared helper procedures
called by both the updateObject and mapViews procedures because the functions of
these procedures are similar. In this way, you are also ensured consistent results from
both procedures. Consistency between these two procedures is also one of the criteria
used by the ctp verify command to validate CTPs.

Your updateObject procedure should perform the following tasks:

• Determine the type of an object -- for example, whether the object is a collection
member or a collection object.

• If the object is a collection object, determine whether the collection exists yet on
disk and if so, use the sctp::obj::collectionexists procedure to mark
that it exists. In this way, the CTS can distinguish between physical collections,
references (which only exist as metadata), and objects that do not exist.

• Apply any appropriate custom properties to the object. See CTP Object
Properties for the properties you can apply to the objects.

You can find examples of custom updateObject procedures in the Case Study
Examples.

Arguments

updateObject Procedure

34

dir Specifies the path (not the URL) of the directory containing the
object.

objInfo The object to be recognized and updated. The objInfo object
is an Object Info object. See Object Info Procedures for
descriptions of the procedures you use to manage Object Set
objects.

DesignSync Custom Type System Programmer's Guide

35

members Procedure
proc members {parentPath objName type}
 => list-of-relative-paths

Description

The members procedure determines and lists the members of a collection. The
members procedure is a required procedure that you must include in your CTP unless
the members of a collection are fixed and known during view mapping and thus your
mapViews procedure assigns the members custom property for each collection. If you
set the members custom property for each collection, you do not have to supply a
members procedure. Another case where you can omit the members procedure is in
that of a CTP that defines custom types for files but does not define any collections. For
example a CTP might define a custom type, icon, and a context menu for "*.cpp" and
"*.html" files.

Your members procedure should perform the following tasks:

• Recurse into sub-directories to obtain the collection members, if necessary.
• Return a list of paths to the collection's members. Your members procedure can

return paths that are either full paths or relative to the specified path. For
example, a path of verilog/master.tag indicates a member in the verilog
subdirectory of the directory containing the collection.

See the Case Study Examples for examples of custom members procedures.

See the Collection Example for an example of a collection that sets the members
property if the collection has fixed members and in these cases, does not have to call
the members procedure.

Arguments

parentPath Specifies the directory containing the collection object whose
members are to be listed.

objName Specifies the name of the collection object whose members are
to be listed.

type Specifies the object type of the specified object. The type is
provided to the members procedure in case your algorithm for
determining the collection's members needs this information.

37

Optional Custom Procedures in CTPs

Optional Custom Procedures in CTPs
As CTP developer, you create a number of Tcl procedures that DesignSync's Custom
Type System (CTS) calls during revision control operations to recognize and manage
collection data. You create these Tcl procedures in a Tcl namespace as described in
Developing Custom Type Packages.

Note:

The procedures described in this section, as well as those described in the Custom
Procedures in CTPs section, are the procedures you, as the CTP developer, implement.
These procedures are then called by the CTS (DesignSync) whenever appropriate.

Following are optional procedures you might find useful to develop in your CTP:

Procedure Description
contentsChanged Lets you perform operations after revision control

operations by detecting added, removed, or changed
objects.

determineFolderType Determines the custom folder type. Used for CTPs that
define custom directory types.

getCurrentLocalVersion Returns the local version currently checked out in a
user's workspace.

getLocalVersionFromTags Returns the local version by processing a list of
tagnames.

localVersionChanged Lets you perform operations each time a collection's
local version changes.

obsmembers Returns the members of a collection that belong to prior
local versions of the collection.

operationBegin Sends notice to the CTP whenever DesignSync
operations begin. Used with the contentsChanged
procedure to batch operations across directories.

operationEnd Sends notice to the CTP whenever DesignSync
operations end. Used with the contentsChanged
procedure to batch operations across directories.

processKeyFiles Uses a set of key files to recognize objects that have
not been view mapped. Used in the case of an initial
populate. You set the key files used to identify matching
collection objects using the sctp::setKeyFiles
procedure.

recurse Determines whether the CTS should recurse into the
specified directory (folder).

Optional Custom Procedures in CTPs

38

relations Defines relationships for objects. Used by the
DesignSync url relations command to return a list
of related objects, such as dependencies, for a CTP's
collection type.

You can find examples of custom CTP procedures in the Case Study Examples.

DesignSync Custom Type System Programmer's Guide

39

contentsChanged Procedure
proc contentsChanged \
{path list-of-added-objects list-of-removed-objects}
 => return value unused

Description

The contentsChanged procedure is an optional procedure you can include in your
CTP if you want to perform post-processing of objects affected by a revision control
operation. The contentsChanged procedure supplies you with the list of objects
added, changed, and removed from the affected directory. Within the
contentsChanged procedure, you can perform any appropriate custom operations.

Use the contentsChanged procedure with the operationBegin and
operationEnd procedures so that you can batch operations across objects. Those
objects may be in different directories. You can check which operation has triggered the
operationBegin procedure so that you can apply the contentsChanged procedure
only to objects that have been handled by a particular command such as co or ci. See
the Library-View-Cell Example for an example of these procedures working together in
this way.

To ensure efficient performance, the CTS applies the contentsChanged procedure
only for directories whose Object Type Catalog has the opNotify property set. See
CTP Object Type Properties: Object Type Catalog for details about the opNotify
property, which sets up notification so that the CTS calls the contentsChanged
procedure if a revision control operation modifies the objects in a directory.

Arguments

path The path to the directory whose contents were
changed by the operation. For example, fetching
a different version of the data may change the
data files in the directory.

list-of-added-objects The list of objects within the directory that have
been added or changed by the operation.

list-of-removed-objects The list of objects within the directory that have
been removed by the operation.

determineFolderType Procedure

40

determineFolderType Procedure
proc determineFolderType {dir}
 => dirType

Description

The determineFolderType procedure is an optional procedure you can develop to
help the CTP procedures navigate within the design data hierarchy. Some collections
can occur within any directory (folder) in the design data hierarchy. See the Collection
Example for an example of this kind of collection. Other collections, however, can only
occur in a particular hierarchy context. For example, an EDA tool might have a
collection type that can only exist in a directory named cellview. In this case, the
CTP's determineFolderType procedure might indicate whether the directory is a
cellview directory. See the Library-View-Cell Example for an example of a collection
that exists in a particular hierarchy context and thus implements the
determineFolderType procedure. The types of CTPs that require a
determineFolderType procedure also define custom property types on directories
within the Object Type Catalog. See CTP Object Type Properties: Object Type Catalog
for more information about these property types.

Unlike the mapViews procedure, which is passed a list of the contents of a directory,
the determineFolderType procedure must access the specified directory on the file
system to determine its object type.

Your determineFolderType procedure must:

• Process the directory and its contents to determine what folder type it should
have.

Utilize criteria such as the following to determine the folder type: Do all of your
collection folders contain files with a particular extension? Do collection folders
have particular naming conventions? Do collection folders contain library files
with particular naming conventions?

• Return the directory type.

Note: The determineFolderType procedure must return the same property
type for the directory as that returned by the mapViews procedure. The ctp
verify command performs this check.

Note: If the determineFolderType procedure needs to find the type of the parent
folder or a sub-folder, it should call the sctp::getFolderType procedure rather than
calling itself, to take advantage of the directory type caching built into the CTS system.

DesignSync Custom Type System Programmer's Guide

41

Arguments

dir The path (not the URL) to the directory whose folder type is to
be determined.

getCurrentLocalVersion Procedure

42

getCurrentLocalVersion Procedure
proc getCurrentLocalVersion {url type {usetag 1} {members ""}}
 => an integer identifier

Description

If your CTP implements local versions, it must include the getCurrentLocalVersion
procedure. DesignSync uses this procedure, like the getLocalVersionFromTags
procedure, to determine the local version during checkins and checkouts in order to
manage the local versions in users' workspaces and in the DesignSync vaults. For
example, if a user has applied the co command with the -savelocal fail option (the
default value for this option), DesignSync must verify that the user does not have a
higher local version for the collection than that in the vault, otherwise the checkout fails.
See Developing Custom Type Packages: Local Version Methodology for an overview of
local versions. See also the localversion, co -savelocal, and populate -
savelocal command descriptions for details about local versions.

The CTS calls the getCurrentLocalVersion procedure to determine the local
version currently checked out in the workspace. If a mirror is being used, the CTS calls
the getCurrentLocalVersion procedure with the members argument. Before
determining the local version, your getCurrentLocalVersion procedure must first
determine which objects to operate on by doing the following:

• Check if the usetag argument is set and if so, use a tag to determine the current
local version.

The name of the tag corresponds to the tag specifier of the collection. Set the
tag specifier using the ciTag property during view mapping (in the mapViews
and updateObject procedures). If the ciTag property is set, DesignSync
applies the specified tag to the collection automatically during check-in, thus
identifying the collection's local version. Following is an example of a statement
from a mapViews procedure that sets the ciTag property:

sctp::obj::setprop $colobj ciTag [join [list \
"CTP_LV" $vernum] ""]

In this example, the ciTag property is generated by joining the "CTP_LV" string
with the local version number ($vernum).

Your getCurrentLocalVersion procedure must look up the tags on the
specified object, using the url tags command, and match against the
"CTP_LV" string to extract the local version number.

DesignSync Custom Type System Programmer's Guide

43

• If the usetag argument is not set, check if a members argument was passed
into the getCurrentLocalVersion procedure and if so, determine the local
version based on the contents of the members argument.

• If the members argument is empty, determine the local version based on the
specified url argument (the URL of the collection object whose local version you
must determine). You determine the local version typically by examining the files
on disk that make up that object.

• Return the local version number as an integer identifier for the local version.

Once your getCurrentLocalVersion procedure has determined which objects to
operate on, it determines the current local version. Typically the current local version is
the local version with the highest number appended, but your
getCurrentLocalVersion procedure can determine the current local version using
whatever method is required by your local version methodology.

Arguments

url Specifies the URL of the collection object whose current local
version is being determined.

type Specifies the object type of the specified object. The type is
provided to the getCurrentLocalVersion procedure in case
your algorithm for determining the current local version needs
this information.

usetag If set to 1, the getCurrentLocalVersion procedure uses a
tag to determine the local version; otherwise, if the usetag
argument is not supplied or is set to 0, the
 getCurrentLocalVersion procedure determines the local
version by processing the members argument or the contents of
the user's workspace. Your getCurrentLocalVersion
procedure (or a helper procedure called by the
getCurrentLocalVersion procedure) defines the tag name
against which to match the objects. The tag name corresponds
to the ciTag property set by the mapViews and
updateObject procedures.

members Specifies a list of members.

Note: The members argument is passed into the
getCurrentLocalVersion procedure only if the collection
data is mirrored. (See DesignSync Data Manager User's Guide:
Administering Mirrors to learn about mirroring data.) If a
members argument is passed into the procedure, your
getCurrentLocalVersion procedure must process the
members argument instead of monitoring the contents of the
workspace. However, if the members of a collection are fixed

getCurrentLocalVersion Procedure

44

and thus defined in the members property initially during view
mapping (using the mapViews procedure), your
getCurrentLocalVersion procedure does not have to
process the members argument. After you develop your
getCurrentLocalVersion procedure to process the
members argument, test your procedure by invoking the
populate -mirror command.

DesignSync Custom Type System Programmer's Guide

45

getLocalVersionFromTags Procedure
proc geLocalVersionFromTags {url type tags}
 => an integer identifier

Description

If your CTP implements local versions, it must include the
getLocalVersionFromTags procedure. DesignSync uses this procedure, like the
getCurrentLocalVersion procedure, to determine the local version during
checkouts and populates in order to manage the local versions in users' workspaces
and in the DesignSync vaults.

The CTS calls the getLocalVersionFromTags procedure if a user has applied the
co or populate command with the -savelocal fail option (the default value for
this option). The CTS passes to the getLocalVersionFromTags procedure the list
of all tags attached to the version being checked out or populated. In this way,
DesignSync can verify that the user does not have a higher local version for the
collection than that in the vault, otherwise the checkout fails. Your
getLocalVersionFromTags procedure must

• Determine which of the tags passed in with the tags argument identifies the
local version.

• Find the local version number from that tag.

The name of the local version's tag corresponds to the tag specifier for the
collection. Note that you set the tag specifier in the mapViews and
updateObject procedures using the ciTag property during view mapping . If
the ciTag property is set, DesignSync applies the specified tag to the collection
automatically during check-in, thus identifying the collection's local version.
Following is an example of a statement from a mapViews procedure that sets the
ciTag property:

sctp::obj::setprop $colobj ciTag [join [list \
"CTP_LV" $vernum] ""]

In this example, the ciTag property is generated by joining the "CTP_LV" string
with the local version number ($vernum). Your getLocalVersionFromTags
procedure must look at the tags argument value and match against the
"CTP_LV" string to extract the local version number.

• Return the local version number as an integer identifier for the local version.

getLocalVersionFromTags Procedure

46

See Developing Custom Type Packages: Local Version Methodology for an overview of
local versions. See the Local Version Example for an example of the
getLocalVersionFromTags procedure. See also the localversion command
descriptions in the ENOVIA Synchronicity Command Reference.

Arguments

url Specifies the URL of the collection object whose local version is
being determined.

type Specifies the object type of the specified object. The type is
provided to the getLocalVersionFromTags procedure in
case your algorithm for determining the local version needs this
information.

tags Specifies the list of tagnames from which the
getLocalVersionFromTags procedure determines the local
version.

DesignSync Custom Type System Programmer's Guide

47

localVersionChanged Procedure
proc localVersionChanged {url type oldLv newLv members obsInfo}
 => return value unused

Description

The localVersionChanged procedure is an optional procedure you can include in
your CTP if you want to perform operations each time a collection's local version
changes. Within the localVersionChanged procedure, you can perform any
appropriate custom operations on objects such as the new collection members or the
obsolete collection members, as these values are passed to the
localVersionChanged procedure.

See Developing Custom Type Packages: Local Version Methodology for an overview of
local versions. See the Local Version Example for an example of the
localVersionChanged procedure. See also the localversion command
descriptions in the ENOVIA Synchronicity Command Reference.

Arguments

url Specifies the URL of the collection object whose local version
has changed.

type Specifies the object type of the specified object.
oldLv Specifies the previous local version number.
newLv Specifies the new local version number.
members Lists the members that have been added to the collection.
obsInfo Lists the obsolete local versions in the following format:

{1 {fileA:1 fileB:1}} {2 fileA:2 fileB:2}}
...

where each sublist has two members: the local version number
and the list of files making up that obsolete local version.

operationBegin Procedure

48

operationBegin Procedure
proc operationBegin {cmd}
 => return value unused

Description

The operationBegin procedure works with the operationEnd procedure to allow
the CTP to receive notice whenever DesignSync operations occur. Use the
operationBegin and operationEnd procedures with the contentsChanged
procedure so that you can batch operations across objects. Those objects may be in
different directories. You can check which operation has triggered the
operationBegin procedure so that you can apply the contentsChanged procedure
only to objects that have been handled by a particular command such as co or ci.
Then, you can use the operationEnd procedure to operate on the results of the
contentsChanged procedure upon completion of the operation. See the Library-View-
Cell Example for an example of these procedures working together in this way.

Note: The command names passed to operationBegin are not necessarily formal
DesignSync command names. In some cases, DesignSync passes internal command
names; for example, DesignSync passes the populate command as _populate
(note the underscore preceding the populate command name). If your code utilizes
the cmdName input, you might initially want to write a test operationBegin procedure
that prints the cmdName arguments, so that you know the exact command strings being
passed into operationBegin.

Arguments

cmd The command that triggered the operationBegin procedure.
 DesignSync passes the full command including its arguments
to the operationBegin procedure so that you can test for
particular DesignSync commands and their argument values.

DesignSync Custom Type System Programmer's Guide

49

operationEnd Procedure
proc operationEnd {}
 => return value unused

Description

The operationEnd procedure works with the operationBegin procedure to allow
the CTP to receive notice whenever DesignSync operations occur. Use the
operationBegin and operationEnd procedures with the contentsChanged
procedure so that you can batch operations across objects. Those objects may be in
different directories. You can check which operation has triggered the
operationBegin procedure so that you can apply the contentsChanged procedure
only to objects that have been handled by a particular command such as co or ci.
 Then, you can use the operationEnd procedure to operate on the results of the
contentsChanged procedure upon completion of the operation. See the Library-View-
Cell Example for an example of these procedures working together in this way.

Arguments

None

processKeyFiles Procedure

50

processKeyFiles Procedure
proc processKeyFiles {path list-of-key-files}
 => CTP name (Tcl namespace)

Description

The processKeyFiles procedure works with the operationBegin,
operationEnd, and contentsChanged procedures to assist with the recognition of
objects that have been recently fetched and therefore have not undergone view
mapping. The processKeyFiles procedure thus performs a bootstrapping operation;
the CTS calls the processKeyFiles procedure when a populate command
operates on a new folder, thus flagging the collection objects. You set the key files
used to identify matching collection objects using the sctp::setKeyFiles procedure.
 See the Library-View-Cell Example for an example of the processKeyFiles
procedure.

If the processKeyFiles procedure returns a Tcl namespace, the CTS invokes the
contentsChanged procedure for that CTP, with the containing folder and the key file
as a member of the list of added files.

Arguments

path The path to the directory whose contents are to be
processed.

list-of-key-files List of the key files found in the path.

DesignSync Custom Type System Programmer's Guide

51

recurse Procedure
proc recurse {path type}
 => 1 or 0

Description

The recurse procedure is an optional procedure you can develop to determine
whether the CTS should recurse into the specified directory (folder). Upon encountering
a directory (folder), a recursive operation invokes the recurse procedure only if the
following are true:

• The directory (folder) has a custom object type defined by the CTP (using the
sctp::setTypeProps procedure)

• The recurse property has not been set on the directory. If the recurse
property has been set, the CTS uses that value to determine whether to recurse
into the directory and thus does not invoke the recurse procedure. See CTP
Object Type Properties for details of the recurse property.

The recurse procedure is optional; if the recurse procedure exists, the CTS passes
it the path to the directory and the directory's object type. Your recurse procedure
should return a 1 (or any non-zero value including an empty string) to indicate that the
directory is to be recursed and a 0 to indicate that the directory must be skipped. If the
recurse procedure is not included in the CTP, the directory is recursed by default, as if
the recurse procedure had returned a 1.

For an example of a custom recurse procedure, see the Library-View-Cell Example.

Arguments

path Specifies the directory to be checked for recursion.
type Specifies the object type (objtype) of the directory.

relations Procedure

52

relations Procedure
proc relations {objName type relationName}
 => list-of-urls

Description

You can develop a relations procedure if you want the DesignSync url
relations command to return a list of related objects, such as dependencies, for a
CTP's collection type. You create the relation by creating an optional relations
procedure in the CTP. Then CTP users can apply the url relations command to
the collection to view the results of the relation. If the relations procedure is not
defined, the url relations command returns an empty list.

If the relations procedure throws an exception such as "Relation type not supported",
the exception is propagated through the url relations command.

As the CTP developer, you can customize the format of the list-of-urls return
value.

Arguments

objName Specifies the object whose relatives are to be identified. The
object can be a collection, a collection member, or a directory.

type Specifies the object type of the specified object. The type is
provided to the relations procedure in case your algorithm
for determining the relatives needs this information.

relationName Specifies the name of the relation query; this value can be any
string.

Examples

The following example shows a custom relations procedure included in a CTP in the
namespace mycollectionCTP:

proc mycollectionCTP::relations {objName type relName} {
 return "../doc.css"
}

The relations procedure is called below:

DesignSync Custom Type System Programmer's Guide

53

stcl> mycollectionCTP::relations SPEC.sgc.myc \
"Doc Files collection" dependencies
../doc.css

The DesignSync url relations command invokes the relations procedure:

stcl> url relations SPEC.sgc.myc dependencies
../doc.css

55

sctp Procedures Used in CTPs

sctp Procedures Used in CTPs
The sctp procedures are the procedures you call from your custom procedures:

• Object Info Procedures: Use these procedures to determine and set properties of
individual objects.

• Object Set Procedures: Use these procedures to determine and set properties on
groups of objects.

Example of an sctp Procedure

You include the sctp procedures in your custom procedures. During CTP development,
you can also apply these commands directly from the stcl shell. The following shows an
example of the sctp::obj::getprops command invoked in the stcl shell.

In this example, $NANDobj is a variable containing the Object Info object for the
NAND.sgc.lvc collection. The getprops procedure accepts the $NANDobj Object
Info object as an input parameter and loads the newvar array with the property/value
pairs for the collection:

stcl> set NANDobj [sctp::getObjectInFolder [pwd] NAND.sgc.lvc]
NAND.sgc.lvc Collection {branch 1 members {NAND/sch.db
NAND/sch.prop NAND/lvc.celltype.schematic} conflict 0
_SyncColStampDataVers 1 vault
{sync://puccini:30048/Projects/sep9lvc/schematic/NAND.sgc.lvc;}
objtype {LVC Cell View} _SyncColStampData {NAND/sch.db
1091092806 NAND/sch.prop 1091092806 NAND/lvc.celltype.schematic
1091092797} vctime 1094751543 mergedeps {} state Copy label {LVC
schematic Cell View} namespace lvcCTP selectors {} log {}
version 1.1 size 1635019107 mtime 15 datefetched 1091092806}

stcl> sctp::obj::getprops $NANDobj newvar

stcl> stcl> parray newvar
newvar(_SyncColStampData) = NAND/sch.db 1091092806
NAND/sch.prop 1091092806 NAND/lvc.celltype.schematic 1091092797
newvar(_SyncColStampDataVers) = 1
newvar(branch) = 1
newvar(conflict) = 0
newvar(datefetched) = 1091092806
newvar(label) = LVC schematic Cell View
newvar(log) =
newvar(members) = NAND/sch.db NAND/sch.prop

sctp Procedures Used in CTPs

56

 NAND/lvc.celltype.schematic
newvar(mergedeps) =
newvar(mtime) = 15
newvar(namespace) = lvcCTP
newvar(objtype) = LVC Cell View
newvar(selectors) =
newvar(size) = 6172092
newvar(state) = Copy
newvar(type) = Collection
newvar(vault) =
sync://myvault:2647/Projects/sep9lvc/schematic/NAND.sgc.lvc;
newvar(vctime) = 1094751543
newvar(version) = 1.1

You can find other examples of the sctp commands in the Case Study Examples.

DesignSync Custom Type System Programmer's Guide

57

Object Info Procedures

Object Info Procedures
An Object Info object represents information about a single CTP object. The Object Info
object is a C object that is exposed via Tcl. You use the Object Info Tcl procedures to
set or retrieve properties of objects, including their names and types. The Object Info
procedures are in the sctp::obj namespace. To invoke, for example, the getprop
proc, you indicate the namespace as follows:

sctp::obj::getprop

You can use these procedures in any of the procedures you define in your .ctp file.

For examples of object info procedures, see sctp Procedures Used in CTPs and Case
Study Examples.

sctp::obj::collectionexists Procedure

58

sctp::obj::collectionexists Procedure
sctp::obj::collectionexists $obj
 => return value undefined

Description

The collectionexists procedure marks that a collection exists on disk. It is
important that the updateObject procedure call this procedure to identify whether the
collection exists yet on disk. In this way, the CTS can distinguish between physical
collections, references (which only exist as metadata), and objects that do not exist.

Arguments

$obj Specifies the collection object which exists on disk.

Note: The $obj name must contain .sync. or the
collectionexists procedure throws an error.

DesignSync Custom Type System Programmer's Guide

59

sctp::obj::getprop Procedure
sctp::obj::getprop $obj name
 => property

Description

The getprop procedure retrieves the value of the specified property.

Arguments

$obj Specifies the object whose property is to be returned.
name Specifies the name of the property whose value is to be

returned.

sctp::obj::getprops Procedure

60

sctp::obj::getprops Procedure
sctp::obj::getprops $obj var
 => return value undefined

Description

The getprops procedure loads an array (a var) with the object's properties (the
object's Object Info data).

For an example that invokes getprops procedure, see sctp Procedures Used in CTPs.

Arguments

$obj Specifies the object whose properties are to be returned
var Specifies the array (var) to store the properties of the specified

object.

DesignSync Custom Type System Programmer's Guide

61

sctp::obj::name Procedure
sctp::obj::name $obj
 => objname

Description

The name procedure returns the name of the object.

Arguments

$obj Specifies the object whose name is to be returned.

sctp::obj::setprop Procedure

62

sctp::obj::setprop Procedure
sctp::obj::setprop $obj name value
 => return value undefined

Description

The setprop procedure sets the specified property of the object.

Arguments

$obj Specifies the object whose property is to be set.
name Specifies the property to be set. See CTP Object Properties for

the properties you can set.
value Specifies the value to which the property is to be set.

DesignSync Custom Type System Programmer's Guide

63

sctp::obj::setprops Procedure
sctp::obj::setprops $obj {name value name value …}
 => return value undefined

Description

The setprops procedure sets the specified properties of the object. Specify the
properties as a list of property name/value pairs.

Arguments

$obj Specifies the object whose properties are to be set.
name Specifies the property to be set. See CTP Object Properties for

the properties you can set.
value Specifies the value to which the property is to be set.

sctp::obj::type Procedure

64

sctp::obj::type Procedure
sctp::obj::type $obj
 => type

Description

The type procedure returns the type of the object. The type returned is the web data
type, such as File or Folder. The type procedure does not return the more granular
object type which indicates, for example, a specific type of collection object. See
Developing Custom Type Packages: Types Versus Object Types for more information.

Arguments

$obj Specifies the object whose type is to be returned.

DesignSync Custom Type System Programmer's Guide

65

Object Set Procedures

Object Set Procedures
An object set is the entity that represents the contents of a directory. The object set is a
C object that is exposed via Tcl. You use the object set procedures to retrieve the
objects in a set or to create new objects. The object set procedures are in the
sctp::objset namespace. To invoke, for example, the addobject procedure, you
indicate the namespace as follows:

sctp::objset::addobject

You can use these procedures in any of the procedures you define in your .ctp file.

For examples of object set procedures, see Case Study Examples.

sctp::objset::addobject Procedure

66

sctp::objset::addobject Procedure
sctp::objset::addobject $set objname [{name value name value…}]
 => CTP object

Description

The addobject procedure adds an object to the specified set. Optionally, you can use
the addobject procedure to set properties on the object as you add it to the set. The
procedure returns the new CTP object (an Object Info object).

Arguments

$set Specifies the set of objects to which the new CTP object is
added. Typically custom procedures pass the contents of a
directory into the addobject procedure using the $set
argument.

objname Specifies the name of the object to be added.

Note: The object's name must contain .sgc . Otherwise the
Custom Type System throws an exception.

name Specifies the name of a property to be set. (Optional)
value Specifies the value to be set for the corresponding property (the

name argument). (Optional)

DesignSync Custom Type System Programmer's Guide

67

sctp::objset::contains Procedure
sctp::objset::contains $set objname [var]
=> 0/1

Description

The contains procedure detects whether a set contains the specified object. If you
supply the var argument, the contains procedure sets the var variable to the CTP
object (an Object Info object).

The contains procedure returns a 0 if the specified object is not in the set. It returns a
1 if the object is in the set.

Arguments

$set Specifies the set of objects against which you want to check for
a particular object.

objname Specifies the name of the object to be added.
var Specifies the variable that is set to the CTP object if the set

contains the object. (Optional)

sctp::objset::foreachfile Procedure

68

sctp::objset::foreachfile Procedure
sctp::objset::foreachfile $set var pattern {code}
=> return value undefined

Description

The foreachfile procedure iterates over all objects in the specified set matching the
given pattern. For each iteration, if there's a match, the foreachfile procedure sets
the var loop variable to the CTP object (an Object Info object) and executes the
specified Tcl code.

Arguments

$set Specifies the set of objects against which you want to match a
specified pattern.

var Specifies the loop variable. The var argument is set, in turn, to
each CTP object that matches the specified pattern.

pattern Specifies a glob-style pattern to be matched against objects in
the set.

code Specifies the Tcl code to be executed for each match.

DesignSync Custom Type System Programmer's Guide

69

sctp::objset::foreachfolder Procedure
sctp::objset::foreachfolder $set var {code}
=> return value undefined

Description

The foreachfolder procedure iterates over each folder in the specified set. For each
folder object found in the set, the foreachfolder procedure sets the var loop
variable to the CTP object (an Object Info object) and executes the specified Tcl code.

Arguments

$set Specifies the set of objects containing the folders being
processed.

var Specifies the loop variable. The var argument is set, in turn, to
each CTP object in the set that is a folder.

code Specifies the Tcl code to be executed for each iteration.

sctp::objset::getinfo Procedure

70

sctp::objset::getinfo Procedure
sctp::objset::getinfo $set objname
=> Object Info object

Description

The getinfo procedure returns the CTP object (an Object Info object) that
corresponds to the specified objname argument.

Arguments

$set Specifies the set containing the object whose properties are to
be returned.

objname Specifies the name of the object whose CTP object (Object Info
object) is to be returned.

Note: The object's name must contain .sgc . Otherwise the
Custom Type System throws an exception.

DesignSync Custom Type System Programmer's Guide

71

sctp::objset::names Procedure
sctp::objset::names $set
=> list of names

Description

The names procedure returns the list of object names in the specified set.

Arguments

$set Specifies the set whose object names are to be returned.

sctp::fileExists Procedure

72

General sctp Procedures

sctp::fileExists Procedure
sctp::fileExists filename
=> 0,1,2,3,4,-1

Description

The fileExists procedure detects whether the specified file or folder exists, returning
the following values:

0 The object does not exist.
1 The object exists and is a file.
2 The object exists and is a directory.
3 The object exists and is a link to an existing file.
4 The object exists and is a link to an existing directory.
-1 The object exists but is a broken link (links to nowhere).

It is recommended that you use the sctp::fileExists procedure in your procedure
rather than the Tcl file exists command because this procedure can better identify
the different cases shown above.

Arguments

filename Specifies the path to the file or folder.

DesignSync Custom Type System Programmer's Guide

73

sctp::getFolderType Procedure
sctp::getFolderType $dir
=> folder_type

Description

The getFolderType procedure returns the type of folder corresponding to the
specified directory. The procedure determines whether

• The folder is already included in the folder type cache, which stores the folder
types of the folders that have already been mapped.

 In this case, getFolderType returns the stored folder type.

• The folder is the user's HOME directory (on UNIX) or a root directory (/ or a
drive).

In this case, getFolderType returns "Folder".

• The folder type has not yet been determined.

In this case, if the determineFolderType procedure exists in the namespace
of the function that called getFolderType, then determineFolderType is
called. If the call to determineFolderType returns an empty string,
 getFolderType returns "Folder". If the call to determineFolderType
returns a string, the getFolderType procedure adds the returned folder type
value to the folder type cache and returns the value.

Arguments

$dir Specifies the folder whose folder type is being retrieved.

sctp::glob Procedure

74

sctp::glob Procedure
sctp::glob [flags] pattern
=> list of filenames

Description

The glob procedure accepts a pattern and returns the filenames that match the pattern.
The filenames are returned with any path that was specified in the pattern. For example:

o "./*" will return paths containing "./"
o "/users/fred/mydir/*" will return paths containing "/user/fred/mydir/"
o "*" will return the leaf names

If the CTS is running on UNIX, the glob procedure returns the identical list of filenames
that the standard Tcl glob command returns, given the same arguments.

If the CTS is running on Windows, the glob procedure returns the list of filenames
containing the backslash '\' characters appropriate for the Windows operating system.

Arguments

flags The flags you can pass to the glob procedure are the same
flags you can pass to the standard Tcl glob command. The
glob procedure runs in 'nocomplain' mode (as if the -
nocomplain option is passed to the Tcl glob command). In
this case, the glob procedure returns an empty list if no files
match the pattern.

See a Tcl reference for more details about the flags accepted
by the glob command.

pattern The patterns you can pass to the glob procedure are the same
patterns you can pass to the standard Tcl glob command.

See a Tcl reference for more details about the patterns
accepted by the glob command.

DesignSync Custom Type System Programmer's Guide

75

sctp::setKeyFiles Procedure
sctp::setKeyFiles namespace {list-of-wildcard-patterns}
=> return value undefined

Description

The setKeyFiles procedure supplies the patterns to identify the special files that
represent collection objects. The patterns set by calling setKeyFiles are used to
determine when the processKeyFiles procedure is called.

Note: The setKeyFiles procedure takes glob-style expressions, not regexp
expressions.

Arguments

namespace The CTP namespace for the CTP objects to be
matched against the key files, for example, lvcCTP.

list-of-wildcard-
patterns

A list of glob expressions to represent the patterns the
CTP objects must match.

Note: The setKeyFiles procedure takes glob
expressions, not regexp expressions.

sctp::setTypeProps Procedure

76

sctp::setTypeProps Procedure
sctp::setTypeProps typeName {name value name value …}
=> return value undefined

Description

The setTypeProps procedure lets you define custom types that have one or more
properties associated with them. Specify the properties as a list of property name/value
pairs. See CTP Object Type Properties for information about the Object Type Catalog,
which stores these type definitions.

Arguments

typeName Specifies the name to be assigned to the new object type. To
create an object of this object type, use the addobject
command and set the objtype property to this typeName
string.

name Specifies the property to be set. See CTP Object Type
Properties: Object Type Catalog for the predefined properties
you can set.

value Specifies the value to which the property is to be set.

77

Case Studies

Case Study Examples
The case study topics describe CTP examples included with this document. The
examples are stored in the following directory within the DesignSync installation
hierarchy:

<SYNC_DIR>/share/examples/doc/ctsguide

The following sample CTPs are included in the examples directory:

• collection.ctp: Illustrates a simple CTP.
• lvc.ctp: Illustrates a collection hierarchy that contains a library-view-cell

directory structure.
• local.ctp: Illustrates how a CTP can implement a local versioning scheme

reflective of some EDA tool suites.

Collection Example

78

Collection Example
To view the local version sample code, see collection.ctp.

To try the collection.ctp collection, install the following example in your
<SYNC_SITE_CUSTOM>/share/client/ctp directory:

<SYNC_DIR>/share/examples/doc/ctsguide/collection.ctp

The collection.ctp example creates collections of pairs of .txt and .html files.

Notice the following features of the Collection Example:

The members in the mapViews and members procedures match.

The mapViews procedure marks objects as collection members if both a .txt and an
.html file exist. Notice that the members procedure returns the same members as the
members added by the mapViews procedure.

The .txt/.html collections can occur anywhere in the data hierarchy.

Some collections depend on a particular organization of the data hierarchy in order for a
collection to be recognized. This example assumes that a collection (a pair of .txt and
.html files in this case) can occur anywhere in the data hierarchy. In other
terminology, unlike the Library-View-Cell Example, this example requires no hierarchy
context. Collections that do not rely on a hierarchy context for collection recognition do
not need the determineFolderType procedure.

DesignSync Custom Type System Programmer's Guide

79

Example: collection.ctp

$Revision$ $Date$

Copyright (c) 1997-2010 Dassault Systemes. All rights reserved.
Use of this source code is restricted to the terms of your license
agreement with Dassault Systèmes Any use, reproduction, distribution,
copying or re-distribution of this code outside the scope of that
agreement is a violation of U.S. and International Copyright laws.

DISCLAIMER: The following sample code is intended as a learning
tool and not for use as production CTP code.

Collection CTP : simple collection of a couple of files.
If both exist, they are a collection. If one or the other exists,
then they are not.

namespace eval collectionCTP {}

NOTE: This example expects collection member files with
names of the form "name.txt" and "name.html". The
body of the name cannot contain other dot "." characters.
This example does not handle the condition where a folder
unexpectedly has one of the collection member file names.

sctp::setTypeProps "Test Collection" {icon "CTP_collection.gif"}

common subroutines

proc collectionCTP::fileExists { filename } {
File must be a plain file on disk or a link to a plain file
on disk. Nothing else is acceptable.
 if { [sctp::fileExists $filename] == 1 || \
 [sctp::fileExists $filename] == 3 } {
 return 1
 }
 return 0
}

proc collectionCTP::existsOnDisk {basename} {
Both members must be real files on disk.
 return [expr [collectionCTP::fileExists $basename.html] \
 && [collectionCTP::fileExists $basename.txt]]
}

Get the base name of a file.
proc collectionCTP::getBase {filename} {
 set dot [string first . $filename]

Example: collection.ctp

80

 if {$dot == -1} {
 return $filename
 }
 return [string range $filename 0 [expr $dot - 1]]
}

Get the extension of a file.
proc collectionCTP::getExt {filename} {
 set dot [string first . $filename]
 if {$dot == -1} {
 return $filename
 }
 return [string range $filename [expr $dot] end]
}

The following proc is here to illustrate that the member
list can be set via a proc, or by the members property.
If the members property is set, the members proc is ignored.
To call the members proc instead, set the value of the
FixedMembers variable to 1.

set collectionCTP::FixedMembers 0
Set the member list. If FixedMembers is 0, do nothing
and ::members will be called instead.
proc collectionCTP::setMemberList {obj base path} {
 if {$collectionCTP::FixedMembers} {
 sctp::obj::setprop $obj members [list $base.txt $base.html]
 }
}

mapViews
This is the main proc (required).

proc collectionCTP::mapViews {path set} {

 sctp::objset::foreachfile $set f *.txt {

 # For each txt, see if an html exists
 set base [collectionCTP::getBase [sctp::obj::name $f]]
 if [sctp::objset::contains $set $base.html] {

 # Found a matching html. Now make sure it's a file and
 # not a folder.
 if { [sctp::obj::type [sctp::objset::getinfo $set $base.html]] \
 == "File" } {
 # We have both, so create a collection.
 # Catch the addobject. This keeps the ctp from throwing
 # an exception if the collection object exists
 # on disk as a real file.
 if [catch {
 set col [sctp::objset::addobject $set $base.sgc.tst]
 sctp::obj::setprop $col objtype "Test Collection"
 } addobjerr] {
 set col [sctp::objset::getinfo $set $base.sgc.tst]

DesignSync Custom Type System Programmer's Guide

81

 sctp::obj::setprop $col objtype "Invalid collection"
 sctp::obj::setprop $col error \
 "Collection object is already a disk file - \
 found in mapViews."
 } else {

 # Now mark this with a special label for the GUI.
 # This is not required, but makes the GUI label more
 # distinctive for each separate collection.
 sctp::obj::setprop $col label [join [list $base \
 "Test Collection"]]

 #
 # Now declare membership and ownership.
 # This is required for collections.
 #
 setMemberList $col $base $path
 set htmlobj [sctp::objset::getinfo $set $base.html]
 set txtobj [sctp::objset::getinfo $set $base.txt]
 sctp::obj::setprop $htmlobj objtype "Test Member"
 sctp::obj::setprop $htmlobj owner [file join \
 $path $base.sgc.tst]
 sctp::obj::setprop $htmlobj label [join [list \
 $base "Test Member"]]
 sctp::obj::setprop $txtobj objtype "Test Member"
 sctp::obj::setprop $txtobj owner [file join $path \
 $base.sgc.tst]
 sctp::obj::setprop $txtobj label [join [list $base \
 "Test Member"]]
 } }
 } }

 # Make sure referenced collections are recognized properly.
 sctp::objset::foreachfile $set f *.sgc.tst {
 if { [collectionCTP::fileExists [file join $path \
 [sctp::obj::name $f]]] } {
 sctp::obj::setprop $f objtype "Invalid collection"
 sctp::obj::setprop $f error "Collection object is \
 already a disk file."

 } else {
 sctp::obj::setprop $f objtype "Test Collection"
 }
 set base [collectionCTP::getBase [sctp::obj::name $f]]
 collectionCTP::setMemberList $f $base $path
 }
}

proc collectionCTP::updateObject {path object} {

 set name [sctp::obj::name $object]
 set base [collectionCTP::getBase $name]

 set extlen 8

Example: collection.ctp

82

 set length [string length $name]
 if {$length > $extlen} {
 set ext [string range $name [expr $length - $extlen] $length]
 if {$ext == ".sgc.tst"} {
 # mark as a collection
 sctp::obj::setprop $object objtype "Test Collection"

collectionexists - Why do this?
This correctly identifies the object for the sake of 'url exists'.
If an object physically exists, or it has metadata (thus is a
reference) then 'url exists' always returns 1. In the case of a
collection that has not yet been checked in, the object is neither
an actual object on disk, nor does it have metadata. So I have to
tell 'url exists' that yes, this thing really exists. To see how
this makes a difference, comment out the next section, create a new
collection pair: n.txt and n.html, then type 'url exists n.sgc.tst'.
Without this section, you get back a no answer. That's a problem
because some operations might then actually skip processing this
object because it thinks it doesn't exist.

 if { [collectionCTP::existsOnDisk [file join $path $base]] } {
 if [catch {
 sctp::obj::collectionexists $object
 } existserr] {
 sctp::obj::setprop $object objtype \
 "Invalid collection"
 sctp::obj::setprop $object error \
 "Collection object is already a disk file - found \
 in updateObject."
 setMemberList $object $base $path
 } else {
 # In this case, we have a new object not yet checked
in,
 # or an existing managed collection.
 setMemberList $object $base $path

 # Now mark this with a special label for the GUI
 sctp::obj::setprop $object label [join [list $base \
 "Test Collection"]]

 }
 } else {
 if { [collectionCTP::fileExists [file join $path \
 $base.sgc.tst]] } {
 # Really odd case. There is a file on disk with the
collection
 # extension, but the members don't exist.
 sctp::obj::setprop $object objtype "Invalid
collection"
 sctp::obj::setprop $object error "Collection object \
 is already a disk file."
 setMemberList $object $base $path

 } else {
 # I have metadata, but the object and members are not on
disk.
 # Must be a reference.

DesignSync Custom Type System Programmer's Guide

83

 setMemberList $object $base $path

 # Now mark this with a special label for the GUI.
 sctp::obj::setprop $object label [join [list $base \
 "Test Collection"]]
 }
 }

 }
 }

 set ext [collectionCTP::getExt $name]

Identify if the file is a member

 if {$ext == ".txt" && [collectionCTP::fileExists [file join $path \
 $base.html]] } {
 sctp::obj::setprop $object objtype "Test Member"
 sctp::obj::setprop $object owner [file join $path $base.sgc.tst]
 }
 if {$ext == ".html" && [collectionCTP::fileExists [file join $path \
 $base.txt]] } {
 sctp::obj::setprop $object objtype "Test Member"
 sctp::obj::setprop $object owner [file join $path $base.sgc.tst]
 }
}

proc collectionCTP::members {path object type} {
 if {$collectionCTP::FixedMembers} {

 # This proc should not be called if "FixedMembers" variable was
 # set to 1. If we get here, then some error was encountered -
 # probably a broken symlink issue. In that case, throw an error and
 # mark the collection as invalid.
 sctp::obj::setprop $object error "Error in member set for this
collection."
 }
 set base [collectionCTP::getBase $object]
 return [list $base.txt $base.html]
}

Library-View-Cell Example

84

Library-View-Cell Example
To view the Library-View-Cell sample code, see lvc.ctp.

To try the lvc.ctp collection, install the following example in your
<SYNC_SITE_CUSTOM>/share/client/ctp directory:

<SYNC_DIR>/share/examples/doc/ctsguide/lvc.ctp

You can use this CTP on the following data by untarring the tar file and running
DesignSync from the generated lib directory:

<SYNC_DIR>/share/examples/doc/ctsguide/lvc.tar

Notice the following features of the Library-View-Cell Example:

Hierarchy Context

Some collections can occur within any directory (folder) in the design data hierarchy.
Other collections, however, can only occur in a particular hierarchy context for the
collections to be recognized as valid. For the data managed by the lvc.ctp to be
recognized as a valid collection, it must be in a directory that contains an lvc.lib file.
 Thus, the CTP needs a determineFolderType procedure which will detect whether
a particular directory contains an lvc.lib file and therefore might contain a collection.

Use of contentsChanged Procedure

The lvc.ctp CTP calls the custom contentsChanged procedure to monitor for the
situation when a new schematic cell view is fetched into the workspace. In this case,
the CTP provides notification that objects in the affected libraries have changed. Notice
that the operationBegin and operationEnd procedures work in tandem with the
contentsChanged procedure to implement this notification. The operationBegin
procedure clears the libsToNotify variable which stores the libraries that have
changed. The operationBegin procedure also captures the command name that
caused the operationBegin procedure to be triggered. Only if the operation is a
checkout or a populate does the contentsChanged procedure check for changed
objects. After the operation completes, the operationEnd procedure provides
notification of the changed libraries. As an enhancement to this CTP, notification of
changed libraries could be replaced with a system call to notify the EDA tools of
potential new schematic data.

DesignSync Custom Type System Programmer's Guide

85

Example: lvc.ctp

$Revision$ $Date$

Copyright (c) 1997-2010 Dassault Systemes. All rights reserved.
Use of this source code is restricted to the terms of your license
agreement with Dassault Systèmes Any use, reproduction, distribution,
copying or re-distribution of this code outside the scope of that
agreement is a violation of U.S. and International Copyright laws.

DISCLAIMER: The following sample code is intended as a learning
tool and not for use as production CTP code.

Lib-View-Cell Custom Type Package

DESCRIPTION

This sample Custom Type Package implements an imaginary directory
structure that contains design data in a library-view-cell hierarchy.

A "LVC Library" directory is identified as any directory containing a
a file named lvc.lib.

Under a "LVC Library", each sub-directory is considered a "LVC View".

Under a "LVC View", each subdirectory is potentially a "LVC Cell" if
it contains the contents of a "LVC Cell View" object.

A cell-level directory is an "LVC Cell" if it contains a file matching:
lvc.celltype.*

Where there is a "LVC Cell", then a collection object is created to contain
the set of files that make up the cell. The set of files is dependent on
the cell type, and the cell type is identified by the tail part of the
lvc.celltype.* name. A mapping identifying the set of member files for
any particular type is hard-coded into this example. See below.

For example, Consider the following directory structure:

mylib/
lvc.lib
drawing/
NAND/
lvc.celltype.schematic
sch.db
sch.props
tmp.bck
NOR/
lvc.celltype.symbol
symbol.db
symbol.pinmap
NonCell/
tmp.txt

Example: lvc.ctp

86

In this example, "mylib" is a "LVC Library", because it contains a
"lvc.lib"
file. The library has a single "LVC View" type folder called "drawing".
The "drawing" view contains two "LVC Cell" type folders, identified by the
lvc.celltype.* files, and one other folder.
The NAND "LVC Cell" contains a "schematic" type object. The member file
mapping for "schematic" indicates that anything matching "sch.*" is a
members, and so the sch.db and sch.props are members, but not the tmp.bck.

This CTP defines two collection objects from this data. The collections are
created within the "LVC View" directory, and they are "schematic.sgc.lvc"
and
"symbol.sgc.lvc"

By default, the LVC Cell directories are marked as "non-recursable", so
any files other than the members within them are not processed by recursive
operations, but this can be changed by setting the variable:
set lvcCTP::recurse_into_cells 1

When a "schematic" view is modified/fetched as a result of a co/pop
operation, the design tools need to be notified of that. This is achieved
through the operationBegin/operationEnd and contentsChanged system.
If any schematic is modified (by co/pop) in an operation, then a system
call (commented out in this example) is made to notify the design tools
that there may be new data present.
The sctp::setKeyFiles call and lvcCTP::processKeyFiles proc are also
related to this requirement to perform an update on an initial populate.

###

namespace eval lvcCTP {

 #---
 # Initialize the CTS Type Catalog with our types and the properties
 # for these types.
 #
 # NOTES:
 # 1. Recurse on folders/non-view folders set according
 # to variable
 # 2. Collection members are not versionable, the collection as
 # a whole is.
 # 3. opNotify is set for LVC View.
 #---
 sctp::setTypeProps {LVC Library} \
 [list recurse 1]
 sctp::setTypeProps {LVC View} \
 [list recurse 1 opNotify 1]
 sctp::setTypeProps {LVC Cell} \
 [list opNotify 1]

 sctp::setTypeProps {LVC Cell View} \
 [list versionable 1]

 sctp::setTypeProps {LVC Member} \
 [list versionable 0]

DesignSync Custom Type System Programmer's Guide

87

 sctp::setTypeProps {LVC Lib File} \
 [list versionable 1]

 #------------------
 # Key files identify special files that might belong to us. This helps
 # on an initial populate.
 # The files we want to key off of are the LVC collection objects.
 # NOTE: the setKeyFiles proc takes glob expressions, not
 # regexp.
 #------------------
 sctp::setKeyFiles lvcCTP [list \
 {*\.sgc\.lvc} \
]

 #---
 # This variable controls whether we recurse into cell directories.
 #---
 variable recurse_into_cells 0

 #---
 # This mapping defines how types are mapped to a set of "glob"
 # expressions that identify the members of that view. Multiple
 # expressions are allowed for each type.
 # At present only two type are defined, but this would in practice
 # be a larger list.
 #---
 variable cellMap
 set cellMap(schematic) [list sch.*]
 set cellMap(symbol) [list symbol.*]

}

#---
CTP Procs

The next set of procedures are those required by the CTS system.
This is followed by "helper functions" that are specific to this
CTP.
#---

#--
::lvcCTP::mapViews {dir contents}

dir: The path to the directory containing contents
contents: An object set containing the contents of $dir

This proc is the core of object recognition for the LVC CTP.
This is called by the CTS system whenever a whole directory is
being expanded to identify its contents.

We will determine the type of the dir and then if it is a LVC type we
will process the contents.
#--
proc ::lvcCTP::mapViews {dir contents} {

Example: lvc.ctp

88

 #--------------------------
 # Figure out the type of this directory
 #--------------------------
 set type [sctp::getFolderType $dir]

 set skip 0
 #--------------------------
 # If it matches one of these then process the files in these
 # directories.
 #--------------------------
 switch -exact -- $type {
 {LVC Library} {
 #---
 # Map the files in a Library
 #---
 lvcMapLibraryContents $dir $contents

 }
 {LVC View} {
 #---
 # Map the files in a View
 #---
 lvcMapViewContents $dir $contents
 set skip 1
 }

 {LVC Cell} {
 #---
 # Map the files in a Cell
 #---
 lvcMapCellContents $dir $contents
 }
 }

 #------------------
 # Now determine the types of all the folders in the dir,
 # except for LVC View where this has already been done.
 #------------------
 if {!$skip} {
 sctp::objset::foreachfolder $contents obj {
 if {[sctp::obj::type $obj] == {Folder} } {
 set ftype [sctp::getFolderType [file join $dir \
 [sctp::obj::name $obj]]]
 if {$ftype != {Folder}} {
 sctp::obj::setprop $obj objtype $ftype
 }
 }
 }
 }

 return

}

#--

DesignSync Custom Type System Programmer's Guide

89

::lvcCTP::updateObject {dir objInfo}

dir: Directory path
objInfo: A CTS object item

This proc is called whenever the CTS system needs to identify
a specific object.

We see whether the name matches one of our objects, and of so then
set any appropriate properties.

#--
proc ::lvcCTP::updateObject {dir objInfo} {

 #---
 # Figure out the type of this directory
 #---
 set type [sctp::getFolderType $dir]

 #---
 # If it matches one of these then set the appropriate information
 # for the given objInfo. This handles everything but directory types.
 #---
 switch -exact -- $type {
 {LVC Library} {
 lvcUpdateLibObject $dir $objInfo

 }
 {LVC View} {
 lvcUpdateViewObject $dir $objInfo
 }

 {LVC Cell} {
 lvcUpdateCellObject $dir $objInfo
 }

 }
 #---
 # If the object is itself a folder of one of our types, then set the
 # type of it.
 #---
 if {[sctp::obj::type $objInfo] == {Folder} } {
 set ftype [sctp::getFolderType [file join $dir \
 [sctp::obj::name $objInfo]]]
 if {$ftype != {Folder}} {
 sctp::obj::setprop $objInfo objtype $ftype
 }
 }

}

#--
::lvcCTP::determineFolderType {dir}
=> type

dir: Directory path.

Example: lvc.ctp

90

Figure out if the given directory is one of our special directory
types.
Returns the folder type if we know, otherwise return nothing

#--
proc ::lvcCTP::determineFolderType {dir} {

 if {$dir == {/}} {return {}}

 #---
 # If there is a lvc.lib, this is a library.
 #---
 if {[file exists [file join $dir lvc.lib]]} {
 return "LVC Library"
 }

 #---
 # If there is a lvc.lib above, this is a view.
 #---
 if {[file exists [file join [file dirname $dir] lvc.lib]]} {
 return "LVC View"
 }

 #---
 # If there is a file matching lvc.celltype.*, then this is a cell.
 # NOTE: In theory, we should check that the parent is a view as
 # well.
 #---
 if {[llength [glob -nocomplain -dir $dir "lvc.celltype.*"]] > 0} {
 return "LVC Cell"
 }

 return {}

}

#--
::lvcCTP::members {parentPath objName type}

Figure out the members of the LVC Cell View.
This is called when CTS needs to know the set of members of a
collection object crated by this CTP.

Return: a list of members or nothing
#--
proc ::lvcCTP::members {parentPath objName type} {

 if {$type == {LVC Cell View}} {
 #---
 # Extract the cell directory name and look up the members.
 #---
 return [lvcMembers [lvcGetDir [file join $parentPath $objName]]]

 }

DesignSync Custom Type System Programmer's Guide

91

}

#--
::lvcCTP::recurse { path type }

path: Directory path.
type: Type of the directory.

This is called by the CTS system to decide whether to recurse into
a folder of a type that does not have a specific recurse setting
defined in the type properties.

In our case, this wwill be called on a "LVC Cell", and we decide
whether to recurse depending on the package variable, so that it
can be overridden by the user.
#--
proc ::lvcCTP::recurse { path type } {

 if {$type == "LVC Cell"} {
 return $::lvcCTP::recurse_into_cells
 }
 return 1

}

#--
::lvcCTP::operationBegin

Clear the libsToNotify list.
Set the operation variables, so that when contentsChanged is
called we know whether we are interested in the objects.

#--
proc ::lvcCTP::operationBegin { cmd } {

 #--------------------------
 # clear the libsToNotify data
 #--------------------------
 if {[info exists ::lvcCTP::libsToNotify]} {
 array unset ::lvcCTP::libsToNotify
 }

 set ::lvcCTP::operation [lindex $cmd 0]

}

#---
::lvcCTP::contentsChanged {path added removed}

path: Directory path
added: Objects added/changed in that dir
removed: Objects removed from that dir

This is called whenever anything changes in a dir.
If we are in a pop/co operation, then record the library path IF
the path given is a schematic view folder. (Note that this means

Example: lvc.ctp

92

we record the name whether items are added or removed, and also
whether those items are cell objects or plain files. This could
be improved in practice by examining the added/removed lists.
NOTE: The actual command value for populate operations is _populate,
the actual values for commands can be found by examining the operation
values in the operationBegin proc.
#---
proc ::lvcCTP::contentsChanged {path added removed} {

 #---
 # We are only interested if the command was co or populate.
 #---
 if {$::lvcCTP::operation == "co" || $::lvcCTP::operation == "_populate"}
{

 #---
 # Add if the tail of the path is "schematic"
 #---
 if {[file tail $path] == "schematic"} {

 #---
 # Then add the library path to our array.
 #---
 set ::lvcCTP::libsToNotify([file dirname $path]) 1
 }
 }

}

#--
::lvcCTP::operationEnd

When the operation ends, see whether there are libraries to
be notified.
#--
proc ::lvcCTP::operationEnd {} {

 #---
 # Process each library that we found updates for in this operation.
 # In this example, we just generate a message.
 #---
 if {[info exists ::lvcCTP::libsToNotify]} {
 foreach lib [array names ::lvcCTP::libsToNotify] {
 puts "Updated data in library: $lib. Need to notify."
 }
 }

}

#---
::lvcCTP::processKeyFiles {path files}

path: Directory path
files: Key files found in that path.

DesignSync Custom Type System Programmer's Guide

93

This proc will be called when a populate command operates on a new
folder and adds files to the the folder that match the file names
specified above in sctp::setKeyFiles.
This handles "bootstrapping", where we need to be notified about the
new objects, but because they are only just being fetched, the real object
recognition has not been able to come into play.

In this case, all we need to do is act as though
::lvcCTP::contentsChanged() was called, so we pass this call through to
that.

See the sctp::setKeyFiles call above.
#---
proc ::lvcCTP::processKeyFiles {path files} {

 ::lvcCTP::contentsChanged $path $files {}

}

#---
HELPER FUNCTIONS

These are the procs used by the above code.
#---

#---
lvcGetDir {objName}
=> cell_dir

Given an object name of the form /dir/cell.sgc.lvc, return /dir/cell
Used to convert a cell view object name into the cell directory name.
#---
proc lvcGetDir {objName} {

 set dir [file dirname $objName]
 set leaf [file tail $objName]
 set cell [string range $leaf 0 [expr [string length $leaf] - 9]]

 return [file join $dir $cell]
}

#---
lvcGetType {dir}
=> type

Finds the lvc.celltype.* file and extracts the type name from it.
#---
proc lvcGetType {dir} {

 #---
 # Extract the type value from the lvc.celltype.* file.
 # NOTE: We assume there is only one such file!
 #---

Example: lvc.ctp

94

 set type_file [lindex [glob -nocomplain [file join $dir lvc.celltype.*]]
0]
 set type [string range [file tail $type_file] 13 end]

 return $type

}

#---
lvcMembers {dir}
=> members

dir: Cell directory path

Given a LVC Cell directory, identify the member files.
#---
proc lvcMembers {dir} {

 set type [lvcGetType $dir]

 #---
 # If there was no type found, simply return no members.
 #---
 if {$type == {}} {
 return
 }

 #---
 # Check we have a type mapping for this type.
 #---
 if {![info exists ::lvcCTP::cellMap($type)]} {
 error "No mapping found for type: $type"
 }

 #---
 # Build a list of glob expressions, and then match them to find the
 # members.
 # NOTE: We assume no file is matched by more than one expression.
 # NOTE: members are specified as relative paths to the collection
 # object, and must be separated by the system file separator.
 #---
 set lst {}
 foreach glob_str $::lvcCTP::cellMap($type) {
 lappend lst [file join $dir $glob_str]
 }
 set len [string length [file dirname $dir]]
 incr len
 if {$lst != {}} {
 set res {}
 foreach glob_str $lst {
 set match [sctp::glob $glob_str]
 foreach m $match {
 lappend res [string range $m $len end]
 }
 }
 lappend res "[file tail $dir][file separator]lvc.celltype.$type"

DesignSync Custom Type System Programmer's Guide

95

 return $res
 }
 return {}
}

#--
lvcMapLibraryContents {dir contents}

dir: Directory to be processed
contents: A CTS contents list for the dir.

The contents are from a known LVC Library directory. Determine the
types of the files and set them.
The only thing we are intersted in is the lvc.lib file.
Note that types of sub-dirs are handled in the calling function.

#--
proc lvcMapLibraryContents {dir contents} {

 #------------------
 # Look for the library identification file
 #------------------
 if {[sctp::objset::contains $contents {lvc.lib} lfb]} {
 sctp::obj::setprop $lfb objtype {LVC Lib File}
 }

}

#--
lvcMapViewContents {dir contents}

dir: Directory to be processed
contents: A CTS contents list for the dir.

The contents are from a known LVC View directory.
There are no specific file types in this directory, but
add any LVC Cell View objects that are needed.

#--
proc lvcMapViewContents {dir contents} {

 #---
 # Find all dirs, and if have a lvc.celltype.* set up the collection
 # object.
 #---
 sctp::objset::foreachfolder $contents obj {

 set dname [sctp::obj::name $obj]
 set vdir [file join $dir $dname]

 if {[glob -nocomplain -dir $vdir "lvc.celltype.*"] != {}} {
 #---
 # Add the collection object.
 #---
 set collObj [sctp::objset::addobject $contents $dname.sgc.lvc]

Example: lvc.ctp

96

 sctp::obj::setprop $collObj objtype {LVC Cell View}

 #---
 # Get the members, and set them for the collection object.
 #---
 set mems [lvcMembers $vdir]
 sctp::obj::setprop $collObj members $mems

 #---
 # Set the view type label. This is displayed as the extended
 # type name by the ls command.
 #---
 set vtype [lvcGetType $vdir]
 if {$vtype != ""} {
 sctp::obj::setprop $collObj label "LVC $vtype Cell View"
 }

 #---
 # Set the type of the cell folder itself.
 #---
 sctp::obj::setprop $obj objtype "LVC Cell"

 }
 }

}

#--
lvcMapCellContents {dir contents}

dir: Directory to be processed
contents: A CTS contents list for the dir.

The contents are from a known LVC Cell directory.
Find any LVC Cell View members and mark their type and owner.

#--
proc lvcMapCellContents {dir contents} {

 #---
 # Get the members.
 #---
 set mems [lvcMembers $dir]
 set dname [file tail $dir]

 #---
 # Look up the members and set their type, and set the
 # owner to the collection object.
 # NOTE: The owner is a full path, in Unix path format, which is
 # how the directory is passed into here.
 #---
 sctp::objset::foreachfile $contents obj {*} {
 set objname [sctp::obj::name $obj]
 if {[lsearch -exact $mems "$dname[file separator]$objname"] != -1} {
 sctp::obj::setprop $obj objtype "LVC Member"
 sctp::obj::setprop $obj owner $dir.sgc.lvc
 }

DesignSync Custom Type System Programmer's Guide

97

 }
}

#--
lvcUpdateLibObject {dir objInfo}

dir: Directory containing the object
objInfo: The TS object

Called by ::lvcCTP::updateObject

If the object is our lvs.lib, set its type.

#--
proc lvcUpdateLibObject {dir objInfo} {

 set objname [sctp::obj::name $objInfo]
 if {$objname == "lvc.lib"} {
 sctp::obj::setprop $objInfo objtype "LVC Lib File"
 }

}

#--
lvcUpdateViewObject {dir objInfo}

dir: Directory containing the object
objInfo: The TS object

Called by ::lvcCTP::updateObject

If we are given a LVC Cell View, then we need to set the type and
the members.

#--
proc lvcUpdateViewObject {dir objInfo} {

 set objname [sctp::obj::name $objInfo]
 if {![string match *.sgc.lvc $objname]} {
 return
 }

 sctp::obj::setprop $objInfo objtype "LVC Cell View"

 set dname [lvcGetDir [file join $dir $objname]]

 #---
 # Set the view type label. This is displayed as the extended type
 # name by the ls command.
 #---
 set vtype [lvcGetType $dname]
 if {$vtype != ""} {
 sctp::obj::setprop $objInfo label "LVC $vtype Cell View"
 }

 #---

Example: lvc.ctp

98

 # Set the view members. Allow for them being empty, which might
 # happen for a view in reference mode.
 #---
 set mems {}
 catch {set mems [lvcMembers $dname]} res

 #---
 # See if any of the files exist on disk. As soon as one exists
 # assume they all exists. Mark the object.
 #---
 foreach i $mems {
 if {[file exists [file join $dir $i]]} {
 sctp::obj::collectionexists $objInfo
 break
 }
 }

 #---
 # Update the collections members.
 #---
 sctp::obj::setprop $objInfo members $mems

}

#--
lvcUpdateCellObject {dir objInfo}

dir: Directory containing the object
objInfo: The TS object

Called by ::lvcCTP::updateObject

See if the given item is a LVC Member, and if so set its type and owner.

#--
proc lvcUpdateCellObject {dir objInfo} {

 set objname [sctp::obj::name $objInfo]
 set mems [lvcMembers $dir]
 set dname [file tail $dir]

 if {[lsearch -exact $mems "$dname[file separator]$objname"] != -1} {
 sctp::obj::setprop $objInfo objtype "LVC Member"
 sctp::obj::setprop $objInfo owner $dir.sgc.lvc
 }

}

DesignSync Custom Type System Programmer's Guide

99

Local Version Example
The local version example illustrates a methodology whereby a design tool implements
its own basic version management by making local copies of design objects. See
Developing Custom Type Packages: Local Version Methodology for a discussion of
local versions.

To view the local version sample code, see local.ctp.

To try the local.ctp collection, install the following example in your
<SYNC_SITE_CUSTOM>/share/client/ctp directory:

<SYNC_DIR>/share/examples/doc/ctsguide/local.ctp

The Local Version Methodology of the local.ctp Example

Typically a CTP with a local version methodology might have a methodology such that
the local version with the highest local version number is the current local version. In
local.ctp, the collections are appended with _v1, _v2, and _v3. The current local
version is the local version with the _v3 extension. If _v3 doesn't exist, the current
local version is the local version with the _v2 extension. If _v2 doesn't exist, the current
local version is the local version with the _v1 extension.

Example: local.ctp

100

Example: local.ctp

$Revision$ $Date$

Local CTP : collection for illustrating local versions
This example sets versionable and ownership properties.
Procedures used in this example include: obsmembers,
collectionexists,getCurrentLocalVersion, localVersionChanged,
getLocalVersionFromTags.

Copyright (c) 1997-2010 Dassault Systemes. All rights reserved.
Use of this source code is restricted to the terms of your
license agreement with Dassault Systèmes Any use, reproduction,
distribution, copying or re-distribution of this code outside
the scope of that agreement is a violation of U.S. and
International Copyright laws.

DISCLAIMER: The following sample code is intended as a learning
tool and not for use as production CTP code.

namespace eval localCTP {}

In this simple CTP, the collection consists of all of the members
with the name *_v3, or if none exist, then the collection is all
files with the name *_v2, or if none exist, then the collection
is all files with names matching the pattern *_v1. The local
version is thus 1, 2, or 3. Note that this is not the same thing
as saying "the highest local revision of each file is part of the
"latest" collection" - not so.

(4's are beyond the intelligence of this ctp example.)
Note that "_" characters anywhere else in the name string can
confuse this ctp. Note also that this ctp does not account for
the fact that you might encounter a folder that follows the
collection member naming convention.

Current local versions are recognized as Loc Members, while the
"older" local versions are marked as Obsolete.

To see how this works, create some test data where the files end
in "_v1". Check those in. Then create more files that have the
same prefix, but end in "_v2" this time. Check those in.

Anything recognizable as a current or obsolete version is in
itself non-versionable. Only the collection object itself is
versionable.

sctp::setTypeProps "Loc Member" { versionable 0 \
 icon CTP_member.gif }
sctp::setTypeProps "Obsolete File" { versionable 0 \
 owner "" icon CTP_unmanaged.gif }

DesignSync Custom Type System Programmer's Guide

101

Get the base name of a file.
The collection has the name local.sgc.loc.

proc localCTP::getBase {filename} {
 set dot [string first "_v" $filename]
 if {$dot == -1} {
 return $filename
 }
 return [string range $filename 0 [expr $dot - 1]]
}

Get the extension of a file.
proc localCTP::getExt {filename} {
 set dot [string first "_v" $filename]
 if {$dot == -1} {

Not a version, so check to see if we have a dot file.
 set dot [string first "." $filename]
 if {$dot == -1} {
 return $filename
 }
 set ext [string range $filename [expr $dot] end]
 return $ext

 }
 set ext [string range $filename [expr $dot] end]

Check for proper format, otherwise ignore the file
 if {[string length $ext] != 3} {
 return $filename
 }

 return $ext
}

proc localCTP::mapViews {path set} {
 set found3 0
 set found2 0
 set found1 0
 if [sctp::objset::contains $set local.sgc.loc object] {
 # make sure we don't have a real file - that would be an error.
 if { [sctp::fileExists [file join $path local.sgc.loc]] != 0 } {
 sctp::obj::setprop $object error "Invalid collection: \
 local.sgc.loc is a file."
 return
 } else {
 sctp::obj::setprop $object objtype "Local Collection"
 }
 }
 sctp::objset::foreachfile $set object *_v3 {
 sctp::obj::setprop $object objtype "Loc Member"
 set found3 1
 set vernum 3
 }
 set twoType "Loc Member"
 set oneType "Loc Member"

Example: local.ctp

102

 if {$found3} {
 set oneType "Obsolete File"
 set twoType "Obsolete File"
 }
 sctp::objset::foreachfile $set object *_v2 {
 sctp::obj::setprop $object objtype $twoType
 set found2 1
 if { $found3 == 0 } {set vernum 2}
 }
 if {$found2} {
 set oneType "Obsolete File"
 }

 sctp::objset::foreachfile $set object *_v1 {
 sctp::obj::setprop $object objtype $oneType
 set found1 1
 if { $found2 == 0 && $found3 == 0 } {set vernum 1}
 }
 if {$found3 || $found2 || $found1} {
 set colobj [sctp::objset::addobject $set local.sgc.loc \
 {objtype "Local Collection"}]

 # Must also set the ciTag value for this local version
 # on the collection object; otherwise, getCurrentLocalVersion
 # won't find anything when passed the usetag option.
 sctp::obj::setprop $colobj ciTag [join \
 [list "CTP_LV" $vernum] ""]
 sctp::obj::setprop $colobj label [join \
 [list "Local Version" $vernum]]

 # This is not very efficient programmatically, but we need
 # to set the owner property now on anything that is a
 # collection member.
 sctp::objset::foreachfile $set object {*_v[1-3]} {
 if { [sctp::obj::getprop $object objtype] == \
 "Loc Member" } {
 sctp::obj::setprop $object owner \
 [file join $path "local.sgc.loc"]
 sctp::obj::setprop $object label [join \
 [list "Local Member" $vernum]]
 }
 }

 }
}

proc localCTP::updateObject {path object} {

Ignore folders; just look at files and collection objects.
 if { [sctp::obj::type $object] != "Folder" } {
 set name [sctp::obj::name $object]
 set ext [localCTP::getExt $name]
 if {$ext == "_v3" } {
 sctp::obj::setprop $object objtype "Loc Member"
 sctp::obj::setprop $object label "Local Member 3"
 sctp::obj::setprop $object owner \
 [file join $path "local.sgc.loc"]

DesignSync Custom Type System Programmer's Guide

103

 }
 if { $ext == "_v2" } {
 set twoType "Loc Member"
 if {[llength [sctp::glob [file join $path *_v3]]] > 0} {
 set twoType "Obsolete File"
 } {
 sctp::obj::setprop $object owner [file join $path \
 "local.sgc.loc"]
 sctp::obj::setprop $object label "Local Member 2"
 }

 sctp::obj::setprop $object objtype $twoType
 }
 if { $ext == "_v1" } {
 set oneType "Loc Member"
 if {[llength [sctp::glob [file join $path "*_v3"]]] > 0 || \
 [llength [sctp::glob [file join $path "*_v2"]]] > 0} {
 set oneType "Obsolete File"
 } {
 sctp::obj::setprop $object owner [file join $path \
 "local.sgc.loc"]
 sctp::obj::setprop $object label "Local Member 1"
 }

 sctp::obj::setprop $object objtype $oneType
 }
 if { $ext == ".sgc.loc" } {
 sctp::obj::setprop $object objtype "Local Collection"

 # Figure out the highest local version number and mark that
 # as the active one.
 set vernum 0
 if { [llength [sctp::glob [file join $path "*_v1"]]] > 0 } \
 { set vernum 1 }
 if { [llength [sctp::glob [file join $path "*_v2"]]] > 0 } \
 { set vernum 2 }
 if { [llength [sctp::glob [file join $path "*_v3"]]] > 0 } \
 { set vernum 3 }
 if { $vernum > 0 } {
 sctp::obj::setprop $object ciTag [join \
 [list "CTP_LV" $vernum] ""]
 sctp::obj::setprop $object label [join \
 [list "Local Version" $vernum]]

 # Announce that this is a real object, just in case there's
 # no metadata yet. But throw error if there's an actual file
 # with this name.
 if { [sctp::fileExists [file join $path local.sgc.loc]] != 0 } {
 sctp::obj::setprop $object error "Invalid collection: \
 local.sgc.loc is a file."
 } else {
 sctp::obj::collectionexists $object
 }
 }
 }
 }
}

Example: local.ctp

104

proc localCTP::members {path object type} {
 # Return either the list of *_v2 or *_v1 or *_v3
 set mem [sctp::glob [file join $path "*_v3"]]
 if {[llength $mem] == 0} {
 set mem [sctp::glob [file join $path "*_v2"]]
 if {[llength $mem] == 0} {
 set mem [sctp::glob [file join $path "*_v1"]]
 }
 }
 return $mem
}

If there's a higher local version, the lower versions will be
marked obsolete.

proc localCTP::obsmembers {path object type} {
 set one [sctp::glob [file join $path "*_v1"]]
 set two [sctp::glob [file join $path "*_v2"]]
 set three [sctp::glob [file join $path "*_v3"]]
 set obs {}
 set lone [llength $one]
 set ltwo [llength $two]
 set lthree [llength $three]
 if { $lone > 0 } {
 if { $ltwo > 0 || $lthree > 0 } {
 lappend obs [list 1 $one]
 }}
 if { $ltwo > 0 && $lthree > 0 } {
 lappend obs [list 2 $two]
 }
 return $obs
}

proc localCTP::getCurrentLocalVersion {url type {usetag 1} \
 {members ""}} {
if {$usetag} {
 set res [::localCTP::getTagVal $url]
 return $res
 }

if { [llength $members] > 0 } {

The member list is passed in. Ignore what's in the workspace
and go by what was passed in. In this case, get the version
number off the member file names. Of course we are assuming
that the members list is correct for this ctp.

 if { [lsearch -glob $members *_v1] > -1 } {
 return 1
 } else {
 if {[lsearch -glob $members *_v2] > -1 } {
 return 2
 } else {
 return 3

DesignSync Custom Type System Programmer's Guide

105

 }}

} else {

 set parentPath [url path [url container $url]]
 if {[llength [sctp::glob [file join $parentPath "*_v3"] \
]] > 0} {
 return 3
 }
 if {[llength [sctp::glob [file join $parentPath "*_v2"] \
]] > 0} {
 return 2
 }
 return 1
} }

localVersionChanged proc
This proc is used like contentsChanged or a post trigger,
when a post-processing step is desired if the localversion
info changes on a collection object. That post-processing step
would be programmed here. In this example, we just output a
message that the LV number has changed.

proc localCTP::localVersionChanged {url type lv1 lv2 newMembers \
 obsoleteInfo} {
 puts "A local version changed."
 return 1
}

proc localCTP::getLocalVersionFromTags {url type tags} {
NOTE: This function is only called directly by the system when
performing a checkout with the savelocal -fail option.
 return [::localCTP::getTagVal $url]
}

This is a support proc that looks at all the tags and finds the
one related to local versioning.

proc ::localCTP::getTagVal {url} {
 set int 0
 set tags [url tags $url]

 set index [lsearch -glob $tags {CTP_LV*}]
 if {$index >= 0} {
 #--------------
 # The tags is of the form {CTP_LVinteger}
 #--------------
 if {[scan [lindex $tags $index] {CTP_LV%d} int] != 1} {
 puts "Tag not in proper form: [lindex $tags $index]"

Example: local.ctp

106

 }
 }

 return $int

}

107

Index
C

Check In

local versions 42

Checkout

local version 45

Collection

members 35

Custom Type Package (CTP)

CTS Procedure

allowing CTP to notice when
DesignSync operations occur
(operationBegin/operationEnd)
48, 49

CTP object (ObjectInfo) 57

CTP object that corresponds
objname argument (sctp

objset

getinfo) 70

properties associated with custom
type (sctp

setTypeProps) 76

recurse CTS into directory (recurse)
51

custom procedures 29, 37

debugging 25

developing 12

install 5

introduction 3

object properties 22

object type properties 17

sctp procedures 55

Custom Type System 3

F

File

naming 74

L

Local Version

changing 47

checking in 42

checking out 42, 45

populating 45

M

Mapping

view mapping 31

views 9

O

Objects

108

adding to a set 65, 66

listing 39

names 61, 71

properties 60, 62, 63

types 17, 64

P

Populate

local version 45

Properties

retrieving object properties 59, 60

setting 62, 63

R

Release Information 1

	Release Information
	Documentation
	Selecting the appropriate release
	Available Release-Specific Documentation
	Locating the Release Specific Documentation
	Product Enhancement Overview
	General and Open Issues
	Closed Issues
	Installation

	Introduction to the DesignSync Custom Type System
	Installing Custom Type Packages
	Installing Custom Type Packages
	Where to install custom type packages
	When are CTP files sourced?
	To register a CTP:
	What if the CTP was not installed before check-in?

	Developing Custom Type Packages
	DesignSync Recognition of Custom Type Packages
	What Is View Mapping?
	The Custom View of the Collection Data
	Exception Handling in View Mapping Procedures

	Developing Custom Type Packages
	Types Versus Object Types
	CTP Namespaces
	Required and Optional Procedures in CTPs
	sctp Procedures
	Utility Procedures for Recognizing Collection Data
	Local Version Methodology
	Ensuring Windows Compatibility

	CTP Object Type Properties
	Object Type Catalog
	Custom Context Menus
	Predefined CTP Icons

	CTP Object Properties
	Debugging Custom Type Packages
	Debugging Custom Type Packages
	Using the 'ctp' Commands
	Invalid CTPs
	Tips for Validating Your CTP

	Custom Procedures in CTPs
	Custom Procedures in CTPs
	Required Procedures for your CTP

	mapViews Procedure
	Description
	Arguments

	updateObject Procedure
	Description
	Arguments

	members Procedure
	Description
	Arguments

	Optional Custom Procedures in CTPs
	Optional Custom Procedures in CTPs
	contentsChanged Procedure
	Description
	Arguments

	determineFolderType Procedure
	Description
	Arguments

	getCurrentLocalVersion Procedure
	Description
	Arguments

	getLocalVersionFromTags Procedure
	Description
	Arguments

	localVersionChanged Procedure
	Description
	Arguments

	operationBegin Procedure
	Description
	Arguments

	operationEnd Procedure
	Description
	Arguments

	processKeyFiles Procedure
	Description
	Arguments

	recurse Procedure
	Description
	Arguments

	relations Procedure
	Description
	Arguments
	Examples

	sctp Procedures Used in CTPs
	sctp Procedures Used in CTPs
	Example of an sctp Procedure
	Object Info Procedures

	Object Info Procedures
	sctp::obj::collectionexists Procedure
	Description
	Arguments

	sctp::obj::getprop Procedure
	Description
	Arguments

	sctp::obj::getprops Procedure
	Description
	Arguments

	sctp::obj::name Procedure
	Description
	Arguments

	sctp::obj::setprop Procedure
	Description
	Arguments

	sctp::obj::setprops Procedure
	Description
	Arguments

	sctp::obj::type Procedure
	Description
	Arguments
	Object Set Procedures

	Object Set Procedures
	sctp::objset::addobject Procedure
	Description
	Arguments

	sctp::objset::contains Procedure
	Description
	Arguments

	sctp::objset::foreachfile Procedure
	Description
	Arguments

	sctp::objset::foreachfolder Procedure
	Description
	Arguments

	sctp::objset::getinfo Procedure
	Description
	Arguments

	sctp::objset::names Procedure
	Description
	Arguments
	General sctp Procedures

	sctp::fileExists Procedure
	Description
	Arguments

	sctp::getFolderType Procedure
	Description
	Arguments

	sctp::glob Procedure
	Description
	Arguments

	sctp::setKeyFiles Procedure
	Description
	Arguments

	sctp::setTypeProps Procedure
	Description
	Arguments

	Case Studies
	Case Study Examples
	Collection Example
	Example: collection.ctp
	Library-View-Cell Example
	Example: lvc.ctp
	Local Version Example
	Example: local.ctp
	Index

