
1

ENOVIA DesignSync
Command Reference All
Volume 2

3DEXPERIENCE 2022

3

Introduction to the PDF version of the DesignSync Command Reference

4

©2021 Dassault Systèmes. All rights reserved. 3DEXPERIENCE®, the Compass icon, the 3DS logo, CATIA, SOLIDWORKS, ENOVIA, DELMIA, SIMULIA, GEOVIA, EXALEAD, 3D VIA, BIOVIA, NETVIBES,
IFWE and 3DEXCITE are commercial trademarks or registered trademarks of Dassault Systèmes, a French “société européenne” (Versailles Commercial Register # B 322 306 440), or its subsidiaries in the
United States and/or other countries. All other trademarks are owned by their respective owners. Use of any Dassault Systèmes or its subsidiaries trademarks is subject to their express written approval.

ENOVIA Synchronicity Command Reference All -Vol2

5

Introduction to the PDF version of the DesignSync
Command Reference
Because of the quantity of information included in the DesignSync Command
Reference, the PDF version of the book has been divided into two volumes.

Volume 1 contains the following information:

• Fundamental Topics

• Client Applications

• Client Shell Control

• Module-Based Design

• Legacy Module-Based Design

Volume 2 contains the following information:

• File-Based Design

• Enterprise DesignDevelopment

• URL Sync Object Model

• TCL Interface

• Third-Party Integrations

• Administration

• ProjectSync Data Manipulation

• Glossary

i

Table of Contents

ENOVIA Synchronicity Command Reference ... 1

Using this Guide with Different Methodologies .. 1

Module Based Commands ... 1

Legacy Module Based Commands .. 1

File Based Commands ... 2

Organization of the Command Reference ... 2

Syntax Description ... 3

Accessing Command Descriptions from Client Shells ... 4

File-Based Design ... 5

Workspace Setup .. 5

Enterprise Design Development Area .. 5

Exclude from Workspace ... 15

populate ... 25

setmirror ... 116

setroot .. 117

setselector .. 120

setvault ... 129

unsetvault ... 134

Primary Revision Control ... 137

cancel ... 137

ci .. 148

co ... 190

Table of Contents

ii

populate ... 212

tag .. 303

Advanced Revision Control ... 329

import ... 330

mkbranch ... 334

mkfolder ... 342

mvfile .. 343

mvfolder ... 350

purge .. 353

retire ... 365

rmfile .. 373

rmfolder .. 376

rmvault ... 380

rmversion ... 383

select .. 389

setowner .. 392

switchlocker ... 393

unlock ... 397

unselect .. 406

upload .. 408

Navigational ... 420

cd ... 420

pwd .. 421

ENOVIA Synchronicity Command Reference All -Vol2

iii

scd ... 422

spwd ... 425

Informational .. 428

annotate ... 428

compare ... 431

compare-foreach .. 454

contents ... 457

contents-foreach .. 478

datasheet ... 480

diff .. 481

help .. 494

locate ... 497

ls .. 501

ls-foreach ... 548

syncinfo .. 551

version ... 559

vhistory ... 560

vhistory-foreach .. 581

vhistory-foreach-obj .. 583

webhelp .. 584

Enterprise Design Development .. 589

Development Areas ... 589

sda ... 589

Table of Contents

iv

sda cd .. 590

sda gui ... 594

sda join ... 595

sda ls .. 597

sda rm .. 599

Enterprise Object Viewing and Synchronization .. 602

entobj ... 602

entobj id ... 602

entobj isplatformmanaged .. 604

entobj policy ... 605

entobj setpolicy .. 607

entobj settype ... 609

entobject show ... 611

entobject synchronize .. 613

entobj type ... 617

Mcache Settings for Shared Developments ... 618

eda ... 618

eda addmcachepath ... 619

eda createrefws.. 622

eda listmcachepath .. 624

eda removemcachepath ... 626

URL Sync Object Model .. 629

url Commands ... 629

ENOVIA Synchronicity Command Reference All -Vol2

v

NAME ... 629

DESCRIPTION ... 629

SYNOPSIS ... 629

OPTIONS ... 630

RETURN VALUE ... 630

SEE ALSO ... 630

EXAMPLES .. 630

url ... 630

url Commands .. 630

url branchid .. 632

url branchid Command ... 632

url configs .. 635

url configs Command ... 635

url container ... 637

url container Command .. 637

url contents .. 638

url contents Command ... 638

url exists .. 645

url exists Command ... 645

url fetchedstate .. 648

url fetchedstate Command ... 648

url fetchtime ... 651

url fetchtime Command .. 651

Table of Contents

vi

url filter ... 654

url filter Command .. 654

url getprop ... 656

url getprop Command .. 656

url inconflict .. 659

url inconflict Command ... 659

url leaf .. 662

url leaf Command ... 662

url locktime .. 664

url locktime Command ... 664

url members ... 667

url members Command .. 667

url mirror .. 669

url mirror Command ... 669

url modified .. 670

url modified Command ... 670

url naturalpath .. 673

url naturalpath Command ... 673

url notes ... 675

url notes Command .. 675

url owner .. 678

url owner Command ... 678

url path ... 681

ENOVIA Synchronicity Command Reference All -Vol2

vii

url path Command .. 681

url projects ... 683

url projects Command .. 683

url properties .. 684

url properties Command ... 685

url registered .. 692

url registered Command ... 692

url relations .. 696

url relations Command ... 696

url resolveancestor .. 698

url resolveancestor Command ... 698

url resolvetag ... 702

url resolvetag Command .. 702

url retired ... 706

url retired Command .. 706

url rmprop .. 708

url rmprop Command ... 708

url root ... 710

url root Command .. 710

url selector ... 712

url selector Command .. 713

url servers .. 715

url servers Command ... 716

Table of Contents

viii

url setprop .. 719

url setprop Command ... 719

url syslock .. 723

url syslock Command ... 723

url tags ... 727

url tags Command .. 727

url users ... 731

url users Command .. 731

url vault .. 732

url vault Command ... 732

url versionid ... 735

url versionid Command .. 735

url versions .. 739

url versions Command ... 739

url view .. 741

url view Command ... 741

TCL Interface .. 745

auto_mkindex .. 745

auto_mkindex Command ... 745

auto_reset .. 746

auto_reset Command ... 746

gets .. 747

gets Command ... 748

ENOVIA Synchronicity Command Reference All -Vol2

ix

parray auto_index .. 748

parray auto_index Command ... 748

puts .. 750

puts Command ... 750

rstcl .. 750

rstcl Command ... 750

run ... 755

run Command .. 755

Third-Party Integrations ... 759

DSDFII ... 759

addcdslib .. 759

Administration ... 761

Access Control .. 761

ACAdmin Commands ... 761

Access Control Commands .. 799

Authentication .. 832

hcm addlogin .. 832

hcm rmlogin ... 835

hcm showlogins .. 837

password .. 841

Command Defaults .. 842

defaults Command ... 842

Understanding Command Defaults .. 843

Table of Contents

x

defaults .. 845

defaults commands .. 846

defaults off ... 847

defaults on ... 849

defaults refresh .. 850

defaults set ... 852

defaults show ... 856

defaults state .. 859

Custom Type System .. 860

Custom Type Packages ... 860

Managing Local Versions of Collections .. 866

Data Import/Export with DesignSync ... 879

exportmod .. 879

exportVaults ... 882

import ... 882

importmod .. 886

importVaults ... 889

upload .. 890

Data Replication .. 902

Data Replication System .. 902

File Cache Maintenance .. 930

Mirror System ... 951

Module Cache Maintenance .. 1017

ENOVIA Synchronicity Command Reference All -Vol2

xi

Events and Triggers ... 1041

Events .. 1041

Triggers .. 1049

Registry File Management ... 1068

SyncAdmin ... 1068

sregistry ... 1070

sregistry delete ... 1071

sregistry get ... 1076

sregistry keys ... 1081

sregistry reset... 1084

sregistry scope ... 1085

sregistry set .. 1087

sregistry source .. 1092

sregistry values .. 1096

Server Backup ... 1100

backup ... 1100

keydbcheckpoint .. 1103

restoreserver .. 1104

restorevault .. 1105

suspend ... 1107

Troubleshooting ... 1110

syncinfo .. 1110

synctrace .. 1119

Table of Contents

xii

synctrace set .. 1119

synctrace unset .. 1122

Utilities ... 1122

convertdata .. 1122

convertutil ... 1123

convertvault .. 1123

exportVaults ... 1123

importVaults ... 1124

SyncAdmin ... 1124

syncdadmin .. 1126

sync_setup ... 1129

ProjectSync Data Manipulation ... 1135

Note Manipulation .. 1135

note .. 1135

note attach ... 1136

note counts .. 1137

note create ... 1143

note delete ... 1146

note detach .. 1148

note getprop ... 1150

note links .. 1151

note query .. 1155

note relink .. 1159

ENOVIA Synchronicity Command Reference All -Vol2

xiii

note schema .. 1161

note setprops ... 1161

note systems .. 1164

note types .. 1165

Note Type Manipulation ... 1165

note types .. 1165

notetype ... 1166

notetype create .. 1166

notetype delete... 1170

notetype enumerate ... 1171

notetype getdescription .. 1173

notetype rename .. 1174

notetype schema .. 1175

Property Type Information ... 1178

ptype .. 1178

ptype choices ... 1179

ptype class ... 1180

ptype enumerate .. 1182

ptype is ... 1183

ptype strwidth ... 1185

ptype transitions ... 1186

Email Subscription Manipulation .. 1188

subscription .. 1188

Table of Contents

xiv

subscription add ... 1188

subscription delete ... 1193

subscription edit ... 1196

subscription get .. 1198

subscription list... 1200

User Profile Manipulation ... 1202

user .. 1202

user counts .. 1202

user create ... 1203

user delete ... 1205

Getting Assistance .. 1209

Using Help ... 1209

Getting a Printable Version of Help.. 1210

Contacting ENOVIA ... 1210

Index ... 1211

1

ENOVIA Synchronicity Command Reference
This document contains command descriptions for all ENOVIA Synchronicity
DesignSync and ProjectSync® commands. You can run most DesignSync commands
from any DesignSync client.

The commands in this reference, along with the Tcl scripting language, are referred to
as Synchronicity tcl (stcl). You can include these commands in stcl scripts. For
DesignSync, you can create scripts for clients and servers (SyncServers). For
ProjectSync, you create server scripts. See the Synchronicity stcl Programmer's Guide
to learn how to use the Synchronicity commands in Tcl scripts.

Using this Guide with Different Methodologies
DesignSync features three command references. This command reference is for a
mixed environment containing any combination of: modules-based, legacy modules-
based, or files-based objects.

• Module based Commands
• Legacy Module based Commands
• File based Commands

Module Based Commands

The module-based command set supports working in the modern modules
methodology. Modules are processed as a single versionable DesignSync vault object
that contains individual module members which are also versionable DesignSync
objects. Modules can also contain references to other versionable DesignSync objects.
In this guide, specific module-based information is called out in individual sections. Any
sections that do not specify otherwise, are applicable to modules. If you are only
working in a modules-based environment, and you do not wish to see any non-modules
information, use the ENOVIA Synchronicity Command Reference: Modules Only.

Within the Module-Based Design section, the commands only include links relevant to
the modules environment. The topics, however, contain all the information for all
methodologies.

Legacy Module Based Commands

The legacy module based command set supports working in the legacy modules
methodology. Legacy modules provided some of the functionality now available in
modern modules built on top of the files-based methodology. For this reason, the
majority of the files-based information is also applicable to legacy modules. When using
the guide, if there is no specific legacy-module based information called out, the legacy
modules follows the files-based methodology. There is no separate guide containing the

ENOVIA Synchronicity Command Reference

2

legacy-modules based command information. All the information for legacy modules is
contained in this guide.

File Based Commands

The file based command set supports working with individually managed file objects
which each have a vault object on DesignSync server that can be directly manipulated
and referenced. In this guide, specific file based commands and sections are called out.
 Any sections that do not specify otherwise are applicable to files based objects. If you
are only working in a file-based environment, and you do not wish to see any non-file-
based information, use the ENOVIA Synchronicity Command Reference: File-Based
Only.

Within the File-Based Design section, the commands only include links relevant to the
file-based environment. The topics, however, contain all the information for all
methodologies.

Organization of the Command Reference
The Synchronicity commands are ordered by methodology and function within the
Command Reference.

The command reference sections are organized into the following sections:

• Fundamental Topics - contains the commands that discuss the core concepts
underlying the DesignSync system. Understanding these concepts provides a
foundation that allows you to properly construct DesignSync Commands and
maximize their functionality. These topics include Overview of HCM (Legacy
Module) Commands, Overview of Module Commands, Understanding Fetch
Preferences, Using Interrupt, Using Revision Control Keywords, selectors,
server-side, wildcards.

• Client Applications - contains the commands that launch DesignSync clients.
 These topics include DesSync (graphical user interface, or GUI), dss
(DesignSync shell), dssc (concurrent version of dss), stcl (Synchronicity Tcl
shell), and stclc (concurrent version of stcl). See DesignSync Help: DesignSync
Command Line Shells for details about the shells, as well as the types of
command line editing supported by each shell.

• Client Shell Control - contains the commands used within the DesignSync clients
to control the clients.

• Methodology Commands - consisting of:
• Workspace Setup - commands used to initially set up a workspace.
• Primary Revision Control - primary commands used daily by the user to

manage their data.

ENOVIA Synchronicity Command Reference All -Vol2

3

• Advanced Revision Control - advanced commands used less often by the
user to support advanced revision control functionality.

• Navigational - commands that allow you to move around within the
workspace or the server to locate your files.

• Informational - commands that provide information about the revision
controlled objects, or the contents of the files.

Note: The Modules-Based Design methodology structure also includes

• Module Hierarchy Management - commands that provide information about
building and maintaining your module hierarchy.

• Workflows - commands that provide information about work-flows built on
top of modules to provide a customized working methodology, like SiTaR.

Note: The Legacy Module-Based Design workflow commands are not organized
into sub-categories.

• Enterprise Design Development - commands that support enterprise
development; the creation and maintenance of development areas, enterprise
object management, and mcache settings for shared developments.

• URL Sync Object Module - contains the commands that allow you to access
(view and modify) the Synchronicity Object Model information.

• TCL Interface - contains the commands that provide additional TCL scripting
functionality.

• Third-Party Integrations - contains the commands that provide an interface into
theDSDFII integration.

• Administration - contains the commands that provide administration resources,
such as data replication, caching, mirrors, authentication, command defaults
setup, triggers, etc.

• ProjectSync Data Manipulation - contains the commands that provide an
interface into the DesignSync Web interface, including note and notetype
manipulation, property type manipulation, etc.

Syntax Description
Every command description has a SYNOPSIS section that shows the syntax for the
command. Material within square brackets [] is optional. Material within curly brackets {
 } is required. A vertical bar | indicates mutual exclusion. For example, [-keep | -
lock] means that you can use the -keep option or the -lock option, but not both.

The command options descriptions are in alphabetical order in the TOC and within the
options section. In the syntax line, however, they are in approximate alphabetical order,
to allow exclusive options to remain together for readability.

ENOVIA Synchronicity Command Reference

4

Accessing Command Descriptions from Client Shells
The command descriptions in the Synchronicity Command Reference are identical to
the command-line help you can access from any DesignSync client using the help
command or -help option. For example, you can enter either of the following
commands to get help for the co command:

dss> help co

dss> co -help

You can also launch this file from any DesignSync client by using the webhelp
command. For example,

dss> webhelp co

Opens your default web browser on the co command page.

Note: Both the help and webhelp commands respect the DesignSync methodology
specified in SyncAdmin. When a methodology is specified, Designsync shows the
custom help for the module specified. For more information on specifying methodology,
see the ENOVIA Synchronicity DesignSync Administrator's Guide: General Options.

5

File-Based Design

Workspace Setup

Enterprise Design Development Area

sda cd

sda cd Command

NAME

 sda cd - Change development area and launch a tool command

DESCRIPTION

 This command allows the user to launch a tool from a development area they
 have created via "sda mk" or joined via "sda join". The tool runs using the
 development setting defined for the area.

 The sda cd command performs the following sequence of actions:
 1. If the -update option is selected, updates the development
 instance directory associated with an external development area.

 2. Sets up the environment by setting the following environment
 variables:
 o SYNC_DEVAREA_DIR - set to the requested development area
 directory.
 o SYNC_DEVAREA_TOP - set to the leaf name of the top module or
 directory in the development area.
 o SYNC_DEV_ASSIGNMENT - set to the assignment associated with
 the development area.
 o SYNC_DEVELOPMENT_DIR - set to the top of the development instance
 directory.
 o SYNC_PROJECT_CFGDIR - set to the directory holding the
 development setting for the assignment associated with the
 development area.
 o SYNC_WS_DEVAREA_TOP - set to the leaf name of the top module
 or directory in the development area. This variable can then
 be used for the starting directory in any commands you
 construct within the specified tool.

 3. Runs all of the set up scripts defined for the tools associated
 with the development area. Running all the scripts is required to
 support inter-tool dependencies and shell tools.
 Note: When a shell is defined as a tool, it should be defined to
 ignore the startup script for the shell. Any aliases, etc. defined
 in the startup script will not be available; however when a tool
 suite is defined, the admin can specify a script with the desired
 environment settings.

File-Based Design

6

 4. Sets the current directory for the tool to the starting directory.
 The starting directory is the directory defined in the tool's
 definition. If no starting directory is specified, then the
 directory defined in the tool suite is used. If no starting
 directory is specified in the tool suite either, the development
 area is used.
 The starting directories can be specified with environment
 variables and may be relative to the development area.

 5. Starts the requested tool. If the tool is graphical, the tool is
 spawned (detached) from sda. If the tool is non-graphical, on
 UNIX, the tool runs in the same shell as sda.

 Note: When a non-graphical tool is started, the sda process ends.

 If you run the command without specifying a development area or a
 tool, or the user specified an ambiguous argument, the command starts
 in interactive mode. In interactive mode, the user is prompted for
 the command arguments and options needed. Any arguments specified
 with the -gui command option are passed to the GUI and the
 appropriate fields are selected on the "Change Area" tab.

SYNOPSIS

 sda cd [<area_name>] [<tool>] [-development <name>] [-gui]
 [-suite <suite_name>] [-[no]update] [-version <version>]

ARGUMENTS

• Development Area Name
• Tool

Development Area Name

 area_name The development area name of the DesignSync
 Development. This argument is required and the
 development area must already exist.

Tool

 tool The tool name specified must be a tool that is
 defined for use with the specified development
 area. The list of available tools can be viewed from
 the development instance for the assignment
 associated with the area.

 Note: When a shell is defined as a tool, it should

ENOVIA Synchronicity Command Reference All -Vol2

7

 be defined to ignore the startup script for the
 shell. Any aliases, etc. defined in the startup
 script will not be available.

OPTIONS

• -development
• -gui
• -suite
• -[no]update
• -version

-development

 -development Specify the name of the development if the area name is
 <name> not unique for the user. Area names are unique
 within a development for a given user, but are not
 required to be unique across all developments.

-gui

 gui Starts the sda graphical user interface mode
 with the "Change Area" tab selected.

 If this option is used with the tool argument, the
 tool argument is silently ignored.

-suite

 -suite <suite> Specify the suite name for the tool suite, if the
 tool name is not unique across all tool suites for
 the development assignment.

-[no]update

 -[no]update Specifies whether the development instance
 definition should be updated, if it is an external
 area.

 -noupdate does not update the external development
 instance from the server before setting the
 environment variables for the area and starting the
 tool. (Default when the development setting
 is 'Mirror=False')

File-Based Design

8

 -update performs the update of the external area
 before performing any other actions. (Default when
 'Mirror=True')

 If the area is not an external area and this option
 is specified, the tool exits without launching the
 tool.

 Note: If -update is explicitly specified, and no
 tool is specified, DesignSync assumes the
 desired action is the update and does not
 prompt for tool in interactive mode.

-version

 -version Specify the version number of the tool suite if the
 <version> tool suite name is not unique within the
 development assignment. This option must be
 specified if there are multiple tools with the same
 name in multiple tool suites with the same name.

RETURN VALUE

 There is no TCL return value for this command.

SEE ALSO

 sda gui, sda join, sda ls, sda mk, sda rm

EXAMPLES

• Running sda cd in Interactive Mode
• Running sda cd in non-interactive mode

Running sda cd in Interactive Mode

 This example runs sda cd in interative mode, supplying no
 arguments. It is run from a Windows client and launches the
 DesignSync GUI which is configured as a tool for this development
 area.
 Note that the list of areas is prefixed with the development name for
 ease of idenfitication.

 C:\workspaces\chipNZ214> sda cd
 Logging to C:\Users\fyl\dss_11042013_100431.log
 V6R2014x

ENOVIA Synchronicity Command Reference All -Vol2

9

 Which development area would you like to work with?
 [1] (Chip-NZ214) documenter-1_rmsith
 [2] (Chip-QR2) verifier-1_thopkins
 [3] (Chip-NZ214) developer-1_rsmith
 [E] <EXIT sda>
 Select the number preceding the development area name or 'E' to exit
 [1-3,E]: 1

 Synchronizing the local development with the server ...
 Contacting host: serv1.ABCo.com:2164 ...
 Synchronization complete

 Which tool would you like to launch?
 [1] Authoring Tool
 [2] DesSync
 [E] <EXIT sda>
 Select the number preceding the tool name or 'E' to exit (1-2,E): 2

 c:\workspaces\chipNZ214>

Running sda cd in non-interactive mode

 This example specifies the area and tool and the -noupdate option.
 Note that it does not enter interactive mode, nor does it attempt to
 synchronize the development area. This example automatically
 launches the GUI tool, without requiring the -GUI option because of
 the way the tool is defined.

 C:\workspaces\chipNZ214> sda cd Chip-NZ214 DesSync -noupdate
 Logging to C:\Users\fyl\dss_11042013_103110.log
 V6R2014x
 [The DesignSync Development Area Manager launches in separate window]
 c:\workspaces\chipNZ214>

sda mk

sda mk Command

NAME

 sda mk - Make a new development area

DESCRIPTION

• Running in Interactive Mode
• Tips for Naming Your Development Area
• External Development Areas
• Notes for Modules-Based Development (Module-based)

File-Based Design

10

• Note for File-Based Development (File-based)

 This command creates a new development area in the specified location
 and registers the development area with the development server
 managing the development. The development server and the
 development the area uses must already exist. For more information
 on defining a development server, see the DesignSync Data Manager
 Administrator's Guide. For more information on development areas,
 see the Enterprise DesignSync Administrator's Guide.

 The sda mk command performs the following sequence of actions.
 o Creates the development area directory, if necessary.

 o Sets up the environment by creating environment variables to point
 to the new development area. The environment variables are:
 * SYNC_DEVAREA_DIR - the new development area directory.
 * SYNC_DEVELOPMENT_DIR - the top-level of the development instance
 directory.
 * SYNC_PROJECT_CFGDIR - the setting for the assignment associated
 with the development area.
 o Populates the development area with the development's data using
 the development URL from the development instance definition; the
 selector from the assignment associated with the development area;
 the version of DesignSync tools specified with the assignment; and
 any settings specified in the setting for the assignment, for
 example, the fetch state setting. The development data is
 populated into a sub-directory of the development area named by
 using the leaf name of the containing server data. For more
 information see the appropriate note for your usage model.

 Note: For Windows development areas, the fetch state is
 automatically set to -get mode (Fetch Unlocked Copies).

 Note: Server access may require a username and password. If your
 password for the server is not already saved by the client, you may
 be prompted to enter it in order to access the server data. For more
 information, see the notes section.

 For information on defining a development server, see the DesignSync
 Data Manager Administrator's Guide.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

Running in Interactive Mode

 Running sda mk with no arguments causes the command to enter the
 interactive mode. In interactive mode, you are prompted for the
 command arguments and options needed.

 If you specify ambiguous or incomplete arguments, sda mk will enter
 interactive mode only to resolve the unspecified or ambiguous
 arguments.

ENOVIA Synchronicity Command Reference All -Vol2

11

 Any arguments that are specified with the -gui command option will be
 passed to the GUI and the appropriate fields will be pre-filled or
 selected on the "Make Area" tab.

Tips for Naming Your Development Area

 A development area name must start with an alphanumeric character and
 be composed of alphanumeric characters, including dot (.), dash (-),
 or underscore (__). Development names must be unique within a
 development server. Development area names must be unique for a
 development instance.

 The command provides a unique default development area name in the
 following format:
 <Assignment>-<count>_<creator>
 Where:
 <assignment> corresponds to the assignment selected previously, or
 entered with the -assignment option.
 <count> is the next available number, starting from 1, of areas
 created. This is used to ensure the uniqueness of the name.
 <creator> Username of the creator of the development area.

 For example, User rsmith creating the first development area for the
 assignment Developer, has a default development area name of
 "Developer-1_rmsith"

 Note: Development areas are checked for uniqueness in the
 name/instance pair. You cannot have to development areas for the
 same instance using the same name. You can have two development
 areas with the same name if they are for different development
 instances.

External Development Areas

 An external development area is a development area whose physical
 presence is on a different network from the development server that
 it is associated with. External development areas are only allowed if
 the "Allow External Development Areas" parameter from the development
 definition on the development server is set to TRUE.

 When a user creates a new development area, the sda mk command looks
 up the development instance path from the development definition on
 the development server. If the sda mk is run on a different network
 and can't find the development instance path, the command knows to
 create an external development area. The command then verifies that
 there is a local development instance directory for the development
 to host the new development area by checking for the existence of the
 directory located in the "External Path" parameter of the development
 definition on the development server. If this directory does not
 already exist, the command creates it.

File-Based Design

12

 The external development directory is similar in structure to
 the development instance created locally by the development
 server. The data replication root directory is replaced by a simple
 file cache directory. None of the external development's directory
 hierarchy is mirrored and no data is pushed to this directory
 directly from the development server. This is simply a local copy.

 If the external development directory does already exist, its local
 development definition and the setting for the selected assignment
 is updated.

 After the external development directory is in place and up to date,
 the normal development area creation procedure continues with the
 creation of the relevant environment variables and the data
 population.

Notes for Modules-Based Development (Module-based)

 If the development data is managed as a module, the development area
 directory is the workspace root directory and the module data is
 populated into a sub-directory with the module's name. This allows
 for the main module to contain hrefs to peer modules which when
 populated recursively show up as peer subdirectories at the
 same level as the root module's base directory.

 Server authentication for Windows systems using modules requires that
 the server be listed as a development server or pre-authenticated by
 saving the username/password for the server (using the password -save
 command). If the server is not authenticated, the development area is
 created, but the data is not populated.

Note for File-Based Development (File-based)

 If the development data is file based, the data is populated into a
 sub-directory of the development area directory with the leaf name of
 the development URL, which is the directory name of the directory
 holding the data on the server. This structure allows the user to
 place unmanaged, peer, or derived data in the development area
 outside the data's directory cone.

 Server authentication for Windows systems using file-based methodology
 requires that any servers referenced (by REFERENCE statements in
 sync_project.txt files) are pre-authenticated by saving the
 username/password for the server in order to populate the referenced
 data. To pre-authenticate your server, use the password -save command
 to save the username/password for the server.

SYNOPSIS

ENOVIA Synchronicity Command Reference All -Vol2

13

 sda mk [<area_name> [<dev_name>]] [-assignment <assignment>] [-gui]
 [-path <path>] [-shared]

ARGUMENTS

• Area Name
• Development Name

Area Name

 <area_name> The new area name for the development.
 If no area name is specified, and the command is not
 run interactively, DesignSync uses the default name,
 in the format:
 <Assignment>-<count>_<creator>
 Where:
 <assignment> corresponds to the assignment
 selected previously, or entered with the -assignment
 option.
 <count> is the next available number, starting from
 1, of areas created. This is used to ensure the
 uniqueness of the name.
 <creator> User name of the creator of the
 development area.

Development Name

 <dev_name> The development name of the DesignSync development
 instance to which the new development area is
 associated. The development must already exist.

OPTIONS

• -assignment
• -gui
• -path
• -shared

-assignment

 -assignment Specifies an assignment from a predefined list of
 <assignment> available assignments for the development. The
 assignment can be used to specify a module view or a
 different selector, one other than the default
 defined with the development, for the populate. If no
 assignment is specified, the "<Default>" assignment

File-Based Design

14

 is assumed. The assignment determines the settings
 associated with the development area.

-gui

 -gui Starts the sda graphical user interface mode
 with the "Make Area," tab selected.

-path

 -path <path> Specifies the area directory; the local
 directory path where the development data will be
 populated. If the directory already contains managed
 data, the URL and selector of the data already
 fetched into the directory must match the URL and
 selector of the development combined with the
 assignment.

 Note: If you specify this option and the "Allow
 user-defined development area paths" parameter is
 set to FALSE, the command exits with an error.

-shared

 -shared Designates the development area as a shared
 development area. Shared development areas can be
 joined by other users. All users of a shared
 development area conduct their work in the same
 development area directory.

RETURN VALUE

 This command does not return any TCL values. The command output displays
 information about success or failure of the command and status messages.

SEE ALSO

 sda cd, sda gui, sda join, sda ls, sda rm, replicate

EXAMPLES

• Example of Running sda mk in Interactive Mode

ENOVIA Synchronicity Command Reference All -Vol2

15

Example of Running sda mk in Interactive Mode

 $> sda mk
 Logging to C:\home\rsmith\logs\dss_03132014_103149.log
 V6R2019x
 Contacting host: serv1.ABCo.com:2647 ...

 Which development would you like to create a development area for?
 [1] Chip-NZ8
 [2] Chip-QR2
 [3] ROM-NZx
 Select the number preceding the development name or 'E' to exit (1-3): 1

 Which assignment will be assigned to this development area?
 [1] developer
 [2] documenter
 [3] verifier
 Select the number preceding the assignment or 'E' to exit (1-3): 2

 Please specify the name for the new development area
 [documenter-1_rsmith]:

 Please specify the path for the development area directory
 [c:\Developments\rsmith\documenter-1_rsmith]:
 C:\User\rsmith\DevAreas\nz8ChipDev

 Should this be a shared development area (y/n) [n]:

 The development area 'nz8ChipDev' for development 'Chip-NZ8' has been
 created at c:\User\rsmith\DevAreas\nz8ChipDev

Exclude from Workspace

exclude

exclude Command

NAME

 exclude - Commands for excluding objects from operations

DESCRIPTION

 The exclude command allow you to control which unmanaged objects are
 automatically excluded from check in or add operations on a per
 directory basis.

 Using the exclude commands, you can add, remove, or display the
 glob-style exclusion patterns. The exclusions are stored in one or

File-Based Design

16

 more syncexclude files.

 Note: These exclusions are only applicable to unmanaged files. If a
 file is managed by the SyncServer, and you wish to exclude it from an
 operation, such as populate, ci, or tag, you must use exclude lists
 or filters (for example "populate -exclude *.doc").

 The exclude files can be maintained either using these commands, a
 graphical interface in the DesSync client, or by manually editing the
 exclude file. For more information on the files, the file format,
 and using the various interfaces, see the DesignSync User's Guide:
 Working with Exclude Files.

SYNOPSIS

 exclude <exclude_command> [<exclude_command_options>]

 Usage: exclude [add | list | remove]

ARGUMENTS

 See individual commands.

OPTIONS

 See individual commands.

RETURN VALUE

 See individual commands.

SEE ALSO

 ci

EXAMPLES

 See individual commands.

exclude add

exclude add Command

ENOVIA Synchronicity Command Reference All -Vol2

17

NAME

 exclude add - Add objects to exclude from operations

DESCRIPTION

 This command appends the supplied pattern(s) to the end of the
 specified .syncexclude[*] file. If the specified file doesn't
 already exist, DesignSync will create it and place the supplied
 pattern(s) in it. Exclusions are processed in the order they appear
 in the file. You can edit the file to adjust the positioning of the
 exclusions or add an exclusion pattern with a higher priority.

 Specify the pattern in one of the following forms:
 -<pattern>
 +<pattern>

 When you use the "-<pattern>" form, you exclude objects that match
 the specified pattern at the folder level.

 When you use the "- .../<patern>" form, you exclude objects that
 match the specified pattern at the folder level and any
 subfolders.

 When you use the "+[.../]<pattern>" you create an exception to
 a previously excluded pattern. An example of using an exclude with
 an exception might be excluding all .doc files unless they're in the
 documentation subdirectory. So in the base-level .syncexclude, you
 could have this:

 # Exclude all doc files -".../*.doc"
 and in a .syncexclude file within the documentation directory, you
 could have this:

 +".../*.doc"

 Any other sub-folders of the base folder would inherit excepting the
 unmanaged .doc files from revision control operations. The
 documentation directory and any subfolders of the documentation
 directory would allow .doc files to be included in revision control
 operations.

 Note: Any changes to exclude files affect only unmanaged files. If
 a managed object matches the pattern, it remains unaffected. To
 exclude managed files, you must use -exclude or -filter, or an
 exclude list, as applicable. For more information on other types of
 exclusions, see the DesignSync User's Guide.

 You must have write permissions in order to create or append to the
 file.

 This command supports the command defaults system.

File-Based Design

18

SYNOPSIS

 exclude add <argument> [--] <pattern>[<pattern>...]

ARGUMENTS

• File Path Argument
• Folder Path Argument

File Path Argument

 <FilePath> The path and name of the .syncexclude file. All
 .syncexclude files must begin with ".syncexclude" but
 can contain an extension which must begin with a "."
 character. For example, you could create a .syncexclude
 file that contains the module name, such as
 ".syncexclude.Chip." This allows you to include
 multiple .syncexclude files in the same directory. If
 the file extension does not being with a period, ".",
 it will not be understood by the system as a
 .syncexclude file.

 If the specified file does not exist, DesignSync
 automatically creates it. If you do not have write
 permissions to create or modify the file, the command
 fails with an appropriate error.

Folder Path Argument

 <FolderPath> The path to the location of the .syncexclude file(s).
 If there are multiple .syncexclude files within the
 directory, the pattern is added to all of the
 .syncexclude files.

 The command does not operate in a folder recursive
 manner. Only files at the specified directory level are
 updated.

 If there is no .syncexclude file in that folder,
 DesignSync automatically creates a new file called
 .syncexclude. If you do not have write permissions to
 create or modify the file, the command fails with an
 appropriate error.

OPTIONS

ENOVIA Synchronicity Command Reference All -Vol2

19

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the pattern
 supplied to the command begins with a dash (-).

PATTERN

• Pattern for Exclude

Pattern for Exclude

 <pattern> Specifies a space-separated list of patterns that
 [...<pattern>] exclude or include unmanaged objects (collections,
 folders, or files) from check in or add
 operations, which would change the object from an
 unmanaged to a versionable object.

 Specify any pattern to exclude from operations that
 create managed objects or display unmanaged
 objects. Wildcards are allowed. Any patterns that end
 in foward-slash (/) apply to the folder and any
 files within the folder. Do not use the backslash (\)
 character as a folder indicator. For specific usage
 information, see the Examples.

RETURN VALUE

 No TCL value is returned. If the command succeeds, DesignSync
 displays a success message. If the command fails, DesignSync
 displays a message to explain the failure.

SEE ALSO

 ci, exclude list, exclude remove, ls

EXAMPLES

• Example Showing Adding an Exclusion to the Exclude File
• Example Showing Adding an Folder-Based Exclude

Example Showing Adding an Exclusion to the Exclude File

File-Based Design

20

 This example excludes all unmanaged objects that end with a .log
 suffix from revision control operations, such as ci.

 Note: Because this is excluding a pattern, it requires the "--"
 option to indicate that the next "-" is associated with the pattern,
 not indicating an option.

 dss> exclude add . -- -*.log

Example Showing Adding an Folder-Based Exclude

 This example excludes all unmanaged objects in a folder that matches
 the specified pattern. In this example, we have a directory
 structure like this:
 rom
 doc
 rom.doc
 rom.fm
 rom.pdf
 rom.log
 log
 generatelog.log
 errorlog.log

 Using our previous example, we have at the rom folder level a
 .syncexclude that contains *.log. But the log files within the .log
 directory are files that should be checked in. This plus exception
 crteated in the same file allows the .log folder and all files within
 to be operated on.

 dss> exclude add . -- +../log/

exclude list

exclude list Command

NAME

 exclude list - Show object patterns excluded from operations

DESCRIPTION

 This command shows the contents of the exclude list files, allowing
 you to see which patterns are excluded or included by the files in
 the directory or .syncexclude file specified.

ENOVIA Synchronicity Command Reference All -Vol2

21

 The command can display in either text or Tcl list form, to allow either
 for easy viewing or additional processing.

 This command supports the command defaults system.

SYNOPSIS

 exclude list [-format text|list] <path>

ARGUMENTS

• File Path Argument
• Folder Path Argument

File Path Argument

 <FilePath> The path and name of the .syncexclude file.

Folder Path Argument

 <FolderPath> The path to the location of the .syncexclude file(s).
 If there are multiple .syncexclude files within the
 directory, the list of patterns for all the
 .syncexclude files within the directory are returned
 in the order in which they are processed.

 The command does not operate in a folder recursive
 manner. Only files at the specified directory level
 and higher in the folder hierarchy; back to the
 workspace root folder, are displayed

OPTIONS

• -format

-format

 -format list|text Determines the format of the output.
 Valid values are:
 o text Display a text table with headers and
 columns. Objects are shown in processing
 order.

 o list Tcl list structure, designed for further
 processing, and for easy conversion to a

File-Based Design

22

 Tcl array structure. (Default) This means
 that it is a list structure in name-value
 pair format. The structure is:
 {
 <path> <pattern>
 ...
 }

RETURN VALUE

 Empty string if -format value is text. Tcl list if the -format value
 is list.

SEE ALSO

 exclude add, exclude remove

EXAMPLES

• Example Showing Listing the Exclusions in text format
• Example Showing Listing the Exclusions in List Format

Example Showing Listing the Exclusions in text format

 This example shows the contents of a .syncexclude list in text
 format. This .syncexclude file removes .log and .doc and includes
 .readme, which was removed by a higher level .syncexclude.

 dss> exclude list -format text
 File Rule
 ---- ----
 C:/home/workspaces/Chip-ZN32/.syncexclude -*.log
 C:/home/workspaces/Chip-ZN32/.syncexclude -*.doc
 C:/home/workspaces/Chip-ZN32/.syncexclude +*.readme

Example Showing Listing the Exclusions in List Format

 This example shows the contents of a .syncexclude list in text
 format. This .syncexclude file removes .log and .doc and includes
 .readme, which was removed by a higher level .syncexclude.

 dss> exclude list
 {C:/home/workspaces/Chip-ZN32/.syncexclude -*.log}
 {C:/home/workspaces/Chip-ZN32/.syncexclude -*.doc}
 {C:/home/workspaces/Chip-ZN32/.syncexclude +*.readme}

ENOVIA Synchronicity Command Reference All -Vol2

23

exclude remove

exclude remove Command

NAME

 exclude remove - Remove objects from being excluded

DESCRIPTION

 This command searches all the specified .syncexclude files and removes
 all occurrences of the specified pattern(s). The pattern specified
 must exactly match the pattern in the .syncexclude file(s). If the
 pattern uses wildcards in the .syncexclude file, you must use the
 same wildcard pattern when specifying its removal. Also, a wildcard
 that, if processed, would match the pattern, does not remove an
 entry. For example, if the pattern in the file was:
 -dss*.log
 specifying this pattern:
 -*.log
 does not remove the pattern from the syncexclude file because it is
 not an exact match.

 To view the list of patterns in the file, so you can correctly match
 the exclude pattern to remove it, you can use the exclude list
 command.

 You must have read and write access to the .syncexclude files and
 directory.

 This command supports the command defaults system.

SYNOPSIS

 exclude remove <path> [--] <pattern>{<pattern>...]

ARGUMENTS

• File Path Argument
• Folder Path Argument

File Path Argument

 <FilePath> The path and name of the .syncexclude file.

File-Based Design

24

Folder Path Argument

 <FolderPath> The path to the location of the .syncexclude file(s).
 If there are multiple .syncexclude files within the
 directory, the pattern is removed from all of the
 .syncexclude files that contain that pattern.

 The command does not operate in a folder recursive
 manner. Only files at the specified directory level are
 updated.

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the pattern
 supplied to the command begins with a dash (-).

PATTERN

• Pattern for Exclude

Pattern for Exclude

 <pattern> Specifies a space-separated list of patterns that
 [...<pattern>] must exactly match a pattern specified in the
 .syncexclude files affected by the command.

RETURN VALUE

 Returns the number of removals. If there are no patterns that match
 the specified pattern, the removal number is zero "0". If the command
 fails, returns an error explaining the failure.

SEE ALSO

ENOVIA Synchronicity Command Reference All -Vol2

25

 exclude add, exclude list

EXAMPLES

• Example Showing Removing an Exclusion from the Exclude File

Example Showing Removing an Exclusion from the Exclude File

 This example shows removing one of the exclusions created in an
 exclude add example.
 dss> exclude remove . -- -*.log
 2

populate

populate Command

NAME

 populate - Fetches or updates specified objects

DESCRIPTION

• Object States
• How Populate Handles Selectors
• Populate Log
• How Populate Handles Collections with Local Versions
• Populating Module Objects (Module-based)
• Setting up Your Workspace (Module-based)
• How Populate Handles Module Snapshots (Module-based)
• How Populate Handles Module Views (Module-based)
• Resolving Module Conflicts with Populate (Module-based)
• Module Cache (Module-based)
• External Module Support (Module-based)
• Populating Modules Recursively (Module-based)
• Module Version Updating (Module-based)
• Incremental Versus Full Populate (Module-based)
• How Populate Handles Moved and Removed Module Members (Module-based)
• Merging Across Branches (Module-based)
• Understanding the Output (Module-based)
• Forcing, Replacing, and Non-Replacing Modes (Module-based)
• Interacting with Legacy Modules (Legacy-based)
• Incremental Versus Full Populate (Legacy-based)
• Setting up Your Workspace (File-based)

File-Based Design

26

• Incremental Versus Full Populate (File-based)
• How Populate Handles Retired Objects (File-based)
• Merging Across Branches (File-based)
• Populate Versus Checkout (File-based)
• Understanding the Output (File-based)
• Forcing, Replacing, and Non-Replacing Modes (File-based)

 This command fetches the specified objects from the server
 into your current workspace folder or a folder you specify
 with the -path option.

 Typically, you create your work area, or workspace, and perform your
 first populate, an initial populate, as a full populate. Once your
 work area is populated, you can use the populate, co, and ci commands
 to selectively check out and check in specific objects. You should
 also populate periodically to update your work area with newly
 managed objects, as well as newer versions of objects you have
 locally.

 Populate is used to create or update the objects in your
 workspace. Populate features many ways to control the data brought
 into your workspace. Because of the complexity of the populate
 features, the description section is divided into sections that
 detail the major features and functionality of populate.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Object States

 Upon populating your workspace, DesignSync determines in what
 state to leave the fetched objects in your work area:
 1. DesignSync obeys the state option (-get, -lock, -share,
 -mirror, -reference) specified on the command line.
 2. If no state option is specified, DesignSync uses the default
 fetch state as specified by your project leader. See
 the "fetch preference" help topic for more information.
 3. If a default fetch state is not defined, the default
 behavior for 'populate' is -get.

 Important: For both incremental and full populate operations,
 DesignSync changes the state of only those objects that need
 updating. DesignSync does not change the state of up-to-date
 objects during the populate operation.

 The following methods let you override the default behavior
 to change the states of all objects during a populate operation:
 o To change the state of up-to-date objects during a populate,
 use the -unifystate option. To change the state of all

ENOVIA Synchronicity Command Reference All -Vol2

27

 objects that need an update as well as up-to-date
 and locally modified objects, use -unifystate with the -force
 option.
 o Unlocked locally modified objects are not overwritten unless
 you specify -force. For example, if you modify a fetched file,
 then execute a 'populate -share' command, your locally modified
 file is not replaced by a link to a file in the cache unless
 you also specify -force. Locked files are not overwritten by
 the -force option.
 o To make populating with links to the mirror a fast operation,
 links are created only if no object (locally modified or not)
 or link already exists in your work area. You must specify
 -unifystate to change the state of existing objects and links
 in this case. Use -force, as well, to overwrite locally
 modified objects that are not locked and to remove objects
 that are not in the current configuration.

 Note: If the object is designated as uncachable, attempts to place
 objects in the cache (populate -mirror; populate -share) will
 automatically populates the workspace with unlocked copies (-keep
 mode). For more information on cachability, see the "caching"
 commands.

How Populate Handles Selectors

 DesignSync determines what versions of objects to populate as
 follows:
 1. DesignSync obeys the selector list specified by the -version
 option.
 2. If -version is not specified, DesignSync uses the persistent
 selector list of the top-level folder being populated.
 The default persistent selector is 'Trunk', in which
 case DesignSync checks out the Latest versions from
 Trunk.

 Notes:
 o If you specify a selector or a selector list for the
 populate operation using the -version option and the selector
 does not exactly match the workspace selector, an incremental
 populate is no longer valid. In this case, DesignSync performs
 a full populate even if the -incremental option is specified.
 See "Incremental Versus Full Populate" above for more
 information.

 Important: The persistent selector lists of individual managed
 objects (files or collections) and subfolders are not obeyed by
 the 'populate -recursive' operation.

 o A 'populate -recursive' command without the -version option
 populates a work area based on the persistent selector list of
 the top-level folder you are populating, skipping any subfolder
 or managed object that has a persistent selector list that
 differs from the top-level folder. You must issue the populate
 command separately for any skipped subfolder.

File-Based Design

28

 o A 'populate -recursive -version <selectorList>' command uses
 the specified selector list and ignores all persistent selector
 lists. In the case of '-version Latest', the persistent
 selector list of the top-level folder being populated is
 augmented with 'Latest' and that augmented persistent selector
 list is used for the populate operation.

 The supported DesignSync use models (single-branch development,
 project branching, and auto-branching) assume that persistent
 selector lists across a work area are consistent. Use caution
 when using commands that leave you with inconsistent local
 metadata, such as using 'setselector' or 'mkbranch' on individual
 objects.

 See the "selectors" help topic for details on selectors, selector
 lists, and persistent selector lists. For more information about how
 the -version switch is managed, see the -version in OPTIONS.

Populate Log

 Because populate operations can be long and complex, you may want to
 specify a log file to contain only the output of the populate command
 to store for later reference.

 You can specify the log file on an as needed basis using the -log
 option or by setting a log file name using the command defaults
 system. If the log file specified does not exist, DesignSync creates
 it before it begins the populate command processing. If the log file
 does exist, DesignSync appends the new populate information to the
 file.

 Tip: If you set a default log value for populate, check the file size
 periodically and, if the file is getting too large to use
 comfortably, rename the file to save the information, or remove the
 file if you no longer need it.

 Notes:

 o If a log file is defined in the command defaults system and two
 users run populate simultaneously, the populate output may become
 interlaced in the log file.

 o Regardless of whether you create a populate log, the DesignSync
 client log file contains the output of the populate command along
 with all the other commands typed into the DesignSync client
 session.

How Populate Handles Collections with Local Versions

 For collection objects that have local versions (for example,
 custom generic collections), the populate operation handles local

ENOVIA Synchronicity Command Reference All -Vol2

29

 versions in the following way.

 When you populate a folder containing a collection object, the
 populate operation removes from your workspace any local version
 of the object that is unmodified. (Because these local versions
 exist in the vault, you can refetch them.) The operation then
 fetches from the vault the specified collection object (with the
 local version number it had at the time of checkin).

 If the current local version in your workspace is modified, the
 populate operation fails unless you specify 'co -force'. (The
 -force option lets the local version with the modified data be
 replaced with the local version of the object you are checking
 out.) Note: The current local version is the one with the highest
 local version number. DesignSync considers a local version to be
 modified if it contains modified members or if it is not the local
 version originally fetched from the vault when the collection
 object was checked out or populated to your workspace.

 The -savelocal option tells the populate operation what to do with
 local versions in your workspace other than a current local version
 that is modified. For information, see OPTIONS.

Populating Module Objects (Module-based)

 The populate command recognizes and fetches hierarchical module
 structure. These modules are data that represent a level of the
 design hierarchy. Such data includes objects or an entire vault
 folder hierarchy of objects managed in DesignSync, as well as
 hierarchical references to other modules. These modules can be stored
 on other SyncServers. For more information about modules, see
 DesignSync Data Manager User's Guide: "What is a Module?".

 Important: You must use the populate command rather than the
 co command when fetching modules or module objects. The co
 command does not support modules.

 To specify a module for an initial populate, you must specify
 its server URL, in the following format:
 sync://<machine>:<port>/Modules/<category>/<module_name>[;<selector>]

 DesignSync looks for an existing workspace root. If no workspace root
 exists and the registry key AllowAutoRootCreation is enabled,
 DesignSync automatically creates the workspace root based on the value
 set for DefaultAutoRoot path. If there is no existing workspace root
 path and DesignSync cannot create one, the populate fails. Workspace
 root path settings are in the DesignSync registry.

 During the initial populate, DesignSync performs an implicit setvault.
 If necessary, DesignSync also creates a workspace folder for the
 module. For subsequent populates, you do not have to specify the
 server URL for the module; you can populate the module by specifying
 just the module name or the module instance name if your current
 directory is within the workspace root (see the setroot command

File-Based Design

30

 help), or using the full workspace address which is "<module base
 directory>/<module instance name>".

 If a top-level module (a module that is not hierarchically
 subordinate to another module populated in the workspace) is
 populated with the -version option, the persistent selector for the
 workspace is changed to the version specified.

 Overlapping of modules is supported. You use the -modulecontext
 option to indicate which module to populate if more than one module
 exists in the current directory (or that specified with the -path
 option). If no -modulecontext option is specified, all appropriate
 module objects from the candidate modules are populated.

 If a file is a member of both overlapping modules, a populate clash
 occurs. In this case, the first module to populate the file 'wins'.
 A subsequent attempt by an overlapping module to populate the same
 file fails.

 Two different versions of the same module cannot share the same base
 directory. However, you can populate two versions of the same module
 side by side.

 Notes:
 o Mirrors are not supported with module objects; you get an error
 if you use the -mirror option.
 o If a module member is checked out with a lock, the locker keyword
 is not expanded with the locker name.
 o You can use the -mcachemode, -mcachepaths, or -noreplace options
 only when populating a directory that is part of a module or a
 legacy module.
 o After the upgrade command has been used to convert legacy modules
 to a module, fetch each new module to an empty work area. The
 upgrade command does not upgrade existing work areas.

Setting up Your Workspace (Module-based)

 Before you can use populate to maintain your workspace, you must set
 up your workspace.

 Note: The Workspace Wizard from the DesignSync graphical user
 interface simplifies the task of setting up a work area by taking you
 through a step-by-step process.

 The typical steps when you set up a new work area are:

 1. Create the folder for your workspace, if it does not already
 exist.

 2. Populate the work area with the specified design objects from
 the vault. Populate determines the set of versions from the
 persistent selector list or from the -version option, if
 applicable. Apply the -recursive option to create a local
 hierarchy that matches the vault's hierarchy. Without

ENOVIA Synchronicity Command Reference All -Vol2

31

 -recursive, populate only fetches the specified objects.

How Populate Handles Module Snapshots (Module-based)

 A module snapshot is a set of meaningful tagged module objects. The
 content and structure of a module snapshot is frozen to preserve
 important configurations. After the module snapshot has been created
 using the tag command, you can populate the snapshot into a local
 workspace for viewing, testing, or integrating into other work.

 When you populate a module snapshot as a fixed workspace for viewing
 or testing, you use the snapshot tag as a selector. This can be
 either the full snapshot branch and version name or the simple tag
 name. When you populate a snapshot module, you can update tags on
 module members or hrefs within your workspace, but cannot checkin any
 content or other structural changes to the module members or the
 module.

 When you populate a module snapshot to integrate with other work, you
 populate using a comma separated list of selectors ending with a
 "main" selector. This populates from the main selector first and
 replaces any matching objects with the member objects from the
 selectors in the selector list.

 This results in a workspace that uses the main selector as the base
 and the destination for any checkins, but some or all of the module
 member objects from the snapshot workspaces. For example, specifying
 the following version to populate:
 Beta,Alpha,Trunk:Latest

 The populate command creates a module manifest from the main
 selector, Trunk:Latest, and overlays that with the contents of the
 Alpha version, and then the Beta version. The final manifest is then
 sent to the client. The server uses the natural path of the objects
 and the uuid to determine which module members to replace.

 When hierarchical references are populated as part of the operation,
 the hierarchical reference versions come from the main selector list,
 not from the specified module snapshots.

 When the hierarchical references are populated recursively during the
 initial populate using a selector list, the module members within
 the populated submodules are also populated with the selector list. If
 hierarchical references are not populated recursively during the
 initial populate using a selector list, they will not overlay
 member items from the selector list on subsequent populates.

 Notes:
 o If the "main" selector list is a snapshot branch, or a static
 selector of any type, you will not be able to check in any
 changes from the workspace.

 o When populating a selector list, the module member objects in
 the specified snapshot are populated instead of the objects in the

File-Based Design

32

 main selector. Populate will never attempt to merge the members.
 If you want to merge data from a module snapshot into your
 workspace, you will not use a selector list, but populate
 your snapshot with the -merge and -overlay options into a
 workspace that has the default selector defined as the desired
 destination for checkin.

 o Any hierarchical references that are defined as a static module
 version indicated by the selector on the href will not inherit any
 the selector list, even if the initial populate specifies using the
 selector list recursively.

How Populate Handles Module Views (Module-based)

 A module view is a defined subset of module members and hierarchical
 references that have significance as a unit. The module view
 definition is stored on the server with a unique module view
 name. During populate, you can specify the view name to restrict the
 populate operation to only those members in the view. You can
 populate using more than one view.

 Note: During initial populate, if you specify a view, the view
 specified persists in the workspace.

 The populate operation builds the list of module members and
 hierarchical references (if run recursively) to populate
 by first looking at the specified view(s) on the specified module and
 selector. After building this aggregate set of data, DesignSync
 applies the filtering rules from the -filter, -hreffilter and
 -exclude options to determine what objects to populate into the
 workspace.

 On an initial populate, the module view name or names list provided
 is propagated through the hierarchy and applied to all fetched
 modules. The module view name or names list is also saved, or
 persisted in the workspace metadata so that all subsequent populates
 use the same view. The documentation refers to a view saved in the
 metadata as a "persistent module view" because, like a persistent
 selector, it persists through subsequent populates rather than
 needing to be specified with each command.

 If a persistent module view has been set on a module instance in a
 workspace any sub-modules subsequently populated use the persistent
 module view already defined by default.

 Note: You can set or clear a persistent selector by using the setview
 command.

Resolving Module Conflicts with Populate (Module-based)

 DesignSync provides the ability to define an overriding hierarchical
 reference to be used in cases where submodule references point to

ENOVIA Synchronicity Command Reference All -Vol2

33

 different versions of the same object. This can be used in both a
 peer-to-peer or hierarchical cone structure. In a peer-to-peer
 structure, it can be used to resolve conflicts and determine which
 version of the sub-module to populate into workspace.

 For example, a module called TOP with hrefs to sub-modules:
 ROM@1.23 -relpath ../ROM
 COM@1.15 -relpath ../COM

 where ROM and COM both contain an href to a common libraries
 directory, but to different versions:
 ROM -> LIB@1.3 -relpath ../LIB
 COM -> LIB@1.5 -relpath ../LIB

 Working in a peer-based structure, where your modules are
 populated in a flat directory setting, your workspace may look
 something like this:
 /home/workspace/TOP
 /home/workspace/ROM
 /home/workspace/COM
 /home/workspace/LIB

 DesignSync may experience a conflict determining what version of LIB
 (1.3 or 1.5, as referenced in the hierarchy)to populate in the peer
 directory /home/workspace/LIB.

 If an href is placed higher in the peer structure, however; it will
 become the overriding href. So, for example, if you add an href for
 TOP to LIB, as shown:
 TOP -> ROM@1.23 -relpath ../ROM
 -> COM@1.15 -relpath ../COM
 -> LIB@1.5 -relpath ../LIB

 When you populate the TOP workspace recursively into
 /home/workspace/TOP, DesignSync populates the LIB directory with the
 1.5 version, eliminating the guesswork.

 In a cone structure, it can be used to substitute a submodule version
 without modifying the hierarchy or branching the sub-module to update
 an href version. For example:

 Chip v1.10
 |
 |-----------------|
 ALU v1.5 ROM v1.7
 | |
 |---------| |----------|
 LIB v1.4 BIN v1.4 LIB v1.6 SRC v1.10

 If rather than branching ALU and updating the hierarchical reference
 to LIB, you add an href to the desired version of LIB at a higher
 level, for example, Chip, then that version of LIB will replace the
 lower level version with the same relpath when populated.

 Chip v1.10 ---HREF TO ./ALU/LIB v1.8
 |
 |-----------------|

File-Based Design

34

 ALU v1.5 ROM v1.7
 | |
 |---------| |----------|
 LIB v1.8 BIN v1.4 LIB v1.6 SRC v1.10

 Notes:

 o The relpath of the hierarchical reference is what's used to
 determine which sub-module is replaced.

 o In order for the overriding href to be used by the system, you must
 populate recursively from the highest level module containing the
 override href. For example, if you were to populate either of the
 above examples at the ROM level, the ROM href is the one that is
 used to determine what submodule is populated; not the higher-level
 module.

Module Cache (Module-based)

 A module cache (mcache) can be thought of as a shared workspace. The
 populate command works with both module and legacy module mcaches.
 A module mcache contain modules while a legacy mcache contains only
 legacy releases.

 To create a module cache, team leaders should create a workspace and
 populate it with modules and or legacy modules using the -share
 option. This becomes the mcache directory. Usually a team leader
 creates the mcache for team members to access over the LAN. The
 mcache should be writable only by the team leader. Team members
 should need permission to read the data, link to and copy the module
 or legacy module in the mcache.

 Note: The module cache must be the workspace root directory.

 An mcache is manually administrated. Modules and legacy modules can
 be fetched as needed. You can have multiple modules in the mcache.

 o You can have full copies of all the modules in an mcache.
 o If you use -share option to populate an mcache, it allows you to
 keep full copies of the DIFFERENCES between versions by populating
 the mcache from the DesignSync cache which stores the files.

 Note: Only statically fetched modules can be fetched from an mcache
 during populate.
 Only released configurations can be fetched from an mcache
 during populate.

 Since multiple modules can have the same base directory or have the
 same directory at various levels, it can cause confusion for mcache
 links and can even cause circular or inconsistent links. To keep the
 contents of a mcache consistent, an mcache link to an mcached
 directory containing modules are created for only one module version.

 An mcache can either be for modules or legacy modules, not both. A

ENOVIA Synchronicity Command Reference All -Vol2

35

 module can have hierarchical references to legacy modules, resulting
 in the legacy modules being populated to the module mcache. These
 legacy modules are ignored when creating mcache links or copies.

 The -mcachemode copy option is ignored for modules. You can, however,
 get the contents of a module from the LAN if your team lead fetches
 the modules from the server into the mcache using the -share
 option. This forces the module contents to get fetched into the
 DesignSync cache (different from an mcache). Symlinks are created in
 the mcache to point to these files in the DesignSync cache.

 If you specify -mcachemode copy to get full copies of a module's
 contents from the mcache, the populate operation automatically
 switches the command to use the default '-from local' mode to fetch
 the files.

 To use a module mcache the root directory of the mcache must be
 provided in the -mcachepaths option or the mcache paths registry
 setting. This root directory contains the metadata identifying the
 base directories of all module cache. See the section on -mcachepaths
 for more information.

 Note: If a module, module category, the Module area or server is
 designated uncachable, it cannot be stored in an mcache. If a module
 has already been populated into a cache and is then designated as
 uncachable, the module cache is not automatically removed.

External Module Support (Module-based)

 DesignSync supports populating an external module, an object or set
 of objects managed by a different change management system, within a
 module hierarchy. Using an external module in a DesignSync hierarchy
 allows you to manage code dependencies between module objects in
 DesignSync and files checked in to other change management systems.

 Within a parent module, you add an href that refers to an external
 module. The external module reference contains the name of an
 external module interface. The external module interface, provided by
 an administrator, defines a procedure to populate the sub-module
 using an external change management system.

 After creating the href to the external module, you populate it
 exactly as you would any other href, by specifying either the href
 name or the module instance name as the populate argument, or
 by populating the parent module with the -recursive option.

 The external module must be part of a module hierarchy. You cannot
 create an external module as a top-level module. Once in the
 workspace, the module itself, or any subfolders, or objects within
 the module may be individually populated according to the external
 module interface definition.

 Notes:
 o The external module's directory structure cannot overlap with

File-Based Design

36

 any other module data.

 o If an external module populate fails and the populate command was
 run with the -report brief option specified, you may not have
 enough information to determine where the failure occurred. If you
 rerun the populate with the -report brief mode, you can locate the
 referenced object within the module hierarchy.

Populating Modules Recursively (Module-based)

 You can use populate to fetch entire modules or their members as
 follows:

 o To fetch a single module without fetching its submodules, specify
 the workspace or server module and apply the populate command
 without the -recursive option.
 The command populates the module members without following
 hierarchical references (hrefs).

 o To fetch all objects in an entire module hierarchy, specify the
 workspace or server module and use the populate command with the
 -recursive option.
 The command traverses the hierarchy in a module-centric fashion,
 populating all the objects in the module and following its hrefs
 to populate its referenced submodules.

 o To fetch all objects in a folder, specify a folder name
 and apply the populate command without the -recursive option.
 The command fetches the objects in the folder, without following
 hrefs.

 o To fetch all objects in a folder and its subfolders, specify a
 folder name and apply the populate command with the -recursive
 option.
 The command traverses the folders in a folder-centric fashion,
 populating the modified objects in the folder and its subfolders,
 but without following hrefs. To follow hrefs, you must specify a
 workspace or server module instead of a folder.

 o To fetch all objects in a module or module hierarchy but restrict
 the fetch to a particular folder hierarchy, use the -modulecontext
 option to specify the module and provide the folder name.
 - Specify the -recursive option if the module hierarchy needs be
 traversed to fetch items from the sub-modules into that folder.
 - Specify -norecursive option to fetch only the items from the
 given module. Note that this operation is "module centric" and
 "folder recursive", in that all items in the module are fetched
 which belong to the given module or its sub-folders.
 - To restrict the operation to both a module and a single folder,
 use the -filter option to filter out items from sub folder.

 Note: You cannot specify the -recursive option, if you are performing
 a cross-branch merge (with pop -merge -overlay) on a module.

ENOVIA Synchronicity Command Reference All -Vol2

37

 When you fetch a module recursively, you update the module hierarchy.
 How that module hierarchy populates depends on the href mode
 specified, and the selector(s) specified within the href, the
 hreffilter string and possibly the populate selector for the selected
 module. For more information on how the module hierarchy is
 populated, see the "Module Hierarchy" topic in the ENOVIA
 Synchronicity DesignSync Data Manager User's Guide.

 Note: If the "HrefModeChangeWithTopStaticSelector" registry key is
 enabled, and the selected module is a static version, the static
 version is saved as the persistent selector in populate. For more
 information about setting the "HrefModeChangeWithTopStaticSelector"
 registry key, see the ENOVIA Synchronicity DesignSync Data Manager
 Administrator's Guide.

Module Version Updating (Module-based)

 The populate command updates the module version upon successfully
 fetching all members of the module. If the populate command is
 not completely successful, the fetched version number is not
 updated, as in the following scenarios:

 o A module member cannot be fetched if the member is locally
 modified (and -force is not applied). In this case, the module
 is not fully populated, and the module version is not updated.

 o A module member is not fetched if a -filter, -exclude, or
 -nonew option excludes it. In this case, the module is not
 fully populated, and the version number is not updated.

 If you do not have the Latest complete module version due to
 one of these cases, you can still check in a module; the ci
 command auto-merges members so that the module is fully
 updated upon checkin. See the ci command for details.

 You can use the showstatus command to detect whether a module has
 been fully populated. The showstatus command lists the module as
 'Needs Update' if the Latest version has not been successfully
 fetched.

 Unlike the cases where the module version is not updated,
 the module version is updated if a populate successfully
 updates the entire module, but fails to remove files that
 are no longer members of the module. If a member has been
 removed from the new module version, but the populate command
 cannot remove it from the workspace (because it is locally
 modified and -force was not applied), the workspace does
 contain the entire contents of the new module version, so
 the module version is updated.

Incremental Versus Full Populate (Module-based)

File-Based Design

38

 By default, the populate command attempts to perform an incremental
 populate which updates only those local objects whose corresponding
 vaults have changed. For modules, DesignSync tracks the members
 changed on the server and in the workspace and performs an
 incremental populate. Avoiding a full populate improves the speed of
 the populate; however, some circumstances make a full populate
 necessary. In the following cases, DesignSync automatically performs
 a full populate:

 o If you are populating with a different configuration to
 that of the work area (having used setselector, setvault,
 'populate -version', or 'co -version' to change a selector),
 DesignSync performs a full populate. For example, if your last
 full populate specified the VendorA_Mem configuration, but
 you now want VendorB_Mem files, then DesignSync automatically
 performs a full (nonincremental) populate. If the selector
 you specify resolves to the same exact selector as that of the
 work area, DesignSync does perform the incremental populate.
 In this case, the selectors must be an exact match; for example,
 a selector which resolves to 'Main' does not match 'Main:Latest'.
 If you are populating with a new configuration, consider
 using the -force option to remove objects of the previous
 configuration from your work area.

 o If you have removed module data from the workspace
 with rmfile or rmfolder, DesignSync performs a full populate,
 refetching the removed files.

 o If you use the -lock option, DesignSync performs a full
 populate.

 o If you use the -unifystate option, DesignSync performs
 a full populate.

 o If you perform a nonrecursive populate on a subfolder, all
 of the folders above the subfolder are invalidated for
 subsequent incremental populate operations. Incremental
 populate works by exploiting the fact that if a folder
 is up-to-date, all of its subfolders are also up-to-date,
 making it unnecessary to recurse into them. Because
 a recursive populate was not performed for the subfolder,
 DesignSync cannot ensure that its subfolders are up-to-date;
 thus, all incremental populates are invalidated up the
 hierarchy.

 o If you perform a nonrecursive populate on a folder,
 DesignSync essentially runs a full populate rather than
 the default incremental populate. Your next populate
 is incremental from the last recursive populate. If
 you have not previously run a recursive populate, the
 subsequent populate is a full populate.

 Note: If you are using a mirror (by specifying -mirror or
 having a default fetch state of Links to mirror), an incremental
 populate does not necessarily fetch new objects checked in, nor
 remove links to objects deleted by team members until after the
 mirror has been updated.

ENOVIA Synchronicity Command Reference All -Vol2

39

 For the following cases, you should perform a full populate instead
 of an incremental populate:

 o If you have excluded a folder by using the -exclude, -filter,
 or -noemptydirs option with the populate command, a
 subsequent incremental populate will not necessarily process
 the folder of the previously excluded object. DesignSync does
 not automatically perform a full populate in this case. To
 guarantee that previously excluded objects are fetched,
 specify the -full option for the subsequent populate operation.

 o Specify a full populate to force data that has been manually
 removed, removed locally, or renamed locally to be fetched again
 from the server. If the file was renamed, you may have to specify
 the -force option as well.

 Also, specify a full populate if you have an unchanged,
 but out-of-date or out-of-sync version in your workspace to force
 DesignSync to fetch the up-to-date version of the object.

 o If the system clock on the SyncServer machine where your vault
 is located is turned back (for example, to correct clock skew
 between machines), you must perform a full (nonincremental)
 populate to synchronize the client and server metadata.

 o If you interrupt a populate operation (using Control-c, for
 example), you should use populate -full on your next populate
 of that folder.

 The default populate mode is -incremental; however, your project
 leader can set this default using SyncAdmin.

 If you are updating mirrors, use the -incremental option. If you
 specify the -full option, mirror updates can take a long time
 to complete.

 Note: If you remove objects from the work area by using operating
 system commands rather than DesignSync commands, an incremental
 populate cannot fetch these objects. Perform a full populate
 (-full) or use the -unifystate option to fetch them.

How Populate Handles Moved and Removed Module Members (Module-based)

 When you populate a module, DesignSync does not populate
 any module member that has been removed on the server.
 Existing module members in your local workspace that have been
 removed on the server are removed during a populate.

 Module members that have been removed or moved locally, but those
 changes were not committed to server are preserved in the workspace
 unless populate is run with the -full and -force options which remove
 the local modifications (including the structural changes) and
 replace the workspace version with the server version.

File-Based Design

40

 Merging module members that have been removed or renamed is discussed
 in Merging Across Branches

Merging Across Branches (Module-based)

 In multi-branch environments, you use the populate command to
 merge branches. In many cases, a new branch that is created is
 eventually merged back into the main development branch.

 The branch being merged is populated into a workspace containing the
 destination branch using the populate command with the -merge and
 -overlay options. This type of merge is called "cross-branch merge."

 As with all populate operations, cross-branch merging uses the filter
 and exclude filter lists set on the workspace, in the command
 defaults system,on the command line.

 Note: Filtering on module workspaces is applied to the natural path
 of the module members. If a module member's natural path has
 changed, creating a situation where either the new location or the
 old location, but not both is excluded, the module member is
 included in the merge.

 Important: When working with modules, you should lock your workspace
 branch before beginning a cross-branch merge. This reduces the risk
 of changes being committed by another user while you are merging the
 versions. After the merge has been completed, the changes have been
 reviewed and accepted, and the new module version created, unlock the
 branch to make it available for general use.

 Merging includes two basic types of merging: file contents, and
 structural changes.

 o File content merging:
 File content merging is applicable to all DesignSync objects
 including module members. DesignSync merges the contents of files
 with the same natural path to the best of its ability. If the
 files are binary files which cannot be merged, populate returns an
 error message.

 o Structural change merging for Modules:
 Structural changes for modules are either committed when the module
 is checked in or can be individually committed. Structural changes
 for Modules include:

 - Removed objects - If an object is present in the local workspace,
 but has been removed on the merge version, it is marked with a
 metadata property to indicate that it was removed from the
 branch. If you want to remove it from the merged module version,
 you must manually remove the file from the workspace before
 creating the new module.

 If the object has been removed on the workspace, but:

ENOVIA Synchronicity Command Reference All -Vol2

41

 * is present on the server at the same member version removed
 from the workspace, the object remains in the same state, and
 is removed from the server during the next checkin.

 * is present on the server at a newer version or has been moved,
 or is on the overlay version, the new version is not merged
 into the workspace, and an error is returned stating there is
 new version. The version in the workspace remains in the
 removed state, but you will not able to check in the change
 until you resolve the merge conflict.

 - Added objects - If an object is present in the merge version,
 but not in local workspace, it is added to the module and is
 checked into the module when the next checkin operation on the
 module or the module member is performed.

 - Moved or Renamed objects - A moved (or renamed) object has a
 different natural path. Objects that have been moved on either
 the server or checked in from the workspace have been moved on
 the server. Objects that have been moved in the workspace, but
 have not been checked in are considered moved locally.

 If an object has been moved on the server, but not locally, the
 module member in the workspace retains the same name or location
 in the workspace, and a metadata property is added to the object
 to indicate the new path name. To determine what files have been
 moved, review the populate status information, log file, or run
 the ls command with the -merge rename option.

 If an object has been moved locally, and:

 * has been moved on the server to the same location, the merge
 operation is performed on the merged local version. Subsequent
 checkin checks in the merged file to the new location. If the
 content has changed, DesignSync will perform a content merge as
 well.

 * has been removed on the server, the new version is not merged
 into the workspace, and an error is returned by populate.
 new version. The version in the workspace remains in the moved
 state, but you will not able to check in the change until you
 resolve the merge conflict.

 * has been updated on the server, content changes are merged into
 the moved file, and subsequent checkin of the member moves the
 file on the server and updates the content.

 * has been moved on the server to a different location and
 updated, the content is merged, the workspace version remains
 in the same location in the workspace, and an error is logged
 in populate to alert you that the file has been moved on the
 server. In order to checkin, you must resolve the merge name
 conflict or checkin with the -skip option to move the file to
 name of the file in your local workspace.

 * and exists on the overlay version, the overlay version is not
 copied into the workspace, but a metadata property is placed on

File-Based Design

42

 the local version to indicate that natural path of the object
 is different. You can see a list of these differences by using
 ls -merged.

 Note: If a file marked as renamed is subsequently renamed again,
 or removed from the module, the metadata property indicating that
 the file was renamed by merge may persist. To clear the
 property, perform the mvmember or remove command on the workspace
 object, or manually clear the property using the url rmprop
 command.

 - Added or Removed hierarchical references - Hierarchical reference
 changes cannot be merged. You must manually adjust your
 hierarchical references.

 After a cross-branch merge has been performed, you can view the
 status of the affected files using the ls command with the -merged
 <state> -report D options. The -merged option allows you to restrict
 the list to a particular type of merge operation (add, remove,
 rename, all) and the -report D option shows you the current state of
 the object in your workspace. For more information, see the ls
 command help.

 When a merge is performed on a DesignSync object, a merge edge is
 created automatically to maintain a list of the changes incorporated
 by the merge. This identifies a closer-common ancestor to provide
 for quicker subsequent merges. When performing a cross-branch merge
 on a module, however, you need to manually create the merge edge
 after committing the selected changes. For more information on
 creating a merge edge, see the mkedge command.

 For more information about merging, see the -merge and -overlay
 options, and the DesignSync Data Manager User's Guide topic: "What Is
 Merging?"

 Notes:
 o Auto-branching is not supported for modules; you cannot specify
 the auto-branching construct, auto(), for modules.

Understanding the Output (Module-based)

 The populate command provides the option to specify the level of
 information the command outputs during processing. The -report option
 allows you to specify what type of information is displayed:

 If you run the command with the -report brief option, the populate
 command outputs a small amount of status information including, but
 not limited to:
 o Failure messages.
 o Warning messages.
 o Version of each module processed as a result of a recursive
 populate.
 o Removal message for any hierarchical reference. removed as part of
 a recursive module populate.

ENOVIA Synchronicity Command Reference All -Vol2

43

 o Informational messages concerning the status of the populate
 o Success/failure/skip status

 If you do not specify a value, or the command with the -normal
 option, the populate command outputs all the information presented
 with -report brief and the following additional information:
 o Informational messages for objects that are updated by the
 populate operation.
 o Messages for objects excluded from the operation (due to exclusion
 filters or explicit exclusions).
 o For module data, also outputs information about all objects that
 are fetched.

 If you run the command with the -report verbose option, the populate
 command outputs all the information presented with -report normal and
 the following additional information:
 o Informational message for every object examined but not updated.
 o For module data, also outputs information about all objects that
 are filtered.
 o For module versions that have been swapped, output indicates when
 the selector of a swapped sub-module is being used.

 If you run the command with the -report error option, the populate
 command outputs the following information:
 o Failure messages.
 o Warning messages.
 o Success/failure/skip status messages.

 Note: References to DesignSync Vault, IPGear Deliverables, or
 External modules do not have a module instance name to add to the
 object path. When running with the error report mode, if an object
 within a referenced DesignSync Vault, IPGear Deliverable, or External
 module fails, you may need to rerun the operation with the report
 -brief option to locate the referenced object within the module
 hierarchy.

Forcing, Replacing, and Non-Replacing Modes (Module-based)

 You can use these three modes to specify how the populate command
 updates your work area:

 o Forcing mode (specified with the -force option) synchronizes
 your work area with the incoming data, including locally
 modified objects. In this mode, the populate command updates
 the managed objects in your work area. It replaces or removes
 managed objects regardless of whether the objects have been
 locally modified and whether they are members of the module
 being fetched. Thus, forcing modifies your work area
 to match the set of module members being fetched. Note: The
 default -noforce option operates as if -replace has been
 specified.

 o Replacing mode (specified with the -replace option) also
 synchronizes your work area with the incoming data, but without

File-Based Design

44

 affecting locally modified objects (the default behavior).
 For modules, the populate command updates managed members
 of the module that have not been locally modified. It also
 removes any unmodified managed objects that are not members
 of the module being fetched.

 Replacing mode, unlike forcing mode, leaves intact managed
 objects that have been locally modified.

 o Non-replacing mode (specified with the -noreplace option) is
 the least disruptive mode; this mode might require you to clean
 up the resulting work area data.

 In this mode, the populate command takes the incoming data and
 overlays it on top of the existing work area's data. It leaves
 intact both managed objects with local modifications and
 managed objects that are not members of the module being
 fetched. Thus, the work area essentially becomes a union of the
 data from the previous version and that of the module being
 fetched.

 Non-replacing mode, unlike forcing mode, leaves intact any
 objects that have been locally modified, and, unlike the
 replacing mode, leaves unmodified managed objects intact.
 See the -[no]replace option below for more details.

 Notes:
 o Unmanaged objects in your work area are not affected by any of
 these modes.
 o The following are illegal combinations of options:
 -replace and -noforce, as well as inverse options, such
 as -replace and -noreplace.

Interacting with Legacy Modules (Legacy-based)

 The general functionality provided by populate is provided for legacy
 modules by the hcm get command. The sections within populate that
 are specifically tagged for legacy modules refer to interactions with
 modules or files-based objects, when populate is used, or if populate
 is used on individual objects, not an entire legacy module
 configuration. For more information on updating legacy modules in
 your workspace, see the hcm get command.

 Important: Legacy modules are modules generated prior to
 Developer Suite 5.0. The modern modules functionality provides
 significant improvements. You can update your legacy modules using
 the upgrade command.

 Prior to Developer Suite 5.0, legacy modules were managed with module
 configurations. Modules no longer require "configurations". A
 configuration was a set of object versions sharing a common tag (for
 example, files of a version tagged 'Rel2.0' comprise the Release 2.0
 configuration).

ENOVIA Synchronicity Command Reference All -Vol2

45

 In ProjectSync, a configuration represents a state in the life-cycle
 of a project. It has an owner, team members. When associated
 with a DesignSync vault, the configuration has a selector list
 (typically a tag) identifying the versions of DesignSync data
 that are part of the configuration.
 ProjectSync project and configuration information is stored in a
 sync_project.txt file that is located in the project folder.

 When you populate based on a name that corresponds to a ProjectSync
 configuration, DesignSync uses the selector list (typically a tag
 name) associated with that ProjectSync configuration to identify the
 versions to be populated. This scenario is called configuration
 mapping.

 Configuration mapping is used when a configuration name does not
 have the same meaning for all modules of a project. For example, a
 project's Alpha configuration may consist of the Gold configuration
 of one module, the Rel20 configuration of another, and several
 other modules whose design files are actually tagged
 Alpha. Configuration mapping lets you identify these different
 versions of design data with one configuration name.

 When you populate a configuration-mapped folder (either directly or
 through a recursive populate operation) and the selector you
 specify is mapped, the persistent selector list for that folder is
 set to the mapped value. For example, if the specified selector
 'Alpha' is a configuration that maps to the 'Gold' tag, then the
 persistent selector list for that folder is set to 'Gold'. Further,
 if the folder references a different vault (as identified by
 the REFERENCE keyword in the sync_project.txt file) and you are
 doing a recursive populate, the persistent selector list for any
 subfolder is also set to the mapped value.

 Notes:
 o The case where a ProjectSync configuration and its
 associated DesignSync tag have the same name is not
 considered configuration mapping; the persistent selector
 list is not modified by the populate operation.
 o Only the populate command (not co, ci, and so on) resolves
 the selector you specify to a ProjectSync configuration, if one
 exists.
 o DesignSync does not follow chained configuration maps. For
 example, if the same sync_project.txt file has a configuration A
 mapped to tag B and a configuration B mapped to tag C, DesignSync
 does not map A to C. Unexpected behavior can result. To avoid
 chained configuration maps, consider using separate naming
 conventions for configurations and tags.

 o If an legacy module populate fails and the populate command was
 run with the -report brief option specified, you may not have
 enough information to determine where the failure occurred. If you
 rerun the populate with the -report brief mode, you will can locate
 the referenced object within the module hierarchy.

 For information on how populate works on a legacy module or an href
 to a legacy module, see the description of -recursive option. See
 ProjectSync User's Guide for more information on ProjectSync projects

File-Based Design

46

 and configurations. See the "Working with Legacy Modules" book in
 DesignSync Data Manager User's Guide for more information about
 legacy modules.

Incremental Versus Full Populate (Legacy-based)

 By default, the populate command attempts to perform an incremental
 populate which updates only those local objects whose corresponding
 vaults have changed. Avoiding a full populate improves the speed of
 the populate; however, some circumstances make a full populate
 necessary. In the following cases, DesignSync automatically performs
 a full populate:

 o If you are populating with a different configuration to
 that of the work area (having used setselector, setvault,
 'populate -version', or 'co -version' to change a selector),
 DesignSync performs a full populate. For example, if your last
 full populate specified the VendorA_Mem configuration, but
 you now want VendorB_Mem files, then DesignSync automatically
 performs a full (nonincremental) populate. If the selector
 you specify resolves to the same exact selector as that of the
 work area, DesignSync does perform the incremental populate.
 In this case, the selectors must be an exact match; for example,
 a selector which resolves to 'Main' does not match 'Main:Latest'.
 If you are populating with a new configuration, consider
 using the -force option to remove objects of the previous
 configuration from your work area.

 o If you use the -lock option, DesignSync performs a full
 populate.

 o If you use the -unifystate option, DesignSync performs
 a full populate.

 o If you perform a nonrecursive populate on a subfolder, all
 of the folders above the subfolder are invalidated for
 subsequent incremental populate operations. Incremental
 populate works by exploiting the fact that if a folder
 is up-to-date, all of its subfolders are also up-to-date,
 making it unnecessary to recurse into them. Because
 a recursive populate was not performed for the subfolder,
 DesignSync cannot ensure that its subfolders are up-to-date;
 thus, all incremental populates are invalidated up the
 hierarchy.

 o If you perform a nonrecursive populate on a folder,
 DesignSync essentially runs a full populate rather than
 the default incremental populate. Your next populate
 is incremental from the last recursive populate. If
 you have not previously run a recursive populate, the
 subsequent populate is a full populate.

 o If a DesignSync REFERENCE resolves to a different selector than
 that of the work area from which the populate command is invoked,

ENOVIA Synchronicity Command Reference All -Vol2

47

 DesignSync performs a full populate of the REFERENCED objects
 rather than an incremental populate. DesignSync compares the
 -version selector with the work area configuration rather than
 the mapped configuration, so do not use the -version selector to
 specify a mapped configuration. Instead, if you suspect the
 configuration map file has been updated, use the -version
 selector to remap the configuration by specifying the original
 selector. DesignSync then performs a full populate and follows
 the updated REFERENCEs.

 o If the ProjectSync configuration file, sync_project.txt, has been
 updated through the ProjectSync interface (Project->Edit or
 Project->Configuration), thus updating the DesignSync REFERENCEs,
 DesignSync performs a full populate. If, however, the
 configuration in the sync_project.txt file is hand-edited and not
 updated using ProjectSync, you must specify the -full option to
 force a full populate.

 Note: If you are using a mirror (by specifying -mirror or
 having a default fetch state of Links to mirror), an incremental
 populate does not necessarily fetch new objects checked in, nor
 remove links to objects deleted by team members until after the
 mirror has been updated.

 For the following cases, perform a full populate instead of
 an incremental populate:

 o If you have excluded a folder by using the -exclude or or
 -noemptydirs option with the populate command, a subsequent
 incremental populate will not necessarily process the folder of
 the previously excluded object. DesignSync does not
 automatically perform a full populate in this case. To guarantee
 that previously excluded objects are fetched, specify the -full
 option for the subsequent populate operation.

 o If the ProjectSync configuration file, sync_project.txt,
 has been hand-edited, thus updating the legacy module REFERENCEs,
 use the -full option to perform a full populate. If, however,
 the sync_project.txt file has been changed through the
 ProjectSync interface (Project->Edit or Project->Configuration),
 DesignSync performs the full populate without your having to
 specify -full. For more information, see "Interaction with
 Legacy Modules" below.

 o If the system clock on the SyncServer machine where your vault
 is located is turned back (for example, to correct clock skew
 between machines), you must perform a full (nonincremental)
 populate to synchronize the client and server metadata.

 o If you interrupt a populate operation (using Control-c, for
 example), you should use populate -full on your next populate
 of that folder.

 The default populate mode is -incremental; however, your project
 leader can set this default using SyncAdmin.

 If you are updating mirrors, use the -incremental option. If you

File-Based Design

48

 specify the -full option, mirror updates can take a long time
 to complete.

 Note: If you remove objects from the work area by using operating
 system commands rather than DesignSync commands, an incremental
 populate cannot fetch these objects. Perform a full populate or
 use the -unifystate or to fetch them.

Setting up Your Workspace (File-based)

 Before you can use populate to maintain your workspace, you must set
 up your workspace.

 Note: The Workspace Wizard from the DesignSync graphical user
 interface simplifies the task of setting up a work area by taking you
 through a step-by-step process.

 The typical steps when you set up a new workspace are:

 1. Associate a local folder with a vault folder. See the
 setvault command for details. This also creates the workspace
 root, if one does not already exist at the level of the local
 folder or above.

 2. Optionally set the persistent selector list for the folder as
 part of the setvault command or with the setselector
 command. If you do not set the persistent selector list, it is
 inherited from the parent folder. This step is necessary only
 if you are working on a branch other than the default Trunk
 branch.

 3. Optionally associate a local folder with a mirror directory.
 See the "setmirror" command for details. If the mirror directory
 for your project later changes, run the setmirror command from
 the same directory in which the original setmirror command was
 run. That will update the workspace's mirror association, which
 will be inherited by lower level directories. Run the populate
 command with the options '-recursive -mirror -unifystate' to
 correct existing workspace links to mirror files. This will
 correct the links so that they point to the mirror directory's
 new location.

 4. Populate the work area with the specified design objects from
 the vault. Populate determines the set of versions from the
 persistent selector list or from the -version option, if
 applicable. Apply the -recursive option to create a local
 hierarchy that matches the vault's hierarchy. Without
 -recursive, populate only fetches the specified objects.

Incremental Versus Full Populate (File-based)

 By default, the populate command attempts to perform an incremental

ENOVIA Synchronicity Command Reference All -Vol2

49

 populate which updates only those local objects whose corresponding
 vaults have changed. Avoiding a full populate improves the speed of
 the populate; however, some circumstances make a full populate
 necessary. In the following cases, DesignSync automatically performs
 a full populate:

 o If you are populating with a different configuration to
 that of the work area (having used setselector, setvault,
 'populate -version', or 'co -version' to change a selector),
 DesignSync performs a full populate. For example, if your last
 full populate specified the VendorA_Mem configuration, but
 you now want VendorB_Mem files, then DesignSync automatically
 performs a full (nonincremental) populate. If the selector
 you specify resolves to the same exact selector as that of the
 work area, DesignSync does perform the incremental populate.
 In this case, the selectors must be an exact match; for example,
 a selector which resolves to 'Main' does not match 'Main:Latest'.
 If you are populating with a new configuration, consider
 using the -force option to remove objects of the previous
 configuration from your work area.

 o If you use the -lock option, DesignSync performs a full
 populate.

 o If you use the -unifystate option, DesignSync performs
 a full populate.

 o If you perform a nonrecursive populate on a subfolder, all
 of the folders above the subfolder are invalidated for
 subsequent incremental populate operations. Incremental
 populate works by exploiting the fact that if a folder
 is up-to-date, all of its subfolders are also up-to-date,
 making it unnecessary to recurse into them. Because
 a recursive populate was not performed for the subfolder,
 DesignSync cannot ensure that its subfolders are up-to-date;
 thus, all incremental populates are invalidated up the
 hierarchy.

 o If you perform a nonrecursive populate on a folder,
 DesignSync essentially runs a full populate rather than
 the default incremental populate. Your next populate
 is incremental from the last recursive populate. If
 you have not previously run a recursive populate, the
 subsequent populate is a full populate.

 o If the ProjectSync configuration file, sync_project.txt,
 has been updated through the ProjectSync interface
 (Project->Edit or Project->Configuration), thus updating
 the DesignSync REFERENCEs, DesignSync performs a full
 populate. If, however, the configuration in the
 sync_project.txt file is hand-edited and not updated
 using ProjectSync, you must specify the -full option to
 force a full populate.

 Note: If you are using a mirror (by specifying -mirror or
 having a default fetch state of Links to mirror), an incremental
 populate does not necessarily fetch new objects checked in, nor

File-Based Design

50

 remove links to objects deleted by team members until after the
 mirror has been updated.

 For the following cases, perform a full populate instead of
 an incremental populate:

 o If you have excluded a folder by using the -exclude, or
 -noemptydirs option with the populate command, a
 subsequent incremental populate will not necessarily process
 the folder of the previously excluded object. DesignSync does
 not automatically perform a full populate in this case. To
 guarantee that previously excluded objects are fetched,
 specify the -full option for the subsequent populate operation.

 o For modules, DesignSync tracks changed members and therefore
 always performs an incremental populate. Specify a full populate
 to force data that has been manually removed, removed locally, or
 renamed locally to be fetched again from the server. If the file
 was renamed, you may have to specify the -force option as well.

 Also, specify a full populate if you have an unchanged,
 but out-of-date or out-of-sync version in your workspace to force
 DesignSync to fetch the up-to-date version of the object.

 o If the ProjectSync configuration file, sync_project.txt,
 has been hand-edited, thus updating the legacy module REFERENCEs,
 use the -full option to perform a full populate. If, however,
 the sync_project.txt file has been changed through the
 ProjectSync interface (Project->Edit or Project->Configuration),
 DesignSync performs the full populate without your having to
 specify -full. For more information, see "Interaction with
 Legacy Modules" below.

 o If the system clock on the SyncServer machine where your vault
 is located is turned back (for example, to correct clock skew
 between machines), you must perform a full (nonincremental)
 populate to synchronize the client and server metadata.

 o If you interrupt a populate operation (using Control-c, for
 example), you should use populate -full on your next populate
 of that folder.

 The default populate mode is -incremental; however, your project
 leader can set this default using SyncAdmin.

 If you are updating mirrors, use the -incremental option. If you
 specify the -full option, mirror updates can take a long time
 to complete.

 Note: If you remove objects from the work area by using operating
 system commands rather than DesignSync commands, an incremental
 populate cannot fetch these objects. Use the -unifystate or
 -full option to fetch them.

How Populate Handles Retired Objects (File-based)

ENOVIA Synchronicity Command Reference All -Vol2

51

 When you populate with the Latest versions of design objects from a
 given branch, DesignSync does not populate objects for which that
 branch is retired. Objects in your local work area whose branches
 have been retired from the vault are not deleted during the
 populate operation unless you specify -force.

 It is important to note that objects on retired branches remain
 part of past configurations. When you use the populate command to
 retrieve a configuration other than 'Latest', objects from retired
 branches are fetched. The populate command fetches objects from
 retired branches, thereby preserving past configurations, if the
 selector used for the operation is any of the following:
 o A version tag other than 'Latest', even if the version
 tag points to the Latest version
 o A version number, even if that number corresponds to the
 Latest version
 o <branchtag>:Date(<date>) or <branchtag>:VaultDate(<date>)

 Note: If the selector specifies a branch in the form
 '<branchtag>:', DesignSync augments the selector to
 be <branchtag>:Latest, meaning, 'Get the Latest version
 from the specified branch'. In this case, objects
 from retired branches are not fetched.

 Note: For information about how retired files by cross-branch merge
 operations, see "Merging Across Branches."

Merging Across Branches (File-based)

 In multi-branch environments, you use the populate command to
 merge branches. In many cases, a new branch that is created is
 eventually merged back into the main development branch.

 The branch being merged is populated into a workspace containing the
 destination branch using the populate command with the -merge and
 -overlay options. This type of merge is called "cross-branch merge."

 As with all populate operations, cross-branch merging uses the filter
 and exclude filter lists set on the workspace, in the command
 defaults system,on the command line.

 Merging includes two basic types of merging: file contents, and
 structural changes.

 o File content merging:
 File content merging is applicable to all DesignSync objects.
 DesignSync merges the contents of files with the same natural path
 to the best of its ability. If the files are binary files which
 cannot be merged, populate returns an error message.

 o Structural changes for DesignSync objects.
 Structural changes for DesignSync objects are non-content based
 changes to the DesignSync objects that can affect the merge

File-Based Design

52

 results.

 - Removed objects: If an object is present in the local workspace,
 but not in the merge version, the object in the local workspace
 is unchanged. If you want to remove it from the merged version,
 you must explicitly remove or retire the object.

 - Added objects: If an object is not present in the local workspace,
 but is present in the merge version, the object is added to the
 local workspace. The merge action sets the following local
 metadata properties:

 o The current version is set to the fetched version, providing
 a meaningful branch-point version when you check the object
 into branch A.
 o The current branch information is undefined.
 o The persistent selector list for the object may be augmented
 to ensure that branch A is automatically created when you
 check in the object, thus eliminating the need to use ci
 -new. The following list explains how the persistent
 selector list is handled by the operation.
 1. If the first selector in the persistent selector list is a
 VaultDate() or Auto() selector, then the persistent
 selector list is not modified.
 2. If the first selector is of the form <branch>:<version>,
 then the first selector is modified to be Auto(<branch>).
 3. Otherwise, the first selector is modified to be
 Auto(<selector>). The object may be automatically checked
 in to the DesignSync vault, depending on the value of the
 persistent selector.

 - Retired objects:

 o If the object is active in the workspace and retired on the
 branch version, the workspace version is unchanged.
 o If the object is retired or does not exist in the workspace,
 and is retired or does not exist on the branch, the workspace
 version is unchanged.
 o If the object is retired in the workspace and active on the
 branch version, the version from the branch version is merged
 with the workspace version. The object remains retired and
 must be unretired in order to be checked in.

 After a cross-branch merge has been performed, you can view the
 status of the affected files using the ls command with the -merged
 <state> -report D options. The -merged option allows you to restrict
 the list to a particular type of merge operation (add, remove,
 rename, all) and the -report D option shows you the current state of
 the object in your workspace. For more information, see the ls
 command help.

 When a merge is performed on a DesignSync object, a merge edge is
 created automatically to maintain a list of the changes incorporated
 by the merge. This identifies a closer-common ancestor to provide
 for quicker subsequent merges.

ENOVIA Synchronicity Command Reference All -Vol2

53

 For more information about merging, see the -merge and -overlay
 options, and the DesignSync Data Manager User's Guide topic: "What Is
 Merging?"

Populate Versus Checkout (File-based)

 The co and populate commands are similar in that they retrieve
 versions of objects from their vaults and place them in your work
 area. They differ in several ways, most notably:
 o You typically use the co command to operate on objects that you
 already have locally, whereas populate updates your work area
 to reflect the status of the vault.
 o The co command considers the persistent selector list for each
 object that is checked out, whereas populate only considers the
 persistent selector list for the folder that is being populated.

 Note: The co and populate commands are gradually being merged.

Understanding the Output (File-based)

 The populate command provides the option to specify the level of
 information the command outputs during processing. The -report option
 allows you to specify what type of information is displayed:

 If you run the command with the -report brief option, the populate
 command outputs a small amount of status information including, but
 not limited to:
 o Failure messages.
 o Warning messages.
 o Informational messages concerning the status of the populate
 o Success/failure/skip status

 If you do not specify a value, or the command with the -normal
 option, the populate command outputs all the information presented
 with -report brief and the following additional information:
 o Informational messages for objects that are updated by the
 populate operation.
 o Messages for objects excluded from the operation (due to exclusion
 filters or explicit exclusions).

 If you run the command with the -report verbose option, the populate
 command outputs all the information presented with -report normal and
 the following additional information:
 o Informational message for every object examined but not updated.

 If you run the command with the -report error option, the populate
 command outputs the following information:
 o Failure messages.
 o Warning messages.
 o Success/failure/skip status messages.

File-Based Design

54

Forcing, Replacing, and Non-Replacing Modes (File-based)

 You can use these three modes to specify how the populate command
 updates your work area:

 o Forcing mode (specified with the -force option) synchronizes
 your work area with the incoming data, including locally
 modified objects. In this mode, the populate command updates
 the managed objects in your work area. It replaces or removes
 managed objects regardless of whether the objects have been
 locally modified. Thus, forcing modifies your work area
 to match the set of objects being fetched. Note: The
 default -noforce option operates as if -replace has been
 specified.

 o Replacing mode (specified with the -replace option) also
 synchronizes your work area with the incoming data, but without
 affecting locally modified objects (the default behavior).

 Note: Retired files that have been kept or re-added to the
 workspace are considered locally modified.

 Replacing mode, unlike forcing mode, leaves intact managed
 objects that have been locally modified.

 o Non-replacing mode (specified with the -noreplace option) is
 the least disruptive mode; this mode might require you to clean
 up the resulting work area data.

 In this mode, the populate command takes the incoming data and
 overlays it on top of the existing work area's data. It leaves
 intact both managed objects with local modifications and
 managed objects that are not members of the module being
 fetched. Thus, the work area essentially becomes a union of the
 data from the previous version and that of the module being
 fetched.

 Non-replacing mode, unlike forcing mode, leaves intact any
 objects that have been locally modified, and, unlike the
 replacing mode, leaves unmodified managed objects intact.
 See the -[no]replace option below for more details.

 Notes:
 o Unmanaged objects in your work area are not affected by any of
 these modes.
 o The following are illegal combinations of options:
 -replace and -noforce, as well as inverse options, such
 as -replace and -noreplace.

SYNOPSIS

 populate [-[no]connectinstances] [-[no]emptydirs]
 [-exclude <object>[,<object>...]] [-filter <string>]

ENOVIA Synchronicity Command Reference All -Vol2

55

 [-[no]force] [-full | -incremental] [-hreffilter <string>]
 [-hrefmode {static | dynamic | normal}]
 [[-lock [-keys <mode> | -from {local | vault}]] |
 [-get [-keys <mode> | -from {local | vault}]]
 [-share] | [-mirror] | [-reference] [-lock -reference]]
 [-log <filename>] [-mcachemode <mcache_mode>]
 [-mcachepaths <path_list>] [-[no]merge]
 [-modulecontext <context>] [-[no]new]]
 [[-overlay <selector>[,<selector>...]]|
 [-version <selector>[,<selector>...]]] [-path <path>]
 [-[no]recursive] [-[no]replace]
 [-report {error|brief|normal|verbose}] [-[no]retain]
 [-savelocal <value>] [-target <module_configuration_url>]
 [-trigarg <arg>] [-[no]unifystate] [-view view1[,view2,...]]
 [-xtras <list>] [--] [<argument> [<argument>...]]

ARGUMENTS

• Server Module URL (Module-based)
• Workspace Module (Module-based)
• Module Folder (Module-based)
• Module Member (Module-based)
• Hierarchical Reference (Module-based)
• External Module (Module-based)
• DesignSync Object (File-based)
• DesignSync Folder (File-based)

 The populate command accepts multiple arguments. If you want
 to populate the current folder, you need not specify an
 argument. Otherwise, specify one or more of the following
 arguments:

Server Module URL (Module-based)

 <server module> Fetches the specified module from its vault.
 For an initial populate of a module, you must
 specify the module's server URL in the format:
 sync://<machine>:<port>/Modules/<category>/
 <module_name>[;<selector>].

 The populate fetches all objects within the
 module, but does not follow hierarchical
 references (hrefs) by default; specify the
 -recursive option to follow hrefs and thus
 fetch the module's submodules.

Workspace Module (Module-based)

File-Based Design

56

 <workspace module> Fetches the specified module from its vault,
 or updates the module to the appropriate
 module version specified by the selector in use.

 The populate fetches all objects within the
 module, but does not follow hierarchical
 references (hrefs) by default; specify the
 -recursive option to follow hrefs and thus
 fetch the module's submodules.

Module Folder (Module-based)

 <module folder> Populates objects in the specified folder
 regardless of which module the files belong
 to. Specify the -recursive option to recurse
 within the specified folder. Populate in
 this case, does not follow hierarchical
 references (hrefs).

 Note: To populate a module folder, the folder
 must already exist in the workspace.

 If you specify the -modulecontext option, the
 populate command updates the items belonging to
 the specified module in the specified folder and
 all the sub-folders. If you use the -recursive
 option in addition to the -modulecontext option,
 populate fetches any items from relevant
 sub-modules that fall within the folder specified
 (or its sub-folders.)

 Specify the module folder as an absolute
 path or a relative path. If you specify a
 relative path, it is assumed to be relative
 to the current directory or that specified
 by the -path option.

 Note: In previous releases, if the directory that
 was being populated was part of a legacy
 module, the entire module and not just the
 module members in the directory got
 populated.

Module Member (Module-based)

 <module member> Fetches the module member.
 You can specify the -modulecontext option if
 more than one module exists in the workspace.

 Note: The -modulecontext option is not normally
 needed, as the system knows what module
 each member belongs to. When there are

ENOVIA Synchronicity Command Reference All -Vol2

57

 multiple overlapping modules and you are
 fetching an object that is not currently in
 the workspace (for example, to fetch
 something that was originally filtered, or
 was removed with rmfile), the
 -modulecontext option can be used to
 identify the module from which the object
 should be fetched.

 You can also provide the version-extended name if
 necessary. A version-extended name is a filename
 followed by a semicolon and a version number or
 tag name (for example, top.v;1.2 or top.v;rel13).
 In this case, DesignSync fetches the specific
 version of the member vault instead of fetching
 the version of this object that belongs with the
 module version.
 Note: If you specify the version-extended name,
 populate ignores the -version option.

Hierarchical Reference (Module-based)

 <href> Fetches the referenced target (submodule)
 identified by the hierarchical reference
 (href). You can use -hreffilter to exclude
 submodules. To include submodules, enter the href
 as the argument of the populate command. To
 indicate the module context of the href, use the
 -modulecontext option.

 Note: You can only specify hrefs directly
 within the specified module. For example, if
 a module Chip has an href to module CPU, and
 module CPU has an href to module ALU, you
 cannot reference the ALU. Thus, the
 following command invocations are invalid:
 'populate -modulecontext Chip ALU' and
 'populate -modulecontext Chip CPU/ALU'.

External Module (Module-based)

 <external module> Specifies the module instance of the external
 module in the workspace or the URL of the
 external module version to which you wish to
 create the connection. An external module is an
 object or set of objects managed by a different
 code management system but available for viewing
 and integration through DesignSync.
 Specify the external module in the workspace as a
 module instance name.
 Specify the external module Server URL as follows:

File-Based Design

58

 sync[s]:///ExternalModule/<external-type>/<external-data>
 where ExternalModule is a constant that identifies
 this URL as an external module URL,
 <external-type> is the name of the external module
 procedure, and <external-data> contains the
 parameters and options to pass to the
 procedure. These parameters and options can be
 passed from the procedure to the external code
 management system or to DesignSync.

 Note: In order to specify an external module, you
 must have previously populated the module in the
 workspace. You may also specify the external
 module by href name only.

DesignSync Object (File-based)

 <DesignSync object> Fetches the object from its vault.

DesignSync Folder (File-based)

 <DesignSync folder> Fetches the contents of the specified folder.
 You can also use the -path option to specify
 a folder to be fetched.

OPTIONS

• -[no]connectinstances (Module-based)
• -[no]emptydirs
• -exclude (Module-based)
• -exclude (File-based)
• -filter (Module-based)
• -[no]force (Module-based)
• -[no]force (File-based)
• -from
• -full
• -get (Module-based)
• -get (File-based)
• -hreffilter (Module-based)
• -hrefmode (Module-based)
• -incremental
• -keys (Module-based)
• -keys (File-based)
• -lock (Module-based)
• -lock (Legacy-based)
• -lock (File-based)

ENOVIA Synchronicity Command Reference All -Vol2

59

• -lock -reference (Module-based)
• -lock -reference (File-based)
• -log
• -mcachemode (Module-based)
• -mcachemode (Legacy-based)
• -mcachepaths (Module / Legacy-based)
• -[no]merge (Module-based)
• -merge (File-based)
• -mirror (File-based)
• -modulecontext (Module-based)
• -[no]new (Module-based)
• -overlay
• -path (Module-based)
• -path (Legacy-based)
• -path (File-based)
• -[no]recursive (Module-based)
• -[no]recursive (Legacy-based)
• -[no]recursive (File-based)
• -reference
• -[no]replace (Module-based)
• -[no]replace (File-based)
• -report
• -[no]retain
• -savelocal
• -share
• -target (Legacy-based)
• -trigarg
• -[no]unifystate
• -version (Module-based)
• -version (File / Legacy-based)
• -view (Module-based)
• -xtras (Module-based)

-[no]connectinstances (Module-based)

 -[no]connectinstances This option determines how to handle updating
 hierarchical reference within a top-level
 module.

 If your workspace is set up
 in a peer structure, containing your
 top-level module and modules which are
 referenced submodules, but have been
 populated independently, then when
 your workspace is populated non-recursively,
 DesignSync does not recognize the connection
 between the modules. When populated
 recursively, DesignSync may change the

File-Based Design

60

 selector of the submodules to match the
 hierarchical reference definition. The
 -connectinstances option allows you to
 populate the top-level module, recognizes
 that the peer modules are, in fact,
 referenced submodules, and creates the
 relationship accordingly, but does not update
 the selector to match the hierarchical
 reference definition.

 This option is mutually
 exclusive with -recursive which updates the
 href to the referenced peer module.

 The -noconnectinstances option does not
 establish or identify a hierarchical
 relationship with referenced peer
 modules. (Default)

 Notes:
 * You can use the -connectinstances option
 with the -hreffilter option to identify
 specific submodules instead of updating the
 relationships for the entire module hierarchy.

 * The submodule must match the target module
 and relative path specified in the
 hierarchical reference in order to the
 update the href.

-[no]emptydirs

 -[no]emptydirs Determines whether empty directories are
 removed or retained when populating a
 directory. Specify -noemptydirs to remove
 empty directories or -emptydirs to retain
 them. The default for the populate operation
 is -noemptydirs.

 For example, if you are creating a directory
 structure to use as a template at the start of
 a project, you may want your team to populate
 the empty directories to retain the directory
 structure. In this case, you would specify
 'populate -rec -emptydirs'.

 If a populate operation using -noemptydirs
 empties a directory of its objects and if that
 directory is part of a managed data structure
 (its objects are under revision control), then
 the populate operation removes the empty
 directory. If the empty directory is not part
 of a managed data structure, then the

ENOVIA Synchronicity Command Reference All -Vol2

61

 operation does not remove the directory or its
 subdirectories. (A directory is considered part
 of the managed data structure if it has a
 corresponding folder in the DesignSync vault
 or if it contains a .SYNC client metadata
 directory.)

 Notes:
 o When used with 'populate -force
 -recursive', the -noemptydirs option removes
 empty directories that have never been
 managed.
 o When used with the -mirror option, the
 -noemptydirs option does not remove empty
 directories (unless -force -recursive is
 used) and does not populate directories that
 are empty in the mirror.
 o When the -noemptydirs option is used with
 '-report verbose', the command might output
 messages that additional directories are
 being deleted. Those are directories created
 by the populate, to mimic the directory
 structure in the vault. If no data is
 fetched into those directories (because
 no file versions match the selector),
 then those empty directories are deleted.

 If you do not specify -emptydirs or
 -noemptydirs, the populate command follows
 the DesignSync registry setting for "Populate
 empty directories". By default, this setting
 is not enabled; therefore, the populate
 operation removes empty directories. To change
 the default setting, your Synchronicity
 administrator can use the SyncAdmin tool. For
 information, see SyncAdmin help. You typically
 want consistent behavior for all users, so
 adding the setting to the site registry is
 recommended.

-exclude (Module-based)

 -exclude <objects> Specifies a comma-separated list of objects
 (files, collections, folders, or module objects)
 to be excluded from the operation. Wildcards are
 allowed.

 Note: Use the -filter option to filter module
 objects. You can use the -exclude option, but
 the -filter option lets you include and exclude
 module objects. If you use both the -filter and
 -exclude options, the strings specified using
 -exclude take precedence.

File-Based Design

62

 If you exclude objects during a populate, a
 subsequent incremental populate will not
 necessarily process the folders of the
 previously excluded objects. DesignSync does
 not automatically perform a full populate in
 this case. To guarantee that previously
 excluded objects are fetched, specify the
 -full option for the subsequent populate
 operation.

 The '-exclude' option is ignored if it is
 included in a 'populate -mirror' operation.

 Do not specify paths in your arguments to
 -exclude. Before operating on each object (such
 as during a recursive populate), DesignSync
 compares the object's leaf name (with the path
 stripped off) to the exclude list to see if there
 is a match. Because the object's path is removed,
 the object will not match any object in the
 exclude list specified with a path. For example,
 if you specify '-exclude bin/*.exe', you will not
 successfully exclude bin/foo.exe or any other
 *.exe file. You need to instead specify '-exclude
 *.exe', or '-exclude foo.exe' if you want to
 exclude only 'foo.exe'. The result is that you
 cannot exclude a specific instance of an object
 -- you exclude all matching objects.

 In addition to objects you specify using the
 -exclude option, the field, "These objects are
 always excluded", from the Tools->Options->
 General->Exclude Lists dialog box in
 DesignSync lists objects that are always
 excluded from revision-control operations.

 Note: Do not exclude members when you are
 fetching a module into the module cache; users
 cannot link to or copy from a filtered module in
 a module cache.

-exclude (File-based)

 -exclude <objects> Specifies a comma-separated list of objects
 (files, collections, or folders) to be excluded
 from the operation. Wildcards are allowed.

 If you exclude objects during a populate, a
 subsequent incremental populate will not
 necessarily process the folders of the
 previously excluded objects. DesignSync does
 not automatically perform a full populate in
 this case. To guarantee that previously
 excluded objects are fetched, specify the

ENOVIA Synchronicity Command Reference All -Vol2

63

 -full option for the subsequent populate
 operation.

 The '-exclude' option is ignored if it is
 included in a 'populate -mirror' operation.

 Do not specify paths in your arguments to
 -exclude. Before operating on each object (such
 as during a recursive populate), DesignSync
 compares the object's leaf name (with the path
 stripped off) to the exclude list to see if there
 is a match. Because the object's path is removed,
 the object will not match any object in the
 exclude list specified with a path. For example,
 if you specify '-exclude bin/*.exe', you will not
 successfully exclude bin/foo.exe or any other
 *.exe file. You need to instead specify '-exclude
 *.exe', or '-exclude foo.exe' if you want to
 exclude only 'foo.exe'. The result is that you
 cannot exclude a specific instance of an object
 -- you exclude all matching objects.

 In addition to objects you specify using the
 -exclude option, the field, "These objects are
 always excluded", from the Tools->Options->
 General->Exclude Lists dialog box in
 DesignSync lists objects that are always
 excluded from revision-control operations.

-filter (Module-based)

 -filter <string> Specify one or more extended glob-style
 expressions to identify an exact subset of module
 objects on which to operate. Use the -exclude
 option to filter out DesignSync objects that are
 not module objects.

 The -filter option takes a list of expressions
 separated by commas, for example:
 -filter +top*/.../*.v,-.../a*

 Prepend a '-' character to a glob-style expression
 to identify objects to be excluded (the default).
 Prepend a '+' character to a glob-style expression
 to identify objects to be included. Note that if
 the list of expressions begins with an include
 character ('+'), the filter excludes all objects
 except those that match the include string.

 Specify the paths in your glob-style expressions
 relative to the current directory, because
 DesignSync matches your expressions relative to
 that directory. For submodules followed through
 hrefs, DesignSync matches your expressions against

File-Based Design

64

 the objects' natural paths -- their full relative
 paths. For example, if a module, Chip, references
 a submodule, CPU, and CPU contains a file,
 '/libs/cpu/cdsinfo.tag', DesignSync matches
 against '/libs/cpu/cdsinfo.tag', rather than
 matching directly within the 'cpu' directory.

 If your design contains symbolic links that are
 under revision control, DesignSync matches
 against the source path of the link rather than
 the dereferenced path. For example, if a
 symbolic link exists from 'tmp.txt' to
 'tmp2.txt', DesignSync matches against 'tmp.txt'.
 Similarly for hierarchical operations, DesignSync
 matches against the unresolved path. If, for
 example, a symbolic link exists from dirA to dirB
 and dirB contains 'tmp.txt', DesignSync matches
 against 'dirA/tmp.txt'.

 The extended glob-style expressions you use to
 filter the objects are standard glob-style
 expressions, but they are extended so that you
 can use the "..." syntax to indicate that the
 expression matches any number of directory
 levels. For example, the expression,
 "top/.../lib/*.v" matches *.v files in a
 directory path that begins with "top", followed
 by zero or more levels, with one of those levels
 containing a lib directory. The command traverses
 the directory structure. If a directory name
 matches an exclude clause of the filter, then the
 entire directory and all its contents are
 filtered (the command stops descending at that
 point), otherwise the command continues
 traversing the directory structure searching for
 matching objects.

 If this is the first time a module is being
 populated, the filter becomes a persistent filter
 for the module, just as if you had invoked
 the setfilter command. For subsequent operations
 on the module, DesignSync applies persistent
 filters first, followed by those set using
 the -filter, -hreffilter, and -exclude options.

 Note: If a populate specifies a -filter value
 to filter out objects that were previously
 populated, the populate is not considered
 complete. In this case, the workspace module
 does not match the module in the vault; thus,
 the module version is not updated. Also, a
 subsequent incremental populate will not
 necessarily process the folders of the
 previously excluded objects. DesignSync does
 not automatically perform a full populate in
 this case. To guarantee that previously
 excluded objects are fetched, specify the

ENOVIA Synchronicity Command Reference All -Vol2

65

 -full option for the subsequent populate
 operation.

 Although the -filter option takes precedence over
 persistent filters, it does not override the
 exclude list set using SyncAdmin's
 General=>Exclude Lists tab; the items in the
 exclude list are combined with the filter
 expression. For example, an exclude list of
 "*%,*.reg" combined with '-filter .../*.doc' is
 equivalent to:
 '-filter .../*.doc,.../*%,.../*.reg'.

 Note: Do not filter a module that you are fetching
 into the module cache; users cannot link to or
 copy from a filtered module in a module cache.

-[no]force (Module-based)

 -[no]force Specifies whether to overwrite locally modified
 objects in order to match the workspace to the
 data being requested. To do so, the populate
 operation deletes locally managed objects that
 are not part of the populate command line,
 deleting objects that have been filtered out.
 'populate -force' only removes managed data,
 not unmanaged data. For module objects, the
 -force option removes objects from modules
 if they have been added by the add command, but
 have never been checked in. Again, although
 DesignSync removes these objects from the module
 manifest, it does not remove the unmanaged data.
 Also, if you specify -force while populating
 a module that overlaps with another module,
 the -force option does not remove data from
 the other module.

 Use this option with caution, because you might
 not be able to retrieve lost changes.

 By default (-noforce):
 o Locally modified objects are not overwritten
 by the populate operation. Specify -force if
 you want to overwrite locally modified
 objects. If the object is locked, the object
 is unaffected by the populate operation
 whether -force is specified or not.
 o Objects that are not part of the specified
 module remain in your work area. If you
 want to delete objects that are not part of
 the configuration, specify -force. Unmanaged
 objects are never deleted.

 Using -force with -unifystate changes the state

File-Based Design

66

 of all objects including locally modified
 objects, in which case, local modifications are
 overwritten and objects are fetched according to
 the specified state or the default fetch state.

 Using -force with -noemptydirs for populate
 removes all existing empty directories from the
 workspace unless the directories themselves are
 members of the module.

 The -force option is mutually exclusive with
 both the -overlay and -noreplace options.

-[no]force (File-based)

 -[no]force Specifies whether to overwrite locally modified
 objects in order to match the workspace to the
 data being requested. To do so, the populate
 operation deletes locally managed objects that
 are not part of the populate command line,
 deleting objects that have been filtered out.
 'populate -force' only removes managed data,
 not unmanaged data.

 Use this option with caution, because you might
 not be able to retrieve lost changes.

 By default (-noforce):
 o Locally modified objects are not overwritten
 by the populate operation. Specify -force if
 you want to overwrite locally modified
 objects. If the object is locked, the object
 is unaffected by the populate operation
 whether -force is specified or not.
 o Objects that are not part of the specified
 configuration remain in your work area. If you
 want to delete objects that are not part of
 the configuration, including retired objects,
 specify -force. Unmanaged objects are never
 deleted.

 The behavior of 'populate -mirror' without
 -force is different from populate with other
 states (see the description of -mirror).
 Therefore, -force with -mirror has the
 additional effect of changing the state of
 existing objects in your work area, resulting
 in a hierarchy that exactly reflects the
 mirror directory.

 Using -force with -unifystate changes the state
 of all objects including locally modified
 objects, in which case, local modifications are
 overwritten and objects are fetched according to

ENOVIA Synchronicity Command Reference All -Vol2

67

 the specified state or the default fetch state.

 Using -force with -noemptydirs for populate
 removes all existing empty directories from the
 workspace.

 The -force option is mutually exclusive with
 both the -overlay and -noreplace options.

-from

 -from <where> Specifies whether the object is fetched from
 the vault ('-from vault') or from the cache or
 mirror ('-from local'). By default,
 DesignSync fetches from the cache or
 mirror ('-from local'), a performance
 optimization specific to the 'co -lock',
 'co -get', 'populate -lock', and
 'populate -get' commands. For details, see the
 Performance Optimization Overview in the
 DesignSync Data Manager Administrator's
 Guide. Note that this option is silently ignored
 when the optimization is not possible, including
 when the -keys option is specified.

 The -from option can only be used with the -lock
 or -get fetch modes. It cannot be used with the
 -share, -mirror, -reference, or the -lock
 -reference combination fetch modes. If the -keys
 option is specified with the -from option, the
 -from option is silently ignored.

-full

 -full Performs a non-incremental populate by processing
 all objects and folders.

 Note: DesignSync performs an incremental
 populate by default. It automatically
 reverts to a full populate when necessary.
 For more information, see the "Incremental
 Versus Full Populate" section in the
 description.

 To change the default populate mode, your
 Synchronicity administrator can use the
 SyncAdmin tool.

 Note: Do not use the -full option to change the
 states of objects in your work area (for
 example, changing from locked to unlocked
 objects or unlocked objects to links to

File-Based Design

68

 the cache). DesignSync changes the states
 of only those objects that need an
 update. Use the -unifystate option to
 change the state of objects in your work
 area.

-get (Module-based)

 -get Fetch unlocked copies.

 You can change whether the local object is
 read-only (typical when using the locking
 model) or read/write (typical when using the
 merging model) by default by using the
 "Check out read only when not locking" option
 from the Tools->Options->General dialog box in
 the DesignSync graphical interface. Your project
 leader can also set this option site-wide
 using SyncAdmin.

 This option is the default object-state option
 unless a default fetch preference has been
 defined. See the "fetch preference" help topic
 for more information.

 Using -force with -noemptydirs for
 'populate -get' removes all existing empty
 directories. Using -force with -emptydirs,
 however, creates empty directories for
 corresponding empty vault folders. Note that
 the populate command ignores the
 -noemptydirs option when operating on
 modules, because folders are members of
 their corresponding modules and therefore
 cannot be removed.

 The -get option is mutually exclusive with the
 other fetch modes: -lock, -share, -mirror, and
 -reference.

 Note: To replace mcache links with physical
 copies of module members, use the -mcachemode
 server option,

-get (File-based)

 -get Fetch unlocked copies.

 You can change whether the local object is
 read-only (typical when using the locking
 model) or read/write (typical when using the
 merging model) by default by using the
 "Check out read only when not locking" option

ENOVIA Synchronicity Command Reference All -Vol2

69

 from the Tools->Options->General dialog box in
 the DesignSync graphical interface. Your project
 leader can also set this option site-wide
 using SyncAdmin.

 This option is the default object-state option
 unless a default fetch preference has been
 defined. See the "fetch preference" help topic
 for more information.

 Using -force with -noemptydirs for
 'populate -get' removes all existing empty
 directories. Using -force with -emptydirs,
 however, creates empty directories for
 corresponding empty vault folders.

 The -get option is mutually exclusive with the
 other fetch modes: -lock, -share, -mirror, and
 -reference.

-hreffilter (Module-based)

 -hreffilter Excludes href values during recursive operations
 <string> on module hierarchies. Because hrefs
 link to submodules, you use -hreffilter
 to exclude particular submodules. Note that
 unlike the -filter option which lets you include
 and exclude items, the -hreffilter option only
 excludes hrefs and, thus, their corresponding
 submodules.

 Note: When populating a workspace with symbolic
 links to a module cache, the -hreffilter option
 does not apply and is silently ignored.

 Specify the -hreffilter string as a glob-style
 expression. The href filter can be specified
 either as a simple href filter or as a
 hierarchical href filter.

 A simple href filter is a simple leaf module
 name; you cannot specify a path. DesignSync
 matches the specified href filter against hrefs
 anywhere in the hierarchy. Thus, DesignSync
 excludes all hrefs of this leaf name; you cannot
 exclude a unique instance of the href.

 A hierarchical href filter specifies a path and a
 leaf submodule, for example JRE/BIN excludes the
 BIN submodule only if it is directly beneath JRE
 in the hierarchy.

 When creating a hierarchical href filter, you do
 not specify the top-level module of the

File-Based Design

70

 hierarchy. If you want to filter using the
 top-level module, you begin the hreffilter with
 /, for example, "/JRE," would filter any JRE href
 referenced by the top-level module.

 Note: You can use wildcards with both types of
 hreffilter, however, if a wildcard is used as the
 lone character in hierarchical href, it only
 matches a single level, for example: "JRE/*/BIN"
 would match a hierarchy like "JRE/SUB/BIN" but
 would not match "JRE/BIN" or "JRE/SUB/SUB2/BIN".

 You can prepend the '-' exclude character to your
 string, but it is not required. Because the
 -hreffilter option only supports excluding hrefs,
 a '+' character is interpreted as part of the glob
 expression.

 If this is the first time a module is being
 populated, the filter becomes a persistent filter
 for the module, just as if you had invoked
 the setfilter command. For subsequent operations
 on the module, DesignSync applies persistent
 filters first, followed by those set using
 the -filter, -hreffilter, and -exclude options.

 Note: Hierarchical hreffilters can only be
 specified during an initial populate. To add,
 change, or remove a hierarchical hreffilter after
 the initial populate, you must use the setfilter
 command.

 Whereas the -filter option can prevent a populate
 from being complete, thus preventing the version
 from being updated, the -hreffilter option
 does not prevent the version from being
 updated. The -hreffilter option prevents
 particular submodules from being fetched,
 but the failure to fetch a submodule does
 not affect the updating to a new version.

 Note: Do not filter a module that you are fetching
 into the module cache; users cannot link to or
 copy from a filtered module in a module cache.

-hrefmode (Module-based)

 -hrefmode For a recursive populate, determines whether
 to populate statically-specified submodules or
 dynamically-evaluated submodules.

 Valid values are:
 o dynamic - Expands hrefs at the time of the
 populate operation to identify the version

ENOVIA Synchronicity Command Reference All -Vol2

71

 of the submodules to be populated.
 o static - Populates with the submodules
 versions referenced by the hrefs when the
 module version was initially created.
 o normal - Expands the hrefs at the time of the
 populate operation until it reaches a static
 selector. If the reference uses a static
 version, the hrefmode is set to 'static' for the
 next level of submodules to be populated;
 otherwise, the hrefmode remains 'normal' for the
 next level. (Default). This behavior can be
 changed using the
 "HrefModeChangeWithTopStaticSelector" registry
 key to determine how hrefs are followed.

 Notes:
 o If the -hrefmode option is used, it is stored
 for subsequent populates; You do not have to
 specify the href mode again unless a different
 mode is required.

 o Use of the -hrefmode option is mutually
 exclusive with use of the -lock option.
 o If an href is created with a mutable version
 tag, and that version tag has moved, you must
 use dynamic mode (-hrefmode dynamic) to populate
 your workspace with the new tagged version. If
 you want the workspace to continue to point to
 the original version, you should populate with
 normal or static mode.
 o If you are fetching modules into the module
 cache, use the static mode (-herfmode static).
 You can only link to statically fetched module
 versions. See DesignSync Data Manager
 Administrator's Guide: "Setting up a Module
 Cache" for more information.

-incremental

 -incremental Performs a fast populate operation by
 updating only those folders whose
 corresponding vault folders contain
 modified objects.
 Note: DesignSync performs an incremental
 populate by default. It automatically
 reverts to a full populate when necessary.
 For more information, see the "Incremental
 Versus Full Populate" section in the
 description.

 To change the default populate mode, your
 Synchronicity administrator can use the
 SyncAdmin tool.

File-Based Design

72

 Note: Do not use the -incremental option to
 change the states of objects in your work
 area (for example, changing from locked to
 unlocked objects or unlocked objects to
 links to the cache). DesignSync changes
 the states of updated objects only. For
 an incremental populate, DesignSync only
 processes folders that contain objects
 that need an update. State changes,
 therefore are not guaranteed. Use the
 -unifystate option to change the state of
 objects in your work area.

-keys (Module-based)

 -keys <mode> Controls processing of vault
 revision-control keywords in populated
 objects. Note that keyword expansion is not
 the same as keyword update. For example, the
 $Date$ keyword is updated only during checkin;
 its value is not updated during checkout or
 populate. The -keys option only works with the
 -get and -lock options. If you use the -share
 or -mirror option, keywords are automatically
 expanded in cached or mirrored objects, as if
 the '-keys kkv' option was used.

 Available modes are:

 kkv - (keep keywords and values) The local
 object contains both revision control keywords
 and their expanded values; for example,
 $Revision: 1.4 $.

 kk - (keep keywords) The local object contains
 revision control keywords, but no values; for
 example, $Revision$. This option is useful if
 you want to ignore differences in keyword
 expansion, such as when comparing two different
 versions of an object.

 kv - (keep values) The local object contains
 expanded keyword values, but not the keywords
 themselves; for example, 1.4. This option is
 not recommended if you plan to check in your
 local objects. If you edit and then check in
 the objects, future keyword substitution is
 impossible, because the value without the
 keyword is interpreted as regular text.

 ko - (keep output) The local object contains
 the same keywords and values as were present at
 check in.

ENOVIA Synchronicity Command Reference All -Vol2

73

 The -keys option can only be used with the -lock
 or -get fetch modes. It cannot be used with the
 -share, -mirror, -reference, or the -lock
 -reference combination fetch modes. If the -keys
 option is specified with the -from option, the
 -from option is silently ignored.

 Note: When a module member is checked out with a
 lock, the locker keyword is not updated for the
 lock operation and remains null.

-keys (File-based)

 -keys <mode> Controls processing of vault
 revision-control keywords in populated
 objects. Note that keyword expansion is not
 the same as keyword update. For example, the
 $Date$ keyword is updated only during checkin;
 its value is not updated during checkout or
 populate. The -keys option only works with the
 -get and -lock options. If you use the -share
 or -mirror option, keywords are automatically
 expanded in cached or mirrored objects, as if
 the '-keys kkv' option was used.

 Available modes are:

 kkv - (keep keywords and values) The local
 object contains both revision control keywords
 and their expanded values; for example,
 $Revision: 1.4 $.

 kk - (keep keywords) The local object contains
 revision control keywords, but no values; for
 example, $Revision$. This option is useful if
 you want to ignore differences in keyword
 expansion, such as when comparing two different
 versions of an object.

 kv - (keep values) The local object contains
 expanded keyword values, but not the keywords
 themselves; for example, 1.4. This option is
 not recommended if you plan to check in your
 local objects. If you edit and then check in
 the objects, future keyword substitution is
 impossible, because the value without the
 keyword is interpreted as regular text.

 ko - (keep output) The local object contains
 the same keywords and values as were present at
 check in.

 The -keys option can only be used with the -lock
 or -get fetch modes. It cannot be used with the

File-Based Design

74

 -share, -mirror, -reference, or the -lock
 -reference combination fetch modes. If the -keys
 option is specified with the -from option, the
 -from option is silently ignored.

-lock (Module-based)

 -lock Lock the branch of the specified version for
 each module member object that is
 populated. Only the user who has the lock can
 check in a newer version of the object on that
 branch.

 The -lock option does not lock not the module
 branch. In so doing, the -lock option makes
 the members writable in the workspace, and
 converts cached objects to full copies. To
 lock the module branch itself without making
 members writable, use the lock command.

 Use the -lock option with the -reference option
 to populate with locked references. For more
 information, see the -lock -reference option.
 Locked references are useful if you intend to
 generate objects and want to lock them before
 regenerating, as opposed to editing the previous
 version. Upon generation of the objects, they
 automatically become locked copies rather than
 locked references. Obtaining locked references
 for generated objects is faster because
 DesignSync does not fetch the previously
 generated objects. If the objects exist already
 in the workspace, DesignSync deletes them. If
 the objects exist and are locally modified, the
 operation fails. If you intend to overwrite the
 modifications, use -force to create the locked
 references. If the default fetch state is
 'reference' and you specify the -lock option
 without the -reference option, DesignSync leaves
 locked copies of the objects in your workspace;
 you must explicitly apply the -reference option
 with the -lock option if you want locked
 references in your workspace.

 The -lock option is mutually exclusive with the
 fetch modes: -get, -share, and -mirror and
 mutually exclusive with -recursive. The -lock
 option can be used with the -merge option.

 Notes:
 o If you specify 'populate -lock', then by
 default the populate operation also uses the
 '-from local' option. The result is that the
 populate operation locks the object in the

ENOVIA Synchronicity Command Reference All -Vol2

75

 vault and keeps local modifications in your
 workspace. See the -from option for
 information.
 o When a module member is checked out with a lock,
 the locker keyword is not expanded with the
 locker name.

-lock (Legacy-based)

 -lock Lock the branch of the specified version for
 each object that is populated. Only the user
 who has the lock can check in a newer version
 of the object on that branch.

 Use the -lock option with the -reference option
 to populate with locked references. For more
 information, see the -lock -reference option.
 Locked
 references are useful if you intend to generate
 objects and want to lock them before
 regenerating, as opposed to editing the previous
 version. Upon generation of the objects, they
 automatically become locked copies rather than
 locked references. Obtaining locked references
 for generated objects is faster because
 DesignSync does not fetch the previously
 generated objects. If the objects exist already
 in the workspace, DesignSync deletes them.
 If the objects exist and are locally modified,
 the operation fails. If you intend to overwrite
 the modifications, use -force to create the
 locked references. If the default fetch state
 is 'reference' and you specify the -lock option
 without the -reference option, DesignSync leaves
 locked copies of the objects in your workspace;
 you must explicitly apply the -reference option
 with the -lock option if you want locked
 references in your workspace.

 The -lock option is mutually exclusive with the
 fetch modes: -get, -share, and -mirror, and with
 -merge option.

 Notes:
 o If you specify 'populate -lock', then by
 default the populate operation also uses the
 '-from local' option. The result is that the
 populate operation locks the object in the
 vault and keeps local modifications in your
 workspace. See the -from option for
 information.

 o If you use 'populate -lock -recursive' to
 fetch or update a module configuration

File-Based Design

76

 hierarchy, populate locks only the objects
 associated with the upper-level module (the
 module configuration specified as the target
 of the command).

-lock (File-based)

 -lock Lock the branch of the specified version for
 each object that is populated. Only the user
 who has the lock can check in a newer version
 of the object on that branch.

 Use the -lock option with the -reference option
 to populate with locked references. For more
 information, see the -lock -reference option.
 Locked
 references are useful if you intend to generate
 objects and want to lock them before
 regenerating, as opposed to editing the previous
 version. Upon generation of the objects, they
 automatically become locked copies rather than
 locked references. Obtaining locked references
 for generated objects is faster because
 DesignSync does not fetch the previously
 generated objects. If the objects exist already
 in the workspace, DesignSync deletes them.
 If the objects exist and are locally modified,
 the operation fails. If you intend to overwrite
 the modifications, use -force to create the
 locked references. If the default fetch state
 is 'reference' and you specify the -lock option
 without the -reference option, DesignSync leaves
 locked copies of the objects in your workspace;
 you must explicitly apply the -reference option
 with the -lock option if you want locked
 references in your workspace.

 The -lock option is mutually exclusive with the
 fetch modes: -get, -share, and -mirror and with
 the -merge option.

 Notes:
 o If you specify 'populate -lock', then by
 default the populate operation also uses the
 '-from local' option. The result is that the
 populate operation locks the object in the
 vault and keeps local modifications in your
 workspace. See the -from option for
 information.

-lock -reference (Module-based)

ENOVIA Synchronicity Command Reference All -Vol2

77

-lock -reference Use the -lock option with the -reference option
 to populate with locked references. Locked
 references are useful if you intend to generate
 objects and want to lock them before
 regenerating, as opposed to editing the previous
 version. Upon generation of the objects, they
 automatically become locked copies rather than
 locked references. Obtaining locked references
 for generated objects is faster because
 DesignSync does not fetch the previously
 generated objects. If the objects exist already
 in the workspace, DesignSync deletes them.
 If the objects exist and are locally modified,
 the operation fails. If you intend to overwrite
 the modifications, use -force to create the
 locked references. If the default fetch state
 is 'reference' and you specify the -lock option
 without the -reference option, DesignSync leaves
 locked copies of the objects in your workspace;
 you must explicitly apply the -reference option
 with the -lock option if you want locked
 references in your workspace.

 The -lock -reference combination of option is
 mutually exclusive with the fetch modes: -get,
 -share, and -mirror, and with the -recursive
 option.

 Note: You should not use the -reference option
 with Cadence data collection objects. When
 the -reference option is used on Cadence
 collections, DesignSync creates a
 reference in the metadata for the
 collection object but member files are not
 processed and are not included in the
 metadata.

-lock -reference (File-based)

-lock -reference Use the -lock option with the -reference option
 to populate with locked references. Locked
 references are useful if you intend to generate
 objects and want to lock them before
 regenerating, as opposed to editing the previous
 version. Upon generation of the objects, they
 automatically become locked copies rather than
 locked references. Obtaining locked references
 for generated objects is faster because
 DesignSync does not fetch the previously
 generated objects. If the objects exist already
 in the workspace, DesignSync deletes them.
 If the objects exist and are locally modified,
 the operation fails. If you intend to overwrite
 the modifications, use -force to create the

File-Based Design

78

 locked references. If the default fetch state
 is 'reference' and you specify the -lock option
 without the -reference option, DesignSync leaves
 locked copies of the objects in your workspace;
 you must explicitly apply the -reference option
 with the -lock option if you want locked
 references in your workspace.

 The -lock -reference combination of option is
 mutually exclusive with the fetch modes: -get,
 -share, and -mirror.

 Note: You should not use the -reference option
 with Cadence data collection objects. When
 the -reference option is used on Cadence
 collections, DesignSync creates a
 reference in the metadata for the
 collection object but member files are not
 processed and are not included in the
 metadata.

-log

 -log <filename> Specify the name of the populate log file. If
 the filename doesn't exist, DesignSync creates
 it. If the file does exist, DesignSync appends
 the new information to the end of the log file.

 The filename can be specified with an absolute
 or relative path. If you specify a path for the
 log file, the directory you specify must already
 exist and you must have write permissions to the
 directory in order for the log to be placed into
 it, DesignSync does not create the path.

-mcachemode (Module-based)

 -mcachemode Specifies how the populate command fetches
 <mcache_mode> the module from the module cache.

 Note: The module cache should always be
 populated at the workspace root directory level.

 Available modes are:

 o link - For each module it finds in the module
 cache, the populate command sets up a symbolic
 link from your work area to the base directory
 of the module in the module cache. This is
 the default mode on UNIX platforms.

 Note:

ENOVIA Synchronicity Command Reference All -Vol2

79

 - This mode is supported on UNIX platforms
 only. If you specify link mode on a
 Windows platform, the populate operation
 fails.
 - You cannot create mcache links to
 dynamically fetched modules since there is
 no auto-refresh of mcaches.
 the populate command.

 o server - Causes the populate command to
 fetch modules as physical copies from the
 server, not the module cache. (Default for
 Windows.)

 The -mcachemode option overrides the default
 module cache mode registry setting. If
 -mcachemode is not specified, the populate
 command uses the mode specified in the registry
 setting. If no registry setting is specified,
 the command uses link mode on Unix platforms and
 server mode on Windows platforms.

 Notes on mcaches:
 o If you run a populate with the -norecursive
 option, the module must have been fetched into
 the mcache in -norecursive mode as well, or
 the command will not create links to or copies
 from the module cache.

 o If the populate command is run using a filter,
 no mcache link to or copies are made.
 Therefore a filtered module can never be used
 in an mcache even if populate is run in a
 workspace that uses the same filter.

 o The mcache administrator can fetch modules
 into a module cache to link to or copy the
 contents of the module.

 o You cannot create mcache links to mcache
 directories containing members of more than
 one module version.

 If a request to link to the module cache is
 disallowed, DesignSync fetches the module from
 the server instead.

 For more information using populate with a
 module cache, see 'Module Caches' in the
 description section of the populate command.

-mcachemode (Legacy-based)

 -mcachemode Specifies how the populate command fetches

File-Based Design

80

 <mcache_mode> the legacy module from the module cache.

 Note: The module cache should always be
 populated at the workspace root directory level.

 Available modes are:

 o link - For each module it finds in the module
 cache, the populate command sets up a symbolic
 link from your work area to the base directory
 of the module in the module cache. This is
 the default mode on UNIX platforms.

 Note:
 - This mode is supported on UNIX platforms
 only. If you specify link mode on a
 Windows platform, the populate operation
 fails.

 - You cannot create mcache links to
 dynamically fetched modules since there is
 no auto-refresh of mcaches.

 o copy - For each module it finds in the module
 cache, the populate command copies the module
 to your work area. (Default on Windows
 platforms)

 o server - Causes the populate command to
 fetch modules as physical copies from the
 server, not the module cache.

 The -mcachemode option overrides the default
 module cache mode registry setting. If
 -mcachemode is not specified, the populate
 command uses the mode specified in the registry
 setting. If no registry setting is specified,
 the command uses link mode on Unix platforms and
 copy mode on Windows platforms.

 Notes on module mcaches:
 o The mcache administrator can fetch legacy
 modules into a legacy module cache to link to
 or copy the contents of the module.

 o Legacy modules can be fetched into either a
 module cache or a legacy module cache by the
 mcache administrator, but they cannot be
 linked to or copied from.

 If a request to link to or copy from the module
 cache is disallowed, DesignSync fetches the
 module from the server instead.

-mcachepaths (Module / Legacy-based)

ENOVIA Synchronicity Command Reference All -Vol2

81

 -mcachepaths Identifies one or more module caches to be
 searched for modules.

 Path names can be absolute or relative. You can
 specify multiple paths in a list of
 space-separated path names. To specify multiple
 paths, surround the path list with double
 quotation marks ("") and separate path names
 with a space. For example:"/dir/cacheA
 /dir2/cacheB".

 The path list can contain both module and legacy
 module mcache paths. For a module cache the
 path to the root directory of the module cache
 must be supplied.

 This option overrides the default module cache
 paths registry setting. If -mcachepaths is not
 specified, the command uses the list of paths
 specified in the registry setting. If no
 registry setting is specified, the populate
 command fetches modules from the server.

 Note:
 o To specify a path that includes spaces:
 - In stcl or stclc, surround the path
 containing the spaces with curly braces.
 For example:
 "/dir1/cache {/dir2/path name}"
 - In dss or dssc, use backslashes (\) to
 'escape' the spaces. For example:
 "/dir1/cache /dir2/path\ with\ spaces"
 o The populate command searches the mcache
 in the order specified with the -mcachepaths
 option or in the default module cache
 paths registry setting if this option
 is absent.

-[no]merge (Module-based)

 -[no]merge Indicates whether to populate with the Latest
 versions from the branch specified by the
 persistent selector list and merge them with
 the current, locally modified versions.
 The default value is -nomerge.

 If you are not doing an overlay merge (see
 -overlay) and the current version is not
 locally modified, the -merge defaults to a
 -get and fetches the new version without
 merging. By definition, a merge expects a
 locally modified object, so the -force option
 is not required.

File-Based Design

82

 The -merge option supports the merging work
 model (as opposed to the locking work model)
 where multiple team members can check out and
 edit the Latest version concurrently. The
 first team member to check in creates the next
 version. Other team members must merge the new
 Latest version into their local copy before
 they can check in their changes.

 If there are no merge conflicts, the merge
 succeeds, leaving the merged files in
 your work area. If there are conflicts,
 DesignSync issues a warning, and you must edit
 the merged file to resolve the conflicts
 before DesignSync allows you to check in the
 merged version. Conflicts are shown as
 follows:

 <<<<<<< local
 Lines from locally modified version
 =======
 Lines from selected server version
 >>>>>>> versionID

 DesignSync considers the conflicts resolved
 when the file no longer contains any of the
 conflict delimiters (exactly 7 less-than,
 greater-than, or equal signs starting in
 column 1). The status of an object, as
 displayed by ls or from the List View in the
 DesignSync graphical interface, indicates if
 conflicts exist. The url inconflict
 command also determines whether a file has
 conflicts.

 Most merges are between two versions on the
 same branch (the current branch and
 the branch specified by the persistent
 selector list are typically the same). However,
 a merge can also be performed across branches
 by setting the persistent selector list to a
 different branch. Following the merge, you are
 on the branch associated with the version
 specified by the persistent selector
 list (a 'merge to' operation). If you
 want to stay on the current branch instead,
 use the -overlay option. Overlay ('merge
 from') merges are more common when merging
 branches. See the -overlay option for details.

 Note:
 o When merging modules across branches, you
 should use -merge -overlay. For details about
 merging modules across branches, see the
 "Merging Across Branches section."
 o The -merge option implies -get, but you can

ENOVIA Synchronicity Command Reference All -Vol2

83

 also explicitly specify -get. For general
 DesignSync objects, the -merge option
 is mutually exclusive with all other state
 options (-lock, -share, -mirror, -reference,
 and -lock -reference).
 You can use -lock with -merge for modules and
 their members.
 o The -merge and -version options are mutually
 exclusive unless you specify '-version
 Latest'.

-merge (File-based)

 -[no]merge Indicates whether to populate with the Latest
 versions from the branch specified by the
 persistent selector list and merge them with
 the current, locally modified versions.
 The default value is -nomerge.

 If you are not doing an overlay merge (see
 -overlay) and the current version is not
 locally modified, the -merge defaults to a
 -get and fetches the new version without
 merging. By definition, a merge expects a
 locally modified object, so the -force option
 is not required.

 The -merge option supports the merging work
 model (as opposed to the locking work model)
 where multiple team members can check out and
 edit the Latest version concurrently. The
 first team member to check in creates the next
 version. Other team members must merge the new
 Latest version into their local copy before
 they can check in their changes.

 If there are no merge conflicts, the merge
 succeeds, leaving the merged files in
 your work area. If there are conflicts,
 DesignSync issues a warning, and you must edit
 the merged file to resolve the conflicts
 before DesignSync allows you to check in the
 merged version. Conflicts are shown as
 follows:

 <<<<<<< local
 Lines from locally modified version
 =======
 Lines from selected server version
 >>>>>>> versionID

 DesignSync considers the conflicts resolved
 when the file no longer contains any of the
 conflict delimiters (exactly 7 less-than,

File-Based Design

84

 greater-than, or equal signs starting in
 column 1). The status of an object, as
 displayed by ls or from the List View in the
 DesignSync graphical interface, indicates if
 conflicts exist. The url inconflict
 command also determines whether a file has
 conflicts.

 Most merges are between two versions on the
 same branch (the current branch and
 the branch specified by the persistent
 selector list are typically the same). However,
 a merge can also be performed across branches
 by setting the persistent selector list to a
 different branch. Following the merge, you are
 on the branch associated with the version
 specified by the persistent selector
 list (a 'merge to' operation). If you
 want to stay on the current branch instead,
 use the -overlay option. Overlay ('merge
 from') merges are more common when merging
 branches. See the -overlay option for details.

 Note:
 o The -merge option implies -get, but you can
 also explicitly specify -get. For general
 DesignSync objects, the -merge option
 is mutually exclusive with all other state
 options (-lock, -share, -mirror, -reference,
 and -lock -reference).
 You can use -lock with -merge for modules and
 their members.
 o The -merge and -version options are mutually
 exclusive unless you specify '-version Latest'.

-mirror (File-based)

 -mirror Create symbolic links from the work area to
 objects in the mirror directory. This option
 requires that you have associated a mirror
 directory with your work area (see the
 'setmirror' command).

 For performance reasons, links are created only
 when objects do not exist in your work area.
 To update mirror links for existing objects,
 use -unifystate with the -mirror option. For
 example:

 populate -recursive -full -unifystate -mirror

 The -unifystate option does not affect locally
 modified objects or objects that are not part
 of the configuration. Use -force with

ENOVIA Synchronicity Command Reference All -Vol2

85

 -unifystate to update the links, replacing
 locally modified objects and removing objects
 that are not part of the current configuration.

 When used with the -mirror option, the
 -noemptydirs option does not populate directories
 that are empty on the mirror. Using the -force
 option with the -noemptydirs option removes all
 empty directories from the workspace. Using
 -force with -emptydirs for 'populate -mirror',
 however, populates empty directories that exist
 in the mirror.

 The -mirror option is mutually exclusive with
 the other fetch modes: -lock, -get, -share, and
 -reference. The -mirror option is also mutually
 exclusive with the -keys and -from options. The
 -mirror option cannot take an exclude filter.
 If the -exclude option is specified with the
 -mirror fetch mode, the populate silently
 ignores the -exclude option.

 Note:
 o This option is not supported on
 Windows platforms.
 o The -exclude option is ignored if it is
 included in a 'populate -mirror' operation.
 o If you specify -mirror, an incremental populate
 does not necessarily fetch new objects checked
 in, nor remove links to objects deleted by team
 members until after the mirror is updated.
 o When populating a custom generic collection
 from a mirror, always use 'populate -mirror'
 from the folder containing the collection
 object or from a folder above the folder
 containing the object.

-modulecontext (Module-based)

 -modulecontext Identifies the module to be populated. Use the
 -modulecontext option if your workspace has
 overlapping modules, so that you can indicate
 which module to populate.

 You can use the -modulecontext option when
 specifying a folder to populate. In this case,
 the populate operation filters the folder,
 populating only those objects that belong to the
 module specified with the -modulecontext option.
 Use -modulecontext in a recursive populate to
 fetch members of the specified module throughout
 a hierarchy.

 You can also use -modulecontext option to

File-Based Design

86

 identify which module to fetch items from when
 requesting an object that is not currently in the
 module.

 Specify an existing workspace module using the
 module name (for example, Chip) or a module
 instance name (for example, Chip%0). You also
 can specify -modulecontext as a server
 module URL (sync://server1:2647/Modules/Chip).

 Notes:
 o You cannot use a -modulecontext option to
 operate on objects from more than one module;
 the -modulecontext option takes only one
 argument, and you can use the -modulecontext
 option only once on a command line.

 o If you have overlapping modules, you must
 specify -modulecontext when populating a module
 that contains files not present in your
 workspace.

-[no]new (Module-based)

 -[no]new Specifies whether to fetch module objects that
 are not yet in the workspace.

 Apply the -new (default) to fetch all specified
 module objects (except those filtered out by
 options such as -filter and -exclude). Specify
 -nonew option to update only those objects
 already in the workspace.

 Using -new is another form of filtering. It can
 cause the subsequent populate to be a full
 rather than an incremental populate.

 Note: This option is supported for module
 objects only.

-overlay

 -overlay <selectors> Replace your local copy of the module or
 DesignSync non-module object with the versions
 specified by the selector list (typically a
 branch tag). The current-version status, as
 stored in local metadata, is unchanged. For
 example, if you have version 1.5 (the Latest
 version) of the module or DesignSync object and
 you overlay version 1.3, your current version is
 still 1.5. You could then check in this overlaid
 version. This operation is equivalent

ENOVIA Synchronicity Command Reference All -Vol2

87

 to checking out version 1.3, then using 'ci
 -skip' to check in that version.

 The behavior of the overlay operation depends
 on the presence of a local version and the
 version you want to overlay:

 o If both the local version and the overlay
 version exist, the local version is replaced
 by the overlay version.
 o If there is no local version but an overlay
 version exists, DesignSync creates a
 local copy of the overlay version.
 o If a local version exists but there is no
 overlay version, the local version is
 unaffected by the operation.
 o If the overlay version was renamed or removed,
 the local object is not changed, but metadata
 is added to it, indicating the change. This
 information can be viewed using the ls command
 with the -merged option.

 Typically, you use -overlay with -merge to
 merge the two versions instead of overlaying
 one version onto another. The combination of
 -overlay and -merge lets you merge from one
 branch to another, the recommended method for
 merging across branches. Following the
 overlay merge, you are working on the same
 branch as before the operation.

 You specify the version you want to overlay
 as an argument to the -overlay option. The
 -overlay and -version options are mutually
 exclusive. The -version option always updates
 the 'current version' information in your work
 area, which is not correct for an overlay
 operation.

 o To use -overlay to specify a branch, specify
 both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

 When doing an overlay (with or without -merge),
 a number of combinations for the state of a
 module or DesignSync object on the two branches
 must be considered. For more information, see
 the "Merging Across Branches" section
 above. Hierarchical references in modules are
 not updated during an overlay.

 Notes:

File-Based Design

88

 o The -overlay option implies -get, but
 you can also explicitly specify -get.
 o The -overlay option is mutually exclusive
 with the other state options (-mirror,
 -share, -lock, -reference) and -version.

-path (Module-based)

 -path <path> Specify the name of an alternate local folder
 to populate instead of the current folder. The
 populate command uses the vault and persistent
 selector list associated with the specified
 folder.
 Note: Using -path is equivalent to changing
 folders, executing the populate
 command, then changing back to the
 original folder.

 If you specify a folder using the -path option
 but the folder does not exist, DesignSync
 - verifies that a corresponding vault exists
 - creates the folder
 - populates the specified folder, creating
 any interim folders necessary to replicate
 the vault hierarchy locally.

 If you specify the -target option but the
 folder does not exist, DesignSync creates
 the folder.
 Generally, however, if the vault does not
 exist, DesignSync does not create the
 folder and leaves the workspace unchanged.

 Tip: When populating a workspace with links to a
 module cache, use -path to create the directory,
 rather than specifying an existing directory.

 The -path option used to be the -dir option.
 The -dir option is still provided for backwards
 compatibility, but is not documented
 separately.

-path (Legacy-based)

 -path <path> Specify the name of an alternate local folder
 to populate instead of the current folder. The
 populate command uses the vault and persistent
 selector list associated with the specified
 folder.
 Note: Using -path is equivalent to changing
 folders, executing the populate
 command, then changing back to the

ENOVIA Synchronicity Command Reference All -Vol2

89

 original folder.

 If you specify a folder using the -path option
 but the folder does not exist, DesignSync
 - verifies that a corresponding vault exists
 - creates the folder
 - populates the specified folder, creating
 any interim folders necessary to replicate
 the vault hierarchy locally.

 If you specify the -target option but the
 folder does not exist, DesignSync creates
 the folder.
 Generally, however, if the vault does not
 exist, DesignSync does not create the
 folder and leaves the workspace unchanged.

 Note: If the folder specified by -path does not
 exist, but corresponds to a vault with
 unpopulated legacy modules or DesignSync
 REFERENCES, DesignSync has no way to resolve
 these mappings. In this case, populate does not
 create the specified folder, leaving the
 workspace unchanged.

 The -path option used to be the -dir option.
 The -dir option is still provided for backwards
 compatibility, but is not documented
 separately.

-path (File-based)

 -path <path> Specify the name of an alternate local folder
 to populate instead of the current folder. The
 populate command uses the vault and persistent
 selector list associated with the specified
 folder.
 Note: Using -path is equivalent to changing
 folders, executing the populate
 command, then changing back to the
 original folder.

 If you specify a folder using the -path option
 but the folder does not exist, DesignSync
 - verifies that a corresponding vault exists
 - creates the folder
 - populates the specified folder, creating
 any interim folders necessary to replicate
 the vault hierarchy locally.

 If you specify the -target option but the
 folder does not exist, DesignSync creates
 the folder.
 Generally, however, if the vault does not

File-Based Design

90

 exist, DesignSync does not create the
 folder and leaves the workspace unchanged.

 Note: If the folder specified by -path does not
 exist, but corresponds to a vault with
 unpopulated DesignSync REFERENCES, DesignSync
 has no way to resolve these mappings. In this
 case, populate does not create the specified
 folder, leaving the workspace unchanged.

 The -path option used to be the -dir option.
 The -dir option is still provided for backwards
 compatibility, but is not documented
 separately.

-[no]recursive (Module-based)

 -[no]recursive Specifies whether to perform this operation on
 the specified folder or module only (default),
 or to traverse its subfolders or submodules.

 If you invoke 'populate -recursive' and specify a
 folder, populate operates on the folder in a
 folder-centric fashion, fetching the objects in
 the folder and its subfolders.
 If the folders or subfolders contain modules
 or module members, populate fetches the objects,
 but does not follow hierarchical references
 (hrefs). To filter the set of objects on which
 to operate, use the -filter or -exclude options.

 If you invoke 'populate -recursive' and specify a
 module, populate operates on the specified module
 in a module-centric fashion, fetching all of the
 objects in the module and following its
 hierarchical references (hrefs) to fetch its
 referenced submodules. To filter the objects on
 which to operate, use the -filter or -hreffilter
 options.

 Note: Because of the way module merge handles
 hierarchical reference, you cannot specify
 -recursive when doing a cross branch merge on a
 module, (pop -merge -overlay).

 If you invoke 'populate -recursive' on a subfolder
 of a module and provide a -modulecontext, populate
 recurses within the specified folder, fetching any
 object which is a member of the named module
 or one of its referenced submodules.
 Note: For modules, you cannot use the -recursive
 option with the -lock option.

 Note: The populate operation might skip

ENOVIA Synchronicity Command Reference All -Vol2

91

 subfolders and individual managed objects
 if their persistent selector lists differ
 from the top-level folder being populated;
 see the Description section for details.

 If you specify -norecursive when operating on
 a folder, DesignSync operates only on objects in
 the specified folder. In this case, populate
 does not traverse the vault folder hierarchy.
 Likewise, if you specify -norecursive when
 operating on a module, DesignSync operates
 only on the module objects and does not follow
 hrefs.

-[no]recursive (Legacy-based)

 -[no]recursive Specifies whether to perform this operation on
 the specified folder only (default), or to
 traverse its subfolders or hierarchical
 references.

 If you invoke 'populate -recursive' and specify a
 folder, populate operates on the folder in a
 folder-centric fashion, fetching the objects in
 the folder and its subfolders. It does not follow
 the hierarchical references (hrefs). To filter
 the set of objects on which to operate, use the
 -exclude option.

 Note: The populate operation might skip
 subfolders and individual managed objects
 if their persistent selector lists differ
 from the top-level folder being populated;
 see the Description section for details.

 If you specify -norecursive when operating on
 a folder, DesignSync operates only on objects in
 the specified folder. In this case, populate
 does not traverse the vault folder hierarchy.

 If you perform a -norecursive populate, then for
 the subsequent populate DesignSync performs a
 full populate even if the -full option is not
 specified.

 Notes:
 o DesignSync cannot perform an incremental
 populate following a nonrecursive populate,
 because it cannot ensure that the objects in
 the work area subfolders are up-to-date.

 o The -nomodulerecursive option is no longer
 required. If you apply the -nomodulerecursive
 option to legacy modules, populate recurses

File-Based Design

92

 within the legacy module's folders. It does not
 traverse REFERENCEs or hrefs of legacy modules.

-[no]recursive (File-based)

 -[no]recursive Specifies whether to perform this operation on
 the specified folder (default), or to traverse
 its subfolders.

 If you invoke 'populate -recursive' and specify a
 folder, populate operates on the folder in a
 folder-centric fashion, fetching the objects in
 the folder and its subfolders. To filter the set
 of objects on which to operate, use the -exclude
 option.

 Note: The populate operation might skip
 subfolders and individual managed objects
 if their persistent selector lists differ
 from the top-level folder being populated;
 see the Description section for details.

 If you specify -norecursive when operating on
 a folder, DesignSync operates only on objects in
 the specified folder. In this case, populate
 does not traverse the vault folder hierarchy.

 If you perform a -norecursive populate, then for
 the subsequent populate DesignSync performs a
 full populate even if the -full option is not
 specified.

 Note: DesignSync cannot perform an incremental
 populate following a nonrecursive populate,
 because it cannot ensure that the objects
 in the work area subfolders are up-to-date.

-reference

 -reference Populate with DesignSync references to objects
 in the vault. A reference does not have a
 corresponding file on the file system but does
 have local metadata that makes the reference
 visible to Synchronicity programs. Populate
 with references when you want your work area to
 reflect the contents of the vault but you do
 not need physical copies. Use the -reference
 option with the -lock option to populate with
 locked references. Locked references are
 useful if you intend to generate objects
 and want to lock them before regenerating,

ENOVIA Synchronicity Command Reference All -Vol2

93

 as opposed to editing the previous versions.

 Note: You should not use the -reference option
 with Cadence data collection objects. When
 the -reference option is used on Cadence
 collections, DesignSync creates a
 reference in the metadata for the
 collection object but member files are not
 processed and are not included in the
 metadata.

-[no]replace (Module-based)

 -[no]replace This option determines how to handle locally
 modified objects when synchronizing your work
 area.

 The -replace option specifies that the populate
 operation updates locally unmodified workspace
 objects. This option leaves intact all managed
 objects that are not members of the module (if
 applicable) and all unmanaged objects. If an
 object has been removed from the version being
 fetched as a result of a remove operation or
 retired on the server, -replace removes the
 member from the workspace if it has not been
 locally modified. (Default)

 The -noreplace option specifies that the
 populate operation updates managed objects that
 have not been locally modified. The -noreplace
 option leaves intact all unmanaged objects. If
 an object has been removed from the version
 being fetched as a result of a remove, mvmember,
 rmhref or any other similar operation,
 -noreplace does not remove the corresponding
 file in the workspace.

 During a recursive populate, -noreplace leaves
 intact managed objects belonging to a
 referenced submodule even when the href has
 been removed. If the href has been changed to
 reference a different submodule, -noreplace:
 o Leaves intact managed objects that belong to
 the previous submodule but not to the
 new submodule
 o Replaces managed members that belong to both
 modules with the version belonging to
 the new module

 Notes:
 o See "Forcing, Replacing, and Non-Replacing
 Modes" above to see how the -force option
 interacts with the -[no]replace option.

File-Based Design

94

 o If you use populate -version to populate
 a directory containing a module, DesignSync
 uses the -noreplace option unless -replace is
 explicitly specified.
 o If you apply the -filter or -hreffilter
 options, populate applies the -[no]replace
 option on the filtered data.
 o With a recursive operation, populate applies
 -replace and -noreplace behaviors to the
 top-level module and then to each
 referenced submodule.

-[no]replace (File-based)

 -[no]replace This option determines how to handle locally
 modified objects when synchronizing your work
 area.

 The -replace option specifies that the populate
 operation updates locally unmodified workspace
 objects. This option leaves intact all managed
 objects and all unmanaged objects. If an object
 has been removed from the vault being fetched as
 a result of a retire, rmvault, or any other
 similar operation, -replace removes the file
 from the workspace if it has not been locally
 modified.

 The -noreplace option specifies that the
 populate operation updates managed objects that
 have not been locally modified. The -noreplace
 option leaves intact all unmanaged objects. If
 an object has been removed from the vault
 being fetched as a result of a retire, rmvault,
 or any other similar operation, -noreplace does
 not remove the corresponding file in the
 workspace. (Default)

 Notes:
 o See "Forcing, Replacing, and Non-Replacing
 Modes" above to see how the -force option
 interacts with the -[no]replace option.
 o If you use populate -version to populate
 a directory containing a module, DesignSync
 uses the -noreplace option unless -replace is
 explicitly specified.
 o If you apply the -filter or -hreffilter
 options, populate applies the -[no]replace
 option on the filtered data.
 o With a recursive operation, populate applies
 -replace and -noreplace behaviors to the
 top-level module and then to each
 referenced submodule.

ENOVIA Synchronicity Command Reference All -Vol2

95

-report

 -report error| Specifies the amount and type of information
 brief|normal| displayed by the command. The information each
 verbose option returns is discussed in detail in the
 "Understanding the Output" section above.

 error - lists failures, warnings, and success
 failure count.

 brief - lists failures, warnings, module
 create/remove messages, some informational
 messages, and success/failure count.

 normal - includes all information from brief, and
 lists all the updated objects, and messages about
 objects excluded by filters from the
 operation. (Default)

 verbose - provides full status for each
 object processed, even if the object is not
 updated by the operation.

-[no]retain

 -[no]retain Indicates whether to retain the 'last modified'
 timestamp of the fetched objects as recorded
 when each object was checked into the vault. If
 the workspace is set to use a mirror, or the
 populate is run using -share, this will also
 apply to the object placed in the mirror or LAN
 cache if the object doesn't already exist in the
 mirror or cache. The links in your work area to
 the cache or mirror have timestamps of when the
 links were created.

 If you specify the -reference option, no object
 is created in your work area, so there is no
 timestamp information at all.

 If an object is checked into the vault and the
 setting of the -retain option is the only
 difference between the version in the vault and
 your local copy, DesignSync does not include the
 object in populate operations.

 If you do not specify '-retain' or -noretain',
 the populate command follows the DesignSync
 registry setting for Retain last-modification
 timestamps. By default, this setting is not
 enabled; therefore, the timestamp of the local
 object is the time of the populate
 operation. To change the default setting, your

File-Based Design

96

 Synchronicity administrator can use the
 SyncAdmin tool. For information, see SyncAdmin
 Help.

 The mirror system, by default,fetches objects
 into the mirror with the -retain option. The
 mirror administrator, however, can define
 mirrors to use the -noretain option. The default
 setting should agree with the Retain
 last-modification timestamp registry setting to
 maintain consistency. See the "Mirror
 Administration Server Registry Settings" topic
 for setting of the co or populate options for
 mirrors.

 Note: When fetching from the cache or mirror (by
 specifying the '-from local' option), the last
 modified timestamp comes from the file in the
 cache or mirror, not from the version that was
 checked into the vault. If the file was fetched
 into the cache or mirror with the -retain
 option, these two timestamps are the same. But
 if the file was fetched into the cache or mirror
 with the -noretain option and then fetched into
 the workspace with both the '-from local' and
 '-retain' options, the 'last modified' timestamp
 used is the time the object was fetched into the
 cache or mirror.

-savelocal

 -savelocal <value> This option affects collections that have local
 versions.

 When it fetches an object, the populate
 operation first removes from your workspace
 any local version that is unmodified. (To
 remove a local version containing modified
 data, specify 'pop -force'.) Then the populate
 operation fetches the object you are checking
 out (with the local version number it had at
 the time of checkin).

 The -savelocal option specifies the action
 that the populate operation takes with
 modified local versions in your workspace
 (other than the current, or highest numbered,
 local version). (DesignSync considers a local
 version to be modified if it contains modified
 members or if it is not the local version
 originally fetched from the vault when the
 collection object was checked out or populated
 to your workspace.)

ENOVIA Synchronicity Command Reference All -Vol2

97

 Specify the -savelocal option with one of the
 following values:

 save - If your workspace contains a local
 version other than the local version being
 fetched, the populate operation saves the
 local version for later retrieval. See the
 'localversion restore' command for information
 on retrieving local versions that were saved.

 fail - If your workspace contains an object
 with a local version number equal to or higher
 than the local version being fetched, the
 populate operation fails. This is the default
 action.

 Note: If your workspace contains an object
 with local version numbers lower than the
 local version being fetched and if these local
 versions are not in the DesignSync vault, the
 populate operation saves them. This behavior
 occurs even when you specify '-savelocal fail'

 delete - If your workspace contains a local
 version other than the local version being
 fetched, the populate operation deletes the
 local version from your workspace.

 If you do not specify the -savelocal option,
 the populate operation follows the DesignSync
 registry setting for SaveLocal. By default,
 this setting is "Fail if local versions exist"
 ('-savelocal fail'). To change the default
 setting, a Synchronicity administrator can use
 the Command Defaults options pane of the
 SyncAdmin tool. For information, see SyncAdmin
 Help.

 Note:
 o You may need to use the -force option with
 the -savelocal option to allow the object
 being fetched to overwrite a locally
 modified copy of the object. For an example
 scenario, see EXAMPLES.
 o The -savelocal option affects only objects of
 a collection defined by the Custom Type
 Package (CTP). This option does not affect
 objects that are not part of a collection or
 collections that do not have local versions.

-share

 -share Fetch shared copies. Shared objects are stored
 in the file cache directory and links to the

File-Based Design

98

 cached objects are created in the work area.

 Notes:
 This option is not supported on Windows
 platforms.

 The -share option is mutually exclusive with the
 other fetch modes: -lock, -get, -mirror, and
 -reference. The -share option is also mutually
 exclusive with the -keys and -from options.

-target (Legacy-based)

 -target Specifies a legacy module configuration to fetch
 <server_module_url> to your work area. Note: This option applies
 only to legacy modules. Also, this option is
 no longer required and will be removed in a
 future release; you can specify the module
 as a command argument. See ARGUMENTS above
 to specify the module as an argument.

 To specify a module using the -target option,
 use the syntax:
 sync[s]://<host>[:<port>]/<vaultPath>
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer port
 number, and <vaultPath> is the vault folder in
 which the module's data resides.

 To specify a module configuration other than
 the default configuration, use the syntax:
 sync[s]://<host>[:<port>]/<vaultPath>@<config>
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer port
 number, <vaultPath> is the vault folder in
 which the module's data resides, and <config>
 is the specific configuration of the module.

 If you specify this option, the populate
 command sets the vault and selector.

 If you specify the 'populate -target' with the
 -path option and the specified directory does
 not exist, the populate command creates the
 directory in your work area and sets the
 selector for fetching the configuration
 specified with '-target'.

 Note: To fetch an entire legacy module
 hierarchy, use the -recursive option with
 'populate -target'.

 The 'populate -target' command checks whether
 the target is an ordinary DesignSync vault or a

ENOVIA Synchronicity Command Reference All -Vol2

99

 module with no hrefs. In the cases where it is
 either a DesignSync Vault or a module with no
 hrefs and the registry setting indicates that
 the module with no hrefs should be treated like
 a DesignSync vault, it performs a setvault
 operation with the value specified to target and
 then performs an ordinary populate on the
 directory. Effectively, this is equivalent to
 performing a 'setvault' and populate (without
 -target). The setvault is done recursively if
 the -recursive option was specified with
 populate.

-trigarg

 -trigarg <arg> Specifies an argument to be passed from the
 command line to the triggers set on the
 populate operation. If the argument contains
 whitespace, enclose the argument within
 double quotation marks ("") if using the dss
 command shell or braces ({}) if using the stcl
 command shell.

-[no]unifystate

 -[no]unifystate Indicates whether to set the state of all objects
 processed, even up-to-date objects, to the
 specified state (-get, -lock, -share, -mirror, or
 -reference) or to the default fetch state if no
 state option is specified. See the
 "fetch preference" help topic for more
 information.

 By default, populate changes the state of only
 those objects that are not up-to-date
 (-nounifystate). If the -unifystate option is
 specified, DesignSync changes the state of the
 up-to-date objects, as well, and thus performs
 a full populate.

 The -unifystate option does not change the state
 of locally modified objects; use -force with
 -unifystate to force a state change, thus
 overwriting local modifications. The -unifystate
 option does not change the state of objects not
 in the configuration; use -force with
 -unifystate to remove objects not in the
 configuration.
 The -unifystate option does not cancel locks;
 you can check in the locked files, use the
 'cancel' command to cancel locks you have
 acquired, or use the 'unlock' command to cancel

File-Based Design

100

 team members' locks.

 Note: The -unifystate option is ignored when
 you lock design objects. If you populate with
 locked copies or locked references, DesignSync
 leaves all processed objects in the requested
 state.

-version (Module-based)

 -version <selector> Specifies the versions of the objects to
 populate. The selector list you specify
 (typically a version or branch tag) overrides
 the persistent selector lists of the objects you
 are populating. If you populate the top-level
 module in a hierarchy with the -version tag, you
 replace the persistent selector of the workspace
 with the version specified by this option. If
 you specify the -recursive option, the specified
 selector list is used to populate all subfolders
 during populates.

 If you specify a date selector (Latest or
 Date(<date>)), DesignSync augments the
 selector with the persistent selector list
 to determine the versions to populate. For
 example, if the persistent selector list
 is 'Gold:,Trunk', and you specify
 'populate -version Latest', then the selector
 list used for the populate operation is
 'Gold:Latest,Trunk:Latest'.

 For details on selectors and selector lists
 see the topic describing selectors.

 Note:
 o Using the -version option with the populate
 command changes the workspace selector if the
 populate was performed on a top-level
 module instance. If you are working in a
 module hierachy, you should use the swap
 replace command to change the sub-module
 version populated. If you populate individual
 module members or folders, the persistent
 selector is not updated.
 o If you use -version to populate a module
 member, populate fetches the version that is
 appropriate to the module version as
 identified by the version value.
 o If you use the -version option with the
 -incremental option, and the selector you
 specify does not exactly match the workspace
 selector, the incremental populate does not
 occur. DesignSync performs a full populate

ENOVIA Synchronicity Command Reference All -Vol2

101

 instead. See "Incremental Versus Full
 Populate" in the description section for more
 information.
 o When using -version to specify a branch,
 specify both the branch and version as
 follows: <branchtag>:<versiontag>, for
 example, Rel2:Latest. You can also use the
 shortcut, <branchtag>:, for example Rel2:.
 If you do not explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.
 o When you specify a version-extended name that
 reflects the object's version, for example,
 "file.txt;1.3", populate ignores the
 -version option.
 o Specify '-version <branchtag>:Latest' only if
 necessary. In some cases, DesignSync augments
 the selector to be <branchtag>:Latest.
 When you append ':Latest', it may not match
 the work area selector. This mismatch
 invalidates your next incremental populate
 resulting in a slower, full populate.
 o The -version option is mutually exclusive
 with -merge unless you specify '-version
 Latest', the default.
 o The -version and -overlay options are
 mutually exclusive.

-version (File / Legacy-based)

 -version <selector> Specifies the versions of the objects to
 populate. The selector list you specify
 (typically a version or branch tag) overrides
 the persistent selector lists of the objects
 you are populating. If you specify the
 -recursive option, the specified selector
 list is used to populate all subfolders during
 populate.
 You can also specify a ProjectSync configuration;
 see "Interaction with Legacy Modules" in the
 Description section.

 If you specify a date selector (Latest or
 Date(<date>)), DesignSync augments the
 selector with the persistent selector list
 to determine the versions to populate. For
 example, if the persistent selector list
 is 'Gold:,Trunk', and you specify
 'populate -version Latest', then the selector
 list used for the populate operation is
 'Gold:Latest,Trunk:Latest'.

 For details on selectors and selector lists
 see the topic describing selectors.

File-Based Design

102

 Note:
 o Using the -version option with the populate
 command does not change the workspace
 selector, even during the initial populate
 of an object. To set the workspace selector
 as part of the populate command, specify
 the selector explicitly, using the
 <object>;<selector> syntax.
 o If you use the -version option with the
 -incremental option, and the selector you
 specify does not exactly match the workspace
 selector, the incremental populate does not
 occur. DesignSync performs a full populate
 instead. See "Incremental Versus Full
 Populate" in the description section for more
 information.
 o When using -version to specify a branch,
 specify both the branch and version as
 follows: <branchtag>:<versiontag>, for
 example, Rel2:Latest. You can also use the
 shortcut, <branchtag>:, for example Rel2:.
 If you do not explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.
 o When you specify a version-extended name that
 reflects the object's version, for example,
 "file.txt;1.3", populate ignores the
 -version option.
 o Specify '-version <branchtag>:Latest' only if
 necessary. In some cases, DesignSync augments
 the selector to be <branchtag>:Latest.
 When you append ':Latest', it may not match
 the work area selector. This mismatch
 invalidates your next incremental populate
 resulting in a slower, full populate.
 o The -version option is mutually exclusive
 with -merge unless you specify '-version
 Latest', the default.
 o The -version and -overlay options are
 mutually exclusive.
 o When you use populate with the -version option
 to fetch a directory containing legacy
 modules, by default DesignSync uses the
 -noreplace

-view (Module-based)

 -view view1 Module view name or comma-delimited list of
 [,view2[,view...] module view names, applied to a module or module
 hierarchy when it is fetched.

 Note: This option is only valid for server
 module objects. If it is used with an argument

ENOVIA Synchronicity Command Reference All -Vol2

103

 type other than a server module url, the option
 is silently ignored.

 There is no default value for this option. You
 cannot set a default value in the command
 defaults system.

 On an initial populate, the module view name or
 names list provided is propagated through the
 hierarchy and applied to all fetched
 modules. The module view name or names list is
 also saved, or persisted in the workspace
 metadata for each module so that all subsequent
 populates use the same view. The documentation
 refers to a view saved in the metadata as a
 "persistent module view" because it persists
 through subsequent populates rather than
 needed to be specified with each command.

 If a persistent module view has been set on a
 workspace module, any sub-modules subsequently
 populated use the persistent module view already
 defined for parent module.

 Tip: Since populate calls the Checkout Access
 Control, you can write an Access Control filter
 to cause populate to fail if no module view is
 specified or tie users to specific module
 views.

 Notes:
 o If none of the specified module views exist on
 the server, DesignSync issues a warning and
 the populate command runs as if no view were
 specified. If, in a list of module views, one
 or more views exists, and one or more views
 does not exist, the populate command silently
 ignores the non-existent view(s).

 o When the persistent module view set on the
 workspace is changed, the subsequent populate
 is a full populate. For more information on
 changing or clearing the persistent view, see
 the setview command.

-xtras (Module-based)

 -xtras <list> List of command line options to pass to the
 external module change management system. Any
 options specified with the -xtras option are
 sent verbatim, with no processing by the
 populate command, to the Tcl script that defines
 the external module change management system.

File-Based Design

104

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.

 Notes:
 - "successfully processed" may not mean "successfully populated".
 For example, a populate of an object that you already have in
 your work area is considered a success even though no checkout
 occurs.
 - Scripts should only test for non-empty lists to determine
 success or failure. The actual content of the non-empty
 lists might change in subsequent releases.
 - If all objects fail, an exception occurs (the return value is
 thrown, not returned).
 - Objects reported as "excluded by filter," may have been excluded
 either with the -filter option (for modules) or with the -exclude
 option (for any DesignSync objects.)

SEE ALSO

 caching, ci, co, command defaults, localversion, remove, retire,
 selectors, setselector, setvault, setview, swap, url contents

EXAMPLES

• Example of Populating a Module (Module-based)
• Example of Populating a Specific Module Member (Module-based)
• Example of Populating a Module with a Static Selector (Module-based)
• Example of Populating a Module Using Version-Extended Naming (Module-based)
• Example of Creating a Module Cache (Module-based)
• Example of Populating an Mcache Link (Module-based)
• Example of Populating a Module View (Module-based)
• Example of Specifying a Hierarchical Hreffilter (Module-based)
• Example of Merge Across Branches (Module-based)
• Example of Creating a new work area from a DesignSync vault (File-based)
• Example of Creating a New Work Area from a DesignSync Vault Branch (File-based)
• Example of Updating an Existing Workspace with a Full Populate (File-based)
• Example of Updating the State of Objects in the Workspace (File-based)
• Example of Performing a Merge into a Workspace (File-based)
• Example of Replacing Modified Files with the Server Versions (File-based)

Example of Populating a Module (Module-based)

ENOVIA Synchronicity Command Reference All -Vol2

105

 The following example shows how to populate module Chip in the
 workspace directory ~/chip.
 For an initial populate, provide the server URL of the module:

 stcl> pop sync://guaraldi:30077/Modules/Chip

 This creates the Chip module with the current directory
 as the base directory:

 Beginning populate operation...

 Making Module with
 Base Dir = /home/karen/chip
 Name = Chip
 URL = sync://guaraldi:30077/Modules/Chip
 Selector = Trunk:Latest

 Created Module with instname Chip%1

 Populating objects in Module Chip%1 with Base Dir /home/karen/chip...

 /chip/makefile: Success - Checked Out version: 1.1
 /DOC/Chip.doc: Success - Checked Out version: 1.1
 /chip/verilog/chip.v: Success - Checked Out version: 1.1

 Chip%1: Version of module in workspace updated to 1.2

 Finished populate of Module Chip%1 with Base Dir /home/karen/chip

 Finished populate operation...

 {Objects succeeded (3)} {}

 When you next update your work area using the populate command,
 you can supply the workspace module name or the workspace folder
 name. In the following example the workspace folder name is
 supplied, and there have been no changes since the last populate:

 stcl> pop -recursive ~/chip
 Beginning populate operation at Thu Apr 19 02:16:31 PM EDT 2007...

 Populating objects in Module Chip%1
 Base Directory /home/karen/chip
 Without href recursion

 Chip%1 : Version of module in workspace retained as 1.2

 Finished populate of Module Chip%1 with base directory
 /home/karen/chip

 Finished populate operation.

 {} {}

File-Based Design

106

Example of Populating a Specific Module Member (Module-based)

 The following is an example of fetching a specific version of a
 module member:

 stcl> pop -version 1.4 File1.txt

 Populating objects in Module JitaMod1%0
 Base Directory /home/tachatterjee/JitaMOD
 Without href recursion

 Fetching contents from selector '1.4', module version '1.4'

 Total data to transfer: 0 Kbytes, 1 files, 0 collections
 Progress: 0 Kbytes, 1 files, 0 collections, 100.0% complete
 /File1.txt: Success - Checked Out version: 1.3

 Finished populate operation...

 This fetches the version of the file File1.txt contained in
 version 1.4 of the module.

Example of Populating a Module with a Static Selector (Module-based)

 The following example shows the messages you receive when you
 populate a static selector into a workspace.

 dss> populate -recursive -version Gold Chip-R419%0
 Beginning populate operation at Fri Oct 28 12:41:08 Eastern Daylight
 Time 2016...

 Setting Selector [Gold] on workspace module
 c:\workspaces\ChipDev419\chip\Chip-R419%0
 WARNING: Chip-R419%0: Changing the selector to a static value (Gold).
 You will not be able to check in module or member modifications.

 Selector on module c:\workspaces\ChipDev419\chip\Chip-R419%0 was
 modified.

 Populating objects in Module Chip-R419%0
 Base Directory c:\workspaces\ChipDev419\chip
 With href recursion

 Fetching contents from selector 'Gold', module version '1.5.1.1'
...
 Finished populate operation.

 ##### WARNINGS and FAILURES LISTING #####
 #
 # WARNING: Chip-R419%0: Changing the selector to a static value

ENOVIA Synchronicity Command Reference All -Vol2

107

 #(Gold).
 # You will not be able to check in module or member modifications.
 #
 ###

 {Objects succeeded (6)} {Objects failed (0)}

Example of Populating a Module Using Version-Extended Naming (Module-based)

 The following example shows how to fetch a specific version of a
 module using a version-extended name.

 In this example, the latest version of the file is 1.5. You can
 do a vhistory to determine which version of the file you want to
 fetch.

 To fetch version 1.2 of the file:

 stcl> pop "File1.txt;1.2"

 Beginning Check out operation...

 Checking out: File1.txt : Success - Fetched version: 1.2

 Checkout operation finished.

 Finished populate operation...

Example of Creating a Module Cache (Module-based)

 The following example shows how to populate a module cache using the
 -share option to create a copy of the module in a centralized
 location.

 Note: The module cache directory must be writable by the
 creator/owner of the module cache, but not by the users of the module
 cache.

 stcl> populate -share -

Example of Populating an Mcache Link (Module-based)

 The following example shows how to populate module Chip
 using the -mcachepaths option to fetch contents from the module
 cache named 'designs' located in the mcacheDir directory.

 stcl> populate -get -recursive -hrefmode static
 -path /home/rsmith/MyModules/designs -mcachemode link -mcachepaths
 /home/mcacheDir/ sync://srv2.ABCo.com:2647/Modules/Chip/

File-Based Design

108

 Beginning populate operation at Mon Jun 23 10:36:43 AM EDT 2008...

 sync://srv2.ABCo.com:2647/Modules/Chip/: : Created mcache
 symlink /home/rsmith/MyModules/designs.

 Creating Module Instance 'Chip%1' with base directory
 '/home/rsmith/MyModules/designs'

 Finished populate operation.

 {Objects succeeded (1)} {}

 Note: Any existing workspace content will not be replaced with
 module cache links. To replace workspace content you must first
 remove from the workspace those configurations to be replaced. Use
 the 'rmfolder -recursive' command on the configuration base
 directory, or specify a non-existent directory for the -path option
 to create a new directory for the module cache links.

Example of Populating a Module View (Module-based)

 This example shows populating a workspace with a module view list;
 specifically the the RTL and DOC Module Views.

 stcl> populate -get -view RTL,DOC -path ./Chip sync://
 srv2.ABCo.com:2647/Modules/Chip

 Beginning populate operation at Fri May 06 02:04:38 PM EDT 2011...

 Populating module instance with

 Base Directory = /users/larry/MyModules/Chip
 Name = Chip
 URL = sync:// srv2.ABCo.com:2647/Modules/Chip
 Selector = Trunk:
 Instance Name = Chip%2
 Metadata Root = / users/larry/MyModules
 View(s) = RTL,DOC

 Recursive Mode = Without href recursion

 Fetching contents from selector 'Trunk:', module version '1.9'
 Total data to transfer: 1 Kbytes (estimate), 5 file(s), 0 collection(s)

 Progress - from local cache: 0 Kbytes, 0 file(s), 0 collection(s)
 Progress - from server: 1 Kbytes, 5 file(s), 0 collection(s), 100.0%
complete

 Chip%2/makefile : Success - Checked out version: 1.2
 Chip%2/README : Success - Checked out version: 1.3
 Chip%2/doc/chip.html : Success - Checked out version: 1.2
 Chip%2/doc/chip.doc : Success - Checked out version: 1.2
 Chip%2/verilog/chip.v : Success - Checked out version: 1.5

ENOVIA Synchronicity Command Reference All -Vol2

109

 Chip%2/verilog/chip_inc.v : Success - Checked out version: 1.3

 Chip%2 : Version of module in workspace updated to 1.9

 Finished populate of Module Chip%2 with base directory
 /users/larry/MyModules/Chip

 Time spent: 0.2 seconds, transferred 1 Kbytes, copied from local
 cache 0 Kbytes, average data rate 4.9 Kb/sec

 Finished populate operation.

 {Objects succeeded (5)} {}

Example of Specifying a Hierarchical Hreffilter (Module-based)

 This example shows an initial populate using a hierarchical href
 filter to exclude the /BIN module from the workspace when it appears
 beneath the /JRE module. In this example, the module hierarchy is set
 up like this:
 NZ214 <- ROM <- JRE <- BIN
 With NZ214 being the top-level Chip design module.

 Note: Whenever you use the -hreffilter option, you must populate
 recursively.

 dss> populate -recursive -retain -full -hreffilter JRE/BIN
 sync://serv1.ABCo.com:2647/Modules/Chip/NZ214

 Beginning populate operation at Wed Dec 11 13:24:31 Eastern Standard
 Time 2013...

 Populating module instance with
 Base Directory = c:\workspaces\V6R2014x\chipDesign
 Name = NZ214
 URL = sync://serv1.ABCo.com:2647/Modules/Chip/NZ214
 Selector = Trunk:
 Instance Name = NZ214%1
 Metadata Root = c:\workspaces\V6R2014x
 Recursive Mode = With href recursion

 Fetching contents from selector 'Trunk:', module version '1.3'

 Total data to transfer: 0 Kbytes (estimate), 6 file(s), 0 collection(s)
 Progress - from local cache: 0 Kbytes, 0 file(s), 0 collection(s)
 Progress - from local cache: 0 Kbytes, 0 file(s), 0 collection(s)

 Progress - from server: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress - from server: 1 Kbytes, 6 file(s), 0 collection(s), 100.0%
complete

 NZ214%1\chip.ver : Success - Checked out version: 1.1
 ...

File-Based Design

110

 Creating sub module instance 'ROM%1' with base directory
 'c:\workspaces\V6R2014x\chipDesign\ROM'

 Finished populate of Module NZ214%1 with base directory
 c:\workspaces\V6R2014x\chipDesign

 Time spent: 0.3 seconds, transferred 1 Kbytes, copied from local cache 0
Kbytes, average data rate 3.4 Kb/sec

 ===

 Populating sub module instance with
 Base Directory = c:\workspaces\V6R2014x\chipDesign\ROM
 Name = ROM
 ...
 Creating sub module instance 'JRE%0' with base directory
 'c:\workspaces\V6R2014x\chipDesign\ROM\JRE'

 Finished populate of Module ROM%1 with base directory
 c:\workspaces\V6R2014x\chipDesign\ROM

 Time spent: 0.0 seconds, transferred 0 Kbytes, copied from local
 cache 0 Kbytes, average data rate 0.0 Kb/sec

 ===

 Populating sub module instance with
 Base Directory = c:\workspaces\V6R2014x\chipDesign\ROM\JRE
 ...
 JRE%0 : Version of module in workspace updated to 1.2

 BIN : Sub Module Excluded by Hierarchical Filter
 Finished populate of Module JRE%0 with base directory
 c:\workspaces\V6R2014x\chipDesign\ROM\JRE

 Time spent: 0.0 seconds, transferred 0 Kbytes, copied from local
 cache 0 Kbytes, average data rate 0.0 Kb/sec

 Finished populate operation.

 {Objects succeeded (8)} {}

Example of Merge Across Branches (Module-based)

 This example shows a simple module merge across branches. After you
 perform the merge, you must check in your changes to apply the merge
 changes to the modules.

 dss> pop -merge -overlay Branch: ROM%1
 Beginning populate operation at Tue Apr 10 01:55:24 PM EDT 2007...

ENOVIA Synchronicity Command Reference All -Vol2

111

 Populating objects in Module ROM%1
 Base Directory /home/rsmith/MyModules/rom
 Without href recursion

 Fetching contents from selector 'Branch:', module version '1.3.1.3'

 Merging with Version: 1.3.1.3
 Common Ancestor is Version: 1.3

 ==
 Step 1: Identifying items to be merged and conflict situations
 ==

 /romMain.c : member will be fetched from merged version and
 added to workspace version on checkin.
 Use 'ls -merged added' to identify members added by merge.
 /rom.v : conflict - different member in merge version found at same natural
 path in workspace version. Cannot fetch member or merge contents
 with member from merge version; it will be skipped. If member from
 merge version is desired, remove or move member on workspace
 branch and then re-populate with overlay from merge version.
 /rom.v : Natural path different on merge version and workspace version.
 Contents will be merged, if required.
 /rom.doc : No merge required.
 /doc/rom.doc : No merge required.

 ==
 Step 2: Transferring data for any items to be fetched into the
 workspace
 ==

 Total data to transfer: 0 Kbytes (estimate), 1 file(s), 0 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 1 Kbytes, 1 file(s), 0 collection(s), 100.0% complete

 ===
 Step 3: Merging file contents as required into the workspace
 ===

 Beginning Check out operation...

 Checking out: rom.v : Success - Version
 1.1.1.1 has replaced version 1.1.
 Checking out: rom.c : Success - Version
 1.1.1.1 has replaced version 1.1.

 Checkout operation finished.

 ==
 Step 4: Updating files fetched into the workspace
 ==

 /romMain.c : Success - Version 1.1 fetched

File-Based Design

112

 ROM%1 : Version of module in workspace not updated (Due to overlay
 operation).

 ==
 Step 5: Comparing hrefs for the workspace version and merge version:
 ==
 No hrefs present in workspace version
 No hrefs present in merge version

 Finished populate of Module ROM%1 with base directory
 /home/rsmith/MyModules/rom

 Time spent: 0.2 seconds, transferred 1 Kbytes, average data rate 4.3 Kb/sec

 Finished populate operation.

 {Objects succeeded (3)} {}

 After the populate has completed, run ci to create the new module
 version with the merge changes.

 dss> ci -comment "Incorporating changes on Branch:" ROM%1
 Beginning Check in operation...

 Checking in objects in module ROM%1

 Total data to transfer: 1 Kbytes (estimate), 3 file(s), 0 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 2 Kbytes, 3 file(s), 0 collection(s), 100.0% complete

 Checking in: /rom.c Success - New version: 1.2
 Checking in: /rom.v Success - New version: 1.2
 Checking in: /romMain.c Success - New version: 1.1.1.1

 ROM%1: Version of module in workspace updated to 1.5

 Finished checkin of Module ROM%1, Created Version 1.5

 Time spent: 0.7 seconds, transferred 2 Kbytes, average data rate 2.8 Kb/sec
 Checking in: /doc/rom.doc : Success - No new
 version created. Lock Removed.

 Checkin operation finished.

 {Objects succeeded (4)} {}

 After the checkin has created the new module version, you can create
 a merge edge to store a record of the changes.

 dss> mkedge ROM%1
 Edge from 1.3.1.3 to 1.5 for module
 sync://srv2.ABCo.com:2647/Modules/ROM created successfully.

ENOVIA Synchronicity Command Reference All -Vol2

113

Example of Creating a new work area from a DesignSync vault (File-based)

 The following example creates a new work area containing unlocked
 copies of every object in the vault hierarchy:

 dss> scd /home/tgoss/Projects/Asic
 dss> setvault sync://myhost.myco.com:2647/Projects/Asic .
 dss> populate -recursive -get

 Because -version is not specified, the persistent selector list of
 the current folder determines what versions to populate. The local
 Asic folder has not had a 'setselector' command applied to it or
 any parent folder, so the default persistent selector list is
 'Trunk'. By default, DesignSync performs an incremental populate
 of the Latest versions on the specified branch (Trunk). Note that
 this operation does not fetch objects whose 'Trunk' branch is
 retired.

Example of Creating a New Work Area from a DesignSync Vault Branch (File-based)

 The following example differs from the previous example in that the
 work area is for the Rel2.1 branch, not Trunk, and the work area
 contains links to a cache directory instead of local copies:

 dss> scd /home/tgoss/Projects/Asic
 dss> setvault sync://myhost.myco.com:2647/Projects/Asic@Rel2.1:Latest .
 dss> populate -recursive -share

Example of Updating an Existing Workspace with a Full Populate (File-based)

 The following example performs a full (nonincremental) recursive
 populate on the current folder, fetching unlocked copies of files
 for updated objects. Note that the states of objects that are not
 updated DO NOT change.

 dss> populate -recursive -full -get

Example of Updating the State of Objects in the Workspace (File-based)

 By default, the states of up-to-date objects do not change during
 a populate operation. The following example updates the states of
 the objects that are up-to-date, allowing you to unify the states
 of all objects in your work area. The -unifystate option causes
 DesignSync to perform a full populate rather than an incremental
 populate.

 dss> populate -recursive -unifystate -get

File-Based Design

114

Example of Performing a Merge into a Workspace (File-based)

 The following example merges Latest versions from the current
 branch into the local versions. You perform this operation when
 your team uses the merging (nonlocking) work model and you and
 other team members have been modifying the same objects. It is more
 common to use the 'co -merge' command to operate on just those
 objects you want to check in.

 dss> populate -merge

 Note that the merge operation fetches from the branch specified by
 the folder's persistent selector list, not from the current
 branch. However, these two branches are typically the same unless
 you have changed the persistent selector list with the setselector
 command. In this case, you would be merging across branches instead
 of from the same branch. This method for merging between two
 branches is not recommended; use the -overlay option.

 The following example merges one branch (Dev) into another
 (Main). This operation is typically performed by a release engineer
 who manages the project vault. The work area is first populated
 with the Latest versions from 'Main'. Then the Latest versions from
 Dev are merged into the local versions. The -overlay option
 indicates that after the operation, the current branch and version
 information (as stored in local metadata) should be
 unchanged. Following the merge and after any merge conflicts are
 resolved, a check-in operation checks the merged version into 'Main'.

 dss> url selector .
 Main:Latest
 dss> populate -recursive
 dss> populate -recursive -merge -overlay Dev:Latest
 [Resolve any merge conflicts]
 dss> ci -recursive -keep .

Example of Replacing Modified Files with the Server Versions (File-based)

 This example shows use of the populate operation that deletes local
 versions.

 Note: The DesignSync Milkway integration has been deprecated. This
 example is meant to be used only as a reference.

 Mike checks out the Milkyway collection object top_design.sync.mw,
 which fetches local version 4 of that object to his workspace. He
 modifies the object and creates local version 5. Then he checks in
 top_design.sync.mw. The check-in operation does not remove local
 versions, so Mike now has local version 5 (unmodified) and local
 version 4 in his workspace. (Note: Because the checkin removes
 local version 4's link to with the original check-out operation of
 top_design, DesignSync now considers local version 4 to be
 modified.)

ENOVIA Synchronicity Command Reference All -Vol2

115

 Ben checks out top_design.sync.mw (local version 5). He creates
 local version 6 and checks the object in.

 Mike does some work on top_design, which creates local versions 6,
 7, and 8 in his workspace. Then he decides to use Ben's version of
 the top_design object instead.

 Mike uses populate to fetch the latest versions of Milkyway
 collection objects to his workspace. He doesn't want to save his
 local versions of the object, so he uses the '-savelocal delete'
 option to delete local versions other than the local version being
 fetched. In addition, he uses the -force option. (Because he
 created local versions 6, 7, and 8 of top_design in his workspace,
 DesignSync considers the top_design object to be locally modified
 and by default the populate operation does not overwrite locally
 modified objects. To successfully check out top_design, Mike must
 use '-force'.)

 stcl> cd /home/tjones/top_design_library
 stcl> populate -savelocal delete -force

 Before fetching top_design.sync.mw from the vault, the populate
 operation first deletes all local versions that are unmodified. So
 the populate operation deletes Mike's local version 6 because that
 was the version originally fetched and its files are unmodified.

 Because Mike specified the -force option, the populate also deletes
 Mike's local version 8 (the current local version containing
 modified data for the object).

 Because Mike specified '-savelocal delete', the populate operation
 deletes local version 7, which is not in the vault and is not the
 modified data Mike agreed to delete when he specified '-force'.
 If Mike specified '-savelocal save', DesignSync would save local
 version 7. Local version 4 is also deleted.

 Finally, Mike's populate operation fetches the top_design object
 (Ben's local version 6) from the vault.

 Mike continues to modify the top_design object, creating local
 version 7, which he checks in.

 Ben has local versions 5 and 6 in his workspace. He populates his
 workspace containing the top_design collection object (local
 version 7), specifying '-savelocal fail'. The populate operation
 removes local version 6 from his workspace because it is
 unmodified. The operation saves local version 5 even though it is
 modified. (Ben's checkin of local version 6 removed local version
 5's link to with the original checkout of top_design, so DesignSync
 now considers local version 5 to be modified.) The populate also
 takes place despite the fact that Ben specified '-savelocal
 fail'. The populate operation takes this action because local
 version 5 has a number lower than the local version being
 fetched. If Ben had instead specified '-savelocal delete', the
 populate operation would delete local version 5.

File-Based Design

116

setmirror

setmirror Command

NAME

 setmirror - Maps a mirror directory to a working directory

DESCRIPTION

 This command associates a local working directory with a mirror
 directory. The mirror directory, as conveyed to you by your project
 leader, will contain a set of data for your project that is
 automatically updated by a Mirror Administration Server (MAS) at your
 site to exactly mimic the data set defined for your project vault.
 For example, your team may always want the Latest version of files on
 the main Trunk branch. Another team may want a mirror for a
 development branch, that always contains the file versions on that
 branch with a specific tag.

 Each site will have a MAS for its LAN, which automatically maintains
 the site's mirrors, based on the definition of each mirror. Once your
 workspace is associated with a mirror, you can use the '-mirror' option
 to DesignSync revision control commands. The '-mirror' option results
 in symbolic links in your workspace, leading to files in the mirror.

 All subdirectories of the local working directory inherit the
 mirror location you specify with setmirror. You cannot use
 setmirror on a subdirectory to specify a different mirror directory
 than is set for the parent directory.

 Note:
 To resolve the mirror location, DesignSync does not search above the
 root of a workspace where a setvault has been applied. Thus, if a
 setvault has been applied to a folder (/Projects/ASIC/alu) and you
 apply the 'setmirror' command at a higher-level folder (for example,
 /Projects/ASIC), the 'setmirror' command is ignored at and below
 the folder where the setvault occurred (/Projects/ASIC/alu).

 By default, 'setmirror' stores the path to a mirror exactly as it was
 specified to the 'setmirror' command. To instead have 'setmirror'
 resolve the path, see the "DesignSync Client Commands Registry Settings"
 topic in the DesignSync Data Manager User's Guide.

 To remove the association between a working directory and a mirror
 directory (an 'unsetmirror' operation), specify an empty string ("")
 as the mirror directory argument. When specifying an empty string as
 the mirror directory argument, the 'setmirror' command must be run from
 within a DesignSync shell. An Operating System shell cannot pass an
 empty string value to a DesignSync shell.

 Executing setmirror without any arguments displays the mirror

ENOVIA Synchronicity Command Reference All -Vol2

117

 for the current directory, or an empty string if the current
 directory has no mirror set.

 Note:
 Mirrors can be treated in the same way as your DesignSync
 work areas. For example, you can use commands such as the url
 commands or ls on mirror directories.

SYNOPSIS

 setmirror [--] [<mirrorDirectory> <localWorkingDirectory>]

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 none

SEE ALSO

 url mirror, populate, ci, co, cancel

EXAMPLES

 This example creates an association between a local
 working directory /home/goss/Projects/ASIC and the mirror
 directory /users/admin/Projects/mirror/ASIC.
 dss> setmirror /users/admin/Projects/mirror/ASIC /home/goss/Projects/ASIC
 ASIC: Success Set Mirror
 dss> scd /home/goss/Projects/ASIC
 dss> setmirror
 file:///users/admin/Projects/mirror/ASIC

setroot

File-Based Design

118

setroot Command

NAME

 setroot - Sets the root workspace location

DESCRIPTION

• Notes for Modules Root

 This command designates the workspace directory used as a storage
 area for a set of local metadata information for a collection of
 data (module or files-based data). The metadata includes information
 about the DesigSync objects,

 When a DesignSync object is populated into a workspace that has not
 had a root folder set for it, then the parent folder of the base
 directory being populated is automatically set as the root folder.

 Note: You cannot define a root folder underneath (or within) an existing
 root directory.

Notes for Modules Root

 After the root folder is defined and the metadata is created, you can
 refer to a module by the module instance name, rather than specifying
 the full module path name.

SYNOPSIS

 setroot -[[un]set] [--] <workspace folder>

ARGUMENTS

• Workspace Folder

Workspace Folder

 <workspace The name of the workspace folder to designate as the
 folder> root folder. The folder must already exist to be
 designated as the root folder.

OPTIONS

ENOVIA Synchronicity Command Reference All -Vol2

119

• -[un]set (Module-based)
• -[un]set (File-based)
• --

-[un]set (Module-based)

 -[un]set Indicates whether to set the workspace root or remove
 the workspace root setting from a workspace.

 -unset removes the workspace root setting from a
 workspace and the associated metadata. If there are
 any modules populated, you cannot unset the workspacee
 root.

 -set sets the workspace root setting on a workspace and
 creates the initial metadata. (Default)

-[un]set (File-based)

 -[un]set Indicates whether to set the workspace root or remove
 the workspace root setting from a workspace.

 -unset removes the workspace root rsetting from a workspace
 and the associated metadata.

 -set sets the workspacee root setting on a workspace and
 creates the initial metadata. (Default)

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 This command returns an empty string "" on success. If the command
 fails, it returns a failure message detailing the reason for the
 failure.

SEE ALSO

 url root, mkmod, populate, command defaults

File-Based Design

120

EXAMPLES

• Setting the Workspace Root for a Module (Module-based)
• Unsetting the Workspace Root for a Module (Module-based)
• Setting the Workspace Root For Files-Based Objects (File-based)

Setting the Workspace Root for a Module (Module-based)

 This example shows setting the workspace root directory for the
 MyModules workspace.

 stcl> setroot MyModules
 Set Root operation successfully completed.

Unsetting the Workspace Root for a Module (Module-based)

 This example shows unsetting the workspace root directory for the
 MyModules workspace.

 dss> setroot -unset MyModules
 There are modules present in this workspace root. They must be
 removed first.

 dss> rmmod MyModules/Chip%1
 ...

 dss> setroot -unset MyModules
 Set Root (unset) operation successfully completed.

Setting the Workspace Root For Files-Based Objects (File-based)

 This example shows setting the workspace root directory for
 files-based objects.

 dss> setroot ./projects
 Set Root operation successfully completed.

setselector

setselector Command

NAME

 setselector - Sets the persistent selector list

ENOVIA Synchronicity Command Reference All -Vol2

121

DESCRIPTION

• Notes for Using setselector (Module-based)
• Notes for Using setselector (File-based)
• Valid Selectors for Module Objects (Module-based)
• Valid Selectors for Files-Based Objects (File-based)
• Configuration Mapping (Legacy-based)

 This command sets the persistent selector list, as stored in an
 object's local metadata, for the specified objects. Any previous
 selector list is overwritten or cleared.

 Note that two commands other than 'setselector' can also update the
 persistent selector list of an object:

 o The setvault command supports the following syntax:
 setvault [-recursive] <vault>@<selectorList> <workareaFolder>
 which is equivalent to doing a 'setvault' followed by
 a 'setselector'.

 o The populate command sets the persistent selector of the
 workspace when a version is specified using the -version option.

 Note:
 To resolve a selector, DesignSync does not search above the workspace root
of
 a workspace. Thus, if the workspace root is set on a folder
 (/Projects/ASIC/alu) and you apply the 'setselector' command at a
 higher-level folder (for example, /Projects/ASIC), the 'setselector'
 command is ignored at and below the folder where the setvault
 occurred (/Projects/ASIC/alu).

 For single-branch environments, you may not need the setselector
 command. The default persistent selector list is 'Trunk', which is
 the default branch tag for branch 1. If you will not be working
 with additional branches, this default 'Trunk' selector may be
 sufficient.

 The 'P' data key for the 'ls' command and the 'url selector'
 command report an object's persistent selector list.

 To clear, or unset, the persistent selector list, specify an empty
 string ("") as the selector-list argument. Clearing the persistent
 selector list restores the default behavior of having an object
 inherit its persistent selector list from the parent folder. Any
 persistent selector list in local metadata is removed.

 Note: You cannot unset the selector list from the UNIX command line
 using the DesignSync Concurrent Shell (dssc) client because null
 strings ("") are not passed from the UNIX command line to the
 DesignSync client. In order to clear the persistent selector list
 without invoking a DesignSync client, you must use the Synchroncity
 Tcl Shell (stcl) with the -exp option, for example:
 $ stcl -exp 'setselector "" <argument>'

File-Based Design

122

 The object arguments to the 'setselector' command can be versionable
 objects (files or collections), local folders, or top-level
 modules. The object's persistent selector list is set to the
 specified value. If you are doing a recursive setselector, all
 subfolders and objects in the hierarchy have their persistent
 selector lists cleared (unless a subfolder is configuration-mapped;
 see Configuration Mapping).

 Important: Persistent selector lists set on subfolders or
 individual managed objects in a work area are not obeyed by the
 'populate -recursive' command. Therefore, the 'setselector' command
 issues a warning when you set the persistent selector list on an
 object to a value that differs from its inherited value.

Notes for Using setselector (Module-based)

 When using the ci and import commands, you can override the
 persistent selector on a per-operation basis with the -branch or
 -version options. When using the populate command with the -version
 tag, the persistent selector is automatically updated to match the
 command specified version.

Notes for Using setselector (File-based)

 The following DesignSync commands use the persistent selector list
 to determine what version or branch to operate on: populate, ci,
 co, import. You can override the persistent selector list on a
 per-operation basis with the -version option (for populate, co, and
 import) or -branch option (for ci). However, using -version or
 -branch does not change the persistent selector list.

Valid Selectors for Module Objects (Module-based)

 The selector-list argument is a comma-separated list of one or more
 selectors. The list cannot contain whitespace. Valid selectors are:
 o Top-level modules.
 Note: Persistent selectors can only be set on a top-level module.
 o Branch and version numbers:
 - 1.2.4 (A branch has an odd number of period-separated numbers.)
 - 1.2.4.1 (A version has an even number of period-separated
 numbers.)
 o Version tags
 o Branches specified as:
 - <branchtag>:<version>
 - <branchtag>:Latest
 - <branchtag>: (equivalent to <branchtag>:Latest)
 o Date selectors specified as:
 - <branchtag>:Date(<date>)
 - VaultDate(<date>)

ENOVIA Synchronicity Command Reference All -Vol2

123

 o Auto-branch selectors specified as:
 - Auto(<tag>)
 Note: Auto-branches cannot be specified for modules.

 When a single selector is specified or set as the persistent selector
 for a workspace, the selector is resolved and used for the operation.
 When a selector list is specified, the last selector in the list
 becomes the main selector for the workspace, and the objects matching
 the specified selector are added into the workspace, replacing the
 objects specified by the main selector, if needed, blending the
 selectors sequentually up the selector list until the first item in
 the list is processed as the last selector to draw from. This
 blended workspace, containing objects from multiple versions can be
 checked in as a module snapshot, showing a specific combination of
 objects.

 Note: You must specify branches explicitly in selector lists.
 To do so, specify both the branch and version as follows:
 '<branchtag>:<versiontag>', for example, 'Rel2:Latest'.
 You can also use the shortcut, '<branchtag>:', for
 example "Rel2:". If you don't explicitly specify the
 branch selector in this way, DesignSync does not resolve
 the selector as a branch selector. See the "selectors"
 topic for details on selector lists, including descriptions
 of these selector types.

 Note: If the "HrefModeChangeWithTopStaticSelector" registry key is
 enabled and the populate hrefmode is set to static when the setselector
 command is run, the resolved static version is set as the persistant
 selector by the command. For more information about setting the
 "HrefModeChangeWithTopStaticSelector" registry key, see the ENOVIA
 Synchronicity DesignSync Data Manager Administrator's Guide

Valid Selectors for Files-Based Objects (File-based)

 The selector-list argument is a comma-separated list of one or more
 selectors. The list cannot contain whitespace. When you specify a
 selector list, the command uses the first valid selector in the
 list. Valid selectors are:
 o Branch and version numbers:
 - 1.2.4 (A branch has an odd number of period-separated numbers.)
 - 1.2.4.1 (A version has an even number of period-separated
 numbers.)
 o Version tags
 o Branches specified as:
 - <branchtag>:<version>
 - <branchtag>:Latest
 - <branchtag>: (equivalent to <branchtag>:Latest)
 o Date selectors specified as:
 - <branchtag>:Date(<date>)
 - VaultDate(<date>)
 o Auto-branch selectors specified as:
 - Auto(<tag>)
 Note: Auto-branches cannot be specified for modules.

File-Based Design

124

 Note:
 You must specify branches explicitly in selector lists.
 To do so, specify both the branch and version as follows:
 '<branchtag>:<versiontag>', for example, 'Rel2:Latest'.
 You can also use the shortcut, '<branchtag>:', for
 example "Rel2:". If you don't explicitly specify the
 branch selector in this way, DesignSync does not resolve
 the selector as a branch selector. See the "selectors"
 topic for details on selector lists, including descriptions
 of these selector types.

Configuration Mapping (Legacy-based)

 Configuration mapping is used when a configuration name does not
 have the same meaning for all sections of a project. For example, a
 project's Beta configuration may consist of the Gold configuration
 of one section, the Rel20 configuration of another, and several
 other sections whose design files are actually tagged
 Beta. Configuration mapping lets you identify these different
 versions of design data with one configuration name. Configuration
 mapping is implemented through sync_project.txt files that reside
 in vault folders and is typically set up by a project leader.

 If setselector is applied to a legacy configuration-mapped folder and
 the selector you specify is mapped, the persistent selector list is
 set to the mapped value. For example, if the specified selector
 'Trunk' maps to the 'Gold' configuration, then the persistent
 selector list is set to 'Gold'. If you are doing a recursive
 setselector, then all versionable objects in the hierarchy have their
 persistent selector lists cleared, and the persistent selector lists
 of subfolders are: - Cleared if the folder is not configuration
 mapped. - Set to the mapped value if the folder is mapped. - Set to
 the mapped value, and that mapped value propagates to any subfolders
 if the folder is mapped and also references a different vault (as
 identified by the REFERENCE keyword in the sync_project.txt file).

 Notes: The case where a ProjectSync configuration and its
 associated DesignSync tag have the same name is not
 configuration mapping. DesignSync does not store the mapped
 value in this case.

 When populating a configuration-mapped folder, the populate
 command changes the persistent selector to the selector list
 so you do not need to use the setselector command. This
 behavior is a performance optimization so that future
 check-out operations have the configuration-map information
 locally instead of requiring additional SyncServer
 communication.

SYNOPSIS

ENOVIA Synchronicity Command Reference All -Vol2

125

 setselector [-recursive] [-selected] [--]
 <selector>[,<selector>...] <argument> [argument>...]

SELECTORS

• -selector

-selector

 <selector> Set the persistent selector, or selector list to the
 argument. For a full list of allowed selectors, see
 the command Description section.

ARGUMENTS

• Workspace Module (Module-based)
• Workspace Folder
• Workspace Objects

Workspace Module (Module-based)

 <workspace module> Sets the selector on the specified workspace
 module.

Workspace Folder

 <workspace folder> Sets the selector on the specified workspace
 folder.

Workspace Objects

 <workspace object> Sets the select on the specified workspace
 object. The object cannot be a member of a
 module.

OPTIONS

• -recursive (Module-based)
• -recursive (Legacy-based)
• -recursive (File-based)
• -selected
• --

File-Based Design

126

-recursive (Module-based)

 -recursive Perform this operation on all objects in all
 subfolders in the hierarchy. DesignSync sets the
 selector list on the top-level folder, and clears
 the persistent selector list for each object in
 the hierarchy. Clearing the persistent
 selector list restores the default behavior of
 inheriting the persistent selector list from the
 folder on which the setselector command was
 applied.

 If the setselector command reaches a static href, it
 does not operate recursively on that submodule. It
 also does not operate recursively into external
 modules, legacy modules, or references to file-based
 vault objects.

-recursive (Legacy-based)

 -recursive Perform this operation on all objects in all
 subfolders in the hierarchy. DesignSync sets the
 selector list on the top-level folder, and clears
 the persistent selector list for each object in
 the hierarchy, unless a subfolder is
 configuration-mapped. For information on how
 DesignSync behaves when a subfolder is configuration
 mapped, see Configuration Mapping in
 the Description section. Clearing the persistent
 selector list restores the default behavior of
 inheriting the persistent selector list from the
 folder on which the setselector command was
 applied.

-recursive (File-based)

 -recursive Perform this operation on all objects in all
 subfolders in the hierarchy. DesignSync sets the
 selector list on the top-level folder, and clears
 the persistent selector list for each object in
 the hierarchy. Clearing the persistent selector list
 restores the default behavior of inheriting the
 persistent selector list from the folder on which
 the setselector command was applied.

-selected

 -selected Perform this operation on objects in the select
 list (see the 'select' command) as well as the objects

ENOVIA Synchronicity Command Reference All -Vol2

127

 specified on the command line. If no objects are
 specified on the command line, this option is
 implied.

 Note: 'Select lists' and 'selector lists' are two
 distinct features. 'Select lists', as managed
 by the 'select' and 'unselect' commands and used
 by commands that support the '-selected' option,
 are an optional way to specify on which objects
 DesignSync commands should operate. 'Selector
 lists', as managed by the 'setselector' command
 and the '-version' and '-branch' options to
 various commands, specify on which version or
 branch of a given object DesignSync commands
 should operate.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.

 Notes:
 - Scripts should only test for non-empty lists to
 determine success or failure. The actual content of a non-empty
 list currently takes the form "Objects succeeded (n)" and
 "Objects failed (n)", where 'n' is the number of objects that
 succeeded or failed. However, these return values are subject to
 change in a future release.
 - If all objects fail, an exception occurs (the return value is
 thrown, not returned).

SEE ALSO

 ci, co, populate, tag, selectors, setvault, url selector

EXAMPLES

• Example of Using Setselector with Module Snapshots (Module-based)

File-Based Design

128

• Example Using the Persistent Selector List in a multi-branch environment (File-based)
• Example of Using Setselector to Auto-Branch (File-based)

Example of Using Setselector with Module Snapshots (Module-based)

 The following examples shows setselector in a blended environment that
 has a module snapshot, Gold, and a main selector, Trunk:Latest.

 This example shows setting the selector to the Gold snapshot with a
 main selector Trunk:Latest in the Chip module. It is not recursive
 and does not affect the submodules in the module hierarchy.

 dss> setselector Gold,Trunk: Chip%0

 This example removes the overlay selector and does not modify the main
 selector. It is not recursive and does not affect submodules in the
 module hierarchy.

 dss> setselector Trunk: Chip%0

 This example sets the selector list recursively and modifies the main
 selector for the top level module only. You cannot modify the main
 selector for the submodules using the setselector command. The
 command output will remind you that the main selector was not changed
 within the submodules.

 dss> setselector -rec Gold,Trunk:Latest Chip%0

Example Using the Persistent Selector List in a multi-branch environment (File-based)

 The team methodology is that 'gold', 'silver', and 'bronze' are
 version tags, and 'Main' is the branch tag for the Main
 branch. Therefore, for each object fetched by the populate
 operation, DesignSync uses the following search order:
 1. Fetch the version tagged 'gold'.
 2. Fetch the version tagged 'silver'.
 3. Fetch the version tagged 'bronze'.
 4. Fetch the Latest version on the 'Main' branch.

 The following example sets the persistent selector list for local
 folder MUX1, and all objects and subfolders within it, to
 'gold,silver,bronze,Main:Latest'.

 dss> setselector -recursive gold,silver,bronze,Main:Latest MUX1
 dss> scd MUX1
 dss> populate

Example of Using Setselector to Auto-Branch (File-based)

 In the following example, you want to auto-branch off the 'Trunk'
 branch to try 'what if' scenarios. You recursively set the

ENOVIA Synchronicity Command Reference All -Vol2

129

 persistent selector list for local folders Mod1 and Mod2 to
 'Auto(Dev),Trunk'.

 dss> setselector -recursive Auto(Dev),Trunk Mod1 Mod2

 When you check in an object, DesignSync uses the Auto(Dev)
 selector, which checks in the new version to the 'Dev' branch,
 creating the branch if necessary. If you check out an object,
 DesignSync fetches the Latest version from the 'Dev' branch if
 'Dev' exists, or the Latest version from 'Trunk' otherwise.

 The following example clears the persistent selector list for
 the current folder and all subfolders so that the persistent
 selector list is inherited from the parent folder:

 dss> setselector -rec "" .

 The following example sets the persistent selector list for file
 'test1.v' to 'Rel2.1:Latest'. Future checkins and checkouts of
 'test1.v' will take place, by default, on the Rel2.1 branch.

 dss> setselector Rel2.1:Latest test1.v

 Note that using 'setselector' on individual files is
 not recommended, because inconsistent selector lists between
 objects and the top-level folder are not obeyed during
 populate operations.

setvault

setvault Command

NAME

 setvault - Associates a vault with a work area

DESCRIPTION

• Note for Module Workspaces (Module-based)
• Using setvault with Modules (Module-based)
• Using setvault with DesignSync objects (File-based)

 This command maps a local folder (directory) to a revision-control
 vault folder (repository). If there is no workspace root directory
 already set above the local folder, the root directory will be
 defined one level above the highest folder level containing a defined
 vault connection by default or as defined on the Workspace panel in
 SyncAdmin. For more information Workspace root definition, see the
 DesignSync Data Manager Administrator's Guide.

File-Based Design

130

 Note: You can remove the mapping using the unsetvault command.

Note for Module Workspaces (Module-based)

 You can disable automatically setting the workspace root setting for
 module workspaces. For more information see the DesignSync Data
 Manager Administrator's Guide.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

Using setvault with Modules (Module-based)

 Setvault should only be run if you have relocated a module, for
 example, by moving it to a different disk or server. A module
 relocated to a different physical location retains its unique
 module identifier. When setvault is run on that module, DesignSync
 verifies that the new vault contains a module with the same name and
 unique identifier as the one in the workspace before performing the
 setvault. If the vault does not contain a module with the same name
 and identifier, the command fails.

 Note: You can only run setvault on a top-level module, not on one
 fetched by a hierarchical reference from a higher-level module.

 Note: If the "HrefModeChangeWithTopStaticSelector" registry key is
 enabled and the populate hrefmode is set to static when the setvault
 command is run, the resolved static version is set as the persistant
 selector by the command. For more information about setting the
 "HrefModeChangeWithTopStaticSelector" registry key, see the ENOVIA
 Synchronicity DesignSync Data Manager Administrator's Guide

Using setvault with DesignSync objects (File-based)

 Setting the vault is the first step in placing design data under
 revision control or checking out (populating) data that is already
 managed.

 Every local folder and file has a default client vault
 even if you have not explicitly set the vault. Client vaults:
 - Reside in the location determined during installation of
 your client
 - Cannot be accessed by other users, so you should only use
 the client vault to manage private data
 - Are always identified using a file: URL

 You must explicitly set the vault for a folder before you can check
 in objects contained in the folder.

 Typically, you use server (remote) vaults, which are managed by

ENOVIA Synchronicity Command Reference All -Vol2

131

 Synchronicity servers (SyncServers), instead of client
 vaults. Server vaults:
 - Can reside on your local host, but often reside on another host
 - Can be accessed by any user who is authorized to do so
 - Are always identified using a sync: URL

 When you set the vault on a folder, that vault association is
 stored in the local metadata for that folder. Each subfolder
 inherits its vault association from its parent folder; the vault
 association is not stored in metadata unless the subfolder has
 an explicit setvault applied to it. Every versionable object (file
 or collection) in the hierarchy inherits its vault from the
 parent folder, although once a revision-control operation has been
 performed on the object, the vault association is stored in that
 object's metadata. Therefore, anytime you want to change a vault
 setting (as opposed to setting the vault for the first time), use
 the -recursive option. The recursive operation removes all vault
 associations that are stored in metadata, which causes all objects
 in the hierarchy to inherit their vault associations from the
 folder on which the setvault is applied.

 Notes:

 o To resolve a selector, DesignSync does not search above the root of
 a workspace where a setvault has been applied. Thus, if a folder
 has no selector or persistent selector set, DesignSync searches
 up the hierarchy only as far as the first folder that has a vault
 association.

 o If the number of characters in the path to the vault exceeds 1024,
 revision control operations may fail.

 o Vault settings on subfolders in a work area are not obeyed
 by the 'populate -recursive' command. Consider using
 REFERENCEs in sync_project.txt files to redirect a subfolder to a
 different vault. See the Design Reuse book in DesignSync Data
 Manager User's Guide for more information.

 When you use the 'setvault' command:
 - The specified SyncServer must be running.
 - If you specify a vault that does not exist, you get a warning so
 you can make sure that your vault path is correct. When you
 specify a new vault, the vault folder is not created until you
 check in design data.
 - The local folder on which you are setting the vault must exist.
 - You must have write permission for the parent folder of the
 folder for which you are setting the vault. You need write
 permission in order for DesignSync to create local metadata (as
 stored in .SYNC directories) for the parent folder.

SYNOPSIS

 setvault [-recursive] [--] <vaultURL>[@<selector>[,<selector>...]]
 <localFolder>

File-Based Design

132

ARGUMENTS

• Vault URL
• Local Module (Module-based)
• Local Folder (File-based)

Vault URL

 <vaultURL> Specify the new location on the server for the
 top-level module or DesignSync object or folder.
 module should be specified in the following form:
 <protocol>://<host>:<port>/[Modules|Projects/] <path>

 o Protocol indicates whether to use a standard
 connection or an SSL connection. For a standard
 connection use "sync" as the protocol. For an SSL
 connection, use "syncs" as the protocol.
 o Host is the machine on which the vault's SyncServer
 is running. Specify a full domain name, such as
 myhost.myco.com. You can specify just the machine
 name ('myhost' in this example) if you are on the
 same LAN as the SyncServer host machine.
 o port is the SyncServer port. You can omit the
 port specification if the SyncServer is
 using the default port of 2647.
 o path is the path to the vault you are creating
 or accessing. For a client vault, the path
 is the full, absolute path on your local
 machine. For a server vault, the path is
 relative to the server root as specified
 during the SyncServer installation.

 Note: You must specify a top-level module folder. The
 setvault command does not work on referenced modules.

Local Module (Module-based)

 <localModule> Specify the local module or folder to set as the
 <localFolder> workspace path for the server module or DesignSync
 folder.

Local Folder (File-based)

 <localFolder> Specify the local folder to set as the
 workspace path for the DesignSync folder.

OPTIONS

ENOVIA Synchronicity Command Reference All -Vol2

133

• -recursive (File-based)
• --

-recursive (File-based)

 -recursive The vault associations for all objects in the work
 area are updated so that they inherit the specified
 vault. Use -recursive when you are changing a
 vault specification (as opposed to setting the
 vault for the first time).

 CAUTION: If a subfolder had an explicit setvault
 applied to it (so that the vault information is
 stored in the folder's local metadata), that vault
 association is removed and the subfolder reverts
 to inheriting its vault association from the parent
 folder.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 none

SEE ALSO

 unsetvault, populate, unlock, tag, cancel, ci, co, url vault,
 setselector, selectors, setroot

EXAMPLES

• Example of Associating a Server Vault with the Current Folder
• Example of Associating a Server Vault with a Specified Directory
• Example of Changing the Vault Association Recursively in a Workspace
• Example of Associating a Local Vault with a Specified Directory

Example of Associating a Server Vault with the Current Folder

 This example associates a server vault with the current folder.
 The vault directory 'Projects/Sportster' is relative to

File-Based Design

134

 the server root directory that was specified during server
 installation.
 dss> setvault sync://holzt.myco.com:2647/Projects/Sportster .

Example of Associating a Server Vault with a Specified Directory

 You can specify the local folder using relative or absolute paths,
 and you can omit the port specification because the SyncServer is
 using the default port of 2647:
 dss> setvault sync://holzt.myco.com/Projects/Sportster ../Sportster
 dss> setvault sync://holzt.myco.com/Projects/Sportster
/home/goss/Sportster

Example of Changing the Vault Association Recursively in a Workspace

 This example changes the vault association for a work area, which
 requires the -recursive option, and sets the work area persistent
 selector list to 'auto(Debug),Main:Latest':
 dss> setvault -rec \
 sync://holzt.myco.com/Projects/Sportster@auto(Debug),Main:Latest .

Example of Associating a Local Vault with a Specified Directory

 This example creates an association between the local folder
 '/home/goss/lunarLander' and the client vault
 'file:///home/goss/myVault/lunarLander'.
 dss> setvault file:///home/goss/myVault/lunarLander /home/goss/lunarLander

 Note: Client vaults cannot be shared across project teams. Only
 specify a client vault when you alone will be accessing the data.

unsetvault

unsetvault Command

NAME

 unsetvault - Disassociates a vault from a work area

DESCRIPTION

 This command removes the mapping between a local folder or object and
 a revision-control vault or folder (repository) by removing the
 associated metadata for the object. This metadata is stored in the
 .SYNC directory within each DesignSync workspace folder.

ENOVIA Synchronicity Command Reference All -Vol2

135

 The primary uses for this command are to unset a vault
 association incorrectly applied to a folder, or, if a folder is
 copied from one workspace to another workspace, to remove the
 metadata associated with the original workspace.

 If you specify an entire folder, the .SYNC directory is completely
 removed. If you specify a specific object, only the metadata for
 that object is removed.

 The unsetvault command is not applicable to any of the following data
 objects:
 o Cached objects
 o Mirrored objects

 If the unsetvault is used on any of the above data objects, or used
 with the -recursive option on a folder containing any of the above
 objects, the command fails without removing the vault association of
 any of the objects in the workspace.

 Note: Unsetvault does not remove a vault setting inherited from the
 parent folder.

SYNOPSIS

 unsetvault [-[no]recursive] <argument> [..]

ARGUMENTS

• DesignSync Object
• Workspace Folder

DesignSync Object

 <DesignSync Specify the name of the DesignSync object to
 object> disassociate from the server vault.

Workspace Folder

 <Workspace Specify the local workspace folder to remove the
 folder> vault association from.

OPTIONS

• -[no]recursive
• --

File-Based Design

136

-[no]recursive

 -[no]recursive Controls whether the vault associations for all
 objects in the work area are removed.

 -recursive removes the vault association for all
 objects, including subfolders, in the workspace.

 Note: The -recursive option is only valid for
 folders.

 CAUTION: If a subfolder had an explicit setvault
 applied to it (so that the vault information is
 stored in the folder's local metadata), that vault
 association is also removed.

 -norecursive removes the vault association for the
 specified object or folder, but does not traverse the
 folder structure.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments to
 the command begin with a hyphen (-).

RETURN VALUE

 If the command is successful, DesignSync returns an empty
 string (""). If the command fails, DesignSync returns an error
 explaining the failure.

SEE ALSO

 setvault, populate, ci, co, url vault, setselector, selectors

EXAMPLES

 This example shows using unsetvault to remove the vault setting from
 chip workspace directory. Note that after the vault setting has been
 removed, the directory shows the default client_vault URL, indicating
 that the vault association has not been set.

 stcl> url vault ./chip

 sync://srv2.ABCo.com:2647/Projects/chip

ENOVIA Synchronicity Command Reference All -Vol2

137

 stcl> unsetvault chip

 Removing all metadata in /home/rsmith/workspaces/chip

 stcl> url vault ./chip
 file:///home/rsmith/syncdata/client_vault/home/rsmith/workspaces/example

 stcl>

Primary Revision Control

cancel

cancel Command

NAME

 cancel - Cancels a previous checkout operation

DESCRIPTION

• Notes on Using cancel with Collections
• Notes on Using Cancel with Modules (Module-based)
• Notes on Using cancel with File-Based Objects (File-based)
• Auto-Branching for File Objects and Legacy Modules Objects (File-based)

 This command effectively performs an "un"checkout operation on the
 specified locked object. This operation unlocks objects previously
 locked in that work area and leaves the objects in the specified
 state.

 If the object was modified locally, it remains in your directory by
 default. If you specify the "-force" option, the object is
 re-fetched from the server and the local modifications are
 discarded.

 You lock a branch by checking out an object by using the '-lock'
 option with the 'co', 'populate', or 'ci' commands. Only one user can
 have a lock on an object at a time. Having a lock
 prohibits other users from checking in changes to that branch;
 however, other users (or the same user in different work
 areas) can independently lock, unlock, and check in changes to other
 branches. The cancel command only cancels a checkout you have
 performed. To unlock a file locked by another user, use the unlock
 command.

 DesignSync determines what state to leave files in your work area

File-Based Design

138

 after the cancel operation completes as follows:
 1. DesignSync obeys the state option (-keep, -share,
 -mirror, -reference) specified on the command line.
 2. If no state option is specified, DesignSync uses the default
 fetch state as specified by your project leader. See
 the "fetch preference" help topic for more information.
 3. If a default fetch state is not defined, the default
 behavior for 'cancel' is -keep.

 Note: If the object being operated on has been designed uncachable,
 cancel automatically ignores the -share and -mirror option and
 performs the operation in -get mode. For more information, see the
 caching commands.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Notes on Using cancel with Collections

 If you specify a collection member as the object to be operated on,
 DesignSync skips the object and warns that the object is not
 versionable. If DesignSync attempts to operate on a collection member
 specified implicitly (through the use of wildcards or a recursive
 operation), DesignSync silently skips the object. You can change this
 behavior by using the SyncAdmin "Map operations on collection members
 to owner" setting. If you select this setting and DesignSync attempts
 to operate on a collection member during a revision control
 operation, DesignSync determines the member's owner collection and
 operates on the collection as a whole.

Notes on Using Cancel with Modules (Module-based)

 o Running cancel on a workspace in the module effects a cancel on
 all the objects within that module that are populated to the
 workspace

 o Module branch checkouts can not be canceled. To remove a module
 branch lock without a checkin, you must use the unlock command.

 o If an object was explicitly excluded from a cancel operation by
 -filter or -exclude the command output message indicates that the
 object was "excluded by filter."

 o You cannot cancel the lock on a module member that has been removed
 or moved in the workspace.

Notes on Using cancel with File-Based Objects (File-based)

ENOVIA Synchronicity Command Reference All -Vol2

139

 If an object was explicitly excluded from a cancel operation by
 -exclude (for DesignSync objects) the command output message
 indicates that the object was "excluded by filter."

Auto-Branching for File Objects and Legacy Modules Objects (File-based)

 You can create a new, locked branch by using 'co -lock' with a selector
 and autobranching. This branch can be unlocked without creating a new
 version by:

 - Using 'cancel' from the workspace where the branch was locked.
 - Using 'unlock' on the vault.
 - Using 'ci' from the workspace where the branch was locked, without
 making modifications.

 In these cases, the lock is removed from the vault, the auto-created
 branch is removed, and the branch tag is deleted. If the branch is
 removed but still exists in the metadata of a workspace, some commands
 (such as the 'url' commands and 'vhistory') will fail with "No such
 version.

SYNOPSIS

 cancel [-exclude <object>[,<object>...]] [-filter <string>]
 [-[no]force] [-hreffilter <string>]
 [-keep | -share | -mirror | -reference] [-modulecontext <context>]
 [-[no]selected] [-[no]retain] [-trigarg <arg>] [--] [<argument>
 [<argument>...]]

ARGUMENTS

• Member Module/Member Folder (Module-based)
• Workspace Module (Module-based)
• DesignSync File Object (File-based)
• DesignSync Folder (File-based)

Member Module/Member Folder (Module-based)

 <module member | Specify a module member or module folder to
 module folder> cancel the lock on.

Workspace Module (Module-based)

 <workspace module> Specify the module to cancel the locks in.
 All locks in the module held by the user
 initiating the cancel are removed.

File-Based Design

140

 Note: This does not remove a lock on a module
 branch.

DesignSync File Object (File-based)

 <DesignSync object> Specify a versionable file on the server or in
 your workspace (local) to cancel the lock on
 the object.

 Note: If you specify a collection member as
 the object to be operated on, DesignSync skips
 the object and warns that the object is not
 versionable. For more information on
 collections are processed by the cancel
 command, see the Notes section of the command
 Description.

DesignSync Folder (File-based)

 <DesignSync folder> Specify a DesignSync folder in your workspace
 to cancel the lock on all objects in the
 folder. To unlock all objects in sub-folders
 of the specified folder, use the -recursive
 option.

OPTIONS

• -exclude
• -filter (Module-based)
• -[no]force
• -hreffilter (Module-based)
• -keep
• -mirror (File-based)
• -modulecontext (Module-based)
• -[no]recursive (Module-based)
• -[no]recursive (File-based)
• -reference
• -[no]retain
• -[no]selected
• -share
• -trigarg
• --

-exclude

 -exclude <fn> Specifies a comma-separated list of files and

ENOVIA Synchronicity Command Reference All -Vol2

141

 directories to be excluded from the operation.
 Wildcards are allowed.

 Do not specify paths in your arguments to
 -exclude. Before operating on each object
 (such as during a recursive cancel),
 DesignSync compares the object's leaf name
 (path stripped off) to the exclude list to see
 if there is a match. Because the object's path
 is removed, the object will not match any
 object in the exclude list specified with a
 path. For example, if you specify '-exclude
 bin/*.exe', you will not successfully exclude
 bin/foo.exe or any other *.exe file. You need
 to instead specify '-exclude *.exe', or
 '-exclude foo.exe' if you want to exclude only
 'foo.exe'. The result is that you cannot
 exclude a specific instance of an object --
 you exclude all matching objects.

 In addition to objects you specify using the
 -exclude option, the "These objects are always
 excluded" field from the Tools->Options->
 General->Exclude Lists dialog box in
 DesignSync lists objects that are always
 excluded from revision-control operations.

-filter (Module-based)

 -filter <string> Specify one or more extended glob-style
 expressions to identify an exact subset of
 module objects on which to operate. Use the
 -exclude option to filter out DesignSync
 objects that are not module objects.

 The -filter option takes a list of expressions
 separated by commas, for example: -filter
 +top*/.../*.v,-.../a*

 Prepend a '-' character to a glob-style
 expression to identify objects to be excluded
 (the default). Prepend a '+' character to a
 glob-style expression to identify objects to
 be included. Note that if the list of
 expressions begins with an include character
 ('+'), the filter excludes all objects except
 those that match the include string.

 Specify the paths in your glob-style
 expressions relative to the current directory,
 because DesignSync matches your expressions
 relative to that directory. For submodules
 followed through hrefs, DesignSync matches
 your expressions against the objects' natural

File-Based Design

142

 paths, their full relative paths. For
 example, if a module Chip references a
 submodule, CPU, and CPU contains a file,
 '/libs/cpu/cdsinfo.tag', DesignSync matches
 against '/libs/cpu/cdsinfo.tag', rather than
 matching directly within the 'cpu' directory.

 If your design contains symbolic links that
 are under revision control, DesignSync matches
 against the source path of the link rather
 than the dereferenced path. For example, if a
 symbolic link exists from 'tmp.txt' to
 'tmp2.txt', DesignSync matches against
 'tmp.txt'. Similarly for hierarchical
 operations, DesignSync matches against the
 unresolved path. If, for example, a symbolic
 link exists from dirA to dirB and dirB
 contains 'tmp.txt', DesignSync matches against
 'dirA/tmp.txt'.

 The extended glob-style expressions you use to
 filter the objects are standard glob-style
 expressions, but they are extended so that you
 can use the "..." syntax to indicate that the
 expression matches any number of directory
 levels. For example, the expression,
 "top/.../lib/*.v" matches *.v files in a
 directory path that begins with "top",
 followed by zero or more levels, with one of
 those levels containing a lib directory. The
 command traverses the directory structure. If
 a directory name matches an exclude clause of
 the filter, then the entire directory and all
 its contents are filtered (the command stops
 descending at that point), otherwise the
 command continues traversing the directory
 structure searching for matching objects.

 The exclude list set using SyncAdmin's
 General=>Exclude Lists tab takes precedence
 over those set by -filter; the items in the
 exclude list are combined with the filter
 expression. For example, an exclude list of
 "*%,*.reg" combined with '-filter .../*.doc'
 is equivalent to '-filter
 .../*.doc,.../*%,.../*.reg'.

-[no]force

 -[no]force Specifies whether to overwrite locally
 modified objects with the server version
 after removing the lock on the objects.

 -noforce does not remove the file if a file

ENOVIA Synchronicity Command Reference All -Vol2

143

 has been locally modified. It does remove
 the lock, leaving the locally modified file
 in the workspace. (Default)
 -force removes the lock and the file even
 when the object was modified locally.

 Note: If a file is locally modified, and you
 do not specify -force in conjunction with
 -share or -mirror, the cancel operation fails.

-hreffilter (Module-based)

 -hreffilter <string> Excludes href values during recursive
 operations on module hierarchies. Because
 hrefs link to submodules, you use -hreffilter
 to exclude particular submodules. Note that
 unlike the -filter option which lets you
 include and exclude items, the -hreffilter
 option only excludes hrefs and, thus, their
 corresponding submodules.

 Specify the -hreffilter string as a glob-style
 expression. The string must represent a
 simple leaf name; you cannot specify a
 path. DesignSync matches the specified href
 filter against hrefs anywhere in the
 hierarchy. Thus, DesignSync excludes all
 hrefs by this leaf name; you cannot exclude a
 unique instance of the href.

 You can prepend the '-' exclude character to
 your string, but it is not required. Because
 the -hreffilter option only supports excluding
 hrefs, a '+' character is interpreted as part
 of the glob expression.

-keep

 -keep Specifies whether to keep a local copy
 of objects after canceling a lock
 operation. You can change whether the local
 file is read-only or read/write by default by
 using the "Check out read only when not
 locking" option from the
 Tools->Options->General dialog box in the
 graphical interface.

 This option is the default object-state option
 unless a default object state has been defined
 (see the "fetch preference" help topic for
 more information).

File-Based Design

144

 Note:
 - A locally modified object is left in your
 directory by default unless you choose
 "-force", in which case the object is
 re-fetched from the server and the local
 modifications are discarded.

 - If you fetch an object as a locked reference
 (using co -lock -reference, for example),
 specifying 'cancel -keep' for that object
 cancels the lock and fetches the file. To
 cancel the lock and keep a reference to the
 file, use 'cancel -reference'.

-mirror (File-based)

 -mirror Create a symbolic link to the file in the
 mirror directory. This option requires that
 you have associated a mirror directory with
 your working directory with the setmirror
 command. In addition, the effective workspace
 selector (set using 'setselector', 'setvault',
 or the -branch option) must match the mirror
 workspace selector.

 Note:
 o This option is not supported on Windows
 platforms.
 o When operating on a mirror directory, the
 cancel operation does not require an exact
 match between the workspace selector and
 the mirror selector in the case of
 <BranchName>: or Trunk selectors.
 The cancel operation considers:
 - A selector of 'Trunk' to be the same as
 'Trunk:' and 'Trunk:Latest'
 - A selector of <BranchName>: to be the same
 as <BranchName>:Latest

-modulecontext (Module-based)

 -modulecontext Identifies the module on which the cancel
 <context> operates. The -modulecontext option restricts
 the cancel operation to only a particular
 module if your workspace has overlapping
 modules.

 Specify the desired module using the module
 name (for example, Chip), module instance
 name (for example, Chip%0 or
 /home/Modules/Chip%0).

ENOVIA Synchronicity Command Reference All -Vol2

145

 Note that you cannot use a -modulecontext
 option to operate on objects from more than
 one module; the -modulecontext option takes
 only one argument, and you can use the
 -modulecontext option only once on a command
 line.

-[no]recursive (Module-based)

 -[no]recursive Determines whether to cancel the lock on the
 objects in the specified folder or all objects
 in the folder and all objects in the
 subfolders. This option is ignored if the
 argument is not a module or folder.

 -norecursive removes locks only from objects
 in the specified folder or module. It does not
 remove locks from any subfolders or submodules
 of the specified argument. (Default)

 -recursive removes locks from the specified
 folder and all subfolders. If the object is a
 module, it removes all locks from the
 module objects and all objects in the
 subfolders, and submodules.

 Note: The -modulecontext option can be used to
 limit the operation of -recursive to only
 removing locked members of the specified
 module.

 Note: On GUI clients, -recursive is the
 initial default.

-[no]recursive (File-based)

 -[no]recursive Determines whether to cancel the lock on the
 objects in the specified folder or all objects
 in the folder and all objects in the
 subfolders. This option is ignored if the
 argument is not a DesignSync folder.

 -norecursive removes locks only from objects
 in the specified folder. It does not
 remove locks from any subfolders of the
 specified argument. (Default)

 -recursive removes locks from the specified
 folder and all subfolders.

 Note: On GUI clients, -recursive is the
 initial default.

File-Based Design

146

-reference

 -reference Keep a reference to the file in the directory
 after the cancel operation. A reference does
 not have a corresponding file on the file
 system but does have DesignSync metadata that
 makes it visible to Synchronicity programs.

 Note: When operating on a collection object,
 you should not use the -reference option. When
 the -reference option is used on a collection,
 DesignSync creates a reference in the metadata
 for the collection object but member files are
 not processed and are not included in the
 metadata.

-[no]retain

 -[no]retain Retain the 'last modified' timestamp of the
 checked-out object as recorded when the
 object was checked into the vault.

 The -retain option is applicable only when the
 cancel operation is dealing with physical
 copies, as is the case when you specify the
 -keep option. The -share and -mirror options
 create links to shared objects, so timestamps
 cannot be set on a per-user basis. The -share
 and -mirror options automatically use -retain
 behavior; objects in the mirror/cache retain
 their original timestamps. However, links in
 your work area to the cache/mirror have
 timestamps of when the links were created. If
 you specify the -reference option, no object
 is created in your work area, so there is no
 timestamp information at all.

 If you do not specify '-retain' or -noretain',
 the cancel command follows the DesignSync
 registry setting for Retain last-modification
 timestamps. By default, this setting is not
 enabled; therefore, the timestamp of the local
 object is the time of the cancel operation. To
 change the default setting, your Synchronicity
 administrator can use the SyncAdmin tool. For
 information, see the SyncAdmin help.

-[no]selected

ENOVIA Synchronicity Command Reference All -Vol2

147

 -[no]selected Determines whether the operation is performed
 just on the objects specified at the command
 line or on objects specified at the command
 line and objects in the select list (see the
 'select' command)

 -noselected cancels the locks only for
 objects specified on the command
 line. (Default)
 -selected cancels the locks for objects
 specified on the command and in the select
 list.

 Note: If no objects are specified on the
 command line, the -selected option is implied.

-share

 -share Keep a copy of the file in the cache
 directory, and create a link from the working
 directory to the file in the cache.

 Note: This option is not supported on Windows
 platforms.

 If you use 'cancel -share' on a collection
 object, for any collection member that is a
 symbolic link, DesignSync creates a symbolic
 link to the member object itself and not to
 the cache. Note: Collections existing entirely
 of symbolic links are not supported.

-trigarg

 -trigarg <arg> Specifies an argument to be passed from the
 command line to the triggers set on the cancel
 operation. If the argument contains
 whitespace, enclose the argument within double
 quotation marks ("") if using the dss command
 shell or braces ({}) if using the stcl command
 shell.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when an
 argument to the command begins with a hyphen
 (-).

File-Based Design

148

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.

 Notes:
 - Scripts should only test for non-empty lists to
 determine success or failure. The actual content of a non-empty
 list currently takes the form "Objects succeeded (n)" and
 "Objects failed (n)", where 'n' is the number of objects that
 succeeded or failed. However, these return values are subject to
 change in a future release.
 - If all objects fail, an exception occurs (the return value is
 thrown, not returned).
 - Objects reported as "excluded by filter," may have been excluded
 either with the -filter option (for modules) or with the -exclude
 option (for DesignSync objects.)

SEE ALSO

 caching, co, command defaults, ci, populate, select, switchlocker,
 unlock

EXAMPLES

 This example cancels the checkout of all files ending in
 '.v', except those whose filenames begin with 'new', leaving
 links to files in the cache.
 dss> cancel -share -exclude new* *.v

ci

ci Command

NAME

 ci - Checks in the specified objects

DESCRIPTION

• Versions and Branches
• Changing Checkin Comments

ENOVIA Synchronicity Command Reference All -Vol2

149

• Understanding the Output
• Object States (Module-based)
• Determining the Objects to be Checked In (Module-based)
• Determining Which Branch is Selected for the Check In (Module-based)
• Filtering or Excluding Objects From Checkin (Module-based)
• Checking in Module Objects (Module-based)
• Branching Modules (Module-based)
• Automerging of Module Objects (Module-based)
• How Checkin Works with Enterprise Design Synchronization (Module-based)
• Checking in Legacy Module Data (Legacy-based)
• Object States (File-based)
• Determining the Objects to be Checked In (File-based)
• Determining Which Branch is Selected for the Check In (File-based)
• Filtering or Excluding Objects From Checkin (File-based)
• Interaction with Mirrors (File-based)

 This command checks in the specified objects, creating a new version
 in each object's vault.

 Note: The check-in operation requires that your work area folder be
 associated with a DesignSync vault location on the server. Otherwise,
 the operation will fail.

 Usually, you need to set up the vault association only once, as the
 first step in placing design data under revision control or before
 you do an initial populate of the work area. For modules, the vault
 association occurs automatically during populate operations. To
 determine if your work area is associated with a vault, use the
 url vault command. For information on setting up the association,
 see the setvault command. For information on setting up the
 association with a module, see the mkmod and populate commands.

 If you copied managed data into your workspace, ci detects that,
 and fails. To omit this check, see the "Advanced Registry Settings"
 topic in the DesignSync Data Manager Administrator's Guide.

 Note: DesignSync requires the names of objects being checked in
 contain only characters that are part of the standard ASCII character
 set. You should also avoid the following characters, which are
 explicitly disallowed only for module names, to minimize confusion:
 ~ ! @ # $ % ^ & * () , ; : | ` ' " = [] / \ < >
 Using SyncAdmin, you can explicitly disallow any or all of these
 reserved characters in object and path names. For more information,
 see the DesignSync Administrator's Guide.

 This command supports Enterprise Design Synchronization. For more
 information on Enterprise Design Synchronization, see How Checkin
 Works with Enterprise Design Synchronization below.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

File-Based Design

150

 This command supports the command defaults system.

Versions and Branches

 A version is a permanent, immutable snapshot of your design
 object. Each version is assigned a unique, consecutive version
 number that you can use to retrieve or otherwise identify the
 object in the future.

 Version numbers take the form of 1.1, 1.2, 1.3, and so on, where
 the number following the period identifies the version, and the '1'
 preceding the period identifies the branch (branch 1, also known as
 Trunk). A branch is a line of development. Projects that require
 multiple lines of development (parallel development) can define
 multiple branches. Version numbers on branches other than Trunk
 still take the form <branch>.<version>, where <branch> is an odd
 number of period-separated numbers. For example, version 1.2.4.3
 is the third version on branch 1.2.4, where 1.2.4 is the fourth
 branch off version 1.2, where 1.2 is the second version on branch 1.

 Because branch and version numbers are not memorable, you can apply
 symbolic names, called tags, to versions and branches. Tags also
 let you associate related versions of different design objects,
 called configurations. See the "tag" help topic for details.

Changing Checkin Comments

 The checkin comments for files checked into a vault can be modified
 using the url setprop command. The <new checkin comment> is optional
 on the command line and the user is prompted for it if not specified.
 Here is the syntax:
 url setprop <versionURL> log [<new checkin comment>]

 If the user changing the comment is not the author of the version,
 a note with the user name and date and stating that the comment was
 changed is prepended to the new comment.
 For example:
 stcl> url setprop [url vault new_d]1.5 log "New comment set from \
 other user"
 New comment set from other user
 stcl> url getprop [url vault new_d]1.5 log
 Comment changed by JerryL Jun 02 2005, 08:19:13 EDT
 New comment set from other user
 stcl>

 If a comment is not specified at the command line, and DesignSync is
 set to use a file editor for comments, the designated file editor is
 launched, otherwise a comment can be entered interactively on the
 command line. For more information on defining a file editor for
 comments, see the DesignSync Administrator's Guide, "General
 Options."

ENOVIA Synchronicity Command Reference All -Vol2

151

 Note: The client-side minimum comment length is checked.

Understanding the Output

 The ci command provides the option to specify the level of
 information the command outputs during processing. The -report option
 allows you to specify what type of information is displayed:

 If you run the command with the -report brief option, the ci command
 outputs the following information:
 o Failure messages.
 o Warning messages.
 o Informational messages concerning the status of the checkin
 operation.
 o Success/failure/skip status.

 If you do not specify a value, or the command with the -normal
 option, the ci command outputs all the information presented with
 -report brief and the additional information for each successful
 object checkin, excluded objects, or omitted objects.

 If you run the command with the -report verbose option, the ci command
 outputs all the information presented with -report normal and
 information about each object examined or filtered.

 If you run the command with the -report error option, the ci command
 outputs the following information:
 o Failure messages.
 o Warning messages.
 o Success/failure/skip status messages.

Object States (Module-based)

 DesignSync determines what state to leave objects checked into
 your work area as follows:
 1. DesignSync obeys the state option (-keep, -lock, -share,
 -reference) specified on the command line.
 2. If no state option is specified, DesignSync uses the default
 fetch state as specified by your project leader. See
 the "fetch preference" help topic for more information.
 3. If no default fetch state is defined, the default
 behavior for ci is -keep.

 Important:

 o The ci command processes only locked or modified objects.
 DesignSync changes the state of only those objects that have been
 checked in. To set all of the objects in your work area to the same
 state, use 'populate -unifystate'. To check in unmanaged (new)
 objects, use 'ci -new'.

File-Based Design

152

 o PreFolder check-in triggers fire on folders that contain locked or
 modified objects being checked in. For some check-in operations
 like recursive checkins with -force or -new options, preFolder
 triggers might also fire on folders that do not contain modified or
 locked objects being checked in.

 o The fetch state of moved module members does not change during
 checkin unless content of the object, indicated by a modification
 to the timestamp, has changed.

 o If the object is designated as uncachable, attempts to place
 objects in the cache (ci -mirror; ci -share) will automatically
 populates the workspace with unlocked copies (-keep mode). For more
 information on cachability, see the "caching" commands.

 By default (unless you use the -force option), DesignSync does not
 create a new version when you attempt to check in an object that
 is not locally modified. An object is defined as "locally modified"
 if its timestamp has been changed or it is a module member that has
 been moved with the mvmember command with the -noimmediate option.

 For collections that have local versions, the check-in
 operation usually does not change the set of local versions in your
 workspace. However, there is an exception to this behavior. The
 check-in operation changes the set of local versions in your
 workspace when the originally fetched state of the object was Cache
 or Mirror. In this case, the check-in operation replaces files
 linked to the cache or mirror with physical copies.

Determining the Objects to be Checked In (Module-based)

 By default, DesignSync only checks in modified objects. An object is
 considered modified when it meets the following criteria:

 * The current timestamp of the object in the workspace is later than
 the fetched timestamp of the object.
 * The current size or checksum of the object is different than the
 fetched object size or checksum.
 * The module member is in the added/moved/removed state.

 Note: If a hierarchical reference to a submodule version has been
 overridden by a higher-level href, the hierarchical reference within
 the parent module is NOT considered modified.

Determining Which Branch is Selected for the Check In (Module-based)

 Arguments to the ci command must represent versionable objects
 (modules, module members, or collections), or local folders
 (only meaningful when you use the -recursive option). The ci
 command operates on the current or specified branch of each of these
 objects. When you are in a multibranch design environment,
 DesignSync determines what branch you want to check into as follows:

ENOVIA Synchronicity Command Reference All -Vol2

153

 1. DesignSync obeys the -branch option, operating on the Latest
 version on the specified branch. Using this option is not
 typical, however, because the default behavior (without
 -branch) is usually the correct and intuitive behavior.

 2. If -branch is not specified and you have the current branch
 locked in your work area, DesignSync checks into the current
 branch.

 3. Otherwise, DesignSync uses the first selector of the object's
 persistent selector list ('Trunk' by default, or as defined
 by the setselector command). If the selector does not
 resolve to 'Trunk' or some other valid branch for the object
 (specified as <branch>:<version>, for example Rel2:Latest),
 the operation fails.

 Complex selector lists are a powerful capability for populate
 and check-out operations, but they can be dangerous for
 check-in operations. When creating a new version, there should
 be no uncertainty as to which branch to create the version
 on. Therefore, ci considers only the first selector in the
 persistent selector list.

 See the "selectors" help topic for details on selectors,
 selector lists, and persistent selector lists.

 For more details about checking in modules and module objects,
 see "Checking In Module Objects" below.

Filtering or Excluding Objects From Checkin (Module-based)

 DesignSync features three ways to control the objects being checked
 in. For objects in source control, exclude and filter lists are used
 to exclude/include DesignSync objects. Filter lists are used to
 include or exclude module objects or to include DesignSync
 objects. Exclude lists are used to exclude DesignSync objects.
 Both Filter and Exclusion lists can be saved with command defaults or
 specified using the -fiter or -exclude option.

 Note: Regardless of whether -filter or -exclude is used to exclude
 an object, the command output message indicates that the object was
 "excluded by filter." For more information on filters, see the
 -filter and -exclude options in the options section.

 For objects that are not in source control, exclude files can be
 created on a per directory basis to prevent unmanaged objects from
 being checked in. Objects that are excluded by exclude files cannot
 be reincluded by a filter. Exclude files are processed before the
 filter and exclude options set either by the command defaults or
 specified on the command line. For more information on setting up
 exclude files, see the ENOVIA Synchronicity DesignSync Data Manager
 Administrator's Guide.

File-Based Design

154

 If you specify a collection member as the object to be operated on,
 DesignSync skips the object and warns that the object is not
 versionable. If DesignSync attempts to operate on a collection member
 specified implicitly (through the use of wildcards or a recursive
 operation), DesignSync silently skips the object. You can change this
 behavior by using the SyncAdmin "Map operations on collection members
 to owner" setting. If you select this setting and DesignSync attempts
 to operate on a collection member during a revision control
 operation, DesignSync determines the member's owner collection and
 operates on the collection as a whole.

Checking in Module Objects (Module-based)

 The ci command recognizes and checks in modules, and their members. A
 module is data that represents a level of a design hierarchy. Such
 data includes objects or an entire vault folder hierarchy of objects
 managed in DesignSync, as well as hierarchical references to other
 modules. These modules can be stored on other SyncServers. For more
 information about modules, see DesignSync Data Manager User's Guide:
 "What is a Module?".

 The ci operation checks in modified objects. This can include not
 only objects with modified content, but also added, moved, renamed,
 or removed module members. The add command always operates in no
 immediate mode, meaning that any objects in an Added state are added
 when the next checkin operation affecting the Added module members
 occurs. The mvmember and remove commands operate by default in a
 "noimmediate" mode. If you added an object to a module using add, the
 object is considered to be managed already; in this case, use ci
 without the -new option to check in the object.

 When working with module data, the module object is
 version-controlled; module members are not independently
 version-controlled. For more information about module
 versions, see the populate command description subtopic,
 "Module Version Updating". See also "Automerging of Module
 Objects" below. You can branch a module during check-in, for more
 information, see the "Module Branching" section.

 Notes:
 o If a non-explicitly added folder becomes empty as the result of
 the checkin of removed module members, the folder is removed as
 well. If an explicitly added folder is moved, but the full contents
 of folder are not, the explicitly added folder remains in the same
 position with the unmoved contents and a new implicitly added
 folder is created to contain the moved contents.

 o Moved module members with no content changes are moved, but the
 module member version is not incremented and the keywords within
 the file are not updated.

 o If there are no content changes to the module members, the objects
 retain the same state in the workspace. For example, if the objects
 are fetched in -get mode, a file is renamed but not otherwise

ENOVIA Synchronicity Command Reference All -Vol2

155

 modified, and then the checkin is done in -share mode, the renamed
 file remains in -get mode.

 A module checkin is an atomic operation; if a failure occurs
 during a module check-in, the ci command does not check in any of the
 specified module objects. After you resolve the failure, you can
 re-apply the ci command. By default, DesignSync optimizes the
 check-in by continuing where the failed check-in left off. Specify
 the -noresume option to start the check-in from scratch.

 Note: If there are structural changes to the module, such as removed
 or moved module members, the checkin always defaults to
 -noresume. The -resume operation is not applicable to module checkin
 operations with the -branch option.

 You can use ci to check in entire modules or their members as
 follows:

 o To check in a single module without checking in its submodules,
 specify the workspace module and apply the ci command without
 the -recursive option.

 The command checks in the module members without following
 hierarchical references (hrefs).

 o To check in all objects in an entire module hierarchy, specify the
 workspace module and use the ci command with the -recursive option.

 The command traverses the hierarchy in a module-centric fashion,
 checking in all of the objects in the module and following its hrefs
 to check in its referenced submodules.

 Notes:
 The ci command does not traverse legacy modules,
 even if you specify the -recursive option for the module. You
 must check in the legacy sub-module separately.

 If you specify ci with -new and -modulecontext is selected or
 smart module detection is able to identify the target module,
 unmanaged files are checked into the appropriate target
 module. When ci -new -recursive is specified, the
 operation does not traverse hierarchical references. The ci -new
 -recursive operation does traverse the hierarchy in a
 folder-centric method and smart module detection appropriately
 identifies new members are belonging to the appropriate module or
 sub-module. For more information on how smart module detection
 determines the target module, see the ENOVIA Synchronicity
 DesignSync Data Manager User's Guide topic: Understanding Smart
 Module Detection.

 o To check in all modified objects in a folder and its subfolders,
 specify a folder name and apply the ci command with the -recursive
 option.

 The command traverses the folders in a folder-centric fashion,
 checking in the modified objects in the folder and its subfolders,
 but without following hrefs. To follow hrefs, you must specify a

File-Based Design

156

 workspace module instead of a folder.

 Note: Smart module detection for new module members always works in a
 folder-centric, not a module-centric fashion.

 o To check in new files to a module, you should add the files with
 add, and then check in the files normally. The ci command with
 the -new option only checks in new files, when smart module
 detection can detect the target module or when the -modulecontext
 option specifies the module for the objects (ci -new -modulecontext
 <context>)

 o To check in files to a new branch, specify the module context and
 the branch options. The -new and -recursive options cannot be used
 to check into a new branch. For more information on module
 branching, see the Branching Modules section.

 Notes:

 o Mirrors are not supported with module objects; ci ignores the
 -mirror option if you use it while checking in a module object.

 o If a module contains an empty folder, DesignSync checks in the
 empty folder.

 o If the -modulecontext option is not specified when checking in a
 module member with the -new option, DesignSync uses smart module
 detection to identify the desired module. If DesignSync cannot
 identify the module, the command returns an error stating that the
 module can not be identified and recommending the use of the
 -modulecontext option.

Branching Modules (Module-based)

 You can check in a module to a new module branch with the
 checkin operation. The operation creates a new module version on the
 branch containing all managed objects in the workspace and on the
 server belonging to the specified module. This includes any of the
 following objects:

 * Added objects that have not been checked in yet.
 * Modified objects belonging to the specified module.
 * Unmodified objects belonging to the specified module.
 * Objects that are part of the module on the server, but have not
 been populated into the workspace.
 * Objects in the workspace that were removed on the server in a
 later module version.

 Note: The module member version in the workspace is always considered
 the desired version for the ci -branch operation. If you have older
 member versions in the workspace, those will become the Latest
 version on the new branch.

 When you check a module into the new branch, DesignSync automatically

ENOVIA Synchronicity Command Reference All -Vol2

157

 modifies the workspace selector to the Latest version of the new
 branch tag (<Branch>:Latest).

 Note: DesignSync creates an initial, empty, module version, then
 creates a second version containing the module member files.

 The option to check into a branch requires that you check into a new
 branch.

 You must specify a single module for checkin. You cannot recurse
 through hierarchical references to branch submodules.

 If you have unmanaged files in the workspace that you want to include
 in the module checkin, add the files to the module first, then
 perform the checkin. You cannot specify the -new option with a
 module checkin to a new branch.

Automerging of Module Objects (Module-based)

 As you make changes to module objects, other team members might make
 changes to other module objects, thus creating new versions of the
 module. If you then check in your module objects, object versions
 in your workspace no longer match the target branch. If you had
 been working with non-module objects, you could either merge your
 changes first, or specify the -skip option to force a check-in.
 However, for module objects, DesignSync lets you check in the
 objects without specifying the -skip option. In this case,
 DesignSync performs an 'auto-merge' of the module objects. An
 auto-merge merges the module changes from your workspace into
 the latest version of the module in the vault, to create a new
 module version. This auto-merge occurs at the file level;
 DesignSync does not attempt to merge the contents of your module
 objects.

 During an auto-merge, DesignSync does not automatically refresh your
 workspace to bring in your team members' updated module objects.
 Consequently, an showstatus of the workspace module shows that the
 fetched version of the module is not the latest version. Perform a
 populate operation on the module to ensure that you have the latest
 versions of all of the module's objects.

 Note that if you attempt to check in a module object and a teammate
 has created a newer version of that object, DesignSync does not
 attempt an auto-merge of that object. In this case, you must
 explicitly merge these objects using 'populate -merge'. See
 DesignSync Data Manager User's Guide to learn more about merging
 modules.

How Checkin Works with Enterprise Design Synchronization (Module-based)

 Operations submitted with checkin that can affect the global
 enterprise design such as tagging and hierarchical references changes,

File-Based Design

158

 are stored in a queue until they are pushed to the Enterprise server.

 Not all checkin operations are sent to the queue, only the ones that
 include global changes, such as a checkin following a non-immediate
 remove of hierarchical references, or a checkin with tag operation
 (ci -tag).

 For more information on Enterprise Design management, see the
 Enterprise Design Administration User's Guide.

Checking in Legacy Module Data (Legacy-based)

 When ci is used with legacy modules, it never traverses the module
 hierarchy; it will always run in a non-recursive fashion, mimicking
 the behavior of the former -nomodulerecursive behavior.

 If -recursive is specified during a legacy module checkin, the
 recursive option is ignored.

 Referenced legacy sub-modules are not included in the parent module
 checkin. Legacy sub-modules are always checked in individually.

Object States (File-based)

 DesignSync determines what state to leave objects checked into
 your work area as follows:
 1. DesignSync obeys the state option (-keep, -lock, -share,
 -mirror, -reference) specified on the command line.
 2. If no state option is specified, DesignSync uses the default
 fetch state as specified by your project leader. See
 the "fetch preference" help topic for more information.
 3. If no default fetch state is defined, the default
 behavior for ci is -keep.

 Important:

 o The ci command processes only locked or modified objects.
 DesignSync changes the state of only those objects that have been
 checked in. To set all of the objects in your work area to the same
 state, use 'populate -unifystate'. To check in unmanaged (new)
 objects, use 'ci -new'.

 o PreFolder check-in triggers fire on folders that contain locked or
 modified objects being checked in. For some check-in operations
 like recursive checkins with -force or -new options, preFolder
 triggers might also fire on folders that do not contain modified or
 locked objects being checked in.

 o If the object is designated as uncachable, attempts to place
 objects in the cache (ci -mirror; ci -share) will automatically
 populates the workspace with unlocked copies (-keep mode). For more
 information on cachability, see the "caching" commands.

ENOVIA Synchronicity Command Reference All -Vol2

159

 By default (unless you use the -force option), DesignSync does not
 create a new version when you attempt to check in an object that
 is not locally modified. An object is defined as "locally modified"
 if its timestamp has been changed.

 For collections that have local versions, the check-in
 operation usually does not change the set of local versions in your
 workspace. However, there is an exception to this behavior. The
 check-in operation changes the set of local versions in your
 workspace when the originally fetched state of the object was Cache
 or Mirror. In this case, the check-in operation replaces files
 linked to the cache or mirror with physical copies.

Determining the Objects to be Checked In (File-based)

 By default, DesignSync only checks in modified objects. An object is
 considered modified when it meets the following criteria:

 * The current timestamp of the object in the workspace is later than
 the fetched timestamp of the object.
 * The current size or checksum of the object is different than the
 fetched object size or checksum.

Determining Which Branch is Selected for the Check In (File-based)

 Arguments to the ci command must represent versionable objects (files
 or collections), or local folders (only meaningful when you use the
 -recursive option). The ci command operates on the current or
 specified branch of each of these objects. When you are in a
 multi-branch design environment, DesignSync determines what branch
 you want to check into as follows:

 1. DesignSync obeys the -branch option, operating on the Latest
 version on the specified branch. Using this option is not
 typical, however, because the default behavior (without
 -branch) is usually the correct and intuitive behavior.

 2. If -branch is not specified and you have the current branch
 locked in your work area, DesignSync checks into the current
 branch.

 3. Otherwise, DesignSync uses the first selector of the object's
 persistent selector list ('Trunk' by default, or as defined
 by the setselector command). If the selector does not
 resolve to 'Trunk' or some other valid branch for the object
 (specified as <branch>:<version>, for example Rel2:Latest),
 the operation fails.

 Complex selector lists are a powerful capability for populate
 and check-out operations, but they can be dangerous for
 check-in operations. When creating a new version, there should

File-Based Design

160

 be no uncertainty as to which branch to create the version
 on. Therefore, ci considers only the first selector in the
 persistent selector list.

 See the "selectors" help topic for details on selectors,
 selector lists, and persistent selector lists.

Filtering or Excluding Objects From Checkin (File-based)

 DesignSync features two ways to control the objects being checked
 in. For objects in source control, exclude lists are used
 to exclude DesignSync objects. Exclusion lists can be saved with
 command defaults or specified using the -exclude option.

 For objects that are not in source control, exclude files can be
 created on a per directory basis to prevent unmanaged objects from
 being checked in. Objects that are excluded by exclude files cannot
 be reincluded by a filter. Exclude files are processed before the
 filter and exclude options set either by the command defaults or
 specified on the command line.

 If you specify a collection member as the object to be operated on,
 DesignSync skips the object and warns that the object is not
 versionable. If DesignSync attempts to operate on a collection member
 specified implicitly (through the use of wildcards or a recursive
 operation), DesignSync silently skips the object. You can change this
 behavior by using the SyncAdmin "Map operations on collection members
 to owner" setting. If you select this setting and DesignSync attempts
 to operate on a collection member during a revision control
 operation, DesignSync determines the member's owner collection and
 operates on the collection as a whole.

Interaction with Mirrors (File-based)

 When using a mirror (associated with a workspace with the
 setmirror command), objects are written directly to the mirror
 directory. You must have write privileges to the mirror directory.
 For the mirror write-through to occur, the effective workspace
 selector (set using setselector, setvault, or the -branch
 option) must also match the mirror workspace selector. You can
 disable this behavior using SyncAdmin->Site Options->Mirror
 Write-through.

 Notes:

 o When operating on a mirror directory, the check-in operation
 does not require an exact match between the workspace selector
 and the mirror selector in the case of <BranchName>: or Trunk
 selectors. The check-in operation considers:

 - A selector of 'Trunk' to be the same as 'Trunk:' and
 'Trunk:Latest'

ENOVIA Synchronicity Command Reference All -Vol2

161

 - A selector of <BranchName>: to be the same as <BranchName>:Latest

SYNOPSIS

 ci [-autohrefversions | -[no]hrefversions]
 [-branch <branch> | -branch auto(<branch>)]
 [-[no]comment"<text>" | -cfile <file>] [-datatype ascii | binary]
 [-[no]dryrun] [-exclude <object>[,<object>...]]
 [-filter <string>] [-[no]force] [-hreffilter <string>]
 [-[no]iflock] [-keep [-keys <mode>] | -lock
 [-keys <mode>] | -share | -mirror | -reference]
 [-modulecontext <context>] [-[no]new] [-[no]recursive]
 [-report {error | brief | normal | verbose}] [-[no]resume]
 [-[no]retain] [-[no]retry] [-[no]selected] [-[no]skip]
 [-tag <tagname>] [-trigarg <arg>] [--] [<argument> [<argument>...]]

ARGUMENTS

• Module Folder (Module-based)
• Module Member (Module-based)
• Workspace Module (Module-based)
• DesignSync File Objects (File-based)
• DesignSync Folder Objects (File-based)

 Specify one or more of the following arguments:

Module Folder (Module-based)

 <module folder> The ci command does not check in module folders,
 but checks in their contents if you specify the
 -recursive option. If the folder contains objects
 that have not yet been checked in, but have been
 added to the module using the add command, you do
 not need to apply the -new option. If you have
 new items to add to the workspace, you can use
 the -new option and smart module detection will
 determine the target module for the candidate
 member, or you can explicitly specify the module
 with the -modulecontext option.

Module Member (Module-based)

 <module member> Checks in the module member. If the member has
 not yet been checked in, but it has been added
 to the module using the add command, you do not

File-Based Design

162

 need to apply the -new option. If you have
 new items to add to the workspace, you can use
 the -new option and smart module detection will
 determine the target module for the candidate
 member, or you can explicitly specify the module
 with the -modulecontext option.

Workspace Module (Module-based)

 <workspace module> Checks in the workspace module, creating a new
 version of the module. The check-in process checks
 in each updated member, but also registers other
 changes made to the module since the last
 check-in, such as versions of referenced
 submodules.

 Note: If you are trying to do a hierarchically
 recursive checkin (-recursive), you can't checkin
 new items that have not already been added. For
 more information, see the -new and -recursive
 options.

DesignSync File Objects (File-based)

 <DesignSync object> Checks the object into its vault. If the object is
 unmanaged, apply the -new option.

DesignSync Folder Objects (File-based)

 <DesignSync folder> The ci command does not check in local folders,
 but checks in their contents if you specify the
 -recursive option. If the folder contains
 unmanaged objects, apply the -new option.

OPTIONS

• -autohrefversions (Module-based)
• -branch (Module-based)
• -branch (File-based)
• -[no]comment (Module-based)
• -[no]comment (File-based)
• -cfile
• -datatype (Module-based)
• -datatype (File-based)
• -[no]dryrun
• -exclude (Module-based)

ENOVIA Synchronicity Command Reference All -Vol2

163

• -exclude (File-based)
• -filter (Module-based)
• -[no]force
• -hreffilter (Module-based)
• -[no]hrefversions (Module-based)
• -[no]iflock (Module-based)
• -[no]iflock (File-based)
• -keep
• -keys
• -lock
• -mirror (File-based)
• -modulecontext (Module-based)
• -[no]new (Module-based)
• -[no]new (File-based)
• -[no]recursive (Module-based)
• -recursive (Legacy-based)
• -recursive (File-based)
• -reference
• -report
• -[no]resume (Module-based)
• -[no]retain
• -[no]retry (Module-based)
• -[no]selected
• -share
• -[no]skip (Module-based)
• -[no]skip (File-based)
• -tag (Module-based)
• -tag (File-based)
• -trigarg
• --

-autohrefversions (Module-based)

 -autohrefversions Processes the static hrefs based on the type of
 checkin performed. If the checkin is performed
 on a module and -recursive is selected,
 DesignSync captures the currently populated
 versions of the module's hierarchically
 referenced sub-modules, and records those as
 part of the next module version, updating the
 static hierarchical references. If the checkin
 is performed on a file or folder within a module
 or a module is specified, but the -recursive
 option is not, the selected module members are
 checked in, but the hierarchical references are
 not updated. (Default)

 This option is mutually exclusive with
 -hrefversions.

File-Based Design

164

-branch (Module-based)

 -branch <branch> Performs the checkin on the branch specified by
 | -branch the branch or version tag, auto-branch selector,
 auto(<branch>) or branch numeric. This option overrides the
 object's persistent selector list. If a version is
 retrieved in the workspace, this is used as the
 branch-point version for any new branch created.

 For a checkin using an auto-branch selector, for
 example Auto(Golden), if there already exists a
 version 'Golden', the checkin fails. However, if
 'Golden' exists as a branch, the effective
 selector is 'Golden:Latest'; the checkin succeeds
 and no new branch is needed. If there is neither
 a version nor a branch named 'Golden' for the
 object, a new branch is created and it is named
 'Golden'. If a version is retrieved in the
 workspace, this is used as the branch-point
 version for the new branch created. For example,
 if version 'Golden' is retrieved in the
 workspace, it is used as the branch-point
 version. If version 'Golden' is retrieved but it
 has no metadata information as a consequence of
 being removed from the vault earlier, DesignSync
 uses the latest version on branch '1' as the
 branch-point version. Finally, if there is no
 vault (in this case, the -new option must be
 specified), DesignSync creates a new vault
 (branch 1). Branch 1 is named 'Golden'.

 When branching a module, you must create a new
 branch. You cannot specify an existing
 branch. The -branch tag when specified with a
 module is mutually exclusive with -recursive and
 -new. For more information on module branching,
 see the "Branching Modules" section in the ci
 command description.

 Notes:
 - The -branch option accepts a branch tag, a
 version tag, a single auto-branch selector tag,
 or a branch numeric. It does not accept a
 selector or selector list.
 - The ci command ignores this option if you
 specify a folder as the argument and the
 folder contains a module object; in this
 case, the checkin occurs on the fetched
 branch. If you specify a module as the
 argument and use the -branch option, the
 checkin fails.
 - The persistent selector list of the object
 you are checking in is not updated by the

ENOVIA Synchronicity Command Reference All -Vol2

165

 check-in operation. Subsequent operations
 that use the persistent selector list will
 not follow the branch you just checked
 into. If you want to continue working on this
 branch, you must set the persistent selector
 list with the setselector command.

-branch (File-based)

 -branch <branch> Performs the checkin on the branch specified by
 | -branch the branch or version tag, auto-branch selector,
 auto(<branch>) or branch numeric. This option overrides the
 object's persistent selector list. If a version is
 retrieved in the workspace, this is used as the
 branch-point version for any new branch created.

 For a checkin using an auto-branch selector, for
 example Auto(Golden), if there already exists a
 version 'Golden', the checkin fails. However, if
 'Golden' exists as a branch, the effective
 selector is 'Golden:Latest'; the checkin succeeds
 and no new branch is needed. If there is neither
 a version nor a branch named 'Golden' for the
 object, a new branch is created and it is named
 'Golden'. If a version is retrieved in the
 workspace, this is used as the branch-point
 version for the new branch created. For example,
 if version 'Golden' is retrieved in the
 workspace, it is used as the branch-point
 version. If version 'Golden' is retrieved but it
 has no metadata information as a consequence of
 being removed from the vault earlier, DesignSync
 uses the latest version on branch '1' as the
 branch-point version. Finally, if there is no
 vault (in this case, the -new option must be
 specified), DesignSync creates a new vault
 (branch 1). Branch 1 is named 'Golden'.

 Notes:
 - The -branch option accepts a branch tag, a
 version tag, a single auto-branch selector tag,
 or a branch numeric. It does not accept a
 selector or selector list.
 - The -skip option is required when you are
 checking into a branch other than the current
 branch unless your current version is the
 branch-point version and there are no versions
 on the branch. For example, if you have version
 1.4, you can only create versions 1.5, 1.4.1.1,
 1.4.2.1, and so
 on, unless you use -skip.
 - The persistent selector list of the object
 you are checking in is not updated by the
 check-in operation. Subsequent operations

File-Based Design

166

 that use the persistent selector list will
 not follow the branch you just checked
 into. If you want to continue working on this
 branch, you must set the persistent selector
 list with the setselector command.

-[no]comment (Module-based)

 -[no]comment Specifies whether to check in the specified
 "<text>" object with or without a description of changes.
 If you specify -comment, enclose the description
 in double quotes if it contains spaces. The
 check-in comment is appended to the check-out
 comment if one was specified. The comments
 associated with a version are also called the
 "log". The ampersand (&) and equal (=) characters
 are replaced by the underscore (_) character in
 revision control notes.

 If you do not specify -comment, -nocomment, or
 -cfile DesignSync prompts you to enter a
 check-in comment either on the command or by
 spawning the defined file editor. The -cfile
 option is mutually exclusive with -[no]comment.
 For more information on defining a file editor,
 see the DesignSync Data Manager Administrator's
 Guide, "General Options."

 Note: If the -tag option is specified along with
 the -comment option, the comment text is used as
 both the tag comment and the checkin comment.

-[no]comment (File-based)

 -[no]comment Specifies whether to check in the specified
 "<text>" object with or without a description of changes.
 If you specify -comment, enclose the description
 in double quotes if it contains spaces. The
 check-in comment is appended to the check-out
 comment if one was specified. The comments
 associated with a version are also called the
 "log". The ampersand (&) and equal (=) characters
 are replaced by the underscore (_) character in
 revision control notes.

 If you specify -nocomment, and the object was
 checked out with comments ('co -comment'), the
 check-out comments are retained during check-in.

 If you do not specify -comment, -nocomment, or
 -cfile, DesignSync prompts you to enter a
 check-in comment either on the command or by

ENOVIA Synchronicity Command Reference All -Vol2

167

 spawning the defined file editor. The -cfile
 option is mutually exclusive with -[no]comment.
 For more information on defining a file editor,
 see the DesignSync Data Manager Administrator's
 Guide, "General Options."

 Note: If the -tag option is specified along with
 the -comment option, the comment text is used as
 both the tag comment and the checkin comment.

-cfile

 -cfile Specifies a file containing a text comment to use
 <file> as the description of the new release. DesignSync
 accepts a comment of any length up to 1MB. Long
 comments may be truncated in the output of
 commands that show comments. If the comment
 includes ampersand (&) or equal (=) characters,
 they are replaced by the underscore (_) character
 in revision control notes.

 This option respects the minimum comment length.

 The -cfile option is mutually exclusive with
 -[no]comment. If you do not specify one of the
 three options, -comment, -cfile, or -nocomment,
 DesignSync prompts you to enter a check-in
 comment either on the command line or by spawning
 the defined file editor. For more information on
 defining a file editor, see the DesignSync Data
 Manager Administrator's Guide, "General Options."

-datatype (Module-based)

 -datatype ascii| Indicates whether to disable the autodetect
 binary feature of DesignSync and create the object
 being checked in with the specified data
 type. The datatype can be changed during any
 module version checkin.

 -datatype ascii creates the new object with a
 data type of ascii.

 -datatype binary creates the new object with a
 data type of binary. Binary objects cannot
 be merged, they can only be replaced. ZIP
 vaults are always checked in using binary mode,
 regardless of whether the vault's data type is
 designated as ascii.

-datatype (File-based)

File-Based Design

168

 -datatype ascii| Indicates whether to disable the autodetect
 binary feature of DesignSync and create the object
 being checked in with the specified data
 type. The datatype option can only be specified
 when the object is initially created.

 -datatype ascii creates the new object with a
 data type of ascii.

 -datatype binary creates the new object with a
 data type of binary. Binary objects cannot
 be merged, they can only be replaced. ZIP
 vaults are always checked in using binary mode,
 regardless of whether the vault's data type is
 designated as ascii.

 Note: For vault objects, this option only applies
 for when checking in new data. To change the data
 type of an existing object, use the url setprop
 command.

-[no]dryrun

 -[no]dryrun Specifies whether to treat the operation as a
 trial run; if -dryrun is specified, no objects
 are actually checked in. By default (-nodryrun),
 ci performs a standard checkin.

 The -dryrun option helps detect problems that
 might prevent the checkin from succeeding.
 Because local object and vault states are not
 changed, a successful dry run does not guarantee
 a successful checkin. Errors that can be detected
 without state changes, such as a vault or branch
 not existing, merge conflicts, or a branch being
 locked by another user are reported. Errors such
 as permissions or access rights violations are
 not reported by a dry run. Note that a dry run
 checkin is significantly faster than a normal
 checkin.

-exclude (Module-based)

 -exclude <objects> Specifies a comma-separated list of objects
 (collections, folders, or module objects)
 to be excluded from the operation. Wildcards are
 allowed.

 Note: Use the -filter option to filter module
 objects. You can use the -exclude option, but
 the -filter option lets you include and exclude

ENOVIA Synchronicity Command Reference All -Vol2

169

 module objects. If you use both the -filter and
 -exclude options, the strings specified using
 -exclude take precedence.

 Do not specify paths in your arguments to
 -exclude. Before operating on each object (such
 as during a recursive checkin), DesignSync
 compares the object's leaf name (with the path
 stripped off) to the exclude list to see if there
 is a match. Because the object's path is removed,
 the object will not match any object in the
 exclude list specified with a path. For example,
 if you specify '-exclude bin/*.exe', you will not
 successfully exclude bin/foo.exe or any other
 *.exe file. You need to instead specify '-exclude
 *.exe', or '-exclude foo.exe' if you want to
 exclude only 'foo.exe'. The result is that you
 cannot exclude a specific instance of an object
 -- you exclude all matching objects.

 In addition to objects you specify using the
 -exclude option, the "These objects are always
 excluded" field from the Tools->Options->
 General->Exclude Lists dialog box in
 DesignSync lists objects that are always
 excluded from revision-control operations.

-exclude (File-based)

 -exclude <objects> Specifies a comma-separated list of objects
 (files, collections, or folders) to be excluded
 from the operation. Wildcards are allowed.

 Do not specify paths in your arguments to
 -exclude. Before operating on each object (such
 as during a recursive checkin), DesignSync
 compares the object's leaf name (with the path
 stripped off) to the exclude list to see if there
 is a match. Because the object's path is removed,
 the object will not match any object in the
 exclude list specified with a path. For example,
 if you specify '-exclude bin/*.exe', you will not
 successfully exclude bin/foo.exe or any other
 *.exe file. You need to instead specify '-exclude
 *.exe', or '-exclude foo.exe' if you want to
 exclude only 'foo.exe'. The result is that you
 cannot exclude a specific instance of an object
 -- you exclude all matching objects.

 In addition to objects you specify using the
 -exclude option, the "These objects are always
 excluded" field from the Tools->Options->
 General->Exclude Lists dialog box in
 DesignSync lists objects that are always

File-Based Design

170

 excluded from revision-control operations.

-filter (Module-based)

 -filter <string> Specify one or more extended glob-style
 expressions to identify an exact subset of module
 objects on which to operate. Use the -exclude
 option to filter out DesignSync objects that are
 not module objects.

 The -filter option takes a list of expressions
 separated by commas, for example:
 -filter +top*/.../*.v,-.../a*

 Prepend a '-' character to a glob-style
 expression to identify objects to be excluded
 (the default). Prepend a '+' character to a
 glob-style expression to identify objects to be
 included. Note that if the list of expressions
 begins with an include character ('+'), the
 filter excludes all objects except those that
 match the include string.

 Specify the paths in your glob-style expressions
 relative to the current directory, because
 DesignSync matches your expressions relative to
 that directory. For submodules followed through
 hrefs, DesignSync matches your expressions against
 the objects' natural paths, their full relative
 paths. For example, if a module Chip references
 a submodule, CPU, and CPU contains a file,
 '/libs/cpu/cdsinfo.tag', DesignSync matches
 against '/libs/cpu/cdsinfo.tag', rather than
 matching directly within the 'cpu' directory.

 If your design contains symbolic links that are
 under revision control, DesignSync matches
 against the source path of the link rather than
 the dereferenced path. For example, if a
 symbolic link exists from 'tmp.txt' to
 'tmp2.txt', DesignSync matches against 'tmp.txt'.
 Similarly for hierarchical operations, DesignSync
 matches against the unresolved path. If, for
 example, a symbolic link exists from dirA to dirB
 and dirB contains 'tmp.txt', DesignSync matches
 against 'dirA/tmp.txt'.

 The extended glob-style expressions you use to
 filter the objects are standard glob-style
 expressions, but they are extended so that you
 can use the "..." syntax to indicate that the
 expression matches any number of directory
 levels. For example, the expression,
 "top/.../lib/*.v" matches *.v files in a

ENOVIA Synchronicity Command Reference All -Vol2

171

 directory path that begins with "top", followed
 by zero or more levels, with one of those levels
 containing a lib directory. The command traverses
 the directory structure. If a directory name
 matches an exclude clause of the filter, then the
 entire directory and all its contents are
 filtered (the command stops descending at that
 point), otherwise the command continues
 traversing the directory structure searching for
 matching objects.

 The exclude list set using SyncAdmin's
 General=>Exclude Lists tab take precedence
 over those set by -filter; the items in the
 exclude list are combined with the filter
 expression. For example, an exclude list of
 "*%,*.reg" combined with '-filter .../*.doc' is
 equivalent to
 '-filter .../*.doc,.../*%,.../*.reg'.

-[no]force

 -[no]force Specifies whether to force the creation of a
 new version even if it is identical to the
 previous version. By default (-noforce), the
 timestamp of the file in the workspace is
 compared with the timestamp of the version
 in the vault. If the timestamp of the file to be
 checked in has not changed, then no new version
 is created. You might use -force to synchronize
 version numbers across several objects.

 Note that you must have a local copy of the
 object in your work area for a new version to
 be created. A new version is not created if
 the object does not exist or is a reference.

 Note: Use the -force option only if necessary.
 Using the -force option slows the check-in process
 because ci must process all objects and not
 just the locked or modified objects.

-hreffilter (Module-based)

 -hreffilter Excludes href values during recursive operations
 <string> on module hierarchies. Because hrefs link to
 submodules, you use -hreffilter to exclude
 particular submodules. Note that unlike the
 -filter option which lets you include and exclude
 items, the -hreffilter option only excludes hrefs
 and, thus, their corresponding submodules.

File-Based Design

172

 Specify the -hreffilter string as a glob-style
 expression. The string must represent a simple
 leaf name; you cannot specify a path. DesignSync
 matches the specified href filter against hrefs
 anywhere in the hierarchy. Thus, DesignSync
 excludes all hrefs by this leaf name; you cannot
 exclude a unique instance of the href.

 You can prepend the '-' exclude character to your
 string, but it is not required. Because the
 -hreffilter option only supports excluding hrefs,
 a '+' character is interpreted as part of the glob
 expression.

-[no]hrefversions (Module-based)

 -[no]hrefversions Controls whether the static version of a
 hierarchical reference is updated.

 -hrefversions updates the static version of a
 hierarchical reference so that the version
 reflects the fetched version of the corresponding
 submodule in the workspace.

 -nohrefversions saves only the module members and
 does not update the hierarchical references in
 any way. This is particularly useful if you have
 not made any submodule changes locally.

 The ci command ignores the -[no]hrefversion
 option if you are checking in non-module
 objects.

 Note: If you check in a module using the
 -hrefversions option and you have checked in an
 updated submodule from the same workspace, the
 static version updates to reflect the updated
 submodule, rather than the fetched version.

 If either of these options are specified, they
 override the default, -autohrefversions.

 This option is mutually exclusive with
 -autohrefversions.

-[no]iflock (Module-based)

 -[no]iflock Specifies whether to check in all modified
 objects in the checkin selection or only the ones
 that meet any one the following criteria:
 * module member is added.
 * module member is removed.

ENOVIA Synchronicity Command Reference All -Vol2

173

 * module member is moved.

 -The noiflock option (Default) searches the
 entire selection of ci for modified files to
 checkin. This can mean different things for
 different operations, for example, it can mean
 all the files recursively in a directory, all the
 module members in a module or module hierarchy,
 or all the files that match a specified
 selector. This can be a labor-intensive option,
 but it can also pick up any changes that might
 have been forgotten.

 The -iflock option only checks in files that
 meet certain conditions, for example, module
 structural changes required to preserve the
 integrity of the module, and locked objects.
 This provides a quicker checkin operation as
 well as security to prevent accidental
 modifications to unintended files.

-[no]iflock (File-based)

 -[no]iflock Specifies whether to check in all modified
 objects in the checkin selection or only the ones
 that locked objects.

 -The noiflock option (Default) searches the
 entire selection of ci for modified files to
 checkin. This means different things for
 different operations, for example, it can mean
 all the files recursively in a directory, or all
 the files that match a specified selector. This
 can be a labor-intensive option, but it can also
 pick up any changes that might have been forgotten.

 The -iflock option only checks in files that
 are locked in the workspace. This provides a
 quicker checkin operation as well as security to
 prevent accidental modifications to unintended
 files.

-keep

 -keep Leave a local copy of the object in the work
 area after checking it in. This option is the
 default object-state option unless a default
 object state has been defined (see the "fetch
 preference" help topic for more information).

 You cannot use this option when you have enabled
 Link-In of large files.

File-Based Design

174

 Note: 'ci -keep' is equivalent to following the
 check-in operation with 'co -get'.

 You can change whether the local object is
 read-only or read/write by default by using
 the "Check out read only when not locking"
 option from the Tools->Options->General dialog
 box in the DesignSync graphical interface, or
 your project leader can set this option
 site-wide using SyncAdmin.

-keys

 -keys <mode> Controls processing of RCS-style
 revision-control keywords in objects that
 remain in your work area after checkin. Note
 that keyword expansion is not the same as
 keyword update. For example, the $Date$ keyword
 is updated only during checkin; its value is
 not updated during checkout or populate.

 Available modes are:

 kkv - (keep keywords and values) The local
 object contains both revision control keywords
 and their expanded values; for example,
 $Revision: 1.4 $.

 kk - (keep keywords) The local object contains
 revision control keywords, but no values; for
 example, $Revision$. This option is useful if
 you want to ignore differences in keyword
 expansion, such as when comparing two different
 versions of an object.

 kv - (keep values) The local object contains
 expanded keyword values, but not the keywords
 themselves; for example, 1.4. This option is
 not recommended if you plan to check in your
 local objects. If you edit and then check in
 the objects, future keyword substitution is
 impossible, because the value without the
 keyword is interpreted as regular text.

 ko - (keep output) The local object contains
 the same keywords and values as were present at
 check in.

 Note:
 - The -keys option works only with the -keep
 and -lock options. If you use the -share or
 -mirror option, keywords are automatically
 expanded in cached or mirrored objects, as if

ENOVIA Synchronicity Command Reference All -Vol2

175

 the '-keys kkv' option was used.

 - The EnableKeywordExpansion setting controls
 the expansion of keys during a check-in
 operation. This setting overrides the -keys
 option; if disabled, there is no expansion of
 keys, regardless of the use of the -keys
 option. By default, this setting is enabled;
 the check-in operation expands keywords. To
 change the default setting, your
 Synchronicity administrator can use the
 SyncAdmin tool. For information, see
 SyncAdmin help.

 - The check-in operation detects binary files
 and collections and does not expand keywords
 when operating on these objects, even if the
 Enable Keyword Expansion setting is on.

-lock

 -lock Keep a locked local copy of the object in the
 work area after checking it in. Use this
 option if you want to create a new version of
 the object while continuing to make changes.
 Unless you use this option, the branch
 is unlocked after the check-in operation.

 Note: To enforce the -lock option, you have to
 modify the access control file for DesignSync
 revision control operations. See Access Control
 guide for more information. For examples, see the
 "Using access filter to Check an Action" section
 in the "Sample Access Controls" topic.

-mirror (File-based)

 -mirror Create a symbolic link from the work area to
 to the object in the mirror directory. This
 option requires that you have associated a
 mirror directory with your work area (see the
 "setmirror" command).

 Note:
 o This option is not supported on Windows
 platforms.
 o If you have checked in objects using the
 -mirror option, incremental populates by team
 members do not necessarily fetch the new
 objects until after the mirror has been
 updated.
 o The ci command does not allow this option if

File-Based Design

176

 you use it when checking in module objects;
 in this case, ci issues an error message, but
 continues to check in other DesignSync objects.
 o When operating on a mirror directory, the
 check-in operation does not require an exact
 match between the workspace selector and the
 mirror selector in the case of <BranchName>:
 or Trunk selectors.
 The check-in operation considers
 - A selector of 'Trunk' to be the same as
 'Trunk:' and 'Trunk:Latest'
 - A selector of <BranchName>: to be the same
 as <BranchName>:Latest

-modulecontext (Module-based)

 -modulecontext Identifies the module instance from which the
 <context> checkin should occur. If no module context is
 provided for new files, smart module detection
 will attempt to identify the target module. If
 smart module detection cannot identify the
 target, use the --modulecontext to identify the
 target module.

 Note: The combination of the -modulecontext
 option and the -new option is mutually exclusive
 with the -recursive option. If you want to
 perform a recursive checkin with new objects in
 the module workspace, you must add the new
 objects with add and perform the ci command
 without the -new option. When this combination is
 specified, the -recursive option is silently
 ignored.

 You can also use the -modulecontext option when
 you are specifying a folder as the argument to be
 checked in. In this case, the check-in operation
 filters the folder, checking in only those
 objects that belong to the module specified with
 the -modulecontext option. Use -modulecontext in
 a recursive check-in to check in members of the
 specified module throughout a hierarchy.

 Specify an existing workspace module using the
 module name (for example, Chip) or a module
 instance name (for example, Chip%0).

 Note that you cannot use a -modulecontext option
 to operate on objects from more than one module;
 the -modulecontext option takes only one
 argument, and you can use the -modulecontext
 option only once on a command line.

ENOVIA Synchronicity Command Reference All -Vol2

177

-[no]new (Module-based)

 -[no]new Performs the initial checkin of unmanaged objects;
 objects that are not under revision control.
 By default (without -new), the check-in operation
 processes only managed objects or objects that
 have previously been added to a module with the
 add command. It is not an error to specify
 this option with managed objects or previously
 added module members.

 The -new option is required to check in new
 objects you have not yet added to a module using
 the add command. The -new option is not needed
 if you have already added the objects using
 add. When you use the -new option to add new
 objects to a module, smart module detection
 identifies the target module, or, you can use the
 -modulecontext option to explicitly specify into
 which module the objects are to be added.

 Tip: Use the -new option only if you are checking
 in previously unmanaged objects. Using the -new
 option slows the check-in process because ci must
 process all objects and not just the locked or
 modified objects.

 Checking in a new object creates a new version
 (1.1) on a new branch (branch 1). The new version
 is created on the branch specified using the
 -branch option. If the -branch option is not
 specified, the version is created on the branch
 defined by the first selector in the persistent
 selector list. If the selector is not a valid
 branch selector (specified using the
 <branch>:<version> syntax), the default branch
 tag 'Trunk' is applied -- DesignSync expects
 every branch to have a tag. For example, if you
 apply 'setselector VaultDate(yesterday)' to a
 folder and then check in a previously unmanaged
 object from that folder, the object's new branch
 is tagged 'Trunk' because 'VaultDate(yesterday)'
 is not a valid branch tag name. See the
 "selectors" help topic for more details about how
 DesignSync resolves selectors.

 Note: For a module object checkin, you cannot
 specify the -new option with the -recursive or
 the -branch options. This eliminates any issues
 with determining what module, module branch, or
 sub-module the new objects belong to.

-[no]new (File-based)

File-Based Design

178

 -[no]new Performs the initial checkin of unmanaged objects;
 objects that are not under revision control.
 By default (without -new), the check-in operation
 processes only managed objects. It is not an
 error to specify this option with managed objects.

 Tip: Use the -new option only if you are checking
 in previously unmanaged objects. Using the -new
 option slows the check-in process because ci must
 process all objects and not just the locked or
 modified objects.

 Checking in a new object creates a new version
 (1.1) on a new branch (branch 1). The new version
 is created on the branch specified using the
 -branch option. If the -branch option is not
 specified, the version is created on the branch
 defined by the first selector in the persistent
 selector list. If the selector is not a valid
 branch selector (specified using the
 <branch>:<version> syntax), the default branch
 tag 'Trunk' is applied -- DesignSync expects
 every branch to have a tag. For example, if you
 apply 'setselector VaultDate(yesterday)' to a
 folder and then check in a previously unmanaged
 object from that folder, the object's new branch
 is tagged 'Trunk' because 'VaultDate(yesterday)'
 is not a valid branch tag name. See the
 "selectors" help topic for more details about how
 DesignSync resolves selectors.

 The -new option also has the effect of unretiring
 a branch when you check in a new version onto a
 retired branch. When you unretire a branch, the
 retire information is removed. Viewing the
 history of the object will not show that the
 object was retired.

-[no]recursive (Module-based)

 -[no]recursive Specifies whether to perform this operation in
 just the specified folder or module object
 (default) or in their subfolders/submodules.

 If you invoke 'ci -recursive' and specify a
 folder that is not part of a module on the
 command line, ci operates on that folder in a
 folder-centric fashion, checking in the modified
 objects in the folder and its subfolders. To
 filter the set of objects on which to operate,
 use the -filter or -exclude options.

 If you invoke 'ci -recursive' and specify a

ENOVIA Synchronicity Command Reference All -Vol2

179

 module on the command line, ci operates on that
 module in a module-centric fashion, checking in
 all of the modified objects in the module and
 submodules. To filter the objects on which to
 operate, use the -filter or -hreffilter options.
 If you invoke 'ci -recursive' on a subfolder of a
 module and provide a module context
 (-modulecontext), ci recurses within the
 specified folder, checking in any object which is
 a member of the named module or one of its
 referenced submodules.

 Note: You cannot specify the -recursive option
 with the -branch option when creating a new
 module branch.

 Note: When checking in new objects to a module
 using the -new option, the module hierarchy is
 never traversed. The command checks in any
 unmanaged objects in a folder-centric fashion,
 but does not traverse any module hierarchical
 references, even if -recursive is specified. To
 determine if your work area contains new objects,
 use 'ls -recursive -unmanaged'. To perform the
 checkin recursively, use add to add the objects
 to the appropriate module, then run the ci
 command. If the referenced sub-modules are
 populated into the workspace, smart module
 detection does traverse into the folder and can
 correctly identify new members belonging to a
 submodule.

 If you specify -norecursive when operating on
 a folder object, DesignSync does not operate on
 objects within that folder.

 Note: The -nomodulerecursive option is no longer
 supported. For modules, this option is
 equivalent to the -norecursive option. If you
 specify the -nomodulerecursive option when
 operating on modules, ci applies the
 -norecursive option instead.

-recursive (Legacy-based)

 -[no]recursive Specifies whether to perform this operation in
 just the specified folder(s) (default) or in its
 subfolders also.

 Note: You cannot specify the -recursive option
 with the -branch option when creating a new
 module branch.

 If 'ci -recursive' is invoked on a legacy module

File-Based Design

180

 (or in a directory containing DesignSync
 REFERENCEs), ci does not traverses the directory
 structure or follow the REFERENCEs. The
 -recrusive option is not applicable to a checkin
 of legacy modules. If you specify a legacy
 module for ci, the recursive option is silently

 If you specify -norecursive when operating on
 a folder object, DesignSync does not operate on
 objects within that folder.

 Note: The -nomodulerecursive option is no longer
 supported. For modules, this option is
 equivalent to the -norecursive option. If you
 specify the -nomodulerecursive option when
 operating on modules, ci applies the
 -norecursive option instead.

-recursive (File-based)

 -[no]recursive Specifies whether to perform this operation in
 just the specified folder(s) (default) or in its
 subfolders also.

 Note: You cannot specify the -recursive option
 with the -branch option when creating a new
 module branch.

 If you specify -norecursive when operating on
 a folder object, DesignSync does not operate on
 objects within that folder.

-reference

 -reference Keep a reference to the object in the work area
 after the check-in operation. A reference does
 not have a corresponding file on the file
 system but does have DesignSync metadata that
 makes it visible to Synchronicity
 programs. References are useful when you want
 to have the complete context of the objects in
 a project, but do not need the objects locally.

 Note: Synchronicity recommends against using
 the -reference option when operating on a
 collection object. If you use the -reference
 option, DesignSync creates a reference in the
 metadata for the collection object but member
 files are not processed and are not included in
 the metadata.

ENOVIA Synchronicity Command Reference All -Vol2

181

-report

 -report error| Controls the amount and type of information
 brief|normal| displayed by ci command. The information each
 verbose option returns is discussed in detail in the
 "Understanding the Output" section above.

 error - lists failures, warnings, and success
 failure count.

 brief - lists failures, warnings, module
 create/remove messages, some informational
 messages, and success/failure count.

 normal - includes all information from brief and
 lists all the updated objects, and messages about
 objects excluded by filters from the
 operation. (Default)

 verbose - provides full status for each
 object processed, even if the object is not
 updated by the operation.

-[no]resume (Module-based)

 -[no]resume Specifies whether to perform a recovery check-in.
 Specify the -resume option (the default) if a
 previous recursive check-in of a module has
 failed. This option causes the check-in to
 continue from the point where the failure
 occurred. Specify the -noresume option to
 start the check-in from scratch.

 Note: If a module checkin fails, and the check in
 operation contains structural changes, such as
 moved or removed module members, the subsequent
 checkin always starts from scratch. The -resume
 option is silently ignored.

-[no]retain

 -[no]retain Indicates whether to retain the 'last modified'
 timestamp of the objects that remain in your work
 area. If you are using the -share option or a
 mirror is set on the workspace, then this also
 applies to the object put into the file cache or
 mirror. The links for the cache or mirror in
 your work area use the link creation time as the
 "last modified" time.

 If you specify the -reference option, no object

File-Based Design

182

 is created in your work area, so there is no
 timestamp information at all.

 If you do not specify '-retain' or -noretain',
 the ci command follows the DesignSync registry
 setting for Retain last-modification
 timestamps. By default, this setting is not
 enabled; therefore, the timestamp of the local
 object is the time of the check-in
 operation. To change the default setting, your
 Synchronicity administrator can use the
 SyncAdmin tool. For information, see SyncAdmin
 Help.

 The mirror system by default fetches objects
 into the mirror with the -retain option. The
 mirror administrator can configure mirrors to use
 the -noretain option. The default setting should
 agree with the Retain last-modification timestamp
 registry setting to maintain consistency.
 See the "Mirror Administration Server Registry
 Settings" topic for setting of the co or populate
 options for mirrors.

-[no]retry (Module-based)

 -[no]retry Specifies whether, if the module checkin fails,
 DesignSync attempts a retry of the checkin.

 -retry attempts to retry the checkin if the
 retryOnModuleCiFailureHook is enabled and the
 module meets the conditions defined within the
 hook for retry; or the checkin failure was due to
 a communication connect failure and the
 ModuleFailureRetryAttempts registry setting is
 set to a non-zero value, indicating one or
 more retries. The checkin will be retried as long
 as a communication connect failure is still the
 cause of failure and the number of checkin
 retries for this module has not surpassed the
 ModuleFailureRetryAttempts value. (Default)

 For more information on the
 retryOnModuleCiFailureHook or the
 ModuleFailureRetryAttempts registry keys, see the
 Administrator's Guide.

 -noretry does not attempt to retry to checkin. If
 the module checkin fails, the operation fails
 for that module. If it is part of a
 hierarchical module checkin, the checkin
 continues attempting to checkin the next module.

ENOVIA Synchronicity Command Reference All -Vol2

183

-[no]selected

 -[no]selected Specifies whether to perform this operation on
 objects in the select list (see the "select"
 command), as well as the objects specified on the
 command line. If no objects are specified on the
 command line, -selected is implied. By default
 (-noselected), ci operates only on the objects
 specified on the command line.

-share

 -share Put a copy of the object in the file cache
 directory, and create a link in the work area to
 that cached object.

 Note: This option is not supported on Windows
 platforms.

 If you use 'ci -share' on a collection object,
 DesignSync checks in the symbolic link, unless it
 is a link to a cache.

-[no]skip (Module-based)

 -[no]skip Specifies whether to check in the version even
 if it is not derived from the Latest version
 (the branch contains higher-numbered versions).
 By default (-noskip), versions are not skipped.

 This situation can occur when you check out the
 Latest version without a lock and other users
 check in new versions prior to your checkin, or
 when you have intentionally checked out an older
 version of the object. You can use the -skip
 option with module members, to skip previous
 checkins of module members. The -skip option does
 not skip module versions. Any structural module
 changes made in the versions between the version
 populated in the workspace and the version
 created appear in the new version.

 You also typically need -skip when using
 -branch to check into a branch other than the
 current branch. See -branch for details.

 You must specify -force if the version you
 are checking in is not locally modified.

 You must have local copies of the file versions
 that you want to check in. You cannot have links

File-Based Design

184

 to a cache.

 If the server contains structural changes, for
 example removed or moved files, that are not
 reflected in the workspace, you will be unable to
 perform a checkin, even with the -skip
 option.

 Cautions:

 o Changes in skipped versions are not reflected
 in the new Latest version and are effectively
 lost. Use the -skip option when you are
 intentionally promoting an older version of an
 object to be the Latest (similar to a rollback
 operation) If you are using modules, there is a
 modules rollback command that allows you to
 create a new module version from an older
 version, skipping all structural and module
 member changes..

 o Use caution when you use -skip with module
 objects because the -skip option does not
 override intervening changes to the structure
 of a module. This means you may be unaware
 of structural module changes that have occurred
 that do not conflict with your actions, for
 example new, modified, or removed objects.

-[no]skip (File-based)

 -[no]skip Specifies whether to check in the version even
 if it is not derived from the Latest version
 (the branch contains higher-numbered versions).
 By default (-noskip), versions are not skipped.

 This situation can occur when you check out the
 Latest version without a lock and other users
 check in new versions prior to your checkin, or
 when you have intentionally checked out an older
 version of the object.

 You also typically need -skip when using
 -branch to check into a branch other than the
 current branch. See -branch for details.

 You must specify -force if the version you
 are checking in is not locally modified.

 You must have local copies of the file versions
 that you want to check in. You cannot have links
 to a cache or mirror directory.

 Caution: Changes in skipped versions are not

ENOVIA Synchronicity Command Reference All -Vol2

185

 reflected in the new Latest version and are
 effectively lost. Use the -skip option when you
 are intentionally promoting an older version of
 an object to be the Latest.

-tag (Module-based)

 -tag <tagname> Tags the object version or module version on the
 server with the specified tagname.

 For module objects, all objects are evaluated
 before the checkin begins. If the objects cannot
 be tagged, for example if the user does not have
 access to add a tag or because the tag exists and
 is immutable, the entire checkin fails.

 For more information on access controls, see the
 ENOVIA Synchronicity Access Control Guide. For
 more information on version tags, see the tag
 command.

 Note: The -tag option will not work on modules
 stored on DesignSync server versions prior to
 V6R2008-1.0.

-tag (File-based)

 -tag <tagname> Tags the object version on the server with the
 specified tagname.

 If the user does not have access to add a tag,
 the object is checked in without a tag.

 For more information on access controls, see the
 ENOVIA Synchronicity Access Control Guide. For
 more information on version tags, see the tag
 command.

-trigarg

 -trigarg <arg> Specifies an argument to be passed from the
 command line to the triggers set on the
 check-in operation. If the argument contains
 whitespace, enclose the argument within
 double quotation marks ("") if using the dss
 command shell or braces ({}) if using the stcl
 command shell.

--

File-Based Design

186

 -- Indicates that the command should stop looking
 for command options. Use this option when an
 argument to the command begins with a hyphen (-).

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.

 Notes:
 - "successfully processed" may not mean "successfully checked
 in". For example, attempting to check in an object that is not
 locally modified is considered a success even though no new
 version is created.
 - Scripts should only test for non-empty lists to
 determine success or failure. The actual content of a non-empty
 list currently takes the form "Objects succeeded (n)" and
 "Objects failed (n)", where 'n' is the number of objects that
 succeeded or failed. However, these return values are subject to
 change in a future release.
 - If all objects fail, an exception occurs (the return value is
 thrown, not returned).
 - Objects reported as "excluded by filter," may have been excluded
 either with the -filter option (for modules) or with the -exclude
 option.
 - If a comment editor is defined, but cannot be used, the command
 automatically switches to the interactive command-line comment
 mode.

SEE ALSO

 caching, cancel, co, populate, select, setmirror, setselector,
 selectors, swap, tag, command defaults, unlock

EXAMPLES

• Example of Creating a Module and Performing an Initial File Checkin (Module-based)
• Example of Checking in Module Structure Changes (Module-based)
• Example of Checking in on a New Branch (Module-based)
• Example of Attempting to Modify A Member in a Static Workspace (Module-based)
• Example of Checking in a File without a Comment (File-based)
• Example of Checking in New Files (File-based)
• Example of Checking in Recursively (File-based)

ENOVIA Synchronicity Command Reference All -Vol2

187

• Example of a Dry-Run Checkin Showcasing Wildcard Usage (File-based)
• Example of Checkin to a Branch (File-based)

Example of Creating a Module and Performing an Initial File Checkin (Module-based)

The following example creates a module, Chip, version 1.1, adds
 module members, chip/makefile, chip/verilog/chip.v, and
 DOC/Chip.doc, and finally checks the members in, thus generating
 a new module version, 1.2:
 stcl> mkmod -comment "The main chip" \
 sync://mysrvr:2647/Modules/Chip \
 -path /home/karen/MyModules
 stcl> add -recursive Chip chip DOC
 stcl> ci -keep -nocomment Chip

Example of Checking in Module Structure Changes (Module-based)

 The following example shows a checkin on a workspace that has
 renamed, removed, and added

 stcl> ci -nocomment Chip%1

 Beginning Check in operation...

 Checking in objects in module Chip%1

 Total data to transfer: 0 Kbytes (estimate), 10 file(s), 0 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 3 Kbytes, 10 file(s), 0 collection(s), 100.0% complete
 Progress: 3 Kbytes, 10 file(s), 0 collection(s), 100.0% complete

 Checking in: /chip.bat Success - Renamed from
/chip.exe
 Checking in: /doc/chip.doc Success - New version: 1.1
 Checking in: /doc/commands.html Success - Removed

 Chip%1: Version of module in workspace updated to 1.8

 Finished checkin of Module Chip%1, Created Version 1.8

 Time spent: 1.2 seconds, transferred 3 Kbytes, average data rate 2.5 Kb/sec

 Checkin operation finished.

 {Objects succeeded (3)} {}

Example of Checking in on a New Branch (Module-based)

 The following example creates a new branch from a module. In this
 example, one file was modified for the new version and another was

File-Based Design

188

 added.

 Note: The workspace selector changes to the new branch when you run
 the checkin.

 stcl> ci -nodefaults -keep -retain -hrefversions -exclude *.log
 -branch Beta -keys kkv -nocomment -report normal Chip%1

 Beginning Check in operation...

 Chip%1: Creating branch Beta

 Checking in objects in module Chip%1

 Total data to transfer: 10 Kbytes (estimate), 2 file(s), 0
 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 4 Kbytes, 1 file(s), 0 collection(s), 45.7% complete
 Progress: 11 Kbytes, 2 file(s), 0 collection(s), 100.0% complete

 Checking in: Chip%1\chip.docx Success - New version:
 1.1.1.1
 Checking in: Chip%1\chipsub.c Success - New version:
 1.1

 Chip%1: Version of module in workspace updated to 1.11.1.2
 Chip%1: Selector of module in workspace updated to Beta:

 Finished checkin of Module Chip%1, Created Version 1.11.1.2

 Time spent: 0.4 seconds, transferred 11 Kbytes, average data rate
 26.1 Kb/sec
 Checking in: \chip.c : Success - No new
 version created. Lock Removed.
 Checking in: \chip.h : Success - No new
 version created. Lock Removed.

 Checkin operation finished.

 {Objects succeeded (4)} {}

Example of Attempting to Modify A Member in a Static Workspace (Module-based)

 DesignSync does not allow modifications in workspaces that have been
 populated in static mode. The following example shows what happens
 when you modify and attempt to check in a workspace that has been
 populated with a static module selector.

 dss> populate -rec -version Gold Chip-R419%0
 Beginning populate operation at Fri Oct 28 12:41:08 Eastern Daylight
 Time 2016...

 Setting Selector [Gold] on workspace module c:\workspaces\ChipDev419

ENOVIA Synchronicity Command Reference All -Vol2

189

 \chip\Chip-R419%0
 WARNING: Chip-R419%0: Changing the selector to a static value (Gold).
 You will not be able to check in module or member modifications.

 Selector on module c:\workspaces\ChipDev419\chip\Chip-R419%0 was
 modified.
 ...
 Finished populate operation.
 ##### WARNINGS and FAILURES LISTING #####
 #
 # WARNING: Chip-R419%0: Changing the selector to a static value
 # (Gold).
 # You will not be able to check in module or member modifications.
 ###
 {Objects succeeded (6)} {Objects failed (2)}

 dss> ci -comment "Checking in changes" Chip-R419%0

 Beginning Check in operation...
 Chip-R419%0: Cannot checkin module with static selector.

 Checkin operation finished.
 {} {}

 Note: If you have data that you need to check in, you should either
 change the selector for the workspace to dynamic selector, or move
 the modified data to a workspace that has the module populated with a
 dynamic selector.

Example of Checking in a File without a Comment (File-based)

 The following example checks in the file 'pcimaster.vbh' without a
 comment, leaving a link to the cache in the work area:
 stcl> ci -nocomment -share pcimaster.vbh

Example of Checking in New Files (File-based)

 The following example uses the -new option to check in previously
 unmanaged files 'alu.v' and 'decoder.v'. A check-in comment is
 provided. Note that no state option is specified, so the default
 fetch preference is used (or -keep, the default for ci, if no
 default fetch preference is defined):
 stcl> ci -comment "Beta versions" -new alu.v decoder.v

Example of Checking in Recursively (File-based)

 The following example recursively checks in an entire work area,
 while retaining locks on the objects:
 stcl> ci -rec -nocomment -lock .

File-Based Design

190

Example of a Dry-Run Checkin Showcasing Wildcard Usage (File-based)

 The following example performs a dryrun checkin because of the
 complex wildcarding used to specify the objects to be checked in:
 stcl> ci -dryrun -recursive -exclude *.vg,*.log pci*.* alu

Example of Checkin to a Branch (File-based)

 This example shows the typical "project branching" approach to
 working with multiple branches. The project leader, who has a work
 area containing all objects in the project, creates new branches
 off the current versions, sets the persistent selector list to use
 the new branch, then checks into the new branch. Team members set
 their selector lists to point to the new branch and then populate.
 Project Leader:
 stcl> mkbranch -rec Rel2.1 .
 stcl> setselector -rec Rel2.1:Latest .
 stcl> ci -com "Creating 1st version on Rel2.1 branch" top.v
 Team Members:
 stcl> setselector -rec Rel2.1:Latest .
 stcl> populate

co

co Command

NAME

 co - Checks out the specified objects

DESCRIPTION

• Object States
• Determining the Objects to be Checked Out
• Checking Out Objects with Different Version Selectors
• Checkout Versus Populate
• How the Check-Out Operation Handles Collections with Local Versions
• Auto-Branching

 This command checks out the specified objects (files or
 collections). A checkout retrieves a working copy of a specified
 version of an object from the revision-control vault and places it
 in your work area.

 Important: You must use the populate command rather than the
 co command when fetching modules or module objects. The co

ENOVIA Synchronicity Command Reference All -Vol2

191

 command does not support modules.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Object States

 Upon checking out the specified objects, DesignSync changes the
 state of all processed objects--the objects that need an update,
 as well as the up-to-date objects, as follows:
 1. DesignSync obeys the state option (-get, -lock, -reference,
 -share, -mirror) specified on the command line.
 Note: If objects are designed uncachable, the -share and
 -mirror states are silently ignored and the objects are
 populated with -keep. For more information, see the caching
 commands.
 2. If no state option is specified, DesignSync uses the default
 fetch state as specified by your project leader. See
 the "fetch preference" help topic for more information.
 3. If a default fetch state is not defined, the default
 behavior for 'co' is -get.

 DesignSync changes the states of all objects being processed,
 even if they are already up-to-date. Specify the -nounifystate
 option if you want to change the state of only the objects
 that need an update.

 If your team is using the locking design methodology:
 o You check out an object with a lock (-lock option) if you plan to
 edit the object. DesignSync locks the branch associated with
 the version you are checking out, prohibiting other team
 members from creating new versions on that branch. You,
 the holder of the lock, reserve the right to create the
 next version on that branch.
 o You "fetch" -- check out without a lock -- an object if you want
 read-only access to that object. You use the -get, -mirror, or
 -share option depending on your team's sharing methodology and
 the platform you are on (-mirror and -share are only available
 on Unix platforms).

 If your team is using the nonlocking, or merging, design
 methodology, you always fetch objects, even if you plan to edit
 them. If you and another team member edit copies of the same
 object, the first person to check in the object creates the next
 version. The other person must first merge (-merge option) the
 changes from this new Latest version into his or her local copy,
 manually resolve any merge conflicts, then check in the merged
 object.

Determining the Objects to be Checked Out

File-Based Design

192

 Arguments to the 'co' command must be versionable objects (files
 and collections), or local folders (only meaningful when you use
 the -recursive option).

 DesignSync determines what version of a design object you want to
 check out as follows:
 1. DesignSync obeys the selector list specified by the -version
 option.
 2. If -version is not specified, DesignSync uses the
 object's persistent selector list. The default persistent
 selector is 'Trunk', in which case DesignSync checks out
 the Latest version from Trunk.

 See the "selectors" help topic for details on selectors,
 selector lists, and persistent selector lists.

 In multi-branch environments, you use the 'co' and 'populate'
 commands to merge branches. In most cases, each new branch that is
 created is eventually merged back into the main development
 branch. See the -merge and -overlay options for more information
 on merging.

 Note: If you specify a collection member as the object to be
 operated on, DesignSync skips the object and warns that the
 object is not versionable. If DesignSync attempts to operate on
 a collection member specified implicitly (through the use of
 wildcards or a recursive operation), DesignSync silently skips
 the object. You can change this behavior by using the SyncAdmin
 "Map operations on collection members to owner" setting. If you
 select this setting and DesignSync attempts to operate on a
 collection member during a revision control operation,
 DesignSync determines the member's owner collection and
 operates on the collection as a whole.

Checking Out Objects with Different Version Selectors

 When checking out multiple objects with different version selectors
 in a single operation, you can specify the version number or the
 branch selector of the objects you are checking out as
 an object;selector specification. The selector specified (in
 an object;selector) can be any legal selector, such as:
 in a single operation, specify the version number or the branch
 o Trunk:Latest (branch selector)
 o golden (version selector)
 o auto
 o selector list (comma separated)
 Note: The selector specified in an object;selector will always
 override any selector previously set (via setselector).
 The object (in an object;selector) can be:
 o A relative path (in which case 'pwd' will get prefixed)
 o A URL
 o An absolute path
 to the co command. Instead of only accepting an object to operate on,

ENOVIA Synchronicity Command Reference All -Vol2

193

 Note: You can perform "co object;selector" only on files and not
 folders.

Checkout Versus Populate

 The 'co' and 'populate' commands are similar in that they retrieve
 versions of objects from their vaults and place them in your work
 area. They differ in several ways, most notably:

 o The 'co' command operates on objects that you already have
 locally, whereas 'populate' updates your work area to reflect the
 status of the vault. For example, you use 'co' to change the
 object state or to get a different version of a local object. You
 use 'populate' to retrieve versions of newly managed objects
 created by other team members. Note that for 'co', the object
 does not actually need to be local if you specify the exact name
 of the object (no wildcards are allowed). For example, 'co top.v'
 succeeds if the vault contains 'top.v'. However, it is more
 typical to use 'populate' to retrieve objects that are not
 currently in your work area.
 o You must use the populate command rather than the co command
 when fetching modules or module objects. The co command does not
 support modules.
 o The 'co' command considers the persistent selector list for each
 object that is checked out, whereas 'populate' only considers the
 persistent selector list for the top-level folder that is
 being populated.

How the Check-Out Operation Handles Collections with Local Versions

 For collection objects that have local versions (for example,
 custom generic collections), the check-out operation handles local
 versions in the following way.

 When you check out a collection object, the check-out operation
 removes from your workspace any local version of the object that is
 unmodified. (Because these local versions exist in the vault, you
 can refetch them.) The operation then fetches from the vault the
 specified collection object (with the local version number it had
 at the time of checkin).

 If the current local version in your workspace is modified, the
 check-out operation fails unless you specify 'co -force'. (The
 -force option lets the local version with the modified data be
 replaced with the local version of the object you are checking
 out.) Note: The current local version is the one with the highest
 local version number. DesignSync considers a local version to be
 modified if it contains modified members or if it is not the local
 version originally fetched from the vault when the collection
 object was checked out or populated to your workspace.

File-Based Design

194

 The -savelocal option tells the check-out operation what to do with
 local versions in your workspace other than a current local version
 that is modified. For information, see OPTIONS.

Auto-Branching

 You can create a new, locked branch by using 'co -lock' with a
 selector and autobranching. This branch can be unlocked without
 creating a new version by:

 o Using 'cancel' from the workspace where the branch was locked.
 o Using 'unlock' on the vault.
 o Using 'ci' from the workspace where the branch was locked, without
 making modifications.

 In these cases, the lock is removed from the vault, the auto-created
 branch is removed, and the branch tag is deleted. If the branch is
 removed but still exists in the metadata of a workspace, some commands
 (such as the 'url' commands and 'vhistory') will fail with "No such
 version.

SYNOPSIS

 co [-[no]comment "text"] [-[no]force] [-exclude <object>[,<object>...]]
 [[-lock [[-keys <mode>] | [-from {local | vault}]] [-merge]
 [-reference]] | [-get [[-keys <mode>] | [-from {local | vault}]]
 [-overlay <selector>[,<selector>...]]] | -share | -mirror |
 -reference] [-merge] [-[no]recursive] [-[no]retain]
 [-savelocal <value>] [-[no]selected] [-trigarg <arg>]
 [-[no]unifystate] [-version <selector>[,<selector>...]]
 [--] [<argument> [<argument...]]

ARGUMENTS

• DesignSync Object
• DesignSync Folder

DesignSync Object

 <DesignSync object> Fetches the object from its vault.

DesignSync Folder

 <DesignSync folder> Fetches the contents of the specified folder.
 You can also use the -dir option to specify
 a folder to be fetched.

ENOVIA Synchronicity Command Reference All -Vol2

195

OPTIONS

• -comment
• -exclude
• -force
• -from
• -get
• -keys
• -lock
• -merge
• -mirror
• -overlay
• -[no]recursive
• -reference
• -[no]retain
• -savelocal
• -[no]selected
• -share
• -trigarg
• -[no]unifystate
• -version
• --

-comment

 -[no]comment Specifies whether to check out the specified
 "text" objects with a description attached. By
 default (-comment), co requires a comment.
 If you specify -nocomment, you can still
 provide comments when you check in the
 objects.

 Enclose the description in double quotes if it
 contains whitespace. When you check in the
 objects, DesignSync appends check-in comments,
 if there are any, to the check-out comments to
 create a "version log".

 The ampersand (&) and equal (=) characters are
 replaced by the underscore (_) character in
 revision control notes.

 If you specify -comment without specifying text
 for the comment, or if -comment is set as the
 default, DesignSync prompts for a comment
 either interactively on the command line or with
 the defined file editor. For more information
 about using the defined file editor, see the
 DesignSync Data Manager Administrator's Guide,
 "General Options."

File-Based Design

196

-exclude

 -exclude <objects> Specifies a comma-separated list of objects
 (files, collections, folders) to be excluded
 from the operation. Wildcards are allowed.

 Do not specify paths in your arguments to
 -exclude. Before operating on each object
 (such as during a recursive checkin),
 DesignSync compares the object's leaf name
 (path stripped off) to the exclude list to see
 if there is a match. Because the object's path
 is removed, the object will not match any
 object in the exclude list specified with a
 path. For example, if you specify '-exclude
 bin/*.exe', you will not successfully exclude
 bin/foo.exe or any other *.exe file. You need
 to instead specify '-exclude *.exe', or
 '-exclude foo.exe' if you want to exclude only
 'foo.exe'. The result is that you cannot
 exclude a specific instance of an object --
 you exclude all matching objects.

 In addition to objects you specify using the
 -exclude option, the "These objects are always
 excluded" field from the Tools->Options->
 General->Exclude Lists dialog box in
 DesignSync lists objects that are always
 excluded from revision-control operations.

-force

 -[no]force Indicates whether to allow the version being
 checked out to overwrite a locally modified copy
 of the object. The default (-noforce) prevents
 overwriting of locally modified objects. Use
 this option with caution, because changes in the
 local copy are lost.

 Using -force with -unifystate changes the state
 of all objects including locally modified
 objects, in which case, local modifications are
 overwritten and objects are fetched according to
 the specified state or the default fetch state.

-from

 -from <where> Specifies whether the object is fetched from
 the vault ('-from vault') or from the cache or
 mirror ('-from local'). By default,
 DesignSync fetches from the cache or

ENOVIA Synchronicity Command Reference All -Vol2

197

 mirror ('-from local'), a performance
 optimization specific to the 'co -lock',
 'co -get', 'populate -lock', and
 'populate -get' commands. For details, see the
 Performance Optimization Overview in the
 DesignSync Data Manager Administrator's Guide. Note
that
 this option is silently ignored when the
 optimization is not possible, including when
 the -keys option is specified.

-get

 -get Fetch an unlocked copy.

 You can change whether the local object is
 read-only (typical when using the locking
 model) or read/write (typical when using the
 merging model) by default by using the
 "Check out read only when not locking" option
 from the Tools->Options->General dialog box in
 the DesignSync graphical interface. Your project
 leader can also set this option site-wide
 using SyncAdmin.

 This option is the default object-state option
 unless a default fetch preference has been defined
 (see the "fetch preference" command-line topic for
 more information).

-keys

 -keys <mode> Controls processing of RCS-style
 revision-control keywords in objects during
 checkout. Note that keyword expansion is not
 the same as keyword update. For example, the
 $Date$ keyword is updated only during checkin;
 its value is not updated during checkout or
 populate.

 Available modes are:

 kkv - (keep keywords and values) The local
 object contains both revision control keywords
 and their expanded values; for example,
 $Revision: 1.4 $.

 kk - (keep keywords) The local object contains
 revision control keywords, but no values; for
 example, $Revision$. This option is useful if
 you want to ignore differences in keyword
 expansion, such as when comparing two different

File-Based Design

198

 versions of an object.

 kv - (keep values) The local object contains
 expanded keyword values, but not the keywords
 themselves; for example, 1.4. This option is
 not recommended if you plan to check in your
 local objects. If you edit and then check in
 the objects, future keyword substitution is
 impossible, because the value without the
 keyword is interpreted as regular text.

 ko - (keep output) The local object contains
 the same keywords and values as were present at
 check in.

 Note:
 - The -keys option works only with the -get
 and -lock options. If you use the -share or
 -mirror option, keywords are automatically
 expanded in cached or mirrored objects, as if
 the '-keys kkv' option was used.

 - The EnableKeywordExpansion setting controls
 the expansion of keys during a check-out
 operation. This setting overrides the -keys
 option; if disabled, there is no expansion of
 keys, regardless of the use of the -keys
 option. By default, this setting is enabled;
 the check-out operation expands keywords. To
 change the default setting, your
 Synchronicity administrator can use the
 SyncAdmin tool. For information, see
 SyncAdmin help.

 - The check-out operation detects binary files
 and collections and does not expand keywords
 when operating on these objects, even if the
 Enable Keyword Expansion setting is on.

-lock

 -lock Lock the branch after retrieving the specified
 version from the vault. Only the user who has
 the lock can check in a newer version of the
 object on that branch. Use this option when
 your project team uses the locking model (as
 opposed to the merging model) and you intend
 to make changes to an object. Use the 'ci' or
 'cancel' command to remove the lock.

 You can use the -lock option to acquire a lock
 for an object you have already edited. In this
 case, DesignSync locks the object and retains
 your edited version without overwriting it.

ENOVIA Synchronicity Command Reference All -Vol2

199

 DesignSync only locks the object if there have
 been no other changes checked in for the object
 and if no other users have acquired a lock on
 the object since you last fetched it.

 Note: If you specify 'co -lock', then by
 default the check-out operation also uses the
 '-from local' option. The result is that the
 check-out operation locks the object in the
 vault and keeps local modifications in your
 workspace. See the -from option for
 information.

 Use the -lock option with the -reference option
 to check out a locked reference. Locked
 references are useful if you intend to generate
 an object and want to lock it before regenerating,
 as opposed to editing the previous version.
 Upon generation of the object, it automatically
 becomes a locked copy rather than a locked
 reference. Getting locked references for
 generated objects is faster because DesignSync
 does not fetch the previously generated object.
 If the object exists already in the workspace,
 DesignSync deletes it. If the object exists and
 is locally modified, the operation fails. If you
 intend to overwrite the modifications, use -force
 to create the locked reference. If the default
 fetch state is 'reference' and you specify
 the -lock option without the -reference
 option, DesignSync leaves locked copies
 of the objects in your workspace; you must
 explicitly apply the -reference option with
 the -lock option if you want locked references
 in your workspace.

-merge

 -merge Fetch the Latest version of the object on the
 branch specified by the persistent selector
 list, and merge it with the current, locally
 modified version. If you are not doing an
 overlay merge (see -overlay) and the current
 version is not locally modified, the -merge
 defaults to a -get and fetches the new version
 without merging. By definition, a merge
 expects a locally modified object, so the
 -force option is not required.

 Merging is not supported for collection objects
 (for example, Cadence collections).

 The -merge option supports the merging work
 model (as opposed to the locking work model)

File-Based Design

200

 where multiple team members can check out and
 edit the Latest version concurrently. The
 first team member to check in creates the next
 version. Other team members must merge the new
 Latest version into their local copy before
 they can check in their changes.

 If there are no merge conflicts, then the merge
 succeeds, leaving you the merged file in
 your work area. If there are conflicts,
 DesignSync issues a warning, and you must edit
 the merged file to resolve the conflicts
 before DesignSync allows you to check in the
 merged version. Conflicts are shown as
 follows:
 <<<<<<< local
 Lines from locally modified version
 =======
 Lines from selected server version
 >>>>>>> versionID

 DesignSync considers the conflicts resolved
 when the file no longer contains any of the
 conflict delimiters (exactly 7 less-than,
 greater-than, or equal signs starting in
 column 1). The status of an object, as
 displayed by 'ls' or from the List View in the
 DesignSync graphical interface, indicates if
 conflicts exist. The 'url inconflict'
 command also determines whether a file has
 conflicts.

 Most merges are between two versions on the
 same branch; the current branch and
 the branch specified by the persistent
 selector list are typically the same. However,
 a merge can also be performed across branches
 by setting the persistent selector list to a
 different branch. Following the merge, you are
 on the branch associated with the version
 specified by the persistent selector
 list. This is a "merge to" operation. If you
 want to stay on the current branch instead,
 use the -overlay option. Overlay, or "merge
 from", merges are more common when merging
 branches. See the -overlay option for details.

 Notes:
 o Although -merge is intended to be used
 with the merging work model, you can
 specify -lock with -merge to lock the
 branch as part of the merge operation.
 o The -merge option implies -get unless you
 specify -lock. You can also explicitly
 specify -get.
 o The -merge option is mutually exclusive with
 -mirror and -share.

ENOVIA Synchronicity Command Reference All -Vol2

201

 o The -version and -merge options are mutually
 exclusive unless you specify
 '-version Latest'.

-mirror

 -mirror Create a symbolic link from the work area
 to the object in the mirror directory. This
 option requires that you have associated a mirror
 directory with your work area (see the setmirror
 command). In addition, the effective workspace
 selector (set using 'setselector', 'setvault',
 or the -branch option) must match the mirror
 workspace selector.

 Note:
 o This option is not supported on
 Windows platforms.
 o When operating on a mirror directory, the
 check-out operation does not require an exact
 match between the workspace selector and the
 mirror selector in the case of <BranchName>:
 or Trunk selectors.
 The check-out operation considers
 - A selector of 'Trunk' to be the same as
 'Trunk:' and 'Trunk:Latest'
 - A selector of <BranchName>: to be the same
 as <BranchName>:Latest

-overlay

 -overlay <selectors> Replace your local copies with the versions
 specified by the selector list. The
 current-version status, as stored in local
 metadata, is unchanged. For example, if you
 have version 1.5 (the Latest version) of a
 file and you overlay version 1.3, your current
 version is still 1.5. You could then check in
 this overlaid version. This rollback
 operation is equivalent to checking out
 version 1.3, then using 'ci -skip' to check in
 that version.

 Note: The overlay operation overlays specified
 local copies even if you checked out those
 versions with a lock.

 Typically, you use -overlay with -merge to
 merge the two versions instead of overlaying
 one version on another. The combination of
 -overlay and -merge lets you merge from one
 branch to another, the recommended method for

File-Based Design

202

 merging across branches. Following the
 overlay merge, you are working on the same
 branch as before the operation.

 The -overlay and -version options are mutually
 exclusive. You specify the version you want to
 to overlay as an argument to the -overlay
 option. The -version option always updates the
 'current version' information in your work
 area, which is not correct for an overlay
 operation.

 Note:
 o To use -overlay to specify a branch, specify
 both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.
 o The -overlay option implies -get, but
 you can also explicitly specify -get.
 o The -overlay option is mutually exclusive
 with -mirror, -share, -lock, and -version
 options.

-[no]recursive

 -[no]recursive Indicates whether to perform this operation on
 all objects in all subfolders of the specified
 folders. This behavior (-recursive) is the
 default behavior of the graphical interface,
 but not of the command line interface.

-reference

 -reference Create a reference to an object in the vault.
 A reference does not have a corresponding file
 on the file system but does have local metadata
 that makes the reference visible to Synchronicity
 programs. Create a reference when you want your
 work area to reflect the contents of the vault
 but you do not need a physical copy. Use the
 -reference option with the -lock option to
 create a locked reference. Locked references
 are useful if you intend to generate an object
 and want to lock it before regenerating,
 as opposed to editing the previous version.

 Note: Synchronicity recommends against using
 the -reference option when operating on a
 collection object. If you use the -reference

ENOVIA Synchronicity Command Reference All -Vol2

203

 option, DesignSync creates a reference in the
 metadata for the collection object but member
 files are not processed and are not included
 in the metadata.

-[no]retain

 -[no]retain Indicates whether to retain the 'last modified'
 timestamp of the checked-out objects as recorded
 when the object was checked into the vault. If
 the workspace is set to use a mirror, or the
 checkout is run using -share, this will also
 apply to the object placed in the mirror or LAN
 cache if the object doesn't already exist in the
 mirror or cache. The links in your work area to
 the cache or mirror have timestamps of when the
 links were created.

 If you specify the -reference option, no object
 is created in your work area, so there is no
 timestamp information at all.

 If an object is checked into the vault and the
 setting of the -retain option is the only
 difference between the version in the vault and
 your local copy, DesignSync does not include the
 object in checkout operations.

 If you do not specify '-retain' or -noretain',
 the co command follows the DesignSync registry
 setting for Retain last-modification
 timestamps. By default, this setting is not
 enabled; therefore, the timestamp of the local
 object is the time of the check-out
 operation. To change the default setting, your
 Synchronicity administrator can use the
 SyncAdmin tool. For information, see SyncAdmin
 Help.

 The mirror system, by default,fetches objects
 into the mirror with the -retain option. The
 mirror administrator, however, can define
 mirrors to use the -noretain option. The default
 setting should agree with the Retain
 last-modification timestamp registry setting to
 maintain consistency. See the "Mirror
 Administration Server Registry Settings" topic
 for setting of the co or populate options for
 mirrors.

 Note: When fetching from the cache or mirror (by
 specifying the '-from local' option), the last
 modified timestamp comes from the file in the
 cache or mirror, not from the version that was

File-Based Design

204

 checked into the vault. If the file was fetched
 into the cache or mirror with the -retain
 option, these two timestamps are the same. But
 if the file was fetched into the cache or mirror
 with the -noretain option and then fetched into
 the workspace with both the '-from local' and
 '-retain' options, the 'last modified' timestamp
 used is the time the object was fetched into the
 cache or mirror.

-savelocal

 -savelocal <value> This option affects collections that have local
 versions.

 When it checks out an object, the check-out
 operation first removes from your workspace
 any local version that is unmodified. (To
 remove a local version containing modified
 data, specify 'co -force'.) Then the check-out
 operation fetches the object you are checking
 out (with the local version number it had at
 the time of checkin).

 The -savelocal option specifies the action
 that the check-out operation takes with
 modified local versions in your workspace
 (other than the current, or highest numbered,
 local version). (DesignSync considers a local
 version to be modified if it contains modified
 members or if it is not the local version
 originally fetched from the vault when the
 collection object was checked out or populated
 to your workspace.)

 Specify the -savelocal option with one of the
 following values:

 save - If your workspace contains a local
 version other than the local version being
 fetched, the check-out operation saves the
 local version for later retrieval. See the
 'localversion restore' command for information
 on retrieving local versions that were saved.

 fail - If your workspace contains an object
 with a local version number equal to or higher
 than the local version being fetched, the
 check-out operation fails. This is the default
 action.

 Note: If your workspace contains an object
 with local version numbers lower than the
 local version being fetched and if these local

ENOVIA Synchronicity Command Reference All -Vol2

205

 versions are not in the DesignSync vault, the
 check-out operation saves them. This behavior
 occurs even when you specify '-savelocal fail'.

 delete - If your workspace contains a local
 version other than the local version being
 fetched, the check-out operation deletes the
 local version from your workspace.

 If you do not specify the -savelocal option,
 the check-in operation follows the DesignSync
 registry setting for SaveLocal. By default,
 this setting is "Fail if local versions exist"
 ('-savelocal fail'). To change the default
 setting, a Synchronicity administrator can use
 the Command Defaults options pane of the
 SyncAdmin tool. For information, see SyncAdmin
 Help.

 Note:
 o You may need to use the -force option with
 the -savelocal option to allow the object
 being checked out to overwrite a locally
 modified copy of the object. For an example
 scenario, see EXAMPLES.
 o The -savelocal option only affects objects of
 a collection defined by the Custom Type
 Package (CTP). This option does not affect
 objects that are not part of a collection or
 collections that do not have local versions.

-[no]selected

 -[no]selected Indicates whether to perform this operation on
 objects in the select list (see the "select"
 command), as well as the objects specified on
 the command line. By default, (-noselected),
 co does not use the select list. If no
 objects are specified on the command line,
 the -selected option is implied.

-share

 -share Fetch a shared copy. Shared objects are stored
 in the file cache directory and a link to the
 cached object is created in the work area.

 Note: This option is not supported on
 Windows platforms.

-trigarg

File-Based Design

206

 -trigarg <arg> Specifies an argument to be passed from the
 command line to the triggers set on the
 check-out operation. If the argument contains
 whitespace, enclose the argument within
 double quotation marks ("") if using the dss
 command shell or braces ({}) if using the stcl
 command shell.

-[no]unifystate

 -[no]unifystate Sets the state of all objects processed,
 even up-to-date objects, to the specified state
 (-get, -lock, -share, -mirror, or -reference) or
 to the default fetch state, if no state option is
 specified. See the "fetch preference" help topic
 for more information.

 By default, 'co' changes the state of all
 processed objects that need an update
 as well as up-to-date objects (-unifystate). If
 the -nounifystate option is specified, DesignSync
 changes the state of only the objects that need
 an update.

 The -unifystate option does not change the state
 of locally modified objects; use -force with
 -unifystate to force a state change, thus
 overwriting local modifications. The -unifystate
 option does not cancel locks; you can check in
 the locked files, use the 'cancel' command to
 cancel locks you have acquired, or use the
 'unlock' command to cancel team members' locks.

 Note: The -unifystate option is ignored when
 you lock design objects. If you check out
 locked copies or locked references, DesignSync
 leaves all processed objects in the requested
 state.

-version

 -version <selector> Specifies the versions of the objects to be
 checked out. The selector list you specify
 (typically a version or branch tag) overrides
 the object's persistent selector list, but the
 persistent selector list is not modified.

 If you specify a date selector (Latest or
 Date(<date>)), you must specify a branch or
 version with it. For example, you want to check
 out the latest version of 'Gold:,Trunk' specify
 'co -version Latest'.

ENOVIA Synchronicity Command Reference All -Vol2

207

 If you specify the specific version number for
 the Latest version of objects on a retired
 branch, the co command fetches the objects into
 your workspace. If you specify the version as a
 branch selector for a retired branch, the co
 command does not fetch the specified retired
 files.

 Note:
 o If the selector you specify using -version
 does not exactly match the work area selector,
 your next populate will be automatically
 forced to be full (non-incremental). See the
 'populate' command description for more
 information.
 o To use -version to specify a branch, specify
 both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.
 o Specify '-version Latest' only if necessary
 because in some cases, DesignSync augments the
 selector to be '<branchtag>:Latest'. Appending
 ':Latest' to the selector might not match the
 work area selector. This mismatch invalidates
 your next incremental populate resulting in
 a slower, full populate.
 o The -version option is mutually exclusive
 with the -mirror and -merge options unless
 you specify '-version Latest'. You do not have
 to specify -version with -mirror.
 o The -version and -overlay options are
 mutually exclusive.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when an
 argument to the command begin with a hyphen (-).

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.

File-Based Design

208

 Notes:
 - "successfully processed" may not mean "successfully checked
 out". For example, attempting to check out an object that you
 already have in your work area is considered a success even though
 no checkout occurs.
 - Scripts should only test for non-empty lists to
 determine success or failure. The actual content of a non-empty
 list currently takes the form "Objects succeeded (n)" and
 "Objects failed (n)", where 'n' is the number of objects that
 succeeded or failed. However, these return values are subject to
 change in a future release.
 - If all objects fail, an exception occurs (the return value is
 thrown, not returned).
 - If a comment editor is defined, but cannot be used, the command
 automatically switches to the interactive command-line comment
 mode.

SEE ALSO

 ci, populate, cancel, localversion, select, setmirror, setselector,
 selectors, command defaults

EXAMPLES

• Example of Checking Out a File with a Lock
• Example of Checking Out a File From a Branch
• Example of Updating File Links in the Current Directory Recursively
• Example of Merging a File into Your Work Area
• Example of Merging From a Different Branch
• Example of Checking out and Locking a File Reference
• Example of Checking Out Objects With Different Version Selectors
• Example of Checking Out a Collection Object

Example of Checking Out a File with a Lock

 The following example checks out for editing the Latest version of
 a single file. The branch is locked to prevent others from checking
 in a newer version until after the changes are made and the file is
 checked in, or the checkout is canceled.

 dss> co -lock -comment "Trying an experiment" pcimaster.vbh

 After making changes to the file, you check in using the following
 command, creating a new version:

 dss> ci -comment "Experimental version" -keep pcimaster.vbh

Example of Checking Out a File From a Branch

ENOVIA Synchronicity Command Reference All -Vol2

209

 In the following example, the version of 'top.v' associated with
 the 'Gold' tag is fetched. If 'Gold' is a branch tag, then the
 Latest version of 'top.v' on that branch is fetched. Otherwise, the
 version tagged 'Gold' is fetched. If 'top.v' does not have a branch
 or version tagged 'Gold', the checkout fails.

 dss> co -get -version Gold top.v

Example of Updating File Links in the Current Directory Recursively

 In the following example, an entire work area is updated to have
 links to the Latest versions in the cache directory:

 dss> co -rec -share *

 Links are only created for those objects you already have in your
 work area. If your intent is to have your work area reflect the
 current status of the vault, including any new files that are not
 in your work area, use the populate command instead:

 dss> pop -rec -share

Example of Merging a File into Your Work Area

 The following example demonstrates the non-locking (merging) design
 methodology. The vault for 'alutest.txt' contains four versions:
 1.1 through 1.4. Two developers, Ann and Bill, fetch (check out
 without a lock) version 1.4 of 'alutest.txt':

 dss> co -get alutest.txt

 Both Ann and Bill make modifications to their local copies, and
 Bill checks in his changes first:

 dss> ci -nocomment -keep alutest.txt

 The checkin succeeds, creating version 1.5 in the vault. Later, Ann
 tries to check in the file, but DesignSync errors because a new
 Latest version exists in the vault. An 'ls' command on
 'alutest.txt' confirms the status of the file as 'Needs Merge'.
 Ann must merge the changes contained in the Latest version
 into her local copy:

 dss> co -merge alutest.txt

 DesignSync merges version 1.5 with Ann's local copy and informs Ann
 if there are any merge conflicts. Ann must resolve any conflicts
 before she can check in the merged file. (See the -merge option
 description for information on resolving conflicts.) Once
 conflicts are resolved, Ann's local file contains both her changes
 and Bill's changes, and Ann can now check in the file, creating

File-Based Design

210

 version 1.6:

 dss> ci -nocomment alutest.txt

Example of Merging From a Different Branch

 In the following example, you are working on the main development
 branch (Trunk), but need to pick up some bug fixes that were made
 on another branch (Dev). Because you are merging from another
 branch, you use the combination of -merge and -overlay:

 dss> co -merge -overlay Dev:Latest alu.v decoder.v

 DesignSync fetches the Latest versions of 'alu.v' and 'decoder.v'
 from the 'Dev' branch and merges them into your local copies from
 the 'Trunk' branch.

 If you wanted to pick up all the changes from another branch, you
 would use the 'populate -merge -overlay' command.

Example of Checking out and Locking a File Reference

 In the following example, you have a managed object that you intend
 to regenerate. You want to obtain a lock, but you do not want to
 fetch the existing object as you intend to overwrite its contents.
 You use the -lock and -reference options to create a locked
 reference:

 dss> co -reference -lock -nocomment top.netlist

Example of Checking Out Objects With Different Version Selectors

 This example shows the checkout of multiple objects with differing
 version selector.
 stcl> co file1;1.2 file2;bugfix:Latest file3;rdy_for_testing

 This will fetch version 1.2 of file2, the Latest version of file2
 on the bugfix branch, and the version of file3 tagged
 "rdy_for_testing" on the default Trunk ("1") branch.

 You can also use wildcards. For example,
 stcl> co "f*;1.5"
 will fetch version 1.5 of all object names beginning with "f*".

 You cannot check out folders by specifying the version selector.
 For example:
 stcl> co -rec "subdir;1.5
 will fetch items into the "subdir" folder, ignoring the selector
 "1.5".

ENOVIA Synchronicity Command Reference All -Vol2

211

Example of Checking Out a Collection Object

 This example shows the checkout of a collection object that deletes
 local versions.

 Note: The DesignSync Milkway integration has been deprecated. This
 example is meant to be used only as a reference.

 Mike checks out the Milkyway collection object top_design.sync.mw,
 which fetches local version 4 of that object to his workspace. He
 modifies the object and creates local version 5. Then he checks in
 top_design.sync.mw. The check-in operation does not remove local
 versions, so Mike now has local version 5 (unmodified) and local
 version 4 in his workspace. (Note: Because the checkin removes
 local version 4's link to with the original check-out operation of
 top_design, DesignSync now considers local version 4 to be
 modified.)

 Ben checks out top_design.sync.mw (local version 5). He creates
 local version 6 and checks the object in.

 Mike does some work on top_design, which creates local versions 6,
 7, and 8 in his workspace. Then he decides to use Ben's version of
 the top_design object instead.

 Mike checks out the top_design object (local version 6) from the
 vault. He doesn't want to save his local versions of the object, so
 he uses the '-savelocal delete' option to delete local versions
 other than the local version being fetched. In addition, he uses
 the -force option. (Because he created local versions 6, 7, and 8
 of top_design in his workspace, DesignSync considers the top_design
 object to be locally modified and by default the checkout operation
 will fail. To successfully check out top_design, Mike must use
 '-force'.)

 stcl> cd /home/tjones/top_design_library
 stcl> co top_design.sync.mw -savelocal delete -force

 Before fetching top_design.sync.mw from the vault, the check-out
 operation first deletes all local versions that are unmodified. So
 the check-out operation deletes Mike's local version 6 because that
 was the version originally fetched and its files are unmodified.

 Because Mike specified the -force option, the checkout also deletes
 Mike's local version 8 (the current local version containing
 modified data for the object).

 Because Mike specified '-savelocal delete', the check-out operation
 deletes local version 7, which is not in the vault and is not the
 modified data Mike agreed to delete when he specified '-force'.
 If Mike specified '-savelocal save', DesignSync would save local
 version 7. Local version 4 is also deleted.

 Finally, Mike's check-out operation fetches the top_design object
 (Ben's local version 6) from the vault.

File-Based Design

212

 Mike continues to modify the top_design object, creating local
 version 7, which he checks in.

 Ben has local versions 5 and 6 in his workspace. He checks out the
 top_design collection object (local version 7), specifying
 '-savelocal fail'. The check-out operation removes local version 6
 from his workspace because it is unmodified. The operation saves
 local version 5 even though it is modified. (Ben's checkin of local
 version 6 removed local version 5's link to with the original
 checkout of top_design, so DesignSync now considers local version 5
 to be modified.) The checkout also takes place despite the fact that
 Ben specified '-savelocal fail'. The check-out operation takes this
 action because local version 5 has a number lower than the local
 version being fetched. If Ben had instead specified 'co -savelocal
 delete', the checkout would delete local version 5.

populate

populate Command

NAME

 populate - Fetches or updates specified objects

DESCRIPTION

• Object States
• How Populate Handles Selectors
• Populate Log
• How Populate Handles Collections with Local Versions
• Populating Module Objects (Module-based)
• Setting up Your Workspace (Module-based)
• How Populate Handles Module Snapshots (Module-based)
• How Populate Handles Module Views (Module-based)
• Resolving Module Conflicts with Populate (Module-based)
• Module Cache (Module-based)
• External Module Support (Module-based)
• Populating Modules Recursively (Module-based)
• Module Version Updating (Module-based)
• Incremental Versus Full Populate (Module-based)
• How Populate Handles Moved and Removed Module Members (Module-based)
• Merging Across Branches (Module-based)
• Understanding the Output (Module-based)
• Forcing, Replacing, and Non-Replacing Modes (Module-based)
• Interacting with Legacy Modules (Legacy-based)
• Incremental Versus Full Populate (Legacy-based)
• Setting up Your Workspace (File-based)
• Incremental Versus Full Populate (File-based)

ENOVIA Synchronicity Command Reference All -Vol2

213

• How Populate Handles Retired Objects (File-based)
• Merging Across Branches (File-based)
• Populate Versus Checkout (File-based)
• Understanding the Output (File-based)
• Forcing, Replacing, and Non-Replacing Modes (File-based)

 This command fetches the specified objects from the server
 into your current workspace folder or a folder you specify
 with the -path option.

 Typically, you create your work area, or workspace, and perform your
 first populate, an initial populate, as a full populate. Once your
 work area is populated, you can use the populate, co, and ci commands
 to selectively check out and check in specific objects. You should
 also populate periodically to update your work area with newly
 managed objects, as well as newer versions of objects you have
 locally.

 Populate is used to create or update the objects in your
 workspace. Populate features many ways to control the data brought
 into your workspace. Because of the complexity of the populate
 features, the description section is divided into sections that
 detail the major features and functionality of populate.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Object States

 Upon populating your workspace, DesignSync determines in what
 state to leave the fetched objects in your work area:
 1. DesignSync obeys the state option (-get, -lock, -share,
 -mirror, -reference) specified on the command line.
 2. If no state option is specified, DesignSync uses the default
 fetch state as specified by your project leader. See
 the "fetch preference" help topic for more information.
 3. If a default fetch state is not defined, the default
 behavior for 'populate' is -get.

 Important: For both incremental and full populate operations,
 DesignSync changes the state of only those objects that need
 updating. DesignSync does not change the state of up-to-date
 objects during the populate operation.

 The following methods let you override the default behavior
 to change the states of all objects during a populate operation:
 o To change the state of up-to-date objects during a populate,
 use the -unifystate option. To change the state of all
 objects that need an update as well as up-to-date

File-Based Design

214

 and locally modified objects, use -unifystate with the -force
 option.
 o Unlocked locally modified objects are not overwritten unless
 you specify -force. For example, if you modify a fetched file,
 then execute a 'populate -share' command, your locally modified
 file is not replaced by a link to a file in the cache unless
 you also specify -force. Locked files are not overwritten by
 the -force option.
 o To make populating with links to the mirror a fast operation,
 links are created only if no object (locally modified or not)
 or link already exists in your work area. You must specify
 -unifystate to change the state of existing objects and links
 in this case. Use -force, as well, to overwrite locally
 modified objects that are not locked and to remove objects
 that are not in the current configuration.

 Note: If the object is designated as uncachable, attempts to place
 objects in the cache (populate -mirror; populate -share) will
 automatically populates the workspace with unlocked copies (-keep
 mode). For more information on cachability, see the "caching"
 commands.

How Populate Handles Selectors

 DesignSync determines what versions of objects to populate as
 follows:
 1. DesignSync obeys the selector list specified by the -version
 option.
 2. If -version is not specified, DesignSync uses the persistent
 selector list of the top-level folder being populated.
 The default persistent selector is 'Trunk', in which
 case DesignSync checks out the Latest versions from
 Trunk.

 Notes:
 o If you specify a selector or a selector list for the
 populate operation using the -version option and the selector
 does not exactly match the workspace selector, an incremental
 populate is no longer valid. In this case, DesignSync performs
 a full populate even if the -incremental option is specified.
 See "Incremental Versus Full Populate" above for more
 information.

 Important: The persistent selector lists of individual managed
 objects (files or collections) and subfolders are not obeyed by
 the 'populate -recursive' operation.

 o A 'populate -recursive' command without the -version option
 populates a work area based on the persistent selector list of
 the top-level folder you are populating, skipping any subfolder
 or managed object that has a persistent selector list that
 differs from the top-level folder. You must issue the populate
 command separately for any skipped subfolder.

ENOVIA Synchronicity Command Reference All -Vol2

215

 o A 'populate -recursive -version <selectorList>' command uses
 the specified selector list and ignores all persistent selector
 lists. In the case of '-version Latest', the persistent
 selector list of the top-level folder being populated is
 augmented with 'Latest' and that augmented persistent selector
 list is used for the populate operation.

 The supported DesignSync use models (single-branch development,
 project branching, and auto-branching) assume that persistent
 selector lists across a work area are consistent. Use caution
 when using commands that leave you with inconsistent local
 metadata, such as using 'setselector' or 'mkbranch' on individual
 objects.

 See the "selectors" help topic for details on selectors, selector
 lists, and persistent selector lists. For more information about how
 the -version switch is managed, see the -version in OPTIONS.

Populate Log

 Because populate operations can be long and complex, you may want to
 specify a log file to contain only the output of the populate command
 to store for later reference.

 You can specify the log file on an as needed basis using the -log
 option or by setting a log file name using the command defaults
 system. If the log file specified does not exist, DesignSync creates
 it before it begins the populate command processing. If the log file
 does exist, DesignSync appends the new populate information to the
 file.

 Tip: If you set a default log value for populate, check the file size
 periodically and, if the file is getting too large to use
 comfortably, rename the file to save the information, or remove the
 file if you no longer need it.

 Notes:

 o If a log file is defined in the command defaults system and two
 users run populate simultaneously, the populate output may become
 interlaced in the log file.

 o Regardless of whether you create a populate log, the DesignSync
 client log file contains the output of the populate command along
 with all the other commands typed into the DesignSync client
 session.

How Populate Handles Collections with Local Versions

 For collection objects that have local versions (for example,
 custom generic collections), the populate operation handles local
 versions in the following way.

File-Based Design

216

 When you populate a folder containing a collection object, the
 populate operation removes from your workspace any local version
 of the object that is unmodified. (Because these local versions
 exist in the vault, you can refetch them.) The operation then
 fetches from the vault the specified collection object (with the
 local version number it had at the time of checkin).

 If the current local version in your workspace is modified, the
 populate operation fails unless you specify 'co -force'. (The
 -force option lets the local version with the modified data be
 replaced with the local version of the object you are checking
 out.) Note: The current local version is the one with the highest
 local version number. DesignSync considers a local version to be
 modified if it contains modified members or if it is not the local
 version originally fetched from the vault when the collection
 object was checked out or populated to your workspace.

 The -savelocal option tells the populate operation what to do with
 local versions in your workspace other than a current local version
 that is modified. For information, see OPTIONS.

Populating Module Objects (Module-based)

 The populate command recognizes and fetches hierarchical module
 structure. These modules are data that represent a level of the
 design hierarchy. Such data includes objects or an entire vault
 folder hierarchy of objects managed in DesignSync, as well as
 hierarchical references to other modules. These modules can be stored
 on other SyncServers. For more information about modules, see
 DesignSync Data Manager User's Guide: "What is a Module?".

 Important: You must use the populate command rather than the
 co command when fetching modules or module objects. The co
 command does not support modules.

 To specify a module for an initial populate, you must specify
 its server URL, in the following format:
 sync://<machine>:<port>/Modules/<category>/<module_name>[;<selector>]

 DesignSync looks for an existing workspace root. If no workspace root
 exists and the registry key AllowAutoRootCreation is enabled,
 DesignSync automatically creates the workspace root based on the value
 set for DefaultAutoRoot path. If there is no existing workspace root
 path and DesignSync cannot create one, the populate fails. Workspace
 root path settings are in the DesignSync registry.

 During the initial populate, DesignSync performs an implicit setvault.
 If necessary, DesignSync also creates a workspace folder for the
 module. For subsequent populates, you do not have to specify the
 server URL for the module; you can populate the module by specifying
 just the module name or the module instance name if your current
 directory is within the workspace root (see the setroot command
 help), or using the full workspace address which is "<module base

ENOVIA Synchronicity Command Reference All -Vol2

217

 directory>/<module instance name>".

 If a top-level module (a module that is not hierarchically
 subordinate to another module populated in the workspace) is
 populated with the -version option, the persistent selector for the
 workspace is changed to the version specified.

 Overlapping of modules is supported. You use the -modulecontext
 option to indicate which module to populate if more than one module
 exists in the current directory (or that specified with the -path
 option). If no -modulecontext option is specified, all appropriate
 module objects from the candidate modules are populated.

 If a file is a member of both overlapping modules, a populate clash
 occurs. In this case, the first module to populate the file 'wins'.
 A subsequent attempt by an overlapping module to populate the same
 file fails.

 Two different versions of the same module cannot share the same base
 directory. However, you can populate two versions of the same module
 side by side.

 Notes:
 o Mirrors are not supported with module objects; you get an error
 if you use the -mirror option.
 o If a module member is checked out with a lock, the locker keyword
 is not expanded with the locker name.
 o You can use the -mcachemode, -mcachepaths, or -noreplace options
 only when populating a directory that is part of a module or a
 legacy module.
 o After the upgrade command has been used to convert legacy modules
 to a module, fetch each new module to an empty work area. The
 upgrade command does not upgrade existing work areas.

Setting up Your Workspace (Module-based)

 Before you can use populate to maintain your workspace, you must set
 up your workspace.

 Note: The Workspace Wizard from the DesignSync graphical user
 interface simplifies the task of setting up a work area by taking you
 through a step-by-step process.

 The typical steps when you set up a new work area are:

 1. Create the folder for your workspace, if it does not already
 exist.

 2. Populate the work area with the specified design objects from
 the vault. Populate determines the set of versions from the
 persistent selector list or from the -version option, if
 applicable. Apply the -recursive option to create a local
 hierarchy that matches the vault's hierarchy. Without
 -recursive, populate only fetches the specified objects.

File-Based Design

218

How Populate Handles Module Snapshots (Module-based)

 A module snapshot is a set of meaningful tagged module objects. The
 content and structure of a module snapshot is frozen to preserve
 important configurations. After the module snapshot has been created
 using the tag command, you can populate the snapshot into a local
 workspace for viewing, testing, or integrating into other work.

 When you populate a module snapshot as a fixed workspace for viewing
 or testing, you use the snapshot tag as a selector. This can be
 either the full snapshot branch and version name or the simple tag
 name. When you populate a snapshot module, you can update tags on
 module members or hrefs within your workspace, but cannot checkin any
 content or other structural changes to the module members or the
 module.

 When you populate a module snapshot to integrate with other work, you
 populate using a comma separated list of selectors ending with a
 "main" selector. This populates from the main selector first and
 replaces any matching objects with the member objects from the
 selectors in the selector list.

 This results in a workspace that uses the main selector as the base
 and the destination for any checkins, but some or all of the module
 member objects from the snapshot workspaces. For example, specifying
 the following version to populate:
 Beta,Alpha,Trunk:Latest

 The populate command creates a module manifest from the main
 selector, Trunk:Latest, and overlays that with the contents of the
 Alpha version, and then the Beta version. The final manifest is then
 sent to the client. The server uses the natural path of the objects
 and the uuid to determine which module members to replace.

 When hierarchical references are populated as part of the operation,
 the hierarchical reference versions come from the main selector list,
 not from the specified module snapshots.

 When the hierarchical references are populated recursively during the
 initial populate using a selector list, the module members within
 the populated submodules are also populated with the selector list. If
 hierarchical references are not populated recursively during the
 initial populate using a selector list, they will not overlay
 member items from the selector list on subsequent populates.

 Notes:
 o If the "main" selector list is a snapshot branch, or a static
 selector of any type, you will not be able to check in any
 changes from the workspace.

 o When populating a selector list, the module member objects in
 the specified snapshot are populated instead of the objects in the
 main selector. Populate will never attempt to merge the members.

ENOVIA Synchronicity Command Reference All -Vol2

219

 If you want to merge data from a module snapshot into your
 workspace, you will not use a selector list, but populate
 your snapshot with the -merge and -overlay options into a
 workspace that has the default selector defined as the desired
 destination for checkin.

 o Any hierarchical references that are defined as a static module
 version indicated by the selector on the href will not inherit any
 the selector list, even if the initial populate specifies using the
 selector list recursively.

How Populate Handles Module Views (Module-based)

 A module view is a defined subset of module members and hierarchical
 references that have significance as a unit. The module view
 definition is stored on the server with a unique module view
 name. During populate, you can specify the view name to restrict the
 populate operation to only those members in the view. You can
 populate using more than one view.

 Note: During initial populate, if you specify a view, the view
 specified persists in the workspace.

 The populate operation builds the list of module members and
 hierarchical references (if run recursively) to populate
 by first looking at the specified view(s) on the specified module and
 selector. After building this aggregate set of data, DesignSync
 applies the filtering rules from the -filter, -hreffilter and
 -exclude options to determine what objects to populate into the
 workspace.

 On an initial populate, the module view name or names list provided
 is propagated through the hierarchy and applied to all fetched
 modules. The module view name or names list is also saved, or
 persisted in the workspace metadata so that all subsequent populates
 use the same view. The documentation refers to a view saved in the
 metadata as a "persistent module view" because, like a persistent
 selector, it persists through subsequent populates rather than
 needing to be specified with each command.

 If a persistent module view has been set on a module instance in a
 workspace any sub-modules subsequently populated use the persistent
 module view already defined by default.

 Note: You can set or clear a persistent selector by using the setview
 command.

Resolving Module Conflicts with Populate (Module-based)

 DesignSync provides the ability to define an overriding hierarchical
 reference to be used in cases where submodule references point to
 different versions of the same object. This can be used in both a

File-Based Design

220

 peer-to-peer or hierarchical cone structure. In a peer-to-peer
 structure, it can be used to resolve conflicts and determine which
 version of the sub-module to populate into workspace.

 For example, a module called TOP with hrefs to sub-modules:
 ROM@1.23 -relpath ../ROM
 COM@1.15 -relpath ../COM

 where ROM and COM both contain an href to a common libraries
 directory, but to different versions:
 ROM -> LIB@1.3 -relpath ../LIB
 COM -> LIB@1.5 -relpath ../LIB

 Working in a peer-based structure, where your modules are
 populated in a flat directory setting, your workspace may look
 something like this:
 /home/workspace/TOP
 /home/workspace/ROM
 /home/workspace/COM
 /home/workspace/LIB

 DesignSync may experience a conflict determining what version of LIB
 (1.3 or 1.5, as referenced in the hierarchy)to populate in the peer
 directory /home/workspace/LIB.

 If an href is placed higher in the peer structure, however; it will
 become the overriding href. So, for example, if you add an href for
 TOP to LIB, as shown:
 TOP -> ROM@1.23 -relpath ../ROM
 -> COM@1.15 -relpath ../COM
 -> LIB@1.5 -relpath ../LIB

 When you populate the TOP workspace recursively into
 /home/workspace/TOP, DesignSync populates the LIB directory with the
 1.5 version, eliminating the guesswork.

 In a cone structure, it can be used to substitute a submodule version
 without modifying the hierarchy or branching the sub-module to update
 an href version. For example:

 Chip v1.10
 |
 |-----------------|
 ALU v1.5 ROM v1.7
 | |
 |---------| |----------|
 LIB v1.4 BIN v1.4 LIB v1.6 SRC v1.10

 If rather than branching ALU and updating the hierarchical reference
 to LIB, you add an href to the desired version of LIB at a higher
 level, for example, Chip, then that version of LIB will replace the
 lower level version with the same relpath when populated.

 Chip v1.10 ---HREF TO ./ALU/LIB v1.8
 |
 |-----------------|
 ALU v1.5 ROM v1.7

ENOVIA Synchronicity Command Reference All -Vol2

221

 | |
 |---------| |----------|
 LIB v1.8 BIN v1.4 LIB v1.6 SRC v1.10

 Notes:

 o The relpath of the hierarchical reference is what's used to
 determine which sub-module is replaced.

 o In order for the overriding href to be used by the system, you must
 populate recursively from the highest level module containing the
 override href. For example, if you were to populate either of the
 above examples at the ROM level, the ROM href is the one that is
 used to determine what submodule is populated; not the higher-level
 module.

Module Cache (Module-based)

 A module cache (mcache) can be thought of as a shared workspace. The
 populate command works with both module and legacy module mcaches.
 A module mcache contain modules while a legacy mcache contains only
 legacy releases.

 To create a module cache, team leaders should create a workspace and
 populate it with modules and or legacy modules using the -share
 option. This becomes the mcache directory. Usually a team leader
 creates the mcache for team members to access over the LAN. The
 mcache should be writable only by the team leader. Team members
 should need permission to read the data, link to and copy the module
 or legacy module in the mcache.

 Note: The module cache must be the workspace root directory.

 An mcache is manually administrated. Modules and legacy modules can
 be fetched as needed. You can have multiple modules in the mcache.

 o You can have full copies of all the modules in an mcache.
 o If you use -share option to populate an mcache, it allows you to
 keep full copies of the DIFFERENCES between versions by populating
 the mcache from the DesignSync cache which stores the files.

 Note: Only statically fetched modules can be fetched from an mcache
 during populate.
 Only released configurations can be fetched from an mcache
 during populate.

 Since multiple modules can have the same base directory or have the
 same directory at various levels, it can cause confusion for mcache
 links and can even cause circular or inconsistent links. To keep the
 contents of a mcache consistent, an mcache link to an mcached
 directory containing modules are created for only one module version.

 An mcache can either be for modules or legacy modules, not both. A
 module can have hierarchical references to legacy modules, resulting

File-Based Design

222

 in the legacy modules being populated to the module mcache. These
 legacy modules are ignored when creating mcache links or copies.

 The -mcachemode copy option is ignored for modules. You can, however,
 get the contents of a module from the LAN if your team lead fetches
 the modules from the server into the mcache using the -share
 option. This forces the module contents to get fetched into the
 DesignSync cache (different from an mcache). Symlinks are created in
 the mcache to point to these files in the DesignSync cache.

 If you specify -mcachemode copy to get full copies of a module's
 contents from the mcache, the populate operation automatically
 switches the command to use the default '-from local' mode to fetch
 the files.

 To use a module mcache the root directory of the mcache must be
 provided in the -mcachepaths option or the mcache paths registry
 setting. This root directory contains the metadata identifying the
 base directories of all module cache. See the section on -mcachepaths
 for more information.

 Note: If a module, module category, the Module area or server is
 designated uncachable, it cannot be stored in an mcache. If a module
 has already been populated into a cache and is then designated as
 uncachable, the module cache is not automatically removed.

External Module Support (Module-based)

 DesignSync supports populating an external module, an object or set
 of objects managed by a different change management system, within a
 module hierarchy. Using an external module in a DesignSync hierarchy
 allows you to manage code dependencies between module objects in
 DesignSync and files checked in to other change management systems.

 Within a parent module, you add an href that refers to an external
 module. The external module reference contains the name of an
 external module interface. The external module interface, provided by
 an administrator, defines a procedure to populate the sub-module
 using an external change management system.

 After creating the href to the external module, you populate it
 exactly as you would any other href, by specifying either the href
 name or the module instance name as the populate argument, or
 by populating the parent module with the -recursive option.

 The external module must be part of a module hierarchy. You cannot
 create an external module as a top-level module. Once in the
 workspace, the module itself, or any subfolders, or objects within
 the module may be individually populated according to the external
 module interface definition.

 Notes:
 o The external module's directory structure cannot overlap with
 any other module data.

ENOVIA Synchronicity Command Reference All -Vol2

223

 o If an external module populate fails and the populate command was
 run with the -report brief option specified, you may not have
 enough information to determine where the failure occurred. If you
 rerun the populate with the -report brief mode, you can locate the
 referenced object within the module hierarchy.

Populating Modules Recursively (Module-based)

 You can use populate to fetch entire modules or their members as
 follows:

 o To fetch a single module without fetching its submodules, specify
 the workspace or server module and apply the populate command
 without the -recursive option.
 The command populates the module members without following
 hierarchical references (hrefs).

 o To fetch all objects in an entire module hierarchy, specify the
 workspace or server module and use the populate command with the
 -recursive option.
 The command traverses the hierarchy in a module-centric fashion,
 populating all the objects in the module and following its hrefs
 to populate its referenced submodules.

 o To fetch all objects in a folder, specify a folder name
 and apply the populate command without the -recursive option.
 The command fetches the objects in the folder, without following
 hrefs.

 o To fetch all objects in a folder and its subfolders, specify a
 folder name and apply the populate command with the -recursive
 option.
 The command traverses the folders in a folder-centric fashion,
 populating the modified objects in the folder and its subfolders,
 but without following hrefs. To follow hrefs, you must specify a
 workspace or server module instead of a folder.

 o To fetch all objects in a module or module hierarchy but restrict
 the fetch to a particular folder hierarchy, use the -modulecontext
 option to specify the module and provide the folder name.
 - Specify the -recursive option if the module hierarchy needs be
 traversed to fetch items from the sub-modules into that folder.
 - Specify -norecursive option to fetch only the items from the
 given module. Note that this operation is "module centric" and
 "folder recursive", in that all items in the module are fetched
 which belong to the given module or its sub-folders.
 - To restrict the operation to both a module and a single folder,
 use the -filter option to filter out items from sub folder.

 Note: You cannot specify the -recursive option, if you are performing
 a cross-branch merge (with pop -merge -overlay) on a module.

 When you fetch a module recursively, you update the module hierarchy.

File-Based Design

224

 How that module hierarchy populates depends on the href mode
 specified, and the selector(s) specified within the href, the
 hreffilter string and possibly the populate selector for the selected
 module. For more information on how the module hierarchy is
 populated, see the "Module Hierarchy" topic in the ENOVIA
 Synchronicity DesignSync Data Manager User's Guide.

 Note: If the "HrefModeChangeWithTopStaticSelector" registry key is
 enabled, and the selected module is a static version, the static
 version is saved as the persistent selector in populate. For more
 information about setting the "HrefModeChangeWithTopStaticSelector"
 registry key, see the ENOVIA Synchronicity DesignSync Data Manager
 Administrator's Guide.

Module Version Updating (Module-based)

 The populate command updates the module version upon successfully
 fetching all members of the module. If the populate command is
 not completely successful, the fetched version number is not
 updated, as in the following scenarios:

 o A module member cannot be fetched if the member is locally
 modified (and -force is not applied). In this case, the module
 is not fully populated, and the module version is not updated.

 o A module member is not fetched if a -filter, -exclude, or
 -nonew option excludes it. In this case, the module is not
 fully populated, and the version number is not updated.

 If you do not have the Latest complete module version due to
 one of these cases, you can still check in a module; the ci
 command auto-merges members so that the module is fully
 updated upon checkin. See the ci command for details.

 You can use the showstatus command to detect whether a module has
 been fully populated. The showstatus command lists the module as
 'Needs Update' if the Latest version has not been successfully
 fetched.

 Unlike the cases where the module version is not updated,
 the module version is updated if a populate successfully
 updates the entire module, but fails to remove files that
 are no longer members of the module. If a member has been
 removed from the new module version, but the populate command
 cannot remove it from the workspace (because it is locally
 modified and -force was not applied), the workspace does
 contain the entire contents of the new module version, so
 the module version is updated.

Incremental Versus Full Populate (Module-based)

 By default, the populate command attempts to perform an incremental

ENOVIA Synchronicity Command Reference All -Vol2

225

 populate which updates only those local objects whose corresponding
 vaults have changed. For modules, DesignSync tracks the members
 changed on the server and in the workspace and performs an
 incremental populate. Avoiding a full populate improves the speed of
 the populate; however, some circumstances make a full populate
 necessary. In the following cases, DesignSync automatically performs
 a full populate:

 o If you are populating with a different configuration to
 that of the work area (having used setselector, setvault,
 'populate -version', or 'co -version' to change a selector),
 DesignSync performs a full populate. For example, if your last
 full populate specified the VendorA_Mem configuration, but
 you now want VendorB_Mem files, then DesignSync automatically
 performs a full (nonincremental) populate. If the selector
 you specify resolves to the same exact selector as that of the
 work area, DesignSync does perform the incremental populate.
 In this case, the selectors must be an exact match; for example,
 a selector which resolves to 'Main' does not match 'Main:Latest'.
 If you are populating with a new configuration, consider
 using the -force option to remove objects of the previous
 configuration from your work area.

 o If you have removed module data from the workspace
 with rmfile or rmfolder, DesignSync performs a full populate,
 refetching the removed files.

 o If you use the -lock option, DesignSync performs a full
 populate.

 o If you use the -unifystate option, DesignSync performs
 a full populate.

 o If you perform a nonrecursive populate on a subfolder, all
 of the folders above the subfolder are invalidated for
 subsequent incremental populate operations. Incremental
 populate works by exploiting the fact that if a folder
 is up-to-date, all of its subfolders are also up-to-date,
 making it unnecessary to recurse into them. Because
 a recursive populate was not performed for the subfolder,
 DesignSync cannot ensure that its subfolders are up-to-date;
 thus, all incremental populates are invalidated up the
 hierarchy.

 o If you perform a nonrecursive populate on a folder,
 DesignSync essentially runs a full populate rather than
 the default incremental populate. Your next populate
 is incremental from the last recursive populate. If
 you have not previously run a recursive populate, the
 subsequent populate is a full populate.

 Note: If you are using a mirror (by specifying -mirror or
 having a default fetch state of Links to mirror), an incremental
 populate does not necessarily fetch new objects checked in, nor
 remove links to objects deleted by team members until after the
 mirror has been updated.

File-Based Design

226

 For the following cases, you should perform a full populate instead
 of an incremental populate:

 o If you have excluded a folder by using the -exclude, -filter,
 or -noemptydirs option with the populate command, a
 subsequent incremental populate will not necessarily process
 the folder of the previously excluded object. DesignSync does
 not automatically perform a full populate in this case. To
 guarantee that previously excluded objects are fetched,
 specify the -full option for the subsequent populate operation.

 o Specify a full populate to force data that has been manually
 removed, removed locally, or renamed locally to be fetched again
 from the server. If the file was renamed, you may have to specify
 the -force option as well.

 Also, specify a full populate if you have an unchanged,
 but out-of-date or out-of-sync version in your workspace to force
 DesignSync to fetch the up-to-date version of the object.

 o If the system clock on the SyncServer machine where your vault
 is located is turned back (for example, to correct clock skew
 between machines), you must perform a full (nonincremental)
 populate to synchronize the client and server metadata.

 o If you interrupt a populate operation (using Control-c, for
 example), you should use populate -full on your next populate
 of that folder.

 The default populate mode is -incremental; however, your project
 leader can set this default using SyncAdmin.

 If you are updating mirrors, use the -incremental option. If you
 specify the -full option, mirror updates can take a long time
 to complete.

 Note: If you remove objects from the work area by using operating
 system commands rather than DesignSync commands, an incremental
 populate cannot fetch these objects. Perform a full populate
 (-full) or use the -unifystate option to fetch them.

How Populate Handles Moved and Removed Module Members (Module-based)

 When you populate a module, DesignSync does not populate
 any module member that has been removed on the server.
 Existing module members in your local workspace that have been
 removed on the server are removed during a populate.

 Module members that have been removed or moved locally, but those
 changes were not committed to server are preserved in the workspace
 unless populate is run with the -full and -force options which remove
 the local modifications (including the structural changes) and
 replace the workspace version with the server version.

ENOVIA Synchronicity Command Reference All -Vol2

227

 Merging module members that have been removed or renamed is discussed
 in Merging Across Branches

Merging Across Branches (Module-based)

 In multi-branch environments, you use the populate command to
 merge branches. In many cases, a new branch that is created is
 eventually merged back into the main development branch.

 The branch being merged is populated into a workspace containing the
 destination branch using the populate command with the -merge and
 -overlay options. This type of merge is called "cross-branch merge."

 As with all populate operations, cross-branch merging uses the filter
 and exclude filter lists set on the workspace, in the command
 defaults system,on the command line.

 Note: Filtering on module workspaces is applied to the natural path
 of the module members. If a module member's natural path has
 changed, creating a situation where either the new location or the
 old location, but not both is excluded, the module member is
 included in the merge.

 Important: When working with modules, you should lock your workspace
 branch before beginning a cross-branch merge. This reduces the risk
 of changes being committed by another user while you are merging the
 versions. After the merge has been completed, the changes have been
 reviewed and accepted, and the new module version created, unlock the
 branch to make it available for general use.

 Merging includes two basic types of merging: file contents, and
 structural changes.

 o File content merging:
 File content merging is applicable to all DesignSync objects
 including module members. DesignSync merges the contents of files
 with the same natural path to the best of its ability. If the
 files are binary files which cannot be merged, populate returns an
 error message.

 o Structural change merging for Modules:
 Structural changes for modules are either committed when the module
 is checked in or can be individually committed. Structural changes
 for Modules include:

 - Removed objects - If an object is present in the local workspace,
 but has been removed on the merge version, it is marked with a
 metadata property to indicate that it was removed from the
 branch. If you want to remove it from the merged module version,
 you must manually remove the file from the workspace before
 creating the new module.

 If the object has been removed on the workspace, but:
 * is present on the server at the same member version removed

File-Based Design

228

 from the workspace, the object remains in the same state, and
 is removed from the server during the next checkin.

 * is present on the server at a newer version or has been moved,
 or is on the overlay version, the new version is not merged
 into the workspace, and an error is returned stating there is
 new version. The version in the workspace remains in the
 removed state, but you will not able to check in the change
 until you resolve the merge conflict.

 - Added objects - If an object is present in the merge version,
 but not in local workspace, it is added to the module and is
 checked into the module when the next checkin operation on the
 module or the module member is performed.

 - Moved or Renamed objects - A moved (or renamed) object has a
 different natural path. Objects that have been moved on either
 the server or checked in from the workspace have been moved on
 the server. Objects that have been moved in the workspace, but
 have not been checked in are considered moved locally.

 If an object has been moved on the server, but not locally, the
 module member in the workspace retains the same name or location
 in the workspace, and a metadata property is added to the object
 to indicate the new path name. To determine what files have been
 moved, review the populate status information, log file, or run
 the ls command with the -merge rename option.

 If an object has been moved locally, and:

 * has been moved on the server to the same location, the merge
 operation is performed on the merged local version. Subsequent
 checkin checks in the merged file to the new location. If the
 content has changed, DesignSync will perform a content merge as
 well.

 * has been removed on the server, the new version is not merged
 into the workspace, and an error is returned by populate.
 new version. The version in the workspace remains in the moved
 state, but you will not able to check in the change until you
 resolve the merge conflict.

 * has been updated on the server, content changes are merged into
 the moved file, and subsequent checkin of the member moves the
 file on the server and updates the content.

 * has been moved on the server to a different location and
 updated, the content is merged, the workspace version remains
 in the same location in the workspace, and an error is logged
 in populate to alert you that the file has been moved on the
 server. In order to checkin, you must resolve the merge name
 conflict or checkin with the -skip option to move the file to
 name of the file in your local workspace.

 * and exists on the overlay version, the overlay version is not
 copied into the workspace, but a metadata property is placed on
 the local version to indicate that natural path of the object

ENOVIA Synchronicity Command Reference All -Vol2

229

 is different. You can see a list of these differences by using
 ls -merged.

 Note: If a file marked as renamed is subsequently renamed again,
 or removed from the module, the metadata property indicating that
 the file was renamed by merge may persist. To clear the
 property, perform the mvmember or remove command on the workspace
 object, or manually clear the property using the url rmprop
 command.

 - Added or Removed hierarchical references - Hierarchical reference
 changes cannot be merged. You must manually adjust your
 hierarchical references.

 After a cross-branch merge has been performed, you can view the
 status of the affected files using the ls command with the -merged
 <state> -report D options. The -merged option allows you to restrict
 the list to a particular type of merge operation (add, remove,
 rename, all) and the -report D option shows you the current state of
 the object in your workspace. For more information, see the ls
 command help.

 When a merge is performed on a DesignSync object, a merge edge is
 created automatically to maintain a list of the changes incorporated
 by the merge. This identifies a closer-common ancestor to provide
 for quicker subsequent merges. When performing a cross-branch merge
 on a module, however, you need to manually create the merge edge
 after committing the selected changes. For more information on
 creating a merge edge, see the mkedge command.

 For more information about merging, see the -merge and -overlay
 options, and the DesignSync Data Manager User's Guide topic: "What Is
 Merging?"

 Notes:
 o Auto-branching is not supported for modules; you cannot specify
 the auto-branching construct, auto(), for modules.

Understanding the Output (Module-based)

 The populate command provides the option to specify the level of
 information the command outputs during processing. The -report option
 allows you to specify what type of information is displayed:

 If you run the command with the -report brief option, the populate
 command outputs a small amount of status information including, but
 not limited to:
 o Failure messages.
 o Warning messages.
 o Version of each module processed as a result of a recursive
 populate.
 o Removal message for any hierarchical reference. removed as part of
 a recursive module populate.
 o Informational messages concerning the status of the populate

File-Based Design

230

 o Success/failure/skip status

 If you do not specify a value, or the command with the -normal
 option, the populate command outputs all the information presented
 with -report brief and the following additional information:
 o Informational messages for objects that are updated by the
 populate operation.
 o Messages for objects excluded from the operation (due to exclusion
 filters or explicit exclusions).
 o For module data, also outputs information about all objects that
 are fetched.

 If you run the command with the -report verbose option, the populate
 command outputs all the information presented with -report normal and
 the following additional information:
 o Informational message for every object examined but not updated.
 o For module data, also outputs information about all objects that
 are filtered.
 o For module versions that have been swapped, output indicates when
 the selector of a swapped sub-module is being used.

 If you run the command with the -report error option, the populate
 command outputs the following information:
 o Failure messages.
 o Warning messages.
 o Success/failure/skip status messages.

 Note: References to DesignSync Vault, IPGear Deliverables, or
 External modules do not have a module instance name to add to the
 object path. When running with the error report mode, if an object
 within a referenced DesignSync Vault, IPGear Deliverable, or External
 module fails, you may need to rerun the operation with the report
 -brief option to locate the referenced object within the module
 hierarchy.

Forcing, Replacing, and Non-Replacing Modes (Module-based)

 You can use these three modes to specify how the populate command
 updates your work area:

 o Forcing mode (specified with the -force option) synchronizes
 your work area with the incoming data, including locally
 modified objects. In this mode, the populate command updates
 the managed objects in your work area. It replaces or removes
 managed objects regardless of whether the objects have been
 locally modified and whether they are members of the module
 being fetched. Thus, forcing modifies your work area
 to match the set of module members being fetched. Note: The
 default -noforce option operates as if -replace has been
 specified.

 o Replacing mode (specified with the -replace option) also
 synchronizes your work area with the incoming data, but without
 affecting locally modified objects (the default behavior).

ENOVIA Synchronicity Command Reference All -Vol2

231

 For modules, the populate command updates managed members
 of the module that have not been locally modified. It also
 removes any unmodified managed objects that are not members
 of the module being fetched.

 Replacing mode, unlike forcing mode, leaves intact managed
 objects that have been locally modified.

 o Non-replacing mode (specified with the -noreplace option) is
 the least disruptive mode; this mode might require you to clean
 up the resulting work area data.

 In this mode, the populate command takes the incoming data and
 overlays it on top of the existing work area's data. It leaves
 intact both managed objects with local modifications and
 managed objects that are not members of the module being
 fetched. Thus, the work area essentially becomes a union of the
 data from the previous version and that of the module being
 fetched.

 Non-replacing mode, unlike forcing mode, leaves intact any
 objects that have been locally modified, and, unlike the
 replacing mode, leaves unmodified managed objects intact.
 See the -[no]replace option below for more details.

 Notes:
 o Unmanaged objects in your work area are not affected by any of
 these modes.
 o The following are illegal combinations of options:
 -replace and -noforce, as well as inverse options, such
 as -replace and -noreplace.

Interacting with Legacy Modules (Legacy-based)

 The general functionality provided by populate is provided for legacy
 modules by the hcm get command. The sections within populate that
 are specifically tagged for legacy modules refer to interactions with
 modules or files-based objects, when populate is used, or if populate
 is used on individual objects, not an entire legacy module
 configuration. For more information on updating legacy modules in
 your workspace, see the hcm get command.

 Important: Legacy modules are modules generated prior to
 Developer Suite 5.0. The modern modules functionality provides
 significant improvements. You can update your legacy modules using
 the upgrade command.

 Prior to Developer Suite 5.0, legacy modules were managed with module
 configurations. Modules no longer require "configurations". A
 configuration was a set of object versions sharing a common tag (for
 example, files of a version tagged 'Rel2.0' comprise the Release 2.0
 configuration).

 In ProjectSync, a configuration represents a state in the life-cycle

File-Based Design

232

 of a project. It has an owner, team members. When associated
 with a DesignSync vault, the configuration has a selector list
 (typically a tag) identifying the versions of DesignSync data
 that are part of the configuration.
 ProjectSync project and configuration information is stored in a
 sync_project.txt file that is located in the project folder.

 When you populate based on a name that corresponds to a ProjectSync
 configuration, DesignSync uses the selector list (typically a tag
 name) associated with that ProjectSync configuration to identify the
 versions to be populated. This scenario is called configuration
 mapping.

 Configuration mapping is used when a configuration name does not
 have the same meaning for all modules of a project. For example, a
 project's Alpha configuration may consist of the Gold configuration
 of one module, the Rel20 configuration of another, and several
 other modules whose design files are actually tagged
 Alpha. Configuration mapping lets you identify these different
 versions of design data with one configuration name.

 When you populate a configuration-mapped folder (either directly or
 through a recursive populate operation) and the selector you
 specify is mapped, the persistent selector list for that folder is
 set to the mapped value. For example, if the specified selector
 'Alpha' is a configuration that maps to the 'Gold' tag, then the
 persistent selector list for that folder is set to 'Gold'. Further,
 if the folder references a different vault (as identified by
 the REFERENCE keyword in the sync_project.txt file) and you are
 doing a recursive populate, the persistent selector list for any
 subfolder is also set to the mapped value.

 Notes:
 o The case where a ProjectSync configuration and its
 associated DesignSync tag have the same name is not
 considered configuration mapping; the persistent selector
 list is not modified by the populate operation.
 o Only the populate command (not co, ci, and so on) resolves
 the selector you specify to a ProjectSync configuration, if one
 exists.
 o DesignSync does not follow chained configuration maps. For
 example, if the same sync_project.txt file has a configuration A
 mapped to tag B and a configuration B mapped to tag C, DesignSync
 does not map A to C. Unexpected behavior can result. To avoid
 chained configuration maps, consider using separate naming
 conventions for configurations and tags.

 o If an legacy module populate fails and the populate command was
 run with the -report brief option specified, you may not have
 enough information to determine where the failure occurred. If you
 rerun the populate with the -report brief mode, you will can locate
 the referenced object within the module hierarchy.

 For information on how populate works on a legacy module or an href
 to a legacy module, see the description of -recursive option. See
 ProjectSync User's Guide for more information on ProjectSync projects
 and configurations. See the "Working with Legacy Modules" book in

ENOVIA Synchronicity Command Reference All -Vol2

233

 DesignSync Data Manager User's Guide for more information about
 legacy modules.

Incremental Versus Full Populate (Legacy-based)

 By default, the populate command attempts to perform an incremental
 populate which updates only those local objects whose corresponding
 vaults have changed. Avoiding a full populate improves the speed of
 the populate; however, some circumstances make a full populate
 necessary. In the following cases, DesignSync automatically performs
 a full populate:

 o If you are populating with a different configuration to
 that of the work area (having used setselector, setvault,
 'populate -version', or 'co -version' to change a selector),
 DesignSync performs a full populate. For example, if your last
 full populate specified the VendorA_Mem configuration, but
 you now want VendorB_Mem files, then DesignSync automatically
 performs a full (nonincremental) populate. If the selector
 you specify resolves to the same exact selector as that of the
 work area, DesignSync does perform the incremental populate.
 In this case, the selectors must be an exact match; for example,
 a selector which resolves to 'Main' does not match 'Main:Latest'.
 If you are populating with a new configuration, consider
 using the -force option to remove objects of the previous
 configuration from your work area.

 o If you use the -lock option, DesignSync performs a full
 populate.

 o If you use the -unifystate option, DesignSync performs
 a full populate.

 o If you perform a nonrecursive populate on a subfolder, all
 of the folders above the subfolder are invalidated for
 subsequent incremental populate operations. Incremental
 populate works by exploiting the fact that if a folder
 is up-to-date, all of its subfolders are also up-to-date,
 making it unnecessary to recurse into them. Because
 a recursive populate was not performed for the subfolder,
 DesignSync cannot ensure that its subfolders are up-to-date;
 thus, all incremental populates are invalidated up the
 hierarchy.

 o If you perform a nonrecursive populate on a folder,
 DesignSync essentially runs a full populate rather than
 the default incremental populate. Your next populate
 is incremental from the last recursive populate. If
 you have not previously run a recursive populate, the
 subsequent populate is a full populate.

 o If a DesignSync REFERENCE resolves to a different selector than
 that of the work area from which the populate command is invoked,
 DesignSync performs a full populate of the REFERENCED objects

File-Based Design

234

 rather than an incremental populate. DesignSync compares the
 -version selector with the work area configuration rather than
 the mapped configuration, so do not use the -version selector to
 specify a mapped configuration. Instead, if you suspect the
 configuration map file has been updated, use the -version
 selector to remap the configuration by specifying the original
 selector. DesignSync then performs a full populate and follows
 the updated REFERENCEs.

 o If the ProjectSync configuration file, sync_project.txt, has been
 updated through the ProjectSync interface (Project->Edit or
 Project->Configuration), thus updating the DesignSync REFERENCEs,
 DesignSync performs a full populate. If, however, the
 configuration in the sync_project.txt file is hand-edited and not
 updated using ProjectSync, you must specify the -full option to
 force a full populate.

 Note: If you are using a mirror (by specifying -mirror or
 having a default fetch state of Links to mirror), an incremental
 populate does not necessarily fetch new objects checked in, nor
 remove links to objects deleted by team members until after the
 mirror has been updated.

 For the following cases, perform a full populate instead of
 an incremental populate:

 o If you have excluded a folder by using the -exclude or or
 -noemptydirs option with the populate command, a subsequent
 incremental populate will not necessarily process the folder of
 the previously excluded object. DesignSync does not
 automatically perform a full populate in this case. To guarantee
 that previously excluded objects are fetched, specify the -full
 option for the subsequent populate operation.

 o If the ProjectSync configuration file, sync_project.txt,
 has been hand-edited, thus updating the legacy module REFERENCEs,
 use the -full option to perform a full populate. If, however,
 the sync_project.txt file has been changed through the
 ProjectSync interface (Project->Edit or Project->Configuration),
 DesignSync performs the full populate without your having to
 specify -full. For more information, see "Interaction with
 Legacy Modules" below.

 o If the system clock on the SyncServer machine where your vault
 is located is turned back (for example, to correct clock skew
 between machines), you must perform a full (nonincremental)
 populate to synchronize the client and server metadata.

 o If you interrupt a populate operation (using Control-c, for
 example), you should use populate -full on your next populate
 of that folder.

 The default populate mode is -incremental; however, your project
 leader can set this default using SyncAdmin.

 If you are updating mirrors, use the -incremental option. If you
 specify the -full option, mirror updates can take a long time

ENOVIA Synchronicity Command Reference All -Vol2

235

 to complete.

 Note: If you remove objects from the work area by using operating
 system commands rather than DesignSync commands, an incremental
 populate cannot fetch these objects. Perform a full populate or
 use the -unifystate or to fetch them.

Setting up Your Workspace (File-based)

 Before you can use populate to maintain your workspace, you must set
 up your workspace.

 Note: The Workspace Wizard from the DesignSync graphical user
 interface simplifies the task of setting up a work area by taking you
 through a step-by-step process.

 The typical steps when you set up a new workspace are:

 1. Associate a local folder with a vault folder. See the
 setvault command for details. This also creates the workspace
 root, if one does not already exist at the level of the local
 folder or above.

 2. Optionally set the persistent selector list for the folder as
 part of the setvault command or with the setselector
 command. If you do not set the persistent selector list, it is
 inherited from the parent folder. This step is necessary only
 if you are working on a branch other than the default Trunk
 branch.

 3. Optionally associate a local folder with a mirror directory.
 See the "setmirror" command for details. If the mirror directory
 for your project later changes, run the setmirror command from
 the same directory in which the original setmirror command was
 run. That will update the workspace's mirror association, which
 will be inherited by lower level directories. Run the populate
 command with the options '-recursive -mirror -unifystate' to
 correct existing workspace links to mirror files. This will
 correct the links so that they point to the mirror directory's
 new location.

 4. Populate the work area with the specified design objects from
 the vault. Populate determines the set of versions from the
 persistent selector list or from the -version option, if
 applicable. Apply the -recursive option to create a local
 hierarchy that matches the vault's hierarchy. Without
 -recursive, populate only fetches the specified objects.

Incremental Versus Full Populate (File-based)

 By default, the populate command attempts to perform an incremental
 populate which updates only those local objects whose corresponding

File-Based Design

236

 vaults have changed. Avoiding a full populate improves the speed of
 the populate; however, some circumstances make a full populate
 necessary. In the following cases, DesignSync automatically performs
 a full populate:

 o If you are populating with a different configuration to
 that of the work area (having used setselector, setvault,
 'populate -version', or 'co -version' to change a selector),
 DesignSync performs a full populate. For example, if your last
 full populate specified the VendorA_Mem configuration, but
 you now want VendorB_Mem files, then DesignSync automatically
 performs a full (nonincremental) populate. If the selector
 you specify resolves to the same exact selector as that of the
 work area, DesignSync does perform the incremental populate.
 In this case, the selectors must be an exact match; for example,
 a selector which resolves to 'Main' does not match 'Main:Latest'.
 If you are populating with a new configuration, consider
 using the -force option to remove objects of the previous
 configuration from your work area.

 o If you use the -lock option, DesignSync performs a full
 populate.

 o If you use the -unifystate option, DesignSync performs
 a full populate.

 o If you perform a nonrecursive populate on a subfolder, all
 of the folders above the subfolder are invalidated for
 subsequent incremental populate operations. Incremental
 populate works by exploiting the fact that if a folder
 is up-to-date, all of its subfolders are also up-to-date,
 making it unnecessary to recurse into them. Because
 a recursive populate was not performed for the subfolder,
 DesignSync cannot ensure that its subfolders are up-to-date;
 thus, all incremental populates are invalidated up the
 hierarchy.

 o If you perform a nonrecursive populate on a folder,
 DesignSync essentially runs a full populate rather than
 the default incremental populate. Your next populate
 is incremental from the last recursive populate. If
 you have not previously run a recursive populate, the
 subsequent populate is a full populate.

 o If the ProjectSync configuration file, sync_project.txt,
 has been updated through the ProjectSync interface
 (Project->Edit or Project->Configuration), thus updating
 the DesignSync REFERENCEs, DesignSync performs a full
 populate. If, however, the configuration in the
 sync_project.txt file is hand-edited and not updated
 using ProjectSync, you must specify the -full option to
 force a full populate.

 Note: If you are using a mirror (by specifying -mirror or
 having a default fetch state of Links to mirror), an incremental
 populate does not necessarily fetch new objects checked in, nor
 remove links to objects deleted by team members until after the

ENOVIA Synchronicity Command Reference All -Vol2

237

 mirror has been updated.

 For the following cases, perform a full populate instead of
 an incremental populate:

 o If you have excluded a folder by using the -exclude, or
 -noemptydirs option with the populate command, a
 subsequent incremental populate will not necessarily process
 the folder of the previously excluded object. DesignSync does
 not automatically perform a full populate in this case. To
 guarantee that previously excluded objects are fetched,
 specify the -full option for the subsequent populate operation.

 o For modules, DesignSync tracks changed members and therefore
 always performs an incremental populate. Specify a full populate
 to force data that has been manually removed, removed locally, or
 renamed locally to be fetched again from the server. If the file
 was renamed, you may have to specify the -force option as well.

 Also, specify a full populate if you have an unchanged,
 but out-of-date or out-of-sync version in your workspace to force
 DesignSync to fetch the up-to-date version of the object.

 o If the ProjectSync configuration file, sync_project.txt,
 has been hand-edited, thus updating the legacy module REFERENCEs,
 use the -full option to perform a full populate. If, however,
 the sync_project.txt file has been changed through the
 ProjectSync interface (Project->Edit or Project->Configuration),
 DesignSync performs the full populate without your having to
 specify -full. For more information, see "Interaction with
 Legacy Modules" below.

 o If the system clock on the SyncServer machine where your vault
 is located is turned back (for example, to correct clock skew
 between machines), you must perform a full (nonincremental)
 populate to synchronize the client and server metadata.

 o If you interrupt a populate operation (using Control-c, for
 example), you should use populate -full on your next populate
 of that folder.

 The default populate mode is -incremental; however, your project
 leader can set this default using SyncAdmin.

 If you are updating mirrors, use the -incremental option. If you
 specify the -full option, mirror updates can take a long time
 to complete.

 Note: If you remove objects from the work area by using operating
 system commands rather than DesignSync commands, an incremental
 populate cannot fetch these objects. Use the -unifystate or
 -full option to fetch them.

How Populate Handles Retired Objects (File-based)

File-Based Design

238

 When you populate with the Latest versions of design objects from a
 given branch, DesignSync does not populate objects for which that
 branch is retired. Objects in your local work area whose branches
 have been retired from the vault are not deleted during the
 populate operation unless you specify -force.

 It is important to note that objects on retired branches remain
 part of past configurations. When you use the populate command to
 retrieve a configuration other than 'Latest', objects from retired
 branches are fetched. The populate command fetches objects from
 retired branches, thereby preserving past configurations, if the
 selector used for the operation is any of the following:
 o A version tag other than 'Latest', even if the version
 tag points to the Latest version
 o A version number, even if that number corresponds to the
 Latest version
 o <branchtag>:Date(<date>) or <branchtag>:VaultDate(<date>)

 Note: If the selector specifies a branch in the form
 '<branchtag>:', DesignSync augments the selector to
 be <branchtag>:Latest, meaning, 'Get the Latest version
 from the specified branch'. In this case, objects
 from retired branches are not fetched.

 Note: For information about how retired files by cross-branch merge
 operations, see "Merging Across Branches."

Merging Across Branches (File-based)

 In multi-branch environments, you use the populate command to
 merge branches. In many cases, a new branch that is created is
 eventually merged back into the main development branch.

 The branch being merged is populated into a workspace containing the
 destination branch using the populate command with the -merge and
 -overlay options. This type of merge is called "cross-branch merge."

 As with all populate operations, cross-branch merging uses the filter
 and exclude filter lists set on the workspace, in the command
 defaults system,on the command line.

 Merging includes two basic types of merging: file contents, and
 structural changes.

 o File content merging:
 File content merging is applicable to all DesignSync objects.
 DesignSync merges the contents of files with the same natural path
 to the best of its ability. If the files are binary files which
 cannot be merged, populate returns an error message.

 o Structural changes for DesignSync objects.
 Structural changes for DesignSync objects are non-content based
 changes to the DesignSync objects that can affect the merge

ENOVIA Synchronicity Command Reference All -Vol2

239

 results.

 - Removed objects: If an object is present in the local workspace,
 but not in the merge version, the object in the local workspace
 is unchanged. If you want to remove it from the merged version,
 you must explicitly remove or retire the object.

 - Added objects: If an object is not present in the local workspace,
 but is present in the merge version, the object is added to the
 local workspace. The merge action sets the following local
 metadata properties:

 o The current version is set to the fetched version, providing
 a meaningful branch-point version when you check the object
 into branch A.
 o The current branch information is undefined.
 o The persistent selector list for the object may be augmented
 to ensure that branch A is automatically created when you
 check in the object, thus eliminating the need to use ci
 -new. The following list explains how the persistent
 selector list is handled by the operation.
 1. If the first selector in the persistent selector list is a
 VaultDate() or Auto() selector, then the persistent
 selector list is not modified.
 2. If the first selector is of the form <branch>:<version>,
 then the first selector is modified to be Auto(<branch>).
 3. Otherwise, the first selector is modified to be
 Auto(<selector>). The object may be automatically checked
 in to the DesignSync vault, depending on the value of the
 persistent selector.

 - Retired objects:

 o If the object is active in the workspace and retired on the
 branch version, the workspace version is unchanged.
 o If the object is retired or does not exist in the workspace,
 and is retired or does not exist on the branch, the workspace
 version is unchanged.
 o If the object is retired in the workspace and active on the
 branch version, the version from the branch version is merged
 with the workspace version. The object remains retired and
 must be unretired in order to be checked in.

 After a cross-branch merge has been performed, you can view the
 status of the affected files using the ls command with the -merged
 <state> -report D options. The -merged option allows you to restrict
 the list to a particular type of merge operation (add, remove,
 rename, all) and the -report D option shows you the current state of
 the object in your workspace. For more information, see the ls
 command help.

 When a merge is performed on a DesignSync object, a merge edge is
 created automatically to maintain a list of the changes incorporated
 by the merge. This identifies a closer-common ancestor to provide
 for quicker subsequent merges.

File-Based Design

240

 For more information about merging, see the -merge and -overlay
 options, and the DesignSync Data Manager User's Guide topic: "What Is
 Merging?"

Populate Versus Checkout (File-based)

 The co and populate commands are similar in that they retrieve
 versions of objects from their vaults and place them in your work
 area. They differ in several ways, most notably:
 o You typically use the co command to operate on objects that you
 already have locally, whereas populate updates your work area
 to reflect the status of the vault.
 o The co command considers the persistent selector list for each
 object that is checked out, whereas populate only considers the
 persistent selector list for the folder that is being populated.

 Note: The co and populate commands are gradually being merged.

Understanding the Output (File-based)

 The populate command provides the option to specify the level of
 information the command outputs during processing. The -report option
 allows you to specify what type of information is displayed:

 If you run the command with the -report brief option, the populate
 command outputs a small amount of status information including, but
 not limited to:
 o Failure messages.
 o Warning messages.
 o Informational messages concerning the status of the populate
 o Success/failure/skip status

 If you do not specify a value, or the command with the -normal
 option, the populate command outputs all the information presented
 with -report brief and the following additional information:
 o Informational messages for objects that are updated by the
 populate operation.
 o Messages for objects excluded from the operation (due to exclusion
 filters or explicit exclusions).

 If you run the command with the -report verbose option, the populate
 command outputs all the information presented with -report normal and
 the following additional information:
 o Informational message for every object examined but not updated.

 If you run the command with the -report error option, the populate
 command outputs the following information:
 o Failure messages.
 o Warning messages.
 o Success/failure/skip status messages.

ENOVIA Synchronicity Command Reference All -Vol2

241

Forcing, Replacing, and Non-Replacing Modes (File-based)

 You can use these three modes to specify how the populate command
 updates your work area:

 o Forcing mode (specified with the -force option) synchronizes
 your work area with the incoming data, including locally
 modified objects. In this mode, the populate command updates
 the managed objects in your work area. It replaces or removes
 managed objects regardless of whether the objects have been
 locally modified. Thus, forcing modifies your work area
 to match the set of objects being fetched. Note: The
 default -noforce option operates as if -replace has been
 specified.

 o Replacing mode (specified with the -replace option) also
 synchronizes your work area with the incoming data, but without
 affecting locally modified objects (the default behavior).

 Note: Retired files that have been kept or re-added to the
 workspace are considered locally modified.

 Replacing mode, unlike forcing mode, leaves intact managed
 objects that have been locally modified.

 o Non-replacing mode (specified with the -noreplace option) is
 the least disruptive mode; this mode might require you to clean
 up the resulting work area data.

 In this mode, the populate command takes the incoming data and
 overlays it on top of the existing work area's data. It leaves
 intact both managed objects with local modifications and
 managed objects that are not members of the module being
 fetched. Thus, the work area essentially becomes a union of the
 data from the previous version and that of the module being
 fetched.

 Non-replacing mode, unlike forcing mode, leaves intact any
 objects that have been locally modified, and, unlike the
 replacing mode, leaves unmodified managed objects intact.
 See the -[no]replace option below for more details.

 Notes:
 o Unmanaged objects in your work area are not affected by any of
 these modes.
 o The following are illegal combinations of options:
 -replace and -noforce, as well as inverse options, such
 as -replace and -noreplace.

SYNOPSIS

 populate [-[no]connectinstances] [-[no]emptydirs]
 [-exclude <object>[,<object>...]] [-filter <string>]

File-Based Design

242

 [-[no]force] [-full | -incremental] [-hreffilter <string>]
 [-hrefmode {static | dynamic | normal}]
 [[-lock [-keys <mode> | -from {local | vault}]] |
 [-get [-keys <mode> | -from {local | vault}]]
 [-share] | [-mirror] | [-reference] [-lock -reference]]
 [-log <filename>] [-mcachemode <mcache_mode>]
 [-mcachepaths <path_list>] [-[no]merge]
 [-modulecontext <context>] [-[no]new]]
 [[-overlay <selector>[,<selector>...]]|
 [-version <selector>[,<selector>...]]] [-path <path>]
 [-[no]recursive] [-[no]replace]
 [-report {error|brief|normal|verbose}] [-[no]retain]
 [-savelocal <value>] [-target <module_configuration_url>]
 [-trigarg <arg>] [-[no]unifystate] [-view view1[,view2,...]]
 [-xtras <list>] [--] [<argument> [<argument>...]]

ARGUMENTS

• Server Module URL (Module-based)
• Workspace Module (Module-based)
• Module Folder (Module-based)
• Module Member (Module-based)
• Hierarchical Reference (Module-based)
• External Module (Module-based)
• DesignSync Object (File-based)
• DesignSync Folder (File-based)

 The populate command accepts multiple arguments. If you want
 to populate the current folder, you need not specify an
 argument. Otherwise, specify one or more of the following
 arguments:

Server Module URL (Module-based)

 <server module> Fetches the specified module from its vault.
 For an initial populate of a module, you must
 specify the module's server URL in the format:
 sync://<machine>:<port>/Modules/<category>/
 <module_name>[;<selector>].

 The populate fetches all objects within the
 module, but does not follow hierarchical
 references (hrefs) by default; specify the
 -recursive option to follow hrefs and thus
 fetch the module's submodules.

Workspace Module (Module-based)

ENOVIA Synchronicity Command Reference All -Vol2

243

 <workspace module> Fetches the specified module from its vault,
 or updates the module to the appropriate
 module version specified by the selector in use.

 The populate fetches all objects within the
 module, but does not follow hierarchical
 references (hrefs) by default; specify the
 -recursive option to follow hrefs and thus
 fetch the module's submodules.

Module Folder (Module-based)

 <module folder> Populates objects in the specified folder
 regardless of which module the files belong
 to. Specify the -recursive option to recurse
 within the specified folder. Populate in
 this case, does not follow hierarchical
 references (hrefs).

 Note: To populate a module folder, the folder
 must already exist in the workspace.

 If you specify the -modulecontext option, the
 populate command updates the items belonging to
 the specified module in the specified folder and
 all the sub-folders. If you use the -recursive
 option in addition to the -modulecontext option,
 populate fetches any items from relevant
 sub-modules that fall within the folder specified
 (or its sub-folders.)

 Specify the module folder as an absolute
 path or a relative path. If you specify a
 relative path, it is assumed to be relative
 to the current directory or that specified
 by the -path option.

 Note: In previous releases, if the directory that
 was being populated was part of a legacy
 module, the entire module and not just the
 module members in the directory got
 populated.

Module Member (Module-based)

 <module member> Fetches the module member.
 You can specify the -modulecontext option if
 more than one module exists in the workspace.

 Note: The -modulecontext option is not normally
 needed, as the system knows what module
 each member belongs to. When there are

File-Based Design

244

 multiple overlapping modules and you are
 fetching an object that is not currently in
 the workspace (for example, to fetch
 something that was originally filtered, or
 was removed with rmfile), the
 -modulecontext option can be used to
 identify the module from which the object
 should be fetched.

 You can also provide the version-extended name if
 necessary. A version-extended name is a filename
 followed by a semicolon and a version number or
 tag name (for example, top.v;1.2 or top.v;rel13).
 In this case, DesignSync fetches the specific
 version of the member vault instead of fetching
 the version of this object that belongs with the
 module version.
 Note: If you specify the version-extended name,
 populate ignores the -version option.

Hierarchical Reference (Module-based)

 <href> Fetches the referenced target (submodule)
 identified by the hierarchical reference
 (href). You can use -hreffilter to exclude
 submodules. To include submodules, enter the href
 as the argument of the populate command. To
 indicate the module context of the href, use the
 -modulecontext option.

 Note: You can only specify hrefs directly
 within the specified module. For example, if
 a module Chip has an href to module CPU, and
 module CPU has an href to module ALU, you
 cannot reference the ALU. Thus, the
 following command invocations are invalid:
 'populate -modulecontext Chip ALU' and
 'populate -modulecontext Chip CPU/ALU'.

External Module (Module-based)

 <external module> Specifies the module instance of the external
 module in the workspace or the URL of the
 external module version to which you wish to
 create the connection. An external module is an
 object or set of objects managed by a different
 code management system but available for viewing
 and integration through DesignSync.
 Specify the external module in the workspace as a
 module instance name.
 Specify the external module Server URL as follows:

ENOVIA Synchronicity Command Reference All -Vol2

245

 sync[s]:///ExternalModule/<external-type>/<external-data>
 where ExternalModule is a constant that identifies
 this URL as an external module URL,
 <external-type> is the name of the external module
 procedure, and <external-data> contains the
 parameters and options to pass to the
 procedure. These parameters and options can be
 passed from the procedure to the external code
 management system or to DesignSync.

 Note: In order to specify an external module, you
 must have previously populated the module in the
 workspace. You may also specify the external
 module by href name only.

DesignSync Object (File-based)

 <DesignSync object> Fetches the object from its vault.

DesignSync Folder (File-based)

 <DesignSync folder> Fetches the contents of the specified folder.
 You can also use the -path option to specify
 a folder to be fetched.

OPTIONS

• -[no]connectinstances (Module-based)
• -[no]emptydirs
• -exclude (Module-based)
• -exclude (File-based)
• -filter (Module-based)
• -[no]force (Module-based)
• -[no]force (File-based)
• -from
• -full
• -get (Module-based)
• -get (File-based)
• -hreffilter (Module-based)
• -hrefmode (Module-based)
• -incremental
• -keys (Module-based)
• -keys (File-based)
• -lock (Module-based)
• -lock (Legacy-based)
• -lock (File-based)

File-Based Design

246

• -lock -reference (Module-based)
• -lock -reference (File-based)
• -log
• -mcachemode (Module-based)
• -mcachemode (Legacy-based)
• -mcachepaths (Module / Legacy-based)
• -[no]merge (Module-based)
• -merge (File-based)
• -mirror (File-based)
• -modulecontext (Module-based)
• -[no]new (Module-based)
• -overlay
• -path (Module-based)
• -path (Legacy-based)
• -path (File-based)
• -[no]recursive (Module-based)
• -[no]recursive (Legacy-based)
• -[no]recursive (File-based)
• -reference
• -[no]replace (Module-based)
• -[no]replace (File-based)
• -report
• -[no]retain
• -savelocal
• -share
• -target (Legacy-based)
• -trigarg
• -[no]unifystate
• -version (Module-based)
• -version (File / Legacy-based)
• -view (Module-based)
• -xtras (Module-based)

-[no]connectinstances (Module-based)

 -[no]connectinstances This option determines how to handle updating
 hierarchical reference within a top-level
 module.

 If your workspace is set up
 in a peer structure, containing your
 top-level module and modules which are
 referenced submodules, but have been
 populated independently, then when
 your workspace is populated non-recursively,
 DesignSync does not recognize the connection
 between the modules. When populated
 recursively, DesignSync may change the

ENOVIA Synchronicity Command Reference All -Vol2

247

 selector of the submodules to match the
 hierarchical reference definition. The
 -connectinstances option allows you to
 populate the top-level module, recognizes
 that the peer modules are, in fact,
 referenced submodules, and creates the
 relationship accordingly, but does not update
 the selector to match the hierarchical
 reference definition.

 This option is mutually
 exclusive with -recursive which updates the
 href to the referenced peer module.

 The -noconnectinstances option does not
 establish or identify a hierarchical
 relationship with referenced peer
 modules. (Default)

 Notes:
 * You can use the -connectinstances option
 with the -hreffilter option to identify
 specific submodules instead of updating the
 relationships for the entire module hierarchy.

 * The submodule must match the target module
 and relative path specified in the
 hierarchical reference in order to the
 update the href.

-[no]emptydirs

 -[no]emptydirs Determines whether empty directories are
 removed or retained when populating a
 directory. Specify -noemptydirs to remove
 empty directories or -emptydirs to retain
 them. The default for the populate operation
 is -noemptydirs.

 For example, if you are creating a directory
 structure to use as a template at the start of
 a project, you may want your team to populate
 the empty directories to retain the directory
 structure. In this case, you would specify
 'populate -rec -emptydirs'.

 If a populate operation using -noemptydirs
 empties a directory of its objects and if that
 directory is part of a managed data structure
 (its objects are under revision control), then
 the populate operation removes the empty
 directory. If the empty directory is not part
 of a managed data structure, then the

File-Based Design

248

 operation does not remove the directory or its
 subdirectories. (A directory is considered part
 of the managed data structure if it has a
 corresponding folder in the DesignSync vault
 or if it contains a .SYNC client metadata
 directory.)

 Notes:
 o When used with 'populate -force
 -recursive', the -noemptydirs option removes
 empty directories that have never been
 managed.
 o When used with the -mirror option, the
 -noemptydirs option does not remove empty
 directories (unless -force -recursive is
 used) and does not populate directories that
 are empty in the mirror.
 o When the -noemptydirs option is used with
 '-report verbose', the command might output
 messages that additional directories are
 being deleted. Those are directories created
 by the populate, to mimic the directory
 structure in the vault. If no data is
 fetched into those directories (because
 no file versions match the selector),
 then those empty directories are deleted.

 If you do not specify -emptydirs or
 -noemptydirs, the populate command follows
 the DesignSync registry setting for "Populate
 empty directories". By default, this setting
 is not enabled; therefore, the populate
 operation removes empty directories. To change
 the default setting, your Synchronicity
 administrator can use the SyncAdmin tool. For
 information, see SyncAdmin help. You typically
 want consistent behavior for all users, so
 adding the setting to the site registry is
 recommended.

-exclude (Module-based)

 -exclude <objects> Specifies a comma-separated list of objects
 (files, collections, folders, or module objects)
 to be excluded from the operation. Wildcards are
 allowed.

 Note: Use the -filter option to filter module
 objects. You can use the -exclude option, but
 the -filter option lets you include and exclude
 module objects. If you use both the -filter and
 -exclude options, the strings specified using
 -exclude take precedence.

ENOVIA Synchronicity Command Reference All -Vol2

249

 If you exclude objects during a populate, a
 subsequent incremental populate will not
 necessarily process the folders of the
 previously excluded objects. DesignSync does
 not automatically perform a full populate in
 this case. To guarantee that previously
 excluded objects are fetched, specify the
 -full option for the subsequent populate
 operation.

 The '-exclude' option is ignored if it is
 included in a 'populate -mirror' operation.

 Do not specify paths in your arguments to
 -exclude. Before operating on each object (such
 as during a recursive populate), DesignSync
 compares the object's leaf name (with the path
 stripped off) to the exclude list to see if there
 is a match. Because the object's path is removed,
 the object will not match any object in the
 exclude list specified with a path. For example,
 if you specify '-exclude bin/*.exe', you will not
 successfully exclude bin/foo.exe or any other
 *.exe file. You need to instead specify '-exclude
 *.exe', or '-exclude foo.exe' if you want to
 exclude only 'foo.exe'. The result is that you
 cannot exclude a specific instance of an object
 -- you exclude all matching objects.

 In addition to objects you specify using the
 -exclude option, the field, "These objects are
 always excluded", from the Tools->Options->
 General->Exclude Lists dialog box in
 DesignSync lists objects that are always
 excluded from revision-control operations.

 Note: Do not exclude members when you are
 fetching a module into the module cache; users
 cannot link to or copy from a filtered module in
 a module cache.

-exclude (File-based)

 -exclude <objects> Specifies a comma-separated list of objects
 (files, collections, or folders) to be excluded
 from the operation. Wildcards are allowed.

 If you exclude objects during a populate, a
 subsequent incremental populate will not
 necessarily process the folders of the
 previously excluded objects. DesignSync does
 not automatically perform a full populate in
 this case. To guarantee that previously
 excluded objects are fetched, specify the

File-Based Design

250

 -full option for the subsequent populate
 operation.

 The '-exclude' option is ignored if it is
 included in a 'populate -mirror' operation.

 Do not specify paths in your arguments to
 -exclude. Before operating on each object (such
 as during a recursive populate), DesignSync
 compares the object's leaf name (with the path
 stripped off) to the exclude list to see if there
 is a match. Because the object's path is removed,
 the object will not match any object in the
 exclude list specified with a path. For example,
 if you specify '-exclude bin/*.exe', you will not
 successfully exclude bin/foo.exe or any other
 *.exe file. You need to instead specify '-exclude
 *.exe', or '-exclude foo.exe' if you want to
 exclude only 'foo.exe'. The result is that you
 cannot exclude a specific instance of an object
 -- you exclude all matching objects.

 In addition to objects you specify using the
 -exclude option, the field, "These objects are
 always excluded", from the Tools->Options->
 General->Exclude Lists dialog box in
 DesignSync lists objects that are always
 excluded from revision-control operations.

-filter (Module-based)

 -filter <string> Specify one or more extended glob-style
 expressions to identify an exact subset of module
 objects on which to operate. Use the -exclude
 option to filter out DesignSync objects that are
 not module objects.

 The -filter option takes a list of expressions
 separated by commas, for example:
 -filter +top*/.../*.v,-.../a*

 Prepend a '-' character to a glob-style expression
 to identify objects to be excluded (the default).
 Prepend a '+' character to a glob-style expression
 to identify objects to be included. Note that if
 the list of expressions begins with an include
 character ('+'), the filter excludes all objects
 except those that match the include string.

 Specify the paths in your glob-style expressions
 relative to the current directory, because
 DesignSync matches your expressions relative to
 that directory. For submodules followed through
 hrefs, DesignSync matches your expressions against

ENOVIA Synchronicity Command Reference All -Vol2

251

 the objects' natural paths -- their full relative
 paths. For example, if a module, Chip, references
 a submodule, CPU, and CPU contains a file,
 '/libs/cpu/cdsinfo.tag', DesignSync matches
 against '/libs/cpu/cdsinfo.tag', rather than
 matching directly within the 'cpu' directory.

 If your design contains symbolic links that are
 under revision control, DesignSync matches
 against the source path of the link rather than
 the dereferenced path. For example, if a
 symbolic link exists from 'tmp.txt' to
 'tmp2.txt', DesignSync matches against 'tmp.txt'.
 Similarly for hierarchical operations, DesignSync
 matches against the unresolved path. If, for
 example, a symbolic link exists from dirA to dirB
 and dirB contains 'tmp.txt', DesignSync matches
 against 'dirA/tmp.txt'.

 The extended glob-style expressions you use to
 filter the objects are standard glob-style
 expressions, but they are extended so that you
 can use the "..." syntax to indicate that the
 expression matches any number of directory
 levels. For example, the expression,
 "top/.../lib/*.v" matches *.v files in a
 directory path that begins with "top", followed
 by zero or more levels, with one of those levels
 containing a lib directory. The command traverses
 the directory structure. If a directory name
 matches an exclude clause of the filter, then the
 entire directory and all its contents are
 filtered (the command stops descending at that
 point), otherwise the command continues
 traversing the directory structure searching for
 matching objects.

 If this is the first time a module is being
 populated, the filter becomes a persistent filter
 for the module, just as if you had invoked
 the setfilter command. For subsequent operations
 on the module, DesignSync applies persistent
 filters first, followed by those set using
 the -filter, -hreffilter, and -exclude options.

 Note: If a populate specifies a -filter value
 to filter out objects that were previously
 populated, the populate is not considered
 complete. In this case, the workspace module
 does not match the module in the vault; thus,
 the module version is not updated. Also, a
 subsequent incremental populate will not
 necessarily process the folders of the
 previously excluded objects. DesignSync does
 not automatically perform a full populate in
 this case. To guarantee that previously
 excluded objects are fetched, specify the

File-Based Design

252

 -full option for the subsequent populate
 operation.

 Although the -filter option takes precedence over
 persistent filters, it does not override the
 exclude list set using SyncAdmin's
 General=>Exclude Lists tab; the items in the
 exclude list are combined with the filter
 expression. For example, an exclude list of
 "*%,*.reg" combined with '-filter .../*.doc' is
 equivalent to:
 '-filter .../*.doc,.../*%,.../*.reg'.

 Note: Do not filter a module that you are fetching
 into the module cache; users cannot link to or
 copy from a filtered module in a module cache.

-[no]force (Module-based)

 -[no]force Specifies whether to overwrite locally modified
 objects in order to match the workspace to the
 data being requested. To do so, the populate
 operation deletes locally managed objects that
 are not part of the populate command line,
 deleting objects that have been filtered out.
 'populate -force' only removes managed data,
 not unmanaged data. For module objects, the
 -force option removes objects from modules
 if they have been added by the add command, but
 have never been checked in. Again, although
 DesignSync removes these objects from the module
 manifest, it does not remove the unmanaged data.
 Also, if you specify -force while populating
 a module that overlaps with another module,
 the -force option does not remove data from
 the other module.

 Use this option with caution, because you might
 not be able to retrieve lost changes.

 By default (-noforce):
 o Locally modified objects are not overwritten
 by the populate operation. Specify -force if
 you want to overwrite locally modified
 objects. If the object is locked, the object
 is unaffected by the populate operation
 whether -force is specified or not.
 o Objects that are not part of the specified
 module remain in your work area. If you
 want to delete objects that are not part of
 the configuration, specify -force. Unmanaged
 objects are never deleted.

 Using -force with -unifystate changes the state

ENOVIA Synchronicity Command Reference All -Vol2

253

 of all objects including locally modified
 objects, in which case, local modifications are
 overwritten and objects are fetched according to
 the specified state or the default fetch state.

 Using -force with -noemptydirs for populate
 removes all existing empty directories from the
 workspace unless the directories themselves are
 members of the module.

 The -force option is mutually exclusive with
 both the -overlay and -noreplace options.

-[no]force (File-based)

 -[no]force Specifies whether to overwrite locally modified
 objects in order to match the workspace to the
 data being requested. To do so, the populate
 operation deletes locally managed objects that
 are not part of the populate command line,
 deleting objects that have been filtered out.
 'populate -force' only removes managed data,
 not unmanaged data.

 Use this option with caution, because you might
 not be able to retrieve lost changes.

 By default (-noforce):
 o Locally modified objects are not overwritten
 by the populate operation. Specify -force if
 you want to overwrite locally modified
 objects. If the object is locked, the object
 is unaffected by the populate operation
 whether -force is specified or not.
 o Objects that are not part of the specified
 configuration remain in your work area. If you
 want to delete objects that are not part of
 the configuration, including retired objects,
 specify -force. Unmanaged objects are never
 deleted.

 The behavior of 'populate -mirror' without
 -force is different from populate with other
 states (see the description of -mirror).
 Therefore, -force with -mirror has the
 additional effect of changing the state of
 existing objects in your work area, resulting
 in a hierarchy that exactly reflects the
 mirror directory.

 Using -force with -unifystate changes the state
 of all objects including locally modified
 objects, in which case, local modifications are
 overwritten and objects are fetched according to

File-Based Design

254

 the specified state or the default fetch state.

 Using -force with -noemptydirs for populate
 removes all existing empty directories from the
 workspace.

 The -force option is mutually exclusive with
 both the -overlay and -noreplace options.

-from

 -from <where> Specifies whether the object is fetched from
 the vault ('-from vault') or from the cache or
 mirror ('-from local'). By default,
 DesignSync fetches from the cache or
 mirror ('-from local'), a performance
 optimization specific to the 'co -lock',
 'co -get', 'populate -lock', and
 'populate -get' commands. For details, see the
 Performance Optimization Overview in the
 DesignSync Data Manager Administrator's
 Guide. Note that this option is silently ignored
 when the optimization is not possible, including
 when the -keys option is specified.

 The -from option can only be used with the -lock
 or -get fetch modes. It cannot be used with the
 -share, -mirror, -reference, or the -lock
 -reference combination fetch modes. If the -keys
 option is specified with the -from option, the
 -from option is silently ignored.

-full

 -full Performs a non-incremental populate by processing
 all objects and folders.

 Note: DesignSync performs an incremental
 populate by default. It automatically
 reverts to a full populate when necessary.
 For more information, see the "Incremental
 Versus Full Populate" section in the
 description.

 To change the default populate mode, your
 Synchronicity administrator can use the
 SyncAdmin tool.

 Note: Do not use the -full option to change the
 states of objects in your work area (for
 example, changing from locked to unlocked
 objects or unlocked objects to links to

ENOVIA Synchronicity Command Reference All -Vol2

255

 the cache). DesignSync changes the states
 of only those objects that need an
 update. Use the -unifystate option to
 change the state of objects in your work
 area.

-get (Module-based)

 -get Fetch unlocked copies.

 You can change whether the local object is
 read-only (typical when using the locking
 model) or read/write (typical when using the
 merging model) by default by using the
 "Check out read only when not locking" option
 from the Tools->Options->General dialog box in
 the DesignSync graphical interface. Your project
 leader can also set this option site-wide
 using SyncAdmin.

 This option is the default object-state option
 unless a default fetch preference has been
 defined. See the "fetch preference" help topic
 for more information.

 Using -force with -noemptydirs for
 'populate -get' removes all existing empty
 directories. Using -force with -emptydirs,
 however, creates empty directories for
 corresponding empty vault folders. Note that
 the populate command ignores the
 -noemptydirs option when operating on
 modules, because folders are members of
 their corresponding modules and therefore
 cannot be removed.

 The -get option is mutually exclusive with the
 other fetch modes: -lock, -share, -mirror, and
 -reference.

 Note: To replace mcache links with physical
 copies of module members, use the -mcachemode
 server option,

-get (File-based)

 -get Fetch unlocked copies.

 You can change whether the local object is
 read-only (typical when using the locking
 model) or read/write (typical when using the
 merging model) by default by using the
 "Check out read only when not locking" option

File-Based Design

256

 from the Tools->Options->General dialog box in
 the DesignSync graphical interface. Your project
 leader can also set this option site-wide
 using SyncAdmin.

 This option is the default object-state option
 unless a default fetch preference has been
 defined. See the "fetch preference" help topic
 for more information.

 Using -force with -noemptydirs for
 'populate -get' removes all existing empty
 directories. Using -force with -emptydirs,
 however, creates empty directories for
 corresponding empty vault folders.

 The -get option is mutually exclusive with the
 other fetch modes: -lock, -share, -mirror, and
 -reference.

-hreffilter (Module-based)

 -hreffilter Excludes href values during recursive operations
 <string> on module hierarchies. Because hrefs
 link to submodules, you use -hreffilter
 to exclude particular submodules. Note that
 unlike the -filter option which lets you include
 and exclude items, the -hreffilter option only
 excludes hrefs and, thus, their corresponding
 submodules.

 Note: When populating a workspace with symbolic
 links to a module cache, the -hreffilter option
 does not apply and is silently ignored.

 Specify the -hreffilter string as a glob-style
 expression. The href filter can be specified
 either as a simple href filter or as a
 hierarchical href filter.

 A simple href filter is a simple leaf module
 name; you cannot specify a path. DesignSync
 matches the specified href filter against hrefs
 anywhere in the hierarchy. Thus, DesignSync
 excludes all hrefs of this leaf name; you cannot
 exclude a unique instance of the href.

 A hierarchical href filter specifies a path and a
 leaf submodule, for example JRE/BIN excludes the
 BIN submodule only if it is directly beneath JRE
 in the hierarchy.

 When creating a hierarchical href filter, you do
 not specify the top-level module of the

ENOVIA Synchronicity Command Reference All -Vol2

257

 hierarchy. If you want to filter using the
 top-level module, you begin the hreffilter with
 /, for example, "/JRE," would filter any JRE href
 referenced by the top-level module.

 Note: You can use wildcards with both types of
 hreffilter, however, if a wildcard is used as the
 lone character in hierarchical href, it only
 matches a single level, for example: "JRE/*/BIN"
 would match a hierarchy like "JRE/SUB/BIN" but
 would not match "JRE/BIN" or "JRE/SUB/SUB2/BIN".

 You can prepend the '-' exclude character to your
 string, but it is not required. Because the
 -hreffilter option only supports excluding hrefs,
 a '+' character is interpreted as part of the glob
 expression.

 If this is the first time a module is being
 populated, the filter becomes a persistent filter
 for the module, just as if you had invoked
 the setfilter command. For subsequent operations
 on the module, DesignSync applies persistent
 filters first, followed by those set using
 the -filter, -hreffilter, and -exclude options.

 Note: Hierarchical hreffilters can only be
 specified during an initial populate. To add,
 change, or remove a hierarchical hreffilter after
 the initial populate, you must use the setfilter
 command.

 Whereas the -filter option can prevent a populate
 from being complete, thus preventing the version
 from being updated, the -hreffilter option
 does not prevent the version from being
 updated. The -hreffilter option prevents
 particular submodules from being fetched,
 but the failure to fetch a submodule does
 not affect the updating to a new version.

 Note: Do not filter a module that you are fetching
 into the module cache; users cannot link to or
 copy from a filtered module in a module cache.

-hrefmode (Module-based)

 -hrefmode For a recursive populate, determines whether
 to populate statically-specified submodules or
 dynamically-evaluated submodules.

 Valid values are:
 o dynamic - Expands hrefs at the time of the
 populate operation to identify the version

File-Based Design

258

 of the submodules to be populated.
 o static - Populates with the submodules
 versions referenced by the hrefs when the
 module version was initially created.
 o normal - Expands the hrefs at the time of the
 populate operation until it reaches a static
 selector. If the reference uses a static
 version, the hrefmode is set to 'static' for the
 next level of submodules to be populated;
 otherwise, the hrefmode remains 'normal' for the
 next level. (Default). This behavior can be
 changed using the
 "HrefModeChangeWithTopStaticSelector" registry
 key to determine how hrefs are followed.

 Notes:
 o If the -hrefmode option is used, it is stored
 for subsequent populates; You do not have to
 specify the href mode again unless a different
 mode is required.

 o Use of the -hrefmode option is mutually
 exclusive with use of the -lock option.
 o If an href is created with a mutable version
 tag, and that version tag has moved, you must
 use dynamic mode (-hrefmode dynamic) to populate
 your workspace with the new tagged version. If
 you want the workspace to continue to point to
 the original version, you should populate with
 normal or static mode.
 o If you are fetching modules into the module
 cache, use the static mode (-herfmode static).
 You can only link to statically fetched module
 versions. See DesignSync Data Manager
 Administrator's Guide: "Setting up a Module
 Cache" for more information.

-incremental

 -incremental Performs a fast populate operation by
 updating only those folders whose
 corresponding vault folders contain
 modified objects.
 Note: DesignSync performs an incremental
 populate by default. It automatically
 reverts to a full populate when necessary.
 For more information, see the "Incremental
 Versus Full Populate" section in the
 description.

 To change the default populate mode, your
 Synchronicity administrator can use the
 SyncAdmin tool.

ENOVIA Synchronicity Command Reference All -Vol2

259

 Note: Do not use the -incremental option to
 change the states of objects in your work
 area (for example, changing from locked to
 unlocked objects or unlocked objects to
 links to the cache). DesignSync changes
 the states of updated objects only. For
 an incremental populate, DesignSync only
 processes folders that contain objects
 that need an update. State changes,
 therefore are not guaranteed. Use the
 -unifystate option to change the state of
 objects in your work area.

-keys (Module-based)

 -keys <mode> Controls processing of vault
 revision-control keywords in populated
 objects. Note that keyword expansion is not
 the same as keyword update. For example, the
 $Date$ keyword is updated only during checkin;
 its value is not updated during checkout or
 populate. The -keys option only works with the
 -get and -lock options. If you use the -share
 or -mirror option, keywords are automatically
 expanded in cached or mirrored objects, as if
 the '-keys kkv' option was used.

 Available modes are:

 kkv - (keep keywords and values) The local
 object contains both revision control keywords
 and their expanded values; for example,
 $Revision: 1.4 $.

 kk - (keep keywords) The local object contains
 revision control keywords, but no values; for
 example, $Revision$. This option is useful if
 you want to ignore differences in keyword
 expansion, such as when comparing two different
 versions of an object.

 kv - (keep values) The local object contains
 expanded keyword values, but not the keywords
 themselves; for example, 1.4. This option is
 not recommended if you plan to check in your
 local objects. If you edit and then check in
 the objects, future keyword substitution is
 impossible, because the value without the
 keyword is interpreted as regular text.

 ko - (keep output) The local object contains
 the same keywords and values as were present at
 check in.

File-Based Design

260

 The -keys option can only be used with the -lock
 or -get fetch modes. It cannot be used with the
 -share, -mirror, -reference, or the -lock
 -reference combination fetch modes. If the -keys
 option is specified with the -from option, the
 -from option is silently ignored.

 Note: When a module member is checked out with a
 lock, the locker keyword is not updated for the
 lock operation and remains null.

-keys (File-based)

 -keys <mode> Controls processing of vault
 revision-control keywords in populated
 objects. Note that keyword expansion is not
 the same as keyword update. For example, the
 $Date$ keyword is updated only during checkin;
 its value is not updated during checkout or
 populate. The -keys option only works with the
 -get and -lock options. If you use the -share
 or -mirror option, keywords are automatically
 expanded in cached or mirrored objects, as if
 the '-keys kkv' option was used.

 Available modes are:

 kkv - (keep keywords and values) The local
 object contains both revision control keywords
 and their expanded values; for example,
 $Revision: 1.4 $.

 kk - (keep keywords) The local object contains
 revision control keywords, but no values; for
 example, $Revision$. This option is useful if
 you want to ignore differences in keyword
 expansion, such as when comparing two different
 versions of an object.

 kv - (keep values) The local object contains
 expanded keyword values, but not the keywords
 themselves; for example, 1.4. This option is
 not recommended if you plan to check in your
 local objects. If you edit and then check in
 the objects, future keyword substitution is
 impossible, because the value without the
 keyword is interpreted as regular text.

 ko - (keep output) The local object contains
 the same keywords and values as were present at
 check in.

 The -keys option can only be used with the -lock
 or -get fetch modes. It cannot be used with the

ENOVIA Synchronicity Command Reference All -Vol2

261

 -share, -mirror, -reference, or the -lock
 -reference combination fetch modes. If the -keys
 option is specified with the -from option, the
 -from option is silently ignored.

-lock (Module-based)

 -lock Lock the branch of the specified version for
 each module member object that is
 populated. Only the user who has the lock can
 check in a newer version of the object on that
 branch.

 The -lock option does not lock not the module
 branch. In so doing, the -lock option makes
 the members writable in the workspace, and
 converts cached objects to full copies. To
 lock the module branch itself without making
 members writable, use the lock command.

 Use the -lock option with the -reference option
 to populate with locked references. For more
 information, see the -lock -reference option.
 Locked references are useful if you intend to
 generate objects and want to lock them before
 regenerating, as opposed to editing the previous
 version. Upon generation of the objects, they
 automatically become locked copies rather than
 locked references. Obtaining locked references
 for generated objects is faster because
 DesignSync does not fetch the previously
 generated objects. If the objects exist already
 in the workspace, DesignSync deletes them. If
 the objects exist and are locally modified, the
 operation fails. If you intend to overwrite the
 modifications, use -force to create the locked
 references. If the default fetch state is
 'reference' and you specify the -lock option
 without the -reference option, DesignSync leaves
 locked copies of the objects in your workspace;
 you must explicitly apply the -reference option
 with the -lock option if you want locked
 references in your workspace.

 The -lock option is mutually exclusive with the
 fetch modes: -get, -share, and -mirror and
 mutually exclusive with -recursive. The -lock
 option can be used with the -merge option.

 Notes:
 o If you specify 'populate -lock', then by
 default the populate operation also uses the
 '-from local' option. The result is that the
 populate operation locks the object in the

File-Based Design

262

 vault and keeps local modifications in your
 workspace. See the -from option for
 information.
 o When a module member is checked out with a lock,
 the locker keyword is not expanded with the
 locker name.

-lock (Legacy-based)

 -lock Lock the branch of the specified version for
 each object that is populated. Only the user
 who has the lock can check in a newer version
 of the object on that branch.

 Use the -lock option with the -reference option
 to populate with locked references. For more
 information, see the -lock -reference option.
 Locked
 references are useful if you intend to generate
 objects and want to lock them before
 regenerating, as opposed to editing the previous
 version. Upon generation of the objects, they
 automatically become locked copies rather than
 locked references. Obtaining locked references
 for generated objects is faster because
 DesignSync does not fetch the previously
 generated objects. If the objects exist already
 in the workspace, DesignSync deletes them.
 If the objects exist and are locally modified,
 the operation fails. If you intend to overwrite
 the modifications, use -force to create the
 locked references. If the default fetch state
 is 'reference' and you specify the -lock option
 without the -reference option, DesignSync leaves
 locked copies of the objects in your workspace;
 you must explicitly apply the -reference option
 with the -lock option if you want locked
 references in your workspace.

 The -lock option is mutually exclusive with the
 fetch modes: -get, -share, and -mirror, and with
 -merge option.

 Notes:
 o If you specify 'populate -lock', then by
 default the populate operation also uses the
 '-from local' option. The result is that the
 populate operation locks the object in the
 vault and keeps local modifications in your
 workspace. See the -from option for
 information.

 o If you use 'populate -lock -recursive' to
 fetch or update a module configuration

ENOVIA Synchronicity Command Reference All -Vol2

263

 hierarchy, populate locks only the objects
 associated with the upper-level module (the
 module configuration specified as the target
 of the command).

-lock (File-based)

 -lock Lock the branch of the specified version for
 each object that is populated. Only the user
 who has the lock can check in a newer version
 of the object on that branch.

 Use the -lock option with the -reference option
 to populate with locked references. For more
 information, see the -lock -reference option.
 Locked
 references are useful if you intend to generate
 objects and want to lock them before
 regenerating, as opposed to editing the previous
 version. Upon generation of the objects, they
 automatically become locked copies rather than
 locked references. Obtaining locked references
 for generated objects is faster because
 DesignSync does not fetch the previously
 generated objects. If the objects exist already
 in the workspace, DesignSync deletes them.
 If the objects exist and are locally modified,
 the operation fails. If you intend to overwrite
 the modifications, use -force to create the
 locked references. If the default fetch state
 is 'reference' and you specify the -lock option
 without the -reference option, DesignSync leaves
 locked copies of the objects in your workspace;
 you must explicitly apply the -reference option
 with the -lock option if you want locked
 references in your workspace.

 The -lock option is mutually exclusive with the
 fetch modes: -get, -share, and -mirror and with
 the -merge option.

 Notes:
 o If you specify 'populate -lock', then by
 default the populate operation also uses the
 '-from local' option. The result is that the
 populate operation locks the object in the
 vault and keeps local modifications in your
 workspace. See the -from option for
 information.

-lock -reference (Module-based)

File-Based Design

264

-lock -reference Use the -lock option with the -reference option
 to populate with locked references. Locked
 references are useful if you intend to generate
 objects and want to lock them before
 regenerating, as opposed to editing the previous
 version. Upon generation of the objects, they
 automatically become locked copies rather than
 locked references. Obtaining locked references
 for generated objects is faster because
 DesignSync does not fetch the previously
 generated objects. If the objects exist already
 in the workspace, DesignSync deletes them.
 If the objects exist and are locally modified,
 the operation fails. If you intend to overwrite
 the modifications, use -force to create the
 locked references. If the default fetch state
 is 'reference' and you specify the -lock option
 without the -reference option, DesignSync leaves
 locked copies of the objects in your workspace;
 you must explicitly apply the -reference option
 with the -lock option if you want locked
 references in your workspace.

 The -lock -reference combination of option is
 mutually exclusive with the fetch modes: -get,
 -share, and -mirror, and with the -recursive
 option.

 Note: You should not use the -reference option
 with Cadence data collection objects. When
 the -reference option is used on Cadence
 collections, DesignSync creates a
 reference in the metadata for the
 collection object but member files are not
 processed and are not included in the
 metadata.

-lock -reference (File-based)

-lock -reference Use the -lock option with the -reference option
 to populate with locked references. Locked
 references are useful if you intend to generate
 objects and want to lock them before
 regenerating, as opposed to editing the previous
 version. Upon generation of the objects, they
 automatically become locked copies rather than
 locked references. Obtaining locked references
 for generated objects is faster because
 DesignSync does not fetch the previously
 generated objects. If the objects exist already
 in the workspace, DesignSync deletes them.
 If the objects exist and are locally modified,
 the operation fails. If you intend to overwrite
 the modifications, use -force to create the

ENOVIA Synchronicity Command Reference All -Vol2

265

 locked references. If the default fetch state
 is 'reference' and you specify the -lock option
 without the -reference option, DesignSync leaves
 locked copies of the objects in your workspace;
 you must explicitly apply the -reference option
 with the -lock option if you want locked
 references in your workspace.

 The -lock -reference combination of option is
 mutually exclusive with the fetch modes: -get,
 -share, and -mirror.

 Note: You should not use the -reference option
 with Cadence data collection objects. When
 the -reference option is used on Cadence
 collections, DesignSync creates a
 reference in the metadata for the
 collection object but member files are not
 processed and are not included in the
 metadata.

-log

 -log <filename> Specify the name of the populate log file. If
 the filename doesn't exist, DesignSync creates
 it. If the file does exist, DesignSync appends
 the new information to the end of the log file.

 The filename can be specified with an absolute
 or relative path. If you specify a path for the
 log file, the directory you specify must already
 exist and you must have write permissions to the
 directory in order for the log to be placed into
 it, DesignSync does not create the path.

-mcachemode (Module-based)

 -mcachemode Specifies how the populate command fetches
 <mcache_mode> the module from the module cache.

 Note: The module cache should always be
 populated at the workspace root directory level.

 Available modes are:

 o link - For each module it finds in the module
 cache, the populate command sets up a symbolic
 link from your work area to the base directory
 of the module in the module cache. This is
 the default mode on UNIX platforms.

 Note:

File-Based Design

266

 - This mode is supported on UNIX platforms
 only. If you specify link mode on a
 Windows platform, the populate operation
 fails.
 - You cannot create mcache links to
 dynamically fetched modules since there is
 no auto-refresh of mcaches.
 the populate command.

 o server - Causes the populate command to
 fetch modules as physical copies from the
 server, not the module cache. (Default for
 Windows.)

 The -mcachemode option overrides the default
 module cache mode registry setting. If
 -mcachemode is not specified, the populate
 command uses the mode specified in the registry
 setting. If no registry setting is specified,
 the command uses link mode on Unix platforms and
 server mode on Windows platforms.

 Notes on mcaches:
 o If you run a populate with the -norecursive
 option, the module must have been fetched into
 the mcache in -norecursive mode as well, or
 the command will not create links to or copies
 from the module cache.

 o If the populate command is run using a filter,
 no mcache link to or copies are made.
 Therefore a filtered module can never be used
 in an mcache even if populate is run in a
 workspace that uses the same filter.

 o The mcache administrator can fetch modules
 into a module cache to link to or copy the
 contents of the module.

 o You cannot create mcache links to mcache
 directories containing members of more than
 one module version.

 If a request to link to the module cache is
 disallowed, DesignSync fetches the module from
 the server instead.

 For more information using populate with a
 module cache, see 'Module Caches' in the
 description section of the populate command.

-mcachemode (Legacy-based)

 -mcachemode Specifies how the populate command fetches

ENOVIA Synchronicity Command Reference All -Vol2

267

 <mcache_mode> the legacy module from the module cache.

 Note: The module cache should always be
 populated at the workspace root directory level.

 Available modes are:

 o link - For each module it finds in the module
 cache, the populate command sets up a symbolic
 link from your work area to the base directory
 of the module in the module cache. This is
 the default mode on UNIX platforms.

 Note:
 - This mode is supported on UNIX platforms
 only. If you specify link mode on a
 Windows platform, the populate operation
 fails.

 - You cannot create mcache links to
 dynamically fetched modules since there is
 no auto-refresh of mcaches.

 o copy - For each module it finds in the module
 cache, the populate command copies the module
 to your work area. (Default on Windows
 platforms)

 o server - Causes the populate command to
 fetch modules as physical copies from the
 server, not the module cache.

 The -mcachemode option overrides the default
 module cache mode registry setting. If
 -mcachemode is not specified, the populate
 command uses the mode specified in the registry
 setting. If no registry setting is specified,
 the command uses link mode on Unix platforms and
 copy mode on Windows platforms.

 Notes on module mcaches:
 o The mcache administrator can fetch legacy
 modules into a legacy module cache to link to
 or copy the contents of the module.

 o Legacy modules can be fetched into either a
 module cache or a legacy module cache by the
 mcache administrator, but they cannot be
 linked to or copied from.

 If a request to link to or copy from the module
 cache is disallowed, DesignSync fetches the
 module from the server instead.

-mcachepaths (Module / Legacy-based)

File-Based Design

268

 -mcachepaths Identifies one or more module caches to be
 searched for modules.

 Path names can be absolute or relative. You can
 specify multiple paths in a list of
 space-separated path names. To specify multiple
 paths, surround the path list with double
 quotation marks ("") and separate path names
 with a space. For example:"/dir/cacheA
 /dir2/cacheB".

 The path list can contain both module and legacy
 module mcache paths. For a module cache the
 path to the root directory of the module cache
 must be supplied.

 This option overrides the default module cache
 paths registry setting. If -mcachepaths is not
 specified, the command uses the list of paths
 specified in the registry setting. If no
 registry setting is specified, the populate
 command fetches modules from the server.

 Note:
 o To specify a path that includes spaces:
 - In stcl or stclc, surround the path
 containing the spaces with curly braces.
 For example:
 "/dir1/cache {/dir2/path name}"
 - In dss or dssc, use backslashes (\) to
 'escape' the spaces. For example:
 "/dir1/cache /dir2/path\ with\ spaces"
 o The populate command searches the mcache
 in the order specified with the -mcachepaths
 option or in the default module cache
 paths registry setting if this option
 is absent.

-[no]merge (Module-based)

 -[no]merge Indicates whether to populate with the Latest
 versions from the branch specified by the
 persistent selector list and merge them with
 the current, locally modified versions.
 The default value is -nomerge.

 If you are not doing an overlay merge (see
 -overlay) and the current version is not
 locally modified, the -merge defaults to a
 -get and fetches the new version without
 merging. By definition, a merge expects a
 locally modified object, so the -force option
 is not required.

ENOVIA Synchronicity Command Reference All -Vol2

269

 The -merge option supports the merging work
 model (as opposed to the locking work model)
 where multiple team members can check out and
 edit the Latest version concurrently. The
 first team member to check in creates the next
 version. Other team members must merge the new
 Latest version into their local copy before
 they can check in their changes.

 If there are no merge conflicts, the merge
 succeeds, leaving the merged files in
 your work area. If there are conflicts,
 DesignSync issues a warning, and you must edit
 the merged file to resolve the conflicts
 before DesignSync allows you to check in the
 merged version. Conflicts are shown as
 follows:

 <<<<<<< local
 Lines from locally modified version
 =======
 Lines from selected server version
 >>>>>>> versionID

 DesignSync considers the conflicts resolved
 when the file no longer contains any of the
 conflict delimiters (exactly 7 less-than,
 greater-than, or equal signs starting in
 column 1). The status of an object, as
 displayed by ls or from the List View in the
 DesignSync graphical interface, indicates if
 conflicts exist. The url inconflict
 command also determines whether a file has
 conflicts.

 Most merges are between two versions on the
 same branch (the current branch and
 the branch specified by the persistent
 selector list are typically the same). However,
 a merge can also be performed across branches
 by setting the persistent selector list to a
 different branch. Following the merge, you are
 on the branch associated with the version
 specified by the persistent selector
 list (a 'merge to' operation). If you
 want to stay on the current branch instead,
 use the -overlay option. Overlay ('merge
 from') merges are more common when merging
 branches. See the -overlay option for details.

 Note:
 o When merging modules across branches, you
 should use -merge -overlay. For details about
 merging modules across branches, see the
 "Merging Across Branches section."
 o The -merge option implies -get, but you can

File-Based Design

270

 also explicitly specify -get. For general
 DesignSync objects, the -merge option
 is mutually exclusive with all other state
 options (-lock, -share, -mirror, -reference,
 and -lock -reference).
 You can use -lock with -merge for modules and
 their members.
 o The -merge and -version options are mutually
 exclusive unless you specify '-version
 Latest'.

-merge (File-based)

 -[no]merge Indicates whether to populate with the Latest
 versions from the branch specified by the
 persistent selector list and merge them with
 the current, locally modified versions.
 The default value is -nomerge.

 If you are not doing an overlay merge (see
 -overlay) and the current version is not
 locally modified, the -merge defaults to a
 -get and fetches the new version without
 merging. By definition, a merge expects a
 locally modified object, so the -force option
 is not required.

 The -merge option supports the merging work
 model (as opposed to the locking work model)
 where multiple team members can check out and
 edit the Latest version concurrently. The
 first team member to check in creates the next
 version. Other team members must merge the new
 Latest version into their local copy before
 they can check in their changes.

 If there are no merge conflicts, the merge
 succeeds, leaving the merged files in
 your work area. If there are conflicts,
 DesignSync issues a warning, and you must edit
 the merged file to resolve the conflicts
 before DesignSync allows you to check in the
 merged version. Conflicts are shown as
 follows:

 <<<<<<< local
 Lines from locally modified version
 =======
 Lines from selected server version
 >>>>>>> versionID

 DesignSync considers the conflicts resolved
 when the file no longer contains any of the
 conflict delimiters (exactly 7 less-than,

ENOVIA Synchronicity Command Reference All -Vol2

271

 greater-than, or equal signs starting in
 column 1). The status of an object, as
 displayed by ls or from the List View in the
 DesignSync graphical interface, indicates if
 conflicts exist. The url inconflict
 command also determines whether a file has
 conflicts.

 Most merges are between two versions on the
 same branch (the current branch and
 the branch specified by the persistent
 selector list are typically the same). However,
 a merge can also be performed across branches
 by setting the persistent selector list to a
 different branch. Following the merge, you are
 on the branch associated with the version
 specified by the persistent selector
 list (a 'merge to' operation). If you
 want to stay on the current branch instead,
 use the -overlay option. Overlay ('merge
 from') merges are more common when merging
 branches. See the -overlay option for details.

 Note:
 o The -merge option implies -get, but you can
 also explicitly specify -get. For general
 DesignSync objects, the -merge option
 is mutually exclusive with all other state
 options (-lock, -share, -mirror, -reference,
 and -lock -reference).
 You can use -lock with -merge for modules and
 their members.
 o The -merge and -version options are mutually
 exclusive unless you specify '-version Latest'.

-mirror (File-based)

 -mirror Create symbolic links from the work area to
 objects in the mirror directory. This option
 requires that you have associated a mirror
 directory with your work area (see the
 'setmirror' command).

 For performance reasons, links are created only
 when objects do not exist in your work area.
 To update mirror links for existing objects,
 use -unifystate with the -mirror option. For
 example:

 populate -recursive -full -unifystate -mirror

 The -unifystate option does not affect locally
 modified objects or objects that are not part
 of the configuration. Use -force with

File-Based Design

272

 -unifystate to update the links, replacing
 locally modified objects and removing objects
 that are not part of the current configuration.

 When used with the -mirror option, the
 -noemptydirs option does not populate directories
 that are empty on the mirror. Using the -force
 option with the -noemptydirs option removes all
 empty directories from the workspace. Using
 -force with -emptydirs for 'populate -mirror',
 however, populates empty directories that exist
 in the mirror.

 The -mirror option is mutually exclusive with
 the other fetch modes: -lock, -get, -share, and
 -reference. The -mirror option is also mutually
 exclusive with the -keys and -from options. The
 -mirror option cannot take an exclude filter.
 If the -exclude option is specified with the
 -mirror fetch mode, the populate silently
 ignores the -exclude option.

 Note:
 o This option is not supported on
 Windows platforms.
 o The -exclude option is ignored if it is
 included in a 'populate -mirror' operation.
 o If you specify -mirror, an incremental populate
 does not necessarily fetch new objects checked
 in, nor remove links to objects deleted by team
 members until after the mirror is updated.
 o When populating a custom generic collection
 from a mirror, always use 'populate -mirror'
 from the folder containing the collection
 object or from a folder above the folder
 containing the object.

-modulecontext (Module-based)

 -modulecontext Identifies the module to be populated. Use the
 -modulecontext option if your workspace has
 overlapping modules, so that you can indicate
 which module to populate.

 You can use the -modulecontext option when
 specifying a folder to populate. In this case,
 the populate operation filters the folder,
 populating only those objects that belong to the
 module specified with the -modulecontext option.
 Use -modulecontext in a recursive populate to
 fetch members of the specified module throughout
 a hierarchy.

 You can also use -modulecontext option to

ENOVIA Synchronicity Command Reference All -Vol2

273

 identify which module to fetch items from when
 requesting an object that is not currently in the
 module.

 Specify an existing workspace module using the
 module name (for example, Chip) or a module
 instance name (for example, Chip%0). You also
 can specify -modulecontext as a server
 module URL (sync://server1:2647/Modules/Chip).

 Notes:
 o You cannot use a -modulecontext option to
 operate on objects from more than one module;
 the -modulecontext option takes only one
 argument, and you can use the -modulecontext
 option only once on a command line.

 o If you have overlapping modules, you must
 specify -modulecontext when populating a module
 that contains files not present in your
 workspace.

-[no]new (Module-based)

 -[no]new Specifies whether to fetch module objects that
 are not yet in the workspace.

 Apply the -new (default) to fetch all specified
 module objects (except those filtered out by
 options such as -filter and -exclude). Specify
 -nonew option to update only those objects
 already in the workspace.

 Using -new is another form of filtering. It can
 cause the subsequent populate to be a full
 rather than an incremental populate.

 Note: This option is supported for module
 objects only.

-overlay

 -overlay <selectors> Replace your local copy of the module or
 DesignSync non-module object with the versions
 specified by the selector list (typically a
 branch tag). The current-version status, as
 stored in local metadata, is unchanged. For
 example, if you have version 1.5 (the Latest
 version) of the module or DesignSync object and
 you overlay version 1.3, your current version is
 still 1.5. You could then check in this overlaid
 version. This operation is equivalent

File-Based Design

274

 to checking out version 1.3, then using 'ci
 -skip' to check in that version.

 The behavior of the overlay operation depends
 on the presence of a local version and the
 version you want to overlay:

 o If both the local version and the overlay
 version exist, the local version is replaced
 by the overlay version.
 o If there is no local version but an overlay
 version exists, DesignSync creates a
 local copy of the overlay version.
 o If a local version exists but there is no
 overlay version, the local version is
 unaffected by the operation.
 o If the overlay version was renamed or removed,
 the local object is not changed, but metadata
 is added to it, indicating the change. This
 information can be viewed using the ls command
 with the -merged option.

 Typically, you use -overlay with -merge to
 merge the two versions instead of overlaying
 one version onto another. The combination of
 -overlay and -merge lets you merge from one
 branch to another, the recommended method for
 merging across branches. Following the
 overlay merge, you are working on the same
 branch as before the operation.

 You specify the version you want to overlay
 as an argument to the -overlay option. The
 -overlay and -version options are mutually
 exclusive. The -version option always updates
 the 'current version' information in your work
 area, which is not correct for an overlay
 operation.

 o To use -overlay to specify a branch, specify
 both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

 When doing an overlay (with or without -merge),
 a number of combinations for the state of a
 module or DesignSync object on the two branches
 must be considered. For more information, see
 the "Merging Across Branches" section
 above. Hierarchical references in modules are
 not updated during an overlay.

 Notes:

ENOVIA Synchronicity Command Reference All -Vol2

275

 o The -overlay option implies -get, but
 you can also explicitly specify -get.
 o The -overlay option is mutually exclusive
 with the other state options (-mirror,
 -share, -lock, -reference) and -version.

-path (Module-based)

 -path <path> Specify the name of an alternate local folder
 to populate instead of the current folder. The
 populate command uses the vault and persistent
 selector list associated with the specified
 folder.
 Note: Using -path is equivalent to changing
 folders, executing the populate
 command, then changing back to the
 original folder.

 If you specify a folder using the -path option
 but the folder does not exist, DesignSync
 - verifies that a corresponding vault exists
 - creates the folder
 - populates the specified folder, creating
 any interim folders necessary to replicate
 the vault hierarchy locally.

 If you specify the -target option but the
 folder does not exist, DesignSync creates
 the folder.
 Generally, however, if the vault does not
 exist, DesignSync does not create the
 folder and leaves the workspace unchanged.

 Tip: When populating a workspace with links to a
 module cache, use -path to create the directory,
 rather than specifying an existing directory.

 The -path option used to be the -dir option.
 The -dir option is still provided for backwards
 compatibility, but is not documented
 separately.

-path (Legacy-based)

 -path <path> Specify the name of an alternate local folder
 to populate instead of the current folder. The
 populate command uses the vault and persistent
 selector list associated with the specified
 folder.
 Note: Using -path is equivalent to changing
 folders, executing the populate
 command, then changing back to the

File-Based Design

276

 original folder.

 If you specify a folder using the -path option
 but the folder does not exist, DesignSync
 - verifies that a corresponding vault exists
 - creates the folder
 - populates the specified folder, creating
 any interim folders necessary to replicate
 the vault hierarchy locally.

 If you specify the -target option but the
 folder does not exist, DesignSync creates
 the folder.
 Generally, however, if the vault does not
 exist, DesignSync does not create the
 folder and leaves the workspace unchanged.

 Note: If the folder specified by -path does not
 exist, but corresponds to a vault with
 unpopulated legacy modules or DesignSync
 REFERENCES, DesignSync has no way to resolve
 these mappings. In this case, populate does not
 create the specified folder, leaving the
 workspace unchanged.

 The -path option used to be the -dir option.
 The -dir option is still provided for backwards
 compatibility, but is not documented
 separately.

-path (File-based)

 -path <path> Specify the name of an alternate local folder
 to populate instead of the current folder. The
 populate command uses the vault and persistent
 selector list associated with the specified
 folder.
 Note: Using -path is equivalent to changing
 folders, executing the populate
 command, then changing back to the
 original folder.

 If you specify a folder using the -path option
 but the folder does not exist, DesignSync
 - verifies that a corresponding vault exists
 - creates the folder
 - populates the specified folder, creating
 any interim folders necessary to replicate
 the vault hierarchy locally.

 If you specify the -target option but the
 folder does not exist, DesignSync creates
 the folder.
 Generally, however, if the vault does not

ENOVIA Synchronicity Command Reference All -Vol2

277

 exist, DesignSync does not create the
 folder and leaves the workspace unchanged.

 Note: If the folder specified by -path does not
 exist, but corresponds to a vault with
 unpopulated DesignSync REFERENCES, DesignSync
 has no way to resolve these mappings. In this
 case, populate does not create the specified
 folder, leaving the workspace unchanged.

 The -path option used to be the -dir option.
 The -dir option is still provided for backwards
 compatibility, but is not documented
 separately.

-[no]recursive (Module-based)

 -[no]recursive Specifies whether to perform this operation on
 the specified folder or module only (default),
 or to traverse its subfolders or submodules.

 If you invoke 'populate -recursive' and specify a
 folder, populate operates on the folder in a
 folder-centric fashion, fetching the objects in
 the folder and its subfolders.
 If the folders or subfolders contain modules
 or module members, populate fetches the objects,
 but does not follow hierarchical references
 (hrefs). To filter the set of objects on which
 to operate, use the -filter or -exclude options.

 If you invoke 'populate -recursive' and specify a
 module, populate operates on the specified module
 in a module-centric fashion, fetching all of the
 objects in the module and following its
 hierarchical references (hrefs) to fetch its
 referenced submodules. To filter the objects on
 which to operate, use the -filter or -hreffilter
 options.

 Note: Because of the way module merge handles
 hierarchical reference, you cannot specify
 -recursive when doing a cross branch merge on a
 module, (pop -merge -overlay).

 If you invoke 'populate -recursive' on a subfolder
 of a module and provide a -modulecontext, populate
 recurses within the specified folder, fetching any
 object which is a member of the named module
 or one of its referenced submodules.
 Note: For modules, you cannot use the -recursive
 option with the -lock option.

 Note: The populate operation might skip

File-Based Design

278

 subfolders and individual managed objects
 if their persistent selector lists differ
 from the top-level folder being populated;
 see the Description section for details.

 If you specify -norecursive when operating on
 a folder, DesignSync operates only on objects in
 the specified folder. In this case, populate
 does not traverse the vault folder hierarchy.
 Likewise, if you specify -norecursive when
 operating on a module, DesignSync operates
 only on the module objects and does not follow
 hrefs.

-[no]recursive (Legacy-based)

 -[no]recursive Specifies whether to perform this operation on
 the specified folder only (default), or to
 traverse its subfolders or hierarchical
 references.

 If you invoke 'populate -recursive' and specify a
 folder, populate operates on the folder in a
 folder-centric fashion, fetching the objects in
 the folder and its subfolders. It does not follow
 the hierarchical references (hrefs). To filter
 the set of objects on which to operate, use the
 -exclude option.

 Note: The populate operation might skip
 subfolders and individual managed objects
 if their persistent selector lists differ
 from the top-level folder being populated;
 see the Description section for details.

 If you specify -norecursive when operating on
 a folder, DesignSync operates only on objects in
 the specified folder. In this case, populate
 does not traverse the vault folder hierarchy.

 If you perform a -norecursive populate, then for
 the subsequent populate DesignSync performs a
 full populate even if the -full option is not
 specified.

 Notes:
 o DesignSync cannot perform an incremental
 populate following a nonrecursive populate,
 because it cannot ensure that the objects in
 the work area subfolders are up-to-date.

 o The -nomodulerecursive option is no longer
 required. If you apply the -nomodulerecursive
 option to legacy modules, populate recurses

ENOVIA Synchronicity Command Reference All -Vol2

279

 within the legacy module's folders. It does not
 traverse REFERENCEs or hrefs of legacy modules.

-[no]recursive (File-based)

 -[no]recursive Specifies whether to perform this operation on
 the specified folder (default), or to traverse
 its subfolders.

 If you invoke 'populate -recursive' and specify a
 folder, populate operates on the folder in a
 folder-centric fashion, fetching the objects in
 the folder and its subfolders. To filter the set
 of objects on which to operate, use the -exclude
 option.

 Note: The populate operation might skip
 subfolders and individual managed objects
 if their persistent selector lists differ
 from the top-level folder being populated;
 see the Description section for details.

 If you specify -norecursive when operating on
 a folder, DesignSync operates only on objects in
 the specified folder. In this case, populate
 does not traverse the vault folder hierarchy.

 If you perform a -norecursive populate, then for
 the subsequent populate DesignSync performs a
 full populate even if the -full option is not
 specified.

 Note: DesignSync cannot perform an incremental
 populate following a nonrecursive populate,
 because it cannot ensure that the objects
 in the work area subfolders are up-to-date.

-reference

 -reference Populate with DesignSync references to objects
 in the vault. A reference does not have a
 corresponding file on the file system but does
 have local metadata that makes the reference
 visible to Synchronicity programs. Populate
 with references when you want your work area to
 reflect the contents of the vault but you do
 not need physical copies. Use the -reference
 option with the -lock option to populate with
 locked references. Locked references are
 useful if you intend to generate objects
 and want to lock them before regenerating,

File-Based Design

280

 as opposed to editing the previous versions.

 Note: You should not use the -reference option
 with Cadence data collection objects. When
 the -reference option is used on Cadence
 collections, DesignSync creates a
 reference in the metadata for the
 collection object but member files are not
 processed and are not included in the
 metadata.

-[no]replace (Module-based)

 -[no]replace This option determines how to handle locally
 modified objects when synchronizing your work
 area.

 The -replace option specifies that the populate
 operation updates locally unmodified workspace
 objects. This option leaves intact all managed
 objects that are not members of the module (if
 applicable) and all unmanaged objects. If an
 object has been removed from the version being
 fetched as a result of a remove operation or
 retired on the server, -replace removes the
 member from the workspace if it has not been
 locally modified. (Default)

 The -noreplace option specifies that the
 populate operation updates managed objects that
 have not been locally modified. The -noreplace
 option leaves intact all unmanaged objects. If
 an object has been removed from the version
 being fetched as a result of a remove, mvmember,
 rmhref or any other similar operation,
 -noreplace does not remove the corresponding
 file in the workspace.

 During a recursive populate, -noreplace leaves
 intact managed objects belonging to a
 referenced submodule even when the href has
 been removed. If the href has been changed to
 reference a different submodule, -noreplace:
 o Leaves intact managed objects that belong to
 the previous submodule but not to the
 new submodule
 o Replaces managed members that belong to both
 modules with the version belonging to
 the new module

 Notes:
 o See "Forcing, Replacing, and Non-Replacing
 Modes" above to see how the -force option
 interacts with the -[no]replace option.

ENOVIA Synchronicity Command Reference All -Vol2

281

 o If you use populate -version to populate
 a directory containing a module, DesignSync
 uses the -noreplace option unless -replace is
 explicitly specified.
 o If you apply the -filter or -hreffilter
 options, populate applies the -[no]replace
 option on the filtered data.
 o With a recursive operation, populate applies
 -replace and -noreplace behaviors to the
 top-level module and then to each
 referenced submodule.

-[no]replace (File-based)

 -[no]replace This option determines how to handle locally
 modified objects when synchronizing your work
 area.

 The -replace option specifies that the populate
 operation updates locally unmodified workspace
 objects. This option leaves intact all managed
 objects and all unmanaged objects. If an object
 has been removed from the vault being fetched as
 a result of a retire, rmvault, or any other
 similar operation, -replace removes the file
 from the workspace if it has not been locally
 modified.

 The -noreplace option specifies that the
 populate operation updates managed objects that
 have not been locally modified. The -noreplace
 option leaves intact all unmanaged objects. If
 an object has been removed from the vault
 being fetched as a result of a retire, rmvault,
 or any other similar operation, -noreplace does
 not remove the corresponding file in the
 workspace. (Default)

 Notes:
 o See "Forcing, Replacing, and Non-Replacing
 Modes" above to see how the -force option
 interacts with the -[no]replace option.
 o If you use populate -version to populate
 a directory containing a module, DesignSync
 uses the -noreplace option unless -replace is
 explicitly specified.
 o If you apply the -filter or -hreffilter
 options, populate applies the -[no]replace
 option on the filtered data.
 o With a recursive operation, populate applies
 -replace and -noreplace behaviors to the
 top-level module and then to each
 referenced submodule.

File-Based Design

282

-report

 -report error| Specifies the amount and type of information
 brief|normal| displayed by the command. The information each
 verbose option returns is discussed in detail in the
 "Understanding the Output" section above.

 error - lists failures, warnings, and success
 failure count.

 brief - lists failures, warnings, module
 create/remove messages, some informational
 messages, and success/failure count.

 normal - includes all information from brief, and
 lists all the updated objects, and messages about
 objects excluded by filters from the
 operation. (Default)

 verbose - provides full status for each
 object processed, even if the object is not
 updated by the operation.

-[no]retain

 -[no]retain Indicates whether to retain the 'last modified'
 timestamp of the fetched objects as recorded
 when each object was checked into the vault. If
 the workspace is set to use a mirror, or the
 populate is run using -share, this will also
 apply to the object placed in the mirror or LAN
 cache if the object doesn't already exist in the
 mirror or cache. The links in your work area to
 the cache or mirror have timestamps of when the
 links were created.

 If you specify the -reference option, no object
 is created in your work area, so there is no
 timestamp information at all.

 If an object is checked into the vault and the
 setting of the -retain option is the only
 difference between the version in the vault and
 your local copy, DesignSync does not include the
 object in populate operations.

 If you do not specify '-retain' or -noretain',
 the populate command follows the DesignSync
 registry setting for Retain last-modification
 timestamps. By default, this setting is not
 enabled; therefore, the timestamp of the local
 object is the time of the populate
 operation. To change the default setting, your

ENOVIA Synchronicity Command Reference All -Vol2

283

 Synchronicity administrator can use the
 SyncAdmin tool. For information, see SyncAdmin
 Help.

 The mirror system, by default,fetches objects
 into the mirror with the -retain option. The
 mirror administrator, however, can define
 mirrors to use the -noretain option. The default
 setting should agree with the Retain
 last-modification timestamp registry setting to
 maintain consistency. See the "Mirror
 Administration Server Registry Settings" topic
 for setting of the co or populate options for
 mirrors.

 Note: When fetching from the cache or mirror (by
 specifying the '-from local' option), the last
 modified timestamp comes from the file in the
 cache or mirror, not from the version that was
 checked into the vault. If the file was fetched
 into the cache or mirror with the -retain
 option, these two timestamps are the same. But
 if the file was fetched into the cache or mirror
 with the -noretain option and then fetched into
 the workspace with both the '-from local' and
 '-retain' options, the 'last modified' timestamp
 used is the time the object was fetched into the
 cache or mirror.

-savelocal

 -savelocal <value> This option affects collections that have local
 versions.

 When it fetches an object, the populate
 operation first removes from your workspace
 any local version that is unmodified. (To
 remove a local version containing modified
 data, specify 'pop -force'.) Then the populate
 operation fetches the object you are checking
 out (with the local version number it had at
 the time of checkin).

 The -savelocal option specifies the action
 that the populate operation takes with
 modified local versions in your workspace
 (other than the current, or highest numbered,
 local version). (DesignSync considers a local
 version to be modified if it contains modified
 members or if it is not the local version
 originally fetched from the vault when the
 collection object was checked out or populated
 to your workspace.)

File-Based Design

284

 Specify the -savelocal option with one of the
 following values:

 save - If your workspace contains a local
 version other than the local version being
 fetched, the populate operation saves the
 local version for later retrieval. See the
 'localversion restore' command for information
 on retrieving local versions that were saved.

 fail - If your workspace contains an object
 with a local version number equal to or higher
 than the local version being fetched, the
 populate operation fails. This is the default
 action.

 Note: If your workspace contains an object
 with local version numbers lower than the
 local version being fetched and if these local
 versions are not in the DesignSync vault, the
 populate operation saves them. This behavior
 occurs even when you specify '-savelocal fail'

 delete - If your workspace contains a local
 version other than the local version being
 fetched, the populate operation deletes the
 local version from your workspace.

 If you do not specify the -savelocal option,
 the populate operation follows the DesignSync
 registry setting for SaveLocal. By default,
 this setting is "Fail if local versions exist"
 ('-savelocal fail'). To change the default
 setting, a Synchronicity administrator can use
 the Command Defaults options pane of the
 SyncAdmin tool. For information, see SyncAdmin
 Help.

 Note:
 o You may need to use the -force option with
 the -savelocal option to allow the object
 being fetched to overwrite a locally
 modified copy of the object. For an example
 scenario, see EXAMPLES.
 o The -savelocal option affects only objects of
 a collection defined by the Custom Type
 Package (CTP). This option does not affect
 objects that are not part of a collection or
 collections that do not have local versions.

-share

 -share Fetch shared copies. Shared objects are stored
 in the file cache directory and links to the

ENOVIA Synchronicity Command Reference All -Vol2

285

 cached objects are created in the work area.

 Notes:
 This option is not supported on Windows
 platforms.

 The -share option is mutually exclusive with the
 other fetch modes: -lock, -get, -mirror, and
 -reference. The -share option is also mutually
 exclusive with the -keys and -from options.

-target (Legacy-based)

 -target Specifies a legacy module configuration to fetch
 <server_module_url> to your work area. Note: This option applies
 only to legacy modules. Also, this option is
 no longer required and will be removed in a
 future release; you can specify the module
 as a command argument. See ARGUMENTS above
 to specify the module as an argument.

 To specify a module using the -target option,
 use the syntax:
 sync[s]://<host>[:<port>]/<vaultPath>
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer port
 number, and <vaultPath> is the vault folder in
 which the module's data resides.

 To specify a module configuration other than
 the default configuration, use the syntax:
 sync[s]://<host>[:<port>]/<vaultPath>@<config>
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer port
 number, <vaultPath> is the vault folder in
 which the module's data resides, and <config>
 is the specific configuration of the module.

 If you specify this option, the populate
 command sets the vault and selector.

 If you specify the 'populate -target' with the
 -path option and the specified directory does
 not exist, the populate command creates the
 directory in your work area and sets the
 selector for fetching the configuration
 specified with '-target'.

 Note: To fetch an entire legacy module
 hierarchy, use the -recursive option with
 'populate -target'.

 The 'populate -target' command checks whether
 the target is an ordinary DesignSync vault or a

File-Based Design

286

 module with no hrefs. In the cases where it is
 either a DesignSync Vault or a module with no
 hrefs and the registry setting indicates that
 the module with no hrefs should be treated like
 a DesignSync vault, it performs a setvault
 operation with the value specified to target and
 then performs an ordinary populate on the
 directory. Effectively, this is equivalent to
 performing a 'setvault' and populate (without
 -target). The setvault is done recursively if
 the -recursive option was specified with
 populate.

-trigarg

 -trigarg <arg> Specifies an argument to be passed from the
 command line to the triggers set on the
 populate operation. If the argument contains
 whitespace, enclose the argument within
 double quotation marks ("") if using the dss
 command shell or braces ({}) if using the stcl
 command shell.

-[no]unifystate

 -[no]unifystate Indicates whether to set the state of all objects
 processed, even up-to-date objects, to the
 specified state (-get, -lock, -share, -mirror, or
 -reference) or to the default fetch state if no
 state option is specified. See the
 "fetch preference" help topic for more
 information.

 By default, populate changes the state of only
 those objects that are not up-to-date
 (-nounifystate). If the -unifystate option is
 specified, DesignSync changes the state of the
 up-to-date objects, as well, and thus performs
 a full populate.

 The -unifystate option does not change the state
 of locally modified objects; use -force with
 -unifystate to force a state change, thus
 overwriting local modifications. The -unifystate
 option does not change the state of objects not
 in the configuration; use -force with
 -unifystate to remove objects not in the
 configuration.
 The -unifystate option does not cancel locks;
 you can check in the locked files, use the
 'cancel' command to cancel locks you have
 acquired, or use the 'unlock' command to cancel

ENOVIA Synchronicity Command Reference All -Vol2

287

 team members' locks.

 Note: The -unifystate option is ignored when
 you lock design objects. If you populate with
 locked copies or locked references, DesignSync
 leaves all processed objects in the requested
 state.

-version (Module-based)

 -version <selector> Specifies the versions of the objects to
 populate. The selector list you specify
 (typically a version or branch tag) overrides
 the persistent selector lists of the objects you
 are populating. If you populate the top-level
 module in a hierarchy with the -version tag, you
 replace the persistent selector of the workspace
 with the version specified by this option. If
 you specify the -recursive option, the specified
 selector list is used to populate all subfolders
 during populates.

 If you specify a date selector (Latest or
 Date(<date>)), DesignSync augments the
 selector with the persistent selector list
 to determine the versions to populate. For
 example, if the persistent selector list
 is 'Gold:,Trunk', and you specify
 'populate -version Latest', then the selector
 list used for the populate operation is
 'Gold:Latest,Trunk:Latest'.

 For details on selectors and selector lists
 see the topic describing selectors.

 Note:
 o Using the -version option with the populate
 command changes the workspace selector if the
 populate was performed on a top-level
 module instance. If you are working in a
 module hierachy, you should use the swap
 replace command to change the sub-module
 version populated. If you populate individual
 module members or folders, the persistent
 selector is not updated.
 o If you use -version to populate a module
 member, populate fetches the version that is
 appropriate to the module version as
 identified by the version value.
 o If you use the -version option with the
 -incremental option, and the selector you
 specify does not exactly match the workspace
 selector, the incremental populate does not
 occur. DesignSync performs a full populate

File-Based Design

288

 instead. See "Incremental Versus Full
 Populate" in the description section for more
 information.
 o When using -version to specify a branch,
 specify both the branch and version as
 follows: <branchtag>:<versiontag>, for
 example, Rel2:Latest. You can also use the
 shortcut, <branchtag>:, for example Rel2:.
 If you do not explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.
 o When you specify a version-extended name that
 reflects the object's version, for example,
 "file.txt;1.3", populate ignores the
 -version option.
 o Specify '-version <branchtag>:Latest' only if
 necessary. In some cases, DesignSync augments
 the selector to be <branchtag>:Latest.
 When you append ':Latest', it may not match
 the work area selector. This mismatch
 invalidates your next incremental populate
 resulting in a slower, full populate.
 o The -version option is mutually exclusive
 with -merge unless you specify '-version
 Latest', the default.
 o The -version and -overlay options are
 mutually exclusive.

-version (File / Legacy-based)

 -version <selector> Specifies the versions of the objects to
 populate. The selector list you specify
 (typically a version or branch tag) overrides
 the persistent selector lists of the objects
 you are populating. If you specify the
 -recursive option, the specified selector
 list is used to populate all subfolders during
 populate.
 You can also specify a ProjectSync configuration;
 see "Interaction with Legacy Modules" in the
 Description section.

 If you specify a date selector (Latest or
 Date(<date>)), DesignSync augments the
 selector with the persistent selector list
 to determine the versions to populate. For
 example, if the persistent selector list
 is 'Gold:,Trunk', and you specify
 'populate -version Latest', then the selector
 list used for the populate operation is
 'Gold:Latest,Trunk:Latest'.

 For details on selectors and selector lists
 see the topic describing selectors.

ENOVIA Synchronicity Command Reference All -Vol2

289

 Note:
 o Using the -version option with the populate
 command does not change the workspace
 selector, even during the initial populate
 of an object. To set the workspace selector
 as part of the populate command, specify
 the selector explicitly, using the
 <object>;<selector> syntax.
 o If you use the -version option with the
 -incremental option, and the selector you
 specify does not exactly match the workspace
 selector, the incremental populate does not
 occur. DesignSync performs a full populate
 instead. See "Incremental Versus Full
 Populate" in the description section for more
 information.
 o When using -version to specify a branch,
 specify both the branch and version as
 follows: <branchtag>:<versiontag>, for
 example, Rel2:Latest. You can also use the
 shortcut, <branchtag>:, for example Rel2:.
 If you do not explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.
 o When you specify a version-extended name that
 reflects the object's version, for example,
 "file.txt;1.3", populate ignores the
 -version option.
 o Specify '-version <branchtag>:Latest' only if
 necessary. In some cases, DesignSync augments
 the selector to be <branchtag>:Latest.
 When you append ':Latest', it may not match
 the work area selector. This mismatch
 invalidates your next incremental populate
 resulting in a slower, full populate.
 o The -version option is mutually exclusive
 with -merge unless you specify '-version
 Latest', the default.
 o The -version and -overlay options are
 mutually exclusive.
 o When you use populate with the -version option
 to fetch a directory containing legacy
 modules, by default DesignSync uses the
 -noreplace

-view (Module-based)

 -view view1 Module view name or comma-delimited list of
 [,view2[,view...] module view names, applied to a module or module
 hierarchy when it is fetched.

 Note: This option is only valid for server
 module objects. If it is used with an argument

File-Based Design

290

 type other than a server module url, the option
 is silently ignored.

 There is no default value for this option. You
 cannot set a default value in the command
 defaults system.

 On an initial populate, the module view name or
 names list provided is propagated through the
 hierarchy and applied to all fetched
 modules. The module view name or names list is
 also saved, or persisted in the workspace
 metadata for each module so that all subsequent
 populates use the same view. The documentation
 refers to a view saved in the metadata as a
 "persistent module view" because it persists
 through subsequent populates rather than
 needed to be specified with each command.

 If a persistent module view has been set on a
 workspace module, any sub-modules subsequently
 populated use the persistent module view already
 defined for parent module.

 Tip: Since populate calls the Checkout Access
 Control, you can write an Access Control filter
 to cause populate to fail if no module view is
 specified or tie users to specific module
 views.

 Notes:
 o If none of the specified module views exist on
 the server, DesignSync issues a warning and
 the populate command runs as if no view were
 specified. If, in a list of module views, one
 or more views exists, and one or more views
 does not exist, the populate command silently
 ignores the non-existent view(s).

 o When the persistent module view set on the
 workspace is changed, the subsequent populate
 is a full populate. For more information on
 changing or clearing the persistent view, see
 the setview command.

-xtras (Module-based)

 -xtras <list> List of command line options to pass to the
 external module change management system. Any
 options specified with the -xtras option are
 sent verbatim, with no processing by the
 populate command, to the Tcl script that defines
 the external module change management system.

ENOVIA Synchronicity Command Reference All -Vol2

291

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.

 Notes:
 - "successfully processed" may not mean "successfully populated".
 For example, a populate of an object that you already have in
 your work area is considered a success even though no checkout
 occurs.
 - Scripts should only test for non-empty lists to determine
 success or failure. The actual content of the non-empty
 lists might change in subsequent releases.
 - If all objects fail, an exception occurs (the return value is
 thrown, not returned).
 - Objects reported as "excluded by filter," may have been excluded
 either with the -filter option (for modules) or with the -exclude
 option (for any DesignSync objects.)

SEE ALSO

 caching, ci, co, command defaults, localversion, remove, retire,
 selectors, setselector, setvault, setview, swap, url contents

EXAMPLES

• Example of Populating a Module (Module-based)
• Example of Populating a Specific Module Member (Module-based)
• Example of Populating a Module with a Static Selector (Module-based)
• Example of Populating a Module Using Version-Extended Naming (Module-based)
• Example of Creating a Module Cache (Module-based)
• Example of Populating an Mcache Link (Module-based)
• Example of Populating a Module View (Module-based)
• Example of Specifying a Hierarchical Hreffilter (Module-based)
• Example of Merge Across Branches (Module-based)
• Example of Creating a new work area from a DesignSync vault (File-based)
• Example of Creating a New Work Area from a DesignSync Vault Branch (File-based)
• Example of Updating an Existing Workspace with a Full Populate (File-based)
• Example of Updating the State of Objects in the Workspace (File-based)
• Example of Performing a Merge into a Workspace (File-based)
• Example of Replacing Modified Files with the Server Versions (File-based)

Example of Populating a Module (Module-based)

File-Based Design

292

 The following example shows how to populate module Chip in the
 workspace directory ~/chip.
 For an initial populate, provide the server URL of the module:

 stcl> pop sync://guaraldi:30077/Modules/Chip

 This creates the Chip module with the current directory
 as the base directory:

 Beginning populate operation...

 Making Module with
 Base Dir = /home/karen/chip
 Name = Chip
 URL = sync://guaraldi:30077/Modules/Chip
 Selector = Trunk:Latest

 Created Module with instname Chip%1

 Populating objects in Module Chip%1 with Base Dir /home/karen/chip...

 /chip/makefile: Success - Checked Out version: 1.1
 /DOC/Chip.doc: Success - Checked Out version: 1.1
 /chip/verilog/chip.v: Success - Checked Out version: 1.1

 Chip%1: Version of module in workspace updated to 1.2

 Finished populate of Module Chip%1 with Base Dir /home/karen/chip

 Finished populate operation...

 {Objects succeeded (3)} {}

 When you next update your work area using the populate command,
 you can supply the workspace module name or the workspace folder
 name. In the following example the workspace folder name is
 supplied, and there have been no changes since the last populate:

 stcl> pop -recursive ~/chip
 Beginning populate operation at Thu Apr 19 02:16:31 PM EDT 2007...

 Populating objects in Module Chip%1
 Base Directory /home/karen/chip
 Without href recursion

 Chip%1 : Version of module in workspace retained as 1.2

 Finished populate of Module Chip%1 with base directory
 /home/karen/chip

 Finished populate operation.

 {} {}

ENOVIA Synchronicity Command Reference All -Vol2

293

Example of Populating a Specific Module Member (Module-based)

 The following is an example of fetching a specific version of a
 module member:

 stcl> pop -version 1.4 File1.txt

 Populating objects in Module JitaMod1%0
 Base Directory /home/tachatterjee/JitaMOD
 Without href recursion

 Fetching contents from selector '1.4', module version '1.4'

 Total data to transfer: 0 Kbytes, 1 files, 0 collections
 Progress: 0 Kbytes, 1 files, 0 collections, 100.0% complete
 /File1.txt: Success - Checked Out version: 1.3

 Finished populate operation...

 This fetches the version of the file File1.txt contained in
 version 1.4 of the module.

Example of Populating a Module with a Static Selector (Module-based)

 The following example shows the messages you receive when you
 populate a static selector into a workspace.

 dss> populate -recursive -version Gold Chip-R419%0
 Beginning populate operation at Fri Oct 28 12:41:08 Eastern Daylight
 Time 2016...

 Setting Selector [Gold] on workspace module
 c:\workspaces\ChipDev419\chip\Chip-R419%0
 WARNING: Chip-R419%0: Changing the selector to a static value (Gold).
 You will not be able to check in module or member modifications.

 Selector on module c:\workspaces\ChipDev419\chip\Chip-R419%0 was
 modified.

 Populating objects in Module Chip-R419%0
 Base Directory c:\workspaces\ChipDev419\chip
 With href recursion

 Fetching contents from selector 'Gold', module version '1.5.1.1'
...
 Finished populate operation.

 ##### WARNINGS and FAILURES LISTING #####
 #
 # WARNING: Chip-R419%0: Changing the selector to a static value

File-Based Design

294

 #(Gold).
 # You will not be able to check in module or member modifications.
 #
 ###

 {Objects succeeded (6)} {Objects failed (0)}

Example of Populating a Module Using Version-Extended Naming (Module-based)

 The following example shows how to fetch a specific version of a
 module using a version-extended name.

 In this example, the latest version of the file is 1.5. You can
 do a vhistory to determine which version of the file you want to
 fetch.

 To fetch version 1.2 of the file:

 stcl> pop "File1.txt;1.2"

 Beginning Check out operation...

 Checking out: File1.txt : Success - Fetched version: 1.2

 Checkout operation finished.

 Finished populate operation...

Example of Creating a Module Cache (Module-based)

 The following example shows how to populate a module cache using the
 -share option to create a copy of the module in a centralized
 location.

 Note: The module cache directory must be writable by the
 creator/owner of the module cache, but not by the users of the module
 cache.

 stcl> populate -share -

Example of Populating an Mcache Link (Module-based)

 The following example shows how to populate module Chip
 using the -mcachepaths option to fetch contents from the module
 cache named 'designs' located in the mcacheDir directory.

 stcl> populate -get -recursive -hrefmode static
 -path /home/rsmith/MyModules/designs -mcachemode link -mcachepaths
 /home/mcacheDir/ sync://srv2.ABCo.com:2647/Modules/Chip/

ENOVIA Synchronicity Command Reference All -Vol2

295

 Beginning populate operation at Mon Jun 23 10:36:43 AM EDT 2008...

 sync://srv2.ABCo.com:2647/Modules/Chip/: : Created mcache
 symlink /home/rsmith/MyModules/designs.

 Creating Module Instance 'Chip%1' with base directory
 '/home/rsmith/MyModules/designs'

 Finished populate operation.

 {Objects succeeded (1)} {}

 Note: Any existing workspace content will not be replaced with
 module cache links. To replace workspace content you must first
 remove from the workspace those configurations to be replaced. Use
 the 'rmfolder -recursive' command on the configuration base
 directory, or specify a non-existent directory for the -path option
 to create a new directory for the module cache links.

Example of Populating a Module View (Module-based)

 This example shows populating a workspace with a module view list;
 specifically the the RTL and DOC Module Views.

 stcl> populate -get -view RTL,DOC -path ./Chip sync://
 srv2.ABCo.com:2647/Modules/Chip

 Beginning populate operation at Fri May 06 02:04:38 PM EDT 2011...

 Populating module instance with

 Base Directory = /users/larry/MyModules/Chip
 Name = Chip
 URL = sync:// srv2.ABCo.com:2647/Modules/Chip
 Selector = Trunk:
 Instance Name = Chip%2
 Metadata Root = / users/larry/MyModules
 View(s) = RTL,DOC

 Recursive Mode = Without href recursion

 Fetching contents from selector 'Trunk:', module version '1.9'
 Total data to transfer: 1 Kbytes (estimate), 5 file(s), 0 collection(s)

 Progress - from local cache: 0 Kbytes, 0 file(s), 0 collection(s)
 Progress - from server: 1 Kbytes, 5 file(s), 0 collection(s), 100.0%
complete

 Chip%2/makefile : Success - Checked out version: 1.2
 Chip%2/README : Success - Checked out version: 1.3
 Chip%2/doc/chip.html : Success - Checked out version: 1.2
 Chip%2/doc/chip.doc : Success - Checked out version: 1.2
 Chip%2/verilog/chip.v : Success - Checked out version: 1.5

File-Based Design

296

 Chip%2/verilog/chip_inc.v : Success - Checked out version: 1.3

 Chip%2 : Version of module in workspace updated to 1.9

 Finished populate of Module Chip%2 with base directory
 /users/larry/MyModules/Chip

 Time spent: 0.2 seconds, transferred 1 Kbytes, copied from local
 cache 0 Kbytes, average data rate 4.9 Kb/sec

 Finished populate operation.

 {Objects succeeded (5)} {}

Example of Specifying a Hierarchical Hreffilter (Module-based)

 This example shows an initial populate using a hierarchical href
 filter to exclude the /BIN module from the workspace when it appears
 beneath the /JRE module. In this example, the module hierarchy is set
 up like this:
 NZ214 <- ROM <- JRE <- BIN
 With NZ214 being the top-level Chip design module.

 Note: Whenever you use the -hreffilter option, you must populate
 recursively.

 dss> populate -recursive -retain -full -hreffilter JRE/BIN
 sync://serv1.ABCo.com:2647/Modules/Chip/NZ214

 Beginning populate operation at Wed Dec 11 13:24:31 Eastern Standard
 Time 2013...

 Populating module instance with
 Base Directory = c:\workspaces\V6R2014x\chipDesign
 Name = NZ214
 URL = sync://serv1.ABCo.com:2647/Modules/Chip/NZ214
 Selector = Trunk:
 Instance Name = NZ214%1
 Metadata Root = c:\workspaces\V6R2014x
 Recursive Mode = With href recursion

 Fetching contents from selector 'Trunk:', module version '1.3'

 Total data to transfer: 0 Kbytes (estimate), 6 file(s), 0 collection(s)
 Progress - from local cache: 0 Kbytes, 0 file(s), 0 collection(s)
 Progress - from local cache: 0 Kbytes, 0 file(s), 0 collection(s)

 Progress - from server: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress - from server: 1 Kbytes, 6 file(s), 0 collection(s), 100.0%
complete

 NZ214%1\chip.ver : Success - Checked out version: 1.1
 ...

ENOVIA Synchronicity Command Reference All -Vol2

297

 Creating sub module instance 'ROM%1' with base directory
 'c:\workspaces\V6R2014x\chipDesign\ROM'

 Finished populate of Module NZ214%1 with base directory
 c:\workspaces\V6R2014x\chipDesign

 Time spent: 0.3 seconds, transferred 1 Kbytes, copied from local cache 0
Kbytes, average data rate 3.4 Kb/sec

 ===

 Populating sub module instance with
 Base Directory = c:\workspaces\V6R2014x\chipDesign\ROM
 Name = ROM
 ...
 Creating sub module instance 'JRE%0' with base directory
 'c:\workspaces\V6R2014x\chipDesign\ROM\JRE'

 Finished populate of Module ROM%1 with base directory
 c:\workspaces\V6R2014x\chipDesign\ROM

 Time spent: 0.0 seconds, transferred 0 Kbytes, copied from local
 cache 0 Kbytes, average data rate 0.0 Kb/sec

 ===

 Populating sub module instance with
 Base Directory = c:\workspaces\V6R2014x\chipDesign\ROM\JRE
 ...
 JRE%0 : Version of module in workspace updated to 1.2

 BIN : Sub Module Excluded by Hierarchical Filter
 Finished populate of Module JRE%0 with base directory
 c:\workspaces\V6R2014x\chipDesign\ROM\JRE

 Time spent: 0.0 seconds, transferred 0 Kbytes, copied from local
 cache 0 Kbytes, average data rate 0.0 Kb/sec

 Finished populate operation.

 {Objects succeeded (8)} {}

Example of Merge Across Branches (Module-based)

 This example shows a simple module merge across branches. After you
 perform the merge, you must check in your changes to apply the merge
 changes to the modules.

 dss> pop -merge -overlay Branch: ROM%1
 Beginning populate operation at Tue Apr 10 01:55:24 PM EDT 2007...

File-Based Design

298

 Populating objects in Module ROM%1
 Base Directory /home/rsmith/MyModules/rom
 Without href recursion

 Fetching contents from selector 'Branch:', module version '1.3.1.3'

 Merging with Version: 1.3.1.3
 Common Ancestor is Version: 1.3

 ==
 Step 1: Identifying items to be merged and conflict situations
 ==

 /romMain.c : member will be fetched from merged version and
 added to workspace version on checkin.
 Use 'ls -merged added' to identify members added by merge.
 /rom.v : conflict - different member in merge version found at same natural
 path in workspace version. Cannot fetch member or merge contents
 with member from merge version; it will be skipped. If member from
 merge version is desired, remove or move member on workspace
 branch and then re-populate with overlay from merge version.
 /rom.v : Natural path different on merge version and workspace version.
 Contents will be merged, if required.
 /rom.doc : No merge required.
 /doc/rom.doc : No merge required.

 ==
 Step 2: Transferring data for any items to be fetched into the
 workspace
 ==

 Total data to transfer: 0 Kbytes (estimate), 1 file(s), 0 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 1 Kbytes, 1 file(s), 0 collection(s), 100.0% complete

 ===
 Step 3: Merging file contents as required into the workspace
 ===

 Beginning Check out operation...

 Checking out: rom.v : Success - Version
 1.1.1.1 has replaced version 1.1.
 Checking out: rom.c : Success - Version
 1.1.1.1 has replaced version 1.1.

 Checkout operation finished.

 ==
 Step 4: Updating files fetched into the workspace
 ==

 /romMain.c : Success - Version 1.1 fetched

ENOVIA Synchronicity Command Reference All -Vol2

299

 ROM%1 : Version of module in workspace not updated (Due to overlay
 operation).

 ==
 Step 5: Comparing hrefs for the workspace version and merge version:
 ==
 No hrefs present in workspace version
 No hrefs present in merge version

 Finished populate of Module ROM%1 with base directory
 /home/rsmith/MyModules/rom

 Time spent: 0.2 seconds, transferred 1 Kbytes, average data rate 4.3 Kb/sec

 Finished populate operation.

 {Objects succeeded (3)} {}

 After the populate has completed, run ci to create the new module
 version with the merge changes.

 dss> ci -comment "Incorporating changes on Branch:" ROM%1
 Beginning Check in operation...

 Checking in objects in module ROM%1

 Total data to transfer: 1 Kbytes (estimate), 3 file(s), 0 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 2 Kbytes, 3 file(s), 0 collection(s), 100.0% complete

 Checking in: /rom.c Success - New version: 1.2
 Checking in: /rom.v Success - New version: 1.2
 Checking in: /romMain.c Success - New version: 1.1.1.1

 ROM%1: Version of module in workspace updated to 1.5

 Finished checkin of Module ROM%1, Created Version 1.5

 Time spent: 0.7 seconds, transferred 2 Kbytes, average data rate 2.8 Kb/sec
 Checking in: /doc/rom.doc : Success - No new
 version created. Lock Removed.

 Checkin operation finished.

 {Objects succeeded (4)} {}

 After the checkin has created the new module version, you can create
 a merge edge to store a record of the changes.

 dss> mkedge ROM%1
 Edge from 1.3.1.3 to 1.5 for module
 sync://srv2.ABCo.com:2647/Modules/ROM created successfully.

File-Based Design

300

Example of Creating a new work area from a DesignSync vault (File-based)

 The following example creates a new work area containing unlocked
 copies of every object in the vault hierarchy:

 dss> scd /home/tgoss/Projects/Asic
 dss> setvault sync://myhost.myco.com:2647/Projects/Asic .
 dss> populate -recursive -get

 Because -version is not specified, the persistent selector list of
 the current folder determines what versions to populate. The local
 Asic folder has not had a 'setselector' command applied to it or
 any parent folder, so the default persistent selector list is
 'Trunk'. By default, DesignSync performs an incremental populate
 of the Latest versions on the specified branch (Trunk). Note that
 this operation does not fetch objects whose 'Trunk' branch is
 retired.

Example of Creating a New Work Area from a DesignSync Vault Branch (File-based)

 The following example differs from the previous example in that the
 work area is for the Rel2.1 branch, not Trunk, and the work area
 contains links to a cache directory instead of local copies:

 dss> scd /home/tgoss/Projects/Asic
 dss> setvault sync://myhost.myco.com:2647/Projects/Asic@Rel2.1:Latest .
 dss> populate -recursive -share

Example of Updating an Existing Workspace with a Full Populate (File-based)

 The following example performs a full (nonincremental) recursive
 populate on the current folder, fetching unlocked copies of files
 for updated objects. Note that the states of objects that are not
 updated DO NOT change.

 dss> populate -recursive -full -get

Example of Updating the State of Objects in the Workspace (File-based)

 By default, the states of up-to-date objects do not change during
 a populate operation. The following example updates the states of
 the objects that are up-to-date, allowing you to unify the states
 of all objects in your work area. The -unifystate option causes
 DesignSync to perform a full populate rather than an incremental
 populate.

 dss> populate -recursive -unifystate -get

ENOVIA Synchronicity Command Reference All -Vol2

301

Example of Performing a Merge into a Workspace (File-based)

 The following example merges Latest versions from the current
 branch into the local versions. You perform this operation when
 your team uses the merging (nonlocking) work model and you and
 other team members have been modifying the same objects. It is more
 common to use the 'co -merge' command to operate on just those
 objects you want to check in.

 dss> populate -merge

 Note that the merge operation fetches from the branch specified by
 the folder's persistent selector list, not from the current
 branch. However, these two branches are typically the same unless
 you have changed the persistent selector list with the setselector
 command. In this case, you would be merging across branches instead
 of from the same branch. This method for merging between two
 branches is not recommended; use the -overlay option.

 The following example merges one branch (Dev) into another
 (Main). This operation is typically performed by a release engineer
 who manages the project vault. The work area is first populated
 with the Latest versions from 'Main'. Then the Latest versions from
 Dev are merged into the local versions. The -overlay option
 indicates that after the operation, the current branch and version
 information (as stored in local metadata) should be
 unchanged. Following the merge and after any merge conflicts are
 resolved, a check-in operation checks the merged version into 'Main'.

 dss> url selector .
 Main:Latest
 dss> populate -recursive
 dss> populate -recursive -merge -overlay Dev:Latest
 [Resolve any merge conflicts]
 dss> ci -recursive -keep .

Example of Replacing Modified Files with the Server Versions (File-based)

 This example shows use of the populate operation that deletes local
 versions.

 Note: The DesignSync Milkway integration has been deprecated. This
 example is meant to be used only as a reference.

 Mike checks out the Milkyway collection object top_design.sync.mw,
 which fetches local version 4 of that object to his workspace. He
 modifies the object and creates local version 5. Then he checks in
 top_design.sync.mw. The check-in operation does not remove local
 versions, so Mike now has local version 5 (unmodified) and local
 version 4 in his workspace. (Note: Because the checkin removes
 local version 4's link to with the original check-out operation of
 top_design, DesignSync now considers local version 4 to be
 modified.)

File-Based Design

302

 Ben checks out top_design.sync.mw (local version 5). He creates
 local version 6 and checks the object in.

 Mike does some work on top_design, which creates local versions 6,
 7, and 8 in his workspace. Then he decides to use Ben's version of
 the top_design object instead.

 Mike uses populate to fetch the latest versions of Milkyway
 collection objects to his workspace. He doesn't want to save his
 local versions of the object, so he uses the '-savelocal delete'
 option to delete local versions other than the local version being
 fetched. In addition, he uses the -force option. (Because he
 created local versions 6, 7, and 8 of top_design in his workspace,
 DesignSync considers the top_design object to be locally modified
 and by default the populate operation does not overwrite locally
 modified objects. To successfully check out top_design, Mike must
 use '-force'.)

 stcl> cd /home/tjones/top_design_library
 stcl> populate -savelocal delete -force

 Before fetching top_design.sync.mw from the vault, the populate
 operation first deletes all local versions that are unmodified. So
 the populate operation deletes Mike's local version 6 because that
 was the version originally fetched and its files are unmodified.

 Because Mike specified the -force option, the populate also deletes
 Mike's local version 8 (the current local version containing
 modified data for the object).

 Because Mike specified '-savelocal delete', the populate operation
 deletes local version 7, which is not in the vault and is not the
 modified data Mike agreed to delete when he specified '-force'.
 If Mike specified '-savelocal save', DesignSync would save local
 version 7. Local version 4 is also deleted.

 Finally, Mike's populate operation fetches the top_design object
 (Ben's local version 6) from the vault.

 Mike continues to modify the top_design object, creating local
 version 7, which he checks in.

 Ben has local versions 5 and 6 in his workspace. He populates his
 workspace containing the top_design collection object (local
 version 7), specifying '-savelocal fail'. The populate operation
 removes local version 6 from his workspace because it is
 unmodified. The operation saves local version 5 even though it is
 modified. (Ben's checkin of local version 6 removed local version
 5's link to with the original checkout of top_design, so DesignSync
 now considers local version 5 to be modified.) The populate also
 takes place despite the fact that Ben specified '-savelocal
 fail'. The populate operation takes this action because local
 version 5 has a number lower than the local version being
 fetched. If Ben had instead specified '-savelocal delete', the
 populate operation would delete local version 5.

ENOVIA Synchronicity Command Reference All -Vol2

303

tag

tag Command

NAME

 tag - Assigns a tag to a version or a branch

DESCRIPTION

• Working with Tags
• Branch Tags Versus Version Tags
• Tagging Modules (Module-based)
• Module Snapshots (Module-based)
• Tag Name Syntax (Module-based)
• Determining the Objects to be Tagged (Module-based)
• Using Tags on Module Versions (Module-based)
• Interaction with Legacy Modules (Legacy-based)
• Tagging Files-Based DesignSync Objects (File-based)
• Tag Name Syntax (File-based)
• Determining the Objects to be Tagged (File-based)
• Interaction with Objects from a Mirror (File-based)

 This command assigns a symbolic name, called a tag, to a version
 (version tag) or branch (branch tag). You also use this command to
 move (-replace) or remove (-delete) existing tags.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports Enterprise Design Synchronization. For more
 information on Enterprise Design Synchronization, see the Enterprise
 Design Administration User's Guide.

 This command supports the command defaults system.

Working with Tags

 Tagging a set of versions creates a group of objects, sometimes
 called a configuration, that is a representation of your design files
 that correspond to a known state, such as a development or release
 milestone. For example, you might tag the current versions of your
 design files 'Alpha' when you have reached the Alpha milestone.

 Once you have tagged your set of versions, the tag can be used as a
 selector to identify what objects commands operate on. For example,
 you might specify 'populate -version Gold' to populate all versions

File-Based Design

304

 that are tagged 'Gold' (the 'Gold' configuration). See the
 "selectors" help topic for more information on selectors.

 Versions and branches can have more than one tag assigned to
 them. For example, an object that did not change between releases
 might have both 'rel2.1' and 'rel2.2' applied to the same version.

 Note: If you tag a version with a tag that already exists on that
 version, the system will respond with a 'success' message.

Branch Tags Versus Version Tags

 Branch tags and version tags share the same name space. To
 distinguish version selectors from branch selectors, you
 append ':<versiontag>' to the branch name; for example,
 'Gold:Latest' is a valid branch selector. You can leave off the
 'Latest' keyword as shorthand; for example, 'Gold:' is equivalent
 to 'Gold:Latest'. The selector 'Trunk' is also a valid branch
 selector; 'Trunk' is a shorthand selector for 'Trunk:Latest'.

 You cannot assign the same tag name to both a version and a branch
 of the same object. For example, a file called 'top.v' cannot have
 both a version tagged 'Gold' and a branch tagged 'Gold'. However,
 'top.v' can have a version tagged 'Gold' while another file, 'alu.v',
 can have a branch tagged 'Gold'.

 Consider adopting a consistent naming convention for branch
 and version tags to reduce confusion. For example, you might have a
 policy that branch tags always begin with an initial uppercase
 letter ('Rel2.1', for example) whereas version tags do not ('gold',
 for example).

 If the selector identifies a version, DesignSync resolves the
 selector to both the object's version number and branch number.
 For example, if version 1.2.1.3 is tagged 'gold', DesignSync
 resolves 'gold' as both version 1.2.1.3 and branch 1.2.1.
 A version selector only resolves if the object has a version
 tag of the same name; it does not resolve if the tag is a branch
 tag. For example, if branch 1.2.1 is tagged 'RelA', and the
 latest version on that branch is 1.2.1.3, then DesignSync
 resolves 'RelA:Latest' as version 1.2.1.3; however, DesignSync
 does not resolve selector 'RelA' at all, because there is no
 version tag of that name.

Tagging Modules (Module-based)

 The tag operation for modules tags versions or branches of the module
 in the vault, not the local copies of objects in your work
 area.

ENOVIA Synchronicity Command Reference All -Vol2

305

Module Snapshots (Module-based)

 Module snapshots are a collection of versionable module members that
 are tagged from a workspace. When you tag a set of member versions in
 a workspace, you create a new "snapshot" branch on the server. Using
 a branch allows you to maintain a snapshot as a versionable object,
 updating tags and hierarchical references as needed.

 Module snapshots allow you to capture a subset of a module workspace
 at any given moment in time, and recreate it. This can be useful to
 preserve a specific set of files for testing or releasing that set of
 files without interrupting the normal development workflow.

 When you create a module snapshot, DesignSync creates a special
 snapshot branch for the module. When you create the snapshot, you
 provide a tag name; the module branch is created with the name
 SNAPSHOT_<tag_name>. The specific snapshot version is <tag_name>.

 Operations on tagged module snapshots are always workspace-centric.
 This means the operations occur on the objects loaded in the
 workspace. If a folder is specified with recursion, the operation
 traverses the folder.

 The module snapshot is restricted to a single module, however you can
 update multiple module snapshots in a single tag operation. You can
 restrict a tag operation to a single module by using the
 -modulecontext switch to select the desired module.

 The module snapshot operations are atomic with respect to the server.
 In order to execute the tag operation, all objects within a module
 must be processed successfully. If any object fails the entire
 operation fails for that module. For example, if you tag module
 members in your workspace belonging to different modules and you do
 not have tag access for one of the modules or module members, the tag
 fails for that module only. The other modules, assuming no other
 errors within them, are updated successfully.

 The module snapshot operations are not atomic with respect to the
 workspace. For example, if you have a moved, removed, or added a
 file that has not been checked in, it does not cause the entire tag
 operation to fail. You receive an error message for any individual
 workspace object that failed, and the operation itself succeeds.

 Hierarchical references within module snapshots must be manually added
 or removed. DesignSync does not automatically include hierarchical
 references already in the workspace in a new module snapshot, nor
 does it update hierarchical references in the snapshot when the
 snapshot is versioned by adding or removing tags. After the snapshot
 has been created, you can add the desired hierarchical references to
 the snapshot, and update, remove, or add new hierarchical references
 as needed.

 Operations that can create a module version with structural or
 content changes, such as add, remove, checkin, mvmember, rollback, and
 populate with the -lock option, are not allowed with module
 snapshots. These snapshots are intended to be used as is, with

File-Based Design

306

 content frozen. The only operations allowed are addhref, rmhref,
 edithrefs, and tag operations (adding, removing, or moving tag names
 from module members). This allows you to create the perfect,
 immutable, test or release version.

Tag Name Syntax (Module-based)

 The first argument to the 'tag' command is the tag name.
 Tag names:
 - Can contain letters, numbers, underscores (_), periods (.),
 hyphens (-), and forward slashes (/). All other characters,
 including whitespace, are prohibited.
 - Cannot start with a number and consist solely of numbers
 and embedded periods (for example, 5, 1.5, or 44.33.22),
 because there would be ambiguity between the tag name and
 version/branch dot-numeric identifiers.
 - Cannot be any of the following reserved, case-insensitive keywords:
 Latest, LatestFetchable, VaultLatest, VaultDate, After,
 VaultAfter, Current, Date, Auto, Base, Next, Prev, Previous,
 Noon, Orig, Original, Upcoming, SyncBud, SyncBranch, SyncDeleted.
 Also, avoid using tag names starting with 'Sync' (case-insensitive),
 because Synchronicity may define new keywords in the future
 using that naming convention.

 Note: The Connected Software and Connected Semiconductor apps do
 not support the use of forward slash (/) in Tag names.

 The 'Latest' reserved keyword is of particular importance. 'Latest'
 is always associated with the most recent (highest numbered)
 version of a design object on a given branch. Although not actually a
 tag, you can generally specify 'Latest' as you would a user-defined
 version tag. Note that the default command behavior in many cases
 is to operate on the latest version on the current or specified
 branch, so you typically do not need to specify 'Latest'. See the
 "selectors" help topic for more details on selectors, including the
 use of 'Latest'.

 The 'Trunk' tag, although not a reserved keyword, has special
 significance for DesignSync. By default, DesignSync tags branch 1
 as 'Trunk' when you initially check in a design object. Because
 'Trunk' is a tag (shorthand for 'Trunk:Latest'), you can move
 or delete it, although doing so is not recommended. Due to this
 special significance, the 'Trunk' tag is always expected to be a
 branch tag, and you cannot add this as a version tag. For example,
 you can specify 'tag -branch 1 Trunk myfile', but you cannot
 specify 'tag -version 1.1 Trunk myfile'.

Determining the Objects to be Tagged (Module-based)

ENOVIA Synchronicity Command Reference All -Vol2

307

 Each object argument to the 'tag' command can be:

 o A module, specified explicitly as a server module URL, in this format:
 sync://<machine>:<port>/Modules/<category>/<module_name>;<selector>

 o A module, specified as a workspace module instance. This behaves
 identically to specifying the module explicitly as a server module
 URL. It does not tag the local versions in the workspace, nor
 does it create a module snapshot.

 Note: When used on workspace module instance, the -modified option
 is ignored, since the tagged object is the last server module
 version populated into the workspace, not the locally modified
 files.

 o Module members and module member folders can be tagged explicitly
 as part of a module snapshot. The module snapshot is a tagged
 configuration presented as a side branch that allows for
 hierarchical reference and tag updates within the snapshot, but
 does not allow content changes to the module members or structural
 changes to the module.

 Note: There is a limitation when -modulecontext is used to
 restrict the tag to members of a particular module and wildcarding
 is used to specify members to tag. If a module member within the
 directory cone matches the tag, but is not part of the specified
 module, and you cannot tag that member the operation fails. If
 you can tag the member, the operation succeeds, but the member is
 not part of the tagged module snapshot. It is excluded because it
 is not part of the specified module.

 o A branch object. The latest version on the specified branch is
 tagged unless you specify the -branch option, in which case a
 branch tag is applied to the branch object you specified -- the
 argument to the -branch option is ignored.

 Note: Tag supports both filter and exclude which can affect which
 objects available for tagging.

Using Tags on Module Versions (Module-based)

 To manage the development of modules, you can use tags to indicate
 that a module is ready to be released to team members. You use
 the -immutable option to apply a tag that cannot be moved. Your
 team can implement a methodology by which a release engineer applies
 an immutable, or fixed, tag to a design module when the module has
 reached a particular quality threshold. Your Synchronicity
 administrator can enforce the methodology by setting access controls
 to control the addition or removal of immutable tags. See Access
 Control Guide: "Access Controls for Tagging" for details. See also
 the -[im]mutable option description below to learn how to add, move,
 or delete immutable and mutable tags.

 You can also use a module snapshot to manage an immutable release

File-Based Design

308

 version. For more information on module snapshots, see the Module
 Snapshots section.

 When you tag a module hierarchy, using the -recursive tag, you are
 tagging the selected module and the referenced submodule in static
 mode using the specified module version on the server, preserving the
 exact versions of all the files you were working with, regardless of
 whether the module was specified as a server module URL, or a
 workspace module.

 Note: If a module contains hierarchical references to different
 versions of the same module, only the first version found is tagged
 and DesignSync will return an error explaining the situation. If
 multiple module arguments are specified, each hierarchy of all
 specified modules is expanded prior to processing, and any duplicate
 modules with different versions fail with an error.

Interaction with Legacy Modules (Legacy-based)

 Important: Legacy modules are modules generated prior to the 5.0
 DesignSync release. It is strongly suggested that you upgrade
 your legacy modules using the upgrade command. See the
 "Working with Legacy Modules" book in DesignSync Data Manager User's
 Guide for more information about legacy modules.

 Prior to 5.0, modules were managed with configurations. Modules no
 longer require these configurations. The following description of
 configurations helps illustrate the use of legacy modules only.

 If a recursive tag operation encounters a vault folder on the
 SyncServer that is configuration-mapped to another vault folder
 (using DesignSync REFERENCEs), the tag operation's behavior depends
 on how you populated the configuration-mapped folder to your work
 area:

 o If you populated with a static tag (for example, a version tag
 such as -version Gold), when you use 'tag -recursive', the tag
 operation creates a new configuration map on the SyncServer
 instead of tagging the objects in the vault folder. However,
 if the DesignSync REFERENCE is to a vault folder that has space
 characters in its name, its configuration map attempt will fail.

 o If you populated with a dynamic tag (for example, a branch tag
 such as -version Test1Branch:Latest), when you use 'tag
 -recursive', the tag operation recurses into the local folder
 and uses the objects in that folder to determine which
 objects to tag in the vault.

 For more information about populating a configuration-mapped vault
 folder, see the "Interaction with ProjectSync: Configuration
 Mapping" section of the populate command.

 If a recursive tag operation encounters a legacy module

ENOVIA Synchronicity Command Reference All -Vol2

309

 configuration, the operation does not create a new hierarchical
 reference. Instead, the tag operation recurses into the local folder
 and uses the objects in the local folder to determine which objects
 to tag in the corresponding vault folder.

Tagging Files-Based DesignSync Objects (File-based)

 Tags for DesignSync vaults use the object versions in your work area
 to determine the appropriate version or branch to tag in the
 vault. Once a tag operation has completed, the new tags are visible
 to other users of the vault. If the version you want to tag is not
 the version in your workspace, use the -version option to specify the
 correct version or branch to tag.

 If you want to tag a locally modified DesignSync object, you must
 specify the -modified option.

 Note: If you tag a directory that includes unmanaged objects, the
 tag operation does not return an error for the unmanaged objects, but
 rather fails silently.

Tag Name Syntax (File-based)

 The first argument to the 'tag' command is the tag name.
 Tag names:
 - Can contain letters, numbers, underscores (_), periods (.),
 hyphens (-), and forward slashes (/). All other characters,
 including whitespace, are prohibited.
 - Cannot start with a number and consist solely of numbers
 and embedded periods (for example, 5, 1.5, or 44.33.22),
 because there would be ambiguity between the tag name and
 version/branch dot-numeric identifiers.
 - Cannot be any of the following reserved, case-insensitive keywords:
 Latest, LatestFetchable, VaultLatest, VaultDate, After,
 VaultAfter, Current, Date, Auto, Base, Next, Prev, Previous,
 Noon, Orig, Original, Upcoming, SyncBud, SyncBranch, SyncDeleted.
 Also, avoid using tag names starting with 'Sync' (case-insensitive),
 because Synchronicity may define new keywords in the future
 using that naming convention.

 Notes:
 o The Connected Software and Connected Semiconductor apps do
 not support the use of forward slash (/) in Tag names.
 o DesignSync vaults and legacy modules have an additional
 restriction: tag or branch names cannot end in --R.

 The 'Latest' reserved keyword is of particular importance. 'Latest'
 is always associated with the most recent (highest numbered)
 version of a design object on a given branch. Although not actually a
 tag, you can generally specify 'Latest' as you would a user-defined
 version tag. Note that the default command behavior in many cases
 is to operate on the latest version on the current or specified

File-Based Design

310

 branch, so you typically do not need to specify 'Latest'. See the
 "selectors" help topic for more details on selectors, including the
 use of 'Latest'.

 The 'Trunk' tag, although not a reserved keyword, has special
 significance for DesignSync. By default, DesignSync tags branch 1
 as 'Trunk' when you initially check in a design object. Because
 'Trunk' is a tag (shorthand for 'Trunk:Latest'), you can move
 or delete it, although doing so is not recommended. Due to this
 special significance, the 'Trunk' tag is always expected to be a
 branch tag, and you cannot add this as a version tag. For example,
 you can specify 'tag -branch 1 Trunk myfile', but you cannot
 specify 'tag -version 1.1 Trunk myfile'.

Determining the Objects to be Tagged (File-based)

 Each object argument to the 'tag' command can be:

 o A local managed object (file or collection object). By default,
 the current version in your work area is tagged unless you
 specify the -branch option or -version option.

 Note: If you specify a collection member as the object to be
 operated on, DesignSync skips the object and warns that the
 object is not versionable. If DesignSync attempts to operate on
 a collection member specified implicitly (through the use of
 wildcards or a recursive operation), DesignSync silently skips
 the object. You can change this behavior by using the SyncAdmin
 "Map operations on collection members to owner" setting. If you
 select this setting and DesignSync attempts to operate on a
 collection member during a revision control operation,
 DesignSync determines the member's owner collection and operates
 on the collection as a whole.

 o A folder, which is useful only for recursive tagging. You can
 specify either a local folder (a folder in your work area) or a
 vault folder:

 - If you specify a local folder, the tag operation uses the
 objects in that local folder to determine which objects to tag
 in the corresponding vault folder. If the tag operation
 encounters a module, it does not tag the module. To tag a
 module, specify the server URL of the module. If the tag
 operation encounters a legacy module, tag handles
 the module as a customary DesignSync workspace, tagging the
 objects and continuing to traverse the hierarchy according
 to the -recursive option selected. Note, however, that
 the tag command will not stop at submodule boundaries.
 (The -nomodulerecursive option is no longer supported.)

 - If you specify a vault folder, the tag operation tags each
 object in the vault folder. Note: If you specify a vault
 folder for a recursive tag operation, the operation does not
 create new configuration maps for legacy DesignSync REFERENCEs.

ENOVIA Synchronicity Command Reference All -Vol2

311

 o A version object, although to identify a particular version,
 you typically specify a local object and the -version option.
 The -version option is ignored if you specify a version
 object.

 o A branch object. The latest version on the specified branch is
 tagged unless you specify the -branch option, in which case a
 branch tag is applied to the branch object you specified -- the
 argument to the -branch option is ignored.

 Note: Tag supports both filter and exclude which can affect which
 objects available for tagging.

Interaction with Objects from a Mirror (File-based)

 If a work area contains a link to a mirror, the tag operation uses
 the version that resides in the mirror directory to determine which
 object version to tag in the vault, even though the version in the
 mirror directory may not be the Latest version in the vault. For
 example, if your work area contains a link to version 1.3 of
 fileA in the mirror directory, a tag operation tags version 1.3 in the
 vault, even though fileA's 'Latest' version in the vault is 1.4.

 Notes:

 o The tag operation considers an object that is a link to a mirror
 as unmodified and does not fail for that object. The same is true
 for members of collections: if all members of a collection are
 symbolic links, then the collection is not considered by the tag
 operation as modified, even if a member symbolic link was
 deleted.

 o Synchronicity does not recommend tagging a work area that
 contains links to a mirror directory. A mirror directory is
 updated constantly; if you tag objects while the mirror's objects
 are changing, the result may be a configuration different from
 the one you intended.

SYNOPSIS

 tag [-branch <branch> | -branch auto(<branch>) | -[no]delete |
 -[no]replace | -version <selector>] [-[no]comment <text>]
 [-exclude <object>[,<object>,...]] [-filter <object>[,<object>]]
 [-[no]modified] [-modulecontext <context>] [-[im]mutable]
 [-[no]recursive] [-report <mode>] [-[no]selected]
 [-trigarg <arg>] [-warn <mode>] [-xtras <xtras>] [--] <tagname>
 [<argument> [<argument> ...]]

ARGUMENTS

File-Based Design

312

• Server Module (Module-based)
• Module Folder (Module-based)
• Module Member (Module-based)
• Workspace Module (Module-based)
• External Module (Module-based)
• DesignSync Object (File-based)
• DesignSync Folder (File-based)

 The tag command accepts a <tagname> followed by multiple arguments
 on which to apply the tag. See "Tag Name Syntax" above for the
 allowable values for the tagname.

 Specify one or more of the following arguments:

Server Module (Module-based)

 <server module> Tags the specified module in its vault.
 Specify the module's server URL in the format:

 sync://<machine>:<port>/Modules/<category>/
 <module_name>;<selector>

 If the specified server module is a legacy
 module, the operation does not create new
 configuration maps for DesignSync REFERENCES or
 follow hierarchical references.

Module Folder (Module-based)

 <module folder> When a module folder is selected, the operation
 creates or updates the appropriate snapshot
 branch. Module folders are only valid arguments
 when using module snapshots. You must specify the
 module folder as a workspace objects, for
 example:
 ./<folder_name>
 <Module_Instance_Name>/<folder_name>

Module Member (Module-based)

 <module member> When a module member is selected the operation
 creates or updates the appropriate snapshot
 branch. Module members are only a valid arguments
 when using module snapshots. You must specify the
 module member as a workspace objects, for
 example:
 ./[<folder_name>]/<module_member>

ENOVIA Synchronicity Command Reference All -Vol2

313

 <Module_Instance_Name>/[<folder_name>]/<module_member>

Workspace Module (Module-based)

 <workspace module> When a workspace module instance is specfied,
 the operation tags the specified module version
 in the vault.

 Note: When -recursive is used with a workspace
 module, the tag operation is still server-based
 and will follow the hierarchy for the selected
 module version on the server, not the one in the
 workspace, if they are different.

External Module (Module-based)

 <external module> Specifies the module instance of the external
 module in the workspace or the URL of the
 external module version to which you wish to
 create the connection. An external module is an
 object or set of objects managed by a different
 code management system but available for viewing
 and integration through DesignSync.
 Specify the external module in the workspace as a
 module instance name.
 Specify the external module Server URL as follows:
 sync[s]:///ExternalModule/<external-type>/<external-data>
 where ExternalModule is a constant that identifies
 this URL as an external module URL,
 <external-type> is the name of the external module
 procedure, and <external-data> contains the
 parameters and options to pass to the
 procedure. These parameters and options can be
 passed from the procedure to the external code
 management system or to DesignSync.

 Note: In order to specify an external module, you
 must have previously populated the module in the
 workspace. You may also specify the external
 module by href name only.

DesignSync Object (File-based)

 <DesignSync object> Tags the vault corresponding to the specified
 local managed object.

DesignSync Folder (File-based)

File-Based Design

314

 <DesignSync folder> Tags the vaults corresponding to the objects
 in the specified folder. If the folder contains
 a legacy module, tag handles the module as a
 customary DesignSync workspace, tagging the
 objects and continuing to traverse the hierarchy
 according to the -recursive option selected.
 Note, however, that the tag command will not stop
 at submodule boundaries. (The -nomodulerecursive
 option is no longer supported.)

OPTIONS

• -branch
• -[no]comment (Module-based)
• -[no]delete (Module-based)
• -[no]delete (File-based)
• -exclude (Module-based)
• -exclude (File-based)
• -filter (Module-based)
• -[no]modified (File-based)
• -modulecontext (Module-based)
• -[im]mutable (Module-based)
• -[no]recursive (Module-based)
• -[no]recursive (Legacy-based)
• -[no]recursive (File-based)
• -[no]replace (Module-based)
• -[no]replace (File-based)
• -report
• -[no]selected
• -trigarg
• -version (Module-based)
• -version (File-based)
• -warn
• -xtras (Module-based)
• --

-branch

 -branch <branch> Tags the branch specified by the branch or
 | -branch version tag, auto-branch selector, or branch
 auto(<branch>) numeric. This option overrides the object's
 persistent selector list. If <branch> resolves
 to a version, the branch of that version is
 tagged. The -version and -branch options are
 mutually exclusive. The -branch option is not
 applicable to operations on a module snapshot.

 For a tag using an auto-branch selector, for
 example Auto(Golden), if 'Golden' exists as a

ENOVIA Synchronicity Command Reference All -Vol2

315

 branch, the 'Golden:Latest' version is tagged. If
 no branch named 'Golden' exists for the object,
 the tag operation fails.

 Note: The -branch option accepts a single branch
 tag, a single version tag, a single auto-branch
 selector tag, or a branch numeric. It does not
 accept a selector or selector list.

-[no]comment (Module-based)

 -[no]comment Specifies whether to tag the specified
 "<text>" objects with a description attached. By
 default (-comment), tag requires a comment.

 Comments that exceed 1024 characters are
 truncated to the first 1024 characters. Enclose
 the description in double quotes if it contains
 whitespace. When you tag the objects,
 DesignSync appends tag comments, if there
 are any, to existing comments to create a
 "version log".

 The ampersand (&) and equal (=) characters are
 replaced by the underscore (_) character in
 revision control notes.

 Note: If -comment is specified with -replace, the
 comment replaces the existing tag comment. If
 -nocomment is specified, the existing tag comment
 is removed.

-[no]delete (Module-based)

 -[no]delete Indicates whether to delete the specified
 version or branch tag. When specified with module
 members in a module snapshots, it removes
 the members from the snapshot.

 Note: Because a tag can apply to either a
 branch or a version (not both), DesignSync
 determines which kind of tag is specified and
 deletes it. You can define access controls to
 selectively control the deletion of branch and
 version tags.

 The -delete option is mutually exclusive with
 the -branch, -replace, and -version options.
 You cannot specify a specific version or branch
 because only one version or branch of an object
 can have a given tag, so just specifying the
 object itself is sufficient.

File-Based Design

316

-[no]delete (File-based)

 -[no]delete Indicates whether to delete the specified
 version or branch tag.

 Note: Because a tag can apply to either a
 branch or a version (not both), DesignSync
 determines which kind of tag is specified and
 deletes it. You can define access controls to
 selectively control the deletion of branch and
 version tags.

 The -delete option is mutually exclusive with
 the -branch, -replace, and -version options.
 You cannot specify a specific version or branch
 because only one version or branch of an object
 can have a given tag, so just specifying the
 object itself is sufficient.

-exclude (Module-based)

 -exclude <objects> Specifies a comma-separated list of objects to
 exclude from the operation. Wildcards are allowed.

 Do not specify paths in your arguments to
 -exclude. Before operating on each object (such
 as during a recursive tag operation),
 DesignSync compares the object's leaf name
 (path stripped off) to the exclude list to see
 if there is a match. Because the object's path
 is removed, the object will not match any
 object in the exclude list specified with a
 path. For example, if you specify '-exclude
 bin/*.exe', you will not successfully exclude
 bin/foo.exe or any other *.exe file. You need
 to instead specify '-exclude *.exe', or
 '-exclude foo.exe' if you want to exclude only
 'foo.exe'. The result is that you cannot
 exclude a specific instance of an object -- you
 exclude all matching objects.

 In addition to objects you specify using the
 -exclude option, the "These objects are always
 excluded" field from the Tools->Options->
 General->Exclude Lists dialog box in the
 DesignSync graphical user interface lists
 objects that are always excluded from
 revision-control operations.

 Note: The -exclude option only applies to
 snapshot module tagging. It does not apply to

ENOVIA Synchronicity Command Reference All -Vol2

317

 module objects tagging because you tag entire
 modules. For module objects, tag silently ignores
 the -exclude option.

-exclude (File-based)

 -exclude <objects> Specifies a comma-separated list of objects to
 exclude from the operation. Wildcards are allowed.

 Do not specify paths in your arguments to
 -exclude. Before operating on each object (such
 as during a recursive tag operation),
 DesignSync compares the object's leaf name
 (path stripped off) to the exclude list to see
 if there is a match. Because the object's path
 is removed, the object will not match any
 object in the exclude list specified with a
 path. For example, if you specify '-exclude
 bin/*.exe', you will not successfully exclude
 bin/foo.exe or any other *.exe file. You need
 to instead specify '-exclude *.exe', or
 '-exclude foo.exe' if you want to exclude only
 'foo.exe'. The result is that you cannot
 exclude a specific instance of an object -- you
 exclude all matching objects.

 In addition to objects you specify using the
 -exclude option, the "These objects are always
 excluded" field from the Tools->Options->
 General->Exclude Lists dialog box in the
 DesignSync graphical user interface lists
 objects that are always excluded from
 revision-control operations.

-filter (Module-based)

 -filter <objects> Specify one or more extended glob-style
 expressions to identify an exact subset of
 objects on which to operate.

 The -filter option takes a list of expressions
 separated by commas, for example:
 -filter +top*/.../*.v,-.../a*

 Prepend a '-' character to a glob-style
 expression to identify objects to be excluded
 (the default). Prepend a '+' character to a
 glob-style expression to identify objects to
 be included. Note that if the list of
 expressions begins with an include character
 ('+'), the filter excludes all objects except
 those that match the include string.

File-Based Design

318

 Specify the paths in your glob-style
 expressions relative to the current directory,
 because DesignSync matches your expressions
 relative to that directory. For submodules
 followed through hrefs, DesignSync matches
 your expressions against the objects' natural
 paths, their full relative paths. For
 example, if a module Chip references a
 submodule, CPU, and CPU contains a file,
 '/libs/cpu/cdsinfo.tag', DesignSync matches
 against '/libs/cpu/cdsinfo.tag', rather than
 matching directly within the 'cpu' directory.

 Note: Workspace module members are only tagged
 individually when working with snapshot
 branches.

 If your design contains symbolic links that are
 under revision control, DesignSync matches
 against the source path of the link rather than
 the dereferenced path. For example, if a
 symbolic link exists from 'tmp.txt' to
 'tmp2.txt', DesignSync matches against
 'tmp.txt'. Similarly for hierarchical
 operations, DesignSync matches against the
 unresolved path. If, for example, a symbolic
 link exists from dirA to dirB, and dirB
 contains 'tmp.txt', DesignSync matches
 against 'dirA/tmp.txt'.

 The extended glob-style expressions you use to
 filter the objects are standard glob-style
 expressions, but they are extended so that you
 can use the "..." syntax to indicate that the
 expression matches any number of directory
 levels. For example, the expression,
 "top/.../lib/*.v" matches *.v files in a
 directory path that begin with "top", followed
 by zero or more levels, with one of those
 levels containing a lib directory. The command
 traverses the directory structure. If a
 directory name matches an exclude clause of
 the filter, then the entire directory and all
 its contents are filtered (the command stops
 descending at that point), otherwise the
 command continues traversing the directory
 structure searching for matching objects.

 The -filter option does not override the
 exclude list set using either the -exclude
 option or SyncAdmin's General=>Exclude Lists
 tab; the items in the exclude list are
 combined with the filter expression. For
 example, an exclude list of "*%,*.reg"
 combined with '-filter .../*.doc' is
 equivalent to: '-filter

ENOVIA Synchronicity Command Reference All -Vol2

319

 .../*.doc,.../*%,.../*.reg'.

-[no]modified (File-based)

 -[no]modified Indicates whether to tag the versions in the
 vault corresponding to the modified objects in
 your work area. If you specify -nomodified
 (default), when the tag operation encounters a
 locally modified object, the operation displays
 an error for the object and does not tag any
 version of that object in the vault.

 Note: This option affects modified objects only.
 If a work area object is unmodified, the
 tag operation tags the version in the vault
 that matches the one in your work area.

-modulecontext (Module-based)

 -modulecontext Specifies the workspace module context to include
 <context> in a module snapshot. This allows you to restrict
 the tag operation to a specified module.

 This option is only applicable to module
 snapshots.

-[im]mutable (Module-based)

 -[im]mutable Indicates whether a module's generated tag is
 to be immutable (fixed) or mutable. Use an
 immutable tag if the state of the module you
 are tagging is to be retained indefinitely. Use
 a mutable tag (default) if you want to reapply
 the tag to a newer snapshot of the module.

 The -mutable and -immutable tags apply only
 to modules. The options are ignored for other
 objects being tagged including module snapshots.

 By default, you cannot move or delete an
 immutable tag; however, you can override this
 behavior by applying the -immutable tag with
 the -replace or -delete option. You can move
 or delete a mutable tag using the -replace or
 -delete option without having to specify a
 mutability option. To convert an immutable
 tag to a mutable tag, first delete the
 immutable tag (using tag with the -immutable
 and -delete options). Then, create a mutable
 tag.

File-Based Design

320

 As a team leader, you might want to prevent
 members from moving or deleting immutable tags
 even if they apply the -immutable option. To
 do so, see ENOVIA Synchronicity Access Control
 Guide: "Access Controls for Tagging".

-[no]recursive (Module-based)

 -[no]recursive Specifies whether to perform this operation on
 the specified folder or module, or to traverse
 its subfolders and hierarchy. The -recursive
 option, when used on a module, traverses the
 hierarchical references in static mode on the
 server. For more information on tagging modules
 recursively, see Using Tags on Module
 Versions. The default value is -norecursive.

 If you specify a local folder (a folder in your
 work area), the tag operation uses the local
 folder hierarchy to determine which objects to
 tag in the vault.

 By default, the tag operation is nonrecursive;
 it tags the specified module, or members in the
 current directory only.

-[no]recursive (Legacy-based)

 -[no]recursive Specifies whether to perform this operation on
 the specified folder or to traverse its
 subfolders. The default value is -norecursive.

 If you invoke 'tag -recursive' and specify a
 local folder that is the base directory of a
 legacy module configuration, the command tags all
 objects in the folder and its subfolders. Then
 the command follows the configuration's
 hierarchical references (hrefs) and tags all
 objects in referenced submodule
 configurations. The -nomodulerecursive option is
 no longer supported; thus, it is not possible to
 prevent tag from following legacy module hrefs.

 If you specify a vault folder for a recursive tag
 operation, the operation does not follow the
 legacy module hrefs.

 If a legacy module configuration has hrefs to
 submodules whose base directories reside outside
 the directory hierarchy where the tag operation
 started, objects in those submodules are not

ENOVIA Synchronicity Command Reference All -Vol2

321

 tagged.

 The recursive tag operation handles a
 configuration-mapped vault folder on the
 SyncServer based on the method you used to
 populate the DesignSync configuration to your
 work area. See "Interaction with Legacy Modules"
 for information.

 By default, the tag operation is nonrecursive;
 it tags objects in the specified folder only.

-[no]recursive (File-based)

 -[no]recursive Specifies whether to perform this operation on
 the specified folder or to traverse its
 subfolders. The default value is -norecursive.

 If you specify a local folder (a folder in your
 work area), the tag operation uses the local
 folder hierarchy to determine which objects to
 tag in the vault. If you specify a vault
 folder, the operation traverses the vault
 folder hierarchy, tagging objects in that
 hierarchy.

 When 'tag -recursive' is invoked, the DesignSync
 client scans all of the subdirectories,
 determining the file versions to tag. Tag requests
 are then sent to the server, with up to 1000
 objects included in each request. On the server,
 each file version in the request is processed.
 For each file version, access control is checked,
 and the file version then tagged (if allowed by
 access controls). The results from processing
 the set of up to 1000 objects are then returned
 to the DesignSync client. The next set of up to
 1000 objects are then processed by the server,
 and so on.

 By default, the tag operation is nonrecursive;
 it tags objects in the specified folder only.

-[no]replace (Module-based)

 -[no]replace Indicates whether to move the tag to the target
 version or branch, even if the specified tag is
 already in use on another version or branch. By
 default (-noreplace), a tag operation fails if
 the tag is already in use, because a tag can be
 attached to only one version or branch of an
 object at a time. Note that you can move a tag

File-Based Design

322

 from a branch to a version or a version to a
 branch. DesignSync provides a warning message
 when you do so.

 Notes:
 o When -replace is used on a module snapshot, it
 replaces the tag on the specified module
 members in the snapshot.

 o If you specify a comment, the tag operation
 replaces the comment with the new comment. If
 you do not specify a comment, the operation
 removes the previous comment associated with
 tag.

-[no]replace (File-based)

 -[no]replace Indicates whether to move the tag to the target
 version or branch, even if the specified tag is
 already in use on another version or branch. By
 default (-noreplace), a tag operation fails if
 the tag is already in use, because a tag can be
 attached to only one version or branch of an
 object at a time. Note that you can move a tag
 from a branch to a version or a version to a
 branch. DesignSync provides a warning message
 when you do so.

 Note: If you specify a comment, the tag operation
 replaces the comment with the new comment.
 If you do not specify a comment, the
 operation removes the previous comment
 associated with tag.

-report

 -report <mode> Specifies the contents of a report on the tag
 operation.

 Available modes are:
 o brief - This mode lists:
 - Objects that were not tagged.
 - Objects skipped by the tag operation
 because it created a new configuration
 map.
 - A count of successes and failures for the
 tag operation. Note: This count is output
 only if you are using the stcl/stclc
 command shell.

 If the -report option is not specified, the
 default mode is '-report brief'.

ENOVIA Synchronicity Command Reference All -Vol2

323

 o normal - This mode provides the same output
 as the brief mode but in addition lists
 objects that were successfully tagged. (Default)

 o verbose - Displays the same information as
 'normal' and a skip notice for any objects
 excluded by the -filter or -exclude options.

-[no]selected

 -[no]selected Indicates if the command should use the select
 list (see the 'select' command) or only the
 arguments specified on the command line.

 -noselected indicates that the command should
 not use the select list. (Default) If
 -noselected is specified, but there are no
 arguments selected, the tag command fails,
 even if there are valid arguments in the select
 list.

 -selected indicates that the command should use
 the select list and any objects specified on the
 command line. If -selected is not specified,
 and there are no objects specified on the
 command line, the tag command uses the
 select list for the command.

-trigarg

 -trigarg <arg> Specifies an argument to be passed from the
 command line to the triggers set on the tag
 operation. If the argument contains
 whitespace, enclose the argument within double
 quotation marks ("") if using the dss command
 shell or braces ({}) if using the stcl command
 shell.

-version (Module-based)

 -version <selector> Specifies the version to tag. If the selector
 resolves to a branch, the Latest version on
 that branch is tagged. By default (-version not
 specified), the current version in your work
 area is tagged. The -version and -branch
 options are mutually exclusive. The -version
 option is not applicable to operations on a
 module snapshot.

File-Based Design

324

 If you specify a date selector (Latest or
 Date(<date>)), DesignSync augments the
 selector with the persistent selector list
 to determine the version to be tagged. For
 example, if the persistent selector list
 is 'Gold:,Trunk' and you specify
 'tag -version Latest <tag>', then the
 selector list used for the tagging
 operation is 'Gold:Latest,Trunk:Latest'.

 Note:

 To use -version to specify a branch, specify
 both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

-version (File-based)

 -version <selector> Specifies the version to tag. If the selector
 resolves to a branch, the Latest version on
 that branch is tagged. By default (-version not
 specified), the current version in your work
 area is tagged. The -version and -branch
 options are mutually exclusive.

 The -version option checks for retired files (as
 of version 4.2 sp1). If the selector resolves to a
 branch that is retired, it skips tagging the retired
 files.

 Note: The retired state only affects adding or
 replacing a version tag when -version is specified.
 It does not affect deleting a version tag.

 If you specify a date selector (Latest or
 Date(<date>)), DesignSync augments the
 selector with the persistent selector list
 to determine the version to be tagged. For
 example, if the persistent selector list
 is 'Gold:,Trunk' and you specify
 'tag -version Latest <tag>', then the
 selector list used for the tagging
 operation is 'Gold:Latest,Trunk:Latest'.

 Note:

 To use -version to specify a branch, specify
 both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,

ENOVIA Synchronicity Command Reference All -Vol2

325

 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

-warn

 -warn <mode> Provides additional checks depending on the
 <mode>. The -warn option supports the
 'exists' mode, which makes sure the named
 object still exists before allowing the tag.
 This is rarely needed and only applicable in
 those cases where someone else has removed the
 vault file since you checked it out. This
 could happen if:

 o A UNIX 'rm' command was used. (Note: 'rm'
 is not recommended; use 'rmvault' instead.)
 o The 'rmvault -nokeepvid' command was used,
 then the object was checked in again with
 'ci -new'. (Note: The '-nokeepvid' option
 is not recommended; use the default option,
 '-keepvid'.

-xtras (Module-based)

 -xtras <list> List of command line options to pass to the
 external module change management system. Any
 options specified with the -xtras option are
 sent verbatim, with no processing by the
 populate command, to the Tcl script that defines
 the external module change management
 system.

--

 -- Indicates that the command should stop
 looking for command options. Use this option
 when an argument to the command begins with a
 hyphen (-).

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

File-Based Design

326

 In stcl/stclc mode, two lists are returned. The first list is a
 count of objects successfully processed; the second list is a count
 of objects that failed to be processed. The first list is non-empty
 if at least one object was successfully processed. The second
 list is non-empty if at least one object failed.

 Notes:
 - Scripts should only test for non-empty lists to
 determine success or failure. The actual content of a non-empty
 list currently takes the form "Objects succeeded (n)" and
 "Objects failed (n)", where 'n' is the number of objects that
 succeeded or failed. However, these return values are subject to
 change in a future release.
 - If all objects fail, an exception is thrown.

SEE ALSO

 ci, co, command defaults, mkbranch, populate, select, setselector,
 url tags, url resolvetag, vhistory

EXAMPLES

• Example of Tagging a Module with an Immutable Tag (Module-based)
• Example of Tagging All Files Matching a Wildcarded String (File-based)
• Example of Tagging a Specified Version of Files (File-based)
• Example Showing Tagging Modified File in the Workspace (File-based)
• Example of Tagging Locked Files (File-based)
• Example of Using Exclude to Restrict Which Files are Tagged (File-based)
• Example of Tagging a Branch (File-based)
• Example of Deleting a Tag (File-based)
• Example of Adding a Tag to a Branch or Version (File-based)
• Examples of Tagging an Object on the Server (File-based)

Example of Tagging a Module with an Immutable Tag (Module-based)

 This example tags the Latest version of a module with an -immutable
 (fixed) tag. To tag modules, you specify the server URL of the
 module:

 stcl> tag -immutable GOLD sync://guaraldi:30089/Modules/Chip

Example of Tagging All Files Matching a Wildcarded String (File-based)

 This example adds the REL3_STABLE version tag to all managed '.v'
 files in the current work area except template.v. Because -version
 and -branch are not specified, the versions corresponding to the
 current (last-fetched) objects in the work area are tagged.

ENOVIA Synchronicity Command Reference All -Vol2

327

 stcl> tag -exclude template.v REL3_STABLE *.v

Example of Tagging a Specified Version of Files (File-based)

 This example tags the 'Latest' versions on the current branch of all
 '.v' and '.h' files in the current work area with the 'stable' tag,
 moving the tag from older versions if necessary.

 stcl> tag -version Latest -replace stable *.v *.h

Example Showing Tagging Modified File in the Workspace (File-based)

 This example shows that you cannot tag a file version you have
 modified in your work area. (To tag the modified file version, you
 must first check it in and then use 'tag' to tag the new version in
 the vault.) To tag the version in the vault instead of the modified
 version in your work area, you can use the -modified option:

 For this example, assume that the file alu.v has been modified.

 dss> tag test alu.v

 Beginning Tag operation...

 Tagging: sync://alusrvr.ABCo.com:30090/Projects/ALU/alu.v;1.1 :
 Failed: Modified object exists in the workspace.
 To tag the modified version, check it in and then tag it.
 To tag the version in the vault, use tag -modified.

 Tag operation finished.

 {} {Objects failed (1)}

 dss> tag test alu.v -modified

 Beginning Tag operation...
 Tagging: alu.v : Added tag 'test' to version '1.1'
 Tag operation finished.

 {Objects succeeded (1)} {}

Example of Tagging Locked Files (File-based)

 This example shows that tagging a locked file tags the last-fetched
 version (in this example, version 1.1). You cannot tag the upcoming
 version (1.2).

 dss> co -lock -nocom test.asm
 Checking out: test.asm : Success - Checked Out version: 1.1 -> 1.2

File-Based Design

328

 dss> tag Alpha test.asm

 Beginning Tag operation...
 Tagging: test.asm : Added tag 'Alpha' to version '1.1'
 Tag operation finished.

 {Objects succeeded (1)} {}

 dss> tag -version 1.2 -replace Alpha test.asm
 Tagging: sync:///test.asm;1.2:Failed:som:
 Error 88: Tag:Version doesn't exist
 Tag operation finished.

 {} {Objects failed (1)}

Example of Using Exclude to Restrict Which Files are Tagged (File-based)

 o This example shows the exclude syntax for vault objects.

 stcl> ls [url vault .]

 Directory of: sync://srv2.ABCo.com:2647/Projects/Sportster/code

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 12/28/2005 11:00 samp.asm;
 12/28/2005 11:00 samp.lst;
 12/28/2005 11:00 samp.mem;
 12/28/2005 11:00 samp.s19;
 12/28/2005 11:00 sample1.asm;
 12/28/2005 11:00 test.asm;
 12/28/2005 11:00 test.mem;
 stcl> tag -exclude {samp.asm;1,test.mem;1} -rec -version Latest \
 stcl> testtag [url vault .]

 Beginning Tag operation...

 samp.asm;1 : Excluded from operation by filter
 Tagging:
 sync://srv2.ABCo.com:2647/Projects/Sportster/code/sample1.asm;1
 : Added tag 'testtag' to version '1.2'
 test.mem;1 : Excluded from operation by filter
 Tagging:
 sync://srv2.ABCo.com:2647/Projects/Sportster/code/samp.s19;1
 : Added tag 'testtag' to version '1.1'
 Tagging:
 sync://srv2.ABCo.com:2647/Projects/Sportster/code/samp.mem;1
 : Added tag 'testtag' to version '1.2'
 Tagging:
 sync://srv2.ABCo.com:2647/Projects/Sportster/code/test.asm;1
 : Added tag 'testtag' to version '1.2'
 Tagging:
 sync://srv2.ABCo.com:2647/Projects/Sportster/code/samp.lst;1
 : Added tag 'testtag' to version '1.1'

ENOVIA Synchronicity Command Reference All -Vol2

329

 Tag operation finished.

 {Objects succeeded (5)} {}
 stcl>

Example of Tagging a Branch (File-based)

 This example adds the branch tag 'Rel2.1' to the Trunk branch of all
 files in a work area (a recursive tag):

 dss> tag -recursive -branch Trunk Rel2.1 .

Example of Deleting a Tag (File-based)

 This example deletes a version tag 'gold' and a branch tag
 'Rel2.1'. Note that the syntax is the same; DesignSync determines if
 the specified tag is a branch tag or a version tag.

 dss> tag -delete gold samp.lst
 Deleting Tag: samp.lst : Deleted version tag 'gold'
 dss> tag -delete Rel2.1 samp.lst
 Deleting Tag: samp.lst : Deleted branch tag 'Rel2.1'

Example of Adding a Tag to a Branch or Version (File-based)

 o This example adds a 'Gold' branch tag to the branch tagged
 Silver, or if no such branch exists, the branch associated with
 the version tagged Silver:

 dss> tag -branch Silver Gold test.asm

Examples of Tagging an Object on the Server (File-based)

 The following two examples add a tag 'beta' to the 1.2 version of
 'top.v'. If 'top.v' is in the local work area, you would specify
 'top.v' as the argument with a '-version 1.2' option. But in this
 case, the version object itself is specified, so 'top.v' need not be
 in your work area. The first example uses version-extended naming.
 The second example uses the -version option.

 dss> tag beta sync://apollo:2647/Projects/Sportster/code/top.v;1.2

 dss> tag beta -version 1.2 \
 sync://apollo:2647/Projects/Sportster/code/top.v

Advanced Revision Control

File-Based Design

330

import

import Command

NAME

 import - Fetches an object, leaving it unmanaged

DESCRIPTION

 This command fetches local copies of the specified objects from the
 specified vault to your current workspace. Unlike fetching with the
 "co" command, imported files do not retain their association with the
 vault (are no longer managed).

 The "import" command can be used to switch an object's vault
 association. Perform the import on the object and then run the ci
 command on the new, unmanaged, object to check it into the new
 vault.

 Note: The selector list can be used to select what versions to fetch.
 If the select list is used, it is inherited from parent folder (the
 folder into which the objects are imported). If the selector is not
 appropriate for the vault from which you are importing use the
 -version option to specify the version. For DesignSync objects, the
 selector list will pick up tagged versions or version numbers. For
 modules, the selector list can only specify version numbers.

SYNOPSIS

 import [-force] [-version <selector>] [--]
 <argument> <object> [<object>...]

ARGUMENTS

• Module URL (Module-based)
• Vault URL (File-based)

Module URL (Module-based)

 <module URL> Specifies the DesignSync URL of the module for the
 object being imported. Specify the URL (for
 example:
 sync://srvr2.ABCo.com/Modules/Chip/chip.c;)
 when the object being imported is a member of a
 module.

ENOVIA Synchronicity Command Reference All -Vol2

331

Vault URL (File-based)

 <vault URL> Specifies the DesignSync vault URL for the object
 being imported. Specify the vault (for example:
 sync://system:30138/Projects/Sportster/test/runit;)
 when the object being imported is not a member of
 a module.

OBJECTS

• Module Member (Module-based)
• DesignSync File Object (File-based)

Module Member (Module-based)

 <module member> Specifies the module member to import. You cannot
 import folders.

DesignSync File Object (File-based)

 <DesignSync object> Specifies the file object to import. You cannot
 import folders.

OPTIONS

• -force
• -version (Module-based)
• -version (Legacy-based)
• -version (File-based)
• --

-force

 -force Overwrites a local object if the object has the
 same name as an object being imported. When
 -force is not specified, the default behavior is
 to not overwrite local objects and return an
 error message explaining why the objects were not
 imported.

-version (Module-based)

File-Based Design

332

 -version <selector> Specifies the version of the objects being
 imported.

 If no version is specified, the default version
 imported is the latest object version in the
 module version specified by the module URL
 argument.

 Note: To use -version to specify a branch,
 specify both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

-version (Legacy-based)

 -version <selector> Specifies the version of the objects or
 individual member vault being imported.

 If no version is specified, DesignSync inherits
 the selector of the parent folder (the folder
 into which the objects are imported).

 Note: To use -version to specify a branch,
 specify both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector

-version (File-based)

 -version <selector> Specifies the version of the objects or
 individual member vault being imported.

 If no version is specified, DesignSync inherits
 the selector of the parent folder (the folder
 into which the objects are imported).

 Note: To use -version to specify a branch,
 specify both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

ENOVIA Synchronicity Command Reference All -Vol2

333

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 none

SEE ALSO

 co, populate, selectors

EXAMPLES

• Example of Importing a Specific Module Version (Module-based)
• Example of Importing a Module Member (Module-based)
• Example of Moving Files to a New Vault Associated with a Workspace (File-based)

Example of Importing a Specific Module Version (Module-based)

 This example fetches a specific version of a module object by its
 natural path.

 dss> import sync://cassini:2647/Modules/Chip;1.5 /libs/df2test/cdsinfo.tag

Example of Importing a Module Member (Module-based)

 This example shows fetching a specific module member vault version
 using the -version option to specify the version number.

 dss> import -version 1.3 sync://h:p/Modules/Chip;1.5\
 /libs/df2test/cdsinfo.tag

Example of Moving Files to a New Vault Associated with a Workspace (File-based)

 This example performs a "switch vault" operation, where files from
 one vault are imported into a work area, then checked into another
 vault (the vault associated with the work area).

 dss> scd /users/jane/myworkdir

File-Based Design

334

 dss> import -version Trunk sync://cassini:2647/Projects/Saturn/Rocket \
 rover.doc lander.doc
 rover.doc: Success Imported
 lander.doc: Success Imported

 dss> ls rover.doc lander.doc
 Time Stamp Status Version Locked By Name
 ---------- ------ ------- --------- ----
 05/04/2000 09:24 - Unmanaged rover.doc
 05/04/2000 09:24 - Unmanaged lander.doc

 Jane can now check these files into the vault associated with her
 work area:

 dss> ci -new -nocom -keep rover.doc lander.doc

mkbranch

mkbranch Command

NAME

 mkbranch - Creates a new branch

DESCRIPTION

• Branching Modules (Module-based)
• Branching File-based Objects (File-based)

 This command creates a new branch for the specified objects. The new
 branch is tagged with the specified branch name (sometimes called a
 branch name "tag". For more information, see the tag help
 topic). The branch-point version -- the version off which the branch
 is created -- depends on the object type:

 The 'mkbranch' command does not set the local workspace to use the
 new branch (your local metadata is not modified). If you want future
 operations to take place on the new branch, change your persistent
 selector to point to the appropriate branch. For example:
 dss> mkbranch Dev top.v
 dss> setselector Dev:Latest top.v

 In addition to the manual creation of branches with 'mkbranch',
 which supports the "project branching" design methodology,
 DesignSync supports the "auto-branching" design methodology.
 See the "selectors" help topic for more information.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

ENOVIA Synchronicity Command Reference All -Vol2

335

Branching Modules (Module-based)

 For a module, the branch point is the module version specified in the
 command.
 Notes:
 * The branch point version is created as the first module version
 on the new branch.

 * To verify the mkbranch on the module, you can use the contents
 commands to see the module manifest. If you use the vhistory
 command with the -report +Q option, you see the module objects
 in an added state, but you do not see the hierarchical
 references.

Branching File-based Objects (File-based)

 The behavior of the file-based object branch depends whether you
 branch from the workspace object version or the server object
 version.

 o For a local object (file or collection object, or local folder
 if you specify -recursive), the branch point is the
 last-retrieved (current) version in your work area. If
 DesignSync cannot determine the current version (for example,
 the object is not under revision control), the mkbranch command
 fails. If the local object is locked (for example, you have
 version 1.4 -> 1.5), the branch is still created off the
 current version (1.4), because the upcoming version (1.5) does
 not yet exist in the vault. You cannot specify the -version
 option with local objects.

 o For a vault, or vault folder if you specify -recursive, you
 must specify the -version option and provide a selector list
 (typically a version tag or version number) to identify the
 branch-point version.

SYNOPSIS

 mkbranch [-[no]comment <text>] [-exclude <string>,[<string>...]]
 [-[no]recursive] [-[no]selected] [-version <selector>] [--]
 <branchname> [<argument> [<argument> ...]]

ARGUMENTS

• Branch Name (Module-based)
• Branch Name (Legacy-based)
• Branch Name (File-based)

File-Based Design

336

• Server Module Version (Module-based)
• DesignSync Object (File-based)

Branch Name (Module-based)

 <branchname> Specifies the name to use for the new branch.

 Note: DesignSync vaults and legacy module branch
 names cannot end in --R.

Branch Name (Legacy-based)

 <branchname> Specifies the name to use for the new branch.

 Note: Branch names cannot end in --R.

Branch Name (File-based)

 <branchname> Specifies the name to use for the new branch.

 Note: Branch names cannot end in --R.

Server Module Version (Module-based)

 <Server Module Specifies the server module version to branch.
 version> To reduce the possibility of inadvertently
 branching the wrong module version, you must
 specify the version number either with this
 argument or by using the -version option.
 Note: You always branch on the server, not in
 the workspace

DesignSync Object (File-based)

 <DesignSync object> Specifies the DesignSync object or folder to
 branch.

OPTIONS

• -[no]comment (Module-based)
• -exclude
• -[no]recursive (File / Legacy-based)
• -[no]selected
• -version

ENOVIA Synchronicity Command Reference All -Vol2

337

• --

-[no]comment (Module-based)

 -[no]comment <text> Specifies the comment to include with the newly
 created module branch.

 -nocomment stores no comment to explain the
 purpose of the branch.(Default)
 -comment <text> stores the value of <string>
 as the branch comment. To specify a multi-word
 comment, enclose the text string in quotation
 marks (""). The comment is attached to the
 branch itself and to the branch tag.

 Note: If there is a minimum comment length
 defined with SyncAdmin for the client, you must
 specify a comment for mkbranch. This option
 does not check the Access Control comment length
 for the checkin command.

-exclude

 -exclude <objects> Specifies a comma-separated list of objects
 to be excluded from the operation. (Legacy
 modules only) Wildcards are allowed.

 Do not specify paths in your arguments to
 -exclude. Before operating on each object
 (such as during a recursive 'mkbranch'),
 DesignSync compares the object's leaf name
 (path stripped off) to the exclude list to see
 if there is a match. Because the object's path
 is removed, the object will not match any
 object in the exclude list specified with a
 path. For example, if you specify '-exclude
 bin/*.exe', you will not successfully exclude
 bin/foo.exe or any other *.exe file. You need
 to instead specify '-exclude *.exe', or
 '-exclude foo.exe' if you want to exclude only
 'foo.exe'. The result is that you
 cannot exclude a specific instance of an
 object -- you exclude all matching objects.

 In addition to objects you specify using the
 -exclude option, the "These objects are always
 excluded" field from the Tools->Options->
 General->Exclude Lists dialog box in
 DesignSync lists objects that are always
 excluded from revision-control operations.

-[no]recursive (File / Legacy-based)

File-Based Design

338

 -[no]recursive Determines whether to branch the specified
 object or any subfolders.

 -norecursive branches only the specified
 object.(Default)

 -recursive branches the specified object and any
 subfolders of the object. If the command
 argument is a vault folder, DesignSync operates
 on all vaults in the folder and its
 subfolders. If the command argument is a local
 folder, DesignSync operates on all files and
 collections objects in the folder and its
 subfolders.

 If a recursive 'mkbranch' operation encounters
 a vault folder on the SyncServer that is
 configuration-mapped to another vault folder
 (using DesignSync REFERENCEs), the 'mkbranch'
 operation creates a new configuration map on
 the SyncServer instead of branching the objects
 in the vault folder.

 Note: You can recursively branch vaults
 within legacy module folders.

-[no]selected

 -[no]selected Indicates if the command should use the select
 list (see the 'select' command) or only the
 arguments specified on the command line.

 -noselected indicates that the command should
 not use the select list. (Default) If
 -noselected is specified, but there are no
 arguments selected, the mkbranch command fails,
 even if there are valid arguments in the select
 list.

 -selected indicates that the command should use
 the select list and any objects specified on the
 command line. If -selected is not specified,
 and there are no objects specified on the
 command line, the mkbranch command uses the
 select list for the command.

-version

 -version <selector> Specifies the version off of which the branch
 is created. This option is required unless the
 argument contains a version specifier.

ENOVIA Synchronicity Command Reference All -Vol2

339

 Notes:
 o You can specify a dynamic selector as the
 argument to the -version option, for example,
 '-version Rel2:Latest'; however, doing so is
 not recommended because you are attempting
 to freeze dynamically changing objects.
 Instead, specify a fixed version selector,
 for example, '-version rel2_revision1'.
 o If you do choose to specify a branch using
 the -version option, specify both the branch
 and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.

 Notes:
 - Scripts should only test for non-empty lists to
 determine success or failure. The actual content of a non-empty
 list currently takes the form "Objects succeeded (n)" and
 "Objects failed (n)", where "n" is the number of objects that
 succeeded or failed. However, these return values are subject to
 change in a future release.
 - If all objects fail, an exception occurs (the return value is
 thrown, not returned).

SEE ALSO

 selectors, setselector, select, tag, command defaults

EXAMPLES

File-Based Design

340

• Example Showing Module Branching (Module-based)
• Example of Branching Two Files From Your Workspace (File-based)
• Example Showing Branching The File Objects in the Workspace Recursively (File-

based)
• Example Showing Branching the Server Version of a File (File-based)
• Example Branching the Entire Project from the Server (File-based)

 Note: The following examples demonstrate the syntax and behavior of
 mkbranch, but do not necessarily show a recommended use model.

Example Showing Module Branching (Module-based)

 In the following example, a new "Dev" branch is created off the
 current version of the SPC module. Note that the persistent
 selector has not changed after you run the mkbranch command. In
 order to work on the new branch, you should manually change the
 persistent select list.

 dss> mkbranch Dev sync://srvr2.ABCo.com/Modules/SPC;1.4

 Beginning MkBranch operation...

 Branching: sync://srvr2.ABCo.com:2647/Modules/SPC;1.4 : Success -
 Created branch 1.4.1, tagged Dev
 MkBranch operation finished.

 {Objects succeeded (1)} {}

Example of Branching Two Files From Your Workspace (File-based)

 In the following example, a new "Dev" branch is created off the
 current versions of two local files. Note that the persistent
 selector list before and after the operation is unchanged; you must
 manually change the persistent selector list if you want to work on
 the new branch. Note: This example demonstrates the syntax and
 behavior of 'mkbranch', but does not show a recommended use
 model. When branching individual objects (as opposed to entire
 projects), use the auto-branching option on checkin or checkout.

 dss> ls -report PR samp.asm test.mem
 Selector Version Name
 -------- ------- ----
 Trunk 1.3 samp.asm
 Rel2.1 1.2.1.2 test.mem

 dss> mkbranch Dev samp.asm test.mem

 Beginning MkBranch operation...

 Branching: samp.asm : Success - Created branch 1.3.1, tagged Dev

ENOVIA Synchronicity Command Reference All -Vol2

341

 Branching: test.mem : Success - Created branch 1.2.1.2.1, tagged Dev

 MkBranch operation finished.

 dss> ls -report PR samp.asm test.mem <== Selector is unchanged
 Selector Version Name
 -------- ------- ----
 Trunk 1.3 samp.asm
 Rel2.1 1.2.1.2 test.mem

 dss> setselector Dev samp.asm test.mem <== Set the selector to
 <== work on the new branch

 Beginning Set Selector operation...

 Finished Set Selector operation.

 dss> ls -report PR samp.asm test.mem
 Selector Version Name
 -------- ------- ----
 Dev 1.3 samp.asm
 Dev 1.2.1.2 test.mem

Example Showing Branching The File Objects in the Workspace Recursively (File-based)

 The following example branches an entire work area. The
 -recursive option traverses the hierarchy and creates a branch
 called "Rel2.1" off the current version of every object:

 dss> mkbranch -recursive Rel2.1 .

Example Showing Branching the Server Version of a File (File-based)

 The following example makes a branch called "main" off version
 1.1 on a file "test.mem". Because the vault for "test.mem" is
 specified, the -version option is required to identify the
 branch-point version. Note that there must have already been two
 branches off version 1.1, because the new branch is 1.1.3.

 stcl> mkbranch main -version 1.1 [url vault test.mem]

 Beginning MkBranch operation...

 Branching: sync://myhost:2647/Projects/Sportster/code/test.mem; :
 Success - Created branch 1.1.3, tagged main

 MkBranch operation finished.

 {Objects succeeded (1)} {}

 In the previous example, if version 1.1 of "test.mem" had a version
 tag called "Alpha", you could specify that tag instead of the

File-Based Design

342

 version number:

 stcl> mkbranch main -version Alpha [url vault test.mem]

Example Branching the Entire Project from the Server (File-based)

 The following example is typical of a release engineer creating a
 new project branch off an existing configuration, for example
 to create a patch release:
 stcl> mkbranch -version Rel3.1 -rec Patch1 sync://host:2647/Projects/Asic

 The following example also shows a release engineer branching an
 entire project. In this case, the engineer has a local work area
 populated with the latest versions of all files. He places
 version tags on these latest versions to identify the branch points
 for the new branch. He then branches from those branch-point versions.

 stcl> populate -recursive
 stcl> tag -recursive bp-Rel30 .
 stcl> mkbranch -recursive -version pb-Rel30 [url vault .] Rel30

mkfolder

mkfolder Command

NAME

 mkfolder - Creates a folder (directory)

DESCRIPTION

 This command creates one or more folders (directories), either on
 the local file system or on the server.

 o You can specify the folder as a relative path, an absolute path,
 a "file:" URL, or a "sync:" URL.
 o The permissions of the new folder are inherited from the parent
 folder.
 o When creating local folders (not specifying the "sync:" protocol),
 you must have write privileges for the parent directory.
 o When specifying a folder name that contains whitespace, use
 double quotes.
 o DesignSync creates whatever folders are needed to create
 the specified path (similar to UNIX's 'mkdir -p' command).
 o The ability to create server-side folders ("sync:" protocol) can
 be accessed controlled using the MakeFolder action.
 o When creating folders, you must use a legal name. If characters
 are restricted, you cannot use them in folder names. For more
 information on restricted characters, see Exclude Lists in the

ENOVIA Synchronicity Command Reference All -Vol2

343

 DesignSync Data Manager Administrator's Guide.
 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mkfolder [--] <foldername> [<foldername>...]

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

SEE ALSO

 mvfolder, rmfolder

EXAMPLES

 The following examples show variations of creating folders:
 dss> mkfolder asic # relative path
 dss> mkfolder ../asic # relative path
 dss> mkfolder /home/goss/Projects/asic # absolute path
 dss> mkfolder file:////home/goss/Projects/asic # file: protocol
 dss> mkfolder sync://holzt:2647/Projects/asic # sync: protocol
 dss> mkfolder asic1 ../asic2 # create two folders
 dss> mkfolder "asic 1" # foldername has whitespace
 dss> mkfolder asic/decoder/synth # creates asic and decoder
 # folders if necessary

mvfile

mvfile Command

NAME

 mvfile - Moves the specified object

File-Based Design

344

DESCRIPTION

 This command moves or renames the specified object. The object can be
 a file or a Cadence cell view (collection object).

 Notes: To move a Cadence collection, use mvfile with the
 -noallconfigs option. No other collection types can be
 moved with mvfile.

 With the mvfile command, you can specify a relative or absolute
 path to the object. You can move unmanaged and managed objects. To
 move a folder, use the mvfolder command.

 For unmanaged objects, the mvfile operation is equivalent to an
 operating-system move operation (for example, Unix 'mv').

 For managed objects, the mvfile operation when not using -allconfigs:
 1. Moves the object locally, if run from the workspace.
 2. Retires the current branch of the object's vault.
 3. Creates a new vault for the new object name. The initial
 version in the new vault is created from the current object
 in your work area (as though you executed 'ci -new' on the
 object after it was moved locally). At this time, a default
 check-in comment is added. The comment includes the user,
 time of check-in, and version URL from where the new vault
 originated.
 By leaving the existing vault intact, configurations containing the
 object prior to being moved are preserved. The new vault contains
 only version 1.1 of the moved object; the new vault does not
 contain the version history of the moved object. The branch tags
 of the current branch, if any and the selector at the time of the
 move are retained for the moved object. The fetch state of the
 moved object is the same as the original object; for example,
 if you had a link to a cached file prior to the move, you
 have a link to a cached file after the move.

 For managed objects, the mvfile operation with -allconfigs option:
 1. Moves the object locally, if done from the workspace.
 2. Creates a new vault and then moves all configurations of
 the original object to the new object.
 3. Removes the old vault.
 The new vault contains all versions that were there in the
 old vault. So, if the old vault had file X with version Y,
 the new vault also has file X with version Y. It also contains
 the version history of the moved object. In addition, since
 the old vault is removed, all existing configurations will
 contain the new vault name and not the original vault name.

 Note: The mvfile command with or without the -allconfigs option
 does not update the "Objects" list on RC notes.

 When using the -noallconfigs option (default), you cannot move:

 - Server-side objects (as specified with the sync:// protocol).
 - DesignSync references. You must fetch a local copy, link to the

ENOVIA Synchronicity Command Reference All -Vol2

345

 cache, or link to the mirror first.
 - Generic collection objects.
 - Objects on a locked branch. You must release the lock first.
 - Managed symbolic links to files or folders.
 - Collection members, such as the files that make up a Cadence
 cell view.

 When using the -allconfigs option, you cannot move:

 - Cache or mirror links. You must fetch a local copy or a reference first.
 - Collection objects.
 - Objects on a locked branch. You must release the lock first.
 - Managed symbolic links to files or folders.
 - Collection members, such as the files that make up a Cadence
 cell view.

 The following additional restrictions apply:

 - The source and destination locations must be on the same file
 system.
 - The destination object or vault cannot already exist.
 - The path of the destination object must already exist; no
 components of the destination path are created for you.
 - When not using -allconfigs option with managed objects, the
 checkin to create the new vault is always done with the
 '-keys kkv' option; revision-control keywords, if any, are
 retained and their values are updated.
 - For managed objects, the vault folders for both source and
 destination locations must be on the same SyncServer
 (the vault set to the same sync://<host>:<port>).
 Otherwise, an error about crossing domain boundaries results.
 - When not using the -allconfigs option with managed objects, you
 cannot rename the object, and then rename it back to the original name.
 - Cadence cell view (.sync.cds) collection objects can only be moved to a
 Cadence cell folder.
 - Cadence cell view objects must always be named with a .sync.cds
 extension.
 - ProjectSync notes do not migrate to the new vault, unless the
 -allconfigs option is used.
 - When the -allconfigs option is used, RevisionControl notes are not
 affected, remaining associated with the original vault.
 - If there are restricted characters are enabled, no restricted
 character can be used in the natural path of the object.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 mvfile [-allconfigs] <object> <destination>

File-Based Design

346

ARGUMENTS

• Object
• Server URL object
• Destination
• Server URL Destination

Object

 object The object that you want to move or rename. The
 object can be a local file or Cadence cell view
 (.sync.cds) collection object. You can specify an
 absolute or relative path.

Server URL object

 serverURL Specifies the URL of object to be moved. Specify the
 URL as follows:
 sync://<host>[:<port>]/<path>/<filename>; or
 syncs://<host>[:<port>]/<path>/<filename>;
 where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 For example:
 sync://serv1.abco.com:1024/Projects/Chip/Chip.c;

 If you specify a server URL file, you must use the
 -allconfigs options to move the entire vault.

Destination

 destination The destination can be:
 - The folder into which the object is
 moved. The object retains its current name.
 - The new name of the object (a rename operation).
 - Both a folder and new name for the moved
 object.
 You can specify an absolute or relative path.

Server URL Destination

 serverURL Specifies the URL of new object location. Specify the
 URL as follows:
 sync://<host>[:<port>]/<path>/<filename>; or
 syncs://<host>[:<port>]/<path>/<filename>;
 where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the

ENOVIA Synchronicity Command Reference All -Vol2

347

 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 For example:
 sync://serv1.abco.com:1024/Projects/NewChip/NewChip.c;

OPTIONS

• -[no]allconfigs

-[no]allconfigs

 - [no]allconfigs Determines whether to update the location of the
 specified objects in all configurations that use
 the object.

 -noallconfigs does not update the configurations.
 When this option is specified, ProjectSync notes
 linking to the old objects are not updated and
 might break.

 -allconfigs moves the vault file in the repository
 and, if successful, moves file in the local
 workspace transferring the metadata from the old
 file to the new file. This updates all
 configurations containing objects to the new
 object. All attachments, such as ProjectSync
 notes, are migrated to the new vault of the moved
 object.

 When attempting mvfile -allconfigs where the vault
 is on a pre-4.2 server, you will get an error
 message.

RETURN VALUE

 None. An exception is thrown if the command fails.

SEE ALSO

 mvfolder, rmfile, retire, ci, command defaults

EXAMPLES

• Example Showing Renaming a File
• Example Showing Moving the File to a New Folder
• Example Showing Renaming a File on the Server

File-Based Design

348

• Example Showing Moving a File on the Server
• Example Showing Renaming and Moving a Cadence Cell View
• Example Showing The History of a Moved File

Example Showing Renaming a File

 The following example renames a file:
 dss> mvfile top.v mod1.v
 top.v: Success Moved

Example Showing Moving the File to a New Folder

 The following example moves a file to a new folder (newdesign)
 while keeping the same name (test.mem):
 dss> mvfile ../test.mem /home/tgoss/newdesign
 test.mem: Success Moved

 Note that in the preceding example, if the object is managed,
 the destination folder must previously have had its vault set
 to the same SyncServer as the original folder or an error will
 result.

Example Showing Renaming a File on the Server

 The following example renames a file on the server.
 dss> mvfile -allconfigs
 sync://srv1.ABCo.com:2647/Projects/ChipDesign/Chip.c;
 sync://srv1.ABCo.com:2647/Projects/ChipDesign/NewChipDesign.c;

 Chip.c;: Success Moved

Example Showing Moving a File on the Server

 This following example moves a file to a different folder on the
 server.
 dss> mvfile -allconfigs
 sync://srv1.ABCo.com:2647/Projects/ChipDesign/Chip.c;
 sync://srv1.ABCo.com:2647/Projects/NewChipDesign/Chip.c;

 Chip.c;: Success Moved

Example Showing Renaming and Moving a Cadence Cell View

 The following example moves a Cadence cell view to a new folder and
 renames it. Note that a cell view collection object must have a
 .sync.cds extension:

ENOVIA Synchronicity Command Reference All -Vol2

349

 dss> mvfile symbol.sync.cds ../and5/symbol2.sync.cds
 symbol.sync.cds: Success Moved

Example Showing The History of a Moved File

 The following example demonstrates that the move of a managed
 object retires the current branch of the existing vault, and creates
 a new vault with no version history. The renamed object retains the
 original object's branch tags and selector. The 'vhistory' command
 is used before and after the move for comparison purposes.

 stcl> vhistory top.v
 Object: file:///home/tgoss/Projects/Sportster/top/top.v
 Vault URL: sync://myserver:30020/Projects/Sportster/top/top.v;
 Current version: 1.2.1.1
 Current state: Copy

 Branch: 1.2.1
 Branch tags: rel21

 Version: 1.2.1.1
 Version tags: Latest
 Derived from: 1.2
 Date: Tue Feb 22 14:05:46 2000; Author: tgoss
 Branching off for rel21 release

 ==

 stcl> url selector top.v
 rel21
 stcl> mvfile top.v mod1.v
 top.v: Success Moved
 stcl> vhistory mod1.v
 Object: file:///home/tgoss/Projects/Sportster/top/mod1.v
 Vault URL: sync://myserver:30020/Projects/Sportster/top/mod1.v;
 Current version: 1.1
 Current state: Copy

 Branch: 1
 Branch tags: rel21

 Version: 1.1
 Version tags: Latest
 Date: Tue Feb 22 14:06:24 2000; Author: tgoss

 ===

 stcl> url selector mod1.v
 rel21
 stcl> ls top.v
 No such object: file:///home/tgoss/Projects/Sportster/top/top.v
 stcl> co -get -version rel21 top.v

File-Based Design

350

 Beginning Check out operation...

 Checking out: top.v : Success - Fetched version: 1.2.1.1

 Checkout operation finished.

 {Objects succeeded (1)} {}
 stcl> ls -nohead top.v
 Copy <Retired> Up-to-date 1.2.1.1 top.v
 stcl>

mvfolder

mvfolder Command

NAME

 mvfolder - Moves the specified folder

DESCRIPTION

 This command moves or renames the specified folder. This folder may
 exist in either the workspace, on the server, or in both places. You
 can specify a relative or absolute path. To move a file or Cadence
 cell view, use mvfile.

 You can move a managed or unmanaged folder. For unmanaged folders,
 the mvfolder operation is equivalent to an operating-system move
 operation (for example, Unix 'mv'). A managed folder is one that has
 a corresponding vault folder (a setvault has been performed on the
 the folder). Both the local folder and vault folder are moved.
 You can use the 'mvfolder' command only on a vault folder on the
 server, without affecting your workspace. There is an example of
 this in the Examples section.

 IMPORTANT:
 If you use mvfolder to rearrange the subdirectory structure within a
 vault folder hierarchy, the hierarchy of the original structure is lost.
 Because directories are not versioned, whatever data is fetched will be
 fetched into local workspace directories whose structure mimics that of
 the vault, at that point in time. Use mvfolder on a managed folder only
 if you are certain about changing the vault's directory structure.

 You cannot move:
 - Your current folder or any parent folder.
 - Cadence cell-view folders. A cell-view folder is moved as part
 of a mvfile of a Cadence cell view (.sync.cds) collection object.

 The following additional restrictions apply:
 - The source and destination locations must be on the same file
 system.

ENOVIA Synchronicity Command Reference All -Vol2

351

 - For managed folders, the vault folders for both source and
 destination folders must be on the same SyncServer
 (the vault set to the same sync://<host>:<port>).
 Otherwise, an error about crossing domain boundaries results.
 - The path of the destination folder must already exist; no
 components of the destination path are created for you.
 - A Cadence cell folder can only be moved to a Cadence library
 folder.
 - The folder names must contain only printable characters, and
 may not include any characters that have been restricted. For
 more information on restricted characters, see Exclude Lists in
 the DesignSync Administrator's Guide.

 Note: If the folder is a legacy module configuration, notify project
 leaders and module administrators to remove each hierarchical
 reference specifying the old project folder and add a new
 hierarchical reference for the new project folder. For more
 information, see the edithrefs, addhref and rmhref commands.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 Any attachments, such as ProjectSync notes, associated with objects
 in a folder are retained. Notelinks are updated to reflect
 the new vault path.

 This command supports the command defaults system.

SYNOPSIS

 mvfolder [--] <folder> <destination>

ARGUMENTS

• Folder
• Destination

Folder

 folder The local or server-side folder that you want to move
 or rename. You can specify an absolute or relative
 path.

Destination

 destination The destination can be:
 - The folder into which the folder is moved.
 The source folder retains its current name.
 - The new name of the folder (a rename operation).

File-Based Design

352

 - Both a folder and new name for the
 moved folder.

 The path to the destination must exist; no portions
 of the path are created for you. You can specify an
 absolute or relative path.

 If the destination already exists as a folder, then
 the folder being moved is placed inside of the
 destination folder.

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 None. An exception is thrown if the command fails.

SEE ALSO

 mvfile, rmfolder, mkfolder, scd, command defaults

EXAMPLES

• Example Showing Renaming a Folder
• Example Showing Moving a Folder to a New Path
• Example Showing Moving a Cadence Cell to a Different Library
• Example Showing a Vault Rename

Example Showing Renaming a Folder

 The following example renames a folder:
 dss> mvfolder mod1 mod2
 mod1: Success Moved

Example Showing Moving a Folder to a New Path

ENOVIA Synchronicity Command Reference All -Vol2

353

 The following example moves a folder to a new folder (newdesign)
 while keeping the same name (mod1):
 dss> mvfolder ../mod1 /home/tgoss/newdesign
 mod1: Success Moved

 Note that in the preceding example, if a setvault has been applied
 to the original folder, the destination folder must previously have
 had its vault set to the same SyncServer or an error will result.

Example Showing Moving a Cadence Cell to a Different Library

 The following example moves a Cadence cell to a different library
 and renames it.
 dss> mvfolder ASIC/and2 TTLLib/and
 and2: Success Moved

Example Showing a Vault Rename

 The following example shows a vault folder being renamed directly,
 without requiring a corresponding workspace directory.

 stcl> scd sync://lotti:30158/Projects
 stcl> ls

 Directory of: sync://lotti:30158/Projects

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 Test
 stcl> mvfolder Test TestHere
 Test: Success Moved
 stcl> ls

 Directory of: sync://lotti:30158/Projects

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 TestHere
 stcl>

purge

purge Command

NAME

 purge - Purges specified branches or versions of
 objects from the vault

File-Based Design

354

DESCRIPTION

• Restrictions
• Triggers and Revision Control Notes and 'purge'
• Error Handling
• Using Purge with Modules (Module-based)
• Using Purge with Files-Based Objects (File-based)

 This command deletes specified branches or versions of
 an object on a single branch in the vault. You can use this command
 to clean up the vault by deleting old versions of objects. You also
 can remove an entire branch: all branch tags, all version data, and
 all version tags on the deleted branch.

 Your server must be at release DS 4.2, or higher, to use this command
 to delete branches. Your server must be at release V6R2012 to use
 this command to purge module branches or versions.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Restrictions

 o The purge command does not follow DesignSync REFERENCEs or
 hierarchical references and operate on referenced data. If you
 use 'purge -recursive' on a directory hierarchy, the purge
 operation skips hierarchical elements based on REFERENCEs or
 hierarchical references.

 o The purpose of the purge command is to purge old versions on a
 single branch in the vault. The command does not support
 selectors with multiple entries. If you specify a purge of a
 vault object, you specify the branch to purge and the purge
 operation deletes versions from that branch only. If you specify
 a purge of a workspace object but you do not specify the -branch
 option, the purge operation uses the current branchid of the
 object and purges only that branch. The operation ignores a
 selector.

 o You can specify a purge of objects in a workspace or directly
 defined by their vault URLs. If you specify a purge of a
 workspace directory, the purge operation traverses the workspace
 hierarchy to find all the objects for the purge operation. Then
 the operation deletes corresponding vault objects that have the
 appropriate branchid. If you use the purge command on workspace
 objects, it is possible that the purge operation will remove a
 version in the vault that is currently located in your
 workspace. This action is deliberate, since 'purge' is intended
 to clean up the vault independent of existing workspaces.

ENOVIA Synchronicity Command Reference All -Vol2

355

 Note: The purge command deletes versions from the vault; the
 command never affects data in your workspace.

 o The 'purge -recursive' command fails if you specify a directory
 for which you have not set the vault, even if that directory
 contains a subdirectory for which the vault is set. For example,
 suppose you have the following directory hierarchy in your
 workspace:
 Directory A (vault not set)
 Directory B (vault not set)
 Directory C (vault is set)

 If you use 'purge -recursive' and specify Directory A or
 Directory B, the purge operation fails and never finds Directory
 C. In this example, to purge files in Directory C, you must specify
 that directory with the 'purge -recursive' command.

 o To remove a branch with side branches, you must first remove the
 side branches.

 o Locked branches cannot be removed. You must first unlock the branch
 before deleting it.

 o The branch numbers of deleted branches cannot be reused.

Triggers and Revision Control Notes and 'purge'

 The purge command generates the same triggers and creates the same
 revision control notes as the rmversion command. Administrators
 should carefully consider which pre- and post-command triggers and
 revision control notes to enable. For example, the purge command
 causes triggers for 'rmversion'.

Error Handling

 If an error occurs, the purge command reports the error but does
 not throw an exception. The command proceeds with all other objects
 still left in the list of objects to purge.

 The purge operation reports an error only when:
 - There is an error in the command option
 - Objects specified do not exist
 - None of the versions selected for the purge can be deleted

 Failure to delete a version or a failure to access an object is
 reported in the overall failure count for the operation, not as an
 error.

Using Purge with Modules (Module-based)

File-Based Design

356

 Module versions and module members can be purged.

 Module members are not purged explicitly, but are purged when all
 module versions referencing the module member version are purged.

 Module instances cannot be specified with a wildcard, such as '*'.
 Branch tags must be specified by the branch name or numeric.

 You cannot delete:
 - Branchpoint versions (for example, if 1.2.1 is a branch, you
 cannot delete version 1.2)
 - Version 1.1
 - The only version on a branch if it is not a .1 version
 - The Latest version of a locked branch
 - Tagged versions (unless the -force switch is used).
 - Version .1 when:
 o Another version on the branch could not be deleted.
 o Additional branch tags exist on the branch specified with
 the -branch switch and you do not specify '-force.'
 o Additional branch tags exist on the branch, the -branch switch
 is used with a branch numeric, and you do not specify '-force.'
 o The object is a module. The initial module version on any
 branch can not be purged, even when specified with the
 '-force' option, unless the entire branch is purged.
 - Module member versions which are not explicitly purged.

Using Purge with Files-Based Objects (File-based)

 With this command you can specify:
 - One or more objects in your workspace.
 - A folder in your workspace. (Note: You must specify '-recursive'
 in order to purge a folder.)
 - A vault URL for the object or folder.
 - A branch to remove.

 Note: Wildcards (such as '*') are allowed for all arguments except
 module instance names.

 You cannot delete:
 - Branchpoint versions (for example, if 1.2.1 is a branch, you
 cannot delete version 1.2)
 - Version 1.1
 - The only version on a branch if it is not a .1 version
 - The Latest version of a locked branch
 - Tagged versions (unless the -force switch is used).
 - Version .1 when:
 o Another version on the branch could not be deleted.
 o Additional branch tags exist on the branch specified with
 the -branch switch and you do not specify '-force.'
 o Additional branch tags exist on the branch, the -branch switch
 is used with a branch numeric, and you do not specify '-force.'
 - The Latest version on branch 1 if the vault was previously
 removed with 'rmvault -keepvid' and then recreated.

ENOVIA Synchronicity Command Reference All -Vol2

357

 Note: Do not attempt to remove an entire vault by specifying branch
 1. Instead, use the rmvault command to delete the entire vault.

SYNOPSIS

 purge [-branch <branchname>] [-[no]dryrun]
 [-exclude <object>[,<object>...]] [-[no]force]
 [-keepsince <date>] [-keepversions <n>][-[no]recursive]
 [-report <mode>] [--] <argument> [<argument>...]

ARGUMENTS

• Module URL (Module-based)
• Module Workspace (Module-based)
• DesignSync Object (File-based)
• DesignSync Folder (File-based)

 Specify one or more of the following arguments:

Module URL (Module-based)

 <module URL> URL of the module containing the versions being
 purged. Specify the URL as follows:
 sync[s]://<host>[:<port>]/Modules/[<Category>...]
 /<module>;
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer
 port number, <Category> identifies the
 optional category path, and <module> is the name
 of the module.

 Note: If you specify a module URL as the argument,
 you must specify the branch with the -branch
 option.

Module Workspace (Module-based)

 <workspace Specifies the module instance name or path of the
 module> module containing the versions being purged. By
 default, this will purge from the branch
 specified by the persistent selector on the
 workspace.

 Note: The purge command accepts version-extended
 workspace folder and file paths. It does not
 accept version-extended module instance names.

File-Based Design

358

 Also module instance names cannot be specified by
 using wildcard characters.

DesignSync Object (File-based)

 <DesignSync object> Purges the specified DesignSync object from the
 server. This object can be a vault URL, or an
 object in your workspace.

DesignSync Folder (File-based)

 <DesignSync folder> Purges a local folder and the objects within it.
 (Note: You must specify '-recursive' in order to
 purge a folder.)

OPTIONS

• -branch
• -dryrun
• -exclude (File-based)
• -[no]force (Module-based)
• -[no]force (File-based)
• -keepsince
• -keepversions (Module-based)
• -keepversions (File-based)
• -recursive (File-based)
• -report
• --

-branch

 -branch Specifies the branch identifier of the objects you
 <branchname> want to purge. You can specify only one branch
 with this option.

 For the <branchname>, specify a branch tag (for
 example, rel40) or branch numeric (for
 example, 1.4.2) only. Do not specify a colon
 (:) with the branchname.

 If you do not specify the -branch option, the
 purge command uses the current branch
 identifier of the object.

 Note: If you use a server URL to specify an object
 for purging, you must also specify the -branch
 option.

ENOVIA Synchronicity Command Reference All -Vol2

359

-dryrun

 -[no]dryrun Determines whether this command performs a purge, or
 creates a report showing what files will be purged when
 the command is run.
 The -nodryrun option performs the purge.(Default)
 The -dryrun option generates the list of what will be
 purged when the purge command is run.
 This option can be used with any of the report modes.

-exclude (File-based)

 -exclude <objects>
 Excludes one or more objects (files,
 collections, or folders) from the purge
 operation. Specify objects in a comma-separated
 list. Wildcards are allowed.

 The purge operation excludes objects specified
 with '-exclude' in addition to objects always
 excluded from revision-control operations.

-[no]force (Module-based)

 -[no]force Determines whether this command purges a tagged
 version or branch.
 -noforce ignores versions or branches that are
 tagged. (Default)
 -force purges the tagged versions and branches along
 with the rest of the specified versions. On vault
 objects, when used with -keepversions 0,' -force
 removes the branch (and the .1 version) even when the
 branch includes tags.

 Note: The branch point version cannot be removed until
 all branches rooted to it are removed and the
 first and latest versions on a branch cannot be
 removed until the entire branch is removed.

-[no]force (File-based)

 -[no]force Determines whether this command purges a tagged
 version or branch.
 -noforce ignores versions or branches that are
 tagged. (Default)
 -force purges the tagged versions and branches along
 with the rest of the specified versions. On vault

File-Based Design

360

 objects, when used with -keepversions 0,' -force
 removes the branch (and the .1 version) even when the
 branch includes tags.

-keepsince

 -keepsince <date>
 Keeps all versions created after the specified
 date and deletes the other versions of an
 object on a single branch in the vault. For
 example, purge -keepsince "10 September 2003"
 keeps all versions of the object that were
 created after 10 September 2003 and deletes all
 other versions on the branch.

 For <date>, specify a date or a
 relative time, enclosed in double quotation
 marks (" "). For example:
 stcl> purge -keepsince "10 days ago" top.v

 Note: If you use the -keepversions option in
 combination with the -keepsince option, the
 purge operation keeps those versions specified
 by each option. For example, if you specify:

 purge -keepversions 3 -keepsince "Jan 1 2004"

 the purge operation deletes all versions of the
 object from the vault except for the last 3
 versions or any versions created after the Jan
 1, 2004.

 If you use the -keepsince option with
 -keepversions 0 and -keepsince specifies that some
 versions cannot be deleted, the branch is not
 removed. The -keepsince option takes precedence
 over -keepversions 0.

-keepversions (Module-based)

 -keepversions <n> Keeps the last <n> versions of an object (on a
 single branch in the vault) and deletes the
 other versions. The default is 1.

 For example, 'purge -keepversions 3' keeps only
 the last 3 versions of the object and deletes
 all other versions from the vault.

 To delete all versions, use '-keepversions 0'.

 To delete a branch completely, identify the
 branch with the -branch switch and specify

ENOVIA Synchronicity Command Reference All -Vol2

361

 '-keepversions 0'. If you do not specify a branch,
 the current branch is picked up from the metadata
 when the command is issued on a workspace file.

 Note: The initial version, 1.1 is always
 preserved, even if -keepversions 0 is applied to
 the Trunk branch of a module.

-keepversions (File-based)

 -keepversions <n> Keeps the last <n> versions of an object (on a
 single branch in the vault) and deletes the
 other versions. The default is 1.

 For example, 'purge -keepversions 3' keeps only
 the last 3 versions of the object and deletes
 all other versions from the vault.

 To delete all versions, use '-keepversions 0'.

 To delete a branch completely, identify the
 branch with the -branch switch and specify
 '-keepversions 0'. If you do not specify a branch,
 the current branch is picked up from the metadata
 when the command is issued on a workspace file.

-recursive (File-based)

 -[no]recursive Determines whether to perform the purge on objects
 in the specified folder or on objects in the
 specified folder and all subfolders in the
 hierarchy.
 The -norecursive option purges only objects in the
 specified folder. (Default)
 The -recursive options purges objects in the
 specified folder and all subfolders in the
 hierarchy.

-report

 -report <mode> Specifies the amount of output generated
 by the purge operation.

 Available modes are:
 o brief - Displays:
 - The name and version of each object
 successfully deleted.
 - A message if no versions are selected for
 deletion.
 - Error messages.

File-Based Design

362

 o normal (the default mode) - Displays:
 - A statement that the command is gathering
 versions to be deleted.
 - A statement reporting the number of
 versions being deleted.
 - Versions successfully deleted, each with
 its full vault URL.
 - A message if no versions are selected for
 deletion.
 - Error messages.

 o verbose - Displays:
 - A statement that the command is gathering
 versions to be deleted.
 - Information on the progress of the command
 as it gathers versions for deletion,
 including:
 - Each directory traversed
 - Each object found
 - The number of versions on the branch to
 be deleted
 - A list of versions deleted and versions
 kept (with the reason why the version was kept)
 - Summary information about versions gathered
 for deletion.
 - A statement reporting the number of
 versions being deleted.
 - Each item being skipped (with the reason it
 is skipped)
 - Versions successfully deleted, each with
 its full vault URL.
 - A message if no versions are selected for
 deletion.
 - Error messages.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when
 arguments to the command begin with a
 hyphen (-).

RETURN VALUE

 The return value from the purge command is a string in the form:
 {Objects succeeded (n)} {Objects failed (n)}

 The Objects succeeded count is the number of versions that were
 successfully deleted.

 The Objects failed count includes objects for which the version

ENOVIA Synchronicity Command Reference All -Vol2

363

 deletion failed, objects not under revision control, and objects
 for which version information for the object could not be fetched
 from the vault.

SEE ALSO

 rmversion, rmvault, command defaults

EXAMPLES

• Example of Purging All but a 4 Versions of a Collection Object
• Example of Using Keep Since to Maintain 30 Days of Versions
• Example of Using both the -keepsince and -keepversions Options
• Example of Purging Versions from the Server
• Example of Making then Purging a Branch
• Example Showing Module Purge on the Trunk Branch (Module-based)

Example of Purging All but a 4 Versions of a Collection Object

 This example deletes from the vault all versions of the top_design
 Milkyway collection object in the current workspace except for the
 last 4 versions.

 stcl> purge -keepversions 4 top_design.sync.mw

Example of Using Keep Since to Maintain 30 Days of Versions

 This example deletes from the vault all versions of each object in
 the current workspace directory except for versions created in the
 last 30 days. The purge operation works recursively through all of
 the data in your workspace.

 stcl> purge -keepsince "30 days ago" -rec .

Example of Using both the -keepsince and -keepversions Options

 This example deletes from the vault all versions of each object in
 Ted's ALU workspace except for the last 5 versions of the object OR
 versions that were created in the last 30 days. The purge operation
 works recursively through all of the data in Ted's ALU workspace.

 stcl> purge -keepversions 5 \
 -keepsince "30 days ago" -rec /home/ted/ProjectWork/ALU

Example of Purging Versions from the Server

File-Based Design

364

 This example deletes all versions of each object in the asic folder
 on the Trunk branch in the vault, except for the last 4 versions. The
 purge operation deletes these objects from the vault whether they are
 in the user's workspace or not.

 stcl> purge -keepver 4 sync://S1.ABC.com:2647/Projects/asic -branch
 Trunk

Example of Making then Purging a Branch

 This example shows the user creating a "V11" branch of the "runit"
 file, then immediately removing that branch via 'purge'. The
 'vhistory' output preceding the 'purge' shows the branch and version
 information, from the user's perspective. The verbose output from
 'purge' uses the internal representation of that same data.

 stcl> mkbranch V11 runit

 Beginning MkBranch operation...

 Branching: runit : Success - Created branch
 1.1.2, tagged V11

 MkBranch operation finished.

 {Objects succeeded (1)} {}

 stcl> vhistory -all runit
 Object: file:///c|/barbg/work dir/Sportster/test/runit
 Vault URL: sync://srv2.ABCo.com:2647/Projects/Sportster/test/runit;
 Current version: Refers to: 1.1
 Current state: Reference

 Branch: 1
 Branch tags: Trunk

 Version: 1.1
 Version tags: Latest
 Date: Fri Oct 28 16:13:52 2005; Author: tbarbg2

 Branch: 1.1.2
 Branch tags: V11
 This branch does not yet have any versions.

 ==

 stcl> purge -report verbose -branch V11 -keepversions 0 runit
 Gathering versions for deletion...
 Object c:\barbg\work dir\Sportster\test\runit :
 0 existing version on branch "V11" (branchid "1.1.2") :
 This is a stub branch

ENOVIA Synchronicity Command Reference All -Vol2

365

 deleting version 1.1.2.1
 Purge version gathering summary:
 Objects processed: 1
 Versions selected for removal: 1
 Versions retained: 0
 Deleting 1 version...
 sync://srv2.ABCo.com:2647/Projects/Sportster/test/runit;1.1.2.1: \
 Success Deleted
 {Objects succeeded (1)} {}
 stcl>

Example Showing Module Purge on the Trunk Branch (Module-based)

 This example shows a purge on a module branch, Trunk. Note that
 both the initial version and the Latest version are not purged.

 stcl> purge -branch Trunk -report verbose -keepversions 1 Chip%0
 Gathering versions for deletion...
 Object c:\Workspaces\Chip%0 :
 6 existing versions on branch "Trunk" (branchid "1") :
 keeping version 1.1 (required, "1.1" version)
 keeping version 1.2 (tag exists on module version)
 deleting version 1.3
 deleting version 1.4
 deleting version 1.5
 keeping version 1.6 (keepversions criteria)
 Purge version gathering summary:
 Objects processed: 1
 Versions selected for removal: 3
 Versions retained: 3
 Deleting 3 versions...

 sync://srv2.ABCo.com:2647/Modules/Chip: Removing module versions ...

 sync://srv2.ABCo.com:2647/Modules/Chip;1.3: Success deleted
 sync://srv2.ABCo.com:2647/Modules/Chip;1.4: Success deleted
 sync://srv2.ABCo.com:2647/Modules/Chip;1.5: Success deleted

 sync://srv2.ABCo.com:2647/Modules/Chip: Identifying member versions
 to remove ...

 .
 sync://srv2.ABCo.com:2647/Modules/Chip: Found 3 candidate member
 version to remove.

 sync://srv2.ABCo.com:2647/Modules/Chip: Removing member versions ...

 .
 sync://srv2.ABCo.com:2647/Modules/Chip: Removed 1 member versions.
 {Objects succeeded (1)} {Objects failed (1)}

retire

File-Based Design

366

retire Command

NAME

 retire - Marks a branch as obsolete

DESCRIPTION

 This command marks a branch of a given object as obsolete. Retiring
 a branch:
 o Prevents the branch from participating in future 'populate with
 latest versions' operations
 o Prevents new versions from being created on the branch (unless
 the -new option is used during the checkin, in which case the
 branch is unretired)

 When you perform a retire, the time, date, and the username of the
 user performing the retire are recorded and can be viewed as part of
 the branch's version history. If the file is unretired, the retire
 information is removed and cannot be accessed again.

 Tip: If you want to preserve the retire information in the version
 history, you can include the information in the checkin comment
 either by unretiring the file with the ci command with the -new
 -comment options, or by doing a ci -force after performing a retire
 -unretire on the file.

 Note: If you specify a collection member as the object to be
 operated on, DesignSync skips the object and warns that the
 object is not versionable. If DesignSync attempts to operate on
 a collection member specified implicitly (through the use of
 wildcards or a recursive operation), DesignSync silently skips
 the object. You can change this behavior by using the SyncAdmin
 "Map operations on collection members to owner" setting. If you
 select this setting and DesignSync attempts to operate on a
 collection member during a revision control operation,
 DesignSync determines the member's owner collection and
 operates on the collection as a whole.

 A typical first step when team members join a project is to populate
 their work areas with the Latest versions from a given branch of all
 active design objects. By retiring a branch, you prevent objects
 that are no longer needed (are obsolete) from being fetched into their
 work areas, thereby limiting exposure to the object.

 You can perform many operations on retired branches. For example,
 you can fetch data from a retired branch. You can also tag files
 on a retired branch if they are in your workspace. For information
 on when you cannot tag files on a retired branch, see the tag command's
 -version option description. However, operating on an object on a
 retired branch is not typical.

 It is important to note that objects on retired branches remain

ENOVIA Synchronicity Command Reference All -Vol2

367

 part of past configurations. When you use the populate command to
 retrieve a particular configuration other than 'Latest', objects
 from retired branches are fetched. The populate command determines
 what configuration to retrieve from the persistent selector list of
 the folder you are populating (Trunk:Latest by default, or as set
 by the 'setselector' command). You can override the folder's
 persistent selector list by specifying 'populate -version
 <selectorList>'. The populate command fetches objects from retired
 branches, thereby preserving past configurations, if the selector
 used is any of the following:

 o A version tag other than 'Latest', even if the version tag
 points to the Latest version
 o A version number, even if that number corresponds to the
 Latest version
 o <branchtag>:Date(<date>) or <branchtag>:VaultDate(<date>)

 Note: If the selector for a populate operation resolves to a
 branch, DesignSync augments the selector to be
 <branch>:Latest, meaning, 'Get the Latest version from
 the specified branch'. In this case, objects from
 retired branches are not fetched.

 See the "selectors" help topic for more information on selectors
 and the "populate" help topic for details on the populate command.

 Caution:
 o You cannot retire the branch of an object that is locked unless
 you specify the -force option, which removes the lock even if it
 is held by someone else.
 o By default, the local copy of an object on a retired branch is
 deleted unless the local copy is modified or you have specified
 the -keep option. However, if you specify -force (to unlock the
 object first), even a modified local copy is deleted. To unlock
 the object but keep your local copy, specify both -force and
 -keep.

 Note that when you specify the -branch option, DesignSync does
 nothing to the local work area objects. The branch is retired,
 but the local object is never deleted and the object's local
 metadata is unchanged, even if you specified -force.

 You can unretire a retired branch in two ways:
 o Execute a 'retire -unretire' command on the branch.
 -OR-
 o Check in a new version of the object onto the retired branch
 using the '-new' option to the ci command.

 To determine whether the branch is retired you can:

 o Use 'ls -report status' command and the List View in the graphical
 user interface indicate if the current branch of an object in your
 work area is retired.

 o Use the 'url retired' command or view the data sheet for the
 object's vault to see the retired status.

File-Based Design

368

 o Use the vhistory command with the -BX options (or in report
 -normal or report -verbose mode) to see the state of the branch
 and the username, time and date associated with the retire.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 retire [-branch <branch> | -branch auto(<branch>)] | [-[no]force]
 [-[no]keep] [-[no]recursive] [-[un]retire] [-[no]selected]
 [-trigarg <arg>] [--] [<argument> [<argument>...]]

ARGUMENTS

• Server URL
• Workspace Object
• DesignSync Folder

Server URL

 <server object> Specify a vault or vault-folder object on the
 server to retire in the specified branch.

Workspace Object

 <workspace object> Specify a versionable object in the local
 workspace to retire in the specified branch.

 Note: If a workspace object is locked when the
 retire operation is performed, the retire is
 performed on the branch of the objects in the
 workspace instead of on the selector for the
 workspace. This can happen if the user changes
 the selector but does not repopulate the
 workspace with the updated branch files.

DesignSync Folder

 <DesignSync folder> Specify a folder containing DesignSync objects
 with the -recursive option to retire all the
 objects, including sub-folders, within a folder.

ENOVIA Synchronicity Command Reference All -Vol2

369

 Notes:

 You can retire only the objects within a folder,
 without retiring the sub-folder structure, by
 specifying the folder name with the * wildcard.

 Non-module directories are not explicitly
 checked into DesignSync so you cannot remove a
 folder itself, only the contents of a folder.
 If a folder becomes empty as a result of a
 retire, it remains in the vault allowing you to
 unretire the contents if needed.

OPTIONS

• -branch
• -[no]force
• -[no]keep
• -[no]recursive
• -[un]retire
• -[no]selected
• -trigarg
• --

-branch

 -branch <branch> Retires the branch specified by the branch or
 | -branch version tag, auto-branch selector, or branch
 auto(<branch>) numeric. The -branch option accepts a single
 branch tag, a single version tag, a single
 auto-branch selector tag, or a branch numeric.
 It does not accept a selector or selector list.

 This option overrides the object's persistent
 selector list. If <branch> resolves to a version,
 the branch of that version is retired.

 If you do not specify the -branch option,
 the command uses the branch specified
 by the workspace selector or the sync URL to
 retire the specified objects.

 Notes:

 When you use the -branch option,
 DesignSync operates only on the vault and does
 nothing with local work area objects. The local
 object is never deleted and the object's local
 metadata is unchanged.

 If the retire command is run on a workspace
 containing locked files and the -branch option is

File-Based Design

370

 not specified and -force is not specified, the
 retire fails. If -force is specified, the retire
 succeeds but is run against the branch currently
 populated in the workspace regardless of the
 selector value.

-[no]force

 -[no]force Specifies whether the branch should be removed
 even if the branch, or objects in the branch are
 locked.

 -noforce does not remove the branch if the
 branch, or objects in the branch are locked.
 (Default)

 -force unlocks locked branches (even if locked by
 someone else) prior to retiring them. This option
 also deletes local objects if the object was
 modified locally. To keep your local objects,
 specify -keep.

 The -force and -branch options are mutually
 exclusive, because local objects are never
 deleted or otherwise affected when you specify
 -branch.

-[no]keep

 -[no]keep Specifies whether to keep or delete local copies
 of objects after their branches are retired.
 -nokeep deletes local objects unless either the
 object has been modified locally, or the -branch
 option is specified. (Default)

 Note: When you use the -force option, even
 locally modified objects are deleted unless you
 explicitly specify -keep.

 -keep preserves all local objects after the branch
 is retired. The objects become unmanaged by
 DesignSync.

 If a locked reference is retired with -keep (and
 -force, to unlock the object's branch), a
 DesignSync reference remains in the workspace

 You cannot use the -keep option if the local
 state of the object being retired is a link to
 the mirror. Because the SyncServer removes
 retired objects from the mirror directory,
 there would be no way to link to the retired

ENOVIA Synchronicity Command Reference All -Vol2

371

 object.

 The -keep option is ignored when unretiring
 an object, because 'retire -unretire' never
 affects local objects.

-[no]recursive

 -[no]recursive Indicates whether the retire command operates
 on the specified argument or all subfolders
 in the argument's hierarchy.

 -norecursive operates only on the specified
 argument. (Default) If the argument is a folder
 specified with a wilcard (<folder>/*), the
 contents of any sub-folders are not retired, but
 the contents of the specified folder are retired.

 -recursive operates on all subfolders in the
 specified argument's hierarchy.

-[un]retire

 -[un]retire Indicates whether the retire command is intended
 to retire the branch or reinstate the branch.
 -retire is provided to support the command
 defaults system. (Default) It retires the
 branch.
 -unretire reinstates branches as active, permitting
 future populate operations to fetch the latest
 objects on the branches.

 Note: An alternative way to unretire a branch is to
 perform a 'ci -new' command on an object. Refer to
 the ci command for details.

-[no]selected

 -[no]selected Determines whether the operation is performed
 just on the objects specified at the command
 line or on objects specified at the command
 line and objects in the select list (see the
 'select' command)
 -noselected adds only objects specified on the
 command line. (Default)
 -selected adds objects specified on the
 command and in the select list.

-trigarg

File-Based Design

372

 -trigarg <arg> Specifies an argument to be passed from the
 command line to the triggers set on the
 retire operation. If the argument contains
 whitespace, enclose the argument within
 double quotation marks ("") if using the dss
 command shell or braces ({}) if using the stcl
 command shell.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 none

SEE ALSO

 url retired, ls, co, select, selectors, command defaults

EXAMPLES

• Example of Retiring Files
• Example of Retiring a Branch
• Example of Retiring a Specific File on a Branch

Example of Retiring Files

 The following example retires the current branches of any '.v'
 files in the current work area that begin with either 'cpu' or
 'mem' and removes the local copy of the file if present. After
 retiring the branch, users will not get these objects when
 populating the Latest versions from that branch, and new versions
 of the objects cannot be created on the retired branch.
 dss> retire cpu*.v mem*.v

 However, if a version of 'cpu1.v' is tagged 'rel1', then the following
 populate command successfully fetches that version even though the
 branch is retired:
 dss> populate -version rel1

Example of Retiring a Branch

ENOVIA Synchronicity Command Reference All -Vol2

373

 The following example retires the 'Main' branch of all files in the
 current folder. All local files remain and their metadata is
 unchanged after the retire operation even though -keep was not
 specified because -branch was specified.
 dss> retire -branch Main *

Example of Retiring a Specific File on a Branch

 The following example retires the 'Main' branch of 'top.v' by
 specifying its URL:
 dss> retire \
 "sync://apollo:2647/Projects/Sportster/top/top.v;Main:Latest"
 or, in stcl/stclc mode, you might specify:
 stcl> retire [url vault top.v]Main:Latest

rmfile

rmfile Command

NAME

 rmfile - Deletes the specified object

DESCRIPTION

• Notes for Module Objects (Module-based)

 This command deletes the specified object from the local file
 system. The object can be a file or a collection object. You can
 specify a relative or absolute path to the object. You cannot
 delete an object on the server ('sync:' protocol). Deleting an
 object does not affect the vault or module for that object.

 Notes:
 o You cannot delete a member of a DesignSync collection
 object.

 o If you use rmfile to delete a collection object that has obsolete
 local versions, the command deletes all of the files making up
 those obsolete local versions.

 This command supports the command defaults system.

Notes for Module Objects (Module-based)

 If you use rmfile to delete an object that is a member of a module,

File-Based Design

374

 the object is removed from the workspace but remains a member of the
 module version on the server. To permanently remove items from a
 module, use the remove command. If module members are removed from
 the workspace, DesignSync places a marker in the workspace metadata
 that forces a full populate the next time the workspace is
 populated. For more information on full and incremental populate, see
 the populate command help.

 You cannot remove mcache links with rmfile. To remove a mcache link
 use rmmod or rmfolder.

SYNOPSIS

 rmfile [-trigarg <arg>] [--] <object> [<object> [...]]

ARGUMENTS

• Object

Object

 object The object that you want to delete. The object
 can be a local file or collection object. You
 can specify an absolute or relative path.

OPTIONS

• -trigarg
• --

-trigarg

 -trigarg <arg> Specifies an argument to be passed from the
 command line to the triggers set on the
 delete file operation. If the argument contains
 whitespace, enclose the argument within
 double quotation marks ("") if using the dss
 command shell or braces ({}) if using the stcl
 command shell.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when
 arguments to the command begin with a
 hyphen (-).

ENOVIA Synchronicity Command Reference All -Vol2

375

RETURN VALUE

 none

SEE ALSO

 command defaults, mvfile, remove, retire, rmfolder, rmvault, rmversion

EXAMPLES

• Example of Removing a Specific File in the Current Working Directory
• Example of Removing Two Files
• Example of Removing a File with a Leading "-"
• Example of Removing a Member of a Collection

Example of Removing a Specific File in the Current Working Directory

 Delete top.v, which is in the current working directory:
 dss> rmfile top.v
 top.v: Success Deleted

Example of Removing Two Files

 Delete two files: one absolute, one relative:
 dss> rmfile /home/Projects/ASIC/top.v ../decoder.v
 top.v: Success Deleted
 decoder.v: Success Deleted

Example of Removing a File with a Leading "-"

 Delete a file called '-myfile':
 dss> rmfile -- -myfile
 -myfile: Success Deleted

Example of Removing a Member of a Collection

 Deleting a file that is a member of a collection object fails. You
 must delete the collection object itself. The following example
 shows deletion of a Cadence cell view collection:
 dss> scd /home/Projects/smallLib/and2/verilog
 dss> rmfile pc.db

File-Based Design

376

 pc.db: Deletion of this object is not supported
 Operation failed.
 dss> scd ..
 dss> rmfile verilog.sync.cds
 verilog.sync.cds: Success Deleted

rmfolder

rmfolder Command

NAME

 rmfolder - Deletes the specified folder

DESCRIPTION

• Notes for Modules (Module-based)

 This command deletes the specified folder from the local or server
 file system. You can specify a relative or absolute path for a local
 folder. Use the 'sync:' protocol to specify a server-side folder.

 When this command is used with the -norecursive option, you cannot
 delete a folder unless it is empty:
 - For local (client) folders, the folder cannot contain files,
 links, or folders. A folder containing a Synchronicity .SYNC
 metadata folder (for example, the folder you are deleting
 contains DesignSync references) can be deleted.
 - For server folders, the folder cannot contain vaults or other
 folders. A folder containing a sync_project.txt file can be
 deleted.

 If your vault is associated with a mirror, any folder removed from
 the vault is also removed from the mirror.

 You cannot delete your current folder or any parent folder to your
 current folder.

 You cannot delete any folder or file if you do not have UNIX
 permissions.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Notes for Modules (Module-based)

 If the folders are module objects, mcache links, module cache

ENOVIA Synchronicity Command Reference All -Vol2

377

 folders, or, if rmfolder is used with the -recursive option, contain
 module objects, the folder is removed from the workspace but remains
 a member of the module version on the server. To permanently remove
 items from a module, use the remove command. If you remove mcache
 link using rmfolder, the source mcache directory remains.

 If module members are removed from the workspace, DesignSync places a
 marker in the workspace metadata that forces a full populate the next
 time the workspace is populated. For more information on full and
 incremental populate, see the populate command help.

SYNOPSIS

 rmfolder [-[no]keepvid] <folder> [-[no]recursive] [-trigarg <arg>]
 [<folder> [...]]

ARGUMENTS

• Folder

Folder

 folder The local or server-side folder that you
 want to delete. You can specify an absolute
 or relative path.

OPTIONS

• -[no]keepvid
• -[no]recursive
• -trigarg

-[no]keepvid

 -[no]keepvid Determines whether the version number of the
 Latest version in a deleted vault (due to
 'rmfolder -recursive' on a server-side folder) is
 remembered. This behavior is important if a
 vault of the same name is later created.

 -nokeepvid does not store the version
 number. (Default)

 -keepvid stores the version number.

 See the rmvault command for more details.

File-Based Design

378

-[no]recursive

 -[no]recursive Determines whether to remove the specified folder and all
 subfolders in the hierarchy beneath it.

 The -norecursive option deletes the folder only if
 it's empty. This command is similar to the UNIX
 -rmdir command.

 The -recursive option deletes the contents of the
 folders and all subfolders. For local (client)
 folders, deletes as many folders and files as UNIX
 permissions allow.

 If an object was checked out "-lock" in the workspace
 being recursively removed, the lock is silently
 canceled prior to the object's removal.

 For server folders, access-control permissions
 are checked recursively for all vaults contained
 in the folders to be deleted. If all the access
 control checks pass, then the command deletes as
 many folders and files as UNIX permissions
 allow. If any access-control permission fails,
 the entire deletion operation is canceled.

 CAUTION: 'rmfolder -recursive', when used on a
 server folder, will delete vaults contained in
 the folder hierarchy even if a vault is locked
 or has one or more tagged versions. This
 behavior is in contrast to 'rmvault', which
 requires the -force option to delete a vault
 that is locked or has tagged versions.

 The default is -norecursive.

-trigarg

 -trigarg <arg> Specifies an argument to be passed from the
 command line to the triggers set on the
 delete folder operation. If the argument contains
 whitespace, enclose the argument within
 double quotation marks ("") if using the dss
 command shell or braces ({}) if using the stcl
 command shell.

RETURN VALUE

 none

ENOVIA Synchronicity Command Reference All -Vol2

379

SEE ALSO

 mkfolder, rmfile, rmversion, rmvault, remove, command defaults

EXAMPLES

• Example of Removing Folder without Recursive
• Example of Removing Folders Recursively
• Example of Removing a Folder on the Server
• Example of Removing a Folder Containing References

Example of Removing Folder without Recursive

 The following example demonstrates the use of rmfolder without the
 -recursive option. The folder 'alu' contains one file, alu.v, which
 must be deleted before the alu folder can be deleted.
 dss> rmfolder alu
 alu: som: Error 54: Folder Not Empty.
 dss> rmfile alu/alu.v
 alu.v: Success Deleted
 dss> rmfolder alu
 alu: Success Deleted

Example of Removing Folders Recursively

 The following example demonstrates the use of rmfolder with the
 -recursive option. The folder 'alu' contains one file, alu.v, which
 must be deleted before the alu folder can be deleted.
 dss> rmfolder -recursive alu
 alu: Success Deleted

Example of Removing a Folder on the Server

 This example deletes an empty folder on a server:
 dss> rmfolder sync://holzt:2647/Projects/Sportster/Temp
 Temp: Success Deleted

Example of Removing a Folder Containing References

 This example shows that you can delete a folder containing
 references:
 dss> ls -report O

 Directory of: file:///home/ tgoss/Projects/Sportster/top/alu

 Object Type Name

File-Based Design

380

 ----------- ----
 Referenced File alu.gv
 Referenced File alu.v
 Referenced File mult8.gv
 Referenced File mult8.v
 dss> scd ..
 dss> rmfolder alu
 alu: Success Deleted

rmvault

rmvault Command

NAME

 rmvault - Deletes the specified vault

DESCRIPTION

 This command deletes the specified vault. This command does not
 remove any corresponding files in your local work area. This command
 does not remove vaults in modules. To remove modules, use the rmmod
 command. To remove objects in modules, use the remove command.

 Important:
 Deleting a vault removes all versions of a design object from the
 SyncServer and should therefore be used with caution. It is
 recommended that you use the retire command to retire a branch
 that is no longer used instead of deleting the vault. Use rmvault
 only when you are certain the vault will never again be needed
 and you need to reclaim disk space (for example, at the end of a
 project.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 You must use the -force option to delete a vault that has a locked
 branch or has one or more tagged versions.

 You can use version-extended names to specify a vault by specifying
 a file followed by a semicolon (but no version number). For example,
 "top.v;" is the vault specification for top.v.

 Notes:
 - You cannot use wildcards (such as '*') when using
 version-extended names.
 - When in stcl/stclc mode, you must surround version-extended
 names (or any URL with a semicolon) with double quotes.

 When you delete a vault, you have the option of deleting all the
 vault metadata or retaining metadata about the last
 version number used by the vault. These behaviors, which are

ENOVIA Synchronicity Command Reference All -Vol2

381

 controlled by the -nokeepvid and -keepvid options and a registry
 setting, are important if a vault of the same name will later be
 created. See the description of the -[no]keepvid options for details.

 This command supports the command defaults system.

SYNOPSIS

 rmvault [-[no]force] [-[no]keepvid] [-trigarg <arg>] [--]
 <vault> [<vault> [...]]

OPTIONS

• -[no]force
• -[no]keepvid
• -trigarg
• --

-[no]force

 -[no]force Determines whether you can delete a vault with a locked branch
 or tagged versions.
 -noforce prevents you from from deleting a vault that has
 tagged versions or locked branches. (Default)

 -force allows you to delete a vault that has tagged
 versions or locked branches. Use this option
 with caution:
 - A tagged version may be a necessary part of
 a configuration.
 - A locked branch typically indicates someone is
 editing the design object and therefore the
 design object is still active.

-[no]keepvid

 -[no]keepvid Determines whether information about the version ID
 of the Latest version in the vault is retained, which
 is important if a vault of the same name is later
 created.

 For example, assume you delete the vault for top.v
 which has 1.1 as the Latest version, and you or another
 user later creates another top.v file (ci -new top.v). If
 you deleted the vault with -keepvid, the first version in
 the newly created vault is 1.2. If you specified
 -nokeepvid, the first version is 1.1.

File-Based Design

382

 The -nokeepvid behavior can cause problems if there are
 versions of the original top.v vault in
 mirrors, or user's work areas. For example, if a user's
 work area contains the old 1.1 version, DesignSync will
 not fetch the new 1.1 version when the user performs a
 populate. This would true anytime the latest version number
 of the new vault was the same as the version number in the
 workspace of the old vault. Had the
 vault been deleted with the -keepvid option, the
 populate would succeed, fetching version 1.2 (the
 first version in the newly created vault). Therefore,
 you should use -keepvid if a vault of the same name
 might later be created. However, the retained vault
 metadata does use a small amount of disk space, so if
 you want to reclaim all disk space used by a vault, use
 -nokeepvid.

 If you do not specify -keepvid or -nokeepvid, the
 default is -keepvid behavior. You can redefine the
 default behavior using SyncAdmin. See "Command Defaults"
 in SyncAdmin help for details.

-trigarg

 -trigarg <arg> Specifies an argument to be passed from the
 command line to the triggers set on the
 delete vault operation. If the argument contains
 whitespace, enclose the argument within
 double quotation marks ("") if using the dss
 command shell or braces ({}) if using the stcl
 command shell.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 none

SEE ALSO

 rmfile, rmversion, rmfolder, retire, command defaults

ENOVIA Synchronicity Command Reference All -Vol2

383

EXAMPLES

• Example of Removing the Vault for a Single File
• Example of Removing the Vault using URL Vault
• Example of Removing the Vault using the Server URL

Example of Removing the Vault for a Single File

 Delete the vault for top.v, where top.v is in my current work area.
 The double quotes are required in stcl/stclc mode.
 stcl> rmvault 'top.v;'

Example of Removing the Vault using URL Vault

 Delete the vault for top.v using the 'url vault' command instead of
 version-extended naming:
 stcl> rmvault [url vault top.v]

Example of Removing the Vault using the Server URL

 Delete all the vaults in the vault folder 'top'. This command
 does not delete vaults in any folder under 'top' (rmvault
 is not recursive).
 stcl> rmvault sync://localhost:2647/Projects/Sportster/top/*

rmversion

rmversion Command

NAME

 rmversion - Deletes versions from the vault

DESCRIPTION

• Notes for Modules (Module-based)
• Removing Orphaned Module Members (Module-based)

 This command deletes the specified version from the vault. You delete
 versions from a vault, a process known as pruning, to free up disk
 space. Use this command with caution; you cannot recover a deleted
 version. This command does not affect files in your local work area.

File-Based Design

384

 You cannot delete:
 - Tagged versions (unless you use the -force option).
 - Version 1.1.
 - Version .1 when other versions exist on the branch
 - Version .1 when the version is upcoming. (For example, suppose you
 have a branch 1.4.1 that has no versions, but the branch is
 locked. In this case the upcoming version is 1.4.1.1, which
 cannot be deleted.)
 - Branch-point versions (for example, if 1.2.1 is a branch, you
 cannot delete version 1.2).
 - The Latest version on a locked branch (for example, if
 someone checks out version 1.3 with a lock, you
 cannot delete version 1.3 from the vault until the lock is
 released).

 Use version-extended names to specify a version. A
 version-extended name consists of a filename followed
 by a semicolon and a version number or tag name (for example,
 top.v;1.2 or top.v;rel13).
 Notes:
 - You cannot use wildcards (such as '*') when using
 version-extended names.
 - When in stcl/stclc mode, you must surround version-extended
 names (or any URL with a semicolon) with double quotes.
 - DesignSync does not reuse version numbers once they have
 been deleted from the vault. For example, assume the vault
 contains top.v;1.1, top.v;1.2, and top.v;1.3, and you
 use rmversion to delete top.v;1.2 and top.v;1.3. If you or
 another user later creates a new version of top.v
 (ci -new top.v), DesignSync names the new version top.v;1.4.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Notes for Modules (Module-based)

 You cannot remove the latest version of a module branch, even with the
 -force option, unless the entire branch is deleted.

 You cannot use wildcards (such as '*') when using module instance
 names as your argument.

 You cannot specify module instance names in a version extended
 format.

Removing Orphaned Module Members (Module-based)

 Module member versions are automatically removed when they are no
 longer referenced by a module version. However, because module
 members are stored as vaults, the rules governing vault version

ENOVIA Synchronicity Command Reference All -Vol2

385

 removal also apply to member versions. Consequently, it is possible
 that a module member version no longer referenced by any module
 version cannot be removed until other module member versions are also
 removed (for example, it could be a branch-point version). Such
 member versions are known as orphans.

 Later purge and rmversion operations may eliminate
 these barriers making it possible to remove these orphans. However,
 under normal rmversion operation, orphans will never be identified as
 candidates for removal because only member versions referenced by
 module versions being deleted are identified as candidates for
 removal.

 Using the -scrub option to the rmversion command, you can remove all
 orphaned module member versions from the module. The -scrub option to
 rmversion searches through the entire module history and removes any
 orphaned module member versions.

SYNOPSIS

 rmversion [-[no]force] [-report <mode>] [-scrub] [-trigarg <arg>]
 [--] <version> [<version> [...]]

ARGUMENTS

• DesignSync Object
• Server Module URL (Module-based)
• Workspace Module (Module-based)

 Specify one or more of the following arguments:

DesignSync Object

 <DesignSync object> Removes the specified DesignSync object from the
 server. This object can be a version-extended
 vault URL, or an object in your workspace.

Server Module URL (Module-based)

 <module URL> URL of the module containing the versions being
 removed. Specify the URL as follows:
 sync[s]://<host>[:<port>]/Modules/[<Category>...]
 /<module>;<version>
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer
 port number, <Category> identifies the
 optional category path, <module> is the name

File-Based Design

386

 of the module, and <version> is the version
 extension.

 Note: You must specify the module URL as a version
 extended object.

Workspace Module (Module-based)

 <workspace Specifies the module instance name or path of the
 module> module containing the version being removed. By
 default, this will remove from the branch
 currently populated in the workspace.

 Note: The rmversion command accepts
 version-extended workspace folder and file
 paths. It does not accept version-extended module
 instance names. Also module instance names
 cannot be specified by using wildcard characters.

OPTIONS

• -force (Module-based)
• -force (File-based)
• -report (Module-based)
• -report (File-based)
• -[no]scrub (Module-based)
• -trigarg
• --

-force (Module-based)

 -[no]force Determines whether you can delete tagged versions from
 the vault.

 -noforce does not delete tagged versions.(Default)

 -force deletes tagged versions. Use this option with
 caution because deleting a tagged version changes
 (possibly damaging) a configuration.

 Note: The Latest version of a module branch will never
 be removed unless the entire module branch is removed.
 Also the initial (1.1) version of a module cannot be
 removed.

-force (File-based)

 -[no]force Determines whether you can delete tagged versions from

ENOVIA Synchronicity Command Reference All -Vol2

387

 the vault.

 -noforce does not delete tagged versions.(Default)

 -force deletes tagged versions. Use this option with
 caution because deleting a tagged version changes
 (possibly damaging) a configuration.

-report (Module-based)

 -report <mode>
 Specifies the amount of output generated by the
 rmversion operation.

 Available modes are:
 o brief - Displays error messages. (Note: This mode
 does not display versions successfully deleted.)
 o normal - (the default mode) Displays:
 - The name and version number of each version
 deleted.
 - Error messages.
 o verbose - Displays:
 - For vault objects, the full vault URL path of each
 version being deleted.
 - The name and version number of each version
 deleted.
 - Error messages.
 Note: For module objects, data about individual module
 member versions is not displayed. The command summary
 at the end of the command output indicates how many
 module member versions were removed.

-report (File-based)

 -report <mode>
 Specifies the amount of output generated by the
 rmversion operation.

 Available modes are:
 o brief - Displays error messages. (Note: This mode
 does not display versions successfully deleted.)
 o normal - (the default mode) Displays:
 - The name and version number of each version
 deleted.
 - Error messages.
 o verbose - Displays:
 - For vault objects, the full vault URL path of each
 version being deleted.
 - The name and version number of each version
 deleted.
 - Error messages.

File-Based Design

388

-[no]scrub (Module-based)

 -[no]scrub Specifies whether to remove any module member versions
 no longer referenced for any module versions; orphaned
 module members.
 -noscrub does not search for or remove any orphaned
 module members. (Default)
 -scrub expands the scope of the rmversion command to
 search for any orphaned module versions.

-trigarg

 -trigarg <arg> Specifies an argument to be passed from the
 command line to the triggers set on the
 delete version operation. If the argument contains
 whitespace, enclose the argument within
 double quotation marks ("") if using the dss
 command shell or braces ({}) if using the stcl
 command shell.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 none

SEE ALSO

 remove, rmfile, rmfolder, rmvault, retire, tag, command defaults

EXAMPLES

• Example of Removing a File Version
• Example of Removing a File Specified with a Path
• Example of Removing Multiple Files with Associated Tags

Example of Removing a File Version

 Delete version 1.2 of top.v, where top.v is in my current work area.
 The double quotes are required in stcl/stclc mode.

ENOVIA Synchronicity Command Reference All -Vol2

389

 stcl> rmversion "top.v;1.2"

Example of Removing a File Specified with a Path

 Delete version top.v;1.2 specifying an absolute path to the
 file in the local work area. In dss/dssc mode, the quotes are optional.
 dss> rmversion "/home/Projects/ASIC/top.v;1.2"

Example of Removing Multiple Files with Associated Tags

 Delete two versions of top.v, both of which have tags associated
 with them.
 dss> rmversion -force top.v;1.2 top.v;rel13

select

select Command

NAME

 select - Identifies specific objects to be processed

DESCRIPTION

 This command builds a list of objects on which commands can
 operate. You might use a select list when you are going
 to perform multiple operations on the same set of objects.
 Many commands that accept objects as command arguments
 support the '-selected' option. When you specify '-selected',
 the command operates on this pre-built select list in addition to
 any objects you specify as arguments.

 You can specify wildcards when selecting objects. Use the
 'unselect' command to remove objects from the select list.

 Commands that operate on a select list can also operate on
 objects you select from the DesignSync graphical interface.
 Select one or more objects from the List View, then enter a
 command from the command bar.
 Notes:
 o The "Synchronize graphical and command-line interfaces "
 option from Tools->Options->GUI Options must be selected.
 o Selecting objects graphically clears your current select list.

SYNOPSIS

File-Based Design

390

 select [--] {-show | <argument> [<argument>...]}

ARGUMENTS

• Server Module (Module-based)
• Workspace Module (Module-based)
• Module Member (Module-based)
• DesignSync Object (File-based)

Server Module (Module-based)

 <server module> Server modules can be selected using URL of the
 module.
 sync[s]://<host>[:<port>]/<vaultPath> where
 <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 and <vaultPath> identifies the module to select.

Workspace Module (Module-based)

 <workspace module> Workspace modules can be selected.

Module Member (Module-based)

 <workspace module Workspace module members can be selected.
 member>

 Note: Server module members, member versions,
 branches, and hrefs do not have a specific server
 address and therefore cannot be specified in a
 selector list.

DesignSync Object (File-based)

 <DesignSync object> Most DesignSync objects can be selected.
 <DesignSync folder>

OPTIONS

• -show
• --

-show

ENOVIA Synchronicity Command Reference All -Vol2

391

 -show Lists the objects in your select list.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode, there is no return value except when you specify
 -show, in which case the return value is a Tcl list of the
 objects in your select list.

SEE ALSO

 unselect, cancel, ci, co, ls, populate, tag, vhistory

EXAMPLES

• Example of Using Select on the Command Line to Select Files
• Example of Using Select within a Script

Example of Using Select on the Command Line to Select Files

 This example selects all files that begin with 'samp' or have a
 '.mem' extension, then checks out the selected files and 'top.v'.
 Note that 'samp.mem' matches both the arguments to the select
 command but is stored only once in the select list.
 dss> select samp* *.mem
 Already Selected: c:\Projects\Sportster\code\samp.mem
 dss> select -show
 file:///c|/Projects/Sportster/code/samp.asm
 file:///c|/Projects/Sportster/code/samp.lst
 file:///c|/Projects/Sportster/code/samp.mem
 file:///c|/Projects/Sportster/code/samp.s19
 file:///c|/Projects/Sportster/code/sample1.asm
 file:///c|/Projects/Sportster/code/test.mem
 dss> co -selected -lock -nocomment top.v

Example of Using Select within a Script

File-Based Design

392

 This example runs an stcl script called select.tcl, which
 displays a message for each object in a directory with a '.v'
 extension.
 # -- script start --
 select *.v
 foreach obj [select -show] {
 puts "$obj is selected."
 }
 # -- script end --

 stcl> run ./select.tcl
 file:///c|/Projects/Sportster/top/alu/alu.v is selected.
 file:///c|/Projects/Sportster/top/alu/mult8.v is selected.

 stcl>

setowner

setowner Command

NAME

 setowner - Sets the owner on the object specified

DESCRIPTION

 This command sets the ownership of an object to the name specified.
 The object can be project, project configuration, DesignSync vault
 branch or module branch.

 The owner of a branch is the creator of the initial version of the
 branch unless a different owner is specified with the
 setowner command. For example, the default owner of the main branch
 (branch 1) is the creator of version 1.1 . The owner of an object's
 main branch is also, by definition, the owner of the object's vault.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 setowner [--] <argument> <owner>

OPTIONS

ENOVIA Synchronicity Command Reference All -Vol2

393

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 none

SEE ALSO

 url owner, switchlocker

EXAMPLES

• Example of Setting the Ownership for a Project
• Example of Setting the Owner of a Branch

Example of Setting the Ownership for a Project

 This example sets the ownership for the project
 ASIC to 'johndoe':
 dss> setowner sync://myserver:myport/Projects/ASIC johndoe

Example of Setting the Owner of a Branch

 This example sets the owner of the main branch of reg5.v to barbg:
 dss> setowner "sync://holzt:2647/Projects/Sportster/decoder/reg5.v;1"
barbg

switchlocker

switchlocker Command

NAME

 switchlocker - Changes the current owner of a lock

File-Based Design

394

DESCRIPTION

 This command changes the lock owner of a branch. This command is
 particularly useful when two or more people are working on the same
 branch.

 The following design scenario highlights the function of switchlocker.

 UserA and UserB share the same work area and will be editing
 the same design object. UserA checks out the object for
 editing, thereby locking the branch. The object is modified by
 UserA or UserB, or both (assuming the proper permissions have
 been set on the object). UserB then needs to check in the
 changes (maybe UserA is unavailable to perform the
 checkin). UserB can use the switchlocker command to take lock
 ownership and then perform the checkin.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 switchlocker [-modulecontext <context>] [--] <locker> <argument>

ARGUMENTS

• Username of New Locker
• Server Module Branch (Module-based)
• Module Member Argument (Module-based)
• DesignSync Object (File-based)

Username of New Locker

 <locker> Username of the new locker of the file.

Server Module Branch (Module-based)

 <server module branch> Specifies the locked module branch being
 switched.

 Note: Any locked objects in the branch must be
 held by the same user who holds the branch
 lock. If there are locked objects in the
 branch held by a different user, you must use
 the unlock command to unlock those objects.

ENOVIA Synchronicity Command Reference All -Vol2

395

Module Member Argument (Module-based)

 <module member> Specifies the locked module member to switch.
 When you specify an individual module member,
 you must use the -modulecontext option to
 specify the module context appropriate for
 the module member.

DesignSync Object (File-based)

 <DesignSync object> Specifies the object being switched. If the
 object is on a branch or is not the current
 version, you must specify the branch or
 version information for the object.

OPTIONS

• -modulecontext (Module-based)
• --

-modulecontext (Module-based)

 -modulecontext Identifies the module version of the objects
 <context> being switched to a different locker. Specify
 the module context with the sync URL of the
 desired module. For example:
 sync://server1:2647/Modules/Chip;RelA

 Note that you cannot use a -modulecontext
 option to operate on objects from more than
 one module; the -modulecontext option takes
 only one argument, and you can use the
 -modulecontext option only once on a command
 line. When the modulecontext option is used,
 the argument must specify the natural path of
 the object being switched.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when the
 object you specify begins with a hyphen (-).

RETURN VALUE

File-Based Design

396

 none

SEE ALSO

 cancel, unlock, setowner, url properties, command defaults

EXAMPLES

• Example of Switching the Locker for a Module Member (Module-based)
• Example of Switching the Locker for a DesignSync File-Basd Objects (File-based)

 The following examples shows how two users with a shared
 work area might use switchlocker. User 'goss' must take over the
 lock from 'barbg' before 'goss' can check in the file.

Example of Switching the Locker for a Module Member (Module-based)

 This example shows using switchlocker on a module object, chip.c.
 Note that the module object being specified is proceeded by a leading
 slash (/). This means that the objects is in the module base
 directory (Chip/.)

 dss> showlocks Chip%0
 Module Chip, branch 1 (Trunk) has content locks:

 User Date Name Where
 ---- ---- ---- -----
 barbg 11/13/2006 15:59 /chip.c /home/barbg/chip/chip.c
 ...

 dss> switchlocker -modulecontext \
 sync://srvr2.ABCo.com:2647/Modules/Chip;1.7 goss /chip.c

 sync://srvr2.ABCo.com:2647/Modules/Chip;1
 /chip.c : Success

 dss> showlocks sync://srvr2.ABCo.com:2647/Modules/Chip

 Module Chip, branch 1 (Trunk) has content locks:

 User Date Name Where
 ---- ---- ---- -----
 goss 11/13/2006 15:59 /chip.c Unknown
 ...

 Note: The Where value is unknown because the lock is no longer
 associated with the original workspace.

ENOVIA Synchronicity Command Reference All -Vol2

397

Example of Switching the Locker for a DesignSync File-Basd Objects (File-based)

 This example shows using switchlocker on a DesignSync file-based
 object, top.v.

 dss> ls -report RU top.v
 Version Locked By Name
 ------- --------- ----
 1.2 -> 1.3 barbg* top.v

 dss> ci -nocomment top.v

 Beginning Check in operation...

 Checking in: top.v : Failed:som: Error 102: Locked By Other User.

 dss> switchlocker goss top.v
 SwitchLocker: success
 dss> ls -report RU top.v
 Version Locked By Name
 ------- --------- ----
 1.2 -> 1.3 goss* top.v
 dss> ci -nocomment top.v

 Beginning Check in operation...

 Checking in: top.v : Success - New version: 1.3
 dss>

unlock

unlock Command

NAME

 unlock - Releases the lock on the specified object(s)

DESCRIPTION

• Notes on Modules (Module-based)
• Note on File-Based Objects (File-based)
• Auto-Branching (File-based)

 This command releases the lock on a specified object(s). This command
 is used primarily to release object locks on the server. To release a
 lock on an object you have checked out in your work area, use the
 'cancel' command instead of 'unlock'. Use the 'unlock' command to
 remove a lock held by someone else, or if you no longer have the
 object that you checked out in your work area.

File-Based Design

398

 Only one user can have a lock on a given branch of an object at a
 time. Having a lock prohibits other users from checking in changes to
 that branch; however, other users (or the same user in different work
 areas) can independently lock, unlock, and check in changes to other
 branches.

 To remove a lock and change states, use the 'cancel' command.
 Also, if you have a lock taken away from you by another user (with the
 'unlock' command), you should cancel your checkout (with the
 'cancel' command) to return your local object to a consistent state.

 Unlock is equivalent to performing 'cancel -keep' on an object
 because unlock does not affect the local copy of the file in the
 work area. The unlock action replaces locked references in the
 workspace with copies.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Notes on Modules (Module-based)

 You lock a module branch by using the -lock command.

 Filter and exclude lists are used to include or exclude objects to be
 unlocked. Filter lists are used to include or exclude module
 objects or to include DesignSync objects. Exclude lists are used to
 exclude DesignSync objects.

 Note: Regardless of whether -filter or -exclude is used to exclude an
 object, the command output message indicates that the object was
 "excluded by filter."

 The natural path argument for a module, as shown in the
 example, always begins with a "/" character.

 Note: For module members, the locker keyword is always a null value,
 so unlock does not update the keyword in module members when the lock
 is released.

Note on File-Based Objects (File-based)

 You lock a branch by checking out an object with the -lock option
 to the co, populate, or ci command, or by using the lock command
 on a module branch.

 Exclude lists are used to exclude objects from the unlock. Filter
 lists are used to include or exclude module objects or to include
 DesignSync objects. Exclude lists are used to exclude DesignSync
 objects.

ENOVIA Synchronicity Command Reference All -Vol2

399

 Note: When -exclude is used to exclude an object, the command output
 message indicates that the object was "excluded by filter."

Auto-Branching (File-based)

 You can create a new, locked branch by using 'co -lock' with a selector
 and autobranching. This branch can be unlocked without creating a new
 version by:

 - Using 'cancel' from the workspace where the branch was locked.
 - Using 'unlock' on the vault.
 - Using ci from the workspace where the branch was locked, without
 making modifications.

 In these cases, the lock is removed from the vault, the auto-created
 branch is removed, and the branch tag is deleted. If the branch is
 removed but still exists in the metadata of a workspace, some commands
 (such as the 'url' commands and 'vhistory') will fail with "No such
 version.

SYNOPSIS

 unlock [-branch <branch> | -branch auto(<branch>)]
 [-exclude <object>[,<object>...]]
 [-modulecontext <context>] [-[no]recursive] [-[no]selected]
 [-trigarg <arg>] [--] [<argument> [<argument> ...]]

ARGUMENTS

• Module Branch/Module Version (Module-based)
• Module Member (Module-based)
• Module Folder (Module-based)
• DesignSync Object (File-based)
• DesignSync Folder (File-based)
• DesignSync Vault (File-based)

Module Branch/Module Version (Module-based)

 <module branch| Specify a server module branch or version
 module version> to remove from the lock from the server
 version, or or a workspace module to remove
 the lock from the associated branch of that
 module, in the workspace and on the server.

 The natural path to a server module must
 begins with "/"

File-Based Design

400

Module Member (Module-based)

 <module member> Specify a module member to remove the lock
 in the server and the workspace. The server
 can be specified with the -modulecontext
 option. If the -modulecontext option is not
 used, the command derives the module context
 from the persistent selector of the workspace.

Module Folder (Module-based)

 <module folder> Specify a module folder to remove the locks
 from all objects in the folder. If the
 -modulecontext option is not used, the command
 derives the module context from the persistent
 selector of the workspace. If you unlock a
 server module folder, you must specify the
 natural path beginning with the "/"
 character.

DesignSync Object (File-based)

 <DesignSync object> A versionable file or collection object, in
 which case the current branch is unlocked.

 Note: If you specify a collection member as
 the object to be operated on, DesignSync skips
 the object and warns that the object is not
 versionable. If DesignSync attempts to operate
 on a collection member specified implicitly
 (through the use of wildcards or a recursive
 operation), DesignSync silently skips the
 object. You can change this behavior by using
 the SyncAdmin "Map operations on collection
 members to owner" setting. If you select this
 setting and DesignSync attempts to operate on
 a collection member during a revision control
 operation, DesignSync determines the member's
 owner collection and operates on the
 collection as a whole.

DesignSync Folder (File-based)

 <DesignSync folder> Specify a DesignSync folder on the server or
 in your workspace (local) to unlock all
 objects in the folder. To unlock all objects
 in sub-folders of the specified folder, use
 the -recursive option.

ENOVIA Synchronicity Command Reference All -Vol2

401

DesignSync Vault (File-based)

 <DesignSync vault> Specify a DesignSync vault to unlock the
 initial branch of the objects in the vault.

OPTIONS

• -branch (Module-based)
• -branch (File-based)
• -exclude
• -modulecontext (Module-based)
• -[no]recursive (Module-based)
• -[no]recursive (File-based)
• -[no]selected
• -trigarg
• --

-branch (Module-based)

 -branch <branch> Unlocks the branch specified by the branch or
 version tag, or branch numeric. By default
 (without -branch), the current branch of each
 specified object is unlocked. This option
 overrides the object's persistent selector
 list. If <branch> resolves to a version, the
 branch of that version is unlocked.

 Note: The -branch option accepts a single
 branch tag, a single version tag, or a branch
 numeric. It does not accept a selector or
 selector list.

 Note: The -branch option is ignored when the
 module branch information is specified by the
 server URL argument.

-branch (File-based)

 -branch <branch> Unlocks the branch specified by the branch or
 | -branch version tag, auto-branch selector, or branch
 auto(<branch>) numeric. By default (without -branch), the
 current branch of each specified object is
 unlocked. This option overrides the object's
 persistent selector list. If <branch> resolves
 to a version, the branch of that version is
 unlocked.

File-Based Design

402

 Note: The -branch option accepts a single
 branch tag, a single version tag, a single
 auto-branch selector tag, or a branch numeric.
 It does not accept a selector or selector
 list.

-exclude

 -exclude <objects> Specifies a comma-separated list of objects to
 exclude from the operation. Wildcards are
 allowed.

 Do not specify paths in your arguments to
 -exclude. Before operating on each object
 (such as during a recursive unlock operation),
 DesignSync compares the object's leaf name
 (path stripped off) to the exclude list to see
 if there is a match. Because the object's path
 is removed, the object will not match any
 object in the exclude list specified with a
 path. For example, if you specify '-exclude
 bin/*.exe', you will not successfully exclude
 bin/foo.exe or any other *.exe file. You need
 to instead specify '-exclude *.exe', or
 '-exclude foo.exe' if you want to exclude only
 'foo.exe'. This means, however, that you
 cannot exclude a specific instance of an
 object -- you exclude all matching objects.

 In addition to objects you specify using the
 -exclude option, the "These objects are always
 excluded" field from the Tools->Options->
 General->Exclude Lists dialog box in the
 DesignSync graphical user interface lists
 objects that are always excluded from
 revision-control operations.

-modulecontext (Module-based)

 -modulecontext Specifies the server module branch in which
 <context> the objects are being unlocked.

 You can specify a server module URL and the
 branch or version Id,
 (sync://server1:2647/Modules/Chip;RelA) or
 specify the module as a module instance.

 Note: You cannot use a -modulecontext
 option to operate on objects from more than
 one module; the -modulecontext option takes
 only one argument, and you can use the

ENOVIA Synchronicity Command Reference All -Vol2

403

 -modulecontext option only once on a command
 line.

-[no]recursive (Module-based)

 -[no]recursive Determines whether to unlock the objects in
 the specified folder or all objects in the
 folder and all objects in the subfolders. This
 option is ignored if the argument is not a
 module.

 -norecursive removes locks only from objects
 in the specified folder. (Default)

 -recursive removes the locks from the objects
 in the specified folder and all subfolders.
 Note: On GUI clients, -recursive is the
 initial default.

-[no]recursive (File-based)

 -[no]recursive Determines whether to unlock the objects in
 the specified folder or all objects in the
 folder and all objects in the subfolders. This
 option is ignored if the argument is not a
 DesignSync folder.

 -norecursive removes locks only from objects
 in the specified folder. (Default)

 -recursive removes the locks from the objects
 in the specified folder and all subfolders.
 Note: On GUI clients, -recursive is the
 initial default.

-[no]selected

 -[no]selected Determines whether the operation is performed
 just on the objects specified at the command
 line or on objects specified at the command
 line and objects in the select list (see the
 'select' command)
 -noselected unlocks only objects specified on the
 command line. (Default)
 -selected unlocks objects specified on the
 command and in the select list.

 Note: If no objects are specified on the
 command line, the -selected option is implied.

File-Based Design

404

-trigarg

 -trigarg <arg> Specifies an argument to be passed from the
 command line to the triggers set on the
 unlock operation. If the argument contains
 whitespace, enclose the argument within
 double quotation marks ("") if using the dss
 command shell or braces ({}) if using the stcl
 command shell.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when
 arguments to the command begin with a hyphen
 (-).

RETURN VALUE

 The command has no Tcl return value.

 The command does provide a list of the objects processed by the
 command and information about whether the command succeeded, failed,
 or was skipped.

 Note: If an object was "excluded by filter," it may have been
 excluded either with the -filter option (for modules) or with the
 -exclude option (for DesignSync objects.)

SEE ALSO

 cancel, ci, co, lock, populate, select, selectors, switchlocker,
 command defaults

EXAMPLES

• Example of Unlocking a Module Member in the Workspace (Module-based)
• Example of Unlocking a Module Member Using -modulecontext (Module-based)
• Example of Unlocking Specific Files (File-based)
• Example of Unlocking the Contents of a Directory Recursively (File-based)

Example of Unlocking a Module Member in the Workspace (Module-based)

 This example unlocks the "Chip.doc" module member on the Trunk branch
 of the Chip module, as defined by the persistent selector in the
 workspace. The "Chip.doc" file is located in a doc subdirectory

ENOVIA Synchronicity Command Reference All -Vol2

405

 within the module.

 dss> unlock /Doc/Chip.doc
 Beginning Unlock operation...

 Unlocking objects in module Chip%0 with base dir
 c:\workspaces\chip\ ...

 /Doc/Chip.doc: Unlocked

Example of Unlocking a Module Member Using -modulecontext (Module-based)

 This example unlocks the "Chip.doc" module member on the Trunk branch
 of the Chip module. The "Chip.doc" file is located in a doc
 subdirectory within the module.

 Note: When you specify a module or module member to unlock, you must
 specify the natural path to the specified argument.

 dss> unlock -modulecontext sync://host:2647/Modules/Chip;Trunk \
 /Doc/Chip.doc
 Beginning Unlock operation...

 Unlocking: sync://serv1.ABCo.com:2647/Modules/Chip;1 :
 /doc/Chip.doc: Unlocked

 Unlock operation finished.

 {Objects succeeded (1)} {}

Example of Unlocking Specific Files (File-based)

 This example unlocks the 'Rel2.1' branch of the 'alu.v' and
 'decoder.v' files.
 dss> unlock -branch Rel2.1 alu.v decoder.v

Example of Unlocking the Contents of a Directory Recursively (File-based)

 In the following example, a developer went on vacation while having
 many of the files in the 'code' vault folder locked. The following
 command recurses the 'code' vault folder and removes the
 locks.
 dss> unlock -rec sync://host:2647/Projects/Sportster/code

 Beginning Unlock operation...

 Unlocking: sync://host:2647/Projects/Sportster/code/samp.asm; : Not locked
 Unlocking: sync://host:2647/Projects/Sportster/code/samp.lst; : Unlocked.
 Unlocking: sync://host:2647/Projects/Sportster/code/test.mem; : Unlocked.
 Unlocking: sync://host:2647/Projects/Sportster/code/test.asm; : Not locked

File-Based Design

406

 Unlocking: sync://host:2647/Projects/Sportster/code/samp.mem; : Unlocked.
 Unlocking: sync://host:2647/Projects/Sportster/code/test.lst; : Not locked
 Unlocking: sync://host:2647/Projects/Sportster/code/test.s19; : Unlocked.

 Unlock operation finished.

unselect

unselect Command

NAME

 unselect - Removes files from the 'selected' list

DESCRIPTION

 This command removes specified files from the list of selected
 objects. Many commands that accept filenames also support the
 -selected option, which feeds this pre-built list of files to the
 command for processing. As with most commands that accept
 filenames, wildcard file specifications are also supported.

SYNOPSIS

 unselect [-quiet] [-all | [--] <argument> [<argument>...]]

ARGUMENTS

• Server Module (Module-based)
• Workspace Module (Module-based)
• Workspace Module Member (Module-based)
• DesignSync Object (File-based)

Server Module (Module-based)

 <server module> Server modules can be selected using the URL of
 the module.
 sync[s]://<host>[:<port>]/<vaultPath> where
 <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 and <vaultPath> identifies the module to select.

Workspace Module (Module-based)

ENOVIA Synchronicity Command Reference All -Vol2

407

 <workspace module> Workspace modules can be selected.

Workspace Module Member (Module-based)

 <workspace module Workspace module members can be selected.
 member>

 Note: Server module members, member versions,
 branches, and hrefs do not have a specific server
 address and therefore cannot be specified in a
 selector list.

DesignSync Object (File-based)

 <DesignSync object> Most DesignSync objects can be selected.
 <DesignSync folder>

OPTIONS

• -all
• -quiet
• --

-all

 -all Remove all objects from the select list.

 This option is mutually exclusive with specifying an
 argument to this command.

-quiet

 -quiet Do not report the names of objects being deselected.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

File-Based Design

408

 none

SEE ALSO

 select, cancel, ci, co, ls, tag, populate

EXAMPLES

• Example of Removing Specified Objects from the Select List
• Example of Removing All Objects from the Select List

Example of Removing Specified Objects from the Select List

 This example removes foo1.v and all files that match bar*.v from
 the select list:
 dss> unselect foo1.v bar*.v

Example of Removing All Objects from the Select List

 This example removes all objects from the select list:
 dss> unselect -all

upload

upload Command

NAME

 upload - Upload/Update compressed IP stored in DesignSync

DESCRIPTION

• Understanding How a Temporary Directory is used for Upload
• Order of Precedence for Temp Directory:

 The command allows you to upload or update a tar or gzipped tar
 archive to DesignSync in an efficient manner so that, instead of
 replacing the archive with the next version, DesignSync updates
 only the elements within the archive file that have changed from the
 previous version.

 By performing a change (delta) calculation and only checking in the

ENOVIA Synchronicity Command Reference All -Vol2

409

 changed object set, DesignSync provides both improved speed during
 checkin and checkout and reduces the amount of disk space required
 for storing the IP.

 The user running the upload should examine the tar file to make sure
 it contains none of
 the following:
 o unnecessary or undesired parent directories
 o absolute path directories

 These should be removed before performing the upload.

Notes:
 o The executables (binaries) for tar or gtar must be on the user's
 path in order for the command to work.

 o DesignSync also provides a graphical user interface for uploading
 IP through the DesignSync Web Interface. For more information, see
 the DesignSync Administrator's Guide.

 This command is subject to Access Controls on the server.

 This command supports the command defaults system.

Understanding How a Temporary Directory is used for Upload

 The compressed archive is exploded in a temporary directory and
 compared against the last version, if applicable, on the server and
 only the changed object set is checked in.

 Tip: For optimal operation, DesignSync recommends that the upload
 directory contain at least 2.5* the size of the uncompressed
 archive file.

 By default, this operation is performed in the temporary directory
 specified by the Upload_Tmp_Dir registry setting or the SYNC_TMP_DIR
 environment variable. If neither of these is set, DesignSync uses the /tmp
 directory on the repository server. For more information on setting
 the Upload_Tmp_Dir registry setting, or the SYNC_TMP_DIR environment
 variable, see the DesignSync Administrator's Guide.

 You can optionally specify either a local directory or an alternate
 location on the server. This is especially useful for servers where
 you cannot control the server space consumption; specifying an
 alternative disk partition or performing the delta comparison locally
 allows you to make sure you have enough space to perform the
 operation. Specifying an option on the command line overrides any
 existing settings.

Order of Precedence for Temp Directory:

 Note: DesignSync will use this order to determine which tmp

File-Based Design

410

 directory to use for the upload operation. If there is no set value,
 DesignSync will check the next location on this. If there is a
 value set, but DesignSync is unable to use it, for example, because
 of incorrect write permissions, the command will fail.

 1. If the -vault option is used, and -servertmpdir or -localtmpdir
 is specified, the value of <tmpdir> is used. If the -workspace
 option is specified, the workspace is used as the tmp directory.

 2. If the command defaults system is used to set a value
 -servertmpdir or -localtmpdir, that value is used as the tmp
 directory.

 3. If the UploadTmpDir registry setting is specified, that value
 is used as the tmp directory.

 4. If the SYNC_TMP_DIR environment variable is set on the server
 machine, that value is used as the tmp directory.

 5. If the TMPDIR environment variable is set on the server machine,
 that value is used as the tmp directory.

 6. If no other values are set, DesignSync uses the /tmp directory on
 the server machine.

SYNOPSIS

 upload [-branch <branchname>] [-[no]collections]
 [-[no]comment <comment>] [-[no]new]
 [-report brief | normal | verbose] [-tag <tagname>]
 [-vault <vaulturl> [-servertmpdir <tmpdir>] |
 [-vault <vaulturl> [-localtmpdir <tmpdir>] |
 [-workspace <path>] <tarfile>

ARGUMENTS

• Tar file

Tar file

 <tarfile> Specify a tar or gzipped tar archive to upload or
 update on the server. The archive can be
 specified with an absolute or relative path. The
 file extension for the tar file must be either
 .tar or .tgz in order for DesignSync to
 recognize the file.

 NOTE: If the tar file contains .SYNC directories,
 they are automatically ignored and not checked in
 with the archive.

ENOVIA Synchronicity Command Reference All -Vol2

411

OPTIONS

• -branch
• -[no]collection
• -[no]comment
• -localtmpdir
• -[no]new
• -report (Module-based)
• -report (File-based)
• -servertmpdir
• -tag
• -vault (Module-based)
• -vault (File-based)
• -workspace

-branch

 -branch Specifies the branch on which to place the
 <branchname> archive. You can specify only one branch with this
 option. If no branch is specified, DesignSync
 uploads to the Trunk branch. You cannot specify a
 branch tag for the initial archive upload, which
 is always checked into the Trunk branch.

 For the <branchname>, specify a branch tag (for
 example, rel40) or branch numeric (for
 example, 1.4.2) only. Do not specify a colon
 (:) with the branchname.

 If a temp directory (other than the /tmp default)
 is specified for the upload, and the -branch
 option is used, the specified branch must already
 exist on the server.

 The -branch option is mutually exclusive with the
 -new option.

-[no]collection

 -[no]collection Specifies whether the compressed package includes
 collections objects. For more information on
 collection handling, see the DesignSync
 Administrator's Guide.

 -nocollection specifies that the compressed
 archive does not contain collection objects. This
 allows the upload process to use reference mode,
 improving the speed of operations. (Default)

 -collection specifies that the compressed archive

File-Based Design

412

 contains collection objects. The upload process
 will not attempt to use reference mode which would
 process collections incorrectly.

-[no]comment

 -[no]comment Specifies whether a text description of the
 ["<comment>"] upload is stored with the checked in version.

 -nocomment performs the upload with no
 comment.(Default)

 -comment <text> stores the value of <text> as the
 module comment. To specify a multi-word comment,
 use quotation marks ("") around the comment text.

-localtmpdir

 -localtmpdir When -vault is used, the -localtmpdir option
 <tmpdir> is used to specify a tmp directory path on the
 local (client) machine to be used for the upload
 operation. When the upload is completed, any
 objects placed in this directory during upload are
 removed.

-[no]new

 -[no]new Performs the initial checkin of the archive. The
 initial archive checkin must be performed on the
 Trunk branch.

 -nonew is used to update the archive in revision
 control. If the archive does not exist and -nonew
 is selected, the command fails. (Default)

 -new is used to create or update the archive. If
 the archive exists and the -new option is
 specified, the archive is updated.

 The -new option is mutually exclusive with the
 -branch option.

-report (Module-based)

 -report brief | Controls the amount and type of information
 normal| verbose displayed by the command.

 brief mode reports the newly created module

ENOVIA Synchronicity Command Reference All -Vol2

413

 version, along with the generated tag.

 Normal mode additionally reports a list of the
 changes in the archive, including: added files,
 removed files and changed files.

 Verbose mode is equivalent to normal mode.

-report (File-based)

 -report brief | Controls the amount and type of information
 normal| verbose displayed by the command.

 brief mode reports the generated tag.

 Normal mode additionally reports a list of the
 changes in the archive, including: added files,
 retired files and changed files.

 Verbose mode is equivalent to normal mode.

-servertmpdir

 -servertmpdir When -vault is used, the -servertmpdir option
 <tmpdir> is used to specify a tmp directory path on the
 repository server to be used for the upload
 operation. When the upload is completed, any
 objects placed in this directory during upload are
 removed.

-tag

 -tag <tag> Applies the specified tag to the data being
 imported. This tag can be used to get the data
 later, or example, when populating the archive
 into a workspace.

 If the tag already exists it moves to the new
 version.

 Note: An automatically generated tag, in the form
 Archive.<#> is also applied to the data being
 imported, where the initial value of # is 1, and
 then the number is incremented as archive is
 updated.

-vault (Module-based)

File-Based Design

414

 -vault <vaultURL> Specify the module URL and optionally a server
 [-servertmpdir <tmpdir>] or local path to use as a temporary upload
 | [-localtmpdir <tmpdir>] directory.

 Specify the module URL in the format:

sync[s]://<host>:<port>/Modules/[<category>...]/<Module>

 If the module does not exist, then it will be
 created, if the command is run with the -new
 option.

 When you specify an alternate tmp directory for
 upload, you can specify a server path on on the
 repository server or a local path on the
 client system. For more information on
 specifying a server path, see the -servertmpdir
 option. For more information on specifying a
 local path, see the -localtmpdir option.

 This option is mutually exclusive with
 -workspace. Either -workspace or -vault must be
 specified.

-vault (File-based)

 -vault <vaultURL> Specify the vault URL and optionally a server or
 [-servertmpdir <tmpdir>] local path to use as a temporary upload
 | [-localtmpdir <tmpdir>] directory.

 Specify the vault URL in the format:
 sync[s]://<host>:<port>/[<Project>...]/<vault>

 If the vault does not exist, then it will be
 created, if the command is run with the -new
 option.

 When you specify an alternate tmp directory for
 upload, you can specify a server path on on the
 repository server or a local path on the
 client system. For more information on
 specifying a server path, see the -servertmpdir
 option. For more information on specifying a
 local path, see the -localtmpdir option.

 This option is mutually exclusive with
 -workspace. Either -workspace or -vault must be
 specified.

-workspace

 -workspace Specify an existing, unmodified workspace

ENOVIA Synchronicity Command Reference All -Vol2

415

 <path> as a staging area to unpack the new archive,
 determine the changes necessary and send only
 the changes to the server. If this is used for
 an initial upload, the archive is unpacked in
 the workspace and the entire contents of the
 archive is uploaded. For the initial upload,
 DesignSync uses the persistent selector to
 determine the module/vault for checkin.

 This is a performance enhancement that minimizes
 the server processing time needed to compute the
 deltas by pre-computing the deltas in the
 workspace.

 The workspace must be owned and writable by the
 person running the command.

 The -workspace option is mutually exclusive
 with -vault and -branch. The -workspace option
 is only supported for UNIX workspaces.

RETURN VALUE

 This command does not return any TCL values. DesignSync provides
 status messages while the command runs. If the command fails,
 DesignSync returns an error explaining the failure.

SEE ALSO

 defaults, access, ci

EXAMPLES

• Example of Performing an Initial Upload (Module-based)
• Example of Specifying a Server Temporary Directory for Module Upload (Module-

based)
• Example of Specifying a Local Temporary Directory for Module Upload (Module-based)
• Example of Performing an Upload Using a Module Workspace (Module-based)
• Example of Performing an Initial Upload (File-based)
• Example of Performing an Upload Using a File-Based Workspace (File-based)
• Example of Specifying a Server Temporary Directory for File-based Upload (File-based)
• Example of Specifying a Local Temporary Directory for File-based Upload (File-based)

Example of Performing an Initial Upload (Module-based)

 This example shows performing an initial upload to a module.

File-Based Design

416

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 checked in. For brevity, those checkin lines have been removed.

 dss> upload -vault sync://qelwsun14:30126/Modules/IPWIP/FinalIP -new
 -comment "IP Finals version 1.0" FinalIP.tar

 Logging to /home/rsmith/dss_04012014_181455.log
 3DEXPERIENCE6R2022x

 Beginning Check in operation...

 Checking in objects in module FinalIP%0

 Total data to transfer: 7340 Kbytes (estimate), 626 file(s), 0
collection(s)
 Checking in:
 ...

 FinalIP%0: Version of module in workspace updated to 1.2

 Finished checkin of Module FinalIP%0, Created Version 1.2

 Time spent: 10.5 seconds, transferred 0 Kbytes, average data rate
 0.0 Kb/sec

 Checkin operation finished.

 NOTE: Workspace module argument 'FinalIP%0' supplied; will tag
 'sync://serv1.ABCo.com:2647/Modules/IPWIP/FinalIP;1.2'

 Beginning module tag operation on 'sync://qelwsun14:30126' ...

 Tagging: sync://serv1.ABCo.com:2647/Modules/IPWIP/FinalIP;1.2 :
 Added tag 'Archive.1' to version '1.2'

 Module tag operation finished on 'sync://serv1.ABCo.com:2647'.

Example of Specifying a Server Temporary Directory for Module Upload (Module-based)

 This example updates an IP checked into a module. It uses a
 specified directory on the server as its temporary storage area
 rather than the server default which allows you to make sure that the
 space you need for the operation is available.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 populated, checked in, and tagged. For brevity, the individual
 object detail lines have been removed.

 dss> upload -vault sync://serv1.ABCo.com:2647/Modules/CustomerIP
 -servertmpdir /home/syncadmin/tmp -comment "Uploaded IP"
 ./FinalIP.tar
 Beginning Check in operation...

ENOVIA Synchronicity Command Reference All -Vol2

417

 Checking in: ...
 ...
 Checkin operation finished.

 Beginning Tag operation...
 ...
 Tag operation finished.
 dss>

Example of Specifying a Local Temporary Directory for Module Upload (Module-based)

 This example updates an IP checked into a module. It uses a
 specified directory on the client machine as its temporary storage
 area rather than the server default which allows you to make sure
 that the space you need for the operation is available and reduces
 processing time on the server.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 populated, checked in, and tagged. For brevity, the individual
 object detail lines have been removed.

 dss> upload -vault sync://serv1.ABCo.com:2647/Modules/CustomerIP
 -localtmpdir ~/tmpfiles -comment "Uploading new version" FinalIP.tar

 Beginning Check in operation...
 Checking in: ...
 ...
 Checkin operation finished.

 Beginning Tag operation...
 ...
 Tag operation finished.
 dss>

Example of Performing an Upload Using a Module Workspace (Module-based)

 This example updates an IP checked into a module. It uses the module
 workspace as its temporary storage area rather than the server which
 reduces the processing time needed on the server.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 populated and checked in. For brevity, the individual object detail
 lines have been removed.

upload -comment "uploading IP Finals version 1.5" -workspace
 ~rsmith/MyMods/customerIP ../FinalIP.tar

 Beginning populate operation at Wed Apr 02 10:45:54 AM EDT 2014...

File-Based Design

418

 Populating objects in Module FinalIP%0
 Base Directory /home/rsmith/MyMods/customerIP
 Without href recursion

 Fetching contents from selector 'Trunk:', module version '1.2'
 ... [Fetching List of Objects in Lock Mode]

 FinalIP%0 : Version of module in workspace retained as 1.2

 Finished populate of Module FinalIP%0 with base directory
/home/rsmith/MyMods/customerIP

 Time spent: 0.0 seconds, transferred 0 Kbytes, copied from local
 cache 0 Kbytes, average data rate 0.0 Kb/sec

 Finished populate operation.

 Beginning Check in operation...

 Checking in objects in module FinalIP%0

 Total data to transfer: 7102 Kbytes (estimate), 596 file(s), 0 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 1 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 4975 Kbytes, 404 file(s), 0 collection(s), 68.1% complete
 Progress: 7259 Kbytes, 596 file(s), 0 collection(s), 100.0% complete

 ... [Checking in new files, removing locks]

 FinalIP%0: Version of module in workspace updated to 1.3

 Finished checkin of Module FinalIP%0, Created Version 1.3

 Time spent: 15.7 seconds, transferred 7259 Kbytes, average data rate 463.8
Kb/sec

 Checkin operation finished.

 NOTE: Workspace module argument 'FinalIP%0' supplied; will tag
 'sync://serv1.ABCo.com/Modules/IPWIP/FinalIP;1.3'

 Beginning module tag operation on 'sync://serv1.ABCo.com:2647' ...

 Tagging: sync://serv1.ABCo.com:2647/Modules/IPWIP/FinalIP;1.3 :
 Added tag 'Archive.2' to version '1.3'

 Module tag operation finished on 'sync://serv1.ABCo.com:2647'.

Example of Performing an Initial Upload (File-based)

 This example shows performing an initial upload to a file-based vault.

ENOVIA Synchronicity Command Reference All -Vol2

419

 Note: This example has been run in normal mode, which means that each
 object processed in the tar file is listed in the command output.
 For brevity, these lines have been removed.

 dss> upload -comment "IP rel 1.0 handoff" -vault
 sync://serv1.ABCo.com:2647/Projects/customerIP -new FinalIP.tar

 Operation continuing, please wait...
 sync://serv1.ABCo.com:2647/Projects/customerIP Success Folder Made
 Logging to /home/rsmith/dss_04042014_123427.log
 3DEXPERIENCE6R2022x

 Beginning Tag operation...

 ... [List of tag files removed]

 Tag operation finished.

Example of Performing an Upload Using a File-Based Workspace (File-based)

 This example updates an IP checked into a file-based vault. It uses a
 workspace as its temporary storage area rather than the server which
 reduces the processing time needed on the server.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 populated, checked in, and tagged. For brevity, the individual
 object detail lines have been removed.

 dss> upload -comment "IP rel 2.0 handoff" -workspace
 ~rsmith/workspaces/customerIP FinalIP.tar

 Beginning populate operation at Fri Apr 04 02:22:56 PM EDT 2014...
 ...

 Populated '/home/rsmith/workspaces/customerIP'

 Finished populate operation.

 Beginning Check in operation...
 ...

 Checkin operation finished.

 Beginning Tag operation...
 ...

 Tag operation finished.

Example of Specifying a Server Temporary Directory for File-based Upload (File-based)

File-Based Design

420

 This example updates an IP checked into a file-based vault. It uses a
 specified directory on the server as its temporary storage area
 rather than the server default which allows you to make sure that the
 space you need for the operation is available.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 populated, checked in, and tagged. For brevity, the individual
 object detail lines have been removed.

 dss> upload -vault sync://serv1.ABCo.com:2647/Projects/CustomerIP
 -servertmpdir /home/syncadmin/tmp -comment "Uploaded IP"
 ./FinalIP.tar
 Beginning Check in operation...
 Checking in: ...
 ...
 Checkin operation finished.

 Beginning Tag operation...
 ...
 Tag operation finished.
 dss>

Example of Specifying a Local Temporary Directory for File-based Upload (File-based)

 This example updates an IP checked into a file-based vault. It uses a
 specified directory on the client machine as its temporary storage
 area rather than the server default which allows you to make sure
 that the space you need for the operation is available and reduces
 processing time on the server.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 populated, checked in, and tagged. For brevity, the individual
 object detail lines have been removed.

 dss> upload -vault sync://serv1.ABCo.com:2647/Projects/CustomerIP
 -localtmpdir ~/tmpfiles -comment "Uploading new version" FinalIP.tar

 Beginning Check in operation...
 Checking in: ...
 ...
 Checkin operation finished.

 Beginning Tag operation...
 ...
 Tag operation finished.
 dss>

Navigational

cd

ENOVIA Synchronicity Command Reference All -Vol2

421

cd Command

NAME

 cd - Changes your current directory

DESCRIPTION

 This command is the standard Tcl 'cd' command. It lets you change
 your current directory as viewed by the operating system. You can
 specify a relative or absolute path. Specifying 'cd' without an
 argument puts you in your home directory (as defined by $HOME on
 UNIX or your user profile, which is managed by the User Manager
 tool, on Windows).

 In general, use 'scd' (Synchronicity 'cd') instead of 'cd' when using
 DesignSync. See the help for 'scd' for a full comparison of these
 commands.

SYNOPSIS

 See a Tcl language reference manual.

SEE ALSO

 scd, pwd, spwd

pwd

pwd Command

NAME

 pwd - Displays the path of the current directory

DESCRIPTION

 This command is the standard Tcl 'pwd' command. It displays the path
 of the current working directory as viewed by the operating system.

 In general, use the 'spwd' (Synchronicity 'pwd') command instead of

File-Based Design

422

 'pwd' when using DesignSync. See the help for 'spwd' for a full
 comparison of these commands. In most cases, however, the 'spwd'
 and 'pwd' commands differ only in that 'pwd' returns a
 path whereas 'spwd' returns a URL.

 Refer to a Tcl language reference manual for a full description
 of the standard 'pwd' command.

SYNOPSIS

 See a Tcl language reference manual.

SEE ALSO

 spwd, cd, scd

scd

scd Command

NAME

 scd - Changes your current location

DESCRIPTION

 The 'scd' (Synchronicity 'cd') command lets you change your current
 location. Your location is typically a local folder, which
 corresponds to a file-system directory, but can be any container
 object. A container object is an object that contains other
 objects, such as a folder or a vault.

 Specify a relative path, absolute path, or file: URL for local
 (client-side) folders, or a sync: URL for server-side container
 objects. Specifying 'scd' without an argument puts you in your home
 directory (as defined by $HOME on UNIX or your user profile, which
 is managed by the User Manager tool, on Windows platforms).

 In dss/dssc, you can use the 'prompt' command to specify that your
 command-line prompt be the URL of your current location.

 The standard Tcl 'cd' command and 'scd' differ in that 'cd'
 operates on file-system directories, whereas 'scd' operates on
 DesignSync container objects, such as folders and vaults. In the
 common case of local folders, these commands behave similarly
 because there is often a one-to-one correspondence between the

ENOVIA Synchronicity Command Reference All -Vol2

423

 file-system directory and a DesignSync folder:
 dss> cd /home/tgoss/Projects/Sportster
 dss> pwd
 /home/tgoss/Projects/Sportster
 dss> spwd
 file:///home/tgoss/Projects/Sportster

 dss> scd /home/tgoss/Projects/Sportster
 dss> pwd
 /home/tgoss/Projects/Sportster
 dss> spwd
 file:///home/tgoss/Projects/Sportster

 The behavior of 'scd' and 'cd' differ in the following cases:
 o You must use 'scd' when specifying server-side objects -- any
 object you identify with a sync: URL, such as vaults, branches,
 and server-side folders.
 o You cannot use 'scd' to navigate into Synchronicity client
 metadata directories (.SYNC). DesignSync does not recognize
 these directories as Synchronicity folders because you should not
 operate on these directories. However, you can use 'cd'
 because .SYNC directories are valid file-system directories.
 dss> scd .SYNC <-- Fails
 The system cannot find the path specified:
 /home/tgoss/Projects/Sportster/code/.SYNC
 dss> cd .SYNC <-- Succeeds
 dss> pwd
 /home/tgoss/Projects/Sportster/code/.SYNC
 dss> spwd
 file:///home/tgoss/Projects/Sportster/code
 o When used in server-side scripts, "cd /" puts you at the
 file-system root of the SyncServer host (/), whereas "scd /"
 puts you at the SyncServer's root directory as specified when
 the SyncServer was installed (for example,
 /usr1/Synchronicity/syncdata/gilmour/2647/server_vault).

SYNOPSIS

 scd [--] [<path> | <URL>]

OPTIONS

• --

--

 -- Indicates that the command should stop
 looking for command options. Use this option
 when the path begins with a hyphen (-).

File-Based Design

424

RETURN VALUE

 none

SEE ALSO

 spwd, cd, pwd, prompt

EXAMPLES

• Example of Specifying an Absolute Path Name
• Example of Specifying a Relative Path Name
• Example of Specifying a Server-Side Vault Location
• Example of Navigating on the Server
• Example of Changing to a Calculated Server Directory

 The following examples illustrate common uses of the 'scd'
 command. In the first two examples, you could use 'cd' to
 accomplish the same result. In the other examples, you must use 'scd'.

Example of Specifying an Absolute Path Name

 The following example specifies an absolute path name and changes the
 local folder to file:///home/userdir/test (DesignSync converts the
 path to a URL).

 dss> scd /home/userdir/test
 dss> spwd
 file:///home/userdir/test

Example of Specifying a Relative Path Name

 The following example specifies relative path names. For example, if
 your current folder is /home/userdir and it contains the
 subfolder 'test', either of the following commands changes to the
 test folder:

 dss> scd ./test
 dss> scd test

Example of Specifying a Server-Side Vault Location

ENOVIA Synchronicity Command Reference All -Vol2

425

 The following example changes your location to a vault
 (server-side) folder:

 dss> scd sync://host3:2024/Projects/asic/test
 dss> spwd
 sync://host3:2024/Projects/asic/test

Example of Navigating on the Server

 The following example shows that once you are located in a
 server-side folder, you can use relative paths to navigate:

 dss> spwd
 sync://host3:2024/Projects/asic/test
 dss> scd ..
 dss> spwd
 sync://host3:2024/Projects/asic
 dss> scd code
 dss> spwd
 sync://host3:2024/Projects/asic/code

Example of Changing to a Calculated Server Directory

 You can change location to a vault object (because it is a container
 object that contains versions). You can either use a command that
 computes the location (for example, the 'url vault' command)
 or you can explicitly specify the URL:

 stcl> scd [url vault file5.v]
 stcl> spwd
 sync://host3/2024/Projects/asic/test/file5.v;

 Note: If you specify the URL, you must precede the semicolon with a
 backslash or surround the URL with double quotes to prevent
 stcl from treating the semicolon as a command separator:

 stcl> scd sync://host3:2024/Projects/asic/test/file5.v\;
 stcl> spwd
 sync://host3/2024/Projects/asic/test/file5.v;

spwd

spwd Command

NAME

 spwd - Displays the URL of the current location

File-Based Design

426

DESCRIPTION

 The 'spwd' (Synchronicity 'pwd') command displays the URL of
 the current location -- folder or other container object -- as
 selected by the most recent 'scd' command. A container object is
 any object that contains other objects, such as a folder or a vault.

 The standard Tcl 'pwd' command and 'spwd' differ in that 'pwd'
 operates on operating-system directories whereas 'spwd' operates on
 Synchronicity container objects. Also, 'pwd' returns an absolute
 path, whereas 'spwd' returns a URL. In most cases, there is a
 one-to-one correspondence between the current working directory and
 a Synchronicity folder, so you can use either command. For example:
 dss> scd /home/tgoss/Projects/Sportster
 dss> pwd
 /home/tgoss/Projects/Sportster
 dss> spwd
 file:///home/tgoss/Projects/Sportster

 There are cases where 'spwd' and 'pwd' return different values:
 - If you use 'scd' to go to a server-side location, 'spwd'
 returns that location, whereas 'pwd' is unaffected (returns
 the location prior to the 'scd' command). This
 difference is because 'cd' and 'pwd' do not recognize
 server-side (sync:) objects.
 stcl> pwd
 /home/tgoss/Projects/Sportster
 stcl> spwd
 file:///home/tgoss/Projects/Sportster
 stcl> scd [url vault .]
 stcl> spwd
 sync://apollo:2647/Projects/Sportster
 stcl> pwd
 /home/tgoss/Projects/Sportster
 - If you use 'cd' to go to a metadata (.SYNC) directory, 'pwd'
 returns the path to the .SYNC directory, whereas 'spwd' is
 unaffected (returns the location prior to the 'cd' command).
 This difference is because DesignSync does not
 recognize .SYNC directories as folders so that users are
 discouraged from operating on them. For example:
 stcl> pwd
 /home/tgoss/Projects/Sportster/code
 stcl> spwd
 file:///home/tgoss/Projects/Sportster/code
 stcl> cd .SYNC
 stcl> pwd
 /home/tgoss/Projects/Sportster/code/.SYNC
 stcl> spwd
 file:///home/tgoss/Projects/Sportster/code
 - When used from a server-side script, 'pwd' returns paths
 relative to the file-system root directory (/) whereas 'spwd'
 returns URLs relative to the SyncServer's root directory.

SYNOPSIS

ENOVIA Synchronicity Command Reference All -Vol2

427

 spwd

OPTIONS

 none

RETURN VALUE

 Returns the URL of the current location.

SEE ALSO

 scd, pwd, cd

EXAMPLES

• Example of Using spwd on a Local Folder
• Example of Using spwd on a Vault Folder
• Example of Using spwd on a Vault File Object

Example of Using spwd on a Local Folder

 This example shows the return value from the 'spwd' command
 when the previous 'scd' command selected a local folder. In this
 common case, 'pwd' returns the same value, except as a path instead
 of a URL.

 dss> scd /home/syncmgr/test
 dss> spwd
 file:///home/syncmgr/test
 dss> pwd
 /home/syncmgr/test

Example of Using spwd on a Vault Folder

 This example shows the return value from 'spwd' when the previous
 'scd' selected a vault folder.

 stcl> scd [url vault test_dir]
 stcl> spwd
 sync://host3:2024/Projects/ASIC/test_dir

File-Based Design

428

Example of Using spwd on a Vault File Object

 This example shows the result of 'spwd' when the previous 'scd'
 selected a vault object.

 stcl> scd [url vault myfile.txt]
 stcl> spwd
 sync://host3:2024/Projects/ASIC/test_dir/myfile.txt;

Informational

annotate

annotate Command

NAME

 annotate - Shows last modification information per line

DESCRIPTION

 This command opens the selected text file object and displays last
 modification information. The last modification information tells
 you:
 o The last-modified version for the line.
 o The author credited with the changes
 o The date the modification was checked in.

 The annotate command supports the command line default system.

SYNOPSIS

 annotate [-back <number> | -from <selector>] [-output <filename>]
 [-version <selector>] [-[no]white] [--] <argument>

ARGUMENTS

• Workspace File
• Server File

Workspace File

 <workspace file> Displays the specified file version loaded in the
 workspace. You may specify the file as either an

ENOVIA Synchronicity Command Reference All -Vol2

429

 absolute or relative path. Because this command
 only supports a single argument, You may not use
 wildcards, even if the wildcard selection results
 in only a single file being identified.

Server File

 <server file> Displays the specified file version. Specify the
 object with the sync URL in the format:
 sync://<host>:<port>/<path>/<object>;<selector>

OPTIONS

• -back
• -from
• -output
• -version
• -[no]white
• --

-back

 -back <number> Specifies the number of versions to consider when
 creating the annotated document. The versions
 included in the annotation begin with the
 specified version (-version option, if selected)
 and each version is processed until the specified
 number of versions back is reached, then the
 annotated file is generated.

 If neither the -back nor the -from option is
 specified, the annotate includes the entire object
 history, beginning with the vault
 root. (Default)

 Note: -back is mutually exclusive with -from.

-from

 -from <selector> Specifies the selector of the first version to
 consider when created the annotated document. The
 versions included in the annotation begin with the
 specified version (-version) and end with the
 version that resolves to the selector specified
 with the -from option. The specified selector must
 resolve to a version on a path from the annotated
 version to the vault root.

File-Based Design

430

 Note: For module member version, the selector must
 be the module member version number.

 If neither the -back nor the -from option is
 specified, the annotate includes the entire object
 history, beginning with the vault
 root. (Default)

 Note: -from is mutually exclusive with -back.

-output

 -output <file> Sends the results of the annotate command to the
 named file. The contents can then be processed or
 viewed as needed.

-version

 -version Specifies the version of a file to display.
 <selector> If no version is specified, DesignSync uses the
 version loaded in the workspace. (Default)

 You may specify any valid single selector. Note:
 When you use a version number to specify a module
 member, use the module version of the module
 containing the module member version you're
 interested in.

-[no]white

 -[no]white Specifies whether to ignore leading and trailing
 whitespace changes.

 -nowhite indicates the whitespace changes are
 considered a modification. Therefore if the
 indentation level was changed, the line is
 considered modified. (Default)

 -white indicates the whitespaces changes are not
 considered a modification. For example, if a user
 changes the indent level, the line is not considered
 modified. The last textual change (or embedded
 whitespace change) made is considered the last
 modification.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments to

ENOVIA Synchronicity Command Reference All -Vol2

431

 the command begin with a hyphen (-).

RETURN VALUE

 If the annotate command is successful, DesignSync returns an
 empty string (""). If the command cannot run, DesignSync throws an
 error message explaining the failure.

SEE ALSO

 ls, vhistory, selectors

EXAMPLES

 This example shows the annotate command with a fragment of the
 collection.ctp script included in the sample directory:

 dss> annotate collection.ctp
 Beginning Annotate operation...
 ...
 1.1 (barb 9-Apr-06): # Get the base name of a file.
 1.1 (barb 9-Apr-06): proc collectionCTP::getBase
 {filename} {
 1.2.1.3 (ian 1-Mar-07): set tail [collectionCTP::tail
 $filename]
 1.2.1.2 (ian 1-Feb-07): set dot [string first
 . [collectionCTP::tail $filename]]
 1.1 (barb 9-Apr-06): if {$dot == -1} {
 1.1 (barb 9-Apr-06): return $filename
 1.1 (barb 9-Apr-06): }
 1.2.1.3 (ian 1-Mar-07): set bit [expr [string length
 $filename] - [string length $tail] + $dot - 1]
 1.2.1.3 (ian 1-Mar-07): return [string range $filename
 0 $bit]
 1.1 (barb 9-Apr-06): }

compare

compare Command

NAME

 compare - Compares two defined sets of files or objects

File-Based Design

432

DESCRIPTION

• Understanding the Types of Possible Compare Operations
• Understanding the Output
• Understanding Status Values in the Ouput
• Running Compare on Modules (Module-based)
• Understanding Columns Returned When Comparing Module Objects (Module-based)
• Using Compare with Legacy Module Objects (Legacy-based)
• Using Compare with File-Based Objects (File-based)
• Understanding Columns Returned When Comparing File Objects (File-based)

 The 'compare' command allows you to compare two versions of a module,
 two legacy configurations in a vault, or to compare workspaces to
 modules, vaults, legacy configurations or other workspaces.

 Note: The compare command compares only collections and not
 collection members. The compare command doesn't compare empty
 directories.

 The compare command has a number of standard arguments, and then a
 specification of what can be compared, in the form of either 0, 1 or
 2 arguments, plus 0, 1, or 2 selectors. The arguments can be any
 directory path or module instance. For more information on arguments,
 see the ARGUMENTS section. The selectors can be any valid selector or
 selector list, except that they may NOT contain the Date() or
 VaultDate() items. For more information on selectors, see the
 selectors topic.

 Note: The compare command works from the path of the object, not from
 the UUID, this means that if an object has moved, it may be reported
 twice, one in the original location and once in the new location.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Understanding the Types of Possible Compare Operations

 The following table describes the action of the compare command
 when you specify one or more selectors and one more arguments.

 The selectors can be any valid selector or selector list, except that
 they may NOT contain the Date() or VaultDate() items. For more
 information on selectors, see the selectors topic.

 The arguments can be any directory path or module instance. For more
 information on arguments, see the ARGUMENTS section.

 Any combination not indicated is disallowed.

ENOVIA Synchronicity Command Reference All -Vol2

433

 Notes:
 o This command is not intended to provide a way to compare two
 different modules, so there is no way to specify two module URLs.

 o For space considerations, the values of selector1/selector2 and the
 arguments allowed are represented as sel1/sel2 and arg1/arg2.

 sel sel2 arg1 arg2 Description
 --- ---- ---- ----- -----------
 No No Yes No Compare the contents of the specified argument
 against the server version.

 sel1 sel2 arg1 arg2 Description
 ---- ---- ---- ---- -----------
 No No No No Compare the current workspace directory path against
 the associated server version.

 sel1 sel2 arg1 arg2 Description
 ---- ---- ---- ---- -----------
 No No Yes Yes Compare the two arguments.

 sel1 sel2 arg1 arg2 Description
 ---- ---- ---- ---- -----------
 Yes No Yes No Compare the specified argument against the
 version indicated by the specified selector.

 The selector value is always evaluated against
 the server version of the argument. If you've
 filtered data out of your workspace and do not
 use the corresponding filters on the compare
 command, you see that data listed as present on
 the server, but not in your workspace.

 sel1 sel2 arg1 arg2 Description
 ---- ---- ---- ---- -----------
 Yes No No No Compare the current workspace against the
 specified selector. This uses the server
 version that corresponds to the persistent
 selector set on the workspace, rather than the
 current workspace module version.

 The selector value is always evaluated against
 the server version of the module or DesignSync
 vault. If you've filtered data out of your
 workspace and do not use the corresponding
 filters on the compare command, you see that
 data listed as present on the server, but not
 in your workspace.

 sel1 sel2 arg1 arg2 Description
 ---- ---- ---- ---- -----------
 Yes Yes No No Compare the two specified versions. Both are
 server versions identified by selector, for
 example you might compare Rel1:Beta against
 Re1:Gold, or Rel2:Beta. Neither of these is
 required to be populated into a workspace on
 your system in order to do the comparison.

File-Based Design

434

 sel1 sel2 arg1 arg2 Description
 ---- ---- ---- ---- -----------
 Yes Yes Yes No Compare the two specified selector versions
 for the argument given. If the argument is a
 workspace path, the command uses the vault
 associated with the workspace path.

Understanding the Output

 The output can be formatted for easy viewing (-format text) or
 optimized for Tcl processing (-format list). Both viewing formats
 show the same information, but may have different names. In the table
 below, the Column Titles column shows the text output column header
 and the Property Names column shows list output key value.

 This information is returned by the compare command regardless of
 what report mode you specify. Different report modes add additional
 information as described in the Options section under -report.

Understanding Status Values in the Ouput

The following table describes the status values:
 Column Property
 Titles Names Description
 ------ ----- ------------
 Identical identical The objects are the same.

 Different different_versions The objects are the same but are
 versions at different versions.

 Different different_objects The objects are the same natural
 objects path and the same versions, but
 they do not have the same unique
 ID values.

 First only first_only The object is present in the
 first area only.

 Second only second_only The object is present in the
 second area only.

 Different different_states The objects are the same version,
 states but in different states, for
 example one item is modified or
 absent (in reference mode) while
 the other is not.

 modified modified The objects are the same (same
 version and same uids), but both
 are modified and therefore the
 files might be different.

ENOVIA Synchronicity Command Reference All -Vol2

435

 Content identical_content The objects are the same (same
 identical version, same uid, same
 checksum), but the versions are
 different.
 Note: If your workspace is
 populated in share, reference, or
 mirror mode, DesignSync does not
 retain checksum information and
 these workspaces will never
 register as Content identical.

Running Compare on Modules (Module-based)

 You can run the compare command to:

 - Show all the files that were changed, added, or removed between
 module versions. If you have a version tagged for release and want
 to compare it against the module manifest of a previous or
 follow-on versions, you can use this to determine what files have
 changed.

 - Compare two workspaces. If you are running a simulation in your
 workspace, and a coworker is running simulations in his workspace,
 but you are seeing different results, you can compare your workspaces
 to see what is different.

 - Report items that are the same and history information when different.
 Also, in order to understand what the changes are, you can see the
 checkin comment history from the different versions back to their
 common ancestor.

 - Produce output for further processing. For example, having compared your
 workspace with that of someone else, you would like to take the list of
 what is different and tag those items.

 - Report hierarchies in only one side of a comparison. If you are
 comparing two hierarchies, but only some of the sub-directories are
 present in one of the hierarchies, you can view the full contents of
 those directories, or just get a note that the directory is
 present in only one of the areas.

 Note: When compare includes a workspace that has been populated with
 a selector list, creating a blended workspace, the objects in the
 workspace are compared against both the module indicated by the main
 selector and other selectors. Therefore a member populated from the
 main selector is compared against the corresponding vault version and
 a member populated from the selected list blended into the workspace
 is compared against that module version.

 The hrefmode options respect the traversal method identified by the
 "HrefModeChangeWithTopStaticSelector" registry key. For more
 information, see the "Module Hierarchy" topic in the ENOVIA
 Synchronicity DesignSync Data Manager User's Guide.

File-Based Design

436

 Note: If a workspace has been populated with overriding hrefs, the
 compare command uses the overridden submodules as part of the
 comparison operation.

Understanding Columns Returned When Comparing Module Objects (Module-based)

 Note: The column title for the path properties may change depending
 on whether you are comparing workspaces (Workspace Version) or legacy
 modules (Configuration Version).
 Column Property
 Titles Names Description
 ------ ----- ------------
 Workspace/ path1 The path of the first argument specified by
 Configuration the command.
 Version

 Workspace/ path2 The path of the second argument specified by
 Configuration the command.
 Version

 Status state The status value shows the result of the
 comparison. The next table shows all the
 status values possible.
 Note: The list view shows the overall status
 (state) of the files, and the specific
 information about both versions being
 compared.

 Name name Name of the object being compared.

 type Type of object being compared. Type values
 include:
 o file
 o module
 o folder
 o project

 url The URL of the module. (module type only)

 version Version of the module. (module type only)

 relpath The relative path to that module from the
 top level module.

 modulepath When only a portion of a module is being
 reported, for example, a single directory is
 specified within a module, the command
 compares only the contents of the
 sub-modules that fall under that
 directory. If a sub-module has no contents
 under that directory then the sub-module is
 contained in the results but has no listed
 objects. The sub-module may also have a

ENOVIA Synchronicity Command Reference All -Vol2

437

 modulepath property which indicates the path
 within that module for which the data is
 included.

 Note: Module members that have been moved appear twice in the compare
 output, once in their original location and once in their new
 location with "First only" or "Second only" status values.

Using Compare with Legacy Module Objects (Legacy-based)

 You can run the compare command to:

 - Compare two workspaces. If you are running a simulation in your
 workspace, and a coworker is running simulations in his workspace,
 but you are seeing different results, you can compare your workspaces
 to see what is different.

 - Report items that are the same and history information when different.
 Also, in order to understand what the changes are, you can see the
 checkin comment history from the different versions back to their
 common ancestor.

 - Produce output for further processing. For example, having compared your
 workspace with that of someone else, you would like to take the list of
 what is different and tag those items.

 - Compare a legacy module configuration in your workspace to a released
 legacy module configuration.

 Note: There is no means to compare a workspace against a default
 legacy module configuration other than explicitly specifying the
 configuration as Trunk.

Using Compare with File-Based Objects (File-based)

You can run the compare command to:

 - Compare two workspaces. If you are running a simulation in your
 workspace, and a co-worker is running simulations in his workspace,
 but you are seeing different results, you can compare your workspaces
 to see what is different.

 - Report items that are the same and history information when different.
 Also, in order to understand what the changes are, you can see the
 checkin comment history from the different versions back to their
 common ancestor.

 - Produce output for further processing. For example, having compared your
 workspace with that of someone else, you would like to take the list of
 what is different and tag those items.

 - Compare the workspace version to a server version. For example,

File-Based Design

438

 you can see differences in your local workspace, or changes from
 the original or other versions.

 - Compare two server versions. For example, you can compare the
 a version on one branch or a version on another branch, or compare
 two tagged released versions against each other to see how they
 differ.

Understanding Columns Returned When Comparing File Objects (File-based)

 Note: The column title for the path properties may change depending
 on whether you are comparing workspaces (Workspace Version) or legacy
 modules (Configuration Version).
 Column Property
 Titles Names Description
 ------ ----- ------------
 Workspace/ path1 The path of the first argument specified by
 Configuration the command.
 Version

 Workspace/ path2 The path of the second argument specified by
 Configuration the command.
 Version

 Status state The status value shows the result of the
 comparison. The next table shows all the
 status values possible.
 Note: The list view shows the overall status
 (state) of the files, and the specific
 information about both versions being
 compared.

 Name name Name of the object being compared.

 type Type of object being compared. Type values
 include:
 o file
 o module
 o folder
 o project

SYNOPSIS

 compare [-format list|text] [-[no]history] [-exclude <string>]
 [-filter <string>] [-hreffilter <string>]
 [-modulecontext <context>] [-output <file> |
 -stream <stream>] [-[no]path] [-recursive | -norecursive]
 [-report silent|brief|normal|verbose] [-[no]same]
 [-selector <selector> [-hrefmode dynamic|static|normal]]
 [-selector2 <selector2> [-hrefmode2 dynamic|static|normal]]]
 [-view <viewName>[,<ViewName>[,...]]] [--] [argument [argument]]

ENOVIA Synchronicity Command Reference All -Vol2

439

ARGUMENTS

• Module Folder (Module-based)
• DesignSync Folder (File-based)
• Server Folder (File-based)

Module Folder (Module-based)

 <module folder> Compares the contents of the specified module
 workspace or server directory. If the workspace
 directory contains more than one module, you can
 restrict the compare to a single module by using
 the -modulecontext option.

 If a module folder is specified, the
 -modulecontext option is required.

DesignSync Folder (File-based)

 <DesignSync folder> Compares the contents of the specified folder,
 and, when used with the recursive option, all
 subfolders.

Server Folder (File-based)

 <server folder> Compares the contents of the specified folder
 on the server, and when used with the -recursive
 option, all subfolders. Specify the object with
 the sync URL in the format:
 sync://<host>:<port>/<path>/<folder>

OPTIONS

• -exclude
• -filter (Module-based)
• -format
• -[no]history (File-based)
• -hreffilter (Module-based)
• -hrefmode (Module-based)
• -hrefmode2 (Module-based)
• -modulecontext (Module-based)
• -output
• -[no]path
• -[no]recursive (Module-based)
• -[no]recursive (Legacy-based)
• -[no]recursive (File-based)

File-Based Design

440

• -report
• -[no]same
• -selector (Module-based)
• -selector (File-based)
• -selector2 (Module-based)
• -selector2 (File-based)
• -view (Module-based)
• --

-exclude

 -exclude <expr> Excludes items that match the given regular
 expression.

 The expression is matched against the object
 path that would be reported. If '-path' is
 specified, the command matches the expression
 against the relative path; if '-fullpath' is
 specified, the command matches the expression
 against the full path, else against the object
 leaf name.

 By default, the 'compare' command does not
 exclude the objects in the global exclude lists
 (set using Tools->Options->General->Exclude
 Lists or using SyncAdmin:General->Exclude Lists).
 To exclude these objects from a 'compare' listing,
 apply the -exclude option with a null string:
 compare -exclude ""
 The objects in the global exclude lists are
 appended to the 'compare' exclude list if
 you exclude other values:
 compare -exclude "README.txt"

-filter (Module-based)

 -filter <string> Specify one or more extended glob-style
 expressions to identify an exact subset of
 module objects on which to operate. Use the
 -exclude option to filter out DesignSync
 objects that are not module objects.

 The -filter option takes a list of expressions
 separated by commas, for example: -filter
 +top*/.../*.v,-.../a*

 Prepend a '-' character to a glob-style expression
 to identify objects to be excluded (the default).
 Prepend a '+' character to a glob-style expression
 to identify objects to be included. Note that if
 the list of expressions begins with an include

ENOVIA Synchronicity Command Reference All -Vol2

441

 character ('+'), the filter excludes all objects
 except those that match the include string.

 Specify the paths in your glob-style expressions
 relative to the current directory, because
 DesignSync matches your expressions relative to
 that directory. For submodules followed through
 hrefs, DesignSync matches your expressions against
 the objects' natural paths, their full relative
 paths. For example, if a module, Chip, references
 a submodule, CPU, and CPU contains a file,
 '/libs/cpu/cdsinfo.tag', DesignSync matches
 against '/libs/cpu/cdsinfo.tag', rather than
 matching directly within the 'cpu' directory.

 If your design contains symbolic links that are
 under revision control, DesignSync matches against
 the source path of the link rather than the
 dereferenced path. For example, if a symbolic
 link exists from 'tmp.txt' to 'tmp2.txt',
 DesignSync matches against 'tmp.txt'. Similarly
 for hierarchical operations, DesignSync matches
 against the unresolved path. If, for example, a
 symbolic link exists from dirA to dirB, and dirB
 contains 'tmp.txt', DesignSync matches against
 'dirA/tmp.txt'.

 The extended glob-style expressions you use to
 filter the objects are standard glob-style
 expressions, but they are extended so that you can
 use the "..." syntax to indicate that the
 expression matches any number of directory levels.
 For example, the expression, "top/.../lib/*.v"
 matches *.v files in a directory path that begin
 with "top", followed by zero or more levels, with
 one of those levels containing a lib
 directory. The command traverses the directory
 structure. If a directory name matches an exclude
 clause of the filter, then the entire directory
 and all its contents are filtered (the command
 stops descending at that point), otherwise the
 command continues traversing the directory
 structure searching for matching objects.

 The -filter option does not override the exclude
 list set using SyncAdmin's General=>Exclude Lists
 tab or with the -exclude command line option; the
 items in the exclude list are combined with the
 filter expression. For example, an exclude list
 of "*%,*.reg" combined with '-filter .../*.doc' is
 equivalent to: '-filter
 .../*.doc,.../*%,.../*.reg'.

-format

File-Based Design

442

 -format list|text Determines the format of the output.
 Valid values are:
 o text Display a text table with headers and
 columns. (Default) Objects are shown in
 alphabetical order.

 o list Tcl list structure, designed for further
 processing, and for easy conversion to a
 Tcl array structure. This means that it
 is a list structure in name-value pair
 format. The top level structure is:
 {
 path1 <path>
 path2 <path>
 type folder
 objects <object_list>
 }

 path1 and path2 are the areas compared,
 and may be local workspace paths, or
 configuration URLs in the form:
 sync://machine:port/path@config

 The "selector" part is the originally
 supplied selector name, rather than
 any name resulting from selector
 expansion.

 object_list is then defined as a list of
 items of the form:
 {
 name <object name>
 type1 folder | file
 type2 folder | file
 objects <object_list>
 state <status>
 props1 <prop_list>
 props2 <prop_list>
 }

 The "name" is the name of the object, and
 may contain the relative path from the
 starting point if the '-path' argument
 was specified.

 Note: When comparing a module hierarchy,
 the top level list includes a
 "modules" property whose value is a
 list of the results for each module in
 the hierarchy.

 The "type1" and "type2" properties
 indicate whether the object is a folder,
 file, or module. Note that collection
 objects have a type file, also all
 symbolic links, whether to files or

ENOVIA Synchronicity Command Reference All -Vol2

443

 directories, have a type of "file". The
 reason that all links are "file" is to be
 consistent with the "ls" command which
 treats links as files.

 The type may be different on the two
 sides. A folder or module have object
 lists; which a file object does not have.
 A file has props1 and props2 lists which
 folders and modules do not have.

 The state value contains the status of
 the object. For more information on
 status values, see the Status table in
 the "Understand the Output" section
 above.

 The props1 and props2 are lists of
 properties for the object from path1 and
 path2, in the form:
 {
 version <version>
 state <state>
 ancestor <version>
 history <history_list>
 }

 To process the results, use the
 "compare-foreach" function below.

-[no]history (File-based)

 -[no]history Determines whether the command returns the version
 history of the version being compared from the
 common ancestor of the two versions.

 -nohistory does not return version history
 information. (Default)

 -history returns the checkin comment and other
 details for the version history back to the common
 ancestor of the two versions being compared.

-hreffilter (Module-based)

 -hreffilter Excludes href values during recursive operations
 <string> on module hierarchies. Because hrefs link to
 submodules, you use -hreffilter to exclude
 particular submodules. The hreffilter value is
 matched against both the name of the href and the
 target module name. Note that unlike the
 -filter option which lets you include and exclude

File-Based Design

444

 items, the -hreffilter option only excludes hrefs
 and, thus, their corresponding submodules.

 Specify the -hreffilter string as a glob-style
 expression. The string must represent a simple
 leaf name; you cannot specify a path. DesignSync
 matches the specified href filter against hrefs
 anywhere in the hierarchy. Thus, DesignSync
 excludes all hrefs by this leaf name; you cannot
 exclude a unique instance of the href.

 You can prepend the '-' exclude character to your
 string, but it is not required. Because the
 -hreffilter option only supports excluding hrefs,
 a '+' character is interpreted as part of the glob
 expression.

-hrefmode (Module-based)

 -hrefmode dynamic| Specifies how the hierarchy is processed when
 static|normal -selector is specified.
 o dynamic - Expands hrefs at the time of the
 operation to identify the version
 of the submodules being compared.
 o static - Expands with the submodules
 versions referenced by the hrefs when the
 module version was initially created.
 o normal - Expands the hrefs at the time of the
 compare operation until it reaches a static
 selector. If the reference uses a static
 version, the hrefmode is set to 'static' for the
 next level of submodules to be compared;
 otherwise, the hrefmode remains 'normal' for the
 next level. (Default). This behavior can be
 changed using the
 "HrefModeChangeWithTopStaticSelector" registry
 key to determine how hrefs are followed.

 Note: Specifying different -hrefmodes with the
 same value for selector and selector2 allows
 comparison of the different resulting hierarchies.

-hrefmode2 (Module-based)

 -hrefmode2 Specifies how the hierarchy is processed when
 dynamic|static -selector2 is specified.
 normal o dynamic - Expands hrefs at the time of the
 operation to identify the version
 of the submodules being compared.
 o static - Expands with the submodules
 versions referenced by the hrefs when the
 module version was initially created.

ENOVIA Synchronicity Command Reference All -Vol2

445

 o normal - Expands the hrefs at the time of the
 compare operation until it reaches a static
 selector. If the reference uses a static
 version, the hrefmode is set to 'static' for the
 next level of submodules to be compared;
 otherwise, the hrefmode remains 'normal' for the
 next level. (Default). This behavior can be
 changed using the
 "HrefModeChangeWithTopStaticSelector" registry
 key to determine how hrefs are followed.

 Note: Specifying different -hrefmodes with the
 same value for selector and selector2 allows
 comparison of the different resulting hierarchies.

-modulecontext (Module-based)

 -modulecontext Identifies the module being compared. The
 <context> -modulecontext option restricts the compare to
 only a particular module if your workspace has
 overlapping modules so that you can indicate
 which module you want to compare.

 Specify the desired module using the module name
 (for example, Chip), or a module instance name
 (for example, Chip%0), or server module URL
 (sync://server1:2647/Modules/Chip). If you use
 module context to specify a server object, you
 must specify the latest version.

 Note that you cannot use a -modulecontext option
 to operate on objects from more than one module;
 the -modulecontext option takes only one
 argument, and you can use the -modulecontext
 option only once on a command line.

-output

 -output <file> | Outputs the result to the specified file or
 -stream <stream> stream.

 The output file is used to preserve the results
 for later viewing or distribution. If the
 specified file already exists, it is overwritten
 with the new information.

 The stream option passes the results to named Tcl
 stream. Depending on whether you open the stream
 using the Tcl 'open' command in write (w) or
 append (a) mode, you can overwrite or append to an
 existing file.

File-Based Design

446

 Note: The -stream option is only applicable in the
 stcl and stclc Tcl shells, not in the dss and dssc
 shells.

 If neither -output nor -stream is specified, the
 command output is displayed on the screen.

-[no]path

 -[no]path Controls the format of the path that is reported
 for each object. Objects are reported on a
 per-directory basis, with each directory path
 given as a full URL. The items within the
 directory can be reported as:

 -nopath displays simple object names with no
 directory path. (Default)

 -path display a relative path to the start of the
 command.

 Notes:
 o If the -report silent option is specified,
 the -path option is automatically used.

 o The 'contents' option to report as a full url
 (-fullpath) is not supported by this command,
 because each object will potentially have two
 full URLs for the two areas being compared.

-[no]recursive (Module-based)

 -[no]recursive Determines whether the compare command operate
 on the specified argument or all subfolders in the
 the argument's hierarchy, or all submodules in the
 argument's hierarchy.

 -recursive performs this operation on all
 subfolders in the hierarchy, or on all sub-modules
 in a module hierarchy when the arguments are
 modules or modulecontext is used.

 -norecursive performs this operation on the
 specified folder only. (Default)

 Note: To filter modules, use the -hreffilter
 option. If the folder contains multiple modules,
 you can restrict your compare to a single module
 by using the -modulecontext option.

-[no]recursive (Legacy-based)

ENOVIA Synchronicity Command Reference All -Vol2

447

 -[no]recursive Determines whether the compare command operate
 on the specified argument or all subfolders in the
 the argument's hierarchy, or all submodules in the
 argument's hierarchy.

 -recursive performs this operation on all
 subfolders in the hierarchy, or on all sub-modules
 in a module hierarchy when the arguments are
 modules or modulecontext is used.

 -norecursive performs this operation on the
 specified folder only. (Default)

 Note: The -nomodulerecursive option has been
 deprecated. For legacy modules, use the
 -norecursive option.

-[no]recursive (File-based)

 -[no]recursive Determines whether the compare command operate
 on the specified argument or all subfolders in the
 the argument's hierarchy.

 -recursive performs this operation on all
 subfolders in the hierarchy.

 -norecursive performs this operation on the
 specified folder only. (Default)

-report

 -report Controls the level of additional information
 reported as the command progresses.

 o silent Returns only the primary return data for
 the command - the data that has been
 compared, and whether the data is the
 same.

 Note: Using format -text, the relative
 path is returned in silent mode, unless
 the -fullpath option is specified.

 o brief Includes header lines showing what was
 compared and status lines where a long
 command might be performed without any
 output, such as when gathering data from
 a remote server. Directories that contain
 only items on one side, or for which all
 items are identical on both sides are
 not expanded to show their contents.

File-Based Design

448

 o normal Expands directories that would be skipped
 in brief output mode, because they are
 present in one area only, or because
 all items are identical on both
 sides. (Default)

 o verbose Includes information on configuration
 mappings.

 In the output from brief mode, a directory may be
 shown with the message "(Nothing / all identical on
 this side)". This message indicates either that all
 items under this folder are the same on both sides
 or that there are items to report only on this side
 of the comparison.

 Note: The version is shown as 'Unknown' if the
 version of the file in the workspace cannot be
 determined from the local metadata. If an object has
 no local metadata, its Version will be 'Unmanaged'.
 Recreated files will appear as 'Unmanaged', because
 they have no local metadata (their metadata was
 removed by a previous 'rmfile').

-[no]same

 -[no]same Determines whether the output includes only items
 that are different or items that are the same and
 items that are different.
 -nosame reports only items that are
 different. (Default)
 -same reports items that are the same, in addition
 to items that are different.

-selector (Module-based)

 -selector Specifies the selector to compare. When only one
 <selector> selector option is used, the object specified by the
 selector is compared to a workspace. You cannot
 use a Date() or VaultDate() selector.

 Note: When specifying a selector, you must
 distinguish between branch and version selectors.
 If you are specifying a branch and the branch is
 anything other than Trunk, specify both the branch
 and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example, 'compare -selector B1:'
 or 'compare -selector B1:gold'.

ENOVIA Synchronicity Command Reference All -Vol2

449

 This option can not take a selector list. You
 must specify a single selector for each selector
 option.

-selector (File-based)

 -selector Specifies the selector to compare. When only one
 <selector> selector option is used, the object specified by the
 selector is compared to a workspace. You cannot
 use a Date() or VaultDate() selector.

 Note: When specifying a selector, you must
 distinguish between branch and version selectors.
 If you are specifying a branch and the branch is
 anything other than Trunk, specify both the branch
 and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example, 'compare -selector B1:'
 or 'compare -selector B1:gold'.

-selector2 (Module-based)

 -selector2 Specifies a second selector when comparing
 <selector2> two modules, legacy module configurations, or
 directories in the vault. You cannot use a Date()
 or VaultDate() selector.

 Note: When specifying a selector, you must
 distinguish between branch and version selectors.
 If you are specifying a branch and the branch is
 anything other than Trunk, specify both the branch
 and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example, 'compare -selector B1:'
 or 'compare -selector B1:gold'.

 This option can not take a selector list. You
 must specify a single selector for each selector
 option.

-selector2 (File-based)

 -selector2 Specifies a second selector when comparing
 <selector2> two modules, legacy module configurations, or
 directories in the vault. You cannot use a Date()
 or VaultDate() selector.

 Note: When specifying a selector, you must

File-Based Design

450

 distinguish between branch and version selectors.
 If you are specifying a branch and the branch is
 anything other than Trunk, specify both the branch
 and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example, 'compare -selector B1:'
 or 'compare -selector B1:gold'.

-view (Module-based)

 -view <viewName> Specifies a view name or list of view names to
 [,<viewName>[,...]] use when comparing the module. The view list is a
 comma-separated list of view names.

 If you compare a workspace module and a server
 module, the view refers to the sever module. The
 workspace contents are the objects loaded in the
 workspace.

 Note: The -view option requires a specified
 -selector option.

--

 -- The command option '--' indicates that following
 arguments should not be taken as options, but as
 paths that begin with a '-'.

RETURN VALUE

 Empty string if -format value is text.
 Tcl list if the -format value is list.
 Empty string if -output or -stream is used with -format.

 When run from a server-side script, the server-side URL used in the
 results is relative to the server root (meaning the host:port
 information is omitted), for example:
 "sync:///Projects/p1."

SEE ALSO

 compare-foreach, contents, contents-foreach, command defaults

EXAMPLES

ENOVIA Synchronicity Command Reference All -Vol2

451

• Example of Comparing Two Selectors
• Example of Comparing Two Selectors with a URL
• Example of Comparing the Current Directory Against Another Directory
• Example of how to use '-format list' option
• Example Comparing a Workspace to a Server Module Version (Module-based)
• Example of Compare the Current Workspace Against A Module (Module-based)
• Example of Current Workspace Against Server Module Version (Module-based)
• Example of Comparing a Module with different Hrefmodes (Module-based)
• Example of Comparing a Tagging Module Version Against Latest (Module-based)
• Example of Comparing the Workspace Version to the Server Version (File-based)
• Example of Comparing Two Workspace Directories (File-based)

Example of Comparing Two Selectors

 Compare the two given selectors, using the 'url vault' of the current
 working directory to identify the server to work from.

 dss> compare -selector relA -selector2 relB -recursive

Example of Comparing Two Selectors with a URL

 Compare the two given selectors, starting from the given URL.

 dss> compare -selector relA -selector2 relB \
 sync://saturn.ABCo.com:30003/Modules/df2test -recursive

Example of Comparing the Current Directory Against Another Directory

 Compare my current directory against the other one given. Compare
 only this directory and not the sub-directory contents.

 dss> compare . /home/users/fred/Modules/P1 -norecursive

 (Note: You are not required to specify the -norecursive option;
 the behavior of the compare command is nonrecursive by default.)

Example of how to use '-format list' option

 To find which objects in your workspace have or do not have a
 specific tag, use 'compare' to compare the workspace with the tag
 configuration. Then report the items that do or do not match.

 Create an auto-loaded Tcl proc:

 proc has_tag {dir tag {no_tag 0}} {

File-Based Design

452

 record {set cres [compare -selector $tag $dir -same -recursive \
 -format list -path -report verbose]} nolog

 compare-foreach obj1 obj2 $cres {
 if {[info exists obj1(version)]} {
 if {[info exists obj2(version)] && \
 ([string compare $obj1(version) $obj2(version)] == 0)} {
 if {!$no_tag} {
 puts $obj1(name)
 }
 } else {
 if {$no_tag} {
 puts $obj1(name)
 }
 }
 }
 }

 }

 Note that this will not include unmanaged objects. To report unmanaged
 files, modify the code to add an "else" clause to the first "if"
 statement.

 The code can be changed to return a list of the objects by changing
 the "puts" statements to commands to build a return list. See standard
 Tcl programming documentation for how to do that.

 See the ENOVIA Synchronicity stcl Programmer's Guide for details on
 auto-loading.

 To report which files in the workspace have a "baseline" tag:

 stcl> has_tag . baseline
 code/samp.s19
 code/samp.lst
 stcl>

 To report which files in the workspace do not have a "baseline" tag:

 stcl> has_tag . baseline 1
 code/samp.asm
 code/test.mem
 code/sample1.asm
 code/samp.mem
 code/test.asm
 top/alu/alu.v
 stcl>

Example Comparing a Workspace to a Server Module Version (Module-based)

 Comparing a workspace to a module.
 stcl> compare -recursive -report brief -selector Gold -modulecontext \
 CPU%0 /home/rsmith/MyModules/cpu

ENOVIA Synchronicity Command Reference All -Vol2

453

 Gathering data from vault sync://srv2.ABCo.com:2647/Modules/CPU@Gold
 Gathering workspace contents for module
 /home/rsmith/MyModules/cpu/CPU%0 within module path
 /home/rsmith/MyModules/cpu
 Comparison of (identical objects not reported):
 Workspace: /home/rsmith/MyModules/cpu/CPU%0
 Configuration: sync://srv2.ABCo.com:2647/Modules/CPU@Gold

 Workspace Configuration Status Object
 Version Version Name
 1.2 1.1 Different versions cpu.doc

 Comparison of (identical objects not reported):
 Workspace: /home/rsmith/MyModules/cpu/ALU/ALU%1
 Configuration: sync://srv2.ABCo.com:2647/Modules/ALU@1.2

 Note: For two workspaces, the headings will be "Workspace1: " and
 "Workspace2: " and the column titles "Workspace1 Version" and
 "Workspace2 Version". Similarly, when comparing two modules or
 legacy modules, they will be "Configuration1" and "Configuration2".

Example of Compare the Current Workspace Against A Module (Module-based)

 Compare the current workspace against the module identified by the
 given selector list.

 dss> compare -selector relA,relB -recursive

Example of Current Workspace Against Server Module Version (Module-based)

 Compare the current workspace against the specified target module,
 the latest versions on the Beta branch. Notice that you append
 ':Latest' to the selector to indicate that Beta is a branch name and
 not a version name.

 dss> compare -recursive -selector \
 sync://saturn.ABCo.com:30003/Modules/df2test@Beta:Latest

Example of Comparing a Module with different Hrefmodes (Module-based)

 Compare a module to the same module using different hrefmodes.
 dss> compare -selector relA -selector2 relB \
 -hrefmode dynamic -hrefmode2 static -recursive

Example of Comparing a Tagging Module Version Against Latest (Module-based)

 Compare tagged version of a specified module against the latest
 version on the specified date.

File-Based Design

454

 dss> compare -selector Gold -selector2 Trunk:Date(01/31/09)
 sync://srv2.ABCo.com:2647/Modules/ChipDesigns/Chip

 Comparison of (identical objects not reported):
 Configuration1:
 sync://srv2.ABCo.com:2647/Modules/ChipDesigns/Chip@Gold
 Configuration2:
 sync://srv2.ABCo.com:2647/Modules/ChipDesigns/Chip@Trunk:Date(01/31/09)

 Configuration1 Configuration2 Status Object
 Version Version Name
 1.3 1.2 Different versions chip.c

Example of Comparing the Workspace Version to the Server Version (File-based)

 This example shows comparing the workspace version to the server
 version.

 dss> compare /home/users/jsmith/workspace/proj1 -recursive

Example of Comparing Two Workspace Directories (File-based)

 Compare the two given workspace directories. Note that to compare
 your current workspace against someone else's, you must specify both
 directories.

 dss> compare /home/users/fred/workspace/proj1 . -recursive

compare-foreach

compare-foreach Command

NAME

 compare-foreach - Function to process the results of a compare
 command

DESCRIPTION

 This routine loops over the items in a "compare" results list, and
 processes each item in turn.

SYNOPSIS

ENOVIA Synchronicity Command Reference All -Vol2

455

 compare-foreach <var1> <var2> <result_list> <tcl_script> [-nofolder]
 [-path]

ARGUMENTS

• Loop Variables
• Result List
• Tcl Script

Loop Variables

 var1, var2 These are the loop variables. They are treated as Tcl
 arrays, and on each loop around contain the set of
 properties for the next object in the result_list,
 with var1 containing the "props1" properties and var2
 the "props2" properties. In addition to the
 properties in the "props1/2" values for each object,
 the arrays will contain a "name" property and a
 "type" property, which are the name and type
 properties for the object.

Result List

 result_list This is the list of objects to be processed. It must
 be the result value of a call to the "compare"
 command with the "-format list" option.

Tcl Script

 tcl_script This is the piece of Tcl code that is executed on
 each loop.

OPTIONS

• -nofolder
• -path (Module-based)
• -path (File-based)

-nofolder

 -nofolder If specified, then the tcl_script will not be called
 for Folder type objects in the result_list.

-path (Module-based)

File-Based Design

456

 -path The "name" property on each loop is usually just the
 "name" property for the object. However, if this
 option is specified, and a recursive "compare" was
 performed, then the "name" property is the relative
 path to each object. Normally, you would run
 "compare" with the -path option, in which case the
 "name" property contains an appropriate relative
 path. If you did not do that, then passing the
 "-path" option to compare-foreach will mean that the
 "name" property contains the relative path for each
 item, thus allowing you to differentiate between
 items with the same name in different folders.

 Note: For sub-modules, the relative path is always
 relative to the base directory of that module. To
 find the full relative path to an object from the top
 module, the path to the object needs to be prepended
 with the relative path to that module.

-path (File-based)

 -path The "name" property on each loop is usually just the
 "name" property for the object. However, if this
 option is specified, and a recursive "compare" was
 performed, then the "name" property is the relative
 path to each object. Normally, you would run
 "compare" with the -path option, in which case the
 "name" property contains an appropriate relative
 path. If you did not do that, then passing the
 "-path" option to compare-foreach will mean that the
 "name" property contains the relative path for each
 item, thus allowing you to differentiate between
 items with the same name in different folders.

SEE ALSO

 compare

EXAMPLE

• Example of Using compare-foreach On a Result List From compare

Example of Using compare-foreach On a Result List From compare

 Example of using the compare-foreach to parse a compare.

 set result_list [compare -selector RelA -selector2 RelB -rec -format list]

ENOVIA Synchronicity Command Reference All -Vol2

457

 compare-foreach obj1 obj2 $result_list {
 puts "Object: $obj1(name), state1: $obj1(state), state2: $obj2(state)"
 }

contents

contents Command

NAME

 contents - Lists the contents of a configuration or a
 module

DESCRIPTION

• Using Contents on Modules (Module-based)
• Understanding Module Hierarchy Output (Module-based)
• Understanding the path option (Module-based)
• Using Contents on Legacy Modules (Legacy-based)
• Notes for legacy modules (Legacy-based)
• Using Contents on File-Based Objects (File-based)

 The 'contents' command provides a simple way to list the contents
 of a DesignSync configuration and the member items of a module.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Using Contents on Modules (Module-based)

 You can run the contents command to:

 - List the contents of a module. See 'Understanding Module Hierarchy
 Output' for details.

 - List the contents of a particular module version, DesignSync vault
 or legacy configuration so that you can use it for later analysis
 (compare).

 Notes:

 * If a hierarchical reference to a submodule version has been
 overridden by a higher-level href, the hierarchical reference within
 the parent module is NOT considered modified by the contents
 command.

File-Based Design

458

 * You can also use the contents-foreach function to perform
 operations on the contents of the output. See the
 'contents-foreach' command for more information.

 * If filters, views, or hreffilters are specified on the command
 line, they override all persistent filters, views,
 and hreffilters applied to the workspace.

Understanding Module Hierarchy Output (Module-based)

 To list all modules within a hierarchy, run the contents command on
 a module with the -recursive option.

 - The contents of the top-level (starting) module are listed first,
 and then the contents of the sub-modules are listed one by one. The
 order in which the module are listed is not predetermined as the
 same module can be referenced from multiple points in the module
 hierarchy.

 - The module version of each sub-module in the hierarchy and its
 relative path from the top level module is listed. For example, if
 module Chip references module ALU with a relative path of "alu"
 and ALU references RAM with a relative path of "submods/ram", then
 the relative path reported from CHIP to RAM is "alu/submods/ram".

 - In a list format output, the submodules are shown in the "modules"
 property of the top-level module. Each sub-module has a set of
 properties that includes the module URL, the module version and the
 relative path.

 To list the contents of a module or referenced subdirectories, use
 the -modulecontext option. If you specify a specific directory within
 a module, DesignSync returns only the contents of the sub-modules
 within the specified directory.

 For list format output only, each sub-module has a 'modpath' property
 indicating the path within that module. The 'modpath' property is not
 shown when the contents of the entire sub-module is listed. For
 example, if Chip references ALU as above, and you specify: "contents
 -modulecontext Chip alu/commondir", the contents operation only lists
 the portion of the ALU sub-module and a "modpath" for all sub-modules
 in that directory.

 The specific module versions reported by the contents command within
 a module hierarchy depend on the value of hrefmode mode specified. If
 static mode is specified, the contents reported for the hierarchy
 follow the static version of the object at the time the href was
 created. If dynamic mode is specified, the contents resolve the
 hierarchical references dynamically. If normal mode is specified, the
 hrefs are followed dynamically until a static selector is reached
 after which all submodules are resolved statically. The contents
 command respects the traversal method identified for normal mode by

ENOVIA Synchronicity Command Reference All -Vol2

459

 the "HrefModeChangeWithTopStaticSelector" registry key. For more
 information, see the "Module Hierarchy" topic in the ENOVIA
 Synchronicity DesignSync Data Manager User's Guide.

 Important: If you are comparing two server-side module URLs,
 DesignSync uses the value for "HrefModeChangeWithTopStaticSelector"
 set at the server level, not the user level.

Understanding the path option (Module-based)

 When you use the -path option to list the contents of a module,
 including sub-modules, the relative path reported for members of
 sub-modules is always relative to the base directory of the module
 the object is a member of rather than being relative to the base
 directory of the top level module.

 The full relative path to a member from the top module, the path to
 the member needs to be prepended with the relative path to that module.

 When the -path option is used with the -modulecontext option, the
 relative path reported for objects within sub-modules is either the
 path from the specified folder or, if the module base directory is
 below this starting directory, the relative path from the base of the
 module or sub-module.

 When the -fullpath option is used, the paths reported for objects are
 server addresses in the form <module URL>/<path to object>, for
 example, "sync://sting:30002/Modules/mymod/subdir/file", where the
 module URL is the address of the module/sub-module.

 Note: This is not a valid individual member address to use in other
 commands.

 The command uses one of two paths:

 - A full server URL with an optional selector.

 - An optional path (may be a work area or vault folder path) and an
 optional selector.

 Note: If you specify a module folder as an argument you must use
 the -modulecontext option.

Using Contents on Legacy Modules (Legacy-based)

 You can run the contents command to:

 - List folder contents for DesignSync vaults, for example, list all
 files you created on a new branch.

 - List the contents of a legacy module on the server, rather than the

File-Based Design

460

 one in your work area. This is useful when the module
 configuration on the server has changed since you last
 fetched it to your work area.

 Note: You can also use the contents-foreach function to perform
 operations on the contents of the output. See the
 'contents-foreach' command for more information.

Notes for legacy modules (Legacy-based)

 If no path is given, the path defaults to the module configuration in the
 current folder. If no configuration is present, the path defaults to the
 'url vault' of current folder and 'url selector' of the path, or the
 default configuration if a server path is given.

 If a work area path is specified with no configuration, or the
 configuration name matches the module configuration in the work area,
 then the contents command lists the contents of the configuration the
 work area. Otherwise, the command lists the contents of the module
 configuration on the server

Using Contents on File-Based Objects (File-based)

 You can run the contents command to list folder contents for
 DesignSync vaults, for example, list all files you created on a new
 branch.

 Note: You can also use the contents-foreach function to perform
 operations on the contents of the output. See the 'contents-foreach'
 command for more information.

SYNOPSIS

 contents [-exclude <object> [,<object>...]] [-filter <string>]
 [-format <text| list>] [-fullpath] [-hreffilter <string>]
 [-hrefmode <dynamic|static|normal>]
 [-modulecontext <context>] [-output <file>] [stream <stream>]
 [-[no]path][-[no]recursive]
 [-report {silent | brief | normal | verbose}]
 [-selector <selector>] [-[no]versions]
 [-view view1[,view2,...]] [--] <argument>

ARGUMENTS

• Module (Module-based)
• Module Folder (Module-based)
• Workspace or Server Folder (File-based)

ENOVIA Synchronicity Command Reference All -Vol2

461

 Specifies one of the following argument:

Module (Module-based)

 <module> Specifies the module version or a workspace module
 for which you want to list the contents.

 If the version is not specified, use the -selector
 option. Otherwise, the current selector is used
 for a workspace module and the default Trunk:Latest
 is used for a server module.

 Note: The module contents are always fetched from
 the server module version. If a workspace module
 is specified, the command uses the hierarchy in
 the module workspace with the module contents on
 the server.

Module Folder (Module-based)

 <module folder> Specifies the folder in a module for which
 you want to list the contents.

 If the -modulecontext option is specified, listing
 the contents of a module folder is the same as
 filtering the contents results to only include that
 folder.
 If the -recursive option is specified for a module
 folder, the sub-modules within the module folder are
 also specified.

Workspace or Server Folder (File-based)

 <DesignSync object> Specifies the workspace folder or server
 folder for which you want to list the
 contents.

OPTIONS

• -exclude
• -filter (Module-based)
• -format
• -fullpath
• -hreffilter (Module-based)
• -hrefmode (Module-based)
• -modulecontext (Module-based)
• -output

File-Based Design

462

• -path
• -recursive (Module-based)
• -recursive (Legacy-based)
• -recursive (File-based)
• -report
• -selector (Module-based)
• -selector (File-based)
• -stream
• -version
• -view (Module-based)
• --

-exclude

 -exclude<string> Specifies the items to exclude from the contents
 report.

 If you specify -filter (modules only)and
 -exclude, then the exclude conditions are applied
 after filtering the contents thus taking
 precedence.

 Note: The global exclude list is added in if
 either a -exclude or a -filter option is
 specified, even if the value of the option
 is an empty string "".

-filter (Module-based)

 -filter <string> This option filters the objects that are listed as
 contents. Use this option to specify one or more
 extended glob-style expressions to identify an exact
 subset of module objects on which to operate. Use the
 -exclude option to filter out DesignSync objects that
 are not module objects.
 For more information of the -filter option, see the
 description of filters in the 'ci' command.

 If you specify the -filter option with a workspace
 module version, it overrides any persistent
 filters, views, and hreffilters set on the workspace.

-format

 -format <list Specifies the format of the output. The format can
 | text> be:
 o text -plain text (default)
 o list -Tcl list structure

ENOVIA Synchronicity Command Reference All -Vol2

463

 The format when "-format list" is used is a Tcl list
 that is designed for further processing, and for easy
 conversion to a Tcl array structure. This means that
 it is a list structure in name-value pair format. The
 top level structure is:
 {
 path <path>
 name <path>
 config <config>
 objects <object_list>
 type folder
 }

 "path" is the starting point path given, and may be
 local workspace paths, or a vault path.

 "name" is the vault path for which the contents were
 fetched. It will match the "path" value if a server
 path was specified.

 "config" is the configuration being listed, that is
 selector value.

 object_list is then defined as a list of items of the
 form:
 {
 name <object name>
 type folder | file
 objects <object_list>
 props <prop_list>
 }

 The "name" will include the full or relative path if
 the -fullpath or -path arguments are used.
 For information on how the -path an -fullpath options
 are handled when you specify a module as an argument,
 see the section 'Understanding the path option'.

 The "type" indicates whether the object is a folder or
 file (note that collection objects have a type file).
 Only a folder has an objects list - this property may
 not always be present.

 All file objects may have a props list, which is a list
 of properties for that object, and has the form:

 {
 version <version>
 }

 A file object has the version property only if the
 -versions argument was given. So, if -versions is not
 given, then file objects will not have a props property
 -- this property may not always be present. (Although it
 may seem unnecessary overhead to have the props sub-list
 for a single property, i.e. version, this structure is
 maintained for compatibility and for future extensions.)

File-Based Design

464

 Note that there is no order implied on the objects in
 the object_lists. In particular, these items may not be
 sorted. This is different to the text output, where the
 items within a directory will always be reported in
 alphanumeric order. The reason for this is that
 generally the list output will be further processed,
 and that further processing can decide whether it needs
 to sort the results.

 For legacy modules, any sub-module configuration
 references are placed immediately below the referencing
 module.

 To process the results, use the contents-foreach
 function.

-fullpath

 -fullpath Reports the path for each object within the
 directory as a full URL.

-hreffilter (Module-based)

 -hreffilter Excludes href values during recursive operations
 <string> on module hierarchies. Because hrefs link to
 submodules, use -hreffilter to exclude particular
 submodules when listing module contents.

 If you specify the -hreffilter option with a workspace
 module version, it overrides any persistent
 hreffilters, filters, and views set on the workspace.

-hrefmode (Module-based)

 -hrefmode For a recursive listing of the contents, indicates
 how the hierarchical reference selectors are
 followed.

 Valid values are:
 o dynamic - Expands hrefs at the time of the
 listing the contents to identify the
 submodules to be listed.
 o static - Lists the contents with the submodules
 referenced by the hrefs when they were
 initially created.
 o normal - Expands the hrefs at the time of the
 compare operation until it reaches a static
 selector. If the reference uses a static
 version, the hrefmode is set to 'static' for the

ENOVIA Synchronicity Command Reference All -Vol2

465

 next level of submodules to be examined;
 otherwise, the hrefmode remains 'normal' for the
 next level. (Default). This behavior can be
 changed using the
 "HrefModeChangeWithTopStaticSelector" registry
 key to determine how hrefs are followed.

 If a workspace module is specified as the argument
 with no selector value, then the hierarchy is taken
 from the workspace and the -hrefmode option is
 ignored.

-modulecontext (Module-based)

 -modulecontext Specifies the module context, thereby allowing a
 <context> workspace folder that is below multiple modules to
 be specified, or allowing a sub-folder of a module
 on a server to be specified.
 Note: The module context is required for module
 folders.

-output

 -output <file> Output the result to the specified file, which
 is overwritten if it already exists.

 Default is to send output to the screen if the
 -format value is text or to return it as the result
 of the function if the -format value is list.

-path

 -[no]path Controls the path that is reported for each
 object. Objects are reported on a per-directory
 basis, with each directory path given as a full
 URL. The items within the directory can be
 reported as:

 - Leaf names (the default, unless '-report
 silent' is specified)

 - Relative path to the start of the command
 (-path). This is the default if '-report
 silent' is specified.

 Note: The exclude list affects what objects are
 reported at the full, relative, or leaf of
 the path as appropriate. See the -exclude
 option for details.

File-Based Design

466

-recursive (Module-based)

 -[no]recursive Specifies whether to perform this operation i
 just the specified folder (default) or in its
 subfolders.

 If you use the -recursive option and specify a
 folder, the contents command operates in a
 folder-centric fashion. The contents in the
 folder (all module and non-module data except the
 hierarchical references) are listed.
 The contents listed can be further refined using
 the -filter, -hreffilter or -exclude options.

 If you use the -recursive option and specify a
 module, the contents command operates in a
 module-centric fashion. The contents in the
 folder and all subfolders (that is all module and
 non-module data along with the hierarchical
 references) are listed.
 The contents listed can be further refined using
 the -filter, -hreffilter or -exclude options.

 Notes:
 o Hierarchical references are followed only for
 modules. All hrefs to legacy modules,
 DesignSync vaults or IPGear deliverables are
 skipped.

 o The -nomodulerecursive option has been
 deprecated. To filter modules, use the
 -hreffilter option.

-recursive (Legacy-based)

 -[no]recursive Specifies whether to perform this operation i
 just the specified folder (default) or in its
 subfolders.

 If you use the -recursive option and specify a
 folder, the contents command operates in a
 folder-centric fashion. The contents in the
 folder (all module and non-module data except the
 hierarchical references) are listed.
 The contents listed can be further refined using
 the -exclude option.

 If you use the -recursive option and specify a
 module, the contents command operates in a
 module-centric fashion. The contents in the
 folder and all subfolders (that is all module and
 non-module data along with the hierarchical
 references) are listed.

ENOVIA Synchronicity Command Reference All -Vol2

467

 The contents listed can be further refined using
 the -exclude option.

 Notes:
 o Hierarchical references are followed only for
 modules. All hrefs to legacy modules,
 DesignSync vaults or IPGear deliverables are
 skipped.

 o The -nomodulerecursive option has been
 deprecated. To operate in non-recursive mode,
 Use the -norecursive option.

-recursive (File-based)

 -[no]recursive Specifies whether to perform this operation i
 just the specified folder (default) or in its
 subfolders.

 If you use the -recursive option and specify a
 folder, the contents command operates in a
 folder-centric fashion. The contents listed can
 be further refined using the -exclude option.

-report

 -report <mode> Controls level of additional information
 reported as the command progresses.

 Valid values are:

 o silent - Only the primary output is given - the
 list of objects and versions. In this case, for
 the text output, the default is to show the
 relative path name (-path).

 o brief - Displays the same information as
 'normal'.

 o normal - Include header information and progress
 lines where a long command might be
 performed, such as when scanning the
 vault. (Default)

 o verbose - Include information on configuration
 mappings.

-selector (Module-based)

 -selector A valid selector or selector list.

File-Based Design

468

 <selector> You should distinguish between branch and
 version selectors. If you are specifying a
 branch other than Trunk, specify both the branch
 and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'.
 You can also use the shortcut, '<branchtag>:',
 for example, 'contents -selector B1:'.

-selector (File-based)

 -selector A valid selector or selector list.
 <selector>
 Note: The selector cannot contain Date() or
 VaultDate() items.

 You should distinguish between branch and
 version selectors. If you are specifying a
 branch other than Trunk, specify both the branch
 and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'.
 You can also use the shortcut, '<branchtag>:',
 for example, 'contents -selector B1:'.

-stream

 -stream <stream> Output to the given stream (which should be the
 result of a Tcl 'open' function call).

 Default is to send output to the screen if the
 -format value is text or to return it as the
 result of the function if the -format value is
 list.

-version

 -[no]versions Include the version numbers for the objects
 listed.

-view (Module-based)

 -view view1 Species the view name or list of view names
 [,view#[,...]] used when retrieving the contents of the
 module. The view list must be specified as a
 comma-separated list.

 Note: When the -view option is used with a

ENOVIA Synchronicity Command Reference All -Vol2

469

 workspace module instance argument, you must also
 specify the -selector option to identify a
 server-side module version on which to operate.

 If you specify the -view option with a workspace
 module version, it overrides any persistent
 views, filters, and hreffilters on the workspace.

 Specifying the view name "none" specifies that the
 command should not apply any views to the
 contents.

--

 -- The command option '--' indicates that following
 arguments should not be taken as options, but as
 paths that begin with a '-'.

RETURN VALUE

 Empty string if -format value is text.
 Tcl list if the -format value is list.
 Empty string if -output or -stream is used with -format.

 When run from a server-side script, the server-side URL used in the
 results is relative to the server root. For example, sync:///@Trunk:Latest.
 The {host}:{port} is omitted. If the server-side script is run from a
 browser (via a ProjectSync URL), then the script must format the output
 for display within an HTML page.

SEE ALSO

 contents-foreach, ls, ls-foreach, compare, compare-foreach, showstatus,
 command defaults

EXAMPLES

• Example Showing Contents of Server for Current Working Directory
• Example Showing Contents Output to a Stream
• Example Showing Contents of a Module Instance (Module-based)
• Example Showing Contents of Server Module Version (Module-based)
• Example Showing Contents of a Legacy Module Configuration (Legacy-based)

Example Showing Contents of Server for Current Working Directory

 This example shows the contents of the server (vault or module)
 associated with the current workspace.

File-Based Design

470

 dss> contents

 This example shows the same contents, but includes version numbers
 and paths in the output.

 dss> contents -config Rel1 -recursive -fullpath -versions

 Gathering configuration data from vault
 sync://svr1.ABCo.com:30002/Projects/P1@Rel1

 Contents of:
 file:///home/users/username/myprojects/P1
 Vault:
 sync://svr1.ABCo.com:30002/Projects/P1@Rel1

 Version Object Name
 1.2 sync://svr1.ABCo.com:30002/Projects/P1/file1.txt
 1.4 sync://svr1.ABCo.com:30002/Projects/P1/file2.txt
 1.1 sync://svr1.ABCo.com:30002/Projects/P1/file4.txt
 1.5 sync://svr1.ABCo.com:30002/Projects/P1/file5.txt

 sync://svr1.ABCo.com:30002/Projects/P1/subdir@Rel1

 Version Object Name
 1.5 sync://svr1.ABCo.com:30002/Projects/P1/subdir/file7.txt
 1.2 sync://svr1.ABCo.com:30002/Projects/P1/subdir/file8.txt

 Note: In this example, if the -fullpath option were not specified,
 then the relative path would be used for the Object Name.

Example Showing Contents Output to a Stream

 This example shows the contents of the configuration Rel4, for the vault
 directory structure starting at the vault location given. It sends
 the output results to the specified open stream.

 dss> contents -config Rel4 sync://svr1.ABCo.com:30002/Projects/P1
 -stream $p

Example Showing Contents of a Module Instance (Module-based)

 This example shows the contents of a workspace instance.

 dss> contents ModuleA%2

Example Showing Contents of Server Module Version (Module-based)

 This example shows the contents of a server module version.

ENOVIA Synchronicity Command Reference All -Vol2

471

 dss> contents sync://srv2.ABCo.com:2647/Modules/Mod1
 Gathering data from vault
 sync://srv2.ABCo.com:2647/Modules/Mod1@Trunk:Latest

 Module: sync://srv2.ABCo.com:2647/Modules/Mod1@1.2
 Contents of folder: /

 Object Name

 File1.txt
 File2.txt
 File3.txt

Example Showing Contents of a Legacy Module Configuration (Legacy-based)

 This example shows the contents of configuration Wa1 for the vault
 folder associated with the current specified argument.

 dss> contents -recursive -version /home/workareas/WA1
 Gathering configuration data from vault
 sync://srvr1.ABCo.com:2647/Projects/Top@Alpha
 Gathering configuration data from vault
 sync://srvr3.ABCo.com:2647/Projects/ALU@Rel1
 Gathering configuration data from vault
 sync://srvr5.ABCo.com:2647/Projects/Decoder@Rel1

 Contents of:
 file:///home/workareas/WA1
 Vault:
 sync://srvr1.ABCo.com:2647/Projects/Top@Alpha

 Version Object Name
 ------- -----------
 1.3 top.v

 sync://srvr1.ABCo.com:2647/Projects/Top/projdoc@Alpha

 Version Object Name
 ------- -----------
 1.3 projinfo.txt
 1.4 projlist.txt

 sync://srvr3.ABCo.com:2647/Projects/Top/submods/ALU@Rel1

 Version Object Name
 ------- -----------
 1.3 alu.v
 1.4 mult8.v

 sync://srvr5.ABCo.com:2647/Projects/Top/submods/Decoder@Rel1

 Version Object Name
 ------- -----------
 1.2 decoder.v

File-Based Design

472

 The contents command output shows the configuration as it exists in
 the work area, rather than vault. For example, the output shows the
 Top@Alpha configuration in the WA1 work area as containing the
 ALU@Rel1 configuration, whereas in the vault, Top@Alpha contains
 ALU@Rel2.

 When listing objects, however, the contents command lists object
 versions as they exist in the vault. For example, the command
 output lists version 1.3 of top.v because version 1.3 is in the
 Top@Alpha configuration in the vault.

url contents Command

NAME

 url contents - Returns the objects in a container object

DESCRIPTION

• Notes for Modules (Module-based)

 This command returns a list of URLs of the objects contained in the
 specified container object, such as a folder or configuration. If
 the object is not appropriate for the requested operation, an empty
 list is returned.

 The 'url contents' command is not recursive. For example, 'url
 contents' on a ProjectSync configuration always returns folders
 as part of the configuration. You can then invoke 'url contents'
 on each subfolder in the project.

 Note: In stcl/stclc mode, when specifying a URL that contains a
 semicolon (;), surround the URL with double quotes.

Notes for Modules (Module-based)

 The "url content" command shows the contents of a module folder, but
 is not used for examining the contents of a module and therefore does
 not accept module as a valid argument type. Use "ls" and "contents"
 commands to list the full module contents.

SYNOPSIS

 url contents [-all | -ifpopulated [-incremental]] [-prefetch]
 [-version <selector>[,<selector>...]] [--] <argument>

ENOVIA Synchronicity Command Reference All -Vol2

473

ARGUMENTS

• Module Folder (Module-based)
• DesignSync Folder (File-based)
• DesignSync Vault (File-based)

 Specify one or more of the following arguments:

Module Folder (Module-based)

 <module folder> Returns a list of the URLs of files and folders
 contained in the specified workspace module
 folder.

DesignSync Folder (File-based)

 <DesignSync folder> Returns a list of URLs of files and folders
 contained in the specified folder in the
 workspace.

DesignSync Vault (File-based)

 <DesignSync vault> Returns a list of the URLs of the different
 vault versions checked into the specified vault.

OPTIONS

• -all
• -ifpopulated
• -incremental
• -prefetch
• -version
• --

-all

 -all Reports the objects in the local folder as well
 as those objects that would be there if it were
 fully populated with the contents of the
 associated vault. If the object is a vault-side
 object (a vault, version, or branch), this
 option is ignored.

 This option is mutually exclusive with

File-Based Design

474

 -ifpopulate.

-ifpopulated

 -ifpopulated Report the contents of the local folder if it
 were fully populated with the contents of its
 associated vault.

 You can also specify -incremental to limit the
 result to return only those objects that would
 return in an incremental populate as opposed to
 a full populate. The list is empty if the
 object is not a local folder.

 This option is mutually exclusive with -all.

-incremental

 -incremental Modifies -ifpopulated to limit the result to
 return the URLs of only those objects that would
 return in an -incremental populate.

 Note: You must have at some time performed a
 full populate on the folder for the -incremental
 option to work properly.

-prefetch

 -prefetch Used for advanced programming; exposes an
 optimization to the caller. If used, the call
 to contents is slower, but the subsequent
 enumeration of the returned list has extra
 information cached. If the caller needs to
 enumerate the contents and for each object
 call commands such as 'url tags' or 'url
 properties', overall performance is better if
 this option is used. If the caller needs to
 retrieve only the names of the objects, this
 option makes the operation slower.

-version

 -version <selector> Use with -ifpopulate or -all. Specifies the
 selector list (typically branch or version
 tag) to use for the hypothetical populate. The
 default (-version not specified) is to inherit
 the selector from the parent folder.

ENOVIA Synchronicity Command Reference All -Vol2

475

 Note: To use -version to specify a branch,
 specify both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when the
 argument to the command begins with a
 hyphen (-).

RETURN VALUE

 For a client-side folder (Asic): Returns list of client-side folders
 and files (file://home/karen/Asic/Sub file://home/karen/Asic/x.v).

 For a vault ("sync://holzt:2647/Projects/Asic/x.v;"): Returns vault
 versions: ({sync://holtz:2647/Projects/Asic/x.v;1.1}
 {sync://holtz:2647/Projects/Asic/x.v;1.2}
 {sync://holtz:2647/Projects/Asic/x.v;1.3}).

 For a version ("sync://holzt:2647/Projects/Asic/x.v;1.1",
 "sync://holzt:2647/Projects/Asic/x.v;yellow"): Not a
 container object; returns an empty list.

 For branch ("sync://holzt:2647/Projects/Asic/x.v;1.5.1",
 "sync://holzt:2647/Projects/Asic/x.v;Golden:Latest"): Not a
 container object; returns an empty list.

 For a project (sync://holzt:2647/Projects/Asic): Returns vault
 folder containing project: (sync://holzt:2647/Projects).

 For a configuration (sync://holzt:2647/Projects/Asic/Sub@Rel1):
 Returns vault folder: (sync://holzt:2647/Projects/Asic).

 For a server-side note system URL (sync:///Note)
 Returns the list of note systems on the server (currently the
 only note system is SyncNotes)

 For a server-side SyncNotes URL (sync:///Note/SyncNotes):
 Returns the list of URLs for all note types defined on the server.

 For a server-side note-type URL (sync:///Note/SyncNotes/HW-Defect-1):
 Returns a list of URLs of all notes of type HW-Defect-1.

 For a server-side Users URL (sync:///Users)
 Returns a list of URLs for all user profiles on the server.

File-Based Design

476

 For a module folder, returns a list of members in that folder.

 For other objects: Returns an empty list.

SEE ALSO

 note systems, notetype enumerate, populate, selectors, url container,
 url notes, url users, url versions

EXAMPLES

• Example Showing the Contents of a Module Folder (Module-based)
• Sample File Structure for Examples (File-based)
• Example of Local Folder Contents (File-based)
• Example of Vault Folder Contents (File-based)
• Example of Returning the Contents of a Branch (File-based)
• Example Showing the Contents Resulting from Full Populate (File-based)
• Example Showing the Contents Resulting From Incremental Populate (File-based)
• Example Showing Contents Resulting From Populate with Selector (File-based)
• Example Showing Contents Resulting from Populate with Configuration (File-based)

Example Showing the Contents of a Module Folder (Module-based)

 In the following example, the workspace //MyModules contains the
 following:
 MyModules
 File1.txt
 File2.txt
 File3.txt
 File4.txt
 Return contents of local folder MyModules

 stcl> url contents /home/tachatterjee/MyModules
file:///home/tachatterjee/MyModules/File1.txt
file:///home/tachatterjee/MyModules/File2.txt
file:///home/tachatterjee/MyModules/File3.txt
file:///home/tachatterjee/MyModules/File4.txt

Sample File Structure for Examples (File-based)

 In the following examples, the local work area
 /Projects/ASIC contains the following:
 ASIC
 FileA # Three versions exist in the vault
 FileB # There is a new version in the vault
 FileC # Not under revision control

ENOVIA Synchronicity Command Reference All -Vol2

477

 FileD # In the vault, but not in local working directory
 Decoder
 FileE # There is a new version in the vault
 FileF # Only file to have tag 'Gold' (version 1.2)

Example of Local Folder Contents (File-based)

 Return contents of local folder ASIC

 dss> url contents /Projects/ASIC
 file:///Projects/ASIC/Decoder
 file:///Projects/ASIC/FileA
 file:///Projects/ASIC/FileB
 file:///Projects/ASIC/FileC

Example of Vault Folder Contents (File-based)

 Return contents of vault folder ASIC

 dss> url contents sync://holzt:2647/Projects/ASIC
 sync://holzt:2647/Projects/ASIC/Decoder
 sync://holzt:2647/Projects/ASIC/FileA;
 sync://holzt:2647/Projects/ASIC/FileB;
 sync://holzt:2647/Projects/ASIC/FileD;

Example of Returning the Contents of a Branch (File-based)

 Return contents of FileA main branch

 dss> url contents "sync://holzt:2647/Projects/ASIC/FileA;1"
 sync://holzt:2647/Projects/ASIC/FileA;1.1
 sync://holzt:2647/Projects/ASIC/FileA;1.2
 sync://holzt:2647/Projects/ASIC/FileA;1.3

Example Showing the Contents Resulting from Full Populate (File-based)

 Return contents of /Project/ASIC resulting from full populate

 dss> url contents -ifpopulated /Projects/ASIC
 file:///Projects/ASIC/Decoder
 file:///Projects/ASIC/FileA
 file:///Projects/ASIC/FileB
 file:///Projects/ASIC/FileD

Example Showing the Contents Resulting From Incremental Populate (File-based)

File-Based Design

478

 Return updated objects of /Project/ASIC after incremental populate

 dss> url contents -ifpopulated -incremental /Projects/ASIC
 file:///Projects/ASIC/Decoder
 file:///Projects/ASIC/FileB
 file:///Projects/ASIC/FileD

Example Showing Contents Resulting From Populate with Selector (File-based)

 Return what is populated when the selector is "Gold", which can be a
 version or branch tag

 dss> url contents -ifpopulated -version Gold /Projects/ASIC
 file:///Projects/ASIC/Decoder

Example Showing Contents Resulting from Populate with Configuration (File-based)

 Return the contents of the ASIC project's "Gold" configuration

 dss> url contents sync://holzt:2647/Projects/ASIC@Gold
 sync://holzt:2647/Projects/ASIC/Decoder@Gold

 dss> url contents sync://holzt:2647/Projects/ASIC/Decoder@Gold
 sync://holzt:2647/Projects/ASIC/Decoder/FileF;1.2

contents-foreach

contents-foreach Command

NAME

 contents-foreach - Function to process the results of a contents
 command

DESCRIPTION

 This routine loops over the items in a "contents" results list, and
 processes each item in turn.

 Note: The only property types typically available for each object
 are, name, type, and version. The name and type properties are always
 present in the contents output; "versions" is only present when the
 "-versions" option was specified to the contents command.

SYNOPSIS

ENOVIA Synchronicity Command Reference All -Vol2

479

 contents-foreach var result_list tcl_script [-nofolder] [-path]

ARGUMENTS

• var
• results_list
• tcl_script

var

 var This is the loop variable. It is treated as a Tcl
 array, and on each loop around contains the set of
 properties for the next object in the result_list.
 In addition to the properties in the "props" value
 for each object (i.e. the version), the array will
 contain a "name" property and a "type" property,
 which are the name and type properties for the
 object.

 Note: For modules, the contents-foreach function
 returns a value of "Module" for the "type"
 property.

results_list

 result_list This is the list of objects to be processed. It must
 be the result value of a call to the "contents"
 command with the "-format list" option.

tcl_script

 tcl_script This is the piece of Tcl code that is executed on
 each loop.

OPTIONS

• -nofolder
• -path

-nofolder

 -nofolder If specified, then the tcl_script will not be called
 for Folder type objects in the result_list.

File-Based Design

480

-path

 -path The "name" property on each loop is usually just the
 "name" property for the object. However, if this
 option is specified, and a recursive "contents" was
 performed, then the "name" property is the relative
 path to each object. Normally, you would run
 "contents" with the -path or -fullpath option, in
 which case the "name" property contains an
 appropriate relative or full path. If you did not
 do that, then passing the "-path" option to
 contents-foreach will mean that the "name" property
 contains the relative path for each item, thus
 allowing you to differentiate between items with the
 same name in different folders.

SEE ALSO

 contents

EXAMPLE

 This example shows using processing the compare-foreach command to
 process the results from a compare command.

 set result_list [contents -selector RelA:Latest -version -rec -format list]

 contents-foreach obj $result_list -nofolder { puts "Object: $obj(name),
 version: $obj(version)" }

datasheet

datasheet Command

NAME

 datasheet - Displays an object's data sheet

DESCRIPTION

 This command displays the data sheet for the specified object.
 The information that is displayed depends on the object type. For
 example, the data sheet for a file in your working folder contains
 information such as lock status, modification status, version
 number, and associated tags.

ENOVIA Synchronicity Command Reference All -Vol2

481

 DesignSync displays the information in a browser window. On Windows
 platforms your system's default browser is used, and the data sheet
 is displayed in an existing browser window if one is available. On
 UNIX, the browser is determined by a registry setting in one of the
 DesignSync client registry files. You can override the
 installation- or site-wide default browser using the SyncAdmin
 tool. On UNIX, DesignSync invokes a new browser to display the data
 sheet even if you have a browser already running.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 datasheet <object>

OPTIONS

 None.

RETURN VALUE

 None.

EXAMPLES

 This example displays the data sheet for top.v.

 dss> scd Projects/Sportster/top
 dss> datasheet top.v

 This example displays the data sheet for the top.v vault.
 stcl> datasheet "sync://holzt:2647/Projects/Sportster/top/top.v;"

 This example displays the data sheet for version 1.2 of top.v.
 stcl> datasheet [url vault top.v]1.2

diff

diff Command

NAME

File-Based Design

482

 diff - Compares files and versions of files

DESCRIPTION

• Notes for Collection Objects
• Note for Modules (Module-based)

 The file/version comparison facility has three components:
 - The DesignSync 'diff' command, which is documented here.
 - The DesignSync GUI Tools->Compare Files commands. Performing
 comparisons from the GUI simplifies the selection of files and
 versions for comparison, and also provides shortcuts to
 perform the most common types of comparisons. The GUI commands
 ultimately invoke the DesignSync diff command. See DesignSync
 Help for details on the Compare Files commands.
 - The graphical interface. DesignSync provides the capability to
 display diff results in a graphical diff client.
 Note: The graphical interface client does not directly understand
 DesignSync versions; you must invoke it from the DesignSync
 'diff' command using the -gui option, or the DesignSync GUI
 Advanced Comparison dialog in order to compare versions.

Notes for Collection Objects

 The built-in diff command supports comparing cell views members from
 different versions of a cell view, or comparing local modification of
 a cell view to different server versions of the cell view.

 Important: When specifying collection objects as the files to
 compare, you must use the -member option to specify the relative path
 of the cell view. This provides the location on the server of the
 cell view within the collection and indicates to DesignSync that the
 object is a cell view within a collection. To find the relative path
 of a cell view, use the url members command with the -relative option.

Note for Modules (Module-based)

 Note: The diff command is for comparing files. To compare module
 contents, use the compare command.

SYNOPSIS

 diff [-ancestor <commonAncestorFile>] [-binary] [-case] [-embed]
 [-kk] [-member <cellview_path>] [-modulecontext <context>]
 [-standard | -unified | -syncdiff | -annotate | -gui]
 [-output <resultFile>] [-[no]usemoduleversions] [-version <id>]
 [-white] {[-file1] <fileA>} [[-file2] <fileB>] [--]

ENOVIA Synchronicity Command Reference All -Vol2

483

ARGUMENTS

• File Object (Module-based)
• File Object (File-based)

File Object (Module-based)

 <file> You can specify one or two files as simple filenames,
 relative pathnames, absolute pathnames, URLs to
 module members, DesignSync objects, collection cell
 view versions, and legacy module members. You can
 also specify versions by appending the filename
 with a semicolon (;) and a version number or tag
 name (including Latest and Orig).

 Note: When in stcl/stclc mode, you must surround
 filenames that have spaces or version-extended
 names with double quotes, for example:
 "foo.bar;1.5"The file argument can be specified
 with or without the -file/-file2 options. You can
 use version-extended filenames (see Description
 section).

File Object (File-based)

 <file> You can specify one or two files as simple
 filenames, relative pathnames, absolute pathnames,
 collection cell view versions, or URLs to
 DesignSync objects. You can also specify versions
 by appending the filename with a semicolon (;) and
 a version number or tag name (including Latest and
 Orig).

 Note: When in stcl/stclc mode, you must surround
 filenames that have spaces or version-extended
 names with double quotes, for example:
 "foo.bar;1.5"The file argument can be specified
 with or without the -file/-file2 options. You can
 use version-extended filenames (see Description
 section).

OPTIONS

• -ancestor (Module-based)
• -ancestor (File-based)
• -annotate
• -binary

File-Based Design

484

• -case
• -embed
• -file1
• -file2
• -gui
• -kk
• -member
• -modulecontext (Module-based)
• -output
• -standard
• -syncdiff
• -unified
• -usemoduleversions (Module-based)
• -version (Module-based)
• -version (File-based)
• -white
• --

-ancestor (Module-based)

 -ancestor <fn> Specifies the common ancestor for a three-way
 comparison. You can use version-extended filenames
 (see Description section).

 For example, two users fetch the same version of a
 file, and each makes changes to their copy. By
 specifying the original unmodified version as the
 common ancestor, the first user's modified copy as
 fileA and the second user's modified copy as fileB,
 the diff operation can indicate who made which
 changes and whether the changes would conflict when
 merged.

 Specify an asterisk as the ancestor (-ancestor *) to
 have diff automatically calculate the closest common
 ancestor of the two file versions (using 'url
 resolveancestor'). This option is always a file
 version.

 When -usemoduleversions is specified with the
 -ancestor * option, the module version is used to
 identify file versions for the closest common
 ancestor calculation. The -ancestor option does not
 identify the closest common ancestor of the module
 versions themselves.

 Note: Only -syncdiff and -annotate output formats
 support three-way comparisons.

-ancestor (File-based)

ENOVIA Synchronicity Command Reference All -Vol2

485

 -ancestor <fn> Specifies the common ancestor for a three-way
 comparison. You can use version-extended filenames
 (see Description section).

 For example, two users fetch the same version of a
 file, and each makes changes to their copy. By
 specifying the original unmodified version as the
 common ancestor, the first user's modified copy as
 fileA and the second user's modified copy as fileB,
 the diff operation can indicate who made which
 changes and whether the changes would conflict when
 merged.

 Specify an asterisk as the ancestor (-ancestor *) to
 have diff automatically calculate the closest common
 ancestor of the two file versions (using 'url
 resolveancestor'). This option is always a file
 version.

 Note: Only -syncdiff and -annotate output formats
 support three-way comparisons.

-annotate

 -annotate Uses a column format to display the entire
 comparison text. The first column displays the line
 number in fileA. The second column displays the
 line number in fileB. The third column indicates
 whether the line is changed and what has changed.
 The final column provides the text of the line
 indicated.

 This option is mutually exclusive with the -gui,
 -standard, -syncdiff, and -unified options.

-binary

 -binary Performs a fast comparison of the files, reporting
 only whether the files are identical or
 not. Because differences between binary files
 cannot be reported, a fast binary comparison is
 automatically performed if 'diff' detects that
 either of the files being compared is a binary
 file. Note that the -kk, -embed, -white, and
 -case diff options are ignored when performing a
 binary comparison.

-case

File-Based Design

486

 -case Ignore character case differences.

-embed

 -embed Ignore differences in the amount of whitespace
 within a line. For example, using -embed, there
 is no difference between a sentence with one
 space between each word and the same sentence with
 three spaces between each word.

-file1

 -file1 <fileA> Specifies the first file or version to be
 compared. In most cases, this should be the older
 version of the two being compared. For more
 information about what can be specified for <fileA>,
 see the <file> argument. If you do not specify the
 fileB argument, then fileA is compared to its
 Original (;Orig) version, which is the version that
 you checked out prior to making local
 modifications.

 Note: The -file1 and -file2 switches are optional;
 you can specify fileA and fileB without the
 switches. However, you must either specify both
 switches or omit both switches. The following
 syntax is invalid:
 diff -file1 a.txt b.txt

-file2

 -file2 <fileB> Specifies the second file or version to be
 compared. For more information about what can be
 specified for <fileA>, see the <file> argument. If
 omitted, fileB is assumed to be the Original (;Orig)
 version of fileA.

 FileB should generally be the version with the more
 recent changes. If fileB is older than fileA, then
 the comparison succeeds, but the results are the
 inverse of the actual modifications. For example,
 if you add a line to the newer file, but specify
 the newer file as fileA, then diff reports that
 this line was deleted from fileB rather than
 indicating that the line was added to fileA. In
 some cases, this inverse report is useful; for
 example, when backing out a set of changes.

-gui

ENOVIA Synchronicity Command Reference All -Vol2

487

 -gui Invokes the defined graphical Diff utility to
 display the comparison results. DesignSync provides
 a graphical utility, or, if you have a preferred
 diff tool, you may configure your system to use that
 tool.

 For information configuring DesignSync to
 recognize your graphical Diff utility, see the
 ENOVIA DesignSync Administrator's Guide.

 Note: The -kk, -embed, -white, and -case diff
 options are controlled by registry keys for the
 graphical Diff utilities. The registry key settings
 override any command line options specified. The
 -output option is ignored.

 This option is mutually exclusive with the
 -annotate, -standard, -syncdiff, and -unified
 options.

-kk

 -kk Stands for "keep keywords", ignores differences in
 RCE keyword values by hiding the keyword values
 (collapsing the keywords) prior to
 comparing the files. RCE keywords are tokens, such
 as $Revision$, $Author$, and Log (see Notes),
 that you can add to your files to provide
 revision information, such as revision number,
 author, and comment log.

 For example, if the first lines of fileA and fileB are:
 fileA: $Revision: 1.1 $
 fileB: $Revision: 1.3 $
 then diff reports the difference unless you specify
 -kk, in which case diff collapses each line to:
 $Revision$.

 Differences in keyword usage and placement are
 always reported. For example:
 fileA: $Revision: 1.1 $
 fileB: $Author: Goss $
 diff reports the difference irrespective of
 whether you specify -kk because the keywords
 themselves, not just the keyword values, are
 different.

 Notes:
 - Log, when expanded, permanently adds
 log information to your files. The -kk option
 does not hide these log messages prior to
 performing a comparison. Diff programs such as
 tkdiff may flag differences or conflicts

File-Based Design

488

 (if log information has been edited by hand)
 if you use Log in your files.
 - The diff command honors the $KeysEnd$ keyword;
 any expanded keywords after $KeysEnd$ are compared
 fully and literally.

-member

 -member Specifies the relative path of the collection object
 <collection_path> member. This option is used to indicate to the
 system that the files specified are within a
 collection and to provide the relative path to the
 cell view.

 Note: If you have specified a cell view within a
 collection as the file argument, this option is
 required.

-modulecontext (Module-based)

-modulecontext Specifies a module context to be used for file
 <context> arguments that are not present in the workspace.
 This allows you compare files that are not present
 in your workspace.
 Note: If the file is not present in the workspace,
 you must specify the full natural path of the module
 member.

 You can only specify one module context, so if you
 are using the -modulecontext option and specifying
 files in two different modules, at least one of the
 files must be present in your workspace.

-output

 -output <fn> Specifies an output file for the diff results. By
 default, the results are displayed in the
 shell window. The -output option is ignored if you
 specify -gui.

 Caution: Any existing file of the same
 name is overwritten without warning.

-standard

-standard Displays differences in standard Unix diff format.

 This option is mutually exclusive with the

ENOVIA Synchronicity Command Reference All -Vol2

489

 -annotate, -gui, -syncdiff, and -unified options.

-syncdiff

 -syncdiff Displays the changed text with margin
 annotations indicating the changes.

 This option is mutually exclusive with the
 -annotate, -guide, -standard, and -unified options.

-unified

 -unified Displays differences in unified diff format.

 This option is mutually exclusive with the
 -annotate, -gui, -standard, and -syncdiff options.

-usemoduleversions (Module-based)

 -[no]usemoduleversions
 Indicates whether the specified version applies
 to the file being compared (-nousemoduleversions) or
 the module being compared (-usemoduleversions.)

 -nousemoduleversions uses the specified version to
 refer to the file version. (Default) That file may
 not be a member of a module, or may be a member of a
 module version with a different version number. For
 example: FileA;1.4 might be a member of module
 Chip;1.20)

 -usemoduleversions uses the specified version to
 refer to module version which contains the file. For
 example, specifying FileA;1.20 with the
 usemoduleversions option identifies that module
 version 1.20 contains version 1.4 of FileA, and the
 diff runs against file version 1.4.

 Notes:
 o When -usemoduleversions is used, the output of the
 command always provides the version information
 for the specified file.

 o When -moduleversion is used with the
 -ancestor * option, which specifies the common
 ancestor of two file versions, the
 moduleversion is resolved to the file version
 before attempting to resolve the ancestor. The
 common ancestor is returned as a file version
 of the individual file, not as a module

File-Based Design

490

 version.

-version (Module-based)

 -version Specifies another version of fileA to compare to
 <selector> to fileA. If the selector resolves to a branch, the
 Latest version on that branch is used for the
 comparison.

 When using the -version option, you only need to
 specify fileA for comparison. The system implicitly
 processes the two specified versions of fileA
 without requiring you to type one version as
 fileB.

 Note: When the -version option is used with the
 -usemoduleversions option, the file is compared
 against the file contained in the module version
 specified.

-version (File-based)

 -version Specifies another version of fileA to compare to
 <selector> to fileA. If the selector resolves to a branch, the
 Latest version on that branch is used for the
 comparison.

 When using the -version option, you only need to
 specify fileA for comparison. The system implicitly
 processes the two specified versions of fileA
 without requiring you to type one version as
 fileB.

-white

 -white Ignore leading and trailing whitespace. For
 example, using -white, there is no difference
 between UNIX and PC line endings, or different
 indentation levels, as long as the rest of the line
 content matches.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

ENOVIA Synchronicity Command Reference All -Vol2

491

SEE ALSO

 DesSync, url resolveancestor, keywords

EXAMPLES

• Examples of Comparing a File against the Original Version
• Examples of Comparing a File Against the Latest Server Version
• Example of Comparing a File Against A Specified Version
• Example of Comparing Original File Against Latest Server Version
• Example of Showing Conflicts in Your Local Version
• Examples of Comparing Collection Cell View Versions
• Example of Comparing Against the Local Cell View Version
• Example of Comparing Files Using the Module Version (Module-based)
• Example of Comparing Files Using the Member Version (Module-based)
• Example Comparing a Module Member to a Non-Local Module Member (Module-based)
• Example of Specifying the Module Version with the Ancestor * Option (Module-based)

Examples of Comparing a File against the Original Version

 Example showing compare of a working copy of a file against the
 original version to see what changes you have made. All of the
 following specifications are equivalent:

 dss> diff foo.bar
 dss> diff "foo.bar;Orig" foo.bar
 dss> diff -v Orig foo.bar

Examples of Comparing a File Against the Latest Server Version

 Example showing compare of a working copy against the latest version
 on the same branch, using unified diff format:

 dss> diff -unified foo.bar "foo.bar;Latest"
 dss> diff -unified -version Latest foo.bar

Example of Comparing a File Against A Specified Version

 Example showing compare of a working copy of a file on
 the Trunk branch against the latest version on the "rel30" branch:

 dss> ls -report H samp.asm
 Branch Tags Name
 ----------- ----
 Trunk samp.asm
 dss> diff -v rel30: samp.asm

File-Based Design

492

Example of Comparing Original File Against Latest Server Version

 This example shows how the latest server version of the file differs
 from the original version.

 dss> diff "foo.bar;Orig" "foo.bar;Latest"

Example of Showing Conflicts in Your Local Version

 This example shows how to find conflicts between your locally
 modified copy and the latest checked-in version:

 dss> diff -ancestor "foo.bar;Orig" foo.bar "foo.bar;Latest"

 or equivalently, use the "*" notation to have "diff" calculate
 the common ancestor automatically:

 dss> diff -ancestor * foo.bar "foo.bar;Latest"

Examples of Comparing Collection Cell View Versions

 These examples show different ways of specifying the same comparison
 of member file from different versions of a cell view version.

 stcl> diff -member verilog/verilog.v [url vault verilog.sync.cds]1.2 \
 [url vault verilog.sync.cds]1.3

 stcl> diff -member verilog/verilog.v -version 1.2 \
 {verilog.sync.cds;1.3}

 stcl> diff -member verilog/verilog.v {verilog.sync.cds;1.2} \
 {verilog.sync.cds;1.3}

Example of Comparing Against the Local Cell View Version

 This example shows comparing the local version of a member with a
 specified cell view version.

 stcl> diff -member verilog/verilog.v {verilog.sync.cds;1.3} \
 verilog.sync.cds

Example of Comparing Files Using the Module Version (Module-based)

 This example specifies using the module version 1.18. The Chip module

ENOVIA Synchronicity Command Reference All -Vol2

493

 version 1.18 contains version 1.1 of the test.c file.

 dss> diff -usemoduleversions -version 1.18 test.c
 NOTE: Object test.c, module version 1.18, mapped to object version 1.1
 7c7
 < printf ("Hello Big World!\n");

 > printf ("Hello World!\n");
 1 Differences detected

Example of Comparing Files Using the Member Version (Module-based)

 This version of the diff command uses the same command as the Example
 of Comparing Files Using the Module Version example, but doesn't
 specify -usemoduleversion (You could also specify
 -nousemoduleversion) so it uses version 1.18 of temp.c regardless of
 the module version.

 dss> diff -version 1.18 test.c
 som-E-152: No Such Version.

 Because there is no version 1.18 of the test.c file, this example,
 unlike the previous example, generates an error. Using the correct
 module member version, 1.1; however, results in comparing the 1.1
 version of test.c on the server to the modified local version in the
 workspace, just as was done in the previous example.

 dss> diff -version 1.1 test.c
 7c7
 < printf ("Hello Big World!\n");

 > printf ("Hello World!\n");
 1 Differences detected

Example Comparing a Module Member to a Non-Local Module Member (Module-based)

 This example shows comparing a module member in the workspace, with a
 module member not in the workspace:

 dss> diff -modulecontext Chip foo.bar "/oldfoo.bar;1.4"

 Note: FileA, foo.bar, is not a full natural path so the system uses
 the workspace object. FileB is specified with a full natural path,
 and is found using the module context.

Example of Specifying the Module Version with the Ancestor * Option (Module-based)

 This example shows the difference in resolving -ancestor * when
 -usemoduleversion is used to specify the module version.

File-Based Design

494

 dss> diff -ancestor * -modulecontext \
 sync://srv2.ABCo.com:2647/Modules/Chip -usemoduleversion \
 -version 1.20 test.c
 NOTE: Object test.c, module version 1.20, mapped to object version 1.3
 Note: Three-way diffs cannot be displayed in standard mode. Using
 syncdiff mode.
 Comparing: (A => B, C)
 (Ancestor) sync://srv2.ABCo.com:2647/Modules/Chip/vault/f7/ \
 f75e11f54656d4c28bb9f37fef1b55f5;1.2
 (B) file:///home/rsmith/MyModules/chipDiff/test.c
 (C) sync://srv2.ABCo.com:2647/Modules/Chip/vault/f7/ \
 f75e11f54656d4c28bb9f37fef1b55f5;1.3
 Deleted from B & C (A6, B6, C6) printf ("Hello Big World!\n");
 Unresolved conflict (A6, B6, C6) printf ("Hello Big Giant
 World!\n");

 printf ("Hello Big Tiny World!\n");
 2 Differences detected

help

help Command

NAME

 help - Provides help on the Synchronicity command set

DESCRIPTION

 This command provides a variety of help related functions,
 displaying the information in the output window. Help is available
 for:
 - All DesignSync command-line commands
 - DesignSync topics such as using wildcards or running server-side
 scripts
 - ProjectSync command-line commands

 For compound commands such as the 'url' and 'note'
 commands, surround the command with double quotes and put
 exactly one space between the two keywords of the command (see
 Example section).

 Every DesignSync command has '-help', '-?', and '-usage' options
 that you can specify to get full or brief help.

 Note:
 You can access other DesignSync and related products and
 integrations documentation from the DesignSync Documentation Main
 Menu:

 - (Windows only) Select "DesignSync Documentation" from the

ENOVIA Synchronicity Command Reference All -Vol2

495

 Windows Start menu, typically:

 Start->Programs->Dassault Systems DesignSync <version>->
 DesignSync Documentation

 - Enter the following URL from your Web browser:

 http://<host>:<port>/syncinc/doc/index.html

 where <host> and <port> are the SyncServer host and port. Use
 this server-based invocation when you are not on the same
 local area network (LAN) as the Synchronicity installation.

 - Enter the following URL from your Web browser:

 file:///$SYNC_DIR/share/content/doc/index.html

 where $SYNC_DIR is the location of the Synchronicity
 installation. Specify the value of SYNC_DIR, not the variable
 itself. Use this invocation when you are on the same LAN as
 the Synchronicity installation. This local invocation may be
 faster than the server-based invocation, does not tie up a
 server process, and can be used even when the SyncServer is
 unavailable.

SYNOPSIS

 help [-all] [-brief] [-output <file>] [-summary] [<topic> [...]]

OPTIONS

• -all
• -brief
• -output
• -summary

-all

 -all Displays help information for all available
 commands and topics. When used with the -brief
 option, displays only synopsis information. When
 used without any other options or arguments,
 displays a list of available commands (same as
 specifying the help command without any options or
 specifying the -summary option).

 Note: When you use the -all option and specify one or
 more topic names, the entire help file (full
 documentation on all commands and topics) is
 displayed. Because of the size of the help file,
 this operation may take a while to complete.

File-Based Design

496

-brief

 -brief Displays the synopsis information for each specified
 topic. The synopsis for individual DesignSync
 commands is typically the command usage, while for
 other topics, it is a brief topic summary. If you do
 not specify one or more topics, brief help is
 displayed for all commands.

-output

 -output <file> This option is used to write help topics to a text
 file instead of displaying them. When used with the
 -all option, a file is created containing all the
 available topics. This can be combined with the
 -brief option to provide a full synopsis of all
 topics.

 Caution: If the file specified already exists,
 its contents will be erased.

-summary

 -summary Displays the list of available help
 topics. This option is the same as specifying
 the help command without any options or arguments.

RETURN VALUE

 none

EXAMPLES

 The following example returns brief (synopsis) information for
 the 'ci' and 'co' commands:
 dss> help -brief ci co

 The following example returns help information for the 'url vault'
 command. The double quotes are required, and there must be exactly
 one space between 'url' and 'vault':
 dss> help "url vault"

 You can get the same help information by using the command's -help or -?
 option:

ENOVIA Synchronicity Command Reference All -Vol2

497

 dss> url vault -help
 or
 dss> url vault -?

locate

locate Command

NAME

 locate - Finds a specified object on the search paths

DESCRIPTION

 This command searches the Synchronicity paths for a specified
 object, either a file or directory. You can find either the first
 occurrence of the object (the default) or all occurrences of the
 object.

 On the server side, the following paths are searched in this order:

 <SYNC_CUSTOM_DIR>/servers/<host>/<port>
 <SYNC_CUSTOM_DIR>/site
 <SYNC_CUSTOM_DIR>/enterprise
 <SYNC_DIR>

 On the client side, the following paths are searched in this order:

 <SYNC_USER_CFGDIR>
 <SYNC_SITE_CUSTOM>
 <SYNC_ENT_CUSTOM>
 <SYNC_DIR>

 The environment variables match the following paths:
 Variable name: Path:
 -------------- -----
 SYNC_DIR Synchronicity installation directory
 SYNC_CUSTOM_DIR <SYNC_DIR>/custom.
 SYNC_SITE_CUSTOM <SYNC_CUSTOM_DIR>/site.
 SYNC_ENT_CUSTOM <SYNC_CUSTOM_DIR>/enterprise
 SYNC_USER_CFGDIR User-specific customization files
 (UNIX default <HOME>/.synchronicity)
 (Windows default %AppData%\Synchronicity)

 You cannot specify path names containing the ".." relative path
 notation. If you try to include this notation, the locate command
 throws an exception.

 On the client side, you must run this command in stcl/stclc mode.

File-Based Design

498

SYNOPSIS

 locate [-env | -path | -url] [-first | -all] [-nothrow] [-reverse]
 [--] <ObjectName>

ARGUMENTS

• Object Name

Object Name

 ObjectName The name of the file or directory you want
 to locate.

OPTIONS

• -all
• -env
• -first
• -nothrow
• -path
• -reverse
• -url
• --

-all

 -all Returns all occurrences of ObjectName in the
 search paths. The default behavior is -first.

-env

 -env Returns environment variables in place of literal
 path names. For example, instead of returning:

 /home/john/syncinc/custom/site/share/tcl/test.txt

 this command returns:

 <SYNC_CUSTOM_DIR>/site/share/tcl/test.txt

 The -env, -path, and -url options are mutually
 exclusive; -path is the default.

-first

ENOVIA Synchronicity Command Reference All -Vol2

499

 -first Returns the first occurrence of ObjectName in the
 search paths. This behavior is the default.

-nothrow

 -nothrow If the object is not found on the search paths,
 returns an empty string. Without this option,
 the locate file command throws an exception when
 the search object is not found.

-path

 -path Returns the full file system path of the
 object. The -env, -path, and -url options are
 mutually exclusive; -path is the default.

-reverse

 -reverse When used with the -all option, returns the path in
 reverse search order. You get an error if you try to
 use this option without the -all option.

-url

 -url Returns the server URL, prepended by:

 - Server area: /syncserver
 - Custom area: /syncsite
 - Enterprise area: /syncent
 - Installation area: /syncinc

 If you use the server-side -url option, specify the
 path to the search object relative to the one of the
 share/content directories:

 <SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/content
 <SYNC_CUSTOM_DIR>/site/share/content
 <SYNC_CUSTOM_DIR>/enterprise/share/content
 <SYNC_DIR>/share/content

 This option is only available when run from the
 server. The -env, -path, and -url options are
 mutually exclusive; -path is the default.

--

File-Based Design

500

 -- Indicates that the command should stop looking for
 command options. Use this option when you
 specify an object whose name begins with a
 hyphen (-).

RETURN VALUE

 When you use the -first option, returns a string indicating where
 the specified object was first located in the search path. When you
 use the -all option, returns a list of the places where the
 specified object was found in the search paths.

 The format of the path returned depends on the options you use.

EXAMPLES

• Examples of using locate
• Example of Using -nothrow with locate

Examples of using locate

 The following example searches for a file called test.txt. A user
 has put copies of the file in two of the directories on the search
 path (<SYNC_CUSTOM_DIR>/site/test.txt and <SYNC_DIR>/test.txt).

 The command

 locate -env test.txt

 returns the first location found on the search path:

 $SYNC_CUSTOM_DIR/site/test.txt

 When used with the -all option, the command finds the file in two
 of the directories on the search path.

 {$SYNC_CUSTOM_DIR/site/test.txt} {$SYNC_DIR/test.txt}

 In both cases, the -env option causes the paths to be displayed using
 environment variables.

Example of Using -nothrow with locate

 The following example uses the same problem as the previous example,
 but includes the use of the -nothrow option to avoid throwing an
 exception if the file is not found. Without the -nothrow option, you
 need to write Tcl code to deal with exceptions. For example:

ENOVIA Synchronicity Command Reference All -Vol2

501

 #Trying to find file
 if [catch {set filename [locate share/test.txt]} msg] {
 puts "The file was not found on the search path. The result is $msg"
 }

 The -nothrow option lets you write simpler and less error-prone
 code that gets the same result:

 #Trying to find file
 set filename [locate -nothrow share/tcl/test.txt]
 if {$filename == ""} {
 puts "The file was not found on the search path.\n"
 }

ls

ls Command

NAME

 ls - Lists information about the specified objects

DESCRIPTION

• Notes for Module Objects and Module Snapshots (Module-based)
• Notes on Legacy Modules (Legacy-based)
• Notes for Files-Based Objects (File-based)
• Report Options
• Report Data Keys Table (Module-based)
• Status Values for Modules and Modules Members (Module-based)
• Report Data Keys Table (File-based)
• Status Values for File-Based Objects (File-based)

 This command lists information about the specified objects. You
 typically specify objects such as folders, files, and
 collection objects such as Cadence cell views and CTP collections.

 Note: The ls command reports revision control information about a
 collection member as if it were the collection itself. In other
 words, if a collection is locked and has version 1.1, then that
 information appears in the ls output for all of the collection's
 members. The only exception is when the collection is modified; in
 this case the ls command shows which members are modified or new.

 With the ls command you can also specify server-side DesignSync
 objects such as vaults, branches, and versions; however, the 'ls'

File-Based Design

502

 command is optimized to give you quick information about workspace
 objects. By default, 'ls' reports information accessed only from
 local metadata, although you can choose to view server information as
 well. (See "Report Options" below for details). You cannot view
 server-side module objects with ls.

 If you specify a container object -- an object that contains other
 objects, such as folders and vaults -- 'ls' returns information about
 the container object's contents.

 You can use wildcards to specify objects to be listed. If you do
 not specify an argument or the -selected option, then the default
 is to list the contents of the current folder.

 All mirror directories can be treated in the same way as your
 DesignSync work areas.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Notes for Module Objects and Module Snapshots (Module-based)

 The ls command does not provide a module manifest. If you
 specify a workspace module, module instance, or module directory, ls
 provides information about the module members contained in the
 workspace. For example, the -merged option allows you to view the
 status of object in your workspace after a module merge has been
 performed.

 When ls includes a workspace that has been populated with
 a blend of a main selector and a module snapshot, the objects in the
 workspace are compared against both the module snapshot and the main
 selector. Therefore status of a member populated from the module
 snapshot is calculated against the module snapshot branch version,
 and the status of a member populated from the main selector is
 calculated against the corresponding vault version.

 The 'ls' command does not follow soft links such as module caches
 (Mcaches). In cases where softlinks exist, 'ls' ignores them and only
 lists only objects physically present in the directory structure.

 The -nomodulerecusive option, which allowed you to list a
 directory without including module contents, is no longer supported.
 To list a directory and omit contents, use the exclude filter.

 Use the 'compare' command to compare objects in workspaces.

Notes on Legacy Modules (Legacy-based)

ENOVIA Synchronicity Command Reference All -Vol2

503

 If the container is a folder containing a legacy module
 configuration, 'ls' follows its hierarchical references if you
 specify the -recursive option. If the container is a vault, 'ls'
 ignores the hierarchical references. The 'ls' command does not follow
 DesignSync configuration REFERENCEs. In these cases, 'ls' lists only
 objects physically present in the directory structure.

 The hcm showconfs command can be used to get information about legacy
 module configurations.

 If you are actively developing with legacy modules and have
 legacy module mode enabled, use the hcm show* commands to list
 information about legacy modules.

 Note: The -nomodulerecusive option, which allowed you to list a
 directory without including module contents, is no longer supported.
 To list a directory and omit contents, use the exclude filter.

Notes for Files-Based Objects (File-based)

 To list objects in vaults according to criteria such as a
 configuration name, use the 'contents' command. Use the 'compare'
 command to compare objects in vaults, configurations, and
 workspaces.

Report Options

 The -report option lets you specify what information 'ls'
 returns. You can specify one of the predefined modes (silent,
 brief, normal, verbose, status), or you can specify one or more
 data keys to specify exactly the information you want. For example,
 if you want to see objects' names, fetched times, and last-modified
 times, specify '-report NFM'.
 Note that:
 - All data keys must be uppercase.
 - The object's name is always included in the listing whether or
 not you specify the 'N' key.
 - If you specify an unused key (such as 'E'or 'Q'), it is
 ignored.
 - Some keys return values on a single line, while others can span
 multiple lines. Single-line values are always displayed first,
 followed by multi-line output.

 Note: You can add or remove keys from the predefined modes using the
 + and - keys with the report data keys listed below. For example,
 report -normal specifies the MDVLN data keys. If instead of
 specifying D, workspace status, you chose to specify S, status, you
 could type 'ls -report normal-D+S' (or '-report MSVLN').

 Tip: Because report -normal is the default, 'ls -report normal-D+S'
 could also be specified as 'ls -report -D+S'; the normal option is
 implied.

File-Based Design

504

The predefined modes are defined as follows:
 Mode Data Key Definition
 ------- -------------------
 brief N
 normal MDVLN
 status MSRUN
 verbose OMSRUNCTAX
 silent !

 The default behavior if -report is not specified is '-report normal'.
 The 'normal' data keys (MDVLN) generate a quick listing because these
 keys do not access the server vault. To view more detailed status
 including revision control status and the username of the locker,
 specify '-report status'. The 'status' report accesses the server
 vault and therefore is typically not as fast as the 'normal' report.

 Note: The '-report normal' command shows the fetched version rather
 than the upcoming version for locked or auto-branched objects. Use
 '-report status' which includes the 'R' report key to show the
 upcoming version instead.

Report Data Keys Table (Module-based)

 The following table lists the -report data keys. The table
 indicates whether the data key accesses the server vault or
 gathers the data locally and thus can provide a quicker
 listing. The table also provides the property name
 corresponding to each data key.

 Note: When a * appears at end of a description, it indicates that the
 data key uses the current module version on the selected branch.
 Otherwise, the command displays the information for version populated
 into the workspace.

 Data Property From # of
 Key Name Vault? Lines Description
 --- -------- ------ ------ -----------
 ! N/A N/A N/A Silent output. Use the '!' key with
 no other data keys to suppress the
 listing, although errors are still
 displayed. If the '!' key is used
 with other data keys, it is ignored.
 This key is useful with the
 -addselect option when you are only
 interested in defining your select
 list.
 A branchtags Yes Multi Branch tags. Use 'H' for single-line
 format.*
 Note: Module members cannot be
 tagged. The displayed tag applies
 to the module.
 C comments Yes Multi Original and checkout log
 comments.

ENOVIA Synchronicity Command Reference All -Vol2

505

 Original Log comments include:
 o author
 o creation time of the current
 version
 o check-in comments, if any.
 Checkout Log comments, if any,
 include:
 o check-out comments
 o changes made from the
 Revision Log field on the
 DesignSync GUI
 (File=>Properties=>Revision
 Control).*
 D wsstatus No Single Workspace status. These options
 are explained more fully in the
 status values table. Values
 include:

 o Absent - for objects fetched but
 no longer present.
 o Added - for module members added
 to a module, but not yet checked
 in.
 o Added By Merge/Needs Checkin
 o Locally Modified - for objects
 that have been modified in the
 workspace.
 o Moved - workspace object has moved.
 o Null - for objects in the
 same state as when the directory
 was last updated.
 o Out-of-sync - when a module
 member version is incorrect for
 the module version in the
 workspace.
 o Remove for Merge
 o Removed - workspace module
 member has been marked for removal.
 o Rename for Merge
 o Unresolved Conflicts

 Workspace status is a subset of
 the 'S' revision control status
 key, displaying status information
 available from the workspace,
 however some status information is
 not reported by the 'S' report
 option, so you might need to
 specify both 'S' and 'D' for
 complete status.
 F fetchtime No Single Fetched time.
 Note: If you used 'populate
 -mirror' to fetch the object to
 your work area, then the
 fetchtime for the object is
 listed as 0.
 G tags Yes Single Version tags. Use 'T' for multi-line

File-Based Design

506

 format.*
 Note: Module members cannot be
 tagged. The displayed tag applies
 to the module.
 H branchtags Yes Single Branch tags. Use 'A' for multi-line
 format.*
 Note: Module members cannot be
 tagged. The displayed tag applies
 to the module.
 I uid No Single Object UID.
 L fetchedstate No Single Fetched state. Options include:
 o Copy
 o Lock
 o Reference - for unlocked
 references
 o Cache
 o Checkin Excluded - unmanaged
 object, excluded by exclude
 file.
 o Null (" ")- for unmanaged or
 non-versionable objects.
 The fetched state displays with
 header "Type" in the report table.
 Note: The fetched state for Locked
 references is "Lock", not
 "Reference". Use the 'V' mode,
 which displays "Refers to" for
 references, with 'L' to determine
 whether an object is a locked
 reference.
 M mtime No Single Last-modified time. For a listing
 of vault locks, shows
 lock time. For references, this
 field is empty (" ").
 N name No Single Name and, if -path or -fullpath is
 specified, the path. Note that
 objects' names are displayed even
 when 'N' is not specified.
 O type No Single Object Type: For modules members
 and other DesignSync objects, the
 types are:
 o File,
 o Folder
 o Project
 o Absent File (a locked reference
 or deleted file)
 o Referenced File
 o Link to File
 o Link to Folder
 o Link to Mcache
 o Cached File
 o Vendor-specific object types
 such as Cadence or Synopsis
 libraries,cells, and cell views,
 or CTP collection object types.
 Note: When running the ls-foreach
 function, the property type name

ENOVIA Synchronicity Command Reference All -Vol2

507

 used is otype.
 P selector No Single Persistent selector list (as defined
 by the "setselector" command, or
 "Trunk" by default).
 Note: If a folder is a member of
 more than one module, the selector
 displays as an empty ("") value.*
 Q csum No Single The checksum of the object. If the
 object is not in source control,
 the checksum is 0.
 R upcoming Yes Single Current version, and upcoming version
 if object is locked or auto-branched.
 For a locked reference, 'R' shows
 the current version and upcoming
 version to which it refers.
 Note: upcoming versions are not
 applicable for module members. The
 'R' option only provides the
 current version (equivalent
 to 'V').
 S status Yes Single Server status. These options are
 explained more fully in the status
 values table. Values include:
 o Up-to-date
 o Needs Merge
 o Needs Update
 o Added By Merge/Needs Checkin
 o Added
 o Absent - indicates a locked
 reference or a file deleted from
 the operating system
 o Unknown.
 See the Status Value table below
 for descriptions of these values.
 T tags Yes Multi Version tags. Use 'G' for single-line
 format.*
 Note: Module members cannot be
 tagged. The displayed tag applies
 to the module.
 U user Yes Single Username of the locker, or empty if
 the object is not locked. If the
 object is locked in this location,
 the report displays an asterisk
 (*) after the username.
 Modules members display as locked
 when the member is locked.
 V version No Single Fetched version. Display options
 include:
 o Version number
 o Unmanaged - for an object with no
 local metadata. For example,
 recreated files display as
 Unmanaged, because their metadata
 was removed by a previous rmfile.
 o Null ("") - for non-versionable
 objects.
 Note: This does not show the

File-Based Design

508

 upcoming version. To show the
 upcoming version for an object,
 use the 'R' option. Module members
 do not have upcoming versions.
 W objtype No Single Web object types include:
 o Folder,
 o File,
 o Project,
 o Link to Folder.
 o Link to Mcache
 X owner No Single Owner of the object.
 For collections - the collection
 to which a collection member
 belongs.
 For modules - the module to which
 a module member belongs.
 For a folder - all the modules
 that own the folder.
 Note: If ls is restricted to a
 single module, using the
 -modulecontext option, the
 specified module is the only owner
 shown.
 Y memberof No Single Module instance name. If the
 object(s) is not a module member,
 this field is blank.
 Z size No Single Size of the object in bytes. For
 collection objects, this option
 displays either the total number
 of member files in the collection,
 or the size of the objects in
 bytes. For more information on
 choosing the display value for Z,
 see the SyncAdmin help file.
 error Yes Multi Error message. If ls is unable to
 fetch data for an object, the
 'error' property automatically
 displays with the error.

Status Values for Modules and Modules Members (Module-based)

 The following table describes the status values. Server status values are
 specified using the 'S' key or the '-report status' option.
 Workspace status values are specified using the -'D' key, or the '-report
 normal' option. For ease of use, this list is in alphabetical order.

 Status Value Description
 ------------ -----------
 Added Indicates that the object has been added to the
 module, but has not been checked in.

 Added By merge, Indicates that the file was introduced to the work
 Needs Checkin area by a merge or overlay operation and does not
 exist on the current branch. These objects do not

ENOVIA Synchronicity Command Reference All -Vol2

509

 show as modified by the ls command.

 Note: If a file was added by merge, but is no
 longer present in the workspace, it will display
 with a status of "Added by merge, Needs Checkin",
 not a status of "Absent".

 Absent Indicates an object that is unexpectedly absent from
 the workspace. Typically an object is listed as
 "Absent" if it was deleted from the workspace using
 operating system commands, leaving behind the local
 metadata.

 Note: If a file was added by merge, but is no
 longer present in the workspace, it will display
 with a status of "Added by merge, Needs Checkin",
 not a status of "Absent".

 Locally Modified Indicates that the file has been edited since it was
 fetched and a more recent version has not been checked
 into the branch, or that an add has been
 performed on a module member that has not been
 checked into the module.

 Locally Modified, Indicates that a module member has been modified,
 Moved the location of the module member has changed, and
 the modified, moved version has not been checked
 into the branch.

 Moved Indicates that a module member with no content
 changes has been moved or renamed in the workspace,
 and the moved version has not been checked into the
 branch.

 Note: If a module member was both moved and
 removed, it is displayed only as removed.

 Needs Merge Indicates that a file has been locally modified and
 [<change>] the version is not correct for the current
 selector.
 For modules, an additional value indicating the
 type of change may appear in brackets [] after the
 Needs Merge status value:
 o <Version number> - the version of the member in
 the module version.
 o Moved - the module member has a different natural
 path than the one expected by the module version.
 o Removed - the module member is not in the module
 version.
 o <Version number>,Moved - the module member is
 both a different version and located at a
 different natural path than the module version.

 Needs Update Indicates that you have an incorrect version on the
 [<change>] given branch.
 For modules, an additional value indicating the
 type of change may appear in brackets after the

File-Based Design

510

 Needs Update status value:
 o <Version number> - the version of the member in
 the module version.
 o Moved - the module member has a different natural
 path than the one expected by the module version.
 o Removed - the module member is not in the module
 version.
 o <Version number>,Moved - the module member is
 both a different version and located at a
 different natural path than the module version.

 Out-of-sync Indicates the version of the file in the workspace
 is out of sync with the expected module version.
 Note: This value is part of the workspace status,
 the '-D' key must be specified to determine if the
 workspace contains out of sync objects.

 Remove for Merge Indicates that an object present in the workspace
 was removedon the branch being
 merged into the workspace. To remove the file on
 the server in the current branch, remove this file
 using the remove command for module members or the
 retire command for non-module members. This is a
 workspace status value.
 Note: Objects that were removed with rmvault are no
 longer present on the DesignSync server and do not
 show up in any ls query.

 Removed Indicates that a module member has been removed
 from the workspace and has not been checked into
 the branch. The module member is not marked as
 Absent, and information about the last fetched
 version of the module member is displayed.

 Notes:
 o If a module member was renamed and subsequently
 removed before a checkin operation was performed
 to update the server version, ls reports that
 object only as Removed.

 o The type column is not maintained for removed
 items.

 Remove for Merge Indicates that an object present in the workspace
 was removed, being retired on the branch being
 merged into the workspace. To remove the file on
 the server in the current branch, remove this file
 using the retire command. This is a workspace
 status value.

 Rename for Merge Indicates that an object present in the workspace
 Merge branch was renamed to the <naturalpath> value on the branch
 path: being merged into the workspace. To incorporate
 <naturalpath> this change into the current branch, move this file
 to the naturalpath name using mvmember. This status
 is only applicable to cross-branch merge
 operations. This is a workspace status value.

ENOVIA Synchronicity Command Reference All -Vol2

511

 Note: If this file has any other status
 information, such as Absent or modified, the status
 column shows all the appropriate values separated
 by a comma.

 Unknown Indicates that the version of the file in the workspace
 cannot be determined from the local metadata.

 Unresolved Indicates that a merge of version contents
 Conflicts resulted in conflicts. Any object marked as
 containing unresolved conflicts is considered
 locally modified.

 Up-to-date Indicates that the module member version matches
 the correct version for the module selector.

Report Data Keys Table (File-based)

 The following table lists the -report data keys. The table
 indicates whether the data key accesses the server vault or
 gathers the data locally and thus can provide a quicker
 listing. The table also provides the property name
 corresponding to each data key.

 Data Property From # of
 Key Name Vault? Lines Description
 --- -------- ------ ------ -----------
 ! N/A N/A N/A Silent output. Use the '!' key with
 no other data keys to suppress the
 listing, although errors are still
 displayed. If the '!' key is used
 with other data keys, it is ignored.
 This key is useful with the
 -addselect option when you are only
 interested in defining your select
 list.
 A branchtags Yes Multi Branch tags. Use 'H' for single-line
 format.
 C comments Yes Multi Original and checkout log
 comments.
 Original Log comments include:
 o author
 o creation time of the current
 version
 o check-in comments, if any.
 Checkout Log comments, if any,
 include:
 o check-out comments
 o changes made from the
 Revision Log field on the
 DesignSync GUI
 (File=>Properties=>Revision
 Control).

File-Based Design

512

 D wsstatus No Single Workspace status. These options
 are explained more fully in the
 status values table. Values
 include:

 o Absent - for objects fetched but
 no longer present.
 o Locally Modified - for objects
 that have been modified in the
 workspace.
 o Moved - workspace object has moved.
 o Null - for objects in the
 same state as when the directory
 was last updated.
 o Unresolved Conflicts

 Workspace status is a subset of
 the 'S' revision control status
 key, displaying status information
 available from the workspace,
 however some status information is
 not reported by the 'S' report
 option, so you might need to
 specify both 'S' and 'D' for
 complete status.
 F fetchtime No Single Fetched time.
 Note: If you used 'populate
 -mirror' to fetch the object to
 your work area, then the
 fetchtime for the object is
 listed as 0.
 G tags Yes Single Version tags. Use 'T' for multi-line
 format.
 H branchtags Yes Single Branch tags. Use 'A' for multi-line
 format.
 I uid No Single Object UID.
 L fetchedstate No Single Fetched state. Options include:
 o Copy
 o Lock
 o Mirror
 o Reference - for unlocked
 references
 o Cache
 o Checkin Excluded - unmanaged
 object, excluded by exclude
 file.
 o Null (" ")- for unmanaged or
 non-versionable objects.
 The fetched state displays with
 header "Type" in the report table.
 Note: The fetched state for Locked
 references is "Lock", not
 "Reference". Use the 'V' mode,
 which displays "Refers to" for
 references, with 'L' to determine
 whether an object is a locked
 reference.

ENOVIA Synchronicity Command Reference All -Vol2

513

 M mtime No Single Last-modified time. For a listing
 of vault locks, shows
 lock time. For references, this
 field is empty (" ").
 N name No Single Name and, if -path or -fullpath is
 specified, the path. Note that
 objects' names are displayed even
 when 'N' is not specified.
 O type No Single Object Type:
 o File,
 o Folder
 o Project
 o Absent File (a locked reference
 or deleted file)
 o Referenced File
 o Link to File
 o Link to Folder
 o Cached File
 o Mirrored File
 o Vendor-specific object types
 such as Cadence and Synopsys
 libraries, cells, and cell
 views, or CTP collection object
 types.
 For vault objects, types include:
 o File
 o Version
 o Branch Point Version.
 For non-versionable objects:
 o Non-versionable.
 Note: When running the ls-foreach
 function, the property type name
 used is otype.
 P selector No Single Persistent selector list (as defined
 by the "setselector" command, or
 "Trunk" by default).
 Q csum No Single The checksum of the object. If the
 object is not in source control,
 the checksum is 0.
 R upcoming Yes Single Current version, and upcoming version
 if object is locked or auto-branched.
 For a locked reference, 'R' shows
 the current version and upcoming
 version to which it refers.
 S status Yes Single Server status. These options are
 explained more fully in the status
 values table. Values include:
 o Up-to-date
 o Needs Merge
 o Needs Update
 o Absent - indicates a locked
 reference or a file deleted from
 the operating system
 o Unknown.
 The status is preceded by [Retired]
 if the current branch is retired.
 See the Status Value table below

File-Based Design

514

 for descriptions of these values.
 T tags Yes Multi Version tags. Use 'G' for single-line
 format.
 U user Yes Single Username of the locker, or empty if
 the object is not locked. If the
 object is locked in this location,
 the report displays an asterisk
 (*) after the username.
 V version No Single Fetched version. Display options
 include:
 o Version number
 o Unmanaged - for an object with no
 local metadata. For example,
 recreated files display as
 Unmanaged, because their metadata
 was removed by a previous rmfile.
 o Null ("") - for non-versionable
 objects.
 Note: This does not show the
 upcoming version. To show the
 upcoming version for an object,
 use the 'R' option.
 W objtype No Single Web object types include:
 o Folder,
 o File,
 o Project,
 o Link to Folder.
 For vault web objects, object types
 include:
 o File,
 o Version
 o Branch Point Version.
 X owner No Single Owner of the object.
 For collections - the collection
 to which a collection member
 belongs.
 For a folder - all the modules
 that own the folder.
 Y memberof No Single This field is blank.
 Z size No Single Size of the object in bytes. For
 collection objects, this option
 displays either the total number
 of member files in the collection,
 or the size of the objects in
 bytes. For more information on
 choosing the display value for Z,
 see the SyncAdmin help file.
 error Yes Multi Error message. If ls is unable to
 fetch data for an object, the
 'error' property automatically
 displays with the error.

Status Values for File-Based Objects (File-based)

 The following table describes the status values. Server status values are

ENOVIA Synchronicity Command Reference All -Vol2

515

 specified using the 'S' key or the '-report status' option.
 Workspace status values are specified using the -'D' key, or the '-report
 normal' option. For ease of use, this list is in alphabetical order.

 Status Value Description
 ------------ -----------
 Added By merge, Indicates that the file was introduced to the work
 Needs Checkin area by a merge or overlay operation and does not
 exist on the current branch. These objects do not
 show as modified by the ls command.

 Note: If a file was added by merge, but is no
 longer present in the workspace, it will display
 with a status of "Added by merge, Needs Checkin",
 not a status of "Absent".

 Absent Indicates an object that is unexpectedly absent from
 the workspace. Typically an object is listed as
 "Absent" if it was deleted from the workspace using
 operating system commands, leaving behind the local
 metadata.

 Note: If a file was added by merge, but is no
 longer present in the workspace, it will display
 with a status of "Added by merge, Needs Checkin",
 not a status of "Absent".

 Locally Modified Indicates that the file has been edited since it was
 fetched and a more recent version has not been checked
 into the branch, or that an add has been
 performed on a module member that has not been
 checked into the module.

 Needs Merge Indicates that a file has been locally modified and
 [<change>] the version is not correct for the current
 selector.

 Needs Update Indicates that you have an incorrect version on the
 [<change>] given branch.

 Remove for Merge Indicates that an object present in the workspace
 was removed, being retired on the branch being
 merged into the workspace. To remove the file on
 the server in the current branch, remove this file
 using the retire command. This is a workspace
 status value.
 Note: Objects that were removed with rmvault are no
 longer present on the DesignSync server and do not
 show up in any ls query.

 Unknown Indicates that the version of the file in the workspace
 cannot be determined from the local metadata.

 Unresolved Indicates that a merge of version contents
 Conflicts resulted in conflicts. Any object marked as
 containing unresolved conflicts is considered
 locally modified.

File-Based Design

516

 Up-to-date Indicates that the file is currently the correct
 version for the selector.

 [Retired] Indicates that the current branch is retired. This is
 not a state of its own; rather it is a prefix to one of
 the other states. For example, the status column might
 contain: [Retired] Locally Modified

 Because the [Retired] status is a prefix to other
 status terms, sorting causes retired items to be
 grouped either at the beginning or end of the listing,
 independent of the items' local state.
 Note: Retired is not a valid state for module
 members.

SYNOPSIS

 ls [-[no]addselect] [-[un]changed] [-exclude <string>]
 [-filter <string>] [-format list | text] [-[no]header]
 [-hreffilter <string>] [-[un]locked] [-[un]modified]
 [-modulecontext <context>] [-[no]needsmerge [-branch <branch>]]
 [-[un]managed] [-merged added|rename|remove|all|""]
 [-output <file> | -stream <stream>] [-[no]path | -fullpath]
 [-[no]recursive] [-report <mode>[+<mode>][-<mode>]]
 [-[no]selected] [-[non]versionable] [-workspace | -vault>]
 [-writableunlocked] [-xtras <xtras>] [--] [<argument>
 [<argument>...]]

ARGUMENT

• Server Folder
• Server Object
• Workspace Module (Module-based)
• Module Member or Folder (Module-based)
• External Module (Module-based)
• DesignSync Object or Unmanaged Objects (File-based)

Server Folder

 <server folder> Provides information about the specified object
 on the server, and if you specify the -recursive
 option, all subfolders. Specify the object with
 the sync URL in the format:
 sync://<host>:<port>/<path>/<folder>

Server Object

ENOVIA Synchronicity Command Reference All -Vol2

517

 <server object> Provides information about the specified object
 on the server. Specify the object with the sync
 URL in the format:
 sync://<host>:<port>/<path>/<object>

Workspace Module (Module-based)

 <workspace module> Provides information about the files in the
 specified module and the hierarchical references
 in the specified module. To view information
 about the module itself, use the "show" commands:
 hcm showconfs, showhrefs, showmcache, showmods,
 and showstatus. To view a list of locked module
 elements, use the showlocks command.

Module Member or Folder (Module-based)

 <module member | Provides information about the specified module
 module folder> members, and if you specify the -recursive
 option, all subfolders. The -modulecontext
 option restricts the list to objects that are
 members of the specified module.

External Module (Module-based)

 <external module> Specifies the module instance of the external
 module in the workspace or the URL of the
 external module version to which you wish to
 create the connection. An external module is an
 object or set of objects managed by a different
 code management system but available for viewing
 and integration through DesignSync.
 Specify the external module in the workspace as a
 module instance name.
 Specify the external module Server URL as follows:
 sync[s]:///ExternalModule/<external-type>/<external-data>
 where ExternalModule is a constant that identifies
 this URL as an external module URL,
 <external-type> is the name of the external module
 procedure, and <external-data> contains the
 parameters and options to pass to the
 procedure. These parameters and options can be
 passed from the procedure to the external code
 management system or to DesignSync.

 Note: In order to specify an external module, you
 must have previously populated the module in the
 workspace. You may also specify the external
 module by href name only.

File-Based Design

518

DesignSync Object or Unmanaged Objects (File-based)

 <DesignSync object | Provides information about the specified
 DesignSync folder | DesignSync object or folder. If you specify a
 unmanaged object | folder, you can use the -recursive option to
 unmanaged folder> get information about all subfolders contained
 in the specified folder.

OPTIONS

• -[no]addselect
• -branch
• -[un]changed
• -exclude
• -filter (Module-based)
• -format (Module-based)
• -format (File-based)
• -fullpath
• -[no]header
• -hreffilter (Module-based)
• -[un]locked (Module-based)
• -[un]locked (File-based)
• -[un]managed (Module-based)
• -[un]managed (File-based)
• -merged
• -[un]modified (Module-based)
• -[un]modified (File-based)
• -modulecontext (Module-based)
• -[no]needsmerge
• -output
• -path
• -[no]recursive (Module-based)
• -[no]recursive (Legacy-based)
• -[no]recursive (File-based)
• -report
• -[no]selected
• -stream
• -[non]versionable
• -workspace/-vault
• -writeableunlocked (Module-based)
• -writeableunlocked (File-based)
• -xtras (Module-based)
• --

-[no]addselect

ENOVIA Synchronicity Command Reference All -Vol2

519

 -[no]addselect Indicates whether objects matching the ls
 specification should be added to the select list.

 -noaddselect does not add the objects displayed
 by ls to the select list. (Default)

 -addselect adds the objects that match your 'ls'
 specification to your select list. You can use
 this option in conjunction with '-report !' to
 suppress 'ls' output if you only want to update
 your select list.

-branch

 -branch <branch> Use the -branch option with the -needsmerge or
 -noneedsmerge option to compare objects against
 the specified branch rather than against the
 current branch.

 Specifying the -branch option without the
 -needsmerge or -noneedsmerge option generates an
 error. Specifying -branch with -changed or
 -unchanged generates an error, as the -changed
 option only compares objects against the current
 branch. The -branch option accepts a branch or
 version tag or a branch numeric. It does not
 accept a selector or selector list. If <branch>
 resolves to a version, the branch of that version
 is used for the comparison.

-[un]changed

 -[un]changed Determines whether to show only objects that are
 identical (up-to-date) in both the vault and in
 the workspace, or only objects with different
 versions in the vault and the workspace. Objects
 can have different version in the vault or
 workspace if local modifications are made or if
 there is a newer version on the server than the
 last version fetched.

 -unchanged shows only objects that are
 up-to-date.

 -changed shows only objects that are not
 up-to-date. An object is considered changed if it
 is locally modified, if there is a newer version
 in the vault, or if there's a structural change
 to a module, such as moved or removed module
 members. The -changed option is a combination of
 the -unmanaged and -modified options and the
 "Needs Update" state. To show objects that are

File-Based Design

520

 locally modified without checking whether there
 are newer versions in the vault, use the (faster)
 -modified option. Unmanaged objects or module
 members that have been added, but not checked in
 are always considered changed.

 Specifying both -changed and -unchanged is
 equivalent to specifying neither option: 'ls'
 displays both changed and unchanged objects. If
 -changed is specified with either -modified or
 -needsmerge or -unchanged is specified with
 either -unmodified -noneedsmerge, only the
 -[un]changed option is processed, because the
 changes include both merge information and
 modified information. If -changed is specified
 with either -unmodified or -noneedsmerge, or
 -unchanged is specified with either -modified or
 -needsmerge , ls returns an error, as these
 options are mutually exclusive.

 The -[un]changed options only apply to
 workspaces. They are silently ignored for 'ls'
 of vault objects.

-exclude

 -exclude <string> Specifies a glob-style expression to exclude
 matching object names from the listing. The string
 you specify must match the name of the object as
 it would have appeared in the listing. Generally,
 you can specify the leaf name of the objects. If
 you use the -fullpath option, you must specify
 a glob expression that matches the full path, for
 example, file:///home/karen/Projects/Asic/test.v.
 If you use the -path option, you must specify a
 glob expression that matches the relative path,
 for example, ../top*.

 Important: The exclude option is applied after the
 -filter option and is used to further refine the
 filter.

 By default, the 'ls' command does not exclude
 the objects in the global exclude lists
 (set using Tools->Options->General->Exclude
 Lists or using SyncAdmin:General->Exclude Lists).
 To exclude these objects from an 'ls' listing,
 apply the -exclude option with a null string:
 ls -exclude ""
 The objects in the global exclude lists are
 appended to the 'ls' exclude list if you
 exclude other values:
 ls -exclude "README.txt"

ENOVIA Synchronicity Command Reference All -Vol2

521

-filter (Module-based)

 -filter <string> Specify one or more extended glob-style
 expressions to identify an exact subset of
 module objects on which to operate. Use the
 -exclude option to filter out DesignSync
 objects that are not module objects.

 The -filter option takes a list of expressions
 separated by commas, for example: -filter
 +top*/.../*.v,-.../a*

 Prepend a '-' character to a glob-style
 expression to identify objects to be excluded
 (the default). Prepend a '+' character to a
 glob-style expression to identify objects to be
 included. Note that if the list of expressions
 begins with an include character ('+'), the
 filter excludes all objects except those that
 match the include string.

 Specify the paths in your glob-style expressions
 relative to the current directory, because
 DesignSync matches your expressions relative to
 that directory. For submodules followed through
 hrefs, DesignSync matches your expressions
 against the objects' natural paths, their full
 relative paths. For example, if a module, Chip,
 references a submodule, CPU, and CPU contains a
 file, '/libs/cpu/cdsinfo.tag', DesignSync matches
 against '/libs/cpu/cdsinfo.tag', rather than
 matching directly within the 'cpu' directory.

 If your design contains symbolic links that are
 under revision control, DesignSync matches
 against the source path of the link rather than
 the dereferenced path. For example, if a
 symbolic link exists from 'tmp.txt' to
 'tmp2.txt', DesignSync matches against
 'tmp.txt'. Similarly for hierarchical operations,
 DesignSync matches against the unresolved path.
 If, for example, a symbolic link exists from dirA
 to dirB, and dirB contains 'tmp.txt', DesignSync
 matches against 'dirA/tmp.txt'.

 The extended glob-style expressions you use to
 filter the objects are standard glob-style
 expressions, but they are extended so that you
 can use the "..." syntax to indicate that the
 expression matches any number of directory
 levels. For example, the expression,
 "top/.../lib/*.v" matches *.v files in a
 directory path that begin with "top", followed by
 zero or more levels, with one of those levels
 containing a lib directory. The command traverses
 the directory structure. If a directory name

File-Based Design

522

 matches an exclude clause of the filter, then the
 entire directory and all its contents are
 filtered (the command stops descending at that
 point), otherwise the command continues
 traversing the directory structure searching for
 matching objects.

 The -filter option does not override the exclude
 list set using SyncAdmin's General=>Exclude Lists
 tab or with the -exclude command line option; the
 items in the exclude list are combined with the
 filter expression. For example, an exclude list
 of "*%,*.reg" combined with '-filter .../*.doc'
 is equivalent to: '-filter
 .../*.doc,.../*%,.../*.reg'.

-format (Module-based)

 -format Specifies whether the format of the 'ls' output
 should be a Tcl list or formatted text:

 list Display a list with the following format:
 {
 name <name>
 type file | folder | version | branch
 props <prop_list>
 objects <object_list>
 }

 For a list of properties, see the
 "Report Options" table above. Container
 objects, including folders and branch-point
 versions, have an 'objects' list containing
 their subcomponents. The list is the return
 value of the 'ls' command and is echoed to
 the screen by the dss/stcl shells. If
 '-format list' is used with the '-output'
 or '-stream' option, a formatted list is
 generated in the file or stream.

 Note: The type for module objects is
 'module'. The module folder type is
 folder. If a module is listed
 recursively, an addition module property
 is added to the results for each module
 referenced in the hierarchy.

 The module type entry includes the
 following information:
 o URL of the module
 o fetched version of the module
 o module base directory
 o relative path to the module from the
 top-level module

ENOVIA Synchronicity Command Reference All -Vol2

523

 The ls command does not operate on
 Module branches or versions.

 To process the results, use the
 ls-foreach function.

 text Display a text table with headers and
 columns. (Default) Objects shown in
 alphabetical order. If 'format text' is
 used, 'ls' has no return value, but 'ls'
 prints the text table to the screen.

 Notes:
 o If an error occurs while accessing an object's
 vault data, the text output prints an error
 message preceding the object. For list output,
 the message precedes the list and the object's
 property list includes an 'error' property
 containing the error message. In both cases,
 the object's revision control status is
 'Unknown'.
 o If '-format' is used with '-report silent' or
 '-report !', the silent option overrides
 the '-format' option and the list or text
 output is suppressed.
 o For recursive listings, if multiple objects
 have the same leaf name, use the -path or
 -fullpath option to differentiate between
 these objects.

-format (File-based)

 -format Specifies whether the format of the 'ls' output
 should be a Tcl list or formatted text:

 list Display a list with the following format:
 {
 name <name>
 type file | folder | version | branch
 props <prop_list>
 objects <object_list>
 }

 For a list of properties, see the
 "Report Options" table above. Container
 objects, including folders and branch-point
 versions, have an 'objects' list containing
 their subcomponents. The list is the return
 value of the 'ls' command and is echoed to
 the screen by the dss/stcl shells. If
 '-format list' is used with the '-output'
 or '-stream' option, a formatted list is
 generated in the file or stream.

File-Based Design

524

 The ls command does not operate on
 Module branches or versions.

 To process the results, use the
 ls-foreach function.

 text Display a text table with headers and
 columns. (Default) Objects shown in
 alphabetical order. If 'format text' is
 used, 'ls' has no return value, but 'ls'
 prints the text table to the screen.

 Notes:
 o If an error occurs while accessing an object's
 vault data, the text output prints an error
 message preceding the object. For list output,
 the message precedes the list and the object's
 property list includes an 'error' property
 containing the error message. In both cases,
 the object's revision control status is
 'Unknown'.
 o If '-format' is used with '-report silent' or
 '-report !', the silent option overrides
 the '-format' option and the list or text
 output is suppressed.
 o For recursive listings, if multiple objects
 have the same leaf name, use the -path or
 -fullpath option to differentiate between
 these objects.

-fullpath

 -fullpath Display object names as full URLs. By default,
 only the object name is displayed.
 The -path and -fullpath options are mutually
 exclusive.

-[no]header

 -[no]header Indicates whether the command should display with
 field headers before each column in the output.

 -noheader does not display the fielder header.

 -header displays a field header at the top of the
 'ls' output.(Default)

-hreffilter (Module-based)

ENOVIA Synchronicity Command Reference All -Vol2

525

 -hreffilter Excludes href values during recursive operations
 <string> on module hierarchies. Because hrefs link to
 submodules, you use -hreffilter to exclude
 particular submodules. The hreffilter value is
 matched against both the name of the href and the
 target module name. Note that unlike the
 -filter option which lets you include and exclude
 items, the -hreffilter option only excludes hrefs
 and, thus, their corresponding submodules.

 Specify the -hreffilter string as a glob-style
 expression. The string must represent a simple
 leaf name; you cannot specify a path. DesignSync
 matches the specified href filter against hrefs
 anywhere in the hierarchy. Thus, DesignSync
 excludes all hrefs by this leaf name; you cannot
 exclude a unique instance of the href.

 You can prepend the '-' exclude character to your
 string, but it is not required. Because the
 -hreffilter option only supports excluding hrefs,
 a '+' character is interpreted as part of the glob
 expression.

-[un]locked (Module-based)

 -[un]locked Determines whether to display only objects that
 [-workspace| are locked or objects that are not locked.
 -vault]
 Specifying the -workspace or -vault option allows
 you to further restrict the ls output to
 searching in only the local workspace or
 searching only on the server. Specifying
 -workspace provides a faster response to time
 because the 'ls' command accesses only the local
 metadata and not the server data.

 -unlocked shows only objects that are currently
 unlocked.

 -locked shows only objects that are currently
 locked by any user. You can differentiate between
 objects locked by you and others by noting the
 fetched state (shown with header "Type"). If you
 have a lock on the object, the fetched state is
 "Lock". If a module branch is locked, all module
 members returned by ls will display as locked.
 Note: Use the showlocks command to get
 information about server-side Module locks.

 Specifying both -locked and -unlocked is
 equivalent to specifying neither option: 'ls'
 displays both locked and unlocked objects.

File-Based Design

526

-[un]locked (File-based)

 -[un]locked Determines whether to display only objects that
 [-workspace| are locked or objects that are not locked.
 -vault]
 Specifying the -workspace or -vault option allows
 you to further restrict the ls output to
 searching in only the local workspace or
 searching only on the server. Specifying
 -workspace provides a faster response to time
 because the 'ls' command accesses only the local
 metadata and not the server data.

 -unlocked shows only objects that are currently
 unlocked.

 -locked shows only objects that are currently
 locked by any user. You can differentiate between
 objects locked by you and others by noting the
 fetched state (shown with header "Type"). If you
 have a lock on the object, the fetched state is
 "Lock".

 Specifying both -locked and -unlocked is
 equivalent to specifying neither option: 'ls'
 displays both locked and unlocked objects.

-[un]managed (Module-based)

 -[un]managed Determines whether to filter the ls output to
 show either objects under revision control or
 objects not under revision control. This option
 checks the workspace metadata. If the file has
 been removed on the server, it still displays as
 managed if the workspace has not been
 updated.

 Note: All module members display as managed
 including added module members that have never
 been checked in and module members that have been
 removed and kept in the workspace, if the remove
 has not been commited to the server. This makes
 the -unmanaged option irrelevant for modules.
 When -unmanaged is specified with a module, the
 server returns an error. To find added or removed
 members, use ls with the -modified option.

 -unmanaged shows only objects that are not under
 revision control. This option is not relevant to
 modules as mentioned in the previous note.

 -managed show only objects that are under
 revision control.

ENOVIA Synchronicity Command Reference All -Vol2

527

 Specifying both -managed and -unmanaged is
 equivalent to specifying neither option: 'ls'
 displays both managed and unmanaged objects.

 This option only applies to DesignSync objects in
 workspaces. The option is silently ignored for
 'ls' of vault file-based objects.

 Note: The url registered command queries the
 server to determine if the object is managed.

-[un]managed (File-based)

 -[un]managed Determines whether to filter the ls output to
 show either objects under revision control or
 objects not under revision control. This option
 checks the workspace metadata. If the file has
 been removed on the server, it still displays as
 managed if the workspace has not been
 updated.

 -unmanaged shows only objects that are not under
 revision control.

 -managed show only objects that are under
 revision control.

 Specifying both -managed and -unmanaged is
 equivalent to specifying neither option: 'ls'
 displays both managed and unmanaged objects.

 This option only applies to DesignSync file-based
 objects in workspaces. The option is silently
 ignored for 'ls' of vault file-based objects.

 Note: The url registered command queries the
 server to determine if the object is managed.

-merged

 -merged added| Determines whether to display only objects that
 rename|remove have been modified as the result of a merge into
 all|"" into the workspace. You must specify a modifier
 to -merged. The modifiers behave as follows:

 o added - restricts the command output to
 only those objects added by the merge.

 o rename - restricts the command output to only
 those files that have a different
 natural path on the merged

File-Based Design

528

 branch. These files need to be
 renamed in order to complete the
 merge.

 o remove - restricts the command output to only
 those objects that are not present on
 the merged branch.

 o all - includes all the objects specified by the
 added, removed and renamed modifiers.

 o "" - removes the defaults set with the command
 default system for the -merged option.

-[un]modified (Module-based)

 -[un]modified Determines whether to show only objects that have been
 modified in the workspace, or only objects that
 have not been modified in the workspace. These
 options examine only the workspace for
 modifications. To compare the workspace against
 the server to determine whether or not the objects have
 been modified, use the -[un]changed options.

 -unmodified shows only objects that are not
 modified in the workspace.

 -modified show only objects that are modified in
 the workspace. Unmanaged objects and module
 members that have been added, removed, or moved,
 but not checked in are always considered locally
 modified.

 Note: Objects that are "Absent" in the workspace
 are considered modified.

 Specifying both -modified and -unmodified is
 equivalent to specifying neither option: 'ls'
 displays both modified and unmodified objects. If
 -changed is specified with -modified or
 -unchanged is specified with -unmodified, the
 -[un]modified option is ignored, because is a
 subset of the -[un]changed option. If -changed
 is specified with -unmodified, or -unchanged is
 specified with -modified, ls returns an error, as
 these options are mutually exclusive.

 This option only applies to workspaces. The option
 is silently ignored for 'ls' of vault objects.

-[un]modified (File-based)

ENOVIA Synchronicity Command Reference All -Vol2

529

 -[un]modified Determines whether to show only objects that have been
 modified in the workspace, or only objects that
 have not been modified in the workspace. These
 options examine only the workspace for
 modifications. To compare the workspace against
 the server to determine whether or not the objects have
 been modified, use the -[un]changed options.

 -unmodified shows only objects that are not
 modified in the workspace.

 -modified show only objects that are modified in
 the workspace. Unmanaged objects are always
 considered locally modified.

 Note: Objects that are "Absent" in the workspace
 are considered modified.

 Specifying both -modified and -unmodified is
 equivalent to specifying neither option: 'ls'
 displays both modified and unmodified objects. If
 -changed is specified with -modified or
 -unchanged is specified with -unmodified, the
 -[un]modified option is ignored, because is a
 subset of the -[un]changed option. If -changed
 is specified with -unmodified, or -unchanged is
 specified with -modified, ls returns an error, as
 these options are mutually exclusive.

 This option only applies to workspaces. The option
 is silently ignored for 'ls' of vault objects.

-modulecontext (Module-based)

 -modulecontext Identifies the module version to operate on.
 <context> Use the -modulecontext option to restrict the ls
 to only a particular module if your workspace
 has overlapping modules so that you can
 indicate which module you want to run the ls
 command against.

 Specify the desired module using the module name
 (for example, Chip), or a module instance name
 (for example, Chip%0), or full path to a
 workspace.

 Note that you cannot use a -modulecontext option
 to operate on objects from more than one module;
 the -modulecontext option takes only one
 argument, and you can use the -modulecontext
 option only once on a command line.

-[no]needsmerge

File-Based Design

530

 -[no]needsmerge Determines whether to show only objects that
 [-branch <branch>] require a merge or only objects that do not
 require a merge. By default, this command
 compares workspace files against server files in
 the same branch. To compare objects against
 another branch, specify the -branch option.

 -noneedsmerge shows only objects that do not
 require a merge.

 -needsmerge shows only objects that need
 merging.

 Note: the -needsmerge option displays objects in
 which both the server and workspace version of an
 object indicate changes. A merge may not
 actually be possible, depending on the situation.
 Specifying both -needsmerge and -noneedsmerge is
 equivalent to specifying neither option: 'ls'
 lists the objects that need to be merged and
 those that do not. If -needsmerge is specified
 with -change or -noneedsmerge is specified with
 -unchanged, the -[no]needsmerge option is
 ignored, because is a subset of the -[un]changed
 option. If -needsmerge is specified with
 -changed, or -noneedsmerge is specified with
 -unchanged, ls returns an error, as these options
 are mutually exclusive.

 This option only applies to workspaces. The option
 is silently ignored for 'ls' of vault objects.

-output

 -output <file> Prints results to named file. The named file is
 created or overwritten, but not appended to. To
 append, use the '-stream' option. The -output and
 -stream options are mutually exclusive.

-path

 -path Include relative paths in object names. By default,
 only the object name is displayed. With -path,
 the path of the object relative to the directory
 specified as an argument during an 'ls
 -recursive' operation (not necessarily relative to
 the current directory) is displayed.
 The -path and -fullpath options are mutually
 exclusive.

ENOVIA Synchronicity Command Reference All -Vol2

531

-[no]recursive (Module-based)

 -[no]recursive Indicates whether the ls command should operate
 on the specified argument or all subfolders
 in the argument's hierarchy.

 -norecursive operates only on the specified
 argument. (Default)

 -recursive operates on all subfolders in the
 specified argument's hierarchy.

 If 'ls -recursive' is invoked in a Cadence
 Cell folder or above, 'ls' does not descend
 into the Cadence View folders, and so does
 not list member files, unless the following
 advanced registry key is set:
 HKEY_CURRENT_USER\Software\Synchronicity\
 General\AllowRecursion\Cadence View Folder=dword:1.
 See DesignSync Data Manager User's Guide:
 Advanced Registry Settings for details.

 If ls -recursive is invoked on a module, ls
 follows the hierarchical references, listing each
 referenced module separately.
 Note: ls does not follow hierarchical references
 to mcache directories, legacy modules, DS vaults,
 or IPGear deliverables.

 If the DesignSync site is configured for managed
 links and 'ls -recursive' is invoked in a
 directory containing soft links or module caches
 (Mcaches), 'ls' does not follow the links and
 instead lists only the objects that are
 physically present within the directory
 structure. If the site is configured to treat
 links as copies of the linked files or
 directories, 'ls -recursive' does traverse the
 directory structure. For more information on
 managed symbolic links, see the SyncAdmin help.

 Note: For recursive listings, if multiple objects
 have the same leaf name, use the -path or
 -fullpath option to differentiate between these
 objects.

-[no]recursive (Legacy-based)

 -[no]recursive Indicates whether the ls command should operate
 on the specified argument or all subfolders
 in the argument's hierarchy.

 -norecursive operates only on the specified

File-Based Design

532

 argument. (Default)

 -recursive operates on all subfolders in the
 specified argument's hierarchy.

 If 'ls -recursive' is invoked in a Cadence
 Cell folder or above, 'ls' does not descend
 into the Cadence View folders, and so does
 not list member files, unless the following
 advanced registry key is set:
 HKEY_CURRENT_USER\Software\Synchronicity\
 General\AllowRecursion\Cadence View Folder=dword:1.
 See DesignSync Data Manager User's Guide:
 Advanced Registry Settings for details.

 If 'ls -recursive' is invoked in a directory
 containing a legacy Hierarchical Configuration
 Manager (HCM) module configuration, 'ls' follows
 the hierarchical references and lists the objects
 referenced in the configuration. In this case,
 'ls' does not explicitly indicate that it is
 listing a legacy module configuration. If 'ls
 -recursive' is invoked in a subdirectory below
 the directory containing the legacy module
 configuration, 'ls' does not follow the
 hierarchical references; instead 'ls' lists only
 the objects that are physically present within
 the directory structure.

 If the DesignSync site is configured for managed
 links and 'ls -recursive' is invoked in a
 directory containing soft links, 'ls' does not
 follow the links and instead lists only the
 objects that are physically present within the
 directory structure. If the site is configured to
 treat links as copies of the linked files or
 directories, 'ls -recursive' does traverse the
 directory structure. For more information on
 managed symbolic links, see the SyncAdmin help.

 Note: For recursive listings, if multiple objects
 have the same leaf name, use the -path or
 -fullpath option to differentiate between these
 objects.

-[no]recursive (File-based)

 -[no]recursive Indicates whether the ls command should operate
 on the specified argument or all subfolders
 in the argument's hierarchy.

 -norecursive operates only on the specified
 argument. (Default)

ENOVIA Synchronicity Command Reference All -Vol2

533

 -recursive operates on all subfolders in the
 specified argument's hierarchy.

 If 'ls -recursive' is invoked in a Cadence
 Cell folder or above, 'ls' does not descend
 into the Cadence View folders, and so does
 not list member files, unless the following
 advanced registry key is set:
 HKEY_CURRENT_USER\Software\Synchronicity\
 General\AllowRecursion\Cadence View Folder=dword:1.
 See DesignSync Data Manager User's Guide:
 Advanced Registry Settings for details.

 If the DesignSync site is configured for managed
 links and 'ls -recursive' is invoked in a
 directory containing soft links, 'ls' does not
 follow the links and instead lists only the
 objects that are physically present within the
 directory structure. If the site is configured to
 treat links as copies of the linked files or
 directories, 'ls -recursive' does traverse the
 directory structure. For more information on
 managed symbolic links, see the SyncAdmin help.

 Note: For recursive listings, if multiple objects
 have the same leaf name, use the -path or
 -fullpath option to differentiate between these
 objects.

-report

 -report <mode> Specifies what information about each object
 should be displayed. Available report modes are:
 o silent Displays no output (equivalent to
 '-report !').
 o brief Displays just the object name
 (equivalent to '-report N'). Because no vault
 information is needed, a brief listing is very
 fast.
 o normal Displays common fields that do not
 require server vault access (equivalent to
 '-report MDVLN'). This behavior is the default
 when -report is not specified.
 o verbose Displays most fields (equivalent to
 '-report OXMSRUNCTA').
 o status Displays status fields (equivalent to
 '-report MSRUN').
 o K[K...] Displays the fields corresponding to
 the data keys, where K is a data key
 listed in the Report Options table
 above.
 o +K[K...] Displays additional fields
 corresponding to the data keys specified.
 This is used to provide addition information

File-Based Design

534

 when using a predefined mode such as 'brief'
 or 'normal'.
 o -K[K...] Removes from the display the fields
 corresponding to the data keys specified.
 This is used to reduce the amount of
 information returned when using a predefined
 mode such as 'brief' or 'normal'.

-[no]selected

 -[no]selected Indicates if the command should use the select
 list (see the 'select' command) or only the
 arguments specified on the command line.

 -noselected indicates that the command should not
 use the select list. (Default) If -noselected is
 specified, but there are no arguments selected,
 the ls command operates on the current
 directory.

 -selected indicates that the command should use
 the select list and any objects specified on the
 command line. If -selected is not specified, and
 there are no objects specified on the command
 line, the ls command operates on the current
 directory.

-stream

 -stream <stream> Prints results to named Tcl stream. Depending on
 whether you open the stream using the Tcl 'open'
 command in write (w) or append (a) mode, you can
 overwrite or append to an existing file.
 Note: The -stream option is only applicable in the
 stcl and stclc Tcl shells, not in the dss and dssc
 shells. The -output and -stream options are
 mutually exclusive.

-[non]versionable

 -[non]versionable Determines whether to restrict the report
 returned to displaying only non-versionable and
 excluded objects or only objects that are
 versionable and included. If this option is not
 specified, all objects,
 versionable/non-versionable, excluded and
 included, are displayed. (Default) An object is
 excluded if it is unmanaged and matches a pattern
 in an applicable exclude file. Other
 non-versionable objects include objects that are

ENOVIA Synchronicity Command Reference All -Vol2

535

 members of a versioned collection, which cannot
 be managed separately.

 -[non]versionable displays only the
 non-versionable and excluded objects

 -versionable displays versionable objects only.

 For more information on exclude files, see the
 DesignSync Data Manager User's Guide: Working
 with Exclude Files.

-workspace/-vault

 -workspace | Determines whether to use only the workspace
 -vault metadata or query only the vault (server) for the
 objects being displayed by the ls command.

 -workspace shows only items that are locked or
 unlocked in the local workspace. (Default)

 -vault shows only items present in the local
 workspace that are locked or unlocked in the
 vault.

 Using the -workspace option provides faster
 results because it does not check the server for
 objects locked or unlocked outside of the
 specified workspace, however -vault can provide
 more complete results.

-writeableunlocked (Module-based)

 -writableunlocked Displays unlocked objects with write access in the
 workspace. Use -writableunlocked to verify
 that you have locks on all editable objects,
 so that you do not accidentally edit an object
 already locked by another user.

 Note: If a module branch is locked, all module
 members in the branch are locked.

 This option only applies to workspaces. The option
 is silently ignored for 'ls' of vault objects.

-writeableunlocked (File-based)

 -writableunlocked Displays unlocked objects with write access in the
 workspace. Use -writableunlocked to verify
 that you have locks on all editable objects,

File-Based Design

536

 so that you do not accidentally edit an object
 already locked by another user.

 This option only applies to workspaces. The option
 is silently ignored for 'ls' of vault objects.

-xtras (Module-based)

 -xtras <list> List of command line options to pass to the
 external module change management system. Any
 options specified with the -xtras option are
 sent verbatim, with no processing by the
 populate command, to the Tcl script that defines
 the external module change management system.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 o Empty string if -format value is text.
 o Tcl list if the -format value is list.
 o Empty string if -output or -stream is used with -format.

SEE ALSO

 ls-foreach, compare, compare-foreach, contents, contents-foreach,
 addhref, edithrefs, select, unselect, vhistory, command defaults,
 hcm showconfs, showhrefs, showmcache, showmods, showstatus, showlocks

EXAMPLES

• Example Showing the Contents of the Current Folder
• Example Showing the Contents of the Specified Folder
• Example Showing Objects that Need to be Merged
• Example Showing Objects that do not Need to be Merged
• Example Showing a Recursive Directory Listening
• Example Showing the ls Output in List Format
• Example Showing Locked Objects in the Workspace
• Example Showing All Locked Objects
• Example Showing All Locked Objects with Users

ENOVIA Synchronicity Command Reference All -Vol2

537

• Example Showing Locked Server Objects Using Status Report Mode
• Example Showing Locked Workspace Objects in Status Report Mode
• Example Showing Unmanaged Objects in Current Folder
• Example Showing Unlocked Writable Objects in the Workspace
• Example Showing Excluding Objects
• Example Showing a Variety of ls Commands To Display Object Vault
• Examples Showing Writing to an Output File or TCL stream
• Example Showing Locked References
• Example Showing Collection List
• Example Showing Module Structural Changes (Module-based)
• Example Showing the Contents of a Legacy Module Configuration (Legacy-based)

Example Showing the Contents of the Current Folder

 List the contents of the current folder. By default, 'ls' reports
 data keys MDVLN -- last modified time, workspace status, fetched
 version, fetched state (shown as Type), and name. In this example,
 AddBlock is a directory. SubMod is an unlocked reference, whereas
 top.v is a locked reference.

 stcl> ls

 Directory of: file:///home/karen/Projects/Rel40

 Time Stamp WS Status Version Type Name
 ---------- -------- ------- ---- ----
 04/11/2003 10:13 AddBlock
 Refers to: 1.1 Reference SubMod
 04/11/2003 09:12 Locally 1.2.1.1 Copy test.v
 Modified
 Refers to: 1.1 Lock top.v
 04/10/2003 10:16 1.1 Copy x.v

Example Showing the Contents of the Specified Folder

 List only the specified file and the objects in the ABlk directory
 using absolute paths, and add the files to the select list:

 dss> scd /home/Projects
 dss> ls -addselect -fullpath top.v ABlk/*
 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 03/27/2003 11:12 1.1 Lock file:///home/Projects/ABlk/x.v
 03/27/2003 11:13 1.1 Copy file:///home/Projects/top.v

 Directory of: file:///home/Projects/ABlk/Add

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 03/27/2003 11:12 1.1 Copy file:///home/Projects/ \
 ABlk/Add/Add.v

File-Based Design

538

 dss> select -show
 file:///home/Projects/ABlk/x.v
 file:///home/Projects/top.v
 file:///home/Projects/ABlk/Add/Add.v

Example Showing Objects that Need to be Merged

 List each object that needs to be merged with its version on the Dev
 branch:

 stcl> scd ~/Projects/Rel40
 stcl> ls -needsmerge -branch Dev

 Directory of: file:///home/karen/Projects/Rel40

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 03/27/2003 13:20 Locally 1.3 Copy test.v
 Modified

Example Showing Objects that do not Need to be Merged

 List each object that does not need to be merged with its version on
 the Dev branch:

 stcl> ls -noneedsmerge -branch Dev

 Directory of: file:///home/karen/Projects/Rel40

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 03/27/2003 11:13 1.1 Copy top.v

Example Showing a Recursive Directory Listening

 List the changed (not up-to-date) objects in the HTMLHelp folder and
 all subfolders, and display only the object names (brief format):

 stcl> ls -recursive -changed -report brief HTMLHelp

 Directory of: file:///home/karen/Projects/DesSync/HTMLHelp

 Name

 Customizing_History.htm
 DSGetStart_GUI.htm
 Editing_and_Organizing_Bookmarks.htm
 Get_Tags_Versions.htm
 Go_Menu.htm

ENOVIA Synchronicity Command Reference All -Vol2

539

 Directory of: file:///home/karen/Projects/DesSync/HTMLHelp/PrintDoc

 Name

 file.bmp
 unlock.bmp

Example Showing the ls Output in List Format

 Output these changed objects in a list format. (The list output is
 formatted below but doesn't appear that way in the actual list output
 unless you list to a file or stream.)

 stcl> ls -recursive -changed -report brief -format list HTMLHelp
 {name HTMLHelp type folder objects
 {
 {name Customizing_History.htm type file}
 {name DSGetStart_GUI.htm type file}
 {name Editing_and_Organizing_Bookmarks.htm type file}
 {name Get_Tags_Versions.htm type file}
 {name Go_Menu.htm type file}
 {name PrintDoc type folder objects
 {
 {name unlock.bmp type file}
 {name file.bmp type file}
 }
 }
 }
 }

Example Showing Locked Objects in the Workspace

 List objects locked in my local workspace. This command does not
 access the SyncServer and does not indicate objects locked by other
 users:

 stcl> scd ~/Projects/DesSync/HTMLHelp
 stcl> ls -locked -workspace

 Directory of: file:///home/karen/Projects/DesSync/HTMLHelp

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 03/27/2003 15:06 1.2 Lock working_folder.htm

Example Showing All Locked Objects

 List objects locked in workspace or by others. This command accesses

File-Based Design

540

 the SyncServer. The working_folder.htm file is locked in the
 workspace, whereas the ocean_arrow_sm.gif file is locked by another
 user.

 stcl> ls -locked

 Directory of: file:///home/karen/Projects/DesSync/HTMLHelp

 Time Stamp WS Status Version Type Name
 --------- --------- ------- ---- ----
 03/27/2003 15:05 1.2 Copy ocean_arrow_sm.gif
 03/27/2003 15:06 1.2 Lock working_folder.htm

Example Showing All Locked Objects with Users

 List objects locked in workspace and on server. Display using the
 'status' report mode which shows the revision control status, the
 upcoming version, and the locker of each object:

 stcl> ls -locked -report status

 Directory of: file:///home/karen/Projects/DesSync/HTMLHelp

 Time Stamp WS Status Server Status Version Locked By
 Name
 ---------- --------- ------------- ------- ---------

 03/27/2003 15:05 Up-to-date 1.2 -> 1.3 linda
 arrow_sm.gif
 03/27/2003 15:06 Up-to-date 1.2 -> 1.3 karen*
 work_folder.htm

Example Showing Locked Server Objects Using Status Report Mode

 List only objects locked on the server. Display using 'status'
 report mode which shows the revision control status, the upcoming
 version, and the locker of each object.

 This example uses -vault <vaultURL>

 dss> ls -locked -vault sync://src:2647/Projects/Help/image
 -report status

 Directory of: sync://src:2647/Projects/Help/image

 Time Stamp WS Status Server Status Version Locked By
 Name
 ---------- --------- ------------- ------- ---------

 04/30/2012 14:14 - mhopkins
 delete-file.gif;1
 04/30/2012 14:14 - mhopkins

ENOVIA Synchronicity Command Reference All -Vol2

541

 delete_local_folder.gif;1
 04/30/2012 14:14 - mhopkins
 delete_server_folder.gif;1
 04/30/2012 14:14 - mhopkins
 delete_vault.gif;1
 04/30/2012 14:14 - mhopkins
 delete_version.gif;1
 04/30/2012 14:14 - mhopkins
 delete_workspace_mod_dialog.gif;1

Example Showing Locked Workspace Objects in Status Report Mode

 This example uses -vault <workspace name> (in this case "." for
 current workspace directory)

 dss> ls -locked -vault . -report status

 Directory of:
 file:///c|/Workspaces/Help/image

 Time Stamp WS Status Server Status Version
 Locked By Name
 ---------- --------- ------------- -------
 --------- ----
 12/13/2006 13:43 Up-to-date 1.7 -> 1.8
 mhopkins* delete-file.gif
 12/13/2006 13:43 Up-to-date 1.5 -> 1.6
 mhopkins* delete_local_folder.gif
 12/13/2006 13:43 Up-to-date 1.5 -> 1.6
 mhopkins* delete_server_folder.gif
 12/13/2006 13:43 Up-to-date 1.5 -> 1.6
 mhopkins* delete_vault.gif
 12/13/2006 13:43 Up-to-date 1.5 -> 1.6
 mhopkins* delete_version.gif
 12/13/2006 13:43 Up-to-date 1.4 -> 1.5
 mhopkins* delete_workspace_mod_dialog.gif

Example Showing Unmanaged Objects in Current Folder

 List unmanaged objects in the current folder, displaying only the
 name, last-modified time, and size of each file:

 stcl> ls -unmanaged -report MZ

 Directory of: file:///home/karen/Projects/DesSync/HTMLHelp

 Time Stamp Size Name
 ---------- ---- ----
 04/14/2003 14:03 50 about_ds.htm

Example Showing Unlocked Writable Objects in the Workspace

File-Based Design

542

 List objects that are writeable but which I have not yet locked:

 stcl> ls -writableunlocked

 Directory of: file:///home/karen/Projects/DesSync/HTMLHelp

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 04/14/2003 14:03 Unmanaged about_ds.htm
 03/27/2003 15:06 1.3 Copy warn_excluded.htm

Example Showing Excluding Objects

 Exclude objects from a listing:

 stcl> ls -exclude x.v,top.v

 Directory of: file:///home/karen/Projects/Rel40

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 04/11/2003 10:13 AddBlock
 Refers to: 1.1 Reference SubMod
 04/14/2003 13:56 Unmanaged mult.v
 04/15/2003 12:45 Unmanaged streamfile
 04/11/2003 09:12 1.2.1.1 Copy test.v

 You can also specify the excluded objects using an absolute
 URL. The name in the glob-style expression must match the format
 listed, in this case, by using the -fullpath option:

 stcl> ls -exclude file:///home/karen/Projects/Rel40/test.v -fullpath

 Directory of: file:///home/karen/Projects/Rel40

 Time Stamp ... Name
 ---------- ... ----
 04/11/2003 10:13 ... file:///home/karen/Projects/Rel40/AddBlock
 ... file:///home/karen/Projects/Rel40/SubMod
 04/14/2003 13:56 ... file:///home/karen/Projects/Rel40/mult.v
 04/15/2003 12:45 ... file:///home/karen/Projects/Rel40/streamfile
 ... file:///home/karen/Projects/Rel40/top.v
 04/10/2003 10:16 ... file:///home/karen/Projects/Rel40/x.v

Example Showing a Variety of ls Commands To Display Object Vault

 List versions of an object vault. For vault objects, the fetched
 state (shown with the "Type" header) is blank:

 stcl> scd [url vault what_is_dss.htm]
 stcl> spwd

ENOVIA Synchronicity Command Reference All -Vol2

543

 sync://host:2647/Projects/DS/what_is_dss.htm;
 stcl> ls

 Directory of: sync://host:2647/Projects/DS/what_is_dss.htm;1

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 12/04/2000 16:06 1.1 what_is_dss.htm;1.1
 12/26/2000 16:27 1.2 what_is_dss.htm;1.2
 01/02/2001 17:18 1.3 what_is_dss.htm;1.3
 08/10/2001 11:19 1.4 what_is_dss.htm;1.4
 02/10/2003 13:12 1.5 what_is_dss.htm;1.5

 You can instead specify a server-side URL of a vault object to list
 its contents:

 stcl> ls sync://host:2647/Projects/DS/what_is_dss.htm\;

 Or you can use the 'url vault' command to specify the vault object:

 stcl> ls [url vault what_is_dss.htm]

 You can also provide an explicit version number for the vault:

 stcl> ls [url vault what_is_dss.htm]1.3

 You can specify a tag for the vault, as well:

 stcl> ls [url vault what_is_dss.htm]Latest

 (To determine the existing tags for an object, use '-report T'.)

Examples Showing Writing to an Output File or TCL stream

 Write the list to an output file or Tcl stream.

 This example writes to an output file:

 stcl> ls -output ~/ls_Output
 stcl> cat ~/ls_Output

 Directory of: file:///home/karen/Projects/DesSync/HTMLHelp

 Time Stamp Version Type Name
 ---------- ------- ---- ----
 03/27/2003 15:06 1.12 Copy About_DesignSync_Log_Files.htm
 03/27/2003 15:06 1.7 Copy About_Vault_Types.htm
 ...
 ...

 The output can be in a list format instead:

 stcl> ls -format list -output ~/ls_Output
 stcl> cat ~/ls_Output

File-Based Design

544

 {
 {
 name HTMLHelp
 type folder
 objects {
 {
 name http_proxy.htm
 type file
 props {
 fetchedstate Copy
 mtime {03/27/2003 15:04}
 version 1.8
 }
 }
 ...
 ...

 This example writes the output to a Tcl stream:

 stcl> set channelid [open streamfile w]
 file8
 stcl> ls -stream $channelid
 stcl> close $channelid
 stcl> cat streamfile

 Directory of: file:///home/karen/Projects/Rel40

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 04/11/2003 10:13 AddBlock
 Refers to: 1.1 Reference SubMod
 04/14/2003 13:56 Unmanaged mult.v
 ...
 ...

Example Showing Locked References

 List locked references.

 You might need to regenerate managed objects, in which
 case you can check them out as 'locked references'
 rather than actual locked copies of the objects. The
 example below creates a locked reference, top.v. The
 top.v fetched state displays as 'Lock' and the
 Version displays as 'Refers to:' followed by the
 version:

 stcl> co -reference -lock -nocomment top.v

 Beginning Check out operation...

 Checking out: top.v : Locked Reference made to 1.1.

 Checkout operation finished.

ENOVIA Synchronicity Command Reference All -Vol2

545

 {Objects succeeded (1)} {}

 stcl> ls

 Directory of: file:///home/karen/Projects/Rel40

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 03/27/2003 11:12 AddBlock
 04/03/2003 10:46 1.3 Copy test.v
 Refers to: 1.1 Lock top.v

Example Showing Collection List

 For each member of a collection, list the object type and the
 owner (the collection to which the member belongs). This example
 uses a Custom Type Package (CTP) collection.

 stcl> ls -report OX

 Directory of: file:///home/karen/sf242data/jul16/coltest

 Object Type Name
 ----------- ----
 File README
 a Test Member a.html
 Owner: /home/karen/sf242data/jul16/coltest/a.sgc.tst

 File a.prop
 a Test collection a.sgc.tst
 a Test Member a.txt
 Owner: /home/karen/sf242data/jul16/coltest/a.sgc.tst

 File b.prop
 File b.txt
 File c.html
 d Test Member d.html
 Owner: /home/karen/sf242data/jul16/coltest/d.sgc.tst

 File d.prop
 d Test collection d.sgc.tst
 d Test Member d.txt
 Owner: /home/karen/sf242data/jul16/coltest/d.sgc.tst

 f Test Member f.html
 Owner: /home/karen/sf242data/jul16/coltest/f.sgc.tst

 File f.notamember
 File f.prop
 f Test collection f.sgc.tst
 f Test Member f.txt
 Owner: /home/karen/sf242data/jul16/coltest/f.sgc.tst

 g Test Member g.html

File-Based Design

546

 Owner: /home/karen/sf242data/jul16/coltest/g.sgc.tst

 File g.prop
 g Test collection g.sgc.tst
 g Test Member g.txt
 Owner: /home/karen/sf242data/jul16/coltest/g.sgc.tst

 File partnerFile

Example Showing Module Structural Changes (Module-based)

 Lists the objects in a module containing structural changes
 consisting of an added file, documentstyles.css, a removed file,
 c.txt, and a removed file, b.txt that was retaining in the workspace
 with the -keep option, and a moved file, chipintro.doc.

 stcl> ls

 Directory of: file:///e|/workspaces/X5Mods/chip/doc

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 11/19/2008 09:08 Removed 1.3 b.txt
 Removed Refers to: 1.2 c.txt
 11/19/2008 09:08 Moved 1.2 Copy chipintro.doc
 Original path: \doc\chip.doc
 11/19/2008 09:08 1.1 Copy commands.html
 11/20/2008 16:25 Added documentstyles.css
 11/19/2008 09:08 images
 11/19/2008 09:08 1.1 Copy index.html
 11/19/2008 09:08 1.1 Copy interface.html
 11/19/2008 09:08 1.1 Copy manual.pdf

Example Showing the Contents of a Legacy Module Configuration (Legacy-based)

 List legacy module configuration contents.

 A workspace directory, /home/ian/ws/modtop, is populated with HCM
 module configuration ModTop@RelA. There is one submodule, SubMod1,
 with relative path submods/submod1. Notice that the submodule of the
 ModTop@RelA configuration are listed with their relative pathnames in
 the modtop listing (submods/submod1), and their contents are shown
 below:

 stcl> ls -recursive

 Directory of: /home/ian/ws/modtop

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 01/29/03 09:01 1.2 Copy file1.txt
 01/29/03 09:01 submods

ENOVIA Synchronicity Command Reference All -Vol2

547

 01/29/03 08:30 submods/submod1
 01/29/03 10:25 Unmanaged tmp.txt

 Directory of: /home/ian/ws/submods

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 01/29/03 08:20 1.4 Mirror file4.txt
 01/29/03 05:50 psref
 01/29/03 08:30 submod1

 Directory of: /home/ian/ws/submods/psref

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 01/29/03 05:50 1.3 Copy file5.txt

 Directory of: /home/ian/ws/submods/submod1

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 01/29/03 08:40 1.3.1.2 Copy file3.txt

 The equivalent return structure if the -format list option were given is:

 {
 {
 name /home/ian/ws/modtop
 type folder
 objects {
 {
 name submods
 type folder
 props {
 mtime {01/29/03 09:01}
 }
 objects {
 {
 name file4.txt
 type file
 props {
 mtime {01/29/03 08:20}
 version 1.4
 fetchedstate Mirror
 }
 }
 {
 name psref
 type folder
 props {
 mtime {01/29/03 05:50}
 }
 objects {
 {
 name file5.txt
 type file
 props {

File-Based Design

548

 mtime {01/29/03 05:50}
 version 1.3
 fetchedstate Copy
 }
 }
 }
 }
 }
 {
 name submod1
 type folder
 props {
 mtime {01/29/03 08:30}
 }
 objects {
 {
 name file3.txt
 type file
 props {
 mtime {01/29/03 08:40}
 version 1.3.1.2
 fetchedstate Copy
 }
 }
 }
 }
 }
 {
 name tmp.txt
 type file
 props {
 mtime {01/29/03 10:25}
 version Unmanaged
 }
 }
 }
 }
 }

ls-foreach

ls-foreach Command

NAME

 ls-foreach - Function to process the results of an ls
 command

DESCRIPTION

 This routine loops over the items in an "ls" results list, and
 processes each item in turn.

ENOVIA Synchronicity Command Reference All -Vol2

549

 Note: The object type, identified by reporting on the O key in the ls
 command, is identified by the otype property name. This
 distinguishes it from the type property reported automatically. The
 type property reports whether the object is a folder, file, or
 module.

SYNOPSIS

 ls-foreach var result_list tcl_script [-nofolder] [-path]

ARGUMENTS

• Loop Variable
• List of Objects to be Processed
• TCL script

Loop Variable

 var This is the loop variable. It is treated as a Tcl
 array, and on each loop around contains the set of
 properties for the next object in the result_list.
 In addition to the properties in the "props" value
 for each object, the array will contain a "name"
 property and a "type" property, which are the name
 and type properties for the object.

List of Objects to be Processed

 result_list This is the list of objects to be processed. It must
 be the result value of a call to the "ls" command
 with the "-format list" option.

TCL script

 tcl_script This is the piece of Tcl code that is executed on
 each loop.

OPTIONS

• -nofolder
• -path

-nofolder

File-Based Design

550

 -nofolder If specified, then the tcl_script will not be called
 for Folder type objects in the result_list.

-path

 -path The "name" property on each loop is usually just
 the "name" property for the object. However, if this
 option is specified, and a recursive "ls" was
 performed, then the "name" property is the relative
 path to each object. Normally, you would run "ls"
 with the -path or -fullpath option, in which case the
 "name" property contains an appropriate relative or
 full path. If you did not do that, then passing the
 "-path" option to ls-foreach will mean that the
 "name" property contains the relative path for each
 item, thus allowing you to differentiate between
 items with the same name in different folders.

 The set of properties available for each object is dependant on the
 "-report" option passed to the "ls" command.

SEE ALSO

 ls

EXAMPLE

 This shows a sample script that creates an array to run ls-foreach
 against and extracts the object name and otype. The output shown
 after the query are the results of running the query against a folder
 containing Cadence data collections.

 set result_list [ls -rec -format list -report normal+O]

 ls-foreach obj $result_list {
 if {[info exists obj(otype)]} {
 puts "OBJ: $obj(name), OTYPE: $obj(otype)"
 }
 }

 OBJ: cdsinfo.tag, OTYPE: Cadence Info File
 OBJ: rec, OTYPE: Cadence Cell
 OBJ: schematic.sync.cds, OTYPE: Cadence View
 OBJ: schematic, OTYPE: Cadence View Folder
 OBJ: mux2, OTYPE: Cadence Cell
 OBJ: schematic.sync.cds, OTYPE: Cadence View
 OBJ: schematic, OTYPE: Cadence View Folder
 OBJ: celdom, OTYPE: Cadence Cell
 OBJ: symbol.sync.cds, OTYPE: Cadence View

ENOVIA Synchronicity Command Reference All -Vol2

551

 OBJ: symbol, OTYPE: Cadence View Folder
 OBJ: custinv, OTYPE: Cadence Cell
 OBJ: symbol.sync.cds, OTYPE: Cadence View
 OBJ: symbol, OTYPE: Cadence View Folder
 OBJ: .oalib, OTYPE: File
 OBJ: risk.TopCat, OTYPE: Cadence Lib Category
 ...
 OBJ: schematic_v1#2e1, OTYPE: Cadence NonView Folder

syncinfo

syncinfo Command

NAME

 syncinfo - Returns Synchronicity environment information

DESCRIPTION

 This command returns information about the Synchronicity
 software environment, such as version number, location of
 registry files, and default editor and HTML browser. The command
 can be run from the client to return client information, or from
 the server to return server information.

 By default (with no arguments specified), all available information
 is returned. You can request specific information by specifying
 one or more command arguments.

 If a given value has not been set or is not available, then
 'syncinfo' returns an empty string. For example, if you ask for
 portRegistryFile from the client, the return value is empty because
 portRegistryFile is only available from the server.

SYNOPSIS

 syncinfo [<arg> [<arg>...]]

ARGUMENTS

• General Information
• isServer
• syncDir
• version
• Registry Information
• clientRegistryFiles

File-Based Design

552

• enterpriseRegistryFile
• portRegistryFile
• projectRegistryFile
• serverRegistryFiles
• siteRegistryFile
• syncRegistryFile
• userRegistryFile
• usingSyncRegistry
• Customization Information
• customDir
• customSiteDir
• customEntDir
• siteConfigDir
• usrConfigDir
• userConfigFile
• Client Information
• connectTimeout
• commAttempts
• defaultCache
• fileEditor
• htmlBrowser
• proxyNamePort
• somTimeout
• Server Information
• berkdbIsShmEnabled
• berkdbShmKey
• isTestMode
• serverMetadataDir
• serverDataDir
• serverMachine
• serverName
• serverPort
• User Information
• home
• userName

General Information

isServer

 isServer Returns a Tcl boolean value (0 or 1) indicating
 whether the software executing the syncinfo
 command is acting as a server (1) or client (0).

syncDir

ENOVIA Synchronicity Command Reference All -Vol2

553

 syncDir Returns the root directory of the Synchronicity
 software installation. On UNIX, this value
 corresponds to the SYNC_DIR environment
 variable (on Windows, SYNC_DIR is not required).

version

 version Returns the version of the Synchronicity software
 as a string.

Registry Information

clientRegistryFiles

 clientRegistryFiles Returns a comma-separated list of registry
 files used by the Synchronicity clients
 (DesSync, stcl, dss, stclc, dssc).

enterpriseRegistryFile

 enterpriseRegistryFile Returns the enterprise-wide registry file.

portRegistryFile

 portRegistryFile Returns the port-specific registry file.

projectRegistryFile

 projectRegistryFile Returns the project-specific registry file.

serverRegistryFiles

 serverRegistryFiles Returns a comma-separated list of registry
 files used by a Synchronicity server.

siteRegistryFile

 siteRegistryFile Returns the site-wide registry file.

syncRegistryFile

File-Based Design

554

 syncRegistryFile Returns the Synchronicity-supplied standard
 registry file.

userRegistryFile

 userRegistryFile Returns the user-specific registry file.

usingSyncRegistry

 usingSyncRegistry Returns a Tcl boolean value (0 or 1)
 indicating whether the Synchronicity
 software is using the text-based registry (1)
 or the native Windows registry (0).

Customization Information

customDir

 customDir Returns the root directory of the 'custom' branch
 of the Synchronicity installation hierarchy,
 which contains all site- and server-specific
 customization files. The default value,
 <SYNC_DIR>/custom, can be overridden by the
 SYNC_CUSTOM_DIR environment variable.

customSiteDir

 customSiteDir Returns the directory that contains site-specific
 customization files. The default value,
 <SYNC_CUSTOM_DIR>/site (which defaults to
 <SYNC_DIR>/custom/site), can be overridden by
 the SYNC_SITE_CUSTOM environment variable.

customEntDir

 customEntDir Returns the directory that contains enterprise-specific
 configuration files. The default value,
 <SYNC_ENT_CUSTOM> (which defaults
 to <SYNC_CUSTOM_DIR>/enterprise),
 can be overridden by the SYNC_ENT_CUSTOM
 environment variable.

siteConfigDir

ENOVIA Synchronicity Command Reference All -Vol2

555

 siteConfigDir Returns the directory that contains site-specific
 configuration files. The default value,
 <SYNC_SITE_CUSTOM>/config (which defaults
 to <SYNC_CUSTOM_DIR>/site/config, which
 defaults to <SYNC_DIR>/custom/site/config),
 can be overridden by the SYNC_SITE_CNFG_DIR
 environment variable.

usrConfigDir

 userConfigDir Returns the directory that contains user
 configuration files. The default value,
 <HOME>/.synchronicity, can be overridden
 by the SYNC_USER_CFGDIR environment variable.

userConfigFile

 userConfigFile Returns the user configuration file. The default
 value, <HOME>/.synchronicity/user.cfg, can be
 overridden by the SYNC_USER_CONFIG
 environment variable.

Client Information

connectTimeout

 connectTimeout Returns the number of seconds the client will
 wait per communication attempt with the server.

commAttempts

 commAttempts Returns the number of times client/server
 communication is attempted before failing.
 Using multiple attempts protects against
 transient network problems. 'Connect Failure'
 failures do not trigger multiple connection
 attempts, because transient network problems
 rarely cause this error.

 Note: When the number of communication attempts
 is the default value of 3, 'syncinfo commAttempts'
 returns no value instead of returning 3.

defaultCache

File-Based Design

556

 defaultCache Returns the default cache directory for the
 client as specified during installation or
 using SyncAdmin.

fileEditor

 fileEditor Returns the default file editor as specified
 during installation or using SyncAdmin.

htmlBrowser

 htmlBrowser (UNIX only) Returns the default HTML browser
 as specified during installation or using SyncAdmin.

proxyNamePort

 proxyNamePort Returns the <name>:<port> of a proxy, if
 one is defined in a client registry file or
 using the ProxyNamePort environment variable.

somTimeout

 somTimeout Returns the number of milliseconds after an
 unsuccessful server connection attempt during
 which the client does not try to connect again.
 This timeout protects against an operation
 on many objects (such as 'ls' on a large
 directory) taking an excessively long time
 to complete when there is a connection failure
 (such as when the server is down). Instead of
 waiting the connectTimeout period for each
 object, the operation fails for all objects
 after the first connection failure.

Server Information

berkdbIsShmEnabled

 berkdbIsShmEnabled For Synchronicity internal use only.

berkdbShmKey

 berkdbShmKey For Synchronicity internal use only.

ENOVIA Synchronicity Command Reference All -Vol2

557

isTestMode

 isTestMode For Synchronicity internal use only.
 Returns a Tcl boolean value (0 or 1) indicating
 whether the software executing the syncinfo
 command is running in test mode (1) or not (0).
 This feature is useful for regression
 testing of servers.

serverMetadataDir

 serverMetadataDir Returns the directory that contains the
 server metadata (such as relational
 database) files.

serverDataDir

 serverDataDir Returns the directory that contains vault
 (repository) data that is stored by a server.

serverMachine

 serverMachine Returns the name of the server as returned by
 gethostname(). This value is returned only
 when 'syncinfo' is run from a server-side script.

serverName

 serverName Returns the name of the server as it was
 specified in the URL used to contact the
 server. This value is returned only when
 'syncinfo' is run from a server-side script.

serverPort

 serverPort Returns the port number used by the server to
 respond to the syncinfo request. This value is
 returned only when 'syncinfo' is run from a
 server-side script.

User Information

File-Based Design

558

home

 home Returns the home directory of the user
 running syncinfo (HOME on UNIX, or as
 defined in your user profile on Windows platforms).

userName

 userName Returns the account name of the user
 running syncinfo.

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode:
 - If no argument is specified, the return value is a
 name/value list (Tcl 'array get' format) containing
 all available information.
 - If a single argument is specified, the return value is
 the requested value (not a list).
 - If more than one argument is specified, the return value
 is a name/value list containing the requested information.
 - If any argument is not known, an exception is thrown.

SEE ALSO

 server-side

EXAMPLES

• Example Showing the SyncInfo Version on Client Startup
• Example of Extracting SyncInfo Information to an Array
• Example Showing Extracting the Information from an Array
• Example of extracting Name/Value Pairs for Specific Arguments

Example Showing the SyncInfo Version on Client Startup

 When you start any Synchronicity client, 'syncinfo version'
 executes, which displays (and writes to your log file
 if logging is enabled) the Synchronicity version. In this
 example, the software is version 3.0.
 % stclc
 Logging to c:\goss\dss_01192000_092559.log

ENOVIA Synchronicity Command Reference All -Vol2

559

 V3.0

 stcl>

Example of Extracting SyncInfo Information to an Array

 The following stcl script fragment shows how to get all known
 information as a Tcl array variable. The 'version' string is
 then printed.
 array set info [syncinfo]
 puts "Version: $info(version)"

Example Showing Extracting the Information from an Array

 This example uses the single-argument form of syncinfo to print the
 same version information provided by the previous example:

 puts "Version: [syncinfo version]"

Example of extracting Name/Value Pairs for Specific Arguments

 The following example uses command arguments to return a list
 of the 'syncDir' and 'userName' values. This example
 also shows how to enumerate the name/value list returned by
 syncinfo without storing it in an array variable.
 foreach {name value} [syncinfo syncDir userName] {
 puts "$name: $value"
 }

version

hcm version Command

NAME

 hcm version - Displays the DesignSync installation version

DESCRIPTION

 This command displays the version of the DesignSync product
 installation.

SYNOPSIS

File-Based Design

560

 hcm version

OPTIONS

RETURN VALUE

 This command does not return Tcl values.

SEE ALSO

 syncinfo
,

EXAMPLES

 The following example displays the DesignSync version information.

 dss> hcm version
 V6R2012

vhistory

vhistory Command

NAME

 vhistory - Displays an object's version history

DESCRIPTION

• Reporting on Modules (Module-based)
• Report options (Module-based)
• Understanding the output (Module-based)
• Report options (File-based)
• Understanding the output (File-based)

 The vhistory command reports version history for managed objects. If
 the command is run from a workspace, local status is also reported.

 This command supports the command defaults system.

ENOVIA Synchronicity Command Reference All -Vol2

561

Reporting on Modules (Module-based)

 Running vhistory on a module reports the history of that module.

 Note: To list the module versions that contain a module member, use
 the whereused member command.

 Attempting to run vhistory on a module folder will report an error,
 instructing you to run the command on a module instead.

 Module members are managed within the context of their parent module.
 When you run vhistory on a module member object, it shows the only
 the module versions in which the specified module member has been
 directly affected by actions performed on the module, such as content
 change, tag, rename, remove, etc. This is noted in the Report Options
 table below, for the Module Manifest.

 The vhistory command does not recurse through module hierarchy. If a
 module is being reported on, and the -recursive option was specified,
 the vhistory command will output a warning.

 When vhistory is run with the -module option, and two or more module
 members are specified, a single vhistory report is produced that
 contains all the module version in which any of the module members
 specified have been modified.

 Note: If you have specified two or more module members and the
 lastversions options, you may only see one of the module members
 reported if the other does not have any versions in the specified
 timeline.

Report options (Module-based)

 The -report option lets you specify what information vhistory
 reports. You can specify:

 o One of the predefined modes (silent, brief, normal, verbose).

 o One or more data keys, to define exactly the information you want.

 o A combination of data keys to add to, or remove from, a
 predefined report.

 The predefined report modes, and how to modify them for a single
 vhistory invocation, are described in the "-report" option
 description.

 The following table lists the -report data keys, including the
 corresponding property names used in "-format list" output. Note
 that all data keys must be uppercase.

File-Based Design

562

 Text Data Property
 Label Key Name Description
 ----- ---- -------- -----------
 Object: N name The workspace path to the object, or
 to the vault URL.

 ===== H N/A Show horizontal separators between
 ----- items and versions.

 Vault URL S url Show the vault URL (server address)
 associated with a workspace object.

 Current W version Show the version currently in the
 version workspace.

 Current L state Show the fetched state in the workspace.
 This is not reported for module data.

 B N/A Show entries for the branch objects.
 Note:

 R N/A Show entries for the version objects.

 I N/A Do not show (ignore) entries that have
 no tags.

 Branch T tags Show the branch and version tags.
 tags/Version Immutable tags are shown with
 tags "(immutable)" appended only if Y is
 specified as well..

 Tag Y tag_properties Show all properties associated with the
 comments version and branch tags including the
 tag dates, tag comments, and an
 "(immutable)" notation if the tag is
 immutable.

 In "-format list" output, the property
 value is a list of five values. Each
 set of values consists of a tag name, 0
 or 1 indicating whether the tag is
 immutable, the tag comments, the tag
 date, and the user who created the tag.

 Version V version, Show the version numbers for versions,
 bud and the branch number for branches.

 Also, for branches, the property "bud"
 will be included. A branch is a "bud"
 branch if it does not yet have any
 versions. A value of "1" indicates the
 branch is a bud branch, else "0".

 Date D date Show the creation date for a version.

 Derived F derived_from Show the numerical parent version. This
 from maintains the continuity between

ENOVIA Synchronicity Command Reference All -Vol2

563

 versions for merge and rollback
 operations.

 Note: If a merge, skip,rollback or
 overlay operation occurs to create this
 version, the referenced version is
 shown as "Merged from" version.

 Author A author Show the author of a version.

 Size K size Show the size of the object version in
 KB.
 Note: Collections and module versions,
 both of which contain more than one
 object, display with a size of zero.

 Merged E merged_from Show the version used to create the
 from current version when the current
 version was created as the result of a
 rollback, merge, skip, or overlay
 operation requiring an alternate
 parent version.

 Comment C comment Show the checkin comments for a
 version, and any checkout comments. For
 DesignSync objects, checkout comments
 are only visible from the workspace in
 which the checkout occurred. For module
 objects, the branch lock comment is
 visible to all users.

 Locked by U locker, Show the lock owner of a locked branch.
 upcoming The text and list formats both show the
 latest version and leaves the upcoming
 version blank.

 Version G N/A Show a graphical representation of the
 graph version history, as a text graph.

 Reverse Z N/A Show the versions/branches in reverse
 order numeric order.

 Module Q manifest Show the manifest of Manifest changes
 in each version. For a module member,
 show only the changes to that member.

 Note: When a module rollback has been
 performed, the changes between versions
 are the changes that were "rolled
 back."

 In "-format list" output, the property
 value is a list of property lists, with
 one entry for each change recorded in
 the module version.

 Tagged M N/A Include Module version that have tags,

File-Based Design

564

 Module even if a module member being queried
 Version has not been changed in that module
 version.

 N/A P deleted Includes deleted module versions with
 the information that the module has
 been deleted.
 Note: Appears in the text layout as
 "This version has been deleted."

 N/A objects In "-format list" output, the property
 value is a list of the branch and
 version items reported for that object.
 Each entry in the objects value is
 itself a property list.

 N/A type In "-format list" output, the property
 value is either "branch" (for branch
 entries) or "version" (for version
 entries). The value is used in the
 "objects" property value lists.

 N/A + N/A Add codes to a predefined report.

 N/A - N/A Remove codes from a predefined report.

Understanding the output (Module-based)

 The vhistory output is divided into sections. The first section
 provides the information about the selected module. The second
 section contains branch information for the currently selected
 branch, followed by the version information of all versions on that
 branch. If you have requested information about more than one
 branch, the branch section, ordered by branch number, is displayed,
 followed by the versions on that branch; followed by the next branch
 sequentially, etc. until all specified branches and versions have
 been enumerated. The sequence is based on depth of the branch and
 version numbers, for example the branch number 1.2.4.1 appears after
 branch 1.2.3, but before 1.3. The final section is the history
 graph.

 Notes: The sections and fields that appear in your report depend on
 the report formats you select. For more information on any of
 the displayed fields, see the Report options section.

 Object information can include the following fields:

 o Object - Workspace path to the object..
 o Vault URL - Vault URL associated with the object.
 o Current Version - Version number of the workspace version.

 Branch information includes the following fields:

 Note: You must include report option B to get information on

ENOVIA Synchronicity Command Reference All -Vol2

565

 branches. Additional options determine what branch information you
 display.

 o Branch - Branch number.
 o Branch tags - Branch tag names.
 o Branch tag properties - Immediately following the appropriate
 branch tag, the following information is also displayed:
 - "immutable" when the tag is immutable.
 - tag application date
 - username of the operator who applied the tag
 - tag comment, if applicable, on the following line.
 o Locked by - username of the branch locker.
 o Comment - Comment applied to the branch during creation. For the
 Trunk branch, this is the comment entered when the module was
 created.

 Version information includes the following fields:

 Note: You must include the report option R to get information on
 versions. Additional options determine what version information you
 display.

 o Version - Version number.
 o Version tags - Version tag names.
 o Version tag properties - Immediately following the appropriate
 version tag, the following information is also displayed:
 - "immutable" when the tag is immutable.
 - tag application date
 - username of the operator who applied the tag
 - tag comment, if applicable, on the following line.
 Note: If the tag was applied with a checkin, the tag
 properties information is identical to Date, Author, Comment
 fields.
 o Derived From - numeric parent version.
 o Merged From - version used to create the current version.
 o Date - version creation date.
 o Author - version author.
 o Comment - version comment.
 o Module Manifest - list of files and hierarchical references changed
 in the version.

 History graph information includes the following:
 A graphical representation of the object's history.

Report options (File-based)

 The -report option lets you specify what information vhistory
 reports. You can specify:

 o One of the predefined modes (silent, brief, normal, verbose).

 o One or more data keys, to define exactly the information you want.

 o A combination of data keys to add to, or remove from, a

File-Based Design

566

 predefined report.

 The predefined report modes, and how to modify them for a single
 vhistory invocation, are described in the "-report" option
 description.

 The following table lists the -report data keys, including the
 corresponding property names used in "-format list" output. Note
 that all data keys must be uppercase.

 Text Data Property
 Label Key Name Description
 ----- ---- -------- -----------
 Object: N name The workspace path to the object, or
 to the vault URL.

 ===== H N/A Show horizontal separators between
 ----- items and versions.

 Vault URL S url Show the vault URL (server address)
 associated with a workspace object.

 Current W version Show the version currently in the
 version workspace.

 Current L state Show the fetched state in the workspace.
 This is not reported for module data.

 B N/A Show entries for the branch objects.
 Note: When used with the B option, on a
 V6R2010 or higher SyncServer, also
 reports the username and timestamp for
 retired branches.

 R N/A Show entries for the version objects.

 I N/A Do not show (ignore) entries that have
 no tags.

 Branch T tags Show the branch and version tags.
 tags/Version Immutable tags are shown with
 tags "(immutable)" appended only if Y is
 specified as well..

 Version V version, Show the version numbers for versions,
 bud and the branch number for branches.

 Also, for branches, the property "bud"
 will be included. A branch is a "bud"
 branch if it does not yet have any
 versions. A value of "1" indicates the
 branch is a bud branch, else "0".

 Date D date Show the creation date for a version.

 Derived F derived_from Show the numerical parent version. This
 from maintains the continuity between

ENOVIA Synchronicity Command Reference All -Vol2

567

 versions for merge operations.

 Note: If a merge, or overlay operation
 occurs to create this version, the
 referenced version is shown as "Merged
 from" version.

 Author A author Show the author of a version.

 Size K size Show the size of the object version in
 KB.
 Note: Collections which contain more
 than one object, display with a size of
 zero.

 Merged E merged_from Show the version used to create the
 from current version when the current
 version was created as the result of a
 merge, skip, or overlay operation
 requiring an alternate parent version.

 Comment C comment Show the checkin comments for a
 version, and any checkout comments. For
 DesignSync objects, checkout comments
 are only visible from the workspace in
 which the checkout occurred.

 This X retired Show whether a branch is retired. A
 branch is "retired" value of "1" indicates the
 retired branch is retired, else "0".

 Note: When used with the B option, on a
 V6R2010 or higher SyncServer, also
 reports the username and timestamp for
 retired branches.

 Locked by U locker, Show the lock owner of a locked branch.
 upcoming For DesignSync objects, also show the
 "version -> upcoming version"
 information.

 Version G N/A Show a graphical representation of the
 graph version history, as a text graph.

 Reverse Z N/A Show the versions/branches in reverse
 order numeric order.

 N/A objects In "-format list" output, the property
 value is a list of the branch and
 version items reported for that object.
 Each entry in the objects value is
 itself a property list.

 N/A retired_ In "-format list" output, the property
 properties value is an array including date and
 user properties containing the date and
 time the retire was performed and the

File-Based Design

568

 username of the person who performed the
 retire.

 N/A type In "-format list" output, the property
 value is either "branch" (for branch
 entries) or "version" (for version
 entries). The value is used in the
 "objects" property value lists.

 N/A + N/A Add codes to a predefined report.

 N/A - N/A Remove codes from a predefined report.

Understanding the output (File-based)

 The vhistory output is divided into sections. The first section
 provides the information about the selected object or module. The
 second section contains branch information for the currently selected
 branch, followed by the version information of all versions on that
 branch. If you have requested information about more than one
 branch, the branch section, ordered by branch number, is displayed,
 followed by the versions on that branch; followed by the next branch
 sequentially, etc. until all specified branches and versions have
 been enumerated. The sequence is based on depth of the branch and
 version numbers, for example the branch number 1.2.4.1 appears after
 branch 1.2.3, but before 1.3. The final section is the history graph.

 Notes: The sections and fields that appear in your report depend on
 the report formats you select. For more information on any of
 the displayed fields, see the Report options section.

 Object information can include the following fields:

 o Object - Workspace path to the object..
 o Vault URL - Vault URL associated with the object.
 o Current Version - Version number of the workspace version.
 o Current State - Fetched state in the workspace.

 Branch information includes the following fields:

 Note: You must include report option B to get information on
 branches. Additional options determine what branch information you
 display.

 o Branch - Branch number.
 o Branch tags - Branch tag names.
 o Locked by - username of the branch locker.
 o Comment - Comment applied to the branch during creation. For the
 Trunk branch, this is the comment entered when the module or
 DesignSync object was created.
 o This Branch is Retired. - Object branch has been retired,
 (Non-module data only)
 o Retired by - Username, date, and time associated with the retire.

ENOVIA Synchronicity Command Reference All -Vol2

569

 Version information includes the following fields:

 Note: You must include the report option R to get information on
 versions. Additional options determine what version information you
 display.

 o Version - Version number.
 o Version tags - Version tag names.
 o Derived From - numeric parent version.
 o Merged From - version used to create the current version.
 o Date - version creation date.
 o Author - version author.
 o Comment - version comment.

 History graph information includes the following:
 A graphical representation of the object's history.

SYNOPSIS

 vhistory [-branch <branchname> -descendants <n> |
 -lastversions <n> -lastbranches <n> | -all]
 [-exclude <string>] [-format list | text] [-maxtags <n>]
 [-modulecontext <context>]
 [-output <filename> | -stream <port>] [-report <mode>]
 [-[no]recursive] [-[no]selected] [-xtras <list>] [--]
 <argument> [<argument>...]

ARGUMENTS

• Module Member (Module-based)
• Workspace Module (Module-based)
• Server Module (Module-based)
• DesignSync Object (File-based)
• Workspace Folder (File-based)
• Server Folder (File-based)
• legacy_note (Legacy-based)

 Specify one or more of the following arguments:

Module Member (Module-based)

 <module member> Specifies the module member.

Workspace Module (Module-based)

File-Based Design

570

 <workspace module> Specifies the workspace module. You may
 specify a module instance name or a full
 module address. It is compared against the
 corresponding server module.

Server Module (Module-based)

 <server module> Server modules can be selected using the URL of
 the module.
 sync[s]://<host>[:<port>]/<vaultPath> where
 <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 and <vaultPath> identifies the module to select.

DesignSync Object (File-based)

 <DesignSync object> Specifies the DesignSync object.

Workspace Folder (File-based)

 <Workspace folder> Specifies the history of the contents of the
 specified folder, and, when used with the
 recursive option, all subfolders.

Server Folder (File-based)

 <server folder> Specifies the history of the contents of the
 specified folder on the server, and when used
 with the -recursive option, all
 subfolders. Specify the object with the sync URL
 in the format:
 sync://<host>:<port>/<path>/<folder>

 If no arguments are given, and the -selected option is not specified,
 then the vhistory command will operate on the current directory. This
 is equivalent to specifying a single argument of "."

 Note: A legacy module is regarded as a DesignSync folder.

OPTIONS

• -all
• -branch
• -descendants

ENOVIA Synchronicity Command Reference All -Vol2

571

• -exclude
• -format
• -lastbranches
• -lastversions
• -maxtags
• -modulecontext (Module-based)
• -output
• -[no]recursive (File-based)
• -report
• -[no]selected
• -stream
• -xtras (Module-based)
• --

-all

 -all Report branch "1" and all descendants, thereby
 reporting the entire history of an object.

 The "-all" option is mutually exclusive with the
 "-descendants" option, the "-lastversions" option, the
 "-lastbranches" option, and with the "-branch" option.

-branch

 -branch <branchname>
 Start the report at the specified branch name. The
 <branchname> may be a branch tag or a branch numeric.

 By default, the current branch for workspace objects
 is the starting branch. For vault objects, branch 1 is
 the default starting branch.

 To override a default value that was saved with the
 command default system, specify a value of "". That
 will use the aforementioned default behavior.

-descendants

 -descendants <n>
 The number of levels of descendant branches to report,
 from the starting branch. By default, the report is
 limited to the starting branch (an <n> value of 0).

 You may specify any positive number as the <n> value.

 For example, if branch 1.2.1 is being reported on,
 and the descendants value is 1, then branch 1.2.1.3.1

File-Based Design

572

 will be reported, but branch 1.2.1.3.1.4.1 will not be.

 Specifying a value of "all" will report all levels.

 The -descendants option is mutually exclusive with the
 -lastversions option and with the -lastbranches option.

-exclude

 -exclude <string>
 Specifies a glob-style expression to exclude matching
 object names from the report. The string you specify
 must match the name of the object as it would have
 appeared in the listing.

 By default, the vhistory command does not exclude the
 objects in the global exclude lists (set using
 Tools->Options->General->Exclude Lists or using
 SyncAdmin's General->Exclude Lists). To exclude these
 objects from a vhistory report, apply the -exclude
 option with a null string:
 dss> vhistory -exclude ""
 The objects in the global exclude lists are appended
 to the vhistory exclude list if you exclude other
 values:
 dss> vhistory -exclude "README.txt"

-format

 -format
 Specifies whether the "vhistory" command generates a
 formatted report, or returns a Tcl property list.

 list Returns a list, with each result entry
 containing the properties reported for each
 object, and an "objects" property. The objects
 property contains a sublist of property lists,
 with one entry for each branch and version
 object that is reported for the parent object.

 For example, consider the following command:

 stcl> vhistory -report LNRVT file1.txt \
 file2.txt -lastversions 2 -format list

 The above command requests a report of the
 last two versions on the current branch of the
 two specified objects. The report will contain
 the object name, the state of the objects in
 the workspace, and the versions of the object.
 For each version, the version number and any
 tags are reported.

ENOVIA Synchronicity Command Reference All -Vol2

573

 The result might be:

 {
 name file:///home/tbarbg10/Test/file1.txt
 state Copy
 objects {
 {type version version 1.4 tags {t1 t2}}
 {type version version 1.5 tags {t3 Latest}}
 }
 }

 {
 name file:///home/tbarbg10/Test/file2.txt
 state Lock
 objects {
 {type version version 1.3.1.5 tags {}}
 {type version version 1.3.1.6 tags Latest}
 }
 }

 As shown above, the result is a list containing
 one entry for each object for which the history
 was requested.

 To process the results, use the
 vhistory-foreach and vhistory-foreach-obj
 functions.

 If the history was requested for a single
 object, you must start processing the result
 list by taking the "head" of the list, with a
 call such as "[index $result 0]".

 The property lists will always contain a
 property even if the value is "", for easier
 processing of the results.

 For a list of properties, see the Report Options
 table above.

 text Display a textual result. (Default)

-lastbranches

 -lastbranches <n>
 How many branches back to report. By default, only
 versions on the specified branch are reported (an
 <n> value of 0).

 You may specify any positive number as the <n> value.
 <n> parent branches back will be reported on. This
 option is used to show more of an object's history.

File-Based Design

574

 For example, let's say the branch to be reported on is
 1.4.1.3.1, with a Latest version of 1.4.1.3.1.2. By
 default, the vhistory command would only report on
 versions 1.4.1.3.1.1 and 1.4.1.3.1.2. If "1" was
 specified as the -lastbranches value, then the
 vhistory command would also run on one parent branch
 back, reporting versions 1.4.1.3, 1.4.1.2 and 1.4.1.1.

 An <n> value of "all" will run the report on all
 parent branches, back to branch 1.

 The -lastbranches option is mutually exclusive with
 the -descendants option. That is because specifying a
 -lastbranches value implies a -descendants value of 0.

 The -lastbranches and -lastversions options can be
 used together. The report will start at the Latest
 version on the initial branch, and work backwards.

-lastversions

 -lastversions <n>
 How many versions back to report. By default, all
 versions on the requested branch are reported (an
 <n> value of "all").

 You may specify any positive number as the <n> value.

 The -lastversions option is mutually exclusive with
 the -descendants option. That is because specifying a
 -lastversions value implies a -descendants value of 0.

 If a specific version object URL is specified as the
 argument (or -modulecontext), instead of a -branch,
 then the report will start at the version specified.
 (Instead of starting at the Latest version on the
 branch.) This allows the report to be run on a range
 of versions.

 The -lastversions and -lastbranches options can be
 used together. The report will start at the Latest
 version on the initial branch, and work backwards.

-maxtags

 -maxtags <n>
 The maximum number of tags shown for any object. By
 default, all tags are shown (an <n> value of "all").

-modulecontext (Module-based)

ENOVIA Synchronicity Command Reference All -Vol2

575

 -modulecontext <context>
 Specifies the module context. Use this option to
 identify a module member that is not in the workspace
 or to restrict the report to module versions that
 affect any of the members specified on the command line.

-output

 -output <filename>
 Prints results to the specified file. The named file is
 created or overwritten, but not appended to. To append,
 use the "-stream" option.

 The -output and -stream options are mutually exclusive.

-[no]recursive (File-based)

 -[no]recursive
 For a local folder or server folder, whether to
 descend through sub-folders of the starting folder, or
 only report on the objects in the specified folder.

 The default behavior is "-norecursive".

-report

 -report <mode>
 Specifies what information about each object should
 be reported. Available report modes are:

 brief Report tagged versions/branches with their
 tags and numerics. This is equivalent to
 "-report NBRIVT".

 normal Report all available information, except for
 the module manifest. This is equivalent to
 "-report" with all codes listed in the
 Report Options table above, except for GZQI.

 This behavior is the default when "-report"
 is not specified.

 verbose Report all available information. This is
 equivalent to "-report" with all codes listed
 in the Report Options table above, except for
 GZI.

 K[K...] Display the fields corresponding to the data
 keys, where K is a data key listed in the

File-Based Design

576

 Report Options table above.

 You may also use "+" and "-" operators to add and
 remove codes from the standard reports.

 For example, to report the "normal" output, but only
 for version objects and not branch objects:

 stcl> vhistory -report normal-B

 The data keys and predefined report modes may be
 combined in any order. However, the predefined report
 mode names may not be immediately preceded or followed
 by another data key or predefined report name.

 For example, the following is valid:

 stcl> vhistory -report Z+normal-B

 The above command will report the "normal" output, but
 without branches, and with the versions in reverse
 order.

 The following syntax is not valid:

 stcl> vhistory -report Znormal-B

 If the "-report" value begins with a "+" or "-", the
 default "normal" predefined report is automatically
 prepended.

 For example:

 stcl> vhistory -report -B

 is equivalent to:

 stcl> vhistory -report normal-B

-[no]selected

 -[no]selected
 Whether to operate on the items in the select list in
 addition to any arguments on the command line. If no
 arguments are given on the command line, then the
 select list is automatically used.

-stream

 -stream <port>
 Prints results to the specified named Tcl port.
 Depending on whether you open the stream using the Tcl

ENOVIA Synchronicity Command Reference All -Vol2

577

 "open" command in write (w) or append (a) mode, you can
 overwrite or append to an existing file.

 Note: The -stream option is only applicable in the stcl
 and stclc shells, not in the dss and dssc shells.

 The -stream and -output options are mutually exclusive.

-xtras (Module-based)

 -xtras <list> List of command line options to pass to the
 external module change management system. Any
 options specified with the -xtras option are
 sent verbatim, with no processing by the
 populate command, to the Tcl script that defines
 the external module change management system.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 If "-format list" was specified, and neither the "-output" option nor
 the "-stream" option were specified, then the result list is returned.
 Otherwise, a value of "" is returned.

SEE ALSO

 command defaults, datasheet, ls, select, whereused member,
 vhistory-foreach, vhistory-foreach-obj

EXAMPLES

• Example of Version History of a Module Branch (Module-based)
• Example of Version History Showing Module Rollback Operation (Module-based)
• Example of Vhistory Showing a Retired Branch (File-based)

Example of Version History of a Module Branch (Module-based)

 The example below shows the default "-report normal" output, for a
 module branch:

File-Based Design

578

 stcl> vhistory -branch Silver sync://faure:30044/Modules/multiple/M1
 Object: sync://faure:30044/Modules/multiple/M1

 Branch: 1.5.1
 Branch tags: Silver
 Tag comments:
 Silver : Branching version 1.5
 Comment: Branching version 1.5

 Version: 1.5.1.1
 Derived from: 1.5
 Date: Thu Oct 12 16:35:23 EDT 2006
 Author: mark
 Comment: Branching version 1.5

 Version: 1.5.1.2
 Version tags: Latest
 Derived from: 1.5.1.1
 Date: Thu Oct 12 16:36:41 EDT 2006
 Author: mark
 Comment: Versioning new silver branch

 ===
 stcl>

 The example below shows "-report verbose" output, for a module branch:

 stcl> vhistory -branch Golden sync://faure:30044/Modules/multiple/M1 \
 -report verbose
 Object: sync://faure:30044/Modules/multiple/M1

 Branch: 1.9.1
 Branch tags: Golden

 Version: 1.9.1.1
 Derived from: 1.9
 Date: Thu Oct 12 16:28:43 EDT 2006
 Author: debra
 Manifest:
 Added : /m1/c.txt, 1.1
 Added : /unixfilesfolder/unixfile1.txt, 1.2
 Added : /1.txt, 1.2
 Added : /m1/d.txt, 1.1
 Added : /m1/a.txt, 1.3
 Added : /m1/b.txt, 1.1

 Version: 1.9.1.2
 Version tags: Latest
 Derived from: 1.9.1.1
 Date: Thu Oct 12 16:31:13 EDT 2006
 Author: debra
 Comment: Testing some changes.
 Manifest:

ENOVIA Synchronicity Command Reference All -Vol2

579

 Added : /unixfilesfolder,
 Added : /file2, 1.1
 Changed : /1.txt, 1.2 -> 1.2.1.1
 Added : /file1, 1.1
 Added : /file3, 1.1
 Added : /m1,
 Renamed : /m1/c.txt -> /m1/x.txt, 1.1
 Deleted: /1.txt
 Renamed,Changed : /m1/a.txt -> /m1/ab.txt, 1.3 -> 1.4
 ==
 stcl>

Example of Version History Showing Module Rollback Operation (Module-based)

 This example shows a Module rollback operation in which version 1.5
 of the MBOM module was created by rolling back to version 1.2,
 removing the changes introduced in version in version 1.3 and 1.4.
 The example vhistory output includes a graphical representation
 (-report G).

 Note: The rollback comment is displayed as the checkin comment for
 the module version created from the rollback.

 dss> vhistory -norecursive -report NSWLTYDFAECXUHVBRG MBOM%0
 Object: /home/rsmith/MyModules/mbom/MBOM%0
 Vault URL: sync://srv2.ABCo.com:2647/Modules/MBOM
 Current version: 1.4

 Branch: 1
 Branch tags:
 Trunk, Wed Sep 05 08:20:54 AM EDT 2007, rsmith

 Version: 1.1
 Date: Wed Sep 05 08:20:55 AM EDT 2007
 Author: rsmith
 Comment: First Version

 Version: 1.2
 Derived from: 1.1
 Date: Wed Sep 05 08:24:34 AM EDT 2007
 Author: rsmith
 Comment: Initial checkin

 Version: 1.3
 Derived from: 1.2
 Date: Wed Sep 05 08:26:21 AM EDT 2007
 Author: rsmith
 Comment: Updates to documentation and base code.

 Version: 1.4

File-Based Design

580

 Derived from: 1.3
 Date: Wed Sep 05 08:26:44 AM EDT 2007
 Author: rsmith
 Comment: added header file

 Version: 1.5
 Version tags: Latest
 Derived from: 1.4
 Merged from: 1.2
 Date: Wed Sep 05 08:35:00 AM EDT 2007
 Author: rsmith
 Comment: introduced incompatable changes

 History Graph:

 1 (Trunk)
 1.1
 1.2 => 1.5
 1.3
 1.4
 1.5 [Latest] <= 1.2
 ==

Example of Vhistory Showing a Retired Branch (File-based)

 This example shows a retired branch. The report mode used is normal,
 which includes the report options: B and X. Both options are
 required to see the time, date and username associated with the
 retire. The first command output shows the default format, text.
 The second shows the -format list output.

 dss> vhistory c.doc
 Object: file:///home/rsmith/workspaces/M1/doc/c.doc
 Vault URL: sync://srv2.ABCo.com:2647/Projects/M1/doc/c.doc;
 Current state: NotFetched (Locally Modified)

 Branch: 1
 Branch tags: Trunk
 This branch is retired.
 Retired by bjones on Tue Dec 30 01:48:48 PM EST 2008

 Version: 1.1
 Version tags: Latest
 Date: Tue Dec 30 01:39:16 PM EST 2008
 Author: rsmith
 Comment: Updates to documentation

 ===

 dss> vhistory -format list c.doc
 {name file:///home/rsmith/workspaces/M1/doc/c.doc url

ENOVIA Synchronicity Command Reference All -Vol2

581

 {sync://srv2.ABCo.com:2647/Projects/M1/doc/c.doc;} state {NotFetched
 (Locally Modified)} objects {{type branch version 1 bud 0 tags Trunk
 tag_properties {{Trunk 0 {} {} {}}} locker {} upcoming {} retired 1
 retired_properties {date 1230662928 user bjones} comment {}} {type
 version version 1.1 tags Latest tag_properties {{Latest 0 {} {} {}}}
 derived_from {} merged_from {} date 1230662356 author rsmith comment
 {Updates to documentation}}}}

vhistory-foreach

vhistory-foreach Command

NAME

 vhistory-foreach - Function to process the results of a vhistory
 command

DESCRIPTION

 This function is called on the result list returned from
 "vhistory -format list". Use the vhistory-foreach function in
 conjunction with the vhistory-foreach-obj function, to process the
 list result from vhistory.

SYNOPSIS

 vhistory-foreach obj result_list <tcl_script>

ARGUMENTS

• Object Loop Variable
• Results List
• Tcl Script

Object Loop Variable

 obj This is the loop variable. It is treated as a Tcl
 array. The "obj" Tcl array is set to each object
 in the result list, in turn.

 The Tcl array contains the properties for the
 object, and an "objects" property containing the
 version and branch entries that were reported for
 the object.

File-Based Design

582

 The set of properties is determined by the
 "-report" option that was specified to the
 "vhistory" command. If a "-report" value is not
 specified, the default "normal" report keys are
 used.

Results List

 result_list The result list to be processed. This is the
 result value from a call to the "vhistory"
 command with the "-format list" option.

Tcl Script

 tcl_script The Tcl code to execute on each element in the
 "obj" Tcl array.

SEE ALSO

 vhistory, vhistory-foreach-obj

EXAMPLE

 As an example, let's use the vhistory report from the "-format list"
 option description in the "vhistory" command documentation:

 stcl> vhistory -report LNRVT file1.txt file2.txt -last 2 -format list

 We'll capture the result in a variable, then use the vhistory-foreach
 functions to process the result:

 set result [vhistory file1.txt file2.txt -lastversions 2 -format list]

 vhistory-foreach obj $result {
 puts "Object name: $obj(name)"

 vhistory-foreach-obj vb obj {
 if { $vb(type) == "version" } {
 puts "Version: $vb(version)"
 } else {
 puts "Branch: $vb(version)"
 }
 }
 }

 The above code would report:

ENOVIA Synchronicity Command Reference All -Vol2

583

 Object name: file1.txt
 Version: 1.4
 Version 1.5
 Object name: file2.txt
 Version: 1.3.1.5
 Version 1.3.1.6

vhistory-foreach-obj

vhistory-foreach-obj Command

NAME

 vhistory-foreach-obj- Function to process the results of a vhistory
 command

DESCRIPTION

 This function is called with the property array that was set by the
 vhistory-foreach function. The two vhistory "foreach" functions are
 used to process the list result from vhistory.

SYNOPSIS

 vhistory-foreach-obj vb obj <tcl_script>

ARGUMENTS

• Version/Branch Loop Variable
• Object Tcl Array
• Tcl Code

Version/Branch Loop Variable

 vb The version/branch entry. This is the loop
 variable. The "vb" Tcl array is set to each
 version or branch entry for the object, in turn.

Object Tcl Array

 obj This is the "obj" Tcl array that was set by the

File-Based Design

584

 "vhistory-foreach" function.

Tcl Code

 tcl_script The Tcl code to execute on each element in the
 "vb" Tcl array.

SEE ALSO

 vhistory, vhistory-foreach

EXAMPLE

 As an example, let's use the vhistory report from the "-format list"
 option description in the "vhistory" command documentation:

 stcl> vhistory -report LNRVT file1.txt file2.txt -last 2 -format list

 We'll capture the result in a variable, then use the vhistory-foreach
 functions to process the result:

 set result [vhistory file1.txt file2.txt -lastversions 2 -format list]

 vhistory-foreach obj $result {
 puts "Object name: $obj(name)"

 vhistory-foreach-obj vb obj {
 if { $vb(type) == "version" } {
 puts "Version: $vb(version)"
 } else {
 puts "Branch: $vb(version)"
 }
 }
 }

 The above code would report:

 Object name: file1.txt
 Version: 1.4
 Version 1.5
 Object name: file2.txt
 Version: 1.3.1.5
 Version 1.3.1.6

webhelp

webhelp Command

ENOVIA Synchronicity Command Reference All -Vol2

585

NAME

 webhelp - Launches Graphical Web Browser to view help

DESCRIPTION

 This command provides a variety of help related functions, displaying
 the information in the default web browser. The default web browser
 is set during DesignSync client installation. You can change or set
 the web browser at any time using SyncAdmin. For more information on
 setting the web browser, see the ENOVIA Synchronicity DesignSync Data
 Manager Administrator's Guide.

Help is available for:
 - All DesignSync command-line commands
 - DesignSync topics such as using wildcards or running server-side
 scripts
 - ProjectSync command-line commands

 For compound commands such as the 'url' and 'note'
 commands, surround the command with double quotes and put
 exactly one space between the two keywords of the command (see
 Example section).

 The web browser opens the specified help topic within the ENOVIA
 Synchronicity Command Reference for the selected help mode you are
 working in. For information about setting a help mode, see the
 ENOVIA Synchronicity DesignSync Data Manager Administrator's Guide.
 By default, the help mode is "all," which includes the DesignSync
 documentation for all working modes, including modules, files-based,
 and legacy modules modes. You can also specify a help mode using the
 -mode option.

 From the ENOVIA Synchronicity Command Reference, you can navigate to
 the documentation index to access any other DesignSync documentation.

SYNOPSIS

 webhelp [-mode module|file|all] [<topic> [...]]

ARGUMENT

• Topic

Topic

 <topic>[...] DesignSync command name(s) or topic(s).
 If the topic or command specified doesn't exist,

File-Based Design

586

 the webhelp command launches the web browser and
 displays the overview topic.

 If you specify more than one topic, each topic will
 open in a separate tab in the web browser.

 Note: When looking up a two word topic, such as
 "defaults show" enclose the command in quotes,
 otherwise it will be processed as two separate
 topics. In this example, entering the command
 "webhelp defaults show" would result in two tabs
 being opened, one to the "defaults" topic and one to
 the overview page, since there is no corresponding
 "show" command.

OPTIONS

• -mode

-mode

 -mode module| Determines which version of the help to open.
 file | all If you specify the -mode option, the setting you
 choose overrides the default mode.

 If no mode is specified, DesignSync uses the default
 mode defined with the registry key or SyncAdmin. For
 more information on defining the help mode, see the
 ENOVIA Synchronicity DesignSync Data Manager
 Administrator's Guide. If no mode is set, the help
 page displays in the "all" mode.

 Note: Once the book is open, you can navigate to the
 documentation index and from there open a different
 version of the ENOVIA Synchronicity Command Reference.

RETURN VALUE

 If the command succeeds, it returns an empty string (""). If the
 command fails, it returns an appropriate error to explain the cause
 of failure.

EXAMPLES

• Example of Opening a Single Tab in the Default Mode
• Example of Opening Multiple Tab Help for a Specified Mode (Module-based)
• Example of Opening Multiple Tab Help for a Specified Mode (File-based)

Example of Opening a Single Tab in the Default Mode

ENOVIA Synchronicity Command Reference All -Vol2

587

 The following example opens one tab to the "default show" command.

 dss> webhelp "defaults show"

 Note: The quotes are required because the command is more than a
 single word.

Example of Opening Multiple Tab Help for a Specified Mode (Module-based)

 The following example opens two tabs in the specified user mode
 "module." Using a help mode ensure that all the information provided
 is specific to the data management methodology you are using.

 dss> webhelp -mode module addhref edithrefs

Example of Opening Multiple Tab Help for a Specified Mode (File-based)

 The following example opens two tabs in the specified user mode
 "file." Using a help mode ensure that all the information provided
 is specific to the data management methodology you are using.

 dss> webhelp -mode file ls ci

589

Enterprise Design Development

Development Areas

sda

sda Command

sda - Synchronicity development area commands

DESCRIPTION

 The sda commands allow you to manage your DesignSync development
 areas. For more information on development areas, see the
 Enterprise Design Administration User's Guide.

 Note: The sda commands must be run from your OS shell, not from
 within the DesignSync interfaces.

SYNOPSIS

 sda <sub_command> [<sub_command_options>]

 Usage: sda [cd|gui|join|ls|mk|rm]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 sda cd, sda gui, sda join, sda ls, sda mk, sda rm

EXAMPLES

Enterprise Design Development

590

 See specific "sda" commands.

sda cd

sda cd Command

NAME

 sda cd - Change development area and launch a tool command

DESCRIPTION

 This command allows the user to launch a tool from a development area they
 have created via "sda mk" or joined via "sda join". The tool runs using the
 development setting defined for the area.

 The sda cd command performs the following sequence of actions:
 1. If the -update option is selected, updates the development
 instance directory associated with an external development area.

 2. Sets up the environment by setting the following environment
 variables:
 o SYNC_DEVAREA_DIR - set to the requested development area
 directory.
 o SYNC_DEVAREA_TOP - set to the leaf name of the top module or
 directory in the development area.
 o SYNC_DEV_ASSIGNMENT - set to the assignment associated with
 the development area.
 o SYNC_DEVELOPMENT_DIR - set to the top of the development instance
 directory.
 o SYNC_PROJECT_CFGDIR - set to the directory holding the
 development setting for the assignment associated with the
 development area.
 o SYNC_WS_DEVAREA_TOP - set to the leaf name of the top module
 or directory in the development area. This variable can then
 be used for the starting directory in any commands you
 construct within the specified tool.

 3. Runs all of the set up scripts defined for the tools associated
 with the development area. Running all the scripts is required to
 support inter-tool dependencies and shell tools.
 Note: When a shell is defined as a tool, it should be defined to
 ignore the startup script for the shell. Any aliases, etc. defined
 in the startup script will not be available; however when a tool
 suite is defined, the admin can specify a script with the desired
 environment settings.

 4. Sets the current directory for the tool to the starting directory.
 The starting directory is the directory defined in the tool's
 definition. If no starting directory is specified, then the
 directory defined in the tool suite is used. If no starting

ENOVIA Synchronicity Command Reference All -Vol2

591

 directory is specified in the tool suite either, the development
 area is used.
 The starting directories can be specified with environment
 variables and may be relative to the development area.

 5. Starts the requested tool. If the tool is graphical, the tool is
 spawned (detached) from sda. If the tool is non-graphical, on
 UNIX, the tool runs in the same shell as sda.

 Note: When a non-graphical tool is started, the sda process ends.

 If you run the command without specifying a development area or a
 tool, or the user specified an ambiguous argument, the command starts
 in interactive mode. In interactive mode, the user is prompted for
 the command arguments and options needed. Any arguments specified
 with the -gui command option are passed to the GUI and the
 appropriate fields are selected on the "Change Area" tab.

SYNOPSIS

 sda cd [<area_name>] [<tool>] [-development <name>] [-gui]
 [-suite <suite_name>] [-[no]update] [-version <version>]

ARGUMENTS

• Development Area Name
• Tool

Development Area Name

 area_name The development area name of the DesignSync
 Development. This argument is required and the
 development area must already exist.

Tool

 tool The tool name specified must be a tool that is
 defined for use with the specified development
 area. The list of available tools can be viewed from
 the development instance for the assignment
 associated with the area.

 Note: When a shell is defined as a tool, it should
 be defined to ignore the startup script for the
 shell. Any aliases, etc. defined in the startup
 script will not be available.

OPTIONS

Enterprise Design Development

592

• -development
• -gui
• -suite
• -[no]update
• -version

-development

 -development Specify the name of the development if the area name is
 <name> not unique for the user. Area names are unique
 within a development for a given user, but are not
 required to be unique across all developments.

-gui

 gui Starts the sda graphical user interface mode
 with the "Change Area" tab selected.

 If this option is used with the tool argument, the
 tool argument is silently ignored.

-suite

 -suite <suite> Specify the suite name for the tool suite, if the
 tool name is not unique across all tool suites for
 the development assignment.

-[no]update

 -[no]update Specifies whether the development instance
 definition should be updated, if it is an external
 area.

 -noupdate does not update the external development
 instance from the server before setting the
 environment variables for the area and starting the
 tool. (Default when the development setting
 is 'Mirror=False')

 -update performs the update of the external area
 before performing any other actions. (Default when
 'Mirror=True')

 If the area is not an external area and this option
 is specified, the tool exits without launching the
 tool.

 Note: If -update is explicitly specified, and no

ENOVIA Synchronicity Command Reference All -Vol2

593

 tool is specified, DesignSync assumes the
 desired action is the update and does not
 prompt for tool in interactive mode.

-version

 -version Specify the version number of the tool suite if the
 <version> tool suite name is not unique within the
 development assignment. This option must be
 specified if there are multiple tools with the same
 name in multiple tool suites with the same name.

RETURN VALUE

 There is no TCL return value for this command.

SEE ALSO

 sda gui, sda join, sda ls, sda mk, sda rm

EXAMPLES

• Running sda cd in Interactive Mode
• Running sda cd in non-interactive mode

Running sda cd in Interactive Mode

 This example runs sda cd in interative mode, supplying no
 arguments. It is run from a Windows client and launches the
 DesignSync GUI which is configured as a tool for this development
 area.
 Note that the list of areas is prefixed with the development name for
 ease of idenfitication.

 C:\workspaces\chipNZ214> sda cd
 Logging to C:\Users\fyl\dss_11042013_100431.log
 V6R2014x

 Which development area would you like to work with?
 [1] (Chip-NZ214) documenter-1_rmsith
 [2] (Chip-QR2) verifier-1_thopkins
 [3] (Chip-NZ214) developer-1_rsmith
 [E] <EXIT sda>
 Select the number preceding the development area name or 'E' to exit
 [1-3,E]: 1

Enterprise Design Development

594

 Synchronizing the local development with the server ...
 Contacting host: serv1.ABCo.com:2164 ...
 Synchronization complete

 Which tool would you like to launch?
 [1] Authoring Tool
 [2] DesSync
 [E] <EXIT sda>
 Select the number preceding the tool name or 'E' to exit (1-2,E): 2

 c:\workspaces\chipNZ214>

Running sda cd in non-interactive mode

 This example specifies the area and tool and the -noupdate option.
 Note that it does not enter interactive mode, nor does it attempt to
 synchronize the development area. This example automatically
 launches the GUI tool, without requiring the -GUI option because of
 the way the tool is defined.

 C:\workspaces\chipNZ214> sda cd Chip-NZ214 DesSync -noupdate
 Logging to C:\Users\fyl\dss_11042013_103110.log
 V6R2014x
 [The DesignSync Development Area Manager launches in separate window]
 c:\workspaces\chipNZ214>

sda gui

sda gui Command

NAME

 sda gui - Start the sda area management graphical user
 interface

DESCRIPTION

 This command is used to start the graphical user interface
 sda tool. The sda GUI tool is a tabbed dialog based tool for
 development area management. When the GUI is opened from this
 command, it displays the most recently used tab.

 For information on using the sda GUI tool, see the Enterprise DesignSync
 Administration User's Guide

 Note: If you are running this from UNIX, you must use an environment that
 supports running graphical clients.

ENOVIA Synchronicity Command Reference All -Vol2

595

SYNOPSIS

 sda gui

RETURN VALUE

 This command has no TCL return value. If the GUI is unable to
 launch, the command returns an appropriate error message.

SEE ALSO

 sda cd, sda join, sda ls, sda mk, sda rm

EXAMPLES

• Starting sda GUI in the Background

Starting sda GUI in the Background

 This example starts the sda GUI as a background process on UNIX,
 leaving the terminal free to type additional commands if needed.

 > sda GUI &

sda join

sda join Command

NAME

 sda join - Allow the user to join an existing development
 area

DESCRIPTION

 This command allows the user to join an existing eligible shared
 area of a development. Eligible shared areas are located by
 finding the participating development servers, looking at the
 developments on those servers and identifying the shared areas that
 have a local path and have not already been joined. For information
 on defining a development server, see the DesignSync Data Manager
 Administrator's Guide.

Enterprise Design Development

596

 If you don't specify arguments to sda join, it starts in interactive
 mode, prompting you for any information needed that was not provided
 on the command line.

SYNOPSIS

 sda join [<area_name>] [-development <name>] [-gui]

ARGUMENTS

• Area Name

Area Name

 area_name The name of the DesignSync development area. The
 area must already exist. If the area is not
 provided, or cannot be uniquely identified from the
 name, you are prompted for the area name in
 interactive mode.

 If an invalid area is specified, and the -gui
 option is used, the GUI starts on the
 "Join Area" tab and allows you to select a
 valid Area.

OPTIONS

• -development
• -gui

-development

 -development Specify the development name if the area name is
 <name> not unique for the user. Area names are unique
 within a development for a given user, but are not
 required to be unique across all developments.

-gui

 -gui Starts the sda graphical user interface mode
 with the "Join Area" tab selected.

RETURN VALUE

ENOVIA Synchronicity Command Reference All -Vol2

597

 There is no TCL return value for this command. If the command fails,
 DesignSync returns an appropriate error.

SEE ALSO

 sda cd, sda gui, sda ls, sda mk, sda rm

EXAMPLES

sda ls

sda ls Command

NAME

 sda ls - List the areas or developments relevant to the
 user

DESCRIPTION

 This command lists the areas or developments that are currently
 active for the user, or registered with the development servers
 defined in SyncAdmin. For more information on defining development
 servers, see the DesignSync Data Manager Administrator's Guide.

SYNOPSIS

 sda ls [-area | -development] [-gui] [-noheader]
 [-report brief | normal | verbose]

OPTIONS

• -area
• -development
• -gui
• -noheader
• -report

-area

Enterprise Design Development

598

 -area Show all of the areas, sorted by name, that are
 currently active for the user.

-development

 -development Show all the developments available from the
 development servers associated with the
 distribution. Development servers are associated
 with a distribution using SyncAdmin.

-gui

 -gui Starts the sda graphical user interface mode
 with the "List Areas," or "List Developments" tab
 selected.

-noheader

 -noheader Specifies omitting column headers for the
 command line reports. This option is silently
 ignored when the -gui option is specified. If this
 option is not specified, the command line reports
 include column headers.

-report

 -report brief| Specifies the amount of output supplied by the
 normal|verbose command.
 When -area is specified:
 -report brief - lists area names.
 -report normal - lists the area name, development
 name, and assignment associated with the area.
 -report verbose - includes all the information
 from -report normal and the path to the area
 directory, development's local instance directory,
 and status (enabled, disabled, or deleted.)

 When -development is specified:
 -report brief - lists development names.
 -report normal - lists the development name and
 its supported assignments.
 -report verbose - includes all the information in
 -report normal and the data URL, selector,
 development path, server URL, and status
 (enabled, disabled, or deleted.)

ENOVIA Synchronicity Command Reference All -Vol2

599

RETURN VALUE

 This command does not return any TCL values. If the command succeeds,
 it displays the list of development areas. If the command fails, it
 fails with an appropriate error.

SEE ALSO

 sda cd, sda gui, sda join, sda mk, sda rm

EXAMPLES

• Example Showing the List of Development Areas

Example Showing the List of Development Areas

 This example shows a list of the defined development areas. Note that
 this command runs at the shell, not in the dss/stcl environment.

 $> sda ls
 Logging to /home/rsmith/dss_08112016_103913.log
 3DEXPERIENCER2021x

 Development Development Area Assignment
 ----------- ---------------- ----------
 ChipNZ214 documenter-1_rsmith QATester

sda rm

sda rm Command

NAME

 sda rm - Remove an existing development area and its
 contents

DESCRIPTION

 This command removes a development area from its development
 definition on the development server and attempts to remove the
 local development area directory. If the development area is a shared
 development area, only the last user to remove the development area
 is allowed to remove the local development area directory. The

Enterprise Design Development

600

 command does not remove any design data from the repository server.

 Invoking sda rm without any arguments, or with incomplete or
 ambiguous arguments, causes the command to enter the interactive
 mode. In interactive mode, the user is prompted for the command
 arguments and options needed and must confirm the answers.

 In interactive mode, orphaned development areas, development areas
 where a development instance can't be found; are displayed
 preceded with a "!" and shared development areas are displayed
 preceded with a "*".

 Any arguments specified with the -gui command option are passed to
 the GUI and the appropriate fields are pre-filled on the Remove Area
 tab. The GUI ignores the -noconfirm option if it is used.

SYNOPSIS

 sda rm [<area_name>] [-development <name>] [-gui] [-noconfirm]

OPTIONS

• -development
• -gui
• -noconfirm

-development

 -development Specify the development name if the area name is
 <name> not unique for the user. Area names are unique
 within a development for a given user, but are not
 required to be unique across all developments.

-gui

 -gui Starts the sda graphical user interface mode
 with the "Remove Area," tab selected.

-noconfirm

 -noconfirm By default, the removal requires confirmation. Use
 the -noconfirm option to perform the removal
 without confirmation.

 Note: The GUI interface always requires
 confirmation. If -noconfirm is specified with

ENOVIA Synchronicity Command Reference All -Vol2

601

 -gui, the -noconfirm option is silently ignored.

RETURN VALUE

 This command does not return any TCL values. The command output displays
 information about success or failure of the command and status messages.

SEE ALSO

 sda cd, sda gui, sda join, sda ls, sda mk

EXAMPLES

• Example Showing Removing a Development
• Example Showing Removing a Development in Interactive Mode

Example Showing Removing a Development

 $> sda rm nz8ChipDev
 ** You are removing both the development area definition and the
 development area directory. **
 Are you sure you want the remove development area 'nz8ChipDev' from
 development 'Chip-NZ8'? (y/n) [n]:y
 You have successfully removed development area 'nz8ChipDev' from
 development 'Chip-NZ8'.
 $>

Example Showing Removing a Development in Interactive Mode

 $> sda rm
 Which development area would you like to remove?
 [1] nz8ChipDev (Chip-NZ8)
 [2] nz8ChipDev (ROM-NZx)
 [3] Chip-QR2
 [4] ROM-NZx
 * Shared development area
 Select the number preceding the development area name (1-5):1

 ** You are removing both the development area definition and the
 directory. **
 Are you sure you want the remove development area 'nz8ChipDev' from
 development 'Chip-NZ8'? (y/n) [n]:y
 You have successfully removed development area 'nz8ChipDev' from
 development 'Chip-NZ8'.

Enterprise Design Development

602

Enterprise Object Viewing and Synchronization

entobj

entobj Command

NAME

 entobj - Commands to work with Enterprise Design Objects

DESCRIPTION

 These commands provide a link between the Enterprise Design Objects
 and associated DesignSync objects. These commands are available from
 the DesignSync client and the server.

 For information about the specific entobj commands including
 arguments, options, and examples to support Enterprise Design
 objects in DesignSync, see the individual command descriptions.

SYNOPSIS

 entobj <entobj_command> [entobj_command options>]

 Usage: entobj [id | isplatformmanaged | policy | setpolicy | settype
 | show | synchronize | type]

entobj id

entobj id Command

NAME

 entobj id - Returns the platform identifier

DESCRIPTION

 Returns the platform identifier for the object. The platform
 identifier is the unique string for the object on the Enterprise
 system that is associated with the DesignSync object.

 This command is subject to access controls on the server.

ENOVIA Synchronicity Command Reference All -Vol2

603

SYNOPSIS

 entobj id <argument>

ARGUMENTS

• Server URL

Server URL

 <serverURL> Specifies the URL of the module, module version,
 or module branch version.

 Note: To get the ID associated with a module
 branch, you must specify the branch numeric value.

 Specify the URL as
 follows:
 sync://<host>[:<port>]/Modules/[<category...>/]<module>;[<selector>]
 or
 syncs://<host>[:<port>]/Modules/[<category...>/]<module>;[<selector>]
 where 'sync://' or 'syncs://' is required, <host>
 is the machine on which the SyncServer is
 installed, <port> is the SyncServer port number
 (defaults to 2647/2679), [<category...>} is the
 optional category (and/or sub-category) containing
 the module, and <module> is the name of the
 module. For example:
 sync://serv1.abco.com:1024/Modules/ChipDesigns/Chip

 Note: When a selector is not provided, the
 default, Trunk:Latest, is used.

 To get the ID associated with a module branch, you
 must specify the branch numeric value.

RETURN VALUE

 Returns the unique identifier for the object. If an argument is
 specified that doesn't have an ID or is not a module, returns an empty
 value ("").

SEE ALSO

 entobj isplatformmanaged, entobj show

EXAMPLES

Enterprise Design Development

604

• Example of a request for the id

Example of a request for the id

 This example shows the ID for the Enterprise Design managed
 DesignSync object.

 dss> entobj id sync://serv1.ABCo.com:2647/Modules/CPU
 2341B75697660000EBA9F35673620700

entobj isplatformmanaged

entobj isplatformmanaged Command

NAME

 entobj isplatformmanaged - Retuns whether the object is managed by
 the enterprise system.

DESCRIPTION

 This command tells you if the DesignSync object is managed by the
 Enterprise Design system; meaning that the object was created as a
 result of pushing a definition down from the Enterprise Design
 system, rather than being reflected from DesignSync to the system.

 This command is subject to access controls on the server.

SYNOPSIS

 entobj isplatformmanaged <argument>

ARGUMENTS

• Server URL

Server URL

 <serverURL> Specifies the URL of the module, module version,
 or module branch version.

 Specify the URL as follows:
 sync://<host>[:<port>]/Modules/[<category...>/]<module>;[<selector>]
 or
 syncs://<host>[:<port>]/Modules/[<category...>/]<module>;[<selector>]
 where 'sync://' or 'syncs://' is required, <host>

ENOVIA Synchronicity Command Reference All -Vol2

605

 is the machine on which the SyncServer is
 installed, <port> is the SyncServer port number
 (defaults to 2647/2679), [<category...>} is the
 optional category (and/or sub-category) containing
 the module, and <module> is the name of the
 module. For example:
 sync://serv1.abco.com:1024/Modules/ChipDesigns/Chip

 Note: When a selector is not provided, the
 default, Trunk:Latest, is used.

RETURN VALUE

 Command returns "1" if the object is managed from the platform or "0"
 if the object is not managed from the platform. Command returns an
 empty string (""), if an illegal argument was provided to the command.

SEE ALSO

 entobj id, entobj show

EXAMPLES

• Example Showing That an Object is Managed from the Enterprise System
• Example Showing That an Object is Not Managed by the Enterprise System

Example Showing That an Object is Managed from the Enterprise System

 This example shows the reply from the system when an object is
 managed from the Enterprise System.

 dss> entobj isplatformmanaged sync://serv1.ABCo.com/Modules/CPU;Gold
 1

Example Showing That an Object is Not Managed by the Enterprise System

 This example shows the reply from the system when an object is
 not managed by the Enterprise System.

 dss> entobj isplatformmanaged sync://serv1.ABCo.com/Modules/ROM;Gold
 0

entobj policy

entobj policy Command

Enterprise Design Development

606

NAME

 entobj policy - Displays the assigned policy for the module

DESCRIPTION

 This command displays the policy for the module. If there is no
 policy set for the module, the command returns a null value ("").

 This command is subject to access controls on the server.

SYNOPSIS

 entobj policy <module>

ARGUMENTS

• Module instance
• Server URL

Module instance

 <Workspace Module> The workspace module instance name; for example:
 Chip%0.

Server URL

 <Server URL> The Server module URL in the format:
 sync[s]://<host>[:<port>]/Module/[<category>...]/<ModuleName>
 where <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 <category> identifies path to the module, and
 <ModuleName> is the module associated with the
 Enterprise Design object.

RETURN VALUE

 This command does not return any TCL values. When successful, this
 command returns the policy name or, if no policy is assigned, an
 empty string (""). If the command fails, DesignSync displays an error
 message explaining the failure.

ENOVIA Synchronicity Command Reference All -Vol2

607

SEE ALSO

 entobj setpolicy
,

EXAMPLES

• Example of Showing the Set Policy

Example of Showing the Set Policy

 dss> entobj setpolicy sync://serv2.ABCo.com:2647/Modules/ChipDZ
 QualityTest

entobj setpolicy

entobj setpolicy Command

NAME

 entobj setpolicy - Set or remove the policy for a module.

DESCRIPTION

 This command assigns or removes a product policy for a module. The
 policy is used on the Enterprise platform. DesignSync does not
 perform any validation on the policy to determine if the policy is in
 use on the Enterprise platform. The policy is case-sensitive.

 Tip: Before applying a new policy, synchronize the module to verify
 that the module has the latest information from the platform. If the
 product ID has changed since the last synchronization, you cannot
 set the policy.

 The policy set by this command is synchronized with the object on the
 enterprise server when the next automatic or manual synchronization
 is performed.

 This command is subject to access controls on the server.

SYNOPSIS

 entobj setpolicy <module> <policy>

ARGUMENTS

Enterprise Design Development

608

• Module instance
• Server URL

Module instance

 <Workspace Module> The workspace module instance name; for example:
 Chip%0.

Server URL

 <Server URL> The Server module URL in the format:
 sync[s]://<host>[:<port>]/Module/[<category>...]/<ModuleName>
 where <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 <category> identifies path to the module, and
 <ModuleName> is the module associated with the
 Enterprise Design object.

OPTIONS

 <policy> Policy for the Enterprise development. The
 policy is case-sensitive, and in order to be used
 must be identify toe the policy on the Enterprise
 system.

 The entobj setpolicy command does not perform any
 validation on the policy name.

RETURN VALUE

 If this command is successful, it returns a null string (""). If the
 command is unsuccessful, it returns an appropriate error explaining
 the failure.

SEE ALSO

 entobj policy, entobj settype, entobj synchronize, entobj type

EXAMPLES

• Example of Setting the Policy on Enterprise Development Module
• Example of Removing the Policy on an Enterprise Development Module

Example of Setting the Policy on Enterprise Development Module

ENOVIA Synchronicity Command Reference All -Vol2

609

 This example shows setting the policy for an enterprise development
 module.

 dss> entobj setpolicy sync://serv2.ABCo.com:2647/Modules/ChipDZ \
 QualityTest

Example of Removing the Policy on an Enterprise Development Module

 This example shows removing the policy for an enterprise development
 module.
 dss> entobj setpolicy sync://serv2.ABCo.com:2647/Modules/ChipDZ \
 ""

entobj settype

entobj settype Command

NAME

 entobj settype - Set the product type for the module.

DESCRIPTION

 This commands sets or removes the product type for the module. The
 product type should match either the user-friendly form of a product
 type or the symbolic form (for example: "Software Product" or
 "type_SoftwareProduct") in use on the enterprise platform.

 The product type is case sensitive.

 Tip: Before applying a new product type, synchronize the module to
 verify that the module has the latest information from the platform.
 If the product ID has changed since the last synchronization, you
 cannot change the product type.

 The product type set by this command is synchronized with the object
 on the enterprise server when the next automatic or manual
 synchronization is performed.

 This command is subject to access controls on the server.

SYNOPSIS

 entobj settype <module> <productType>

ARGUMENTS

Enterprise Design Development

610

• Module instance
• Server URL

Module instance

 <Workspace Module> The workspace module instance name; for example:
 Chip%0.

Server URL

 <Server URL> The Server module URL in the format:
 sync[s]://<host>[:<port>]/Module/[<category>...]/<ModuleName>
 where <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 <category> identifies path to the module, and
 <ModuleName> is the module associated with the
 Enterprise Design object.

OPTIONS

 <productType> The name of the product type. The product type is
 case-sensitive. The product type can be specified
 either in a user-friendly form, such as "Software
 Product" or in a symbolic form, such as
 "type_SoftwareProduct".

 To clear, or remove an associated productType,
 specify a null string, for example, "".

RETURN VALUE

 If this command is successful, it returns a null string (""). If the
 command is unsuccessful, it returns an appropriate error explaining
 the failure.

SEE ALSO

 entobj synchronize, entobj policy, entobj setpolicy, entobj type

EXAMPLES

• Example of Setting the Product Type on Enterprise Development Module
• Example of Removing the Type from an Enterprise Development Module

Example of Setting the Product Type on Enterprise Development Module

ENOVIA Synchronicity Command Reference All -Vol2

611

 This example shows setting the product type for an enterprise
 development module.

 dss> entobj settype sync://serv2.ABCo.com:2647/Modules/ChipDZ \
 "Chip Design DZ-2"

Example of Removing the Type from an Enterprise Development Module

 This example shows removing the product type for an enterprise
 development module.
 dss> entobj settype sync://serv2.ABCo.com:2647/Modules/ChipDZ \
 ""

entobject show

entobj show Command

NAME

 entobj show - Show the associated enterprise server object
 revisions

DESCRIPTION

 This command shows the object revisions on an Enterprise
 server associated with a DesignSync module object using the default
 web browser.

 For a module version or branch that has been synchronized with an
 Enterprise object, this command shows the Property page for that
 object in the Enterprise system.

 For a workspace module instance, or a module version or branch that
 has not been synchronized, this command attempt to find Enterprise
 objects associated with that module version, branch, or selector and
 display the results in a table.

 The ENOVIA server information is stored in SyncAdmin in the Site
 settings, "Enterprise Servers" tab. For more information on
 defining the ENOVIA server, see the DesignSync Data Manager
 Administrator's Guide.

 The ENOVIA object must have a defined DSFA connection to the
 module object in DesignSync.

 This command supports access controls.

Enterprise Design Development

612

SYNOPSIS

 entobj show [-branch <selector>] [-version <selector>] <module>

ARGUMENTS

• Module instance
• Server URL

Module instance

 <Workspace Module> The workspace module instance name; for example:
 Chip%0.

Server URL

 <Server URL> The Server module URL in the format:
 sync[s]://<host>[:<port>]/Module/[<category>...]/<ModuleName>
 where <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 <category> identifies path to the module, and
 <ModuleName> is the module associated with the
 Enterprise Design object.

OPTIONS

• -branch
• -version

-branch

 -branch <selector> Specifies the branch by the branch or version
 tag, or branch numeric.

 For a workspace module, if no -branch or
 -version option is specified, a combination of
 the fetched version and selector are used to
 find matching objects in the Enterprise
 system.

 For a Server URL, either a -branch or a
 -version option must be specified.

 Note: The -branch option accepts a single
 branch tag, a single version tag, or a branch
 numeric. It does not accept a selector or

ENOVIA Synchronicity Command Reference All -Vol2

613

 selector list.

-version

 -version Specifies the version of a module associated with
 <selector> the Enterprise Design objects.

 For a workspace module, if no -version option is
 selected, DesignSync uses the version fetched in
 the workspace and the module selector to identify
 the matching objects in the Enterprise system.

 For a server URL, you must specify either the
 -version or -branch options.

 You may specify any valid single selector. Note:
 You may specify a branch or version that is not
 among the ancestors of the branch loaded into the
 workspace; meaning you can unremove objects to
 check into the local workspace branch that were
 previously not present on the branch.

RETURN VALUE

 This command has no TCL return value. The command launches the
 default web browser to display the information returned.

SEE ALSO

 entobj synchronize, populate

entobject synchronize

entobj synchronize Command

NAME

 entobj synchronize - Synchronize Enterprise Design Objects and
 DesignSync module versions and branches.

DESCRIPTION

 This command synchronizes the version and hierarchy information for a
 DesignSync module with the corresponding Enterprise Design
 representation.

Enterprise Design Development

614

 During synchronization, DesignSync validates ProductType and Policy,
 which are sent to the server in symbolic form (for example,
 "type_SoftwareProduct").

 This command supports command defaults options.

 This command is subject to access controls on the server.

SYNOPSIS

 entobj synchronize [-depth all|one|none] [-dryrun]
 [-report brief|normal|verbose] -tags <taglist> -xtras <list> <module>

ARGUMENTS

• Server URL
• Workspace Module

Server URL

 serverURL Specifies the URL of the module. Specify the URL as
 follows:
 sync://<host>[:<port>]/Modules/[<category...>/]<module>
 or
 syncs://<host>[:<port>]/Modules/[<category...>/]<module>
 where 'sync://' or 'syncs://'
 is required, <host> is the machine on which the
 SyncServer is installed, <port> is the SyncServer
 port number (defaults to 2647/2679), [<category...>}
 is the optional category (and/or sub-category)
 containing the module, and <module> is the name of
 the module.
 For example:
 sync://serv1.abco.com:1024/Modules/ChipDesigns/Chip

Workspace Module

 <workspace Specifies the workspace module instance for the module;
 module> for example: Chip%0.

OPTIONS

• -depth
• -dryrun
• -report
• -tags

ENOVIA Synchronicity Command Reference All -Vol2

615

• -xtras

-depth

 -depth all| Indicates how many levels of the module hierarchy to
 one|none send to the remote server hosting the associated
 Enterprise Design system.

 all - Synchronizes recursively through the entire
 hierarchy for each module version identified by each
 tag in the taglist specified with the -tags
 option. This option provides the most complete update
 to the server, but can be performance
 intensive. Hierarchical references to non-module
 objects are considered "leaf" objects and DesignSync
 does not attempt to continue traversal through that
 object or configuration.

 Hierarchical references to external modules are
 updated with the options specified with -xtras being
 passed, unaltered to the external CM system.

 one - Synchronizes the first level of the module
 hierarchy. For each module version identified by the
 tag list specified by the -tags option, follow the
 hierarchical references attached to that version, but
 do not traverse the hierarchy. This option minimizes
 the risk of an out-of-date hierarchy without the
 performance impact of updating the entire
 hierarchy. (Default)

 none - Synchronizes only the specified module
 version identified by the tag list specified by the
 -tags option; does not synchronize any hierarchical
 references. This may result in an incomplete
 hierarchy on the server.

-dryrun

 -dryrun Only reports the actions performed by the command,
 but does not actually perform any action. The command
 runs to completion, noting any errors, but continuing
 to run the command.

-report

 -report brief| Determines what information is returned in the
 normal |verbose output of the command. The command output is returned
 after the command has finished processing.

 Valid values are:

Enterprise Design Development

616

 o brief - outputs the status of the running command,
 command results, and errors.

 o normal - outputs the information contained in
 -brief mode and information about the enterprise
 versions being created. (Default),

 o verbose - There is currently no difference between
 the verbose and normal reports.

 Note: The report information is also passed to the
 ENOVIA server.

-tags

 -tags <taglist> Specifies which tagged versions are processed by the
 command. The tags are specified in a comma-separated
 list. Tags may be either branch or version tags.
 Branch tags do not require a trailing semicolon. If a
 branch tag is specified, it is the branch itself that
 is specified as the work-in-progress revision.

 You may use glob style regular expressions to specify
 a tag. All tags that match the specified tag
 expression are processed. For example, R* would match
 both of the following tags: REL01 and
 READY_FOR_TEST.

 If there is no match for one or more glob style tag
 specified in the tag list, but all fully-specified
 tags exist, the command succeeds. If any
 fully-specified tag (ie: not containing a glob
 expression to be evaluated) does not exist, the
 entire command fails.

-xtras

 -xtras <list> List of command line options to pass to the
 external module change management system. Any
 options specified with the -xtras option are
 sent verbatim, with no processing by the
 populate command, to the TCL script that defines
 the external module change management
 system.

 Note: The external modules system is only
 accessed when the specified -depth option is
 all. If this option is specified with a
 different -depth level, it is silently ignored.

ENOVIA Synchronicity Command Reference All -Vol2

617

RETURN VALUE

 This command does not return any TCL values. If the command
 succeeds, after command completion, DesignSync displays the values of
 all set fields for the synchronized products. If the command fails,
 it returns an error message explaining the failure.

SEE ALSO

 command defaults, entobj setpolicy, entobj settype, entobj show,
 populate, selectors, tag

entobj type

entobj type Command

NAME

 entobj type - Displays the product type for the module

DESCRIPTION

 This command displays the product type for the module. If there is
 no product type set for the module, the command returns a null value
 ("").

 This command is subject to access controls on the server.

SYNOPSIS

 entobj type <module>

ARGUMENTS

• Module instance
• Server URL

Module instance

 <Workspace Module> The workspace module instance name; for example:
 Chip%0.

Server URL

Enterprise Design Development

618

 <Server URL> The Server module URL in the format:
 sync[s]://<host>[:<port>]/Module/[<category>...]/<ModuleName>
 where <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 <category> identifies path to the module, and
 <ModuleName> is the module associated with the
 Enterprise Design object.

RETURN VALUE

 This command does not return any TCL values. When successful, this
 command returns the product type or, if no product type is assigned,
 an empty string (""). If the command fails, DesignSync displays an
 error message explaining the failure.

SEE ALSO

 entobj policy, entobj setpolicy, entobj settype, entobj synchronize
,

EXAMPLES

• Example of Showing the Product Type

Example of Showing the Product Type

 dss> entobj type sync://serv2.ABCo.com:2647/Modules/ChipDZ
 type_Chip_ Design_DZ-2

Mcache Settings for Shared Developments

eda

eda Command

NAME

 eda - Development module cache paths commands

DESCRIPTION

 The eda commands allow you to manage your DesignSync development
 module cache paths to share common modules, rather than duplicate the
 information across multiple developments. These commands allow you to
 add, remove and list additional module cache paths.

ENOVIA Synchronicity Command Reference All -Vol2

619

SYNOPSIS

 eda <eda_command> [<eda_command_options>] <eda_command_arguments>

 Usage: [addmcachepath|createrefws|listmcachepath|removemcachepath]

ARGUMENTS

 Varies by command.

OPTIONS

 Varies by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 eda addmcachepath, eda createrefws, eda listmcachepath, eda
removemcachepath, sda

eda addmcachepath

eda addmcachepath Command

NAME

 eda addmcachepath - Adds mcachepath to available server mcache paths

DESCRIPTION

 The command adds the specified path to the set of additional module
 cache paths for the server specified. The path is also added to the
 list in the WSProjectRegistry.reg settings files for each development
 managed by the server.

 The mcache path is checked to see if
 o The path exists
 o The path specified is a modules root

 New developments inherit any existing additional mcache paths.

Enterprise Design Development

620

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 eda addmcachepath -path <path>[,<path>...] [-[no]replace]
 [-[no]validate] <ServerURL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the development server hosting
 the newly added mcache paths. Specify the URL as
 follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 is required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -path
• -[no]replace
• -[no]validate

-path

 -path <path> Absolute or relative path to the mcache path.
 [,<path>...] You can specify multiple paths in a list of
 space-separated path names. To specify multiple
 paths, surround the path list with double
 quotation marks ("") and separate path names
 with a comma.
 For example:"/dir/cacheA,/dir2/cacheB".

 The path list can contain both module and legacy
 module mcache paths. For a module cache the path to
 the root directory of the module cache must be
 supplied.
 Note: To specify a path that includes spaces:
 o In stcl or stclc, surround the path
 containing the spaces with curly braces.

ENOVIA Synchronicity Command Reference All -Vol2

621

 For example:
 "/dir1/cache {/dir2/path name}"
 o In dss or dssc, use backslashes (\) to
 'escape' the spaces. For example:
 "/dir1/cache /dir2/path\ with\ spaces"

-[no]replace

 -[no]replace Determines whether to replace the mcache path
 information with the new mcachepaths specified by the
 -path option.

 -replace replaces the list of mcache paths for the
 server with the new list specified for the -path
 option.

 -noreplace adds the paths specified with -paths and
 does not remove any existing paths. (Default)

-[no]validate

 -[no]validate Determines whether to validate the accessibility of
 the mcache path specified on the server.

 -validate checks whether the path specified by the
 -path option exists and is a modules root.

 -novalidate does not do any verification of paths
 specified with the -path option. (Default)

RETURN VALUE

 On command success, returns the list of defined mcache paths. On
 failure, displays an error message explaining the failure.

SEE ALSO

 command defaults, eda listmcachepath, eda removemcachepath

EXAMPLES

• Example Showing Adding Paths to the Mcache Path List
• Example Showing Replacing the Paths in the Mcache Path List

Example Showing Adding Paths to the Mcache Path List

Enterprise Design Development

622

 This example shows adding a path to the mcachepath list. Note that
 in the output, you see the full collection of paths, separated by a
 space. The path must be a module root.

 dss> eda addmcachepath -path /home/rsmith/workspaces/ -validate
 sync://serv1.ABCo.com:2647/Modules/ChipNZ-47

 /DesignSync/mcachestore /home/rsmith/workspaces

Example Showing Replacing the Paths in the Mcache Path List

 This example shows replacing the paths in the mcache path list with
 the path(s) specified.

 dss> eda addmcachepath -path "/home/mcachestore1,/home/mcachestore2"
 -validate -replace sync://serv1.ABCo.com:2647/ModulesChipNZ-47

 /home/mcachestore1 /homemcachestore2

eda createrefws

eda createrefws Command

NAME

 eda createrefws - Create reference workspace for development

DESCRIPTION

 The eda createrefws command creates a reference workspace used by sda
 mk for enhanced performance when creating a new development area. The
 reference workspace is created as a mirror so is automatically
 maintained for the most current and accurate workspace state.

 Before creating the reference workspace, DesignSync verifies that:
 o The reference workspace directory does not already exist
 parallel to the Data Replication Root (DRR) for the development
 instance. If it already exists, and is marked as a reference
 workspace, the operation returns success, but does not make any
 changes.

 o If a reference workspace exists, it must either be the workspace
 root directory or can be set as the module root directory.

 o File cache reference counting is disabled so the reference
 workspace is created without cache reference counting.

 o Partition based file caching must be disabled so soft links,

ENOVIA Synchronicity Command Reference All -Vol2

623

 rather than hard links are created to the file cache.

 This command supports the access control system.

SYNOPSIS

 eda createrefws [-assignment <AssignmentName>] -name <DevName> <ServerUrl>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the development server Specify
 the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 is required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -assignment
• -name

-assignment

 [-assignment The name of the assignment used for the reference
 <AssignmentName>] workspace mirror. Specify the same assignment as the one
 associated with the development area.

 If the assignment is not specified, DesignSync
 uses the first assignment found.

 If the selector for the assignment is "Default,"
 then the developmentâ€™s selector is used for the
 mirror. If no selector is provided in the assignment
 or the development instance, DesignSync uses the
 default "Trunk" selector.

-name

 -name <DevName> Name of the development. Development names are

Enterprise Design Development

624

 case sensitive.

RETURN VALUE

 The command does not return a Tcl value. If the command succeeds,
 DesignSync creates the reference workspace and displays a success
 message containing some of the reference workspace properties. If the
 command fails, DesignSync displays a message to explain the failure.

SEE ALSO

 duplicatews, mirror create, sda mk
,

eda listmcachepath

eda listmcachepath Command

NAME

 eda listmcachepath - Lists mcachepath to available server mcache paths

DESCRIPTION

 This command returns a list of the additional mcachepaths defined for
 the specified server. If no mcachepaths are defined, the command
 returns an empty list.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 eda listmcachepath [-format list|text] <ServerURL>

ARGUMENTS

• Server URL

Server URL

ENOVIA Synchronicity Command Reference All -Vol2

625

 <ServerURL> Specifies the URL of the development server hosting
 the mcache directories. Specify the URL as
 follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 is required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -format

-format

 -format Specifies the way the output is returned.
 The default is text. The format 'text' will return
 each path on a new line in the format name=value. The
 format 'list' will list the values in a Tcl list in
 the form {name1 value1 name2 value2 ...}

RETURN VALUE

 When the command runs successfully in -format list mode, returns a
 Tcl list of mcachepaths defined for the specified server. When the
 command runs successfully in -format text mode, returns a list of
 paths. When the command fails, returns an error explaining the
 failure.

SEE ALSO

 command defaults, eda addmcachepath, eda removemcachepath

EXAMPLES

• Example Showing A List of the Mcache Paths in Text Format
• Example Showing A List of the Mcache Paths in TCL List Format

Example Showing A List of the Mcache Paths in Text Format

 This example shows a listing of the additional mcache paths formatted
 for easy reading.

 dss> eda listmcachepath sync://serv1.ABCo.com:2647/Modules/ChipNZ-47
 /DesignSync/mcachestore
 /home/rsmith/workspaces
 C:/My Mirrors/workspaces

Enterprise Design Development

626

Example Showing A List of the Mcache Paths in TCL List Format

 This example shows a listing of the additional mcache paths formatted
 for TCL processing.
 dss> eda listmcachepath -format list \
 sync://serv1.ABCo.com:2647/Modules/ChipNZ-47

 /DesignSync/mcachestore /home/rsmith/workspaces {C:/My Mirrors/workspaces}

eda removemcachepath

eda removemcachepath Command

NAME

 eda removemcachepath - Removes mcachepaths from the specified server

DESCRIPTION

 This command removes a path from the set of additional module
 cache paths for the development server specified. The path is also
 removed from the list in the registry setting in
 WSProjectRegistry.reg for each development managed by the server.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 eda removemcachepath -path <path> <ServerURL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the development server hosting
 the mcache paths being removed. Specify the URL as
 follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 is required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).

ENOVIA Synchronicity Command Reference All -Vol2

627

 For example: sync://serv1.abco.com:1024

OPTIONS

• -path

-path

 -path <path> Absolute or relative path to the mcache path.
 If the relative path is specified, the path is
 evaluated to create the absolute path before being
 removed.

 You can only remove one path.

RETURN VALUE

 Returns 0 on success. On failure, displays an error message
 explaining the failure.

SEE ALSO

 eda addmcachepath, eda listmcachepath

EXAMPLES

• Example of Removing a Path from the Mcache Path list

Example of Removing a Path from the Mcache Path list

 This example shows removing a path from the additional list of mcache
 paths.
 dss> eda removemcachepath -path "C:/My Mirrors/workspaces" \
 sync://serv1.ABCo.com:2647/Modules/ChipNZ-47
 /DesignSync/mcachestore /home/rsmith/workspaces

629

URL Sync Object Model

url Commands

NAME

url - URL navigation commands

DESCRIPTION

 These commands return a value, enabling the user to access the
 Synchronicity Object Model (SOM) of information. This includes
 going from folders to files, from files to their vaults, from
 vaults to the versions inside them, and so on. All commands are
 proceeded by the super command "url".

 Note: url commands provide information about files and folders
 in your DesignSync work areas. Do not use these commands
 to obtain information about local mirror directories.
 You can use these commands to obtain information about all
 standard mirror directories.

 Most url commands accept either relative or absolute URL paths.
 For example, both of the following are valid:

 stcl> url vault . # relative
 stcl> url vault [spwd] # absolute

 The following commands require an absolute path:
 url projects, url users

 Note: The url commands are available from all DesignSync client
 shells. The stclc/tcl shells allow you to operate on the
 values returned by the url commands but the dss/dssc shells
 do not. Thus these commands are more useful in stcl/tcl
 than in dss/dssc.

SYNOPSIS

 url <url_command> [<url_command_options>] <object>

 Usage: url [branchid|configs|container|contents|exist|fetchedstate|
 fetchtime|filter|getprop|inconflict|leaf|locktime|members|
 mirror|modified|naturalpath|notes|owner|path|projects|
 properties|registered|relations|resolveancestor|
 resolvetag|retired|root|selector|servers|setprop|syslock|

URL Sync Object Model

630

 tags|users|vault|versionid|versions|view]

OPTIONS

 Varies by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 stcl

EXAMPLES

 See specific url commands.

url

url Commands

NAME

url - URL navigation commands

DESCRIPTION

 These commands return a value, enabling the user to access the
 Synchronicity Object Model (SOM) of information. This includes
 going from folders to files, from files to their vaults, from
 vaults to the versions inside them, and so on. All commands are
 proceeded by the super command "url".

 Note: url commands provide information about files and folders
 in your DesignSync work areas. Do not use these commands
 to obtain information about local mirror directories.
 You can use these commands to obtain information about all
 standard mirror directories.

ENOVIA Synchronicity Command Reference All -Vol2

631

 Most url commands accept either relative or absolute URL paths.
 For example, both of the following are valid:

 stcl> url vault . # relative
 stcl> url vault [spwd] # absolute

 The following commands require an absolute path:
 url projects, url users

 Note: The url commands are available from all DesignSync client
 shells. The stclc/tcl shells allow you to operate on the
 values returned by the url commands but the dss/dssc shells
 do not. Thus these commands are more useful in stcl/tcl
 than in dss/dssc.

SYNOPSIS

 url <url_command> [<url_command_options>] <object>

 Usage: url [branchid|configs|container|contents|exist|fetchedstate|
 fetchtime|filter|getprop|inconflict|leaf|locktime|members|
 mirror|modified|naturalpath|notes|owner|path|projects|
 properties|registered|relations|resolveancestor|
 resolvetag|retired|root|selector|servers|setprop|syslock|
 tags|users|vault|versionid|versions|view]

OPTIONS

 Varies by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 stcl

EXAMPLES

 See specific url commands.

URL Sync Object Model

632

url branchid

url branchid Command

NAME

 url branchid - Returns the branch number of an object.

DESCRIPTION

 This command returns the branch number of the specified object.

o For managed objects, the url branchid command returns the current
 branch number (as stored in the local metadata).
o For branch and version objects, the url branch id command returns
 the branch number.
o For vaults and for versionable objects that are not under revision
 control, the url branch id command returns "1", (because 1 is the
 default branch number).
o For all other object types, or if the specified object does not
 exist, an exception is thrown.

SYNOPSIS

 url branchid [--] <argument>

ARGUMENTS

• Module Member (Module-based)
• Workspace Module (Module-based)
• DesignSync Object (File-based)

Specifies one of the following arguments:

Module Member (Module-based)

 <module member> Specifies the module member for which you want
 the branch id of the module it belongs to.
 You can also specify the module member branch
 or the module member version as arguments.

Workspace Module (Module-based)

ENOVIA Synchronicity Command Reference All -Vol2

633

 <workspace module> Specifies the workspace module for which you want
 the current branch is.

 Note: The server module is not a valid argument
 for this command.

DesignSync Object (File-based)

 <DesignSync object> Specifies the DesignSync object for which you
 want the current branch number as stored in the
 metadata.

OPTIONS

• --

--

 -- Indicates that the command should stop looking
 for command options. Use this option when the
 argument to the command begins with a hyphen
 (-).

RETURN VALUE

 For valid objects, returns the branch number of the specified
 object. For objects not under revision control, returns 1 (which is
 identifer for the default branch, "Trunk:".

 For invalid or non-existant objects, returns an error.

SEE ALSO

 url versionid

EXAMPLES

• Examples of Displaying Branch ID (Module-based)
• Examples of Displaying the Branch ID (File-based)

 The following examples show the different return values for

URL Sync Object Model

634

 the url branchid command.

 For unmanaged objects and vaults, returns "1":
 stcl> url branchid test.s19
 1
 stcl> url branchid [url vault samp.asm]
 1

 For invalid arguments or if the object does not exist,
 returns the following error messages.
 stcl> url branchid .
 SomAPI-E-101: The specified object is not associated with a branch
 or version.
 stcl> url branchid [url vault .]
 SomAPI-E-101: The specified object is not associated with a branch
 or version.
 stcl> url branchid nosuchobject
 SomAPI-E-101: Object does not exist at specified URL.

Examples of Displaying Branch ID (Module-based)

 For modules, returns the branchid of the module in your workspace
 stcl> url branchid Mod1
 1.3.1

 For module members, returns the branch id of the module it belongs
 to.
 stcl> url branchid File1.txt
 1.1.1

Examples of Displaying the Branch ID (File-based)

 stcl> ls -report RH samp.asm samp.lst test.mem test.s19
 Version Branch Tags Name
 ------- ----------- ----
 1.2 Trunk samp.asm
 1.1 -> 1.2 Trunk samp.lst
 1.2.1.2 rel1.2 test.mem
 Unmanaged test.s19

 For local managed objects, returns the current branch number:
 stcl> url branchid samp.asm
 1
 stcl> url branchid samp.lst
 1
 stcl> url branchid test.mem
 1.2.1

 For versions and branches, returns the branch number:
 stcl> url branchid [url vault test.mem]1.2.1
 1.2.1
 stcl> url branchid [url vault test.mem]1.2.1.2

ENOVIA Synchronicity Command Reference All -Vol2

635

 1.2.1

url configs

url configs Command

NAME

 url configs - Returns the configurations of a ProjectSync project

DESCRIPTION

 This command returns the list of configurations for a
 ProjectSync-defined project. The project and associated
 configurations must be defined from ProjectSync -- see the
 ProjectSync User's Guide for more information. You can use this
 command in conjunction with 'url contents' to see the
 DesignSync-tagged versions that are associated with a
 ProjectSync-defined configuration.

 The specified object can be a project's vault folder or a
 corresponding local working folder. Any other object type
 results in an empty list.

SYNOPSIS

 url configs [--] <argument>

ARGUMENTS

• Workspace Folder
• Server Folder

 Specifies one or more of the following arguments:

Workspace Folder

 <DesignSync folder> Specifies the workspace folder of a project for
 which you want a list of configurations.

URL Sync Object Model

636

Server Folder

 <server folder> Specifies the vault folder of a project for
 which you want a list of configurations.

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-).

RETURN VALUE

 For valid objects, returns list of configurations.

 For other objects: Returns an empty list.

SEE ALSO

 url contents

EXAMPLES

 This example returns the ProjectSync-defined configurations for the
 Sportster project, first by specifying the project folder on the
 SyncServer, then the corresponding local folder. Sportster has two
 configurations: Alpha and Gold.

 dss> url configs sync://holzt:2647/Projects/Sportster
 sync://holzt:2647/Projects/Sportster@Alpha
 sync://holzt:2647/Projects/Sportster@Gold
 dss> url configs /home/goss/Projects/Sportster
 sync://holzt:2647/Projects/Sportster@Alpha
 sync://holzt:2647/Projects/Sportster@Gold

 You can then use 'url contents' to see what DesignSync-tagged
 versions correspond to a project configuration. Note that 'url
 contents' is not recursive -- see the help for 'url contents' for
 details. In this example, the Alpha configuration has one subfolder
 (code) associated with the configuration, which contains two versions

ENOVIA Synchronicity Command Reference All -Vol2

637

 that were tagged with the DesignSync tag associated with the
 ProjectSync Alpha configuration.

 dss> url contents sync://holzt:2647/Projects/Sportster@Alpha
 sync://holzt:2647/Projects/Sportster/code@Alpha
 dss> url contents sync://holzt:2647/Projects/Sportster/code@Alpha
 sync://holzt:2647/Projects/Sportster/code/samp.lst;1.1
 sync://holzt:2647/Projects/Sportster/code/samp.mem;1.1

url container

url container Command

NAME

 url container - Returns the object containing a specified
 object

DESCRIPTION

 This command returns the URL of the object (such as a folder)
 containing the specified object (such as a file).

 Note: In stcl/stclc mode, when specifying a URL that contains a
 semicolon (;), surround the URL with double quotes.

SYNOPSIS

 url container [--] <object>

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-).

RETURN VALUE

URL Sync Object Model

638

 For a client-side versionable objects, returns client-side
 folder. For server-side objects, returns the vault folder. For
 projects, returns the vault folder containing the project. For
 server-side note types, returns parent URL. For server-side notes,
 returns the note type URL.

 For other objects: Returns parent folder, or if no parent folder,
 returns an empty list. Note: 'url container' does not verify that
 the object exists.

SEE ALSO

 url contents

EXAMPLES

• Example Returning the Local Folder that Contains the Object
• Example Returning the Server Folder that Contains the Object

Example Returning the Local Folder that Contains the Object

 This example returns the folder that contains top.v.
 dss> url container top.v
 file:///home/Projects/Sportster/synth

Example Returning the Server Folder that Contains the Object

 This example returns the server folder that contains the top.v
 vault.
 stcl> url container [url vault top.v]
 sync://server.company.com:port/Projects/Sportster/synth

url contents

url contents Command

NAME

 url contents - Returns the objects in a container object

DESCRIPTION

• Notes for Modules (Module-based)

ENOVIA Synchronicity Command Reference All -Vol2

639

 This command returns a list of URLs of the objects contained in the
 specified container object, such as a folder or configuration. If
 the object is not appropriate for the requested operation, an empty
 list is returned.

 The 'url contents' command is not recursive. For example, 'url
 contents' on a ProjectSync configuration always returns folders
 as part of the configuration. You can then invoke 'url contents'
 on each subfolder in the project.

 Note: In stcl/stclc mode, when specifying a URL that contains a
 semicolon (;), surround the URL with double quotes.

Notes for Modules (Module-based)

 The "url content" command shows the contents of a module folder, but
 is not used for examining the contents of a module and therefore does
 not accept module as a valid argument type. Use "ls" and "contents"
 commands to list the full module contents.

SYNOPSIS

 url contents [-all | -ifpopulated [-incremental]] [-prefetch]
 [-version <selector>[,<selector>...]] [--] <argument>

ARGUMENTS

• Module Folder (Module-based)
• DesignSync Folder (File-based)
• DesignSync Vault (File-based)

 Specify one or more of the following arguments:

Module Folder (Module-based)

 <module folder> Returns a list of the URLs of files and folders
 contained in the specified workspace module
 folder.

DesignSync Folder (File-based)

 <DesignSync folder> Returns a list of URLs of files and folders
 contained in the specified folder in the

URL Sync Object Model

640

 workspace.

DesignSync Vault (File-based)

 <DesignSync vault> Returns a list of the URLs of the different
 vault versions checked into the specified vault.

OPTIONS

• -all
• -ifpopulated
• -incremental
• -prefetch
• -version
• --

-all

 -all Reports the objects in the local folder as well
 as those objects that would be there if it were
 fully populated with the contents of the
 associated vault. If the object is a vault-side
 object (a vault, version, or branch), this
 option is ignored.

 This option is mutually exclusive with
 -ifpopulate.

-ifpopulated

 -ifpopulated Report the contents of the local folder if it
 were fully populated with the contents of its
 associated vault.

 You can also specify -incremental to limit the
 result to return only those objects that would
 return in an incremental populate as opposed to
 a full populate. The list is empty if the
 object is not a local folder.

 This option is mutually exclusive with -all.

-incremental

 -incremental Modifies -ifpopulated to limit the result to

ENOVIA Synchronicity Command Reference All -Vol2

641

 return the URLs of only those objects that would
 return in an -incremental populate.

 Note: You must have at some time performed a
 full populate on the folder for the -incremental
 option to work properly.

-prefetch

 -prefetch Used for advanced programming; exposes an
 optimization to the caller. If used, the call
 to contents is slower, but the subsequent
 enumeration of the returned list has extra
 information cached. If the caller needs to
 enumerate the contents and for each object
 call commands such as 'url tags' or 'url
 properties', overall performance is better if
 this option is used. If the caller needs to
 retrieve only the names of the objects, this
 option makes the operation slower.

-version

 -version <selector> Use with -ifpopulate or -all. Specifies the
 selector list (typically branch or version
 tag) to use for the hypothetical populate. The
 default (-version not specified) is to inherit
 the selector from the parent folder.

 Note: To use -version to specify a branch,
 specify both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when the
 argument to the command begins with a
 hyphen (-).

RETURN VALUE

URL Sync Object Model

642

 For a client-side folder (Asic): Returns list of client-side folders
 and files (file://home/karen/Asic/Sub file://home/karen/Asic/x.v).

 For a vault ("sync://holzt:2647/Projects/Asic/x.v;"): Returns vault
 versions: ({sync://holtz:2647/Projects/Asic/x.v;1.1}
 {sync://holtz:2647/Projects/Asic/x.v;1.2}
 {sync://holtz:2647/Projects/Asic/x.v;1.3}).

 For a version ("sync://holzt:2647/Projects/Asic/x.v;1.1",
 "sync://holzt:2647/Projects/Asic/x.v;yellow"): Not a
 container object; returns an empty list.

 For branch ("sync://holzt:2647/Projects/Asic/x.v;1.5.1",
 "sync://holzt:2647/Projects/Asic/x.v;Golden:Latest"): Not a
 container object; returns an empty list.

 For a project (sync://holzt:2647/Projects/Asic): Returns vault
 folder containing project: (sync://holzt:2647/Projects).

 For a configuration (sync://holzt:2647/Projects/Asic/Sub@Rel1):
 Returns vault folder: (sync://holzt:2647/Projects/Asic).

 For a server-side note system URL (sync:///Note)
 Returns the list of note systems on the server (currently the
 only note system is SyncNotes)

 For a server-side SyncNotes URL (sync:///Note/SyncNotes):
 Returns the list of URLs for all note types defined on the server.

 For a server-side note-type URL (sync:///Note/SyncNotes/HW-Defect-1):
 Returns a list of URLs of all notes of type HW-Defect-1.

 For a server-side Users URL (sync:///Users)
 Returns a list of URLs for all user profiles on the server.

 For a module folder, returns a list of members in that folder.

 For other objects: Returns an empty list.

SEE ALSO

 note systems, notetype enumerate, populate, selectors, url container,
 url notes, url users, url versions

EXAMPLES

• Example Showing the Contents of a Module Folder (Module-based)
• Sample File Structure for Examples (File-based)
• Example of Local Folder Contents (File-based)
• Example of Vault Folder Contents (File-based)
• Example of Returning the Contents of a Branch (File-based)

ENOVIA Synchronicity Command Reference All -Vol2

643

• Example Showing the Contents Resulting from Full Populate (File-based)
• Example Showing the Contents Resulting From Incremental Populate (File-based)
• Example Showing Contents Resulting From Populate with Selector (File-based)
• Example Showing Contents Resulting from Populate with Configuration (File-based)

Example Showing the Contents of a Module Folder (Module-based)

 In the following example, the workspace //MyModules contains the
 following:
 MyModules
 File1.txt
 File2.txt
 File3.txt
 File4.txt
 Return contents of local folder MyModules

 stcl> url contents /home/tachatterjee/MyModules
file:///home/tachatterjee/MyModules/File1.txt
file:///home/tachatterjee/MyModules/File2.txt
file:///home/tachatterjee/MyModules/File3.txt
file:///home/tachatterjee/MyModules/File4.txt

Sample File Structure for Examples (File-based)

 In the following examples, the local work area
 /Projects/ASIC contains the following:
 ASIC
 FileA # Three versions exist in the vault
 FileB # There is a new version in the vault
 FileC # Not under revision control
 FileD # In the vault, but not in local working directory
 Decoder
 FileE # There is a new version in the vault
 FileF # Only file to have tag 'Gold' (version 1.2)

Example of Local Folder Contents (File-based)

 Return contents of local folder ASIC

 dss> url contents /Projects/ASIC
 file:///Projects/ASIC/Decoder
 file:///Projects/ASIC/FileA
 file:///Projects/ASIC/FileB
 file:///Projects/ASIC/FileC

Example of Vault Folder Contents (File-based)

URL Sync Object Model

644

 Return contents of vault folder ASIC

 dss> url contents sync://holzt:2647/Projects/ASIC
 sync://holzt:2647/Projects/ASIC/Decoder
 sync://holzt:2647/Projects/ASIC/FileA;
 sync://holzt:2647/Projects/ASIC/FileB;
 sync://holzt:2647/Projects/ASIC/FileD;

Example of Returning the Contents of a Branch (File-based)

 Return contents of FileA main branch

 dss> url contents "sync://holzt:2647/Projects/ASIC/FileA;1"
 sync://holzt:2647/Projects/ASIC/FileA;1.1
 sync://holzt:2647/Projects/ASIC/FileA;1.2
 sync://holzt:2647/Projects/ASIC/FileA;1.3

Example Showing the Contents Resulting from Full Populate (File-based)

 Return contents of /Project/ASIC resulting from full populate

 dss> url contents -ifpopulated /Projects/ASIC
 file:///Projects/ASIC/Decoder
 file:///Projects/ASIC/FileA
 file:///Projects/ASIC/FileB
 file:///Projects/ASIC/FileD

Example Showing the Contents Resulting From Incremental Populate (File-based)

 Return updated objects of /Project/ASIC after incremental populate

 dss> url contents -ifpopulated -incremental /Projects/ASIC
 file:///Projects/ASIC/Decoder
 file:///Projects/ASIC/FileB
 file:///Projects/ASIC/FileD

Example Showing Contents Resulting From Populate with Selector (File-based)

 Return what is populated when the selector is "Gold", which can be a
 version or branch tag

 dss> url contents -ifpopulated -version Gold /Projects/ASIC
 file:///Projects/ASIC/Decoder

Example Showing Contents Resulting from Populate with Configuration (File-based)

ENOVIA Synchronicity Command Reference All -Vol2

645

 Return the contents of the ASIC project's "Gold" configuration

 dss> url contents sync://holzt:2647/Projects/ASIC@Gold
 sync://holzt:2647/Projects/ASIC/Decoder@Gold

 dss> url contents sync://holzt:2647/Projects/ASIC/Decoder@Gold
 sync://holzt:2647/Projects/ASIC/Decoder/FileF;1.2

url exists

url exists Command

NAME

 url exists - Reports whether an object exists

DESCRIPTION

 This command determines whether an object physically exists either in
 the workspace or in the vault. If it exists, returns 1, if not
 returns 0.

SYNOPSIS

 url exists [--] <argument>

ARGUMENTS

• Module (Module-based)
• Module Member (Module-based)
• Module Folder (Module-based)
• DesignSync Object (File-based)

 Specify one of the following arguments:

Module (Module-based)

 <module> Specifies the module whose existence you want to
 verify.
 Returns 1 if the module, module branch or the
 module version exists. Else returns 0. If a
 workspace module is specified, it returns whether

URL Sync Object Model

646

 that exists. Otherwise returns whether the server
 module, branch or version exists.

Module Member (Module-based)

 <module member> Specifies the module member whose existence you want
 to verify.
 Returns 1 if the workspace module member
 exists. Else returns 0.
 Note: The "url exists" command is not applicable
 for server module member, branch or version. It is
 not meaningful to request whether a member exists
 on the server, as a member exists only in the
 context of a module version.
 You can run the "url vault" command on a member to
 get the sea-of-vaults object, then run the "url
 exists" command on that object. However, the "url
 vault" command succeeds if the object is checked
 in, and the "url exists" command fails only if a
 catastrophic event causes the member vault to be
 deleted.

Module Folder (Module-based)

 <module folder> Specifies the workspace module folder whose existence
 you want to verify.
 Returns 1 if the workspace module folder
 exists. Else returns 0.
 Note: The "url exists" command is not applicable
 for server module folder. If a server folder under
 the module server path is specified, it returns 0
 as an unsupported argument type.

DesignSync Object (File-based)

 <DesignSync object> Specifies the DesignSync object whose existence
 you want to verify.
 Returns 1 if it physically exists. Else returns
 0. Returns the same value for vault, branch,
 version, folder, note, project and unmanaged objects.

 Note: A DesignSync reference to a checked-in file
 returns the value 1 to distinguish it from a file
 that was never brought into the user's work area.

OPTIONS

ENOVIA Synchronicity Command Reference All -Vol2

647

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-).

RETURN VALUE

 For all existing objects: Returns 1 (Tcl TRUE).
 For nonexistent objects: Returns 0 (Tcl FALSE).

SEE ALSO

 url modified, url registered, url retired

EXAMPLES

• Example of Verifying the Existence of a Module (Module-based)
• Example of Verifying the Existence of a Module Member (Module-based)
• Example of Verifying the Existence of File-Based Objects (File-based)

Example of Verifying the Existence of a Module (Module-based)

 This example uses 'url exists' to verify the existence of a
 module:
 stcl> url exists sync://srv2.ABCo.com:2647/Modules/JitaMod1
 1

Example of Verifying the Existence of a Module Member (Module-based)

 This example uses 'url exists' to verify the existence
 of a module member:
 stcl> url exists File1.txt
 1

Example of Verifying the Existence of File-Based Objects (File-based)

 This example uses 'url exists' to verify the existence of several
 files.

URL Sync Object Model

648

 stcl> ls -report OR top*
 Object Type Version Name
 ----------- ------- ----
 File 1.2 top.gv
 File 1.2 -> 1.3 top.v
 File Unmanaged top.log
 Referenced File Refers to: 1.1 top.f

 stcl> url exists top.gv
 1
 stcl> url exists top.f
 1
 stcl> url exists top.log
 1
 stcl> url exists top.txt
 0

url fetchedstate

url fetchedstate Command

NAME

 url fetchedstate - Returns the fetched state of an object

DESCRIPTION

 This command returns the fetched state of the specified
 object. The fetch state answers the question: "How was this object
 checked out into my local work area?" Possible states are:

 Lock - Object was checked out with a lock. Note that the
 object is not necessarily still locked; another
 user could have unlocked it.
 Copy - Object was checked out unlocked (replica).
 Mirror - Object was checked out as a link to an object in
 the mirror directory.
 Cache - Object was checked out as a link to an object in
 the cache.
 Reference - Object was checked out as a reference.
 Note: For locked references, the fetched state
 returned is 'Lock'.
 NotFetched - Object was not fetched using DesignSync. The
 object is one of the following:
 o Not versionable (folder, version, and so on)
 o Not under revision control
 o Under revision control, but not fetched into
 the work area by DesignSync (for example,
 could be a tool's output, or could have been copied
 at the operating-system level)

ENOVIA Synchronicity Command Reference All -Vol2

649

 Note: If the object is not under revision control and is a link, a
 return value of "Mirror" instead of "NotFetched" can result.

SYNOPSIS

 url fetchedstate [--] <argument>

ARGUMENTS

• Module Member (Module-based)
• DesignSync Object (File-based)

 Specifies one of the following arguments:

Module Member (Module-based)

 <module member> Specifies the module member for which you want
 the fetched state.

 Note: The -modulecontext option is not required
 here as this command can only be call upon
 individual members in the workspace.

DesignSync Object (File-based)

 <DesignSync object> Specifies the DesignSync object for which you want
 the fetched state.

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-).

RETURN VALUE

URL Sync Object Model

650

 Returns one of the following strings "Lock", "Copy", "Mirror",
 "Cache", "Reference", "NotFetched" as indicated below:

 For a managed object (specify as client-side object: (Asic/x.v or
 file://.../Asic/x.v): Returns "Lock", "Copy", "Mirror", "Cache",
 or "Reference" depending on the command used to fetch the object.

 For an object not under revision control: Returns "NotFetched".

 For a link not under revision control: Returns "Mirror".

 For a nonversionable object (not a folder, collection, nor file):
 Returns "NotFetched".

 For an object under revision control, but not fetched into the
 work area by DesignSync: Returns "NotFetched".

SEE ALSO

 ls, url registered

EXAMPLES

• Example Showing Fetch State of a Module (Module-based)
• Example Showing Fetch State of a Module Member (Module-based)
• Example Showing Fetch State of File-Based Objects (File-based)

Example Showing Fetch State of a Module (Module-based)

 This example uses 'url fetchedstate' to return the fetched states
 for modules:

 stcl> url fetchedstate /home/tachatterjee/JitaMOD
 NotFetched

Example Showing Fetch State of a Module Member (Module-based)

 This example uses 'url fetchedstate' to return the fetched states
 for module members:
 stcl>url fetchedstate File1.txt
 Copy

Example Showing Fetch State of File-Based Objects (File-based)

ENOVIA Synchronicity Command Reference All -Vol2

651

 This example uses 'url fetchedstate' to return the fetched states
 for several objects:

 dss> ls -report OR top*
 Object Type Version Name
 ----------- ------- ----
 File 1.2 top.gv
 File 1.2 -> 1.3 top.v
 File Unmanaged top.log
 Referenced File Refers to: 1.1 top.f

 dss> url fetchedstate top.gv
 Copy
 dss> url fetchedstate top.v
 Lock
 dss> url fetchedstate top.log
 NotFetched
 dss> url fetchedstate top.f
 Reference

url fetchtime

url fetchtime Command

NAME

 url fetchtime - Returns the time when an object was fetched

DESCRIPTION

 This command returns when the specified object was checked out
 into your work area. The 'url fetchtime' command actually returns the
 timestamp of the object when the object was fetched, not the
 time of the fetch itself. Therefore, the value returned by
 'url fetchtime' depends on whether or not you specified the -retain
 option when you fetched the object.

 Note: If you used 'populate -mirror' to fetch the object to your work
 area, then a 'url fetchtime' operation for the object always returns 0.

 The fetch time is unaffected by making local modifications to the
 object. In fact, the fetch time and modification time being
 different is an indicator that the file has been locally modified.

 Specify an object in your work area as the argument to 'url
 fetchtime'.

SYNOPSIS

URL Sync Object Model

652

 url fetchtime [--] <argument>

ARGUMENTS

• Module (Module-based)
• Module Member (Module-based)
• DesignSync Object (File-based)

 Specify one of the following arguments:

Module (Module-based)

 <module> Specifies the module for which you want the timestamp
 when it was fetched into your work area.

 For workspace modules, returns 0.

Module Member (Module-based)

 <module member> Specifies the member for which you want the time
 when it was last fetched into your work area.
 Note: A module context is not required as this
 command can only be run on individual items
 present in the workspace.

DesignSync Object (File-based)

 <DesignSync object> Specifies the DesignSync object for which you want
 the time when it was fetched into your
 work area.

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the object
 you specify begins with a hyphen (-).

ENOVIA Synchronicity Command Reference All -Vol2

653

RETURN VALUE

 For a managed object specified as a client-side object
 (Asic/x.v or file://.../Asic/x.v): Returns the fetched time in
 time_t format, which is the number of seconds since the birth
 of UNIX -- January 1, 00:00:00, 1970 (GMT).

 For an object reference (or other objects that
 lack fetch time metadata): Returns 0.

 For an object not under revision control: Returns 0.

 For a nonversionable object (not a folder, collection, nor file):
 Returns 0.

 Note: You can use the Tcl 'clock format' command to convert the
 time_t format to a date string.

SEE ALSO

 url fetchedstate, url locktime, url properties

EXAMPLES

• Example Showing the Last Fetchtime of a Module (Module-based)
• Example Showing Last Fetchtime of a Module Member (Module-based)
• Example Showing Last Fetchtime of a DesignSync File-Based Object (File-based)

Example Showing the Last Fetchtime of a Module (Module-based)

 This example uses 'url fetchtime' to get the time when the module
 Module1 was last fetched to the workarea:

 stcl> url fetchtime Module1
 0

 Note: Since the workspace module was used as the argument, the result
 is 0.

Example Showing Last Fetchtime of a Module Member (Module-based)

 This example uses 'url fetchtime' to get the time when the module
 member File1.txt was last fetched to the workarea:
 stcl> url fetchtime File1.txt
 1163014379

URL Sync Object Model

654

Example Showing Last Fetchtime of a DesignSync File-Based Object (File-based)

 This example displays how long, in seconds, top.v has been in your
 work area:

 set now [clock seconds]
 set objfetchtime [url fetchtime top.v]
 if { $objfetchtime == 0 } {
 puts "top.v is a reference."
 } else {
 set duration [expr $now - $objfetchtime]
 puts "top.v fetched to this directory $duration seconds ago."
 }

url filter

url filter Command

NAME

 url filter - Returns the persistent filter for a workspace
 module

DESCRIPTION

 This command returns the persistent filter for a workspace module.
 If there is no persistent filter set (including if run on a
 DesignSync object or DesignSync folder or module member or other
 illegal argument type), returns a null value ("").

SYNOPSIS

 url filter [-filter | -hreffilter [-all]] [--] <argument>

ARGUMENTS

• Workspace Module

 Specifies one of the following arguments:

Workspace Module

ENOVIA Synchronicity Command Reference All -Vol2

655

 <workspace module> Specifies the workspace module for which you want
 the persistent filter.

OPTIONS

• -all
• -hreffilter
• -filter
• --

-all

 -all The -all option is used with -hreffilter switch to
 return the values of both simple and hierarchical
 href filters in a comma-separated list. If the
 -all is not provided, only simple hierarchical
 href values are returned.

-hreffilter

 -hreffilter The -hreffilter indicates that the hreffilter value is
 returned.

 This option is mutually exclusive with -filter.

-filter

 -filter The -filter option indicates that the filter value is
 returned. (Default)

 This option is mutually exclusive with -hreffilter.

--

 [--] Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 For workspace modules (/home/tachatterjee/MyMod/Module1),
 returns the persistent filter.

URL Sync Object Model

656

 If the command fails, it returns an appropriate error.

EXAMPLES

 This example shows a module where a filter has been applied to the
 workspace so only HTML files are populated. Note the construction of
 the filter ensures that all HTML are populated regardless of which
 subdirectory or submodule they are present in.

 dss> url filter Chip%0
 +.../*.html

url getprop

url getprop Command

NAME

 url getprop - Retrieves a property of an object

DESCRIPTION

• Notes for Modules (Module-based)

 This command retrieves properties that were previously set with 'url
 setprop'. You can use 'url getprop' to access the "type" and "locked"
 properties of revision control objects; however, you cannot use
 'url getprop' to access all of the special, built-in properties as
 returned by the 'url properties' command for objects other than
 notes, notetypes, users, and project configurations. For example,
 you cannot determine when an object was locked by using 'url getprop'
 of the property "locktime".

 Both the object and property must exist. For a note system URL, this
 command always throws NO_SUCH_PROP. For a note type URL, this
 command returns the default value for that property on the note type.

 You can use 'url getprop' with any object type. However,
 depending on the type, the command may only work in server-side
 scripts, such as when accessing notes.

 DesignSync automatically determines the data type of an object.
 You can get the datatype assigned by DesignSync using the
 'url getprop' command. You can also use the 'url setprop' command to
 change the datatype of an existing object. See 'url setprop' and 'ci'
 commands for more information.

ENOVIA Synchronicity Command Reference All -Vol2

657

 Note: If the URL provided for the argument has a non-numeric
 extension, the url getprop command identifies the object as
 a branch and not a version.

Notes for Modules (Module-based)

 You can use 'url getprop' to access the "basedir" to determine the
 path of a workspace module.

SYNOPSIS

 url getprop [--] <argument> <propertyName>

ARGUMENTS

• Module (Module-based)
• Module Member (Module-based)
• DesignSync Object (File-based)

 Specifies one of the following arguments:

Module (Module-based)

 <module> Specifies the module for which you want the
 properties previously set by the 'url
 setprop' command.

Module Member (Module-based)

 <module member> Specifies the module member for which you
 want the properties previously set by the 'url
 setprop' command.

DesignSync Object (File-based)

 <DesignSync object> Specifies the DesignSync object for which you
 want the properties previously set by the 'url
 setprop' command.

URL Sync Object Model

658

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

OPERANDS

• Object
• Property Name

Object

 <object> A valid object URL.

Property Name

 <propertyName> The name of a property to retrieve from the
 object.

RETURN VALUE

 For all valid arguments, returns the value set for the specified
 user-defined property as a string. also returns the values for the
 built-in 'type' and 'locked properties.

 For other objects: Raises error.

SEE ALSO

 note getprop, url setprop, url properties, note setprops

EXAMPLES

• Example of Getting the DataType Property of a Module Member (Module-based)
• Example of Getting the Various Propreties of a Module (Module-based)
• Example of Getting a User Defined Property for Use in a Script (File-based)

ENOVIA Synchronicity Command Reference All -Vol2

659

Example of Getting the DataType Property of a Module Member (Module-based)

 This example uses 'url getprop' command to get the DataType
 property of module member File2.txt:

Example of Getting the Various Propreties of a Module (Module-based)

 This example uses 'url getprop' command to get the various properties
 set on module Module1:

 stcl> url getprop Module1 version
 1.9
 stcl> url getprop Module1 branch
 Property not found: branch
 stcl> url getprop Module1 hrefmode
 normal
 stcl> url getprop Module1 selector
 Trunk:
 stcl> url getprop [url vault File2.txt] DataType
 ascii
 stcl> url getprop Module1%2 basedir
 /home/tachatterjee/MyMod/Module1%2

Example of Getting a User Defined Property for Use in a Script (File-based)

 This example server-side script sets and displays a CcList
 user-defined property on a vault.

 url setprop "sync:///Projects/myproj/foo.v;" CcList {sal mark}
 puts [url getprop "sync:///Projects/myproj/foo.v;" CcList]

url inconflict

url inconflict Command

NAME

 url inconflict - Checks if a file merge had conflicts

DESCRIPTION

 This command checks whether a merge (see the -merge option for the
 populate and co commands) resulted in conflicts (returns 1) or not
 (returns 0). You must resolve merge conflicts before you can check

URL Sync Object Model

660

 in the file. The conflicts are considered resolved when the
 file no longer contains any of the conflict delimiters (exactly 7
 less-than, greater-than, or equal signs starting in column 1).

SYNOPSIS

 url inconflict [--] <argument>

ARGUMENTS

• Workspace Module (Module-based)
• Module Member (Module-based)
• DesignSync Object (File-based)

 Specifies one of the following arguments:

Workspace Module (Module-based)

 <workspace module> Specifies the workspace module for which you want
 to know the conflict status.
 Returns 0 as modules cannot be inconflict.

Module Member (Module-based)

 <module member> Specifies the module member for which you want to
 know the conflict status.

DesignSync Object (File-based)

 <DesignSync object> Specifies the DesignSync object for which you want
 to know the conflict status.

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-).

ENOVIA Synchronicity Command Reference All -Vol2

661

RETURN VALUE

 For a client-side versionable object (Asic/x.v): Returns 1 (Tcl TRUE)
 if there is a conflict after a merge; returns 0 (Tcl FALSE)
 otherwise.

 For any invalid arguments or objects that do not exist, the command
 returns 0.

SEE ALSO

 url modified

EXAMPLES

• Example Showing The Status of File Merges for a Module (Module-based)
• Example Showing the Merge Status of a Module Member (Module-based)
• Example Showing the Merge Status of a File-Based Object (File-based)

Example Showing The Status of File Merges for a Module (Module-based)

 This example uses 'url inconflict' to get the status of file
 merges in module Module1. In this example, there is no conflict.

 stcl> url inconflict sync://srv2.ABCo.com:2647/Modules/Mod/Module1
 0

Example Showing the Merge Status of a Module Member (Module-based)

 This example uses 'url inconflict' to get the status of module
 member File1.txt. In this example, there is a conflict.

 stcl> url inconflict sync://srv2.ABCo.com:2647/Modules/JitaMod1/
 File1.txt
 1

Example Showing the Merge Status of a File-Based Object (File-based)

 This example demonstrates how 'url inconflict' identifies a file
 with conflicts.

 dss> url inconflict top.v

URL Sync Object Model

662

 0
 dss> ci -nocomment -keep top.v

 Beginning Check in operation...

 Checking out: top.v : Failed:som: Error 105: Newer version
 exists in the vault. Use '-skip' to skip the newer version, or
 'co -merge' to merge with it.

 dss> co -merge -nocomment top.v

 Beginning Check out operation...

 Success - Checked Out with conflicts version: 1.2
 dss> url inconflict top.v
 1

url leaf

url leaf Command

NAME

 url leaf - Returns the leaf of the URL

DESCRIPTION

 Returns the leaf of the URL. The leaf is the text that
 follows the last separator.

 Note: In stcl/stclc mode, when specifying a URL that contains a
 semicolon (;), surround the URL with double quotes.

SYNOPSIS

 url leaf [--] <argument>

ARGUMENTS

 Specifies one of the following arguments:

OPTIONS

ENOVIA Synchronicity Command Reference All -Vol2

663

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-).

RETURN VALUE

 For a client-side versionable object (Asic/x.v): Returns a string
 containing the leaf of its path (x.v).

 For a client-side folder (Asic): Returns the leaf of its path
 (Asic).

 For a vault ("sync://holzt:2647/Projects/Asic/x.v;"): Returns
 the vault name (x.v;).

 For a version ("sync://holzt:2647/Projects/Asic/x.v;1.1",
 "sync://holzt:2647/Projects/Asic/x.v;yellow"): Returns
 object and version (x.v;1.1).

 For a branch ("sync://holzt:2647/Projects/Asic/x.v;1.5.1",
 "sync://holzt:2647/Projects/Asic/x.v;Golden:Latest"):
 Returns object and branch name (x.v;1).

 For a project (sync://holzt:2647/Projects/Asic): Returns the
 project name: (Asic).

 For a configuration (sync://holzt:2647/Projects/Asic/Sub@Rel1):
 Returns the configuration name: (sub@Rel1).

 For a server-side note type URL (sync:///Note/SyncNotes/HW-Defect-1):
 Returns note type (HW-Defect-1).

 For a server-side note URL (sync:///Note/SyncNotes/HW-Defect-1/1):
 Returns note ID (1).

 For other objects: Returns argument provided.

 Note: 'url leaf' does not verify that the object exists.

SEE ALSO

 url path

EXAMPLES

URL Sync Object Model

664

 This example extracts the leaf "ASIC" from a URL.
 dss> url leaf sync://dvorak:2647/Projects/ASIC
 ASIC

url locktime

url locktime Command

NAME

 url locktime - Returns when a branch was locked

DESCRIPTION

 This commands returns when the branch associated with the specified
 object was locked. Specify a local object or a branch as the
 argument. If you specify a local object, 'url locktime' determines
 the current branch for the object.

 One application for this command is to determine if any
 branches have been locked too long based on a project team's
 design management policies. You might trigger email reminders
 or perform unlock operations on objects that have been locked
 too long.

SYNOPSIS

 url locktime [--] <argument>

ARGUMENTS

• Module Object (Module-based)
• Module Member (Module-based)
• DesignSync Object (File-based)

 Specifies one of the following arguments:

Module Object (Module-based)

 <module> Specifies the workspace module branch for which you
 the lock time, if it is locked.

ENOVIA Synchronicity Command Reference All -Vol2

665

 For server modules, you can get the lock time for
 a particular module branch or version. For a
 server module as a whole, the command returns 0,
 as a server module cannot be locked.

Module Member (Module-based)

 <module member> Specifies the module member for which you want the
 lock time, if it is locked.
 Always return 0 as module members are not locked in
 their own right. They are always locked in the
 context of a particular module branch.
 Use the showlocks command to obtain information
 on about member locks.

DesignSync Object (File-based)

 <DesignSync object> Specifies the DesignSync object for which you
 want the associated branch or version
 locktime.

OPTIONS

• --

--

 -- Indicates that the command should stop looking
 for command options. Use this option when the
 object you specify begins with a hyphen (-).

RETURN VALUE

 For all valid objects, returns the lock time, in time_t format; or,
 if the object is not locked, returns 0. For any invalid arguments,
 returns 0.

 For any non-existant objects, returns error.

 Note: The time_t format is the number of seconds since the birth
 of UNIX -- January 1, 00:00:00, 1970 (GMT). You can use the Tcl
 'clock format' command to convert the time_t format to a date
 string.

URL Sync Object Model

666

SEE ALSO

 url fetchtime, url properties

EXAMPLES

• Example of Viewing the Locktime of Server Module Version (Module-based)
• Example of Viewing the Locktime of a Workspace Module (Module-based)
• Example of Viewing the Locktime of a File (File-based)

Example of Viewing the Locktime of Server Module Version (Module-based)

 This example uses 'url locktime' to see the locktime of a module
 branch of Module1 on the server:
 stcl> url locktime \
 "sync://srv2.ABCo.com:2647/Modules/Mod/Module1;1.6.1"

 1165595391

Example of Viewing the Locktime of a Workspace Module (Module-based)

 This example uses a workspace module to see the locktime of the
 module branch in the example above:
 stcl> url locktime Module1%1
 1165595391

 Note: Workspace module Module1%1 is populated with module branch
 sync://srv2.ABCo.com:2647/Modules/Mod/Module1;1.6.1"

Example of Viewing the Locktime of a File (File-based)

 This example notifies the locker of top.v if top.v has been locked
 for more than a week:

 # Compute the number of seconds in a week
 set week [expr 60 * 60 * 24 * 7]
 # Find out who the locker is
 url properties top.v props
 set locker $props(locked)
 # Is the file locked?
 # Could also check whether the file is locked by using
 # 'url locktime' itself -- it returns '0' if the file is not
 # locked.
 if { $locker != 0 } {
 # Figure out how long the file has been locked
 set now [clock seconds]

ENOVIA Synchronicity Command Reference All -Vol2

667

 set objlocktime [url locktime top.v]
 # If more than a week, send email
 if { $now - $objlocktime > $week } {
 #
 # Provide command to send mail here
 #
 puts "Sent mail to $locker."
 } else {puts "top.v hasn't been locked too long."}
 } else {puts "top.v is not locked."}

 Note that if the branch is not locked, then objlocktime is 0, so
 'now - objlocktime' is very large and does not convey the right
 information. This example therefore uses 'url properties' to first
 determine if the branch is locked before calling 'url locktime'.

url members

url members Command

NAME

 url members - Returns the members of the specified collection

DESCRIPTION

• Notes for Modules (Module-based)

 This command returns the list of members for the specified
 collection object. Specify the collection as a URL or path.
 DesignSync currently supports the following collection object type:
 - Cadence cell views
 The members of a Cadence cell view collection object are
 determined by the Cadence software.
 - Synopsys cell view collections.
 - Custom generic collections (CTP collections).

 This command can return the list of members with full (absolute)
 paths or paths relative to the collection

 When in stcl/stclc mode only, you can optionally specify Tcl variable and
 code arguments. When specified, the command iterates through the
 returned list of member objects (see Examples).

 This command supports the command defaults system.

Notes for Modules (Module-based)

URL Sync Object Model

668

 This command is for members of collections, not to get the list of
 members of a module

SYNOPSIS

 url members -[no]relative [--] <collection> [<varname> <code>]

OPTIONS

• -[no]relative
• --

-[no]relative

 -[no]relative Indicates whether members are displayed using a
 relative or absolute path.

 -norelative displays the members using an absolute
 path (Default).

 -relative displays the output of the command as the
 relative path. This output is useful for
 identifying the collection cell view version of a
 member for comparing against a different member
 version.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when an argument
 to the command begins with a hyphen (-).

RETURN VALUE

 For a collection specified as a URL or path
 (file:///home/projLeader/ttlLib/and2/symbol.sync.cds,
 /home/projLeader/ttlLib/and2/symbol.sync.cds):
 Returns a list of URLs of view members
 (file:///home/projleader/ttlLib/and2/symbol/symbol.cdb
 file:///home/projleader/ttlLib/and2/symbol/pc.db
 file:///home/projleader/ttlLib/and2/symbol/master.tag)

 For other objects: Returns an empty list.

ENOVIA Synchronicity Command Reference All -Vol2

669

EXAMPLES

 This example returns the members of the symbol.sync.cds Cadence
 cell view:
 stcl> url members symbol.sync.cds
 file:///home/goss/Projects/Cadence/smallLib/and2/symbol/symbol.cdb
 file:///home/goss/Projects/Cadence/smallLib/and2/symbol/master.tag
 file:///home/goss/projects/Cadence/smallLib/and2/symbol/pc.db
 ...

url mirror

url mirror Command

NAME

 url mirror - Returns the URL of a local directory's mirror

DESCRIPTION

 This command returns the URL of the mirror directory that was
 associated with a local directory with the setmirror command. If no
 mirror is set, an empty string is returned.

 Note: Because of the way mirrors is configured for modules, this
 command does not return any useful information in a modules
 environment. For information on using mirrors in a module
 environment, see the DesignSync Data Manager Administrator's Guide.

SYNOPSIS

 url mirror [--] <directory>

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-).

URL Sync Object Model

670

RETURN VALUE

 For a folder with a mirror association: Returns URL of the mirror
 folder.

 For other objects: Returns an empty list.

SEE ALSO

 setmirror

EXAMPLES

 This example sets the mirror for a directory, then uses
 'url mirror' to display the directory's mirror.
 dss> setmirror /home/goss/mirror /home/goss/Projects/Sportster
 Sportster Success Set Mirror
 dss> url mirror /home/goss/Projects/Sportster
 file:///home/goss/mirror

url modified

url modified Command

NAME

 url modified - Checks if an object has been modified

DESCRIPTION

• Notes for Modules (Module-based)

 This command determines whether an object has been modified since
 it was fetched (returns 1) or not (returns 0).

 Objects not under revision control are always flagged as
 modified. Because of this behavior, 'url modified' provides a way
 to determine what objects need to be checked in to preserve the
 folder's current contents. Only by checking in both
 revision-controlled objects that are modified and objects that
 are not revision controlled will the vault contain all of the
 folder's current contents. Use 'url registered' to determine whether
 objects flagged as modified are under revision control.

ENOVIA Synchronicity Command Reference All -Vol2

671

Notes for Modules (Module-based)

 Module members that have been renamed or removed are flagged as
 modified, even if the contents of the object have not changed.

SYNOPSIS

 url modified [--] <argument>

ARGUMENTS

• Workspace Module (Module-based)
• Module Member (Module-based)
• DesignSync Object (File-based)

 Specifies one or more of the following arguments:

Workspace Module (Module-based)

 <workspace module> Specifies the workspace module for which you want
 to find modified status.
 Note: A workspace module is considered modified
 if any module member has been edited or
 a new member has been added but not yet
 checked into the vault.

Module Member (Module-based)

 <module member> Specifies the module member for which you want
 to find modified status.
 Note: A module member is considered modified if
 it has been touched. A module member is
 also considered modified if it is added,
 removed or renamed (moved) in the workspace
 but not checked into the vault.

DesignSync Object (File-based)

 <DesignSync object> Specifies the DesignSync object for which you want
 to find modified status. Returns 1 if the object has

URL Sync Object Model

672

 been modified since it was fetched from the
 vault. Else returns 0.

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-).

RETURN VALUE

 For any valid object, returns 1 (Tcl TRUE)) if the object has been
 modified or is not under revision control. If the object has not
 been modified, it returns 0 (tcl FALSE).

 For any non-applicable or non-existant object, returns 0.

SEE ALSO

 url exists, url registered, url inconflict

EXAMPLES

• Example Showing If the Module in the Workspace is Modified (Module-based)
• Example Showing If the Module Member in the Workspace is Modified (Module-based)
• Example Showing If the Files in the Workspace are Modified (File-based)

Example Showing If the Module in the Workspace is Modified (Module-based)

 This example uses 'url modified' to see if a workspace module
 has been modified:
 stcl> url modified Module1%0
 1

Example Showing If the Module Member in the Workspace is Modified (Module-based)

 This example uses 'url modified' to see if a module member
 has been modified:

ENOVIA Synchronicity Command Reference All -Vol2

673

 stcl> url modified File1.txt
 0

Example Showing If the Files in the Workspace are Modified (File-based)

 This example shows various results using 'url modified' and 'url
 registered':

 dss> ls -report ORS top*
 Object Type Version Status Name
 ----------- ------- ------ ----
 File 1.2 Locally Modified top.gv
 File 1.2 -> 1.3 Up-to-date top.v
 File Unmanaged - top.log
 Referenced File Refers to: 1.1 Up-to-date top.f
 dss> url modified top.gv
 1
 dss> url modified top.v
 0
 dss> url modified top.log
 1
 dss> url registered top.v
 1
 dss> url registered top.log
 0

url naturalpath

url naturalpath Command

NAME

 url naturalpath - Returns the natural path for a module member

DESCRIPTION

 This command is run against module member objects in a workspace to
 provide the natural path for the specified object. The natural path
 is the location of the object under the module base directory.

 Note: This command also provides the natural path for objects that
 have been added to a module, but have not yet been checked in.

SYNOPSIS

URL Sync Object Model

674

 url naturalpath [--] <argument>

ARGUMENTS

• Workspace Module Member

Workspace Module Member

 <Workspace Specify a module object to determine the natural
 module member> path of the module member.

 Note: The module member cannot be a module
 folder.

OPTIONS

• --

--

 -- Indicates that the command should stop looking
 for command options. Use this option when the
 argument to the command begins with a hyphen (-).

RETURN VALUE

 For a module member: returns the natural path of module member. If
 a module member has been moved, it returns the
 new location of the module member. If a module
 member has been removed, but kept in the
 workspace, the original natural path is
 reported until the module has been checked in.

 For any other values: Not applicable; returns an empty list("").

SEE ALSO

 add

EXAMPLES

• Example Showing the Natural Path of a Module Member

ENOVIA Synchronicity Command Reference All -Vol2

675

• Example Showing Using the Natural Path to Unlock a Module Member

Example Showing the Natural Path of a Module Member

 The following example returns the natural path of the chipdoc.txt
 file, located in module instance Chip%0 with a base directory of
 /home/rsmith/MyModules/chip.

 stcl> url naturalpath chipdoc.txt
 /doc/chipdoc.txt

Example Showing Using the Natural Path to Unlock a Module Member

 The following example shows how to use url naturalpath, along with
 url vault and url branchId, to perform an unlock command. The
 code fragment unlocks a file. This fragment assumes the module
 instance name was previously passed to the mod variable and the
 desired filename, the same file used in the previous example, was
 passed to the modfile variable.

 stcl> unlock -modulecontext [url vault $mod]\;[url branchid $mod] \
 [url naturalpath $modfile]

 Beginning Unlock operation...

 Unlocking: sync://srvr2.ABCo.com:2647/Modules/Chip;1 :
 /doc/chipdoc.txt: Unlocked

 Unlock operation finished.

 {Objects succeeded (1)} {}

url notes

url notes Command

NAME

 url notes - Returns the notes attached to the specified
 object

DESCRIPTION

 This command gathers a list of notes attached to a DesignSync object
 or a server module (branch or version). Because notes are objects

URL Sync Object Model

676

 addressed by URLs, this command returns a list of URLs. The list may
 be filtered by note type and by a specific set of query criteria on
 the note type. When applied to RevisionControl notes, the url notes
 command searches the Objects field.

 This command is a wrapper for: note query [-type <notetype>
 -attached <ObjectUrl> -dbquery <Query>. In most cases, the note
 query command provides superior capabilities.

 The url notes command' is server-side only. For more information,
 see the "server-side" and "rstcl" help topics.

SYNOPSIS

 url notes [-type <type> [-dbquery <query>]] [--]
 <argument>

ARGUMENTS

• Server Module Version (Module-based)
• DesignSync File (File-based)

 Specifies one of the following arguments:

Server Module Version (Module-based)

 <server module> Specifies the server module or module branch or
 module version to which the notes are attached.
 If no notes are attached, returns an empty list

DesignSync File (File-based)

 <DesignSync object> Specifies the DesignSync object to which the
 notes are attached. If no notes are attached,
 returns an empty list.

OPTIONS

• -type
• -dbquery
• --

-type

ENOVIA Synchronicity Command Reference All -Vol2

677

 -type <type> The name of a note type, which must exist, to
 query against.

-dbquery

 -dbquery <query> A valid dBase query string, used to further
 constrain the set of notes returned.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when the
 argument to the command begins with a hyphen (-).

OPERANDS

• Object

Object

 <object> A valid object URL.

RETURN VALUE

 For any valid object, returns a list of note URLs; or, if there are
 no notes attached, an empty list.

 For any invalid object, returns an error.

 For any non-existent object, returns an empty list.

SEE ALSO

 note links, note query, url contents

EXAMPLES

• Example Showing the List of Specific Note Types in a Specific State
• Example of a Script Fragment that Extracts Attached Note Information

URL Sync Object Model

678

Example Showing the List of Specific Note Types in a Specific State

 The following example returns the list of SyncDefect notes in the
 open state attached to the Munich project:

 set notes [url notes
 sync:///Projects/Munich -type SyncDefect -dbquery "State='open'"]

Example of a Script Fragment that Extracts Attached Note Information

 The following excerpt of a server-side script extracts all of the
 notes in all of the projects on a SyncServer and prints their
 titles. The excerpt uses the 'url notes' command to extract
 the notes of a project.

 foreach project [url projects sync:///] {
 foreach note [url notes $project] {
 puts <pre>
 puts "Project: $project"
 puts "NoteURL: $note"
 puts "Notetype: [url leaf [url container $note]]"
 puts "Note Id: [url leaf [url path $note]]"
 puts "Note Title: [note getprop $note Title]"
 puts </pre>
 }
 }

url owner

url owner Command

NAME

 url owner - Returns the owner of an object

DESCRIPTION

 This command returns the owner of the specified object. The object
 can be a project, project configuration, branch, or vault.

 The owner of a branch is the creator of the initial version of the
 branch unless a different owner has been specified with the
 setowner command. For example, the default owner of the Trunk branch
 (branch 1) is the creator of version 1.1 The owner of a design
 object's vault is defined as the owner of the object's Trunk branch.

 The 'url properties' command also returns an object's owner. Use

ENOVIA Synchronicity Command Reference All -Vol2

679

 'url properties' when you need more property information than just
 the object owner.

SYNOPSIS

 url owner [--] <argument>

ARGUMENTS

• Workspace Module (Module-based)
• Module Member (Module-based)
• DesignSync Object (File-based)

 Specifies one of the following arguments:

Workspace Module (Module-based)

 <workspace module> Specifies the module or module branch or module
 version for which you want to know the owner.

 Note: For a module, the owner is the person who
 creates the module. Since creating a module creates
 version 1.1, the owner of the module, branch 1 and
 version 1.1 is always the same person.

Module Member (Module-based)

 <module member> Specifies the module member for which you want to
 know the owner.
 Note: The 'url owner' command can only be run on
 workspace module members.

DesignSync Object (File-based)

 <DesignSync object> Specifies the DesignSync object for which you
 want the owner.

OPTIONS

• --

--

URL Sync Object Model

680

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-).

RETURN VALUE

 For all valid objects, returns the username of the object owner.

 For all invalid or non-existent objects, returns an applicable error.

SEE ALSO

 setowner, url properties

EXAMPLES

• Example Showing The Owner of a Module (Module-based)
• Example Changing the Owner of a File-Based Object (File-based)
• Example of Returning the Owner of the File-based Project (File-based)

Example Showing The Owner of a Module (Module-based)

 This example uses 'url owner' to get the username of the
 owner of a module:
 stcl> url owner "sync://srv2.ABCo.com:2647/Modules/Module1"
 tachatterjee

Example Changing the Owner of a File-Based Object (File-based)

 This example returns the owner (barbg) of the main branch of
 reg5.v. The owner is then changed to 'goss' and the change is
 verified. Note that the second 'url owner' command passes the
 vault as the argument, which shows that the vault owner is always
 the owner of the main branch.
 stcl> url owner "sync://holzt:2647/Projects/Sportster/decoder/
 reg5.v;1"
 barbg
 stcl> setowner "sync://holzt:2647/Projects/Sportster/decoder/
 reg5.v;1" goss
 Success: setowner
 stcl> url owner [url vault reg5.v]
 goss

ENOVIA Synchronicity Command Reference All -Vol2

681

Example of Returning the Owner of the File-based Project (File-based)

 This example returns the owner of a ProjectSync project called
 ASIC, and the owner of the Alpha configuration.

 stcl> url owner "sync://vonnegut:2647/Projects/ASIC"
 mmf
 stcl> url owner "sync://vonnegut:2647/Projects/ASIC@Alpha"
 wayne

url path

url path Command

NAME

 url path - Extracts the path section of a URL

DESCRIPTION

• Module Notes (Module-based)

 This command extracts the path section of a URL, stripping
 off the protocol and machine name. This command also returns the
 absolute path of an object when a relative path is specified.

 Note: In stcl/stclc mode, when specifying a URL that contains a
 semicolon (;), surround the URL with double quotes.

 On Windows, this command returns a localized path using
 "\" characters, instead of "/" characters. Use the following
 Tcl example to reverse the "\" characters:

 stcl> url path .
 e:\build\main\src\doc\
 stcl> join [split [url path .] \\] /
 e:/build/main/src/doc

Module Notes (Module-based)

 NOTE: To find the base directory of a module instance object,
 use the 'url getprop' command.

URL Sync Object Model

682

SYNOPSIS

 url path [--] <object>

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-).

RETURN VALUE

 For all valid objects, returns the absolute path without URL protocol
 or host information, (for example, /home/karen/Asic/x.v).

 For other objects, including non-existent objects: Returns absolute
 path of the current directory with the object concatenated; for
 example, 'url path' applied to a nonexistent file named 'junk'
 returns /home/karen/junk. The 'url path' command does not verify that
 the object exists.

SEE ALSO

 url leaf, url getprop

EXAMPLES

• Example Showing How to Get Path and Reverse the Separator
• Example Showing the URL Path of the Server Module (Module-based)
• Example Showing the URL Path of a File-based Server Object (File-based)
• Example Showing the URL Path of a File-based Workspace Object (File-based)

Example Showing How to Get Path and Reverse the Separator

 This example shows how to reverse the "\" characters on Windows:
 stcl> url path .
 e:\build\main\src\doc\
 stcl> join [split [url path .] \\] /

ENOVIA Synchronicity Command Reference All -Vol2

683

 e:/build/main/src/doc

Example Showing the URL Path of the Server Module (Module-based)

 This example uses 'url path' to get the path of a server module:
 stcl> url path sync://srv2.ABCo.com:2647/Modules/Module1
 /Modules/Module1

Example Showing the URL Path of a File-based Server Object (File-based)

 This example extracts the path "/Projects/ASIC/" from a URL.
 dss> url path sync://dvorak:2647/Projects/ASIC
 /Projects/ASIC

Example Showing the URL Path of a File-based Workspace Object (File-based)

 This example returns the full path of top.v, which is in the
 current working directory:
 dss> url path top.v
 /home/Projects/Sportster/synth

url projects

url projects Command

NAME

 url projects - Returns a SyncServer's ProjectSync projects

DESCRIPTION

 This command returns the list of all ProjectSync projects defined
 on the specified SyncServer. See ProjectSync User's Guide for details
 on creating projects. Note that:
 o ProjectSync projects may or may not have an associated
 DesignSync vault. You specify whether the project has an
 associated vault when you create the project.
 o Creating a DesignSync project vault, even when located in a
 SyncServer's Projects directory, does not automatically create a
 ProjectSync project. You must independently create the
 ProjectSync project and associate it with the DesignSync vault.

URL Sync Object Model

684

 The 'url projects' command accepts one argument, a sync: URL. When
 run from a server-side script, the projects defined on the
 SyncServer running the script are returned (the specified argument
 is always mapped to sync:///Projects). When run from a client, the
 projects defined on the SyncServer specified by the URL are
 returned (the specified argument is always mapped to
 sync://<host>:<port>/Projects). When run from the client or
 server, 'url projects' returns an empty string if you specify a
 file: URL.

SYNOPSIS

 url projects <object>

OPTIONS

 none

RETURN VALUE

 For all valid objects, returns the projects defined for
 the specified server. In server-side scripts, 'url projects'
 returns the projects defined on the server on which the script
 is running.

 For non-applicable or non-existent objects, returns empty list.

SEE ALSO

 url configs, url users

EXAMPLES

 This example shows two methods for returning the ProjectSync
 projects on the holzt:2647 SyncServer.
 stcl> url projects sync://holzt:2647
 sync://holzt:2647/Projects/Sportster sync://holzt:2647/Projects/Test
 stcl> url projects [url vault top.v]
 sync://holzt:2647/Projects/Sportster sync://holzt:2647/Projects/Test

url properties

ENOVIA Synchronicity Command Reference All -Vol2

685

url properties Command

NAME

 url properties - Returns properties for the specified object

DESCRIPTION

• Properties Associated with Module Objects (Module-based)
• Properties of File Objects (File-based)

 This command retrieves all the properties of the specified object
 and returns the values in a Tcl array passed by name. The Tcl array
 need not exist prior to the call. If the array does exist, its
 contents are first emptied and then filled in with the property
 data for the object. If <varname> was previously set as a scalar
 variable, it is changed to an array by this command. If the command
 encounters an error, <varname> is left unset, regardless of its
 prior state. The Tcl array is indexed by property name.

 The properties defined for an object depend on the object's type:

 note - The current property values on the note.
 note type - The default property values of the note type.
 note system - An empty set.
 user - The fixed set of properties of the user profile:
 EmailAddr, Key, Name, PageNumber, PhoneNumbr, UserList
 and Username. For backward compatibility, the shadow
 properties email, name, pager, phone, and userName
 are also returned.

Properties Associated with Module Objects (Module-based)

 The properties on an object can be:

 name - The name of the specified object.
 description - The generic description for the object, or an empty
 string if none exists.
 type - The type of the specified object. Examples are
 File, Folder, Vault, Version, Branch, Project,
 and Project Configuration.
 Note: There may be other types present as a result
 of using the CustomType System, DesignSync DFII
 or DesignSync Custom Compiler.
 owner - The owner of the object. The following object types
 have owners: modules, module folders, module members,
 module versions,and module branches. If owner is the
 only property you are interested in, use 'url owner'.
 locked - The name of the user who has the object locked, or '0'

URL Sync Object Model

686

 if it is unlocked. A non-zero value can be expected only
 for files, branches, and versions. Specifying a file
 has the same effect as specifying the file's current
 branch to the command.
 locktime - The time, in time_t format, that the object was
 locked (if the object is locked -- value of 'locked'
 property is nonzero), otherwise '0'. If locktime is the
 only property you are interested in, use 'url
 locktime'. Note that you can convert the time_t
 format to a date string using the Tcl 'clock format'
 command.
 citime - The time, in time_t format, that a version was created
 in the vault. This time is not influenced by the
 "-retain" option to ci/co/populate; citime is always
 the actual time the version was created. Note that you
 can convert the time_t format to a date string using
 the Tcl 'clock format' command.
 log - The log information for the specified object. If the
 object is a version, its checkin log is returned,
 unless it is a placeholder (upcoming) version, in
 which case its checkout log is returned. If the
 object is a file, its ongoing log is returned.
 selector - The selector list (tag) associated with a ProjectSync
 project configuration that identifies the versions of
 DesignSync data that are part of the configuration.
 exposure - The list of team members (usernames) associated with a
 project configuration. The configuration owner is
 always included in the exposure list. Note that if the
 member list is the default of all users defined
 on the SyncServer, then the exposure list is empty.
 parents - The parent workspace(s) of the object. The parent
 workspace is the base directory of other modules in the
 workspace containing an href to specified module
 argument. The value is space delimited tcl list showing
 the module instance name followed by the workspace base
 directory.
 moduleviews - The list of persistent module views set on the module
 workspace. This property only exists if a persistent
 module view has been set on the workspace. If a view
 has been set and cleared, the returned value is an
 empty string ("").

 Additional properties on a module that has been moved (with the
 exportmod/importmod commands are:)

 SyncImportedURL - The URL of the original module location.

 SyncImportedBackRefs - The back references contained within the
 original module.

 Note that you use 'url properties' to access predefined (built-in)
 properties. To access user-defined properties, as created
 by 'url setprop', use 'url getprop'. You cannot use 'url setprop'
 to modify these built-in properties.

ENOVIA Synchronicity Command Reference All -Vol2

687

Properties of File Objects (File-based)

 The properties on an object can be:

 name - The name of the specified object.
 description - The generic description for the object, or an empty
 string if none exists.
 type - The type of the specified object. Examples are
 File, Folder, Vault, Version, Branch, Project,
 and Project Configuration.
 Note: There may be other types present as a result
 of using the CustomType System, DesignSync DFII
 or DesignSync Custom Compiler.
 owner - The owner of the object. The following object types
 have owners: projects, project configurations,
 vaults, and branches. If owner is the only
 property you are interested in, use 'url owner'.
 locked - The name of the user who has the object locked, or '0'
 if it is unlocked. A non-zero value can be expected only
 for files, vaults, branches, and versions. If a vault
 is specified, the default branch is examined.
 Specifying a file has the same effect as specifying
 the file's current branch to the command.
 locktime - The time, in time_t format, that the object was
 locked (if the object is locked -- value of 'locked'
 property is nonzero), otherwise '0'. If locktime is the
 only property you are interested in, use 'url
 locktime'. Note that you can convert the time_t
 format to a date string using the Tcl 'clock format'
 command.
 citime - The time, in time_t format, that a version was created
 in the vault. This time is not influenced by the
 "-retain" option to ci/co/populate; citime is always
 the actual time the version was created. Note that you
 can convert the time_t format to a date string using
 the Tcl 'clock format' command.
 log - The log information for the specified object. If the
 object is a version, its checkin log is returned,
 unless it is a placeholder (upcoming) version, in
 which case its checkout log is returned. If the
 object is a file, its ongoing log is returned.
 selector - The selector list (tag) associated with a ProjectSync
 project configuration that identifies the versions of
 DesignSync data that are part of the configuration.
 exposure - The list of team members (usernames) associated with a
 project configuration. The configuration owner is
 always included in the exposure list. Note that if the
 member list is the default of all users defined
 on the SyncServer, then the exposure list is empty.
 parents - The parent workspace(s) of the object.

 Note that you use 'url properties' to access predefined (built-in)
 properties. To access user-defined properties, as created
 by 'url setprop', use 'url getprop'. You cannot use 'url setprop'
 to modify these built-in properties.

URL Sync Object Model

688

SYNOPSIS

 url properties [--] <argument> <array_name>

ARGUMENTS

• Module (Module-based)
• DesignSync Object (File-based)
• Array Name

 Specify the following arguments:

Module (Module-based)

 <module> Specifies the module for which you want the
 predefined properties.
 For a server module or a server module branch or a
 server module version, this information is similar
 to the information about a DesignSync vault.
 For a workspace module, the information can contain
 additional property information.

DesignSync Object (File-based)

 <DesignSync object> Specifies the DesignSync object for which you want
 the predefined properties. The properties are
 returned in a Tcl array passed by name.

Array Name

 <array_name> The name of a Tcl variable in which to store the
 property values returned.

OPTIONS

• --

--

ENOVIA Synchronicity Command Reference All -Vol2

689

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-)._

RETURN VALUE

 Returns the property values indicated in the supplied array variable:

 For a client-side versionable object (Asic/x.v): Returns these property
 values in the supplied array variable: name, type, locked, locktime,
 citime, and log.

 For a client-side folder (Asic/Sub): Returns these property values:
 name and type.

For a server-side note type URL (sync:///Note/SyncNotes/HW-Defect-1):
 Returns the properties of the note type. Values are only listed for
 those properties that have default values specified in the note type
 definition.

 For a server-side note URL (sync:///Note/SyncNotes/HW-Defect-1/1):
 Returns the properties of the note type, as well as the values set
 for those properties.

 For a user URL (sync:///Users/chris): Returns the property values
 set for that user.

 For a version ("sync://holzt:2647/Projects/Asic/x.v;1.1",
 "sync://holzt:2647/Projects/Asic/x.v;yellow"): Returns
 these property values: name, type, locked, locktime, citime,
 and log.

 For a branch ("sync://holzt:2647/Projects/Asic/x.v;1.5.1",
 "sync://holzt:2647/Projects/Asic/x.v;Golden:Latest"):
 Returns these property values: name, type, owner, locked, locktime,
 citime, and log.

 For a vault ("sync://holzt:2647/Projects/Asic/x.v;"): Returns these
 property values: name, type, owner, locked, locktime, citime, and
 log.

 For a project (sync://holzt:2647/Projects/Asic): Returns these
 property values: name, description, type, and owner.

 For a configuration ("sync://holzt:2647/Projects/Asic/Sub@Rel1"):
 Returns these property values: name, description, type, owner,
 selector, and exposure.

 For any invalid object, returns an appropriate error.

SEE ALSO

URL Sync Object Model

690

 note getprop, note setprops, url getprop, url setprop, url locktime,
 url owner, server-side

EXAMPLES

• Example Showing the Properties of a Module (Module-based)
• Example Scripts Showing a Specific Property (File-based)
• Example Script Showing All Properties of a Project (File-based)

Example Showing the Properties of a Module (Module-based)

 This example uses 'url properties' to get the properties of a
 module:
 url properties Indian x
foreach prop [array names x] {
 puts "prop $prop=$x($prop)
"
}

 prop recursive=1

 prop type=Module

 prop basedir=/home/tachatterjee/Example

 prop description=

 prop txnuid=00000000000000000000000000000000

 prop mappedpath=

 prop hrefs=NorthIndian {name {} naturalpath {} mappedpath {}
 uid 00000000000000000000000000000000
 target sync://srv2.ABCo.com:2647/Modules/Cuisines/NorthIndian
 dtarget {sync://srv2.ABCo.com:2647/Modules/Cuisines/NorthIndian;Trunk:}
 starget {sync://srv2.ABCo.com:2647/Modules/Cuisines/NorthIndian;1.1}
 hrefinstname NorthIndian modinstname NorthIndian%0
 basedir /home/tachatterjee/Example/NorthIndian
 relpath NorthIndian version {} targetsel Trunk:
 targetver 1.1 hreftype
 Module state added
 servertarget sync:///Modules/Cuisines/NorthIndian}

 prop name=Indian

 prop selector=Trunk:

 prop hrefmode=normal

 prop civ=

 prop uid=9ce32a1a95f4547039a55e7c3bd34906

 prop owner=

 prop exposure=

 prop toplevel=0

 prop hreffilter=

 prop naturalpath=

 prop mergefrom=

 prop keys=kkv

 prop parents=WorldCuisine%0{/home/tachatterjee/Example/worldcusine}
 AsianCusine%1 (/home/tachatterjee/Example/asiancusine)

 prop version=1.4

 prop filter=

 prop target=sync://srv2.ABCo.com:2647/Modules/Cuisine/Indian

ENOVIA Synchronicity Command Reference All -Vol2

691

 prop modinstname=Indian%0

Example Scripts Showing a Specific Property (File-based)

 In this example (server-side script), each property for user
 Joe Brown is displayed:

 url properties "sync:///Users/jbrown" userProps
 foreach prop [array names userProps] {
 puts "Prop $prop=$userProps($prop)
"
 }

 The properties that are displayed by this script are for User web
 object type.

 In this example (server-side script), the field and field values of
 note number 3 of the BugReport notetype are returned:

 url properties "sync:///Note/SyncNotes/BugReport/3" noteProps
 foreach prop [array names noteProps] {
 puts "Prop $prop=$noteProps($prop)
"
 }

 The HTML page resulting from this script is:

 Prop KeyWords=Release Notes
 Prop State=new
 Prop Resp=goss
 Prop CCList=
 Prop Customer=Other
 Prop DateCreate=2003-05-29 12:34:56
 Prop Author=goss
 Prop Severity=STOPPER
 <and so on>

 In this example, the properties for the user 'jbrown' are returned:

 url properties "sync:///Users/jbrown" userProps
 foreach prop [array names userProps] {
 puts "Prop $prop=$userProps($prop)
"
 }

 The HTML page resulting from this script is:

 Prop Key=gdyb21LQTcIANtvYMT7QVQ==
 Prop UserList=
 Prop PhoneNumbr=555-5555
 Prop InitVector=
 Prop Username=jbrown
 Prop userName=jbrown
 Prop email=jbrown@synchronicity.com
 Prop Name=Joe Brown
 Prop name=Joe Brown
 Prop phone=555-5555

URL Sync Object Model

692

 Prop EmailAddr=jbrown@synchronicity.com
 Prop PageNumber=555-6666
 Prop pager=555-6666

 Notes:
 - The Key property is the user's encrypted password.
 - The InitVector property records the expiration time of a user
 profile that was created from an LDAP database.

Example Script Showing All Properties of a Project (File-based)

 This server-side stcl script outputs all the properties of the Asic
 project, each on its own line:

 url properties "sync:///Projects/Asic" Props
 foreach prop [array names Props] {
 puts "Prop $prop=$Props($prop)
"
 }

 For use on the client side, you must specify the <host>:<port>
 in the URL of the project. Also, the HTML
 tag to control the
 output formatting does not apply:

 url properties "sync://holzt:2647/Projects/Asic" Props
 foreach prop [array names Props] {
 puts "Prop $prop=$Props($prop)"
 }

 For the server-side script, the results are displayed as an HTML
 page in your browser. For the client-side script, the results are
 output to stdout.

url registered

url registered Command

NAME

 url registered - Checks whether an object is under revision
 control

DESCRIPTION

• Notes for modules (Module-based)

 This command checks whether an object has been put under revision
 control (returns 1) or not (returns 0). Objects that cannot be put
 under revision control always return 0.

ENOVIA Synchronicity Command Reference All -Vol2

693

 The url registered command looks up an object on the server to verify
 that the object is under revision control. By contrast, the -managed
 option to ls command checks the workspace metadata to see if the
 object is managed.

Notes for modules (Module-based)

 If a module member has been added, but not checked in, the return
 value for the member is 0.

SYNOPSIS

 url registered [--] <argument>

ARGUMENTS

• Workspace Module (Module-based)
• Module Member (Module-based)
• DesignSync Object (File-based)

 Specifies one of the following arguments:

Workspace Module (Module-based)

 <workspace module> Specifies the module for which you want to know
 the revision control status.

 Note: For a workspace module, it should always
 return 1. If a workspace module is somehow removed
 from the server, returns 0. Specifying a server URL
 returns 0.

Module Member (Module-based)

 <module member> Specifies the module member for which you want to
 know the revision control status.

 Note: An object that is added to the module but not
 yet checked into the vault returns 0.

DesignSync Object (File-based)

URL Sync Object Model

694

 <DesignSync object> Specifies the DesignSync object for which you want
 to know the revision control status.

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-).

RETURN VALUE

 If the object is under revision control, returns 1 (Tcl TRUE). If the
 object is not under revision control, returns 0 (Tcl FALSE).

 If the object does not exist or cannot be versioned, returns 0.

SEE ALSO

 url exists, url fetchedstate

EXAMPLES

• Example Showing Whether a Module is Under Revision Control (Module-based)
• Example Showing Whether a Module Member is Under Revision Control (Module-

based)
• Example Showing Whether a File Under Revision Control (File-based)
• Example Showing a File Deleted From the Server (File-based)

Example Showing Whether a Module is Under Revision Control (Module-based)

 This example uses 'url registered' command to checked whether a
 workspace module is under revision control:
 stcl> url registered Module1%0
 1

Example Showing Whether a Module Member is Under Revision Control (Module-based)

ENOVIA Synchronicity Command Reference All -Vol2

695

 This example uses 'url registered' command to checked whether
 module members are under revision control.
 stcl> url registered File1.txt
 1

 stcl> url registered file1.txt
 0

Example Showing Whether a File Under Revision Control (File-based)

 This example checks whether files are under revision control:

 dss> ls -report ORS top*
 Object Type Version Status Name
 ----------- ------- ------ ----
 File 1.2 Locally Modified top.gv
 File 1.2 -> 1.3 Up-to-date top.v
 File Unmanaged - top.log
 Referenced File Refers to: 1.1 Up-to-date top.f

 dss> url registered top.gv
 1
 dss> url registered top.v
 1
 dss> url registered top.f
 1
 dss> url registered top.log
 0

Example Showing a File Deleted From the Server (File-based)

 This example shows a file that has been removed on the server.
 Note that ls -managed shows the file as managed, while url registered
 does not.

 Note: This example shows a file removed with rmvault. Files that
 are removed from a module or retired from DesignSync are still
 DesignSync objects and show as registered.

 stcl> rmvault sync://tallis:30132/Projects/example/file1.txt;
 file1.txt;: Success deleted

 stcl> ls -managed ./file1.txt
 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 09/19/2007 10:14 1.1 Copy file1.txt

 stcl> url registered file1.txt
 0

URL Sync Object Model

696

url relations

url relations Command

NAME

 url relations - Determine collection object dependencies

DESCRIPTION

 This command returns the objects on which a given collection object
 depends. Specify the collection as a URL or path. The relationship
 specification (relation_name argument) supported by DesignSync for
 Cadence cell view collections is "dependencies". For custom generic
 (CTP) collections, DesignSync supports any relation name set up for
 the collection.

 This command is useful for determining the entire set of files
 associated with a design object. For example, you might create
 an stcl script that returns all of the dependencies of a collection
 object, then checks out the collection object and its dependencies.

 When in stcl/stclc mode only, you can optionally specify Tcl
 variable and code arguments. When specified, the command iterates
 through the returned list of member objects (see Examples).

 The url relations command supports the following collection objects:
 - Cadence cell views
 The 'url relations' command determines dependencies
 from the pc.db file, which is located in the cell view folder.
 Use the 'addcdslib' command to resolve dependency paths.
 - Custom generic (CTP) collections
 For these collections, DesignSync supports any relation name set
 up for the collection.

SYNOPSIS

 url relations [--] <collection> <relation_name> [<varname> <code>]

OPTIONS

• --

--

ENOVIA Synchronicity Command Reference All -Vol2

697

 -- Indicates that the command should stop looking for
 command options. Use this option when an argument
 to the command begins with a hyphen (-).

RETURN VALUE

 For a collection specified as a URL or path
 (file:///home/projLeader/ttlLib/and2/symbol.sync.cds,
 /home/projLeader/ttlLib/and2/symbol.sync.cds):
 Returns a list of URLs of objects on which this collection is
 dependent as a list of lists, each sublist containing two
 values: a collection URL and a string of the format "alias:name"
 (file:///home/projlead/Projects/ttlLib/and2/symbol
 ttlLib:and2/symbol.sync.cds
 file:///home/projlead/Projects/ttlLib/nor2/symbol
 ttlLib:nor2/symbol.sync.cds)

 If the alias is unknown, the URL is replaced by the string
 "<unrecognized alias>". For Cadence cell views, use the
 'addcdslib' command to resolve library paths.

 If there are internal dependencies -- dependencies that point to
 components within the object itself, the URL is the collection
 object itself.

 For an object that is not a collection: Returns an empty list.

SEE ALSO

 addcdslib, url members

EXAMPLES

 This command shows the dependencies of a collection object on one
 or more other collection objects. Note: For Cadence cell view
 collections, use the 'addcdslib' command to resolve dependency
 paths. In this example, the cds.lib file in /home/Libraries
 contains the library definition for "basic", but not for "sample".

 stcl> url relations cmos_sch.sync.cds dependencies
 {<unrecognized alias>} basic:vdd/symbol.sync.cds
 {<unrecognized alias>} basic:gnd/symbol.sync.cds
 {<unrecognized alias>} sample:nmos/symbol.sync.cds
 stcl> addcdslib /home/Libraries
 stcl> url relations cmos_sch.sync.cds dependencies
 file:///home/tgoss/Projects/Cadence/basic/opin/symbol.sync.cds
 basic:opin/symbol.sync.cds
 file:///home/tgoss/Projects/Cadence/basic/gnd/symbol.sync.cds
 basic:gnd/symbol.sync.cds

URL Sync Object Model

698

 {<unrecognized alias>} sample:nmos/symbol.sync.cds

url resolveancestor

url resolveancestor Command

NAME

 url resolveancestor - Returns the closest common ancestor of two
 versions

DESCRIPTION

 This command returns the closest common ancestor of two versions of
 the same object (file, module or collection object). DesignSync uses
 the closest common ancestor when merging two versions. DesignSync
 compares the versions to the ancestor to determine how each version
 has changed, then performs the merge. The two versions being merged
 are called the "merge sides".

 For the "url resolveancestor" command, one of the merge sides is
 specified by the "-version <selectorList>" option. DesignSync
 determines the other merge side from the object argument:
 o If the object is a local object, then DesignSync uses the
 current (last-retrieved) version, as stored in the object's
 local metadata.
 o If the object is a version, then DesignSync uses that version.
 o If the object is a branch, then DesignSync uses the Latest
 version of the object on that branch.
 o Any other object type causes DesignSync to throw an exception.

 DesignSync records "merge edges" -- information about what versions
 participated in the merge -- with the new version resulting from a
 merge. DesignSync uses merge edges in future calculations of closest
 common ancestors instead of always going back to the original
 ancestor (by considering only branch points and not merge
 edges). This capability relieves you from having to resolve the same
 merge conflicts during future merges. Specify the -noedges option if
 you want "url resolveancestor" to return the common ancestor without
 considering merge edges.

 Note: DesignSync does not currently record merge edges from
 -overlay (without -merge) and -skip operations.

SYNOPSIS

 url resolveancestor [-noedges] -version <selector>[,<selector>...]
 [--] <argument>

ENOVIA Synchronicity Command Reference All -Vol2

699

ARGUMENTS

• Module (Module-based)
• Module Member (Module-based)
• DesignSync Object (File-based)

 Specifies one of the following arguments:

Module (Module-based)

 <module> Specifies the module for which you want the closest
 common ancestor of two different versions.
 The specified module can be a workspace module
 or a server module. If a whole module is given,
 it is taken as version 1:Latest, if a module
 branch is given then it is taken as the Latest
 on that branch.

Module Member (Module-based)

 <module member> Specifies the workspace module member for which
 you want the closest common ancestor of two
 different versions.

 Note: The versions used are for the member vault
 and not the module.

DesignSync Object (File-based)

 <DesignSync object> Specifies the DesignSync object for which you want
 the closest common ancestor of two different
 versions.

OPTIONS

• -noedges
• -version
• --

-noedges

 -noedges Specifies not to consider merge edges

URL Sync Object Model

700

 when determining the closest common ancestor.

 Note: The -noedges option applies only to merge
 edges created across-branches. Merge edges
 within a branch ("skip" edges) are still
 considered when computing the closest common
 ancestor.

-version

 -version <selector> Specifies one of the versions (merge sides)
 to compare. See the "selectors" help topic for
 more information on selectors. DesignSync
 determines the other merge side from the
 command argument.

 Notes:
 o If you specify Latest or Date(<date>),
 DesignSync uses branch 1
 (1:Latest,1:Date(<date>).
 o To use -version to specify a branch,
 specify both the branch and version as
 follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when the
 argument to the command begins with a hyphen
 (-).

RETURN VALUE

 For all valid objects, returns the version number of the closest
 common ancestor of the current version of this object and the version
 specified with the -version option.

 For all non-valid objects, or non-existent objects, returns an error.

 Note: If two valid versions are specified, there is always a return
 value, because all versions have a common ancestor of version 1.1.
 If two valid versions are not specified, an error is raised.

ENOVIA Synchronicity Command Reference All -Vol2

701

SEE ALSO

 populate, co, selectors

EXAMPLES

• Example Showing Common Ancestor from Versions on the Same Branch
• Example Showing Common Ancestor from Versions on Different Branches
• Example Showing Common Ancestor Using Branch and Version Arguments

 Assume the following version history for a file called "top.v":

 Trunk (branch 1) Dev (branch 1.2.1)

 top.v;1.1
 | Branch "Dev"
 top.v;1.2 ----------> top.v;1.2.1.1
 | Created |
 (Bronze) top.v;1.3 top.v;1.2.1.2
 | |
 top.v;1.4 top.v;1.2.1.3
 | Merge |
 top.v;1.5 ----------> top.v;1.2.1.4
 | |
 top.v;1.6 top.v;1.2.1.5
 |
 top.v;1.2.1.6
 |
 top.v;1.2.1.7

Example Showing Common Ancestor from Versions on the Same Branch

 Assume that version 1.3 of "top.v" is tagged "Bronze", and version
 1.6, which is the Latest version on the same branch (Trunk), is the
 current version:

 stcl> url resolveancestor -version Bronze top.v
 1.3

 DesignSync compares the version tagged "Bronze" (1.3) and the
 current version (1.6) and returns 1.3 as the closest common
 ancestor. Whenever both versions are on the same branch, the lower
 version number is, by definition, the closest common ancestor.

Example Showing Common Ancestor from Versions on Different Branches

 Assume that your current version is 1.2.1.7. You want to know the
 common ancestor of your current version and the Latest version on

URL Sync Object Model

702

 the Trunk branch.

 stcl> url resolveancestor -version Trunk top.v
 1.5

 DesignSync compares the Latest version on Trunk (1.6) and the
 current version (1.2.1.7) and returns 1.5 as the closest common
 ancestor. When versions 1.5 and 1.2.1.3 were merged to create
 version 1.2.1.4, DesignSync recorded the merge edge. Version
 1.2.1.4 includes the resolution of any conflicts between 1.2.1.3
 and 1.5. Subsequent merges between Trunk and Dev leverage this
 information so that you do not need to resolve the same conflicts.

 If you want DesignSync to ignore merge edges, specify -noedge:

 stcl> url resolveancestor -noedge -version Trunk top.v
 1.2

 Version 1.2 is the branch point where Dev was branched from
 Trunk. This version is the closest common ancestor if you do not
 consider the merge of 1.5 and 1.2.1.3.

Example Showing Common Ancestor Using Branch and Version Arguments

 In the previous examples, the argument to "url resolveancestor" was
 a local file. You can also specify a version object:

 stcl> url resolveancestor -version Trunk [url vault top.v]1.2.1.7
 1.5

 or a branch object:

 stcl> url resolveancestor -version Trunk [url vault top.v]Dev
 1.5

 In the case of a branch, DesignSync uses the Latest version on
 the specified branch.

url resolvetag

url resolvetag Command

NAME

 url resolvetag - Returns the version number associated with a
 selector

DESCRIPTION

ENOVIA Synchronicity Command Reference All -Vol2

703

 This command returns the version number to which a specified
 selector (typically a version or branch tag) or selector list
 resolves.
 - If you specify a version selector (for example, a version tag),
 the corresponding version number is returned.
 - If you specify a branch selector (for example, a branch tag),
 the version number of the Latest version on that branch is
 returned.
 - If you do not specify a selector (no -version option), the version
 number of the Latest version on the current branch is returned.
 - If the selector list does not resolve to a version, an exception is
 thrown.

 Specify a versionable object as the argument to this command. If you
 specify any other object type, an empty string is returned.

SYNOPSIS

 url resolvetag [-version <selector>[,<selector>...]] [--]
 <argument>

ARGUMENTS

• Module (Module-based)
• Module Member (Module-based)
• DesignSync Object (File-based)

 Specifies one of the following arguments:

Module (Module-based)

 <module> Specifies the module for which you want the version
 number corresponding to the version option. If no
 version option is given, returns the version number
 of the currently fetched version for a workspace
 module, or the version associated with version
 1:Latest for a server module.

Module Member (Module-based)

 <module member> Specifies the module member for which you want any
 associated tag.
 The command works correctly irrespective of whether
 the member is the Latest version on the members
 branch.

URL Sync Object Model

704

 For example, for collection objects using the citags
 system, as part of the Custom Type System, the
 url resolvetag command returns any tags
 associated with the objects.

DesignSync Object (File-based)

 <DesignSync object> Specifies the DesignSync object for which you want
 the version number of the current version.

OPTIONS

• -version
• --

-version

 -version <selector> Specifies the selector list (typically a
 branch or version tag) for which you want the
 corresponding version number returned. The
 default behavior (if -version is not specified)
 is to return the version number of the Latest
 version on the current branch.

 Note: To use -version to specify a branch,
 specify both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when the
 argument to the command begins with a hyphen
 (-).

RETURN VALUE

 For all valid versionable objects, returns the version
 number of the current version of this object or the version number

ENOVIA Synchronicity Command Reference All -Vol2

705

 corresponding to the selector specified with the -version option.

 For any non-valid objects, returns an empty list.

 For nonexistent object: raises an error.

 Note: Use the -version argument to specify the selector of the
 object. If the version specified by -version does not exist, 'url
 resolvetag' raises an error.

SEE ALSO

 url tags

EXAMPLES

• Example Showing a Resolved Version Tag
• Example Showing the Latest Version of an Object
• Example Showing the Latest Version on a Specified Branch
• Example of Using a Selector List
• Example Showing a Non-Existent Module Version (Module-based)

Example Showing a Resolved Version Tag

 This example returns the version of "top.v" that is tagged "gold":
 stcl> url resolvetag -version gold top.v
 1.2.2.3

Example Showing the Latest Version of an Object

 This example returns the version number of the Latest "top.v" on the
 current branch, which in this case is different than the version
 in the work area:
 stcl> url resolvetag top.v
 1.4
 stcl> url versionid top.v
 1.2

Example Showing the Latest Version on a Specified Branch

 This example returns the Latest version of "top.v" on the branch
 tagged "Rel2.1". Because "top.v" is not in the work area, you
 must specify the vault.
 stcl> url resolvetag -version Rel2.1:Latest [url vault top.v]
 1.5.1.4

URL Sync Object Model

706

Example of Using a Selector List

 This example specifies a selector list. The file "samp.asm" does
 not have a version tagged "beta", so the version corresponding to
 the tag "alpha" is returned. The file "top.v" does not have a
 version corresponding to "alpha" or "beta" version tags, so an
 exception is thrown.
 stcl> url resolvetag -version beta,alpha samp.asm
 1.3
 stcl> url resolvetag -version beta,alpha top.v
 som-E-152: No Such Version.

Example Showing a Non-Existent Module Version (Module-based)

 In the following example, the 'url resolvetag' command is run on a
 module version that does not exist. The -version option is used to
 specify the module version.
 stclc> url resolvetag -version GOLDer Cpu%0
 SomAPI-E-101: No Such Version.

url retired

url retired Command

NAME

 url retired - Returns whether a branch is retired

DESCRIPTION

 This command checks whether an object's branch is retired
 (returns 1) or not (returns 0).

 The object can be:
 o A versionable object (file or collection), in which case the
 retired status of the current branch is returned.
 o A branch, in which case the retired status of that branch is
 returned.
 o A vault, in which case the retired status of branch 1 is
 returned.

 The command returns "0" for all other object types.

ENOVIA Synchronicity Command Reference All -Vol2

707

SYNOPSIS

 url retired [--] <argument>

ARGUMENTS

• DesignSync Object

 Specifies one of the following arguments:

DesignSync Object

 <DesignSync object> Specifies the branch of a DesignSync object
 that you want to know is retired or not.
 Returns 1 if the specified branch is retired,
 otherwise 0.

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-).

RETURN VALUE

 For any valid object, returns 1 (Tcl TRUE) if it is retired,
 otherwise returns 0 (Tcl FALSE).

 For invalid or non-existent objects, returns 0.

SEE ALSO

 retire, vhistory, url exists, url registered

EXAMPLES

URL Sync Object Model

708

• Example Showing the Status of a File Before/After Retirement
• Example Showing the Status of a Retired Branch

Example Showing the Status of a File Before/After Retirement

 This example checks the retired status of a file's current branch
 before and after retiring the branch.
 dss> url retired top.gv
 0
 dss> retire -keep top.gv
 Beginning Retire operation...

 top.gv: Branch 1 Retired in the vault.

 Retire operation finished.
 dss> url retired top.gv
 1
 dss> retire -unretire top.gv
 Beginning Retire operation...

 top.gv: Branch 1 in Vault is now active.

 Retire operation finished.
 dss> url retired top.gv
 0

Example Showing the Status of a Retired Branch

 This example checks the retired status of the "Rel2.1" branch of
 "top.v" by specifying the branch object itself:

 dss> url retired "sync://host:3002/Projects/Mod1/top/top.gv;Rel2.1"
 1

 or from stcl/stclc, you can use "url vault" to simplify the
 specification of the branch URL:

 stcl> url retired [url vault top.gv]Rel2.1
 1

url rmprop

url rmprop Command

NAME url rmprop

 url rmprop - Removes specified properties for a module
 object from the local metadata

ENOVIA Synchronicity Command Reference All -Vol2

709

DESCRIPTION

 This command removes the specified properties from the local metadata
 for the specified module object. It is used to remove the properties
 that indicate that an object was renamed or removed on the branch
 merged into the workspace.

SYNOPSIS

 url rmprop <argument> <property>

ARGUMENTS

• Workspace Module Member

Workspace Module Member

 <workspace Specify an object in the workspace to remove
 module member> the specified property from.

OPTIONS

• Property

Property

 <property> Specify the property to remove from the specified
 object. The following properties can be removed
 from an object.:

 ci_rename - indicates that the object was renamed
 on the branch merged into the
 workspace. Removing this property
 removes that information.

 ci_remove - indicates that the object was removed
 on the branch merged into the
 workspace. Removing this property
 cancels that action.

RETURN VALUE

 This command returns a TCL value of null ("").

URL Sync Object Model

710

 For workspace module members (<path/>File1.txt): returns a success
 message indicating that the property has been deleted.

 For other objects: Not applicable; raises error.

 Note: The command returns a success message even if the property
 being removed was not set for the object.

SEE ALSO

 populate, url getprop, url setprop

EXAMPLES

• Example Showing Removal of the ci_rename Property
• Example Showing Removal of the ci_remove Property

Example Showing Removal of the ci_rename Property

 This example shows removing the ci_rename property from the rom.h
 file in the current directory.

 dss> pwd
 /home/rsmith/MyModules/rom

 dss> url rmprop rom.h ci_rename
 Success: deleted property ci_rename

Example Showing Removal of the ci_remove Property

 This example shows removing the ci_remove property from the rom.h
 file using the full path to the module object.

 dss> url rmprop /home/rsmith/MyModules/rom/rom.h ci_remove
 Success: deleted property ci_remove

url root

url root Command

NAME

 url root - Returns the workspace root for a given path

ENOVIA Synchronicity Command Reference All -Vol2

711

DESCRIPTION

 This command returns the workspace root for a given path,
 which is either the given path or a parent directory. If there
 has been no "setroot" command performed, an empty string ("") is
 returned.

SYNOPSIS

 url root [--] <path>

ARGUMENTS

• Path

Path

 <path> Specify a local directory path or module instance
 name.

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the object
 you specify begins with a hyphen (-).

RETURN VALUE

• Return Values for Modules (Module-based)
• Return Values for Files (File-based)

Return Values for Modules (Module-based)

 For a module instance name, returns the directory path to the workspace
 root directory.

 For any object within a root structure, returns the directory
 path to the workspace root directory.

URL Sync Object Model

712

 For all other values, returns nothing indicating that there is no
 associated workspace root directory.

Return Values for Files (File-based)

 For any object within a root structure, returns the directory
 path to the workspace root directory.

 For all other values, returns nothing indicating that there is no
 associated workspace root directory.

SEE ALSO

 setroot, mkmod, add

EXAMPLES

• Viewing the Root Directory for a Module Workspace (Module-based)
• Viewing the Root Directory for a File-Based Workspace (File-based)

Viewing the Root Directory for a Module Workspace (Module-based)

 This example shows the root directory for the rom.doc file in
 the Doc subdirectory of the ROM module.
 Note: This example uses the absolute path to show the directory
 structure, but the command also accepts relative paths.

 dss> url root /home/rsmith/MyModules/ROM/Doc/rom.doc
 /home/rsmith/MyModules

Viewing the Root Directory for a File-Based Workspace (File-based)

 This examples shows the oort directory for the chip.doc file in the
 files-based Chip project.

 Note: This example uses the absolute path to show the directory
 structure, but the command also accepts relative paths.

 dss> url root /home/rsmith/projects/chip/chip.doc
 /home/rsmith/projects

url selector

ENOVIA Synchronicity Command Reference All -Vol2

713

url selector Command

NAME

 url selector - Returns an object's persistent selector list

DESCRIPTION

 This command returns the persistent selector list (comma-separated
 list of selectors stored in an object's local metadata) associated
 with a specified object. You can specify a versionable object (file
 or collection object) or a local folder. If you specify any other
 object type, or a nonexistent object, an exception is thrown.

 The selector list returned by 'url selector' is determined as
 follows:
 1. If the object has its own persistent selector list,
 return that selector list.
 2. Otherwise, return the persistent selector list of the first
 folder from the parent folder to the file-system root (/)
 that has a persistent selector list. In other words, the object
 inherits its parent folder's selector list.
 3. Otherwise, return "Trunk", which is the default persistent
 selector list.

 Some revision-control commands use the persistent selector list to
 determine which branch or version to operate on, unless overridden
 by an explicit -version or -branch option. See the "selectors" help
 topic for more information on selectors and selector lists.

 Note that the "P" data key for the 'ls' command and the Selector
 column of the List View (in the DesignSync graphical user
 interface) also report an object's persistent selector list.

SYNOPSIS

 url selector [--] <argument>

ARGUMENTS

• Workspace Module (Module-based)
• DesignSync Object (File-based)

 Specify one of the following arguments:

Workspace Module (Module-based)

URL Sync Object Model

714

 <workspace module> Specifies the top level workspace module for
 which you want the associated persistent
 selector list.
 You also get the selectors inherited from the
 href of sub-modules.

DesignSync Object (File-based)

 <DesignSync object> Specifies the DesignSync object for which you
 want the associated persistent selector list.

OPTIONS

• --

--

 -- Indicates that the command should stop looking
 for command options. Use this option when the
 object you specify begins with a hyphen (-).

RETURN VALUE

 For all valid objects, returns the persistent selector list set for
 the object; if no persistent selector list is set, returns the first
 persistent selector list found from the parent folder upward to the
 file system root (/). If no persistent selector list is inherited,
 returns the default persistent selector list, Trunk.

 For any invalid or non-existant objects, returns an applicable
 error.

SEE ALSO

 setselector, selectors, ls

EXAMPLES

• Example Showing the Persistent Selector for the Module (Module-based)
• Example Showing the Persistent Selector List for a File (File-based)
• Example Showing a Single Persistent Selector (File-based)

ENOVIA Synchronicity Command Reference All -Vol2

715

Example Showing the Persistent Selector for the Module (Module-based)

 This example uses 'url selector' command to find the persistent
 selector for module1:
 stcl> url selector Module1%0
 Trunk:

Example Showing the Persistent Selector List for a File (File-based)

 In the following example, a local work area folder called folder1
 contains a file called top.v. The recursive 'setselector' command
 sets the persistent selector list for the folder and its contents.
 dss> setselector -recursive Gold,Silver,Bronze folder1
 dss> cd folder1
 dss> url selector .
 Gold,Silver,Bronze
 dss> url selector top.v
 Gold,Silver,Bronze

Example Showing a Single Persistent Selector (File-based)

 In the following example, you want to populate an empty work area
 called projectA with the latest versions of objects that have a
 "Gold" branch or specific versions tagged "Gold".
 dss> cd projectA
 dss> setselector Gold .
 dss> populate
 <Files are fetched into the work area, including one called gc7.v>
 dss> url selector gc7.v
 Gold

 You now fetch a different version of gc7.v. The selector list for
 gc7.v is updated while the selector list for the folder remains "Gold".

 dss> co -version rel2.1 gc7.v

 Beginning Check out operation...

 Checking out: gc7.v : Success - Fetched version: 1.6

 Checkout operation finished.

 dss> url selector gc7.v
 rel2.1
 dss> url selector .
 Gold

url servers

URL Sync Object Model

716

url servers Command

NAME

 url servers - Returns server-list definitions

DESCRIPTION

 This command returns the SyncServers or vaults specified
 in the server-list (sync_servers.txt) files.

 Using server-list files simplifies the selection of SyncServers or
 vaults from DesignSync (from the Workspace Wizard) and DesignSync
 DFII (from the Vault Browser). When setting up a work area,
 users can select a SyncServer or vault
 using a friendly name instead of specifying the URL.

 The user server-list file is:

 <SYNC_USER_CFGDIR>/sync_servers.txt

 where SYNC_USER_CFGDIR is the environment variable that specifies
 your directory for user-specific customization files.
 If you have not defined the SYNC_USER_CFGDIR environment variable,
 then DesignSync looks for:

 <home>/.synchronicity/sync_servers.txt

 where <home> is your home directory as defined by $HOME on UNIX
 or your user profile, which is managed by the User Manager tool,
 on Windows platforms.

 The site server-list file is:

 <SYNC_SITE_CNFG_DIR>/sync_servers.txt

 where SYNC_SITE_CNFG_DIR is the environment variable that specifies
 the directory for site-specific customization files. If
 you have not defined the SYNC_SITE_CNFG_DIR environment variable,
 then DesignSync looks for:

 <SYNC_DIR>/custom/site/config/sync_servers.txt

 The user and site sync_servers.txt files are not provided as part
 of the Synchronicity installation, so you need to create them if
 they do not already exist.

 The enterprise server-list file is:

 <SYNC_ENT_CUSTOM>/config/sync_servers.txt

 where SYNC_ENT_CUSTOM is the environment variable that specifies

ENOVIA Synchronicity Command Reference All -Vol2

717

 the directory for enterprise-specific customization files. If
 you have not defined the SYNC_ENT_CUSTOM environment variable,
 then DesignSync looks for:

 <SYNC_DIR>/custom/enterprise/config/sync_servers.txt

 The user, site, and enterprise sync_servers.txt files are not
 provided as part of the Synchronicity installation, so you need to
 create them if they do not already exist.

 The syntax for the server-list file is:

 NAME <name> Friendly name for the SyncServer or vault
 REFERENCE <url> The complete URL to the SyncServer or vault
 DESCRIPTION <text> Brief description of the SyncServer or vault

 The following rules apply to the sync_servers.txt files:
 o The NAME keyword begins a new SyncServer or vault definition. It
 must appear before the REFERENCE and DESCRIPTION keywords.
 o The REFERENCE and DESCRIPTION keywords can appear in any order.
 o The keywords are case insensitive.
 o Keywords must be the first non-whitespace characters on a line.
 o The DESCRIPTION field is optional.
 o The DESCRIPTION text can span multiple lines and is terminated
 by a blank line or a keyword as the first non-whitespace
 characters on a line. A comment itself can therefore not
 include a blank line; otherwise, the remaining comment will
 be ignored.
 o Each NAME value must be unique; duplicates are ignored.
 o If the same NAME value appears in both the user and site
 files, the user definition takes precedence.
 The order of precedence is:
 1) user
 2) site
 3) enterprise
 o Comments are indicated by a pound sign (#) as the first
 non-whitespace character on a line.
 Note: Text that does not follow a keyword is ignored and
 therefore behaves like a comment. However, because the
 supported keywords may change in future releases, precede all
 comments with #.

SYNOPSIS

 url servers [-all | -enterprise | -site | -urls* | -user]

OPTIONS

• -all
• -enterprise
• -site

URL Sync Object Model

718

• -urls
• -user

-all

 -all Returns both site and user server lists, with
 duplicates removed (user definitions have
 precedence over site definitions).

-enterprise

 -enterprise Returns only the enterprise server list.

-site

 -site Returns only the site server list.

-urls

 -urls Preserves the previous behavior of returning only the
 REFERENCE URL for each SyncServer or vault with a
 unique NAME from both the site and user
 sync_servers.txt files.

 *Note: This option is the default behavior in order to
 maintain backward compatibility. The -urls option
 will be removed in a future DesignSync release, and the
 default behavior (no options specified) will
 change. Therefore, it is recommended that you use the
 -enterprise, -site, -user, or -all option.

-user

 -user Returns only the user server list.

RETURN VALUE

 If -url or no option is specified, a list of REFERENCE URLs:
 url url ...

 Otherwise, a list of lists, with each sublist containing the NAME,
 REFERENCE, and DESCRIPTION values:

ENOVIA Synchronicity Command Reference All -Vol2

719

 {{name} {url} {description}} {{name} {url} {description}} ...

EXAMPLES

 A site sync_servers.txt file contains the following:

 # This sync_servers.txt file is used by the entire
 # Marlboro site.
 NAME Doc Vault
 REFERENCE sync://docserver:2647/Projects/docs
 DESCRIPTION Server for documentation source files.
 Only the documentation group can lock files.

 NAME Source
 REFERENCE sync://src:3001

 and a user sync_servers.txt file contains the following:

 NAME My Server
 REFERENCE sync://localhost:2647

 NAME Source
 REFERENCE sync://src.myco.com:3001
 DESCRIPTION The company-wide source repository

 The following are the results of 'url servers'. Note that in the
 combined list (with -all specified), 'url servers' returns the
 user's "Source" definition, because the user's sync_servers.txt
 file takes precedence over the site file.

 stcl> url servers -user
 {{My Server} {sync://localhost:2647} {}}
 {{Source} {sync://src.myco.com:3001} {The company-wide source
 repository.}}
 stcl> url servers -site
 {{Doc Vault} {sync://docserver:2647/Projects/docs}
 {Server for documentation source files. Only the documentation group
 can lock files.}} {{Source} {sync://src:3001} {}}
 stcl> url servers -all {{My Server} {sync://localhost:2647} {}}
 {{Source} {sync://src.myco.com:3001} {The company-wide source
 repository.}}
 {{Doc Vault} {sync://docserver:2647/Projects/docs}
 {Server for documentation source files. Only the documentation group
 can lock files.}}

url setprop

url setprop Command

NAME

URL Sync Object Model

720

 url setprop - Sets a property on an object

DESCRIPTION

 This command lets you set the value of a property on most objects
 (on notes you can change existing properties, but not add new ones).
 Properties are specified as a name (typically a short identifier)
 and a value, which can be a string of any length. Such properties
 are stored with the metadata representing the object.

 IMPORTANT: The property prefix "Sync" is reserved for DesignSync
 properties. You should not create any properties that begin with
 this reserved prefix. While this prefix is case sensitive, DesignSync
 recommends, to minimize confusion, that you avoid using "sync" with
 any casing variant as a prefix to any custom properties.

 For note URLs, both the object and property must exist and the
 property value supplied must be legal for its property type.
 The new property value specified in this command is checked against
 the current value of the property. If they are the same, no change
 is made to the object.

 Note that the "special" properties that are supported by the
 url properties command are not available to url setprop. For example,
 if url properties reports that an object is locked by someone, you
 cannot unlock it with url setprop by passing in "locked 0".

 You can use url setprop with most object types. However,
 depending on the type, the command may only work in server-side
 scripts, such as when accessing notes. User-defined properties
 are not supported for configurations.

 Because DesignSync automatically determines the datatype of the
 vault, it may assign a datatype that you do not want. For example, it
 may assign the binary datatype to an ASCII file. In such cases, you can
 use the 'url setprop' command to change the vault datatype.

 The successful execution of this command on a note object causes an
 atomic note modify event and fires the corresponding triggers in
 response. If the property value equals the current value of the
 property, no event is generated.

 Note: If you need to set more than one property on the same note, it
 is preferable to use the note setprops command, because it is more
 efficient and reduces trigger activity.

 You can use the "url setprop" command to change the checkin comments
 of objects checked into a vault.

 Note: This command does not change the comments associated with
 tags. To change tag comments remove the tag and add it back again.

 The "url setprop" command is subject to access controls on the
 server. For more information, see the ENOVIA Synchronicity Access

ENOVIA Synchronicity Command Reference All -Vol2

721

 Control Guide.

SYNOPSIS

 url setprop [--] <Object_url> <prop_name> <prop_value>

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when property
 names or values begin with a hyphen (-).

OPERANDS

• Object URL
• Property Name
• Property Value

Object URL

 <Object_url> A valid object URL.

Property Name

 <prop_name> The name of the property to set on the object.

 You can specify the special property name DataType to
 assign the data type of the vault.

Property Value

 <prop_value> The value of the property to set on the object.

 When you use the special DataType property for a vault,
 it can take one of the following values:

 o ascii or text - changes the vault data type ASCII.
 o binary - changes the vault data type to

URL Sync Object Model

722

 binary.
 o undefined - lets DesignSync determine the vault
 data type at the next check in,
 based on the file's contents.

RETURN VALUE

 For all valid objects, returns the value set for the new property.

 For all invalid or non-existent objects, returns an error.

SEE ALSO

 note getprop, note setprops, url getprop, url properties

EXAMPLES

• Example of Setting a User-Defined Property on a Module Workspace (Module-based)
• Example of Setting a User-Defined Property on a Module Member (Module-based)
• Example of Setting a User-Defined Property on a Server Vault (File-based)
• Example of Changing the DataType value for an Object (File-based)
• Example of Changing a Comment (File-based)

Example of Setting a User-Defined Property on a Module Workspace (Module-based)

 The example uses the 'url setprop' command to change the user defined
 property "respuser" for a module workspace.

 stcl> url getprop Chip%0 respuser
 tadams

 stcl> url setprop Chip%0 respuser rsmith
 rsmith

Example of Setting a User-Defined Property on a Module Member (Module-based)

 This example uses the 'url setprop' command to change the user defined
 property "respuser" for module member File1.txt:
 stcl> url getprop [url vault File1.txt] respuser
 tadams

 stcl> url setprop [url vault File1.txt] respuser rmsith
 rsmith

 stcl> url getprop [url vault File1.txt] respuser

ENOVIA Synchronicity Command Reference All -Vol2

723

 rsmith

Example of Setting a User-Defined Property on a Server Vault (File-based)

 This server-side example sets and displays a CcList user-defined
 property on a vault.
 stcl> url setprop "sync:///Projects/myproj/foo.v;" CcList {sal jason mark}
 stcl> puts [url getprop "sync:///Projects/myproj/foo.v;" CcList]

Example of Changing the DataType value for an Object (File-based)

 This example changes the vault data type to ascii. "url vault" is
 used to identify the vault file associated with the workspace file.
 stcl> url setprop [url vault samp.asm] DataType ascii

Example of Changing a Comment (File-based)

 This example changes the comment stored with the object version.
 stcl> url setpop "[url vault samp.asm];1.3" log "SD 1550 - changed
 comment to include SD number for correction."

 Note: If the log property value is not specified on the command,
 DesignSync prompts for an interactive comment specified either on the
 command line or by spawning the defined file editor. When the file
 editor is launched to edit the comments, it is initiallized with the
 current value of the log property. For more information on defining a
 file editor, see the DesignSync Data Manager Administrator's Guide,
 "General Options."

url syslock

url syslock Command

NAME

 url syslock - Sets a system lock on a lock name or file path

DESCRIPTION

 This command lets you manipulate arbitrary system locks by
 name. The name may be a logical lock name or a path to an actual
 file. Note that the locks are advisory locks. This means that

URL Sync Object Model

724

 there is nothing from preventing a user from performing an action
 for which another user has obtained a lock. It is up to each user
 to check for the existence of the lock before performing the
 operation. This process is cooperative.

 There are two types of locks and three basic locking operations.
 Locks may be shared or exclusive. A shared lock (also called a
 read lock) may be held by several processes at one time. An
 exclusive lock (also called a write lock) may be held by only one
 process at a time. Furthermore, an exclusive lock will not be granted
 if any shared lock is in place.

 The three locking operations are acquire, yield, and release.
 Acquire and release simply obtain and give up the named lock. The
 yield call allows the holder of a lock to release that lock
 temporarily and then re-obtain it. In this way processes that
 expect to hold a lock for a long period of time may choose to
 release the lock temporarily to allow other processes to obtain
 the lock, perform some relatively fast operation, and then release
 the lock again. At this point the original process may again
 acquire the lock. Normally, acquire requests are counted and the
 lock released only when the reference count drops to zero. The
 -all option overrides this behavior and forces a release. The
 original reference count is then restored when the lock is
 re-acquired. This option is only recognized by the yield call.

 A timeout may be specified when calling to acquire or yield a lock.
 By default the call blocks until the specified lock becomes
 available. If the timeout value is supplied, however, this will
 be taken as the maximum number of seconds to wait for the
 specified lock to become available. Should the timeout period
 expire, an error is returned.

 The canonization flag specifies that the string supplied should be
 interpreted as a file path name and, further, that the name should
 be resolved into a canonical path. The canonization process will
 take file system mount points into consideration. For example,
 if your home directory is mounted to /u/home/user on
 system_X and to /home1/user on system_Y, and your home
 directory actually resides at /users/home on system_A, then the
 canonization process results in the path system_A:/users/home
 regardless of the system from which you invoke the lock request.

 The realmount and realpath calls canonize the supplied
 paths. For realmount, the path is resolved down to the mount
 point. For realpath, the path is only resolved down to the
 root of the local file system; no mount point resolution is taken
 into account.

 The showlocks call displays the locks that the current process holds.
 The output format includes the lock name, its index within the master
 lock file (the file used to acquire operating system level locks),
 the number of read locks pending, and the number of write
 locks pending.

ENOVIA Synchronicity Command Reference All -Vol2

725

SYNOPSIS

 url syslock -acquire <name_or_path> [-canonize] [-shared]
 [-timeout secs]
 url syslock -yield <name_or_path> [-canonize] [-shared]
 [-timeout secs] [-all]
 url syslock -release <name_or_path> [-canonize]
 url syslock -realmount <name_or_path>
 url syslock -realpath <name_or_path>
 url syslock -showlocks

 Note: The <name_or_path> argument must follow the
 -acquire/-yield/-release/-realmount/-realpath option.

OPTIONS

• -all
• -acquire
• -canonize
• -realmount
• -realpath
• -release
• -shared
• -showlocks
• -timeout
• -yield
• --

-all

 -all Only available with -yield. The default behavior
 is that a lock is released only when the
 reference count drops to zero. The -all option
 overrides this behavior and forces a release. The
 original reference count is then restored when
 the lock is re-acquired.

-acquire

 -acquire Obtains the specified lock.

-canonize

 -canonize Specifies that the string supplied should be
 interpreted as a file path name and that the name

URL Sync Object Model

726

 should be resolved into a canonical path. The
 canonization process takes file system mount
 points into consideration. For example,
 if your home directory is mounted to /u/home/user
 on system_X and to /home1/user on system_Y, and
 your home directory actually resides at
 /users/home on system_A, then the canonization
 process results in the path system_A:/users/home
 regardless of the system from which you invoke
 the lock request.

-realmount

 -realmount Canonizes the specified path, resolved down to
 the mount point.

-realpath

 -realpath Canonizes the specified path, resolved down to the
 root of the local file system; no mount point
 resolution is taken into account.

-release

 -release Gives up the specified lock.

-shared

 -shared Specifies that the lock to be acquired or yielded
 is a shared (read) lock. When -share is not
 specified, the lock is an exclusive (write) lock.

-showlocks

 -showlocks Displays the locks that the current process holds.

-timeout

 -timeout <secs> Available with -acquire and -yield. By default, the
 call blocks until the specified lock becomes
 available. If a timeout value is supplied, you
 specify the maximum number of seconds to wait for

ENOVIA Synchronicity Command Reference All -Vol2

727

 the specified lock to become available. Should the
 timeout period expire, an error is returned.

-yield

 -yield Allows the holder of a lock to release that lock
 temporarily and then re-obtain it.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-).

RETURN VALUE

 For a logical lock name (Asic/x.v:lnx:16738,rd:0,wr:1): Performs the
 action specified by the options, but provides no return value.

 Note: The logical lock name format includes the lock name, its index
 within the master lock file (the file used to acquire operating
 system level locks), the number of read locks pending, and the number
 of write locks pending.

 For other client-side objects: Performs the action specified by the
 options, but provides no return value; 'url syslock' does not verify
 that the object exists.

 For server-side objects: Raises error.

EXAMPLES

 Tihs example shows acquiring a lock, viewing the lock, and then
 releasing the lock.

 stcl> url syslock -acquire /home/users/dave/sample.txt -canonize
 Acquired: /home/users/dave/sample.txt
 stcl> url syslock -showlocks
 Current Locks: /home/users/dave/sample.txt:lnx:16738,rd:0,wr:1
 stcl> url syslock -release sample.txt -canonize
 Released: /home/users/dave/sample.txt

url tags

url tags Command

URL Sync Object Model

728

NAME

 url tags - Returns the version tags associated with
 a specified object

DESCRIPTION

 This command returns the list of version tags associated with the
 specified object. Tags are listed with "Latest" first, if
 applicable, then in order from oldest to newest. If the object has
 no associated version tags, a null string is returned.

 By default the command returns the version tags associated with
 the currently fetched version of the object. Use the -version
 option to fetch the tags associated with a particular version
 of the object.

 Note: You can use the -btags argument with the url tags command to
 specify the branch tags, rather than the version tags.

SYNOPSIS

 url tags [-btags] [-version <selector>] [--] <argument>

ARGUMENTS

• Module (Module-based)
• Module Member (Module-based)
• DesignSync Object (File-based)

 Specifies one of the following arguments:

Module (Module-based)

 <module> Specifies the module for which you want the
 associated version tags.

Module Member (Module-based)

 <module member> This is not a valid argument type.
 Returns an empty string "".

ENOVIA Synchronicity Command Reference All -Vol2

729

DesignSync Object (File-based)

 <DesignSync object> Specifies the DesignSync object for which you
 you want the associated version tag.

OPTIONS

• -btags
• -version
• --

-btags

 -btags Specifies displaying branch tags instead of the
 version tags for the specified argument.

-version

 -version <selector> Specifies the version of the local object
 (file or collection) for which you want the
 associated tags.
 The -version option is ignored if you specify
 a version or branch as the argument to
 "url tags". See the "selectors" help topic for
 details on selectors.

 Note: To use -version to specify a branch,
 specify both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when the
 argument to the command begins with a hyphen
 (-).

RETURN VALUE

URL Sync Object Model

730

 For all valid objects, returns the specified list of tags associated
 with the specified object, with "Latest" first, if applicable, then
 in order from oldest to newest. If no tags exit, it returns an empty
 list.

 For other invalid or non-existent objects, returns appropriate error.

SEE ALSO

 url resolvetag, url versionid, tag

EXAMPLES

• Example Showing the Tags Associated with a Module (Module-based)
• Example Showing the Tags Associated with a File (File-based)
• Example Showing the Tags Associated with a Specified File Version (File-based)

Example Showing the Tags Associated with a Module (Module-based)

 This example uses 'url tags' to get the tag associated with a
 module:
 stcl> url tags Module1%0
 Latest

Example Showing the Tags Associated with a File (File-based)

 This example returns the version tags associated with the
 current version of "top.v". Because the current version is also the
 latest version on that branch, DesignSync automatically associates
 "Latest" with that version.

 dss> url tags top.v
 Latest Gold

Example Showing the Tags Associated with a Specified File Version (File-based)

 This example returns the tags associated with version 1.2 of "top.v":
 dss> url tags -version 1.2 top.v
 Bronze

 You can also specify the version object itself. You might do this
 if you do not have the object in your work area or if you are using
 "url tags" in a server-side script. Specifying the -version option
 would have no effect in this case because you have specified a
 version as the command argument:

ENOVIA Synchronicity Command Reference All -Vol2

731

 stcl> url tags [url vault top.v]1.2
 Bronze

url users

url users Command

NAME

 url users - Returns all users defined for an object's
 server

DESCRIPTION

 This command returns the list of all users defined for a server.
 If no users exist, an empty string is returned.

 The <object> parameter is optional and is always ignored. This
 parameter is retained for backward compatibility. If you supply
 an object URL, the URL must be valid.

 Note that the object can be the server root itself, such as:
 url users sync:///

 Note: 'url users' is a server-side only command. For more
 information, type 'help server-side'.

SYNOPSIS

 url users <path>

OPTIONS

 none

OPERANDS

• Path to the Server

Path to the Server

URL Sync Object Model

732

 <path> The path to the server. Optional.

RETURN VALUE

 For a server or server-side object, returns a list of
 the users defined for the server.

 For any invalid objects or non-existent objects, returns an error.

SEE ALSO

 url contents, url projects, server-side, rstcl

EXAMPLES

 This example returns the users currently defined for the Sportster
 project. Because users are defined on a per-server basis, all users
 defined for the holzt:2647 server are returned.

 1. In <SYNC_DIR>/custom/site/share/tcl, create 'users.tcl' that
 contains the following lines:
 puts [url users sync:///Projects/Sportster]

 2. From your browser, issue the following URL:
 http://holzt:2647/scripts/isynch.dll?panel=TclScript&
 file=users.tcl

 The browser displays the users currently defined for the
 Sportster project:
 sync:///Users/goss
 sync:///Users/barbg

 You could also execute this script from a DesignSync client
 using the rstcl command.

url vault

url vault Command

NAME

 url vault - Returns the URL of an object's vault

DESCRIPTION

ENOVIA Synchronicity Command Reference All -Vol2

733

• Note for modules (Module-based)

 This command returns the URL of the vault object associated with
 the specified object. If the object is a directory, the
 vault-side directory that it is associated with is returned.

 The general syntax for the url commands is described under
 "help url".

Note for modules (Module-based)

 This is an internal command, not very useful except
 when a DesignSync vault is upgraded to a module and some DesignSync
 objects have versions which are not present in any module version.
 In this case, you need to know the vault URL of the object in order
 to retrieve properties from that member version.

SYNOPSIS

 url vault [-modulecontext <context>] <argument>

ARGUMENTS

• Workspace Module (Module-based)
• Module Folder (Module-based)
• Module Member (Module-based)
• Designsync Object (File-based)

 Specify one or more of the following arguments:

Workspace Module (Module-based)

 <workspace module> Specifies the workspace module for which you
 want the URL of the vault.

Module Folder (Module-based)

 <module folder> This is not a valid argument type.
 Returns the following error as module folders
 do not have a direct vault association:
 Error: <module folder>: This folder is a module
 member and does not have an individual vault

URL Sync Object Model

734

 value.

Module Member (Module-based)

 <module member> Specifies the module member for which you want
 the URL of the vault.

 Note: Module members are operated on in the
 context of a module and have a specific vault
 URL. However, the same module member in different
 versions of the module can have different vault
 URL. This is because of the way module members
 are renamed. See the mvmember command for more
 information.

Designsync Object (File-based)

 <DesignSync object> Specifies the DesignSync object for which you
 want the URL of the vault.

OPTIONS

• -modulecontext (Module-based)

-modulecontext (Module-based)

 -modulecontext Specifies a module context, allowing the
 <context> retrieval of a vault for a module member that is
 not in the workspace. In this case, the argument
 must be the natural path of the object.

RETURN VALUE

 For all valid objects, returns the URL of the vault associated with
 the specified object.

 For any non-valid objects or non-existent objects, returns an empty
 list.

SEE ALSO

 url, setvault

ENOVIA Synchronicity Command Reference All -Vol2

735

EXAMPLES

• Example of Getting the Module Vault Information (Module-based)
• Example of Getting Vault for the Current Working Directory (File-based)
• Example of Getting the Vault for a Specified File (File-based)
• Example of Using the url vault command within a Command (File-based)

Example of Getting the Module Vault Information (Module-based)

 This example uses the 'url vault' command to get the url
 of a module's vault.
 stcl> url vault Module1%0
 sync://srv2.ABCo.com:2647/Modules/Module1

Example of Getting Vault for the Current Working Directory (File-based)

 This example returns the vault folder for the current directory using
 relative and absolute paths:
 dss> url vault .
 sync://holzt:2647/Projects/Sportster

 dss> url vault /home/goss/Projects/Sportster
 sync://holzt:2647/Projects/Sportster

Example of Getting the Vault for a Specified File (File-based)

 This example returns the vault for top.v:
 dss> url vault top.v
 sync://holzt:2647/Projects/Sportster/top/top.v;

Example of Using the url vault command within a Command (File-based)

 This example uses 'url vault' to change directory into a vault
 folder:
 stcl> scd [url vault top.v]
 stcl> spwd
 sync://holzt:2647/Projects/Sportster/top/top.v;

url versionid

url versionid Command

NAME

URL Sync Object Model

736

 url versionid - Returns the version number of the specified
 object

DESCRIPTION

• Module Notes (Module-based)

 This command returns the version number of the specified object.

 - For managed objects, the current version number (as stored in the
 local metadata) is returned.
 - If the object is a reference, the version number is preceded by
 "Refers to:".
 - If the object is locked, the current version number and upcoming
 version number are returned.
 - For version objects specified with a version number, that
 version number is returned.

 Notes:
 o To get the version number of a selector list or a tag, use url
 resolvetag command.

 o The return value of 'url versionid' is the same as the version
 returned by the 'ls -report R' command and the Version column of
 the List View (from the DesignSync graphical user interface).

Module Notes (Module-based)

 o You cannot specify a version number for a module or module member
 object.

 o Module members that have been added but not checked in are
 considered "unmanaged."

SYNOPSIS

 url versionid [--] <argument>

ARGUMENTS

• Workspace Module (Module-based)
• Module Member (Module-based)
• DesignSync Object (File-based)

ENOVIA Synchronicity Command Reference All -Vol2

737

 Specifies one or more of the following arguments:

Workspace Module (Module-based)

 <workspace module> Specifies the module for which you want the
 current version number.

Module Member (Module-based)

 <module member> Specifies the module member for which you want
 the current version number.

DesignSync Object (File-based)

 <DesignSync objects>Specifies the DesignSync object for which you
 want the current version number.

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument to the
 command begins with a hyphen (-).

RETURN VALUE

 For all valid objects, returns the version number of the object
 (1.3). If the object is a reference, the version number is preceded
 by "Refers to:". If the object is locked, the current version number
 and upcoming version number are returned (1.3 -> 1.4).

 For invalid revision controlled objects, returns an empty list.

 For any objects not under revision control, returns "unmanaged."

 For any objects that do not exist, returns an appropriate error.

SEE ALSO

URL Sync Object Model

738

 url versions, url branchid, url resolvetag, ls

EXAMPLES

• Example Showing Different Return Values for Module Objects (Module-based)
• Example Showing a Variety of Different Return Values for File Objects (File-based)

Example Showing Different Return Values for Module Objects (Module-based)

 The following example uses 'url versionid' to get the version
 number of a module:
 stcl> url versionid Module1%0
 1.2

 The following example uses 'url versionid' to get the version
 number of a module member that is added but not yet checked in:
 stcl> url versionid File3.txt
 Unmanaged

Example Showing a Variety of Different Return Values for File Objects (File-based)

 The following examples show the different return values for
 the 'url versionid' command.

 stcl> ls -report R samp.asm samp.lst test.mem test.asm test.s19
 Version Name
 ------- ----
 1.2 samp.asm
 1.1 -> 1.2 samp.lst
 1.2.1.2 test.mem
 Refers to: 1.1 test.asm
 Unmanaged test.s19

 For local managed objects, returns the current version number:
 stcl> url versionid samp.asm
 1.2
 stcl> url versionid test.mem
 1.2.1.2

 For references, precedes the version number with "Refers to:":
 stcl> url versionid test.asm
 Refers to: 1.1

 For locked objects, returns the current and next version number:
 stcl> url versionid samp.lst
 1.1 -> 1.2

 For unmanaged objects, returns "Unmanaged":
 stcl> url versionid test.s19
 Unmanaged

ENOVIA Synchronicity Command Reference All -Vol2

739

 For version objects, returns the version number:
 stcl> url versionid [url vault samp.asm]1.1
 1.1

 For folders, vaults, and other objects that do not have versions,
 returns an empty string:
 stcl> url versionid .
 stcl> url versionid sync://myhost:2647
 stcl> url versionid [url vault samp.asm]

 If the object does not exist, an exception is thrown:
 stcl> url versionid nosuchobject
 somapi-E: Unable to locate: nosuchobject

url versions

url versions Command

NAME

 url versions - Returns the URLs of an object's versions

DESCRIPTION

 This command returns a list of URLs of the version objects
 associated with the specified object. If the object is
 a vault, the versions on the main branch (branch 1) are returned.
 If the object is a branch, the versions on that branch are
 returned. If the object is a local managed object, the versions
 for that object's current branch are returned. If the object is
 not a vault, branch, or managed object, then an empty list is
 returned.

 Note: In stcl/stclc mode, when specifying a URL that contains a
 semicolon (;), surround the URL with double quotes.

SYNOPSIS

 url versions <argument>

ARGUMENTS

• Module Branch (Module-based)
• Module Member (Module-based)
• Server Module (Module-based)

URL Sync Object Model

740

• DesignSync Object (File-based)

Specifies one or more of the following:

Module Branch (Module-based)

 <module branch> Returns the versions of the specified module
 branch. If it is a workspace module, applies
 the command to the current branch of that module.

Module Member (Module-based)

 <module member> Returns all versions associated with the module
 member or module member branch.

Server Module (Module-based)

 <server module> Returns all versions on all branches for the
 server module.

DesignSync Object (File-based)

 <DesignSync object> Specifies the DesignSync object for which you
 want the URLs of the associated versions.

OPTIONS

 none

RETURN VALUE

 For valid objects, returns a list of the version URLs associated
 with the object; either on the specified branch or all branches.

 For any invalid object, returns empty list.

 For nonexistent objects, raises error.

SEE ALSO

ENOVIA Synchronicity Command Reference All -Vol2

741

 url contents

EXAMPLES

• Example of Getting Versions Associated with a Server Module (Module-based)
• Example Showing Versions on the Trunk Branch (File-based)
• Example Showing Versions on File Vault Object (File-based)

Example of Getting Versions Associated with a Server Module (Module-based)

This example uses 'url versions' command to get the list versions
for a server module:
 stcl> url versions sync://srv2.ABCo.com:2647/Modules/Module1
 {sync://srv2.ABCo.com:2647/Modules/Module1;1.1}
 {sync://srv2.ABCo.com:2647/Modules/Module1;1.2}

Example Showing Versions on the Trunk Branch (File-based)

 This example shows the versions on the Trunk branch of top.v
 (top.v;1.3 is in the local work area, so version information
 for the Trunk branch is returned).
 dss> url versions top.v
 sync://holzt:2647/Projects/Sportster/top/top.v;1.1
 sync://holzt:2647/Projects/Sportster/top/top.v;1.2
 sync://holzt:2647/Projects/Sportster/top/top.v;1.3

Example Showing Versions on File Vault Object (File-based)

 This example shows the versions of samp.asm on the "rel20"
 branch:
 stcl> url versions [url vault samp.asm]rel20:Latest
 {sync://localhost/Projects/Sportster/code/samp.asm;1.2.1.1}
 {sync://localhost/Projects/Sportster/code/samp.asm;1.2.1.2}

url view

url view Command

NAME

 url view - Returns persistent view list for workspace module

URL Sync Object Model

742

DESCRIPTION

This command returns the persistent view list set on a workspace
module instance.

SYNOPSIS

 url view [--] <Workspace Module>

ARGUMENTS

• Workspace Module

Workspace Module

 <workspace module> Workspace module instance name or workspace
 directory name containing the module.

OPTIONS

 none

RETURN VALUE

 For a workspace module instance DesignSync returns the persistent view
 name or list.

 If there is no persistent view for the workspace or the module does
 not exist in the workspace, DesignSync returns an empty string ("").

SEE ALSO

 setview

EXAMPLES

• Example Showing A View

Example Showing A View

ENOVIA Synchronicity Command Reference All -Vol2

743

 This example shows a technical writer's workspace, which has a Doc
 view applied to the code module so the writer can populate only the
 documentation.

 dss> url view Chip%0
 Doc

745

TCL Interface

auto_mkindex

auto_mkindex Command

NAME

 auto_mkindex - Indexes stcl procedures

DESCRIPTION

 By placing your stcl procedures in designated site-wide or
 project-level tcl directories, DesignSync indexes them so that
 users at your site can autoload the procedures only when they need
 them. In some cases, you might want to generate the indexes
 manually using the auto_mkindex command. The indexes you create are
 not accessible to currently running DesignSync clients, but you can
 issue the auto_reset command in a DesignSync client to make the
 procedures in the indexes accessible. Thus, using auto_mkindex and
 auto_reset helps you efficiently debug your stcl procedures.

 The auto_mkindex command creates the array of stcl procedures used
 by the current Tcl interpreter. These procedures are stored in the
 auto_index array and are loaded by the Tcl autoloader when users at
 your site invoke them. These autoloaded stcl procedures are only
 accessible in the stcl mode of DesignSync. If the auto_index
 generates successfully, a file named tclIndex is created in the
 site or custom tcl directory.

 For your stcl procedures to be autoloaded, you must store the
 procedure files in the site-wide or project-level tcl directory.
 Thus, the <directory_name> argument must be the absolute path to
 the site or project tcl directory:

 * For site-wide stcl files: <SYNC_SITE_CUSTOM>/share/client/tcl

 * For project-level stcl files: <SYNC_PROJECT_CFGDIR>/tcl

 SYNC_PROJECT_CFGDIR has no default; no project information is
 loaded if this environment variable is not set. SYNC_SITE_CUSTOM
 resolves to <SYNC_CUSTOM_DIR>/site.

 Note: SYNC_SITE_CUSTOM is equivalent to <SYNC_CUSTOM_DIR>/site;
 if SYNC_SITE_CUSTOM is not set, but SYNC_CUSTOM_DIR is set,
 DesignSync will still access the site-wide stcl files.
 You must have write access to the site or client tcl directory
 for the auto_index to be generated.

 If you specify a file with the <file> argument, you must specify

TCL Interface

746

 the entire name of the file, including the .tcl extension. If you
 do not specify a file, auto_mkindex adds procedures in all files
 with .tcl extensions in the specified directory to the auto_index
 array.

SYNOPSIS

 auto_mkindex <directory_name> [<file>...]

 Note: This command is supported only in stcl mode.

RETURN VALUE

 none

SEE ALSO

 parray auto_index, auto_reset

EXAMPLES

 This example adds the procedures in the site tcl directory to the
 Tcl index. In this example, the procedure, popasic, is included in
 a file, revcmds.tcl in the site tcl directory,
 <SYNC_DIR>/custom/site/share/client/tcl. The example also shows how
 to use auto_reset to make the newly added procedure accessible in
 the current session.

 stcl> auto_mkindex "c:\\Program Files\\Synchronicity\\DesignSync\\
 custom\\site\\share\\client\\tcl"
 stcl> auto_reset
 0
 stcl> popasic
 ...

auto_reset

auto_reset Command

NAME

 auto_reset - Resets the Tcl autoload index

ENOVIA Synchronicity Command Reference All -Vol2

747

DESCRIPTION

 This command lets you use newly indexed stcl procedures without
 restarting your DesignSync client. Use the auto_mkindex command to
 index new stcl procedures. Then issue the auto_reset command to
 make the new procedures accessible in your current DesignSync
 session.

 You must have write access to the site-wide and project-level tcl
 directories, as well as the tclIndex files in those directories,
 for the indexes to be reloaded. The site and project tcl
 directories are located as follows:

 * For site-wide stcl files: <SYNC_SITE_CUSTOM>/share/client/tcl

 * For project-level stcl files: <SYNC_PROJECT_CFGDIR>/tcl

SYNOPSIS

 auto_reset

 Note: This command is supported only in stcl mode.

RETURN VALUE

 0 if the indexes are loaded successfully; 1 otherwise.

SEE ALSO

 auto_mkindex, parray auto_index

EXAMPLES

 This example shows how to use auto_reset to make a newly added
 procedure accessible in the current session.

 stcl> auto_mkindex "c:\\Program Files\\Synchronicity\\DesignSync\\
 custom\\site\\share\\client\\tcl"
 stcl> auto_reset
 0
 stcl> popasic
 ...

gets

TCL Interface

748

gets Command

NAME

 gets - Reads a string from a file

DESCRIPTION

 This command is the Tcl gets command with Synchronicity
 extensions. Refer to a Tcl language reference manual for
 a full description of the standard gets command.

 Synchronicity has extended the gets command to a -prompt
 option that you use to specify a prompt string.

SYNOPSIS

 See a Tcl language reference manual.

EXAMPLES

 The following example demonstrates the -prompt option, which
 pops up a simple dialog box (when run from the graphical
 interface) and prompts the user for input:

 set name [gets stdin -prompt "Enter your name:"]

parray auto_index

parray auto_index Command

NAME

 parray auto_index - Lists the autoloaded stcl procedures

DESCRIPTION

 This command returns the array of stcl procedures in the current
 Tcl interpreter. These procedures are stored in the auto_index

ENOVIA Synchronicity Command Reference All -Vol2

749

 array and are loaded by the Tcl autoloader when you invoke them.
 You can add procedures to the Tcl interpreter by storing them in a
 designated tcl directory and then invoking a DesignSync client or
 by indexing them manually using the auto_mkindex command.

 If you use auto_mkindex to manually index the new procedures, issue
 the auto_reset command to make the auto_index accessible in the
 current session. The autoloaded stcl procedures are only
 accessible in the stcl mode of DesignSync.

SYNOPSIS

 parray auto_index

 Note: This command is supported only in stcl mode.

RETURN VALUE

 An array of stcl procedures and their source files.

SEE ALSO

 auto_mkindex, auto_reset

EXAMPLES

 This example lists the stcl procedures currently indexed as part
 of the Tcl interpreter:

 stcl> parray auto_index

 # auto_index(::safe::interpAddToAccessPath)= source {c:/
 Program Files/Synchronicity/DesignSync/share/tcl/
 library/safe.tcl}
 # auto_index(::safe::interpConfigure) = source {c:/Program Files/
 Synchronicity/DesignSync/share/tcl/library/safe.tcl}
 ...
 ...
 ...
 # auto_index(parray) = source {c:/Program Files/
 Synchronicity/DesignSync/share/tcl/library/parray.tcl}
 # auto_index(pkg_mkIndex) = source {c:/Program Files/
 Synchronicity/DesignSync/share/tcl/library/init.tcl}
 # auto_index(pop) = source {c:/Program Files/
 Synchronicity/DesignSync/custom/site/share/client/tcl/
 autoload.tcl}

TCL Interface

750

 ...
 ...

puts

puts Command

NAME

 puts - Writes a string to a file

DESCRIPTION

 This command is the Tcl 'puts' command. Refer to a Tcl
 language reference manual for a full description of the
 standard 'puts' command.

 IMPORTANT:
 In previous software versions, the 'puts' command was
 extended to support two special file identifiers, 'log'
 and 'trace'. These file identifiers are no longer
 supported. The Synchronicity 'puts' command is now the
 standard Tcl 'puts' command. You can use 'puts stderr'
 in client scripts to display output on the screen. You
 can use 'puts stderr' in server scripts to channel the
 output to the server's error log,
 $SYNC_CUSTOM_DIR/servers/<host>/<port>/logs/error_log.
 Migrate existing scripts by removing instances of the
 'log' and 'trace' identifiers.

SYNOPSIS

 See a Tcl language reference manual.

SEE ALSO

 log

rstcl

rstcl Command

NAME

ENOVIA Synchronicity Command Reference All -Vol2

751

 rstcl - Runs server-side stcl scripts

DESCRIPTION

 This command runs server-side stcl scripts from DesignSync
 clients. You can also execute server-side scripts by passing a URL
 to the SyncServer from your browser. See the 'server-side' topic or
 the ProjectSync User's Guide for details.

 You run client-side scripts using the DesignSync run command or the
 Tcl source command. The choice of whether to implement a script as
 client-side or server-side depends on what you are trying to
 accomplish. You can use client scripts to automate user tasks or
 implement enhancements to the built-in user command set. You create
 server-side scripts for any of the following reasons:
 - To set server-wide policies (such as triggers or access controls)
 - To create server customizations (such as customized ProjectSync
 panels or data sheets)
 - To reduce the amount of client/server traffic that a
 client-side script accessing vault data would require
 - To execute commands that are only available as server-side
 commands (such as 'access reset' and most ProjectSync commands)

 When you execute a script with rstcl, the SyncServer looks for the
 specified script in the following locations (in the order listed):

 1. Server-specific Tcl scripts (UNIX only):
 <SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/tcl

 2. Site-wide Tcl scripts:
 <SYNC_CUSTOM_DIR>/site/share/tcl

 3. Enterprise-wide Tcl scripts:
 <SYNC_CUSTOM_DIR>/enterprise/share/tcl

 4. Synchronicity-provided Tcl scripts:
 <SYNC_DIR>/share/tcl

 Do not put scripts in <SYNC_DIR>/share/tcl because this
 directory is reserved for Synchronicity scripts, and your
 scripts may be overwritten when you upgrade your
 Synchronicity software.

 rstcl requests mutually exclude each other. I.e. They all acquire the
 same exclusive lock, named smdSrvrMetaDataLock. If you analyze your
 script and know it to be safe to run in parallel with other scripts,
 you may release the exclusive lock from within your script by using
 'url syslock -release smdSrvrMetaDataLock'. If your script reads or
 writes an external file, it is probably not parallelizable. rstcl
 requests and panel= requests (invoked via ProjectSync) never mutually
 exclude each other; panel requests are entirely independent of rstcl's
 lock.

TCL Interface

752

 Notes:
 - If you make modifications to your script, use the ProjectSync
 Reset Server menu option to force the SyncServer to reread your
 script.
 - When specifying 'sync:' URLs within scripts that are run on the
 server, do not specify the host and port. For example, specify:
 sync:///Projects/Asic
 not
 sync://holzt:2647/Projects/Asic
 Because the script is run on the server itself, host:port
 information is unnecessary and is stripped out by the
 server, which may lead to incorrect behavior during object-name
 comparisons.
 - The SYNC_ClientInfo variable is not defined when running
 server-side scripts with rstcl -- you must use the browser-based
 invocation. All other SYNC_* variables (SYNC_Host, SYNC_Port,
 SYNC_Domain, SYNC_User, and SYNC_Parm if parameters are passed
 into the script) are available when using rstcl.

SYNOPSIS

 rstcl [-output <file>] -server <serverURL> -script <script>
 [-urlparams <name>=<value>[&<name>=value[...]]]

OPTIONS

• -output
• -server
• -script
• -urlparams

-output

 -output <file> Specifies the file to which script output is
 written. If omitted, the output is displayed.

-server

 -server <serverURL> Specifies the URL of the SyncServer that will
 execute the script. Specify the URL as follows:
 sync://<host>[:<port>]
 where 'sync://' is required, <host> is
 the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (if omitted, defaults to 2647/2679). For
 example, you might specify the following:
 -server sync://serv1.abco.com:1024

ENOVIA Synchronicity Command Reference All -Vol2

753

-script

 -script <script> Specifies the name of the script to be
 executed. This script must be in one of the Tcl
 script directories on the SyncServer specified
 by the -server option. The Tcl directories are
 (in the order in which they are searched):

 1. Server-specific Tcl scripts (UNIX only):
 <SYNC_DIR>/custom/servers/<host>/<port>/share/tcl

 2. Site-wide Tcl scripts:
 <SYNC_DIR>/custom/site/share/tcl

 3. Enterprise-wide Tcl scripts:
 <SYNC_DIR>/custom/enterprise/share/tcl

 4. Synchronicity-provided Tcl scripts:
 <SYNC_DIR>/share/tcl

 The script can contain Tcl constructs and
 Synchronicity commands, including server-side only
 commands.

-urlparams

 -urlparams <params> Specifies the parameters that are passed into
 the script. Specify each parameter as a
 name/value pair separated by an equal sign (=),
 and separate multiple parameters with an
 ampersand (&):
 <param1>=<value1>&<param2>=<value2>...
 For example:
 -urlparams Name=Joe&IDNum=1234

 Parameters are passed into the script using the
 global variable SYNC_Parm, which is a Tcl
 array. The array keys are the names of the
 parameters. To access the value of a parameter
 from within the script, use the following syntax:

 $SYNC_Parm(<param_name>)

 For example, the following Tcl line would
 display the value of the 'name' parameter:

 puts "The name is: $SYNC_Parm(name)"

 Note: If any parameter name or value
 contains whitespace, surround the entire
 parameter list with double quotes. For example:

TCL Interface

754

 -urlparams "name=Joe Black&IDNum=1234"

RETURN VALUE

 o If -output is not specified, returns (and displays) the script
 output.
 o If -output is specified, output is written to the specified file
 and the return value is an empty string.

 If the script has an error, a Tcl exception is thrown from the
 client side and the Tcl stack trace is output. Proper usage
 for handling exceptions would be to provide an exception handler
 when you use the rstcl command:
 if [catch {rstcl -server ...} result] {
 # Something bad happened.
 # 'result' contains the output generated by the script
 # prior to the error and the Tcl stack trace.
 } else { # All is fine.
 # 'result' contains whatever output is generated
 # by the script.
 }

 If the -output option to the rstcl command was specified, then
 the exception is still thrown, but the script output and Tcl stack
 trace are written to the specified output file.

SEE ALSO

 server-side, run, url syslock

EXAMPLES

 A common use of rstcl is to run the 'access reset' command, which
 restarts the SyncServer. See the 'access reset' command for details.

 Most ProjectSync-related scripts must be run on the server and
 could therefore use rstcl. This example creates a ProjectSync note
 using the 'note create' command, which is a server-side only
 command, and displays the URL of the new note. This output is then
 returned to the rstcl command in callNoteCreate.tcl.

 1.In the <SYNC_CUSTOM_DIR>/site/share/tcl directory on the
 holzt:2647 server is the noteCreate.tcl script, which contains
 the following:

 set noteUrl [note create -type Note \
 [list Title $SYNC_Parm(title)] [list Body $SYNC_Parm(body)] \
 [list Author $SYNC_Parm(author)]]
 puts "$noteUrl"

ENOVIA Synchronicity Command Reference All -Vol2

755

 2. On the client side, the callNoteCreate.tcl script provides an
 exception catcher in case the noteCreate.tcl script fails.

 if [catch {rstcl -server sync://holzt:2647 -script noteCreate.tcl \
 -urlparams "author=Goss&title=This is a note.&body=New note."} \
 result] {
 puts "Couldn't create the note!"
 } else {
 puts "Created note: $result"
 }

 3. From stcl, run the client script:

 stcl> source callNoteCreate.tcl
 Created note: sync:///Note/SyncNotes/Note/3

 You could also run the rstcl command directly from the command
 line (no exception catcher). Doing so creates a second note:

 stcl> rstcl -server sync://holzt:2647 -script noteCreate.tcl \
 -urlparams "author=Goss&title=Another note.&body=New note."
 sync:///Note/SyncNotes/Note/4

run

run Command

NAME

 run - Executes a DesignSync command file or stcl script

DESCRIPTION

 This command will execute the DesignSync or Tcl commands contained
 in the specified file. Specify the file with a relative or absolute
 path, not as a URL. If the extension of the file is ".tcl", the
 script is run in stcl mode, irrespective of the current mode (dss
 or stcl). Otherwise, the script is run in dss/dssc mode
 irrespective of your current mode. From stcl/stclc, using the run
 command is the same as using the Tcl source command except that the
 run command does not return the script's return value.

 If you do not specify a path to the command file, the run command
 looks in the default log directory. By default, the default log
 directory is your home directory (as defined by $HOME on UNIX or
 your user profile, which is managed by the User Manager tool, on
 Windows platforms). You can change the default using the
 -defaultdir option to either the log or the run command.

 The batch file may be created in a text editor or captured with

TCL Interface

756

 the log command. The '#' character in column 1 treats the
 remainder of the line as a comment.

 Note: Use the rstcl command to execute server-side stcl scripts.

SYNOPSIS

 run [-defaultdir <dir>] [-dryrun] [-ignoreerrs] [-verbose]
 [--] [<filename>]

OPTIONS

• -defaultdir
• -dryrun
• -ignoreerrs
• -verbose
• --

-defaultdir

 -defaultdir <dir> Set the location of the default log directory,
 which is also where DesignSync looks for
 scripts. This value is saved between sessions.

 Note: Specifying the defaultdir is mutually
 exclusive with specifying a filename to run.

-dryrun

 -dryrun Like verbose, but do not execute. This option
 is useful to verify the behavior of a command file
 before executing it.

-ignoreerrs

 -ignoreerrs Continue executing the DesignSync command file even
 if an error is encountered.

 This option is not allowed when running stcl
 (*.tcl) scripts. You must provide your own Tcl
 exception handler to catch errors in your stcl
 script. Use the Tcl 'catch' command.

-verbose

ENOVIA Synchronicity Command Reference All -Vol2

757

 -verbose Print commands as they are executed.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 none

SEE ALSO

 log, rstcl

EXAMPLES

 This example sets the default log directory, which is also where
 DesignSync looks for scripts, to /home/goss/Projects, then executes
 myscript.dss.

 dss> run -defaultdir /home/goss/Projects
 dss> run myscript.dss

759

Third-Party Integrations

DSDFII

addcdslib

addcdslib Command

NAME

 addcdslib - Specifies a cds.lib file

DESCRIPTION

 This command adds a path to the search path that DesignSync
 uses to locate Cadence cds.lib files. The cds.lib files map Cadence
 libraries to their locations. For example, a cds.lib file might
 contain the following:
 DEFINE TTL1 /home/TTLLibraries/TTL1
 DEFINE basic /usr1/CoreLibraries/basic

 DesignSync uses these mappings to resolve dependencies that a
 design object, in this case a Cadence cell view, has on other design
 objects. Using the 'url relations' command, you could, for example,
 write an stcl script that checks out a cell view and all of its
 dependencies.

 Specify the path argument to the addcdslib command as the absolute
 path to the directory containing the cds.lib file (do not include
 "cds.lib" as part of the specification).

SYNOPSIS

 addcdslib <path>

OPTIONS

• --

--

Third-Party Integrations

760

 -- Indicates that the command should stop looking for
 command options. Use this option when the path
 you specify begins with a hyphen (-).

SEE ALSO

 url relations

EXAMPLES

 This command shows how to resolve dependencies by using the
 addcdslib command. The cds.lib file in /home/Libraries contains
 the library definition for "basic", but not for "sample".

 stcl> url relations cmos_sch.sync.cds dependencies
 {<unrecognized alias>} basic:vdd/symbol.sync.cds
 {<unrecognized alias>} basic:gnd/symbol.sync.cds
 {<unrecognized alias>} sample:nmos/symbol.sync.cds
 stcl> addcdslib /home/Libraries
 stcl> url relations cmos_sch.sync.cds dependencies
 file:///home/tgoss/Projects/Cadence/basic/opin/symbol.sync.cds\
 basic:opin/symbol.sync.cds
 file:///home/tgoss/Projects/Cadence/basic/gnd/symbol.sync.cds\
 basic:gnd/symbol.sync.cds
 {<unrecognized alias>} sample:nmos/symbol.sync.cds

761

Administration

Access Control

ACAdmin Commands

acadmin

acadmin Command

NAME

 acadmin - Access Administrator Commands

DESCRIPTION

 The Access Administrator tool (ACAdmin) provides a graphical web
 interface to create, remove, maintain, and manage access controls.
 Using the ACAdmin interface provides a simpler, more intuitive
 interface to customizing the access controls for DesignSync. In
 addition to the graphical web interface, DesignSync provides a set of
 acadmin commands, prefixed by "acadmin" to use for scripting or other
 acadmin maintenance. For more information on the functionality,
 organization and usage of ACAdmin, see the ENOVIA Synchronicity
 Access Control Guide.

 In order to use any of the acadmin commands, the Access Control
 Administrator must be enabled on the server. When any of these
 commands are used to modify the ACAdmin configuration, the changes
 made are not applied to the server until the acadmin reset command is
 run.

SYNOPSIS

 acadmin <acadmin_command> [acadmin_command_options>]

 Usage: acadmin
 [addgroup|addgroupusers|addobj|addusers|listcats|listcmds|listgroups|
 listobjs|listperms|listusers|reset|rmgroup|rmgroupusers|rmobj|
 rmusers|setcatperm]

EXAMPLES

 See specific acadmin commands.

Administration

762

acadmin addgroup

acadmin addgroup Command

NAME

 acadmin addgroup - Create a new user group.

DESCRIPTION

 This command creates user groups. These user groups are then
 available to be assigned to command categories. Grouping users into
 groups allows you to define and assign roles and maintain the roles
 and functions easily even when individual group members change.

 Notes:
 o Usually only the DesignSync administrators should have permission
 to create or modify user group definitions.

 o There are three dynamic (or virtual) user groups that should never
 be manipulated manually. They are All-Module-Owners,
 All-Project-Owners, and All-Server-Users. These groups are
 automatically generated when ACAdmin is reset. If you have made
 changes that affect these groups, you should perform an ACAdmin
 Reset.

 This command is subject to ACAdmin access controls as defined in
 AccessControl.aca. See the ENOVIA Synchronicity Access Control Guide
 for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

 To apply the changes created by this command to the server, you must
 reset the server using the acadmin reset command or ACAdmin Reset
 from the DesignSync Web UI.

SYNOPSIS

 acadmin addgroup -group <groupName> [-server <SyncURL>]

ARGUMENTS

• Sync URL

Sync URL

ENOVIA Synchronicity Command Reference All -Vol2

763

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

• -group

-group

 -group <groupName> Name of the user group. This name should
 correspond to DesignSync naming conventions. For
 a list of reserved characters that should not be
 used in the user group name, see the ENOVIA
 Synchronicity DesignSync Data Manager User's
 Guide: URL Syntax.

 Tip: To allow you to easily differentiate between
 user groups and individual users, you should
 implement a naming convention such as prefixing
 the user group with a standard prefix like Group-
 or by creating group names in all capital
 letters. For example:
 DEVELOPERS
 or
 GROUP-Developers

RETURN VALUE

 This command doesn't return any TCL values. If the command succeeds,
 you'll receive a success message. If the command fails, you'll
 receive an error message explaining the failure.

SEE ALSO

Administration

764

 acadmin addgroupusers, acadmin listgroups, acadmin rmgroup

EXAMPLES

• Example of Creating a Group in ACAdmin

Example of Creating a Group in ACAdmin

 This example creates a documentation group in ACAdmin.

 dss> acadmin addgroup -group GROUP-Doc -server \
 sync://serv1.ABCo.com:2647

 Created 1 User Group(s)

acadmin addgroupusers

acadmin addgroupusers Command

NAME

 acadmin addgroupusers - Add users to group

DESCRIPTION

 This command adds defined users to an existing group. Both usernames
 and group names are case sensitive. You can only add users to one
 group at a time.

 The group being added to must already exist. To create new groups,
 use the acadmin addgroup command.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

 To apply the changes created by this command to the server, you must
 reset the server using the acadmin reset command or ACAdmin Reset
 from the DesignSync Web UI.

SYNOPSIS

 acadmin addgroupusers -group <groupName> -users <userlist>
 [-server <SyncURL>]

ENOVIA Synchronicity Command Reference All -Vol2

765

ARGUMENTS

• Sync URL

Sync URL

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

• -group
• -user

-group

 -group <groupName> Name of the group to which the users are being
 added. This group must already exist. Group
 names are case sensitive.

 If you are not sure what groups exist, use the
 acadmin listgroup command to get a list of
 existing groups.

 Note: If the group is associated with an object,
 you need to specify the fully extended group
 name. Fully extended group name is specified as:

 <GroupName>@sync:///<ServerObjectPath>
 Where <GroupName> is the case sensitive name of
 the group.
 <ServerObjectPath> is the path to the object on
 which the group was created for example:
 Projects/[<ProjectFolder>/...]ProjectName
 Modules/[<Category>/...]ModuleName

Administration

766

-user

 -user <userlist> A comma separated list of users to associate with
 the group. The users must already exist. You
 may also use the special user definitions
 provided by DesignSync. For more information on
 the special users, see the Access Administration
 Guide.

RETURN VALUE

 This command does not return any TCL values. When successful, this
 command returns a success message. If the command fails, it displays
 an error message explaining the failure.

SEE ALSO

 acadmin addgroup, acadmin addusers, acadmin listusers,
 acadmin listgroups, acadmin rmgroup, acadmin rmgroupusers

EXAMPLES

• Example of a User defined for a Usergroup
• Example of Adding a User to a Usergroup defined for an Object

Example of a User defined for a Usergroup

 This example shows adding a user to a usergroup.

 dss> stcl> acadmin addgroupusers -group DocWriters -users rsmith \
 -server sync://serv1.ABCo.com:30126

 Updated 1 User Group(s)

Example of Adding a User to a Usergroup defined for an Object

 This example shows adding a user to a usergroup when the usergroup is
 defined for a specific object, in this example, it is the module
 XLP-12Pro in the ChipDesign category.

 dss> acadmin addgroupusers -group \
 chipDevelopers@sync:///Modules/ChipDesign/XLP-12Pro -users \
 thopkins -server sync://serv1.ABCo.com:30126

ENOVIA Synchronicity Command Reference All -Vol2

767

 Updated 1 User Group(s)

acadmin addobj

acadmin addobj Command

NAME

 acadmin addobj - Manage the given object with ACAdmin

DESCRIPTION

 This command adds permissions for all the existing categories for
 specified object to the acadmin configuration files. Using the
 setcatperm command, you can then modify the permissions for each
 category as needed, granting finer control for the specified object.

 The object does not need to exist in order to be added. For example,
 if you have a list of modules be created, you can define the access
 permissions first and then create the modules as needed.

 Note: When this command is run, it assigns the permission(s) selected
 to all categories that exist.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

 To apply the changes created by this command to the server, you must
 reset the server using the acadmin reset command or ACAdmin Reset
 from the DesignSync Web UI.

SYNOPSIS

 acadmin addobj -object <objectURL> [-permission <permission>]
 [-server <SyncURL>]

ARGUMENTS

• Sync URL

Sync URL

 -server <SyncURL> Specifies the option Sync URL as follows:

Administration

768

 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

• -object
• -permission

-object

 -object <objectURL> Enter the Sync URL of the object on which to set
 the permissions. You can set the permissions for
 any object on the server. You may specify objects
 as follows:

 sync:///
 Controls the default permissions for all
 object-independent actions on the server. For
 example, user creation and removal actions do not
 depend on specific server objects. (Default)

 sync:///*
 Controls the default permissions for all
 object-dependent actions on the server. For
 example, browsing objects on the server, creating
 or modifying modules, etc. depend on having
 access to related server objects.

 sync:///Projects[/ProjectName]/[pathtoObject]
 Controls the permission for the specified project
 or the entire project area on the server.

 sync:///Modules[/Category [...]][/ModName]
 Controls the permission for the specified module,
 category, or entire module area on the server.

 Notes:
 You can use wildcards, such as * to specify all

ENOVIA Synchronicity Command Reference All -Vol2

769

 matching objects within the specified path, for
 example: sync:///Modules/Chip/*.c controls access
 to all .c files within the module Chip. If Chip
 was a category and you wanted to specify all
 modules within the category, you could specify
 the URL either of the following ways:
 sync:///Modules/Chip/*
 sync:///Modules/Chip

 The sync:/// and sync:///* URLs are generic Sync
 URLs that can be used to provide default access
 for the server.

-permission

 -permission Enter a comma separated list of defined
 <permission> permissions to associate with the object.

 ALL, LIST, EXCLLIST, NONE, SERVDEF

 When LIST or EXCLLIST are used, you can specify a
 user or userlist for whom to set the permissions.

RETURN VALUE

 This command doesn't return any TCL values. If the command succeeds,
 you'll receive a success message for each category associated with
 the object. If the command fails, you'll receive an error message
 explaining the failure.

SEE ALSO

 acadmin addgroup, acadmin addgroupusers, acadmin rmobj

EXAMPLES

• Example of Adding the Permissions Categories to A Server Object

Example of Adding the Permissions Categories to A Server Object

 This example shows how to create categories for a server object. The
 command creates all the categories that exist on the server in the
 acadmin configuration file.

 dss> acadmin addobj -object sync:///Modules/Chip/ALU -permission ALL \
 -server sync://serv1.ABCo.com:30126

Administration

770

 Category ACAProjectDefs created
 Category ADMIN-MODULE created
 Category BROWSE created
 Category DS-PROJADMIN created
 Category DS-READ created
 Category DS-WRITE created
 Object sync:///Modules/Chip/ALU has been added

acadmin addusers

acadmin addusers Command

NAME

 acadmin addusers - Add a user(s) to specified Object and Category

DESCRIPTION

 This command adds one or more users to a specified category of
 permissions assigned to an object. This allows you to modify the list
 of users assigned to a permissions category as needed.

 Note: The specified user does not need to exist when this
 command is run; it can be created later. For more information on
 creating users in DesignSync see the DesignSync Administrator's
 Guide.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

 To apply the changes created by this command to the server, you must
 reset the server using the acadmin reset command or ACAdmin Reset
 from the DesignSync Web UI.

SYNOPSIS

 acadmin addusers -category <categoryName> -object <objectURL>
 -users <userlist> [-server <SyncURL>]

ARGUMENTS

• Sync URL

Sync URL

ENOVIA Synchronicity Command Reference All -Vol2

771

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

• -category
• -option
• -user

-category

 -category Name of the command category associated with the
 <categoryName> user. The command category must exist already.

-option

 -object <objectURL> Sync URL of the object associated with the user.
 The object or object special URL (for example,
 sync:///) must already exist.

-user

 -user <userlist> A comma separated list of users to associate with
 the category and object.

RETURN VALUE

 This command does not return a TCL value. The commands displays a

Administration

772

 success message when successful or an appropriate error if the
 command fails.

SEE ALSO

 acadmin addgroup, acadmin addgroupusers, acadmin addobj,
 acadmin rmusers

EXAMPLES

• example_adduser_multiple

 This example shows adding three users to a category for an object.

 dss> acadmin addusers -category ADMIN-MODULE -object \
 sync:///Modules/Chip/ALU -users rsmith,thopkins,chipAdmin \
 -server sync://lwvrh17mon:30126

 Category ADMIN-MODULE updated

acadmin listcats

acadmin listcats Command

NAME

 listcats - Lists all categories defined on a server

DESCRIPTION

 The listcats command lists all the categories defined on the
 specified server.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

SYNOPSIS

 acadmin listcats [-server <SyncURL>]

ENOVIA Synchronicity Command Reference All -Vol2

773

ARGUMENTS

• Sync URL

Sync URL

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

RETURN VALUE

 This command does not return a TCL value. When successful, this
 command lists the categories available on the server. If the command
 fails, it displays an error message explaining the failure.

SEE ALSO

 acadmin addusers, acadmin listcmds, acadmin listperms,
 acadmin setcatperm

EXAMPLES

• Example of Listing the Categories for a Server

Example of Listing the Categories for a Server

 This example shows listing the categories for a server. This server
 has no custom categories, so the listing shows only the default
 categories that come with ACAdmin.
 dss> acadmin listcats -server sync://serv1.ABCo.com:2647

 ACAProjectDefs

Administration

774

 ADMIN-MODULE
 BROWSE
 DS-PROJADMIN
 DS-READ
 DS-WRITE
 Mirrors
 PS-Read
 PS-Write
 SRV-ADMIN

acadmin listcmds

acadmin listcmds Command

NAME

 acadmin listcmds - Lists all commands by category

DESCRIPTION

 The listcmds command lists all the commands associated with the
 defined categories. If you are interested in the commands associated
 with a specific category, you can use the -category option to limit
 the results to a single category.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

SYNOPSIS

 acadmin listcmds [-category <categoryName>] [-server <SyncURL>]

ARGUMENTS

• Sync URL

Sync URL

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port

ENOVIA Synchronicity Command Reference All -Vol2

775

 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

• -category

-category

 -category Name of the command category associated with the
 <categoryName> user. The command category must exist already.

 Note: You can only specify a single category.

RETURN VALUE

 Does not return a TCL value. Displays an alphabetized list of
 categories and the commands within each category.

SEE ALSO

 acadmin addusers, acadmin listcats, acadmin listperms,
 acadmin setcatperm

EXAMPLES

• Example Showing Listing Commands for All Categories on the Server

Example Showing Listing Commands for All Categories on the Server

 This example shows the list of command associated with the categories
 for a server. This server has no custom categories, so the listing
 shows only the default categories that come with ACAdmin.

 dss> acadmin listcmds -server sync://serv1.ABCo.com:2647

 ACAProjectDefs {AcaProjCatPrmDef AcaProjUserGroupDef}

Administration

776

 ADMIN-MODULE {ChangeCommentAll DeleteFolder DeleteVault
 DeleteVersion ExportModule FreezeModule ImportModule MemberUnlockAll
 Mkmod Move MoveModule Rmalias Rmconf Rmedge Rmmod Rollback SetOwner
 SwitchLocker TagRelease UnfreezeModule UnlockAll}
 BROWSE BrowseServerObj
 DS-PROJADMIN {ChangeCommentAll DeleteFolder DeleteVault
 DeleteVersion MakeBranch Move SetOwner SwitchLocker TagRelease
 UnlockAll}
 DS-READ CheckoutNoLock
 DS-WRITE {Addhref ChangeComment Checkin CheckoutLock HcmUpgrade Lock
 MakeBranch MakeBranchTrunk MakeFolder MemberUnlock Mkedge Retire
 Rmhref Tag Unlock Unretire}
 Mirrors Mirrors
 PS-Read {AcaViewDef BrowseServer EditUser EmailSubscribe ViewNote}
 PS-Write {AddNote AddPSReport CreateConfig DeleteNote DeletePSReport
 EditNote EditNoteAttachments EditUser ModifyConfig
 ModifyNoteProperty ReviseNoteHistory SetNoteProperty UnlockNote
 ViewNote}
 SRV-ADMIN {ACAActions AddDevelopmentInstance Addlogin AddMirror
 AddProject AddTrigger AddUser AdministrateNoteTypes
 AdministrateServer DeleteConfig DeleteDevelopmentInstance
 DeleteMirror DeleteProject DeletePSReportAll DeleteTrigger
 DeleteUser EditAllUser EditMirror EditTrigger EmailAllSubscribe
 EmailMgrAdmin ExportProject ImportProject ModifyDevelopmentInstance
 ModifyMirror ModifyProject PrimaryMirrorFetch ResetAccessControls
 Rmlogin Showlogins Suspend TransferFile ViewMirror}

acadmin listgroups

acadmin listgroups Command

NAME

 acadmin listgroups - lists the defined groups and their users

DESCRIPTION

 The acadmin listgroups command lists all defined groups. All groups
 are available server-wide. Groups can be specified as associated with
 an object, however this association is non-binding and purely
 intended as a guide to the user to indicate how the group should be
 used.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

SYNOPSIS

ENOVIA Synchronicity Command Reference All -Vol2

777

 acadmin listgroups [-group <groupName>] [-server <SyncURL>]

ARGUMENTS

• Sync URL

Sync URL

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

• -group

-group

 -group <groupName> Name of the group you want to view the users
 associated with.

 Note: If the group was associated with an object,
 you need to specify the fully extended group
 name. Fully extended group name is specified as:

 <GroupName>@sync:///<ServerObjectPath>
 Where <GroupName> is the case sensitive name of
 the group.
 <ServerObjectPath> is the path to the object on
 which the group was created for example:
 Projects/[<ProjectFolder>/...]ProjectName
 Modules/[<Category>/...]ModuleName

Administration

778

RETURN VALUE

 This command does not return any TCL values. If the command is
 successful it will display a list of groups, alphabetically, followed
 by a list of users.

SEE ALSO

 acadmin addgroup, acadmin addgroupusers, acadmin rmgroup,
 acadmin rmgroupusers

EXAMPLES

• Example Showing a List of All Groups
• Example Showing the Users for a Specified Group

Example Showing a List of All Groups

 This example shows the list of all groups on the server. Groups
 associated with a specific object are shown with the object path.

 dss> acadmin listgroups -server sync://serv1.ABCo.com:30126

 DocWriters mhopkins
 chipDevelopers@sync:///Modules/ChipDev/XLP-12Pro {rsmith thopkins}

Example Showing the Users for a Specified Group

 This example shows the list for the chipDevelopers group on the
 Module object XLP-12Pro. Note that when you specify a group that is
 on an object, you must specify the full group path as
 <group>@<relativeObjectPath>, as shown.

 dss> acadmin listgroups -group \
 chipDevelopers@sync:///Modules/ChipDev/XLP-12Pro -server \
 sync://serv1.ABCo.com:30126

 chipDevelopers@sync:///Modules/ChipDev/XLP-12Pro {rsmith thopkins}

acadmin listobjs

acadmin listobjs Command

NAME

ENOVIA Synchronicity Command Reference All -Vol2

779

 acadmin listobjs - lists all acadmin managed objects on the server

DESCRIPTION

 This command lists all the objects that are managed in the acadmin
 configuration files. The objects can be added with the acadmin
 addobjs command and modified with the setcatperm command.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

SYNOPSIS

 acadmin listobjs [-server <SyncURL>]

ARGUMENTS

• Sync URL

Sync URL

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

RETURN VALUE

 This command does not return any TCL values. When successful, this

Administration

780

 command returns a list, in alphabetical order, of all the objects
 managed by acadmin. If the command fails, it returns an error
 message explaining the failure.

SEE ALSO

 acadmin addobj, acadmin rmobj

EXAMPLES

• Example of Listing Objects Managed by ACAdmin

Example of Listing Objects Managed by ACAdmin

 This example shows a list of all the objects managed by ACAdmin.

 dss> acadmin listobjs -server sync://serv1.ABCo.com:30127

 sync:///
 sync:///Modules/ChipDev/ALU
 sync:///Modules/ChipDev/XLP-12Pro

acadmin listperms

acadmin listperms Command

NAME

 acadmin listperms - list all permissions for the object or category

DESCRIPTION

 This command shows the permissions for all the objects that are
 managed with ACAdmin.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

SYNOPSIS

 acadmin listperms [-category <categoryName>] -object <ObjectURL>
 [-server <SyncURL>]

ENOVIA Synchronicity Command Reference All -Vol2

781

ARGUMENTS

• Sync URL

Sync URL

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

• -category
• -object

-category

 -category Name of the command category associated with the
 <categoryName> user. The command category must exist already.

 Note: You can only specify a single category.

-object

 -object <objectURL> Enter the Sync URL of the object for which you
 are viewing the permissions. You can view the
 permissions for any object on the server. You may
 specify objects as follows:

 sync:///
 Controls the default permissions for all
 object-independent actions on the server. For
 example, user creation and removal actions do not
 depend on specific server objects. (Default)

Administration

782

 sync:///*
 Controls the default permissions for all
 object-dependent actions on the server. For
 example, browsing objects on the server, creating
 or modifying modules, etc. depend on having
 access to related server objects.

 sync:///Projects[/ProjectName]/[pathtoObject]
 Controls the permission for the specified project
 or the entire project area on the server.

 sync:///Modules[/Category [...]][/ModName]
 Controls the permission for the specified module,
 category, or entire module area on the server.

 Notes:
 You can use wildcards, such as * to specify all
 matching objects within the specified path, for
 example: sync:///Modules/Chip/*.c controls access
 to all .c files within the module Chip. If Chip
 was a category and you wanted to specify all
 modules within the category, you could specify
 the URL either of the following ways:
 sync:///Modules/Chip/*
 sync:///Modules/Chip

 The sync:/// and sync:///* URLs are generic Sync
 URLs that can be used to provide default access
 for the server.

RETURN VALUE

 Does not return a TCL value. When successful, this command lists the
 categories and permissions for the object, alphabetically by
 category. If there is an error, DesignSync return an appropriate
 error message explaining the failure.

SEE ALSO

 acadmin addobj, acadmin rmobj, acadmin setcatperm

EXAMPLES

• Example Showing the List of Permissions for an Object in ACAdmin

Example Showing the List of Permissions for an Object in ACAdmin

 This example shows the list of permissions for a specified object in

ENOVIA Synchronicity Command Reference All -Vol2

783

 ACAdmin.
 dss> acadmin listperms -object sync:///Modules/ChipDev/ALU -server \
 sync://serv1.ABCo.com:2746

 DS-READ {ALL {}}
 DS-PROJADMIN {ALL {}}
 ADMIN-MODULE {ALL {anewman rsmith}}
 BROWSE {ALL {}}
 ACAProjectDefs {ALL {}}
 DS-WRITE {ALL {}}

acadmin listusers

acadmin listusers Command

NAME

 acadmin listusers - lists users for the server or specified object

DESCRIPTION

 The acadmin listusers command lists users associated with acadmin
 objects or groups. As shown in the example below, user-defined groups
 are expanded in the output, so you will not see the user-defined
 group name. Virtual groups, such as All-Module-Owners, are not
 expanded and you may see them referenced in the command output. For
 more information on virtual groups and how to use them, see the
 ENOVIA Synchronicity Access Control Guide.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

SYNOPSIS

 acadmin listusers [-object <ObjectURL>] [-server <SyncURL>]

ARGUMENTS

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:

Administration

784

 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

• -object

-object

 -object <objectURL> Enter the Sync URL of the object on which to view
 the users. You can view the users for any object
 on the server. You may specify objects as
 follows:

 sync:///
 Controls the default permissions for all
 object-independent actions on the server. For
 example, user creation and removal actions do not
 depend on specific server objects. (Default)

 sync:///*
 Controls the default permissions for all
 object-dependent actions on the server. For
 example, browsing objects on the server, creating
 or modifying modules, etc. depend on having
 access to related server objects.

 sync:///Projects[/ProjectName]/[pathtoObject]
 Controls the permission for the specified project
 or the entire project area on the server.

 sync:///Modules[/Category [...]][/ModName]
 Controls the permission for the specified module,
 category, or entire module area on the server.

 Notes:
 You can use wildcards, such as * to specify all
 matching objects within the specified path, for
 example: sync:///Modules/Chip/*.c controls access
 to all .c files within the module Chip. If Chip
 was a category and you wanted to specify all
 modules within the category, you could specify
 the URL either of the following ways:
 sync:///Modules/Chip/*

ENOVIA Synchronicity Command Reference All -Vol2

785

 sync:///Modules/Chip

 The sync:/// and sync:///* URLs are generic Sync
 URLs that can be used to provide default access
 for the server.

RETURN VALUE

 This command doesn't return any TCL values. If the command is
 successful, you will see a list of users who have been assigned to
 acadmin categories. If the command fails, it will return an
 appropriate error message explaining the failure.

SEE ALSO

 acadmin addusers, acadmin rmusers, acadmin listgroups

EXAMPLES

• Example of Listing Users Associated with Categories on the Server

Example of Listing Users Associated with Categories on the Server

 This example shows the users associated with acadmin categories on
 the server. This is a very simple example which has very open
 permissions except for one category assigned to the user group
 DocWriters. The user rsmith is the only user in the group
 DocWriters, therefore, his is the only username that appears
 separately.

 dss> acadmin listusers -server sync://serv1.ABCo.com:2476

 everyone rsmith

acadmin reset

acadmin reset Command

NAME

 acadmin reset - Regenerates the AccessControl file and runs an
 Access Reset.

DESCRIPTION

Administration

786

 The acadmin reset command regenerates the AccessControl to collect
 all the changes made to the system since the last reset. Then the
 command runs the Access Reset to load the changes onto the server.

SYNOPSIS

 acadmin reset [-server <SyncURL>]

ARGUMENTS

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

RETURN VALUE

 This command does not return a TCL value. When successful, the
 command displays a success result. When it fails, the command
 displays an error explaining the failure.

SEE ALSO

 acadmin addgroup, acadmin addgroupusers, acadmin addobj,
 acadmin addusers, acadmin rmgroup, acadmin rmgroupusers,
 acadmin rmobj, acadmin rmusers, acadmin setcatperm

EXAMPLES

• ACAdmin Reset Example

ENOVIA Synchronicity Command Reference All -Vol2

787

ACAdmin Reset Example

 This example shows the response you see when an ACAdmin Reset is
 successful.

 dss> acadmin reset -server sync://serv1.ABCo.com:2647

 Updated AccessControl file
 Reset Access Control

acadmin rmgroup

acadmin rmgroup Command

NAME

 acadmin rmgroup - Remove a user group.

DESCRIPTION

 This command removes user groups. These user groups, when removed, are
 removed from all the command categories they were associated with.

 Notes:
 o Usually only the DesignSync administrators should have permission
 to remove or modify user group definitions.

 o There are three dynamic (or virtual) user groups that can never be
 removed. They are All-Module-Owners, All-Project-Owners, and
 All-Server-Users. These groups are automatically generated when
 ACAdmin is reset.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

SYNOPSIS

 acadmin rmgroup -group <groupName> [-server <SyncURL>]

ARGUMENTS

• Sync URL

Sync URL

Administration

788

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

 -group <groupName> Name of the user group. This name should
 match exactly the name used when the group was
 added, including case. If you are not sure how to
 correctly specify the name of the group being
 removed, you can list the available groups using
 the acadmin listgroup command.

RETURN VALUE

 This command doesn't return any TCL values. If the command succeeds,
 you'll receive a success message. If the command fails, you'll
 receive an error message explaining the failure.

SEE ALSO

 acadmin addgroup, acadmin listgroups, acadmin rmgroupusers

EXAMPLES

• Example of Removing a Group

Example of Removing a Group

 This example shows removing a group from the server.

 dss> acadmin rmgroup -group DocWriters -server \

ENOVIA Synchronicity Command Reference All -Vol2

789

 sync://serv1.ABCo.com:2647

 Deleted 1 User Group(s)
 Updated Permissions file

acadmin rmgroupusers

acadmin rmgroupusers Command

NAME

 acadmin rmgroupusers- Remove users from group.

DESCRIPTION

 This command removes defined users from an existing group. Both
 usernames and groupsnames are case sensitive. You can only remove
 users from one group at a time.

 This does not remove users or groups from the system. In order to
 delete users or groups, you must use the acadmin rmusers or acadmin
 rmgroups command respectfully.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

 To apply the changes created by this command to the server, you must
 reset the server using the acadmin reset command or ACAdmin Reset
 from the DesignSync Web UI.

SYNOPSIS

 acadmin rmgroupusers -group <groupName> -users <userlist>
 [-server <SyncURL>]

ARGUMENTS

• Sync URL

Sync URL

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]

Administration

790

 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

• -group
• -user

-group

 -group <groupName> Name of the group to which the users are being
 removed. Group names are case sensitive.

 If you are not sure what groups exist, use the
 acadmin listgroups command to get a list of
 existing groups.

 Note: If the group is associated with an object,
 you need to specify the fully extended group
 name. Fully extended group name is specified as:

 <GroupName>@sync:///<ServerObjectPath>
 Where <GroupName> is the case sensitive name of
 the group.
 <ServerObjectPath> is the path to the object on
 which the group was created for example:
 Projects/[<ProjectFolder>/...]ProjectName
 Modules/[<Category>/...]ModuleName

-user

 -user <userlist> A comma separated list of users to associate with
 the group. User names are case sensitive. If you
 are not sure what usernames to specify, user the
 acadmin listusers command to get a list of
 existing users. You may also use the special user
 definitions provided by DesignSync. For more
 information on the special users, see the Access

ENOVIA Synchronicity Command Reference All -Vol2

791

 Administration Guide.

RETURN VALUE

 This command does not return any TCL values. When successful, the
 command indicates that the usergroup was removed. If the command
 fails, DesignSync returns an appropriate error message explaining the
 failure.

SEE ALSO

 acadmin addgroup, acadmin addusers, acadmin addgroupusers,
 acadmin listusers, acadmin listgroups, acadmin rmgroup

EXAMPLES

• Example of Removing a User from a Group

Example of Removing a User from a Group

 This example shows removing a user from an acadmin group.

 dss> acadmin rmgroupusers -user rsmith -group DocWriters -server \
 sync://serv1.ABCo.com:2647

 Updated 1 User Group(s)

acadmin rmobj

acadmin rmobj Command

NAME

 acadmin rmobj - Remove the object from ACAdmin management

DESCRIPTION

 This command removes all the categories defined for the specified
 object from the acadmin configuration files. The object must have
 been added to acadmin to manage, but, the object does not need to
 exist on the server.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

Administration

792

 To apply the changes created by this command to the server, you must
 reset the server using the acadmin reset command or ACAdmin Reset
 from the DesignSync Web UI.

SYNOPSIS

 acadmin rmobj -object <objectURL> [-server <SyncURL>]

ARGUMENTS

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

 -object <objectURL> Enter the Sync URL of the object to remove from
 ACAdmin control. You may specify objects as
 follows:

 sync:///Projects[/ProjectName]/[pathtoObject]
 Controls the permission for the specified project
 or the entire project area on the server.

 sync:///Modules[/Category [...]][/ModName]
 Controls the permission for the specified module,
 category, or entire module area on the server.

 Note:
 The sync:/// and sync:///* URLs are generic Sync
 URLs that can be used to provide default access
 for the server.

RETURN VALUE

ENOVIA Synchronicity Command Reference All -Vol2

793

 This command does not return any TCL values. When successful, the
 command returns a message indicating that the object was
 removed. If the command fails, it returns an error message explaining
 the failure.

SEE ALSO

 acadmin addobj, acadmin rmgroup, acadmin rmgroupusers

EXAMPLES

• Example of Removing an Object from ACAdmin Management

Example of Removing an Object from ACAdmin Management

 This example shows removing an object from ACAdmin management.

 dss> acadmin rmobj -object sync:///Modules/ChipDev/ALU -server \
 sync://server1.ABCo.com:2647

 Object sync:///Modules/ChipDev/ALU has been deleted from AC
 definitions.

acadmin rmusers

acadmin rmusers Command

NAME

 acadmin rmusers - Removes a user(s) from the specified Object and
 Category.

DESCRIPTION

 This command removes one or more users from a specified category of
 permissions assigned to an object. This allows you to modify the list
 of users assigned to a permissions category as needed.

 users are assigned to a permissions category as your needs change.

 Note: The user does not need to exist when the command is run, as
 long as it is present in the acadmin configurations files. For more
 information on creating users in DesignSync see the DesignSync
 Administrator's Guide.

Administration

794

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

 To apply the changes created by this command to the server, you must
 reset the server using the acadmin reset command or ACAdmin Reset
 from the DesignSync Web UI.

SYNOPSIS

 acadmin rmusers -category <categoryName> -object <objectURL>
 -users <userlist> [-server <SyncURL>]

ARGUMENTS

• Sync URL

Sync URL

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

• -category
• -object
• -user

-category

ENOVIA Synchronicity Command Reference All -Vol2

795

 -category Name of the command category associated with the
 <categoryName> user.

-object

 -object <objectURL> Sync URL of the object associated with the user.

-user

 -user <userlist> A comma separated list of users to remove from
 the category and object.

RETURN VALUE

 This command does not return a TCL value. The command displays a
 success message when successful or an appropriate error message if the
 command fails.

SEE ALSO

 acadmin addobj, acadmin addgroup, acadmin addgroupusers

EXAMPLES

• Example of Removing a User from a Category on an Object

Example of Removing a User from a Category on an Object

 This example shows the removal of a user from a category defined for
 an object.

 dss> acadmin rmusers -object sync:///Modules/Chip/ALU -category \
 ADMIN-MODULE -user rsmith -server sync://serv1.ABCo.com:2647

 Category ADMIN-MODULE updated

acadmin setcatperm

acadmin setcatperm Command

NAME

Administration

796

 acadmin setcatperm - Set permission for users, objects, & categories

DESCRIPTION

 This command allows you to adjust the permissions associated with
 categories, and optionally users, associated with objects managed by
 ACAdmin.

 Before you can adjust the permissions, you need to associate the
 objects with ACAdmin using the acadmin addobj command. This also
 makes the defined categories available for the object with the
 permissions specified by the command.

 Once those have been created, the permissions for the category can be
 adjusted for all users or individual users or user groups assigned to
 the category.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

 To apply the changes created by this command to the server, you must
 reset the server using the acadmin reset command or ACAdmin Reset
 from the DesignSync Web UI.

SYNOPSIS

 acadmin setcatperm -category <categoryName> -object <objectURL>
 -permission <permission> [-users <userlist>]
 [-server sync(s)://host:port]

ARGUMENTS

• Sync URL

Sync URL

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync

ENOVIA Synchronicity Command Reference All -Vol2

797

 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

• -category
• -object
• -permission
• -user

-category

 -category Name of the command category being modified.
 <categoryName> The command category must exist already.

-object

 -object <objectURL> Enter the Sync URL of the object on which to set
 the permissions. You can set the permissions for
 any object on the server. You may specify objects
 as follows:

 sync:///
 Controls the default permissions for all
 object-independent actions on the server. For
 example, user creation and removal actions do not
 depend on specific server objects. (Default)

 sync:///*
 Controls the default permissions for all
 object-dependent actions on the server. For
 example, browsing objects on the server, creating
 or modifying modules, etc. depend on having
 access to related server objects.

 sync:///Projects[/ProjectName]/[pathtoObject]
 Controls the permission for the specified project
 or the entire project area on the server.

 sync:///Modules[/Category [...]][/ModName]
 Controls the permission for the specified module,
 category, or entire module area on the server.

 Note:
 The sync:/// and sync:///* URLs are generic Sync

Administration

798

 URLs that can be used to provide default access
 for the server.

-permission

 -permission Enter a comma separated list of defined
 <permission> permissions to associate with the object.

 ALL, LIST, EXCLLIST, NONE, SERVDEF

 When LIST or EXCLLIST are used, you can specify a
 user or userlist for whom to set the permissions.

-user

 -user <userlist> A comma separated list of users whose permissions
 are being modified for the specified category.

 If no users are specified, the permissions for
 all users in the category are modified.

RETURN VALUE

 This command does not return any TCL values. When successful, lists
 the categories that have been modified, or returns an appropriate error
message if the command fails.

SEE ALSO

 acadmin addgroup, acadmin addobj, acadmin addusers,
 acadmin listcats, acadmin listobjs, acadmin listperms, acadmin reset

EXAMPLES

• Example of Setting Permissions for a Category
• Example of Setting Permissions for a User

Example of Setting Permissions for a Category

 This example shows how to set permissions for a category defined for
 a module object. The acadmin listperms command following shows

ENOVIA Synchronicity Command Reference All -Vol2

799

 the permissions for the category.

 dss> acadmin setcatperm -object sync:///Modules/Chip/ALU -category \
 ADMIN-MODULE -permission ALL -server sync://serv1.ABCo.com:2647

 Category ADMIN-MODULE updated

 dss> acadmin listperms -object sync:///Modules/Chip/ALU -category \
 ADMIN-MODULE -server sync://serv1.ABCo.com:2647

 ALL rsmith

Example of Setting Permissions for a User

 This example shows how to set permissions for a user associated with
 a category defined for a module object.
 dss> acadmin setcatperm -object sync:///Modules/Chip/ALU -category \
 ADMIN-MODULE -permission LIST -user rsmith -server \
 sync://lwvrh17mon:30126

 Category ADMIN-MODULE updated

 dss> acadmin listperms -object sync:///Modules/Chip/ALU -category \
 ADMIN-MODULE -server sync://lwvrh17mon:30126

 LIST rsmith

Access Control Commands

access Commands

NAME

 access - Access-control commands

DESCRIPTION

• Notes for Modules (Module-based)

 These commands provide access to the access control system used by
 DesignSync tools. Note that some access control commands (access
 allow, access define, access deny, access filter,
 access global, access init) are available ONLY within an
 AccessControl file. See the ENOVIA Synchronicity Access Control Guide
 for more information.

Administration

800

Notes for Modules (Module-based)

 Note: The access decline command is only available for modules access
 controls and is used only within an access control file.

SYNOPSIS

 access <access_command> [<access_command_options>]

 Usage: access [allow|db_filter|decline|define|deny|filter|global|
 init|list|reset|verify]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 stcl, server-side, rstcl, access reset, access verify

EXAMPLES

 See specific "access" commands.

access

access Commands

NAME

 access - Access-control commands

DESCRIPTION

• Notes for Modules (Module-based)

ENOVIA Synchronicity Command Reference All -Vol2

801

 These commands provide access to the access control system used by
 DesignSync tools. Note that some access control commands (access
 allow, access define, access deny, access filter,
 access global, access init) are available ONLY within an
 AccessControl file. See the ENOVIA Synchronicity Access Control Guide
 for more information.

Notes for Modules (Module-based)

 Note: The access decline command is only available for modules access
 controls and is used only within an access control file.

SYNOPSIS

 access <access_command> [<access_command_options>]

 Usage: access [allow|db_filter|decline|define|deny|filter|global|
 init|list|reset|verify]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 stcl, server-side, rstcl, access reset, access verify

EXAMPLES

 See specific "access" commands.

access allow

access allow Command

NAME

 access allow - Allows access to the specified actions

Administration

802

DESCRIPTION

 The 'access allow' and related 'access deny' commands allow or deny
 access to a specified list of actions. You can allow or deny access
 for particular users and under circumstances you specify.

 See the ENOVIA Synchronicity Access Control Guide for details on
 setting up and using access controls.

SYNOPSIS

 access {allow | deny} <actionList> {everyone | [only] users <userList>}
 [when <parm> <globExpr> [when ...]]
 [-because "<message_string>"]

OPTIONS

• actionList
• everyone
• users
• userList
• when
• -because

 Note: For list parameters, (<actionList> and <userList>) surround
 multiple values with braces, for example, {Checkin Checkout}.
 The braces are optional when you specify a single value; for example,
 both {Checkout} and Checkout are valid.

actionList

 actionList The name of the actions to be controlled. The default
 actions are defined in the default Synchronicity
 access control file by 'access define' statements
 and have names such as Checkin, Checkout,
 and Delete. Note: Actions are case sensitive.

everyone

 everyone Specifies that the access control applies to all users.

ENOVIA Synchronicity Command Reference All -Vol2

803

users

 users Specifies the group of users to which the access control
 applies. The 'only' modifier to the users argument
 indicates that users not on the list are assigned
 opposite access permissions. For example,
 'access allow Checkin users Joe' means Joe is allowed to
 check in files, but 'access allow Checkin only users Joe'
 means that nobody other than Joe is allowed to check in
 files. One use of 'only' is to define restrictive access
 rights (deny access to everyone) and then specifically
 grant rights to certain users using the 'only' modifier.
 Users can be named more than once by multiple allow and
 deny commands. Access by users listed as both allowed
 and denied is determined by the last list in which they
 appear.

userList

 userList The list of users to which 'access allow' or
 'access deny' applies. Surround a multiple list of
 users with braces; the braces are optional for a
 single user. Note: User names are case sensitive.

when

 when Use optional 'when' clauses to indicate that the
 <userList> is only allowed or denied access when the
 named parameter <parm> (corresponding to the
 <parameterList> argument of the 'access define' command)
 matches the glob-style expression given by <globExpr>.
 If multiple 'when' clauses are used, all of them
 must match in order for the access rights to be
 affected; in other words, 'when' clauses are joined
 with an implicit AND operator.

-because

 -because Use optional -because clauses with 'access allow' and
 'access deny' statements to provide a message string to
 users indicating why an action failed. In 'access allow'
 statements, use the -because clause with the 'only'
 modifier to explain under which circumstances the 'only'
 modifier is restricting access. If an AccessControl file
 contains multiple 'access allow', 'access deny', or
 'access filter' statements for an action, the -because
 clause of the last 'access allow|deny' statement

Administration

804

 (or the return message string in the case of an
 'access filter' statement) is returned if the action
 fails. If a -because or return message string is not
 included in the last 'access allow', 'access deny',
 or 'access filter' statement, only the default
 "Permission denied by the AccessControl system"
 message is returned.

RETURN VALUE

 none

SEE ALSO

 access decline, access filter, access reset, access verify

EXAMPLES

 The following skeleton example uses the wildcard character passed
 to access verify to ensure that notes for which users have only
 partial view access are not entirely suppressed from the GUI:

 access allow ViewNote everyone when id *

 You also can use constructs of this type for EditNote and
 DeleteNote actions.

 For additional examples of using 'access allow' and 'access deny,'
 see the ENOVIA Synchronicity Access Control Guide.

access db_filter

access db_filter Command

NAME

 access db_filter - Specify criteria for allowing or denying access
 for ViewNote or EditNote

DESCRIPTION

 This command lets you specify criteria for allowing or denying
 access to users attempting to view or edit notes. The access
 db_filter command can be used only for ViewNote and EditNote
 filters. For any ViewNote or EditNote action that requires
 verifying more than one note, access db_filter performs better
 than access filter.

ENOVIA Synchronicity Command Reference All -Vol2

805

 The access db_filter command is used only in scripts in conjunction
 with the note query -filter command.

 The access db_filter rule always gets a parameter query. When this
 rule is invoked by the note query -filter command, this parameter
 contains an unfiltered query string. The filter script can use this
 unfiltered query in any way. Usually the filter script constructs a
 complex query based on the unfiltered query. This complex query then
 expresses access control constraints. In this way, access control
 verification is done at once for all the notes resulting from the
 initial query.

 An access db_filter script must use the directives ALLOW, DENY,
 ALLOW_ALL, or DENY_ALL. It must not return any value.

 Most access rules (access allow, access deny, access filter)
 operate on one note at a time and can return only a single value
 (ALLOW, DENY or UNKNOWN).

 However, an access db_filter rule returns results in a different way
 from other rules because it can operate on multiple notes gathered
 from the note query command. Instead of returning a tri-state value,
 it modifies a tri-state value (0 (denied), 1 (allowed), ? (unknown))
 in a Tcl array. The access commands use this Tcl array to determine
 which notes are passed back to the user through the note query
 -filter command.

 Before entering an access db_filter block, all notes for which access
 is to be determined are stored in the ACCESS array. Each array value
 is initially set to "?", indicating that access has not been
 determined.

 When an unfiltered query is passed to access db_filter, it is allowed
 to modify the array ACCESS as appropriate by the supplied API. When
 access is granted, the array element changes to 1; when access is
 denied, the element changes to 0. At the end of the rule evaluation,
 the array ACCESS is checked for the presence of unknown elements.
 If all elements are in a known state, the loop over the rules is
 aborted. If, for instance, the last rule in a ViewNote action
 list is:

 access allow NoteActions masteradmin

 this rule is the only one processed for the masteradmin user.

 An access db_filter rule never adds entries to the array ACCESS; it
 can only modify existing unknown entries (containing "?") and can
 never set a value to ?.

 When access db_filter is called, the unfiltered query has already
 been executed, extracting only ID's. The access db_filter can:

 -Rerun the query, tacking on a filter expression, using
 FILTERED_IDS.

 -Run a related query, and then do its own "join".

Administration

806

 When writing custom access db_filter scripts, do not directly access
 the ACCESS array. Instead, use the functions provided by the API,
 listed in the API FUNCTIONS section.

 The access db_filter rule can coexist with other rules, such as access
 allow or access deny. All combinations of the note query -filter and
 access verify commands with access allow, access deny, access filter,
 and access db_filter rules are valid. Different rules for the same
 action are applied in the same order as in the current system, with the
 last rule providing a definite answer.

 You add 'access db_filter' commands to the site or server
 AccessControl file within the <SYNC_CUSTOM_DIR> hierarchy (defaults
 to <SYNC_DIR>/custom):

 Site-wide:
 <SYNC_SITE_CUSTOM>/share/AccessControl
 (where <SYNC_SITE_CUSTOM> defaults to <SYNC_CUSTOM_DIR>/site)
 Server-specific (UNIX only):
 <SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/AccessControl

 Note: Do not edit any of the access control files in the
 $SYNC_DIR/share area; you should edit the site or server AccessControl
 file. See the ENOVIA Synchronicity Access Control Guide for details on
 setting up and using access controls.

SYNOPSIS

 access db_filter <actionList> [when <parm> <globExpr> [when ...]]
 <script>

OPTIONS

• actionList
• when
• script

 Note: For the list parameter <actionList>, surround multiple values
 with braces, for example, {ViewNote EditNote}. The braces are optional
 when you specify a single value; for example, both {ViewNote} and
 EditNote are valid.

actionList

 actionList The name of the actions to be controlled -
 ViewNote and/or EditNote. These actions are defined
 in the default Synchronicity access control
 file by 'access define' statements

ENOVIA Synchronicity Command Reference All -Vol2

807

when

 when Use optional 'when' clauses to indicate that the
 user is only allowed or denied access when the
 named parameter <parm> (corresponding to the
 <parameterList> argument of the 'access define'
 command) matches the glob-style expression given
 by <globExpr>.

 If multiple 'when' clauses are used, all of them
 must match for the access rights to be affected. In
 other words, 'when' clauses are ANDed.

script

 script A Tcl script or Tcl statements supplied directly to
 the 'access db_filter' command and evaluated to
 determine whether a given user should be allowed or
 denied access to the named action for each note
 returned by the query. When invoked, <script> is
 passed a parameter named $user that holds the name of
 the user whose access is in question, in addition to
 the parameters listed in the access define statement
 that defined the action.

 Another parameter available to the script is $action,
 which always has either the value EditNote or ViewNote,
 depending on what action is being verified. Using the
 $action parameter, you can invoke different commands
 depending on which action has triggered the filter
 statement.

 An access db_filter script must use the directives
 ALLOW, DENY, ALLOW_ALL, or DENY_ALL.

API FUNCTIONS

• ALLOW
• ALLOW_ALL
• CHECK_STAR
• DENY
• DENY_ALL
• FILTERED_IDS
• FOREACH_NOTE
• FOREACH_UNKNOWN
• SINGLE_NOTE

Administration

808

 The access db_filter contains the following API functions for
 accessing the ACCESS array:

ALLOW

 ALLOW - This function grants access to a single note and
 sets the ACCESS array element for that note to "1".
 For example:

 ALLOW $id

ALLOW_ALL

 ALLOW_ALL - This function sets all notes as allowed--that is,
 access is granted. All ACCESS array elements are
 set to "1". For example:

 ALLOW_ALL

CHECK_STAR

 CHECK_STAR - This function is used when access is always granted
 because an asterisk is passed to the access verify
 command. In this case, the CHECK_STAR function
 grants access and immediately returns to the calling
 application code. You therefore do not need to
 return after calling CHECK_STAR. This function
 should appear at the top of every access
 db_filter call unless the asterisk case is handled
 differently.

 See the EXAMPLES section for an example of using
 this function.

DENY

 DENY - This function denies access to a single note and sets
 the ACCESS array element for that note to "0". For
 example:

 DENY $id

DENY_ALL

ENOVIA Synchronicity Command Reference All -Vol2

809

 DENY_ALL - This function sets all notes as denied--that is,
 access is denied. All ACCESS array elements are set
 to "0". For example:

 DENY_ALL

FILTERED_IDS

 FILTERED_IDS - This function returns a filtered list of note IDs
 based on a set of specified criteria. The variables
 listed below are available to every access
 db_filter script. For example:

 # Other users can access their own notes.
 set AC_squery "[sq $user] = f_Author"

 set AC_notes [FILTERED_IDS $type $sqlquery $dbquery
 $attached $AC_squery <$selectList>]

 where:

 - $type is the note type passed into the filter.
 - $sqlquery is the original SQL query passed in to
 the filter, if any.
 - $dbquery is the original database query passed in
 to the filter, if any.
 - $attached is the URL for note query -attached
 calls passed in to the filter, if any.
 - $AC_squery is an additional SQL query describing
 the additional criteria needed to determine access
 on the set of notes.
 - $selectList is an optional parameter that allows
 you to specify extra properties from the note type
 that the filter needs to determine access. If you
 specify $selectList, it returns a list of lists in
 the form: {id prop prop ...} {id prop prop ...}.

FOREACH_NOTE

 FOREACH_NOTE - This function iterates over the ACCESS array and
 returns one note at a time, regardless of whether
 the note has been allowed or denied by a previous
 ALLOW, DENY, ALLOW_ALL or DENY_ALL command. For
 example:

 FOREACH_NOTE <varName> {
 # Process the note, whose ID is stored in <varName>
 ALLOW $<varName>
 }

Administration

810

FOREACH_UNKNOWN

 FOREACH_UNKNOWN -This function iterates over the ACCESS array and
 returns one note at a time. Only notes marked as
 unknown ("?") are returned. For example:

 FOREACH_UNKNOWN <varName> {
 # Process the note, whose ID is stored in <varName>
 DENY $<varName>
 }

SINGLE_NOTE

 SINGLE_NOTE - This function checks whether a single note is being
 access controlled, and returns the note ID for a
 single note or a null string if there are multiple
 notes.

 It is not necessary for access db_filter to know
 whether a single note or multiple notes are being
 checked; the filter must be able to handle 0, 1, or
 multiple notes. However, in some instances, an
 optimization is possible if you know that a single
 note is being checked.

 For example:

 set noteId [SINGLE_NOTE]
 if {$noteId == ""} {
 # Multiple notes are being access controlled
 } else {
 # Only one note, $noteId contains the note id
 }

RETURN VALUE

 none

SEE ALSO

 access filter, access global, access init, access reset, access verify

EXAMPLES

• Set Different Access Rights for a Note
• Create a Filter to View Notes Authored By User

ENOVIA Synchronicity Command Reference All -Vol2

811

Set Different Access Rights for a Note

 In this example, the script passed to 'access db_filter' ensures that
 SecretIngredient notes can be viewed by anyone if their secrecy level
 is low; otherwise, only their Inventor can view these notes. But
 SecretIngredient notes can be edited only by their Inventor,
 regardless of the secrecy level.

 The script sets up a query, filter_squery, an SQL query that gathers
 up all the notes whose Inventor is the current user if the action is
 EditNote. The query gathers up both the notes whose Inventor is the
 current user and the notes with Secrecy level set to 'low' if the
 action is ViewNote. Note that in SQL queries, you must prepend 'f_'
 to the property name, for example, 'f_Inventor' and 'f_Secrecy'.
 The query is passed to the FILTERED_IDS function which actually
 gathers the notes. Finally, for all the notes that match the query,
 the EditNote or ViewNote action is set to ALLOW.

 access db_filter {ViewNote EditNote} when type SecretIngredient {
 CHECK_STAR
 # CHECK_STAR checks if first note Id == '*' and
 # allows action if so; this is used so that the
 # note type shows up in the Quick View panel.

 if {$action == "ViewNote"} {
 set filter_squery "f_Inventor = [sq $user] OR f_Secrecy = 'low'"
 } else {
 set filter_squery "f_Inventor = [sq $user]"
 }
 set filtered_notes [FILTERED_IDS $type $sqlquery $dbquery \
 $attached $filter_squery]
 # The FILTERED_IDS function runs a subquery, which
 # is the original query with the filter_squery tacked
 # onto it.

 # filtered_notes now holds a list of notes that matches the
 # original query,
 # AND passed the access checks. Now update the ACCESS map
 # by setting the flag for each note that passed muster and
 # denying those that didn't

 foreach AC_note $filtered_notes {
 ALLOW $AC_note
 }

 FOREACH_UNKNOWN AC_note {
 DENY $AC_note
 }
 }

Create a Filter to View Notes Authored By User

Administration

812

 This example creates a filter to display notes authored by the user
 who runs the query.

 access db_filter ViewNote when type "SyncDefect" {

 # ---
 # The following variables are available to this filter:
 #
 # $type The note type
 # $sqlquery . . . The original SQL query, passed in from
 # the note query command, if any.
 # $dbquery . . . The original DB query, passed in from the
 # the note query command, if any.
 # $attached . . . A note attachment, passed in from the note
 # query -attached command, if any.
 # $user The user ID of the user requesting access.
 # ---

 # Check for the "*" operator, which could be sent in from a
 # note panel. If a "*" is found, the filter will return
 # immediately after granting access.

 CHECK_STAR

 # For purposes of this example filter, allow users to view
 # only the SyncDefect notes that they authored. Therefore,
 # build a new SQL query to gather only those notes where the
 # user is the author.

 Set AC_squery "[sq $user] = f_Author "

 # Gather the filtered list of note IDs where the criteria
 # matches the original query and our criteria.

 set AC_ids [FILTERED_IDS \
 $type $sqlquery $dbquery $attached $AC_squery]

 # The variable AC_ids now holds the list of note IDs that
 # pass the original query (say, we queried for all "open" defects)
 # AND match our criteria of the user being the author. These are
 # the notes the user has access to view. Therefore, we
 # iterate through the ID list and allow each note returned from
 # FILTERED_IDS.

 foreach noteId $AC_ids {
 ALLOW $noteId
 }

 # Now DENY all the notes that did NOT match our criteria.
 # Iterate through all the notes that are still in an UNKNOWN
 # state and DENY them.

 FOREACH_UNKNOWN noteId {
 DENY $noteId
 }
 }

ENOVIA Synchronicity Command Reference All -Vol2

813

access decline

access decline Command

NAME

 access decline - Causes additional access rules to be invoked

DESCRIPTION

 The "access decline" command is used with module data. When you
 operate on a module, you are operating on the module as well as on
 the module's individual members. Access control rules can apply at
 the module level, and also at the individual module member level.

 An operation on module data will first check module level access. If the
 module level access is allowed or denied, then no further checks are
 necessary. However, if the module level access is declined, then an access
 check is needed, for each individual module member that is participating
 in the operation.

 The "access decline" command declines access to a specified list of
 actions. You can also decline access for particular users and under
 circumstances you specify.

 Attempting to decline access for a command that does not support the
 DECLINE outcome results in an outcome of DENY.

 See the ENOVIA Synchronicity Access Control Guide for details on
 module access, setting up, and using access controls.

SYNOPSIS

 access decline <actionList> {everyone | users <userList>}
 [when <parm> <globExpr> [when ...]]

OPTIONS

• actionList
• everyone
• users
• userList
• where

 Note: For list parameters, (<actionList> and <userList>) surround
 multiple values with braces, for example, {Checkin Checkout}.
 The braces are optional when you specify a single value; for example,

Administration

814

 both {Checkout} and Checkout are valid.

actionList

 actionList The name of the actions to be controlled. The default
 actions are defined in the default Synchronicity
 AccessControl file by "access define" statements and
 have names such as Checkin and Checkout.

 Note: Actions are case sensitive.

everyone

 everyone Specifies that the access control applies to all users.

users

 users Specifies the group of users to which the access control
 applies.

userList

 userList The list of users to which "access decline" applies.
 Surround a multiple list of users with braces; the braces
 are optional for a single user.

 Note: User names are case sensitive.

where

 when Use optional "when" clauses to indicate that the
 <userList> is only declined access when the named
 parameter <parm> (corresponding to the <parameterList>
 argument of the "access define" command) matches the
 glob-style expression given by <globExpr>.

 If multiple "when" clauses are used, all of them
 must match in order for the access rights to be
 affected. This is because "when" clauses are joined
 with an implicit AND operator.

RETURN VALUE

ENOVIA Synchronicity Command Reference All -Vol2

815

 none

SEE ALSO

 access allow, access deny, access filter, access reset, access verify

EXAMPLES

 Let's say you want to restrict access to module data based on the
 natural path of the module's member objects. Granting or denying access
 at the module level is not sufficient. Access must be checked for each
 of the individual module members.

 In the example below:
 - Developers Ian, Mahesh, Dana and Larry are the only users granted
 Checkout access to all modules.
 - Test engineer Dave and doc writer Linda are declined Checkout access
 to all modules. That decline causes module member access checks to
 occur.
 - Linda is explicitly granted module member checkout access to member
 objects in modules' "doc" directories.
 - Dave is explicitly granted module member checkout access to member
 objects in modules' "test" directories.

 access allow Checkout only users {ian mahesh dana larry} when \
 Object sync:///Modules/*
 access decline Checkout users {dave linda} when \
 Object sync:///Modules/*
 access allow MemberCheckout users linda when NaturalPath *doc*
 access allow MemberCheckout users dave when NaturalPath *test*

access define

access define Command

NAME

 access define - Define additional actions to be access controlled

DESCRIPTION

 Use the 'access define' command within to specify new actions to be
 access controlled.

 The pre-defined access control files included with DesignSync define
 the actions for which you can control access. See the ENOVIA
 Synchronicity Access Control Guide for descriptions of the

Administration

816

 pre-defined action definitions and details on setting up and using
 access controls.

 You use the 'access define' command only to define additional actions
 when performing advanced access rights checking.

SYNOPSIS

 access define <action> [<parameterList>]

OPTIONS

• action Option
• parameterList Option

 Note: For list parameters, such as <parameterList>, surround
 multiple values with braces, for example, {DRCCheck ERCCheck}.
 The braces are optional when you specify a single value; for example,
 both {DRCCheck} and DRCCheck are valid.

action Option

 action The name of a new action to be defined. The default
 actions are defined in the default Synchronicity
 access control file by 'access define'
 statements. and have names such as Checkin, Checkout,
 and Delete. Note: Actions are case sensitive.

parameterList Option

 parameterList A list of the arguments required by any access filter
 scripts or when clauses in 'access allow' or
 'access deny' commands.

RETURN VALUE

 none

SEE ALSO

 access allow, access decline, access filter, access reset, access verify

ENOVIA Synchronicity Command Reference All -Vol2

817

EXAMPLES

 See the ENOVIA Synchronicity Access Control Guide for an example of a
 custom action definition.

access deny

access deny Command

NAME

 access deny - Denies access to the specified actions

DESCRIPTION

 See the "access allow" command.

SYNOPSIS

 access {allow | deny} <actionList> {everyone | [only] users <userList>}
 [when <parm> <globExpr> [when ...]] [-because "<message_string>"]

access filter

access filter Command

NAME

 access filter - Specify criteria for allowing or denying access

DESCRIPTION

 Use 'access filter' in situations where you need to allow, deny or
 decline access based on criteria other than simple pattern matching of
 the parameters.

 To create filters where multiple notes are evaluated for ViewNote or
 EditNote actions, you should use the access db_filter command to
 improve performance.

 See the ENOVIA Synchronicity Access Control Guide for details on
 setting up and using access controls.

Administration

818

SYNOPSIS

 access filter <actionList> [when <parm> <globExpr> [when ...]]
 <script>

OPTIONS

• actionList
• script
• when

 Note: For list parameter <actionList>, surround multiple values with
 braces, for example, {Checkin Checkout}. The braces are optional when
 you specify a single value; for example, both {Checkout} and Checkout
 are valid.

actionList

 actionList The name of the actions to be controlled. The
 actions are defined in the default Synchronicity
 access control files by 'access define'
 statements and have names such as Checkin, Checkout,
 and Delete. Note: Actions are case sensitive.

script

 script A Tcl script or Tcl statements supplied directly to
 the 'access filter' command evaluated in order to
 determine if a given user should be allowed or
 denied access to the named action. When invoked,
 <script> is passed a parameter named <user> which
 holds the name of the user whose access is in question,
 in addition to the parameters listed in the access
 define statement that defined the action.

 You can also pass the parameter <action> which lets
 you differentiate between actions, such as Checkin or
 Checkout. Using the <action> parameter, you can invoke
 different commands depending on which action has
 triggered the filter statement. For example, if the
 action is a Checkin, you might want to check the
 <CommentLen> parameter is a specific length. If the
 action is a Checkout, you might want to allow only
 administrators to lock the objects.

 The order in which a filter is declared relative to
 the 'access deny' and 'access allow' commands is

ENOVIA Synchronicity Command Reference All -Vol2

819

 important. Details are in the "Access Control Search
 Order" section of the topic "Setting Up Access Controls",
 in the ENOVIA Synchronicity Access Control Guide.

 The filter script must return a value of ALLOW, DENY,
 DECLINE, UNKNOWN, or a message string indicating that an
 action is denied and explaining why. If a message string
 was not specified, when an action is denied, only the
 default "Permission denied by the AccessControl system"
 message is returned.

 The return value of ALLOW allows the action, overriding
 DENY values already processed for the same operation.
 Likewise, the return value of DENY prevents the action,
 overriding ALLOW values already processed for the
 action. Unlike ALLOW and DENY, the return value of
 UNKNOWN causes the access control system to continue
 as if the filter had never been invoked.

 The return value of DECLINE causes the appropriate
 Member access control to be called. The effective
 return value is then the result of that Member
 access control. Or, if there is no Member access rule,
 then DENY is returned.

 In general, set the overall access controls you want
 to enforce. Then use an access filter to return ALLOW
 or DENY if you want to explicitly override those
 default rules. Otherwise, return UNKNOWN.

 Note: Any value other than ALLOW, DENY, DECLINE or
 UNKNOWN is treated as DENY. Any uncaught exceptions
 are treated as DENY. For example, if you return a
 message string rather than DENY, the action is denied
 and users receive the string as an error message in
 addition to the default "Permission denied by the
 AccessControl system" message.

when

 when Use optional 'when' clauses to indicate that the
 user is only allowed or denied access when the
 named parameter <parm> (corresponding to the
 <parameterList> argument of the 'access define'
 command) matches the glob-style expression given by
 <globExpr>.

 If multiple 'when' clauses are used, all of them
 must match in order for the access rights to be
 affected; in other words, 'when' clauses are joined
 with an implicit AND operator.

RETURN VALUE

Administration

820

 none

SEE ALSO

 access allow, access deny, access db_filter, access global,
 access init, access reset, access verify

EXAMPLES

 The following skeleton example uses the wildcard character passed
 to access verify to ensure that notes for which users have only
 partial delete access are not entirely suppressed from the GUI:

 access filter DeleteNote when type ... {
 if {$id == "*"} {
 return ALLOW
 }
 ...
 }

 For other examples of using "access filter", see the Access Control
 Guide.

access global

access global Command

NAME

 access global - Defines global variables and procs for
 access filters

DESCRIPTION

 Access filters let you allow or deny access based on criteria
 beyond simple pattern matching of the parameters. You define static
 variables and procs within 'access global' commands. (See 'access
 init' for defining dynamic data.) To use a global variable in an
 access filter, it must be declared as a global within the filter.

 Unlike a normal Tcl script, the AccessControl files (both system
 and custom) are sourced only once, at startup. When an 'access verify'
 command is executed, only those commands given as part of access filter
 scripts are evaluated. Therefore, any variables or procs defined
 outside of the access commands are unknown by the Tcl interpreter. Do
 not define any code or data outside either an 'access global' or
 'access init' block.

ENOVIA Synchronicity Command Reference All -Vol2

821

 For variables and procs to be available to the access filter
 scripts, they must be defined within the <script> parameter passed
 to either 'access global' or 'access init'. Each 'access global'
 block is sourced once when the access control system initializes and
 at every "access reset" command. The 'access global' scripts are
 evaluated in the order in which they appear in the custom
 AccessControl file.

 You cannot specify a list of actions for the 'access global' command
 (unlike 'access init'). The 'access global' scripts are executed
 for all actions.

 See the ENOVIA Synchronicity Access Control Guide for details on
 setting up and using access controls.

 Important: The 'access global' code block runs inside a Tcl namespace
 called '::SyncAC'. Any variables that the global code block sets or
 procs that it defines reside in that namespace. When you use these
 variables or procs in other access filters, qualify them using the
 '::SyncAC' namespace qualifier, rather than the Tcl global
 qualifier '::'. Note that access filters let you qualify a variable
 or proc with the Tcl global namespace '::'. However, in this case,
 the variable or proc resides in the global namespace which is reset
 upon every request. Thus, these variables and procs are not visible to
 subsequent access filters. Note that 'access init' blocks reside in
 the global namespace, thus they do not need the '::SyncAC' namespace
 qualifier. See the EXAMPLES section for an example of the '::SyncAC'
 namespace qualifier.

SYNOPSIS

 access global <script>

OPTIONS

• script

script

 script A Tcl script or Tcl statements that initialize
 the variables and procs used in the 'access filter'
 command for the specified actions.

RETURN VALUE

 none

SEE ALSO

Administration

822

 access filter, access init, access allow, access decline, access reset,
 access verify

EXAMPLES

 This example shows how to use 'access global' and demonstrates how
 the 'access global' command differs from 'access init.' The example
 sets up two lists of administrators, globalAdmins and filterAdmins.
 The globalAdmins list is set up in an 'access global' block; the
 filterAdmins list is set up in an 'access init' block. The AddNote
 access filter demonstrates the use of the two lists. If a user is
 contained in either of the lists, the filter allows permission.
 Otherwise, the filter denies permission.

 To use the globalAdmins list in an access filter, it must be first be
 declared as a global variable in the filter. Anything declared inside
 an access global block resides in the ::SyncAC namespace rather
 than the global namespace (::) and needs to be referenced inside
 access filters using the ::SyncAC namespace qualifier.

 The filterAdmins variable does not need to be declared in the access
 filter because it is set up in an 'access init' block, which is sourced
 at the time the filter is run and is in the global scope of the filter.

 access global {
 set globalAdmins "norm barb mitch betty"
 }

 access init {
 set filterAdmins "mark deb sal"
 }

 access filter AddNote {
 global globalAdmins

 if {[lsearch -exact $::SyncAC::globalAdmins $user] == -1} {
 if {[lsearch -exact $filterAdmins $user] == -1} {
 return DENY
 } else {
 return UNKNOWN
 }
 } else {
 return UNKNOWN
 }
 }

 In the example, the return value UNKNOWN defers to any other access
 controls that might be set. If no other access control denies access,
 the user is allowed to add a note.

 For other examples of using "access global", see the Access Control
 Guide.

access init

ENOVIA Synchronicity Command Reference All -Vol2

823

access init Command

NAME

 access init - Defines variables and procs

DESCRIPTION

 You use access init to create variables for both access filters
 and for use within simple access allow/access deny rules. You also
 can use access init to create procs for use in access filters.

 Access filters let you allow or deny access based on criteria
 beyond simple pattern matching of the parameters. You define
 dynamic variables and procs for access filters within 'access init'
 commands. (See 'access global' for defining static data.) When
 possible, you should use access global to avoid performance penalties.
 Because an access init statement is sourced each time a filter
 is run, operations such as viewing a note can become unacceptably
 slow. The access global command, which is used inside filter scripts,
 is sourced only once, when the access control system is initialized.

 Unlike a normal Tcl script, the AccessControl files (both system
 and custom) are sourced only once, at startup. When an 'access verify'
 command is executed, only those commands given as part of access filter
 scripts are evaluated; any variables or procs defined outside of the
 access commands are unknown by the Tcl interpreter. Do not
 define any code or data outside either an 'access init' or
 'access global' block.

 In order for variables and procs to be available to access filter
 scripts, they must be defined within the <script> parameter passed
 to 'access init' or 'access global'. The 'access init' scripts
 are evaluated in the order in which they appear in the custom
 AccessControl files. By default, all 'access init' scripts are
 evaluated before any 'access filter' script is evaluated. However,
 you can specify that an 'access init' script be evaluated only before
 access filters verifying a particular type of action. To do
 this, include the type of action within the <actionList>
 parameter of the 'access init' statement. See the example of
 an <actionList> within the 'access init' example below.

 Although code in 'access init' statements is executed when filters are
 run, it also is available immediately for use by access allow/access
 deny rules that follow the 'access init' definition.

 See the ENOVIA Synchronicity Access Control Guide for details on
 setting up and using access controls.

SYNOPSIS

Administration

824

 access init [<actionList>] <script>

OPTIONS

• actionList
• script

 Note: For list parameter <actionList>, surround multiple values with
 braces, for example, {Checkin Checkout}. The braces are optional when
 you specify a single value; for example, both {Checkout} and Checkout
 are valid.

actionList

 actionList The name of the access filter actions for which the
 access init <script> will be sourced. If no
 actionList is provided, the 'access init' script
 is evaluated before any access filter is executed
 and the script is executed for all actions.

script

 script A Tcl script or Tcl statements that initialize
 the variables and procs used in the 'access filter'
 command for the specified actions.

RETURN VALUE

 none

SEE ALSO

 access filter, access global, access allow, access decline,
 access reset, access verify

EXAMPLES

 This example shows an 'access init' statement that includes an
 <actionList> argument. The 'access init' statement is defined
 for the Checkin action; thus, this 'access init' is evaluated
 only before Checkin access filters. If the <actionList> argument
 (Checkin) were not included, the 'access init' would be evaluated
 before any access filters are evaluated.

ENOVIA Synchronicity Command Reference All -Vol2

825

 # Set up a variable that defines the project leader
 access init Checkin {
 set projectLeader karen
 }

 # Only the project leader can check in
 access filter Checkin {
 if {$user == $projectLeader} {
 return ALLOW
 }
 return "You must be projectleader to check in."
 }

 For other examples of using "access init", see the Access Control
 Guide.

access list

access list Command

NAME

 access list - Returns a list of defined access controls

DESCRIPTION

 The access list command returns a list of defined access actions.

SYNOPSIS

 access list -actions

OPTIONS

• -actions

-actions

 -actions The list of defined access action types.

RETURN VALUE

 A space delimited list of the defined access controls appropriate to
 the options selected.

Administration

826

SEE ALSO

 access allow, access deny, access define

EXAMPLES

 access list -actions
 returns "Mkmod DeleteMirror EditMirror SwitchLocker ..."

access reset

access reset Command

NAME

 access reset - Updates a SyncServer's access controls

DESCRIPTION

 This server-side command causes the SyncServer to reread the
 AccessControl files, which causes any changes in access controls
 to take effect. All processes of a multi-process server are
 affected by 'access reset', not just the process that receives the
 request.

 A SyncServer reads the AccessControl files upon startup, so
 stopping and restarting the SyncServer also updates access
 controls. Using 'access reset' avoids having to stop and restart
 the SyncServer, thereby not interrupting users' access to the
 SyncServer.

 To update a SyncServer's access controls:

 1. Modify the access control files as needed.

 See the ENOVIA Synchronicity Access Control Guide for details on
 setting up and using access controls.

 2. Create a file with a .tcl extension containing the
 'access reset' command in one of the Synchronicity Tcl script
 directories:

 Site-wide:
 <SYNC_SITE_CUSTOM>/share/tcl
 (where <SYNC_SITE_CUSTOM> defaults to <SYNC_CUSTOM_DIR>/site)
 Server-specific (UNIX only):
 <SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/tcl

ENOVIA Synchronicity Command Reference All -Vol2

827

 (where <SYNC_CUSTOM_DIR> defaults to <SYNC_DIR>/custom)

 3. Execute the script on the server using one of the following methods:

 o From your browser, specify the following URL:
 http://<host>:<port>/scripts/isynch.dll?panel=TclScript&file=<filename>

 o From a DesignSync client, specify the following command:
 rstcl -server sync://<host>:<port> -script <filename>

 where <filename> is the name of your script containing the
 'access reset' command.

 See the "server-side" and "rstcl" help topics for additional
 information on executing server-side scripts.

 Note:

 - ProjectSync provides an Access Reset option on the ProjectSync
 menu. Use this method for resetting access controls if you are a
 ProjectSync user and have privileges to use the Access Reset
 option (the Access Reset option from ProjectSync can be access
 controlled).

 - When you execute the script containing the access reset command,
 the access reset command checks the AccessControl file for
 syntactic errors before changing the server state. If the file
 contains such errors, the command aborts, leaving the server
 state (and access controls) unchanged.

 - Errors in an AccessControl file can cause your server to become
 unresponsive if the errors are not corrected quickly. To avoid this
 problem, correct access control errors immediately and reset the
 server.

SYNOPSIS

 access reset

OPTIONS

 none

RETURN VALUE

 none

SEE ALSO

Administration

828

 stcl, rstcl, server-side, access verify

EXAMPLES

 This example updates the holzt:2647 server with a site-wide
 access control that stops users from unlocking files they do
 not own.

 1. Add the following line to <SYNC_SITE_CUSTOM>/share/AccessControl:
 access deny Unlock everyone when IsLockOwner "no"

 Note: <SYNC_SITE_CUSTOM> defaults to <SYNC_CUSTOM_DIR>/site which
 defaults to <SYNC_DIR>/custom/site.

 2. In <SYNC_SITE_CUSTOM>/share/tcl, create 'reset.tcl' that
 contains the following line:
 access reset

 3. Execute the script using one of the following methods:
 o From your browser, issue the following URL:
 http://holzt:2647/scripts/isynch.dll?panel=TclScript&file=reset.tcl

 o From a DesignSync client (dssc in this example), execute the
 following command:
 dss> rstcl -server sync://holzt:2647 -script reset.tcl

access verify

access verify Command

NAME

 access verify - Determines whether a user is allowed to
 perform an action

DESCRIPTION

 This server-side command checks whether the given user is allowed
 to perform the named action. Use 'access verify' to check access
 controls explicitly in server-side scripts; server-side scripts
 do not automatically perform the named action.

 For ViewNote, EditNote, and DeleteNote filters, you can use a special
 application of access verify to determine whether a user can access
 any notes of that type. You can pass in an asterisk as a wildcard for
 the value of a note ID. Any ViewNote, EditNote, or DeleteNote
 allow/deny/filter rule treats this wildcard specially and answers
 whether the specified user can access notes of that type. If the
 answer is DENY, then the user does not see the note type name

ENOVIA Synchronicity Command Reference All -Vol2

829

 in certain contexts (e.g., it disappears from QuickView because
 the user does not have the right to access any notes of that type).
 See the entries for access allow, access deny, and access filter for
 examples of how to use the wildcard in scripts with these commands.

SYNOPSIS

 access verify <action> <user> [<arg> [...]] [-why <var>]

 access verify <note_action> <note_system> <note_type> *

ARGUMENTS

• action
• args
• note_action
• note_system
• note_type
• user
• -why

action

 action The name of the action to be checked. The actions are
 defined in the access control file by "access define"
 statements and have names such as Checkin, Checkout,
 and Delete.

args

 args The definition of the action in the access control
 file includes a list of parameters that give additional
 information about the action. These parameters are used
 in 'when' clauses and filter scripts in the access
 control file to determine if access will be allowed
 or denied. You must pass a value for each of these
 parameters to the access verify command to make this
 information available to the commands in the access
 control file.

note_action

 <note_action> The ViewNote, EditNote, or DeleteNote action, when
 you want to pass as asterisk as a wildcard for the
 note ID number.

Administration

830

note_system

 <note_system> The name of the note system, which is always SyncNotes.

note_type

 <note_type> The name of the note type to be checked for access.

 * A wildcard character that stands for any note ID number.

user

 user The user name of the user whose access to the given
 action is being determined.

-why

 -why The definitions of access allow, deny, and filter
 statements in the access control file can include
 message strings describing why access has been denied.
 Use the -why option to retrieve this message from an
 action's access allow, deny, or filter statement and
 store it in the named variable. You can also set the
 variable to an appropriate message string directly.
 If the access statement provides no message string,
 the named variable is set to "access denied".
 If the named variable already exists and the access
 statement provides no message string, the variable's
 value remains unchanged.

 See the ENOVIA Synchronicity Access Control Guide for information on
 the pre-defined access control files.

RETURN VALUE

 0 (Tcl FALSE) - user is not allowed access to the named action.
 1 (Tcl TRUE) - user is allowed access to the named action.
 2 - additional rules need to be invoked, to determine whether the user
 has access to the named action.

SEE ALSO

ENOVIA Synchronicity Command Reference All -Vol2

831

 access allow, access decline, access deny, access filter, stcl, rstcl,
 server-side

EXAMPLES

• Verifying Access Rights for a User
• Using the Default "why" Message
• Using a Custom "why" Message
• Using a Wildcard for note ID

Verifying Access Rights for a User

 This example determines whether user 'joe' has access rights to
 add the version tag "Release" to top.v. Note that you do not specify a
 host:port in the Object (top.v) URL (see the "server-side" help topic
 for more information).

 if {[access verify Tag $SYNC_User {sync:///Projects/ASIC/top.v} \
 Release ADD VERSION]} {
 puts "$SYNC_User is allowed to tag top.v Release"
 } else {
 puts "Nice try, $SYNC_User"
 }

Using the Default "why" Message

 This example shows the default message issued because the variable,
 message, is not set. If a message is included in the -because or return
 clause of the access allow, deny, or filter statement for the
 action, the named variable is set to that message.

 # Just use the default message.
 # output -> "access denied"
 unset message
 if {![access verify CustomTag $SYNC_User -why message]} {
 puts $message
 }

Using a Custom "why" Message

 This example shows how to use the variable, message, to issue a
 descriptive message explaining why access is denied. If a message is
 included in the -because or return clause of the access allow, deny,
 or filter statement for the action, the named variable is set to that
 message.

 # Use a descriptive default message.

Administration

832

 # output -> "Sorry, only project leader can perform CustomTag."
 set message "Sorry, only project leader can perform CustomTag."
 if {![access verify CustomTag $SYNC_User -why message]} {
 puts $message
 }

Using a Wildcard for note ID

 This example passes a wildcard as the value of the note ID and
 returns if access is not granted.

 if {![access verify ViewNote $SYNC_User SyncNotes $noteType *]} {
 return
 }

Authentication

hcm addlogin

hcm addlogin Command

NAME

 hcm addlogin - Stores a server login to enable hierarchical
 queries (legacy)

DESCRIPTION

 This command stores a login (username and password), or modifies an
 existing stored login, on a server, for the purposes of conducting
 cross-server recursive module queries.

 The hierarchy of modules for which a query applies is defined using
 hcm addhref commands. With the hcm addhref command, you can create
 connections between two servers, the origin server (specified by the
 -fromtarget option) and the referenced server (specified by the
 -totarget option). The origin server is the server that holds the
 topmost module in a design hierarchy and the server from which the
 hierarchical query is initiated. You can run cross-server
 hierarchical queries using ProjectSync's standard Query panel.

 You need to store a login if the referenced server requires a login
 different from the one you use to connect to the origin server. For
 example, your login on the origin server is "john," but your login
 on the referenced server is "jdoe."

 Notes:
 - If you do not store a login and one is required, your query

ENOVIA Synchronicity Command Reference All -Vol2

833

 fails and refers you to this command.
 - After you run the hcm addlogin command, you will be prompted to
 enter a password.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 hcm addlogin -fromtarget <origin_server_url>
 -fromuser <origin_username> | -fromallusers
 -totarget <referenced_url> | -toalltargets
 -touser <referenced_username>

OPTIONS

• -fromallusers
• -fromtarget
• -fromuser
• -toalltargets
• -totarget
• -touser

-fromallusers

 -fromallusers Specifies that the stored login applies to all
 users on the origin server. A login stored
 using -fromuser takes precedence over one stored
 with -fromallusers.

-fromtarget

 -fromtarget Specifies the URL of a server on which you want
 <origin_server_url> to store a login.

 To specify the origin server, use the
 following syntax:
 sync[s]://<host>[:<port>]
 where <host> is the machine on which the
 SyncServer is installed and <port> is the
 SyncServer port number.

-fromuser

Administration

834

 -fromuser Specifies the username on the origin server for
 <origin_username> which this stored login applies.

-toalltargets

 -toalltargets Specifies that the stored login applies to all
 servers referenced from the origin server. A
 login stored using -totarget takes precedence
 over one stored with -toalltargets.

-totarget

 -totarget Specifies that the stored login should be used
 <referenced_url> whenever the origin server (specified by
 -fromtarget) contacts the referenced server
 (specified by -totarget).

 To specify the referenced server, use the
 following syntax:
 sync[s]://<host>[:<port>]
 where <host> is the machine on which the
 SyncServer is installed and <port> is the
 SyncServer port number.

 Note:
 - The value specified for
 <referenced_server_url> should match the URL
 returned by the hcm showhrefs command run on
 the origin server.

-touser

 -touser Specifies the username that HCM uses when
 <referenced_username> contacting the referenced server.

 Note:
 - Usernames are case sensitive.

RETURN VALUE

 This command does not return Tcl values.

SEE ALSO

ENOVIA Synchronicity Command Reference All -Vol2

835

 access allow, access deny, addhref, hcm rmlogin, hcm showlogins,
 command defaults
,

EXAMPLES

• Example of Storing a User Login for a Specific Server
• Example of Storing a Guest Login For All Referenced Servers

Example of Storing a User Login for a Specific Server

 This example stores a login 'queryuser' that users on SyncServer
 sync://chip.ABCo.com:2647 can use to query the SyncServer
 sync://alu.ABCo.com:2647.

 dss> hcm addlogin -fromtarget sync://chip.ABCo.com:2647 -fromallusers \
 -totarget sync://alu.ABCo.com:2647 -touser queryuser

Example of Storing a Guest Login For All Referenced Servers

 This example stores a login 'guest' that users on SyncServer
 sync://chip.ABCo.com:2647 can use to query all referenced servers
 (with the exception of SyncServer sync://alu.ABCo.com:2647).

 dss> hcm addlogin -fromtarget sync://chip.ABCo.com:2647 -fromallusers \
 -toalltargets -touser guest

 Note: The "Controlling Access to Servers" example in the hcm Example
 topic includes the steps for displaying and removing the stored
 logins created in the previous examples.

hcm rmlogin

hcm rmlogin Command

NAME

 hcm rmlogin - Removes a login stored on a server

DESCRIPTION

 This command removes a login (username and password) that is stored on
 the server. This login is used for conducting cross-server recursive
 queries.

 This command is subject to access controls on the server. See the

Administration

836

 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 hcm rmlogin -fromtarget <origin_server_url>
 -fromuser <origin_username> | -fromallusers
 -totarget <referenced_url> | -toalltargets

OPTIONS

• -fromallusers
• -fromtarget
• -fromuser
• toalltargets_option
• totarget_option

-fromallusers

 -fromallusers
 Specifies that the stored login you want to
 remove applies to all users on the origin
 server.

-fromtarget

 -fromtarget Specifies the URL of the server from which you
 <origin_server_url> want to remove a login.

 To specify the origin server, use the
 following syntax:
 sync[s]://<host>[:<port>]
 where <host> is the machine on which the
 SyncServer is installed and <port> is the
 SyncServer port number.

-fromuser

 -fromuser Specifies the username on the origin server for
 <origin_username> which you want to remove a stored login.

 -toalltargets Specifies that the stored login you want to
 remove applies to all servers referenced from
 the origin server.

ENOVIA Synchronicity Command Reference All -Vol2

837

 -totarget Specifies the referenced server of the stored
 <referenced_url> login that you want to remove.

 To specify the referenced server, use the
 following syntax:
 sync[s]://<host>[:<port>]
 where <host> is the machine on which the
 SyncServer is installed and <port> is the
 SyncServer port number.

RETURN VALUE

 This command does not return Tcl values.

SEE ALSO

 access allow, access deny, hcm addlogin, hcm showlogins,
 command defaults
,

EXAMPLES

• Example of Removing a User Login for a Specific Server
• Example of Removing the Guest Login for a Specific Server

Example of Removing a User Login for a Specific Server

 This example removes the 'queryuser' login stored on the server
 sync://chip.ABCo.com:2647.

 dss> hcm rmlogin -fromtarget sync://chip.ABCo.com:2647 -fromallusers \
 -totarget sync://alu.ABCo.com:2647

Example of Removing the Guest Login for a Specific Server

 This example removes the 'guest' login stored on the server
 sync://chip.ABCo.com:2647.

 dss> hcm rmlogin -fromtarget sync://chip.ABCo.com:2647 -fromallusers \
 -toalltargets

hcm showlogins

hcm showlogins Command

Administration

838

NAME

 hcm showlogins - Displays the logins stored on a server

DESCRIPTION

• Understanding the Output

 This command displays the logins that are stored on the server. These
 logins (username and password) are used for conducting cross-server
 recursive queries. By default, this command returns all the login
 information for the specified server to the screen in a user-friendly
 format.

 Note:
 - The output of this command does not include passwords.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Understanding the Output

 By default, or if you run the hcm showlogins command with the '-report
 normal' option, the command returns the login information to the screen
 in a user-friendly format.

 If you run the hcm showlogins command with the '-report script' option,
 the command returns a Tcl list in the following form:

 {{fromtarget <origin_server_url>
 fromuser <origin_server_username> totarget <reference_server_url>
 touser <reference_server_username>}
 ...
 }

 - fromtarget is the server on which the logins are stored.

 - fromuser is the user(s) to which the login applies.
 o 'ALLUSERS' indicates the login applies to all users.
 o <username> indicates the login applies to the specific user
 name.

 - totarget is the referenced server to which the access applies.
 o 'ALLTARGETS' indicates the login applies to all referenced
 servers.
 o A specific URL indicates the login applies to just that server.

 - touser is the user name to which the access applies.

ENOVIA Synchronicity Command Reference All -Vol2

839

 If you run the hcm showlogins command with the '-report command'
 option, a list of stored logins is returned in the following form:

 -fromtarget <origin_server_url>
 -fromallusers | -fromuser <origin_server_username>
 -toalltargets | -totarget <origin_server_url>
 -touser <reference_server_username>
 ...

 - fromtarget, fromallusers, fromuser, toalltargets, totarget, and
 touser are the same for both the '-report script' and '-report
 command' options. For a description of these values, see the
 description of the '-report script' output.

SYNOPSIS

 hcm showlogins -fromtarget <origin_server_url>
 [-fromuser <origin_username> | -fromallusers]
 [-report {brief | normal | verbose | command |
 script}]

OPTIONS

• -fromallusers
• -fromtarget
• -fromuser
• -report

-fromallusers

 -fromallusers Displays the stored logins that apply to all
 users on the origin server.

-fromtarget

 -fromtarget Specifies the URL of a server for which you want
 <origin_server_url> to view logins.

 To specify the server, use the following syntax:
 sync[s]://<host>[:<port>]
 where <host> is the machine on which the
 SyncServer is installed and <port> is the
 SyncServer port number.

-fromuser

Administration

840

 -fromuser Displays the stored logins for the username on
 <origin_username> the server.

-report

 -report <mode> Indicates the format in which the output
 appears.

 Valid values are:

 o brief - Displays the same information as
 'normal'.

 o normal - Displays the output in a user-
 friendly format. This is the default behavior.

 o verbose - Displays the same information as
 'normal'.

 o command - Returns a list of stored logins in a
 format that closely matches the original
 usage of the hcm addlogin and hcm rmlogin
 commands. With this format you can easily cut
 and paste to change or remove a stored login.

 o script - Returns a Tcl list.

RETURN VALUE

 If you run the hcm showlogins command with the '-report script' option,
 it returns a Tcl list. If you run it with any other -report option, it
 does not return any Tcl values. For a description of the output, see
 the "Understanding the Output" section.

SEE ALSO

 access allow, access deny, hcm addlogin, hcm rmlogin, command defaults
,

EXAMPLES

 This example displays all the logins stored on the server
 sync://chip.ABCo.com:2647

 dss> hcm showlogins -fromtarget sync://chip.ABCo.com:2647

ENOVIA Synchronicity Command Reference All -Vol2

841

password

password Command

NAME

 password - Stores a user's name and password

DESCRIPTION

This command allows you to save a userID and password for a DesignSync
 server or a 3DPassport Central Authentication Server, eliminating the
 need to manually authenticate. This allows the user to run
 background jobs without requiring user input.

 The username, password, and server information is saved in the user's
 registry, the UserRegistry.reg file. Whenever the user accesses the
 specified server from any system, the saved password is used.

 Note: The saved login information is sent to the server for all
 queries, even if authentication isn't required. If authentication is
 not required, this command succeeds regardless of the supplied values.

 To use the command, enter the server on the command line with the
 -save option, then enter the username and password when prompted.

 When using the password command with the 3DPassport server, the login
 is persistent for the command-line and graphical clients. This
 provides the ability to use the 3DPassport single-signon
 functionality. For information on using 3DPassport, see the
 DesignSync Data Manager Administrator's Guide: Enabling 3DPassport.

 Note: The password command does not save the password for Web
 authentication. If you are using a web-based application, you may
 need to log in again through that interface.

SYNOPSIS

 password -save <ServerURL>

OPTIONS

• save_option

 -save Specify the DesignSync URL for the server connection
 <serverURL> appropriate for the username/password you are saving

Administration

842

 in the form:
 sync[s]://<host>[:<port>]
 where <host> is the hostname of the SyncServer and
 <port> is the SyncServer port number.

RETURN VALUE

 This command does not return any TCL values. If the server cannot be
 reached, or the account does not exist on the server, the password is
 saved but not authenticated.

SEE ALSO

 dssc, stclc, dss, stcl

EXAMPLES

 This example shows how to save the username and password for the
 specified server.

 dss> password -save sync://srv2.ABCo.com:2647
 Please enter account information for Synchronicity, host srv2.ABCo.com:2647.
 Username: rsmith
 Password: ***********
 Password confirmed and saved.

Command Defaults

defaults Command

NAME

 defaults - Commands for the command defaults system

DESCRIPTION

 The "defaults" commands are used to set default values for command
 options, for commands run from the command line. For general
 information about the command line defaults system, in a DesignSync
 command shell, enter: help "command defaults"

 To display a list of available "defaults" commands, in a DesignSync

ENOVIA Synchronicity Command Reference All -Vol2

843

 command shell, enter: defaults <Tab>

SYNOPSIS

 defaults <defaults_command> [<defaults_command_options>]

 Usage: defaults [commands|off|on|refresh|set|show|state]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 defaults commands, defaults off, defaults on, defaults refresh,
 defaults set, defaults show, defaults state, command defaults

EXAMPLES

 See specific "defaults" commands.

Understanding Command Defaults

command defaults Command

NAME

 command defaults - The command line defaults system

DESCRIPTION

 Default values can be set for command options, for commands run from
 the command line. Default values can be set for individual commands,
 a family of commands (such as all "url" sub-commands), or all commands.

Administration

844

 This simplifies invocations of commands from the command line, because
 the user does not need to specify "-[option] <value>" for the saved
 default value.

 To display a list of available "defaults" commands, in a DesignSync
 command shell, enter: defaults <Tab>

 Run "defaults commands" for the list of commands that support the
 command line defaults system.

 Use "defaults set" to set default values. Specifying an option on the
 command line overrides a saved default value for the specified option.
 A saved default value takes precedence over default behavior specified
 via SyncAdmin.

 To set default values for a project team, or for all users at a site,
 use the "sregistry scope" command.

 Any command that supports the command line defaults system has a
 "-nodefaults" override option. If "-nodefaults" is specified, then any
 saved default values will be ignored. The intent of the "nodefaults"
 option is for script writers to ensure that functions are called as the
 writer intends the functions to be called.

 See the "defaults set" command documentation for how to set a default
 fetch state for the command line. Saving a default value for the
 "-exclude" option pertains only to the "-exclude" command line option.
 It does not affect the Exclude Lists described in the SyncAdmin help.

 DesignSync graphical applications are not affected by the command line
 defaults system. DesignSync DFII and the DesignSync GUI do not use
 saved command line default values. However, the command bar in the
 DesignSync GUI does use the command line defaults system.

SEE ALSO

 defaults commands, defaults off, defaults on, defaults refresh,
 defaults set, defaults show, defaults state, sregistry scope

EXAMPLES

• Example of Setting the Default
• Example of Showing the Saved Defaults
• Example of Overriding the Set Defaults for the Whole Command
• Example of Overriding a Specific Option

Example of Setting the Default

 To set "-report status" as the default report mode for "ls":
 stcl> defaults set -- ls -report status

ENOVIA Synchronicity Command Reference All -Vol2

845

Example of Showing the Saved Defaults

 To see what default options have been saved for the "ls" command:
 stcl> defaults show ls
 {ls {-report status}}

Example of Overriding the Set Defaults for the Whole Command

 To ignore the saved default for "ls", and use the built-in default
 report mode ("-report normal"):
 stcl> ls -nodefaults

Example of Overriding a Specific Option

 Specifying an option value at the command line overrides the option's
 saved default value. For example:
 stcl> ls -report brief

defaults

defaults Command

NAME

 defaults - Commands for the command defaults system

DESCRIPTION

 The "defaults" commands are used to set default values for command
 options, for commands run from the command line. For general
 information about the command line defaults system, in a DesignSync
 command shell, enter: help "command defaults"

 To display a list of available "defaults" commands, in a DesignSync
 command shell, enter: defaults <Tab>

SYNOPSIS

 defaults <defaults_command> [<defaults_command_options>]

 Usage: defaults [commands|off|on|refresh|set|show|state]

Administration

846

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 defaults commands, defaults off, defaults on, defaults refresh,
 defaults set, defaults show, defaults state, command defaults

EXAMPLES

 See specific "defaults" commands.

defaults commands

defaults commands Command

NAME

 defaults commands - Lists the commands that support the defaults system

DESCRIPTION

• Note for Legacy Module Mode (Legacy-based)

 Lists the commands that support the defaults system. Those commands can
 have default values set for them, by using the "defaults set" command.

Note for Legacy Module Mode (Legacy-based)

 If you have enabled the legacy command support, the hcm prefix
 does not display in front of the module commands. The legacy command
 set is not supported by the command defaults system.

SYNOPSIS

ENOVIA Synchronicity Command Reference All -Vol2

847

 defaults commands

RETURN VALUE

 A list of the commands that accept default values. The order of the
 entries in the list is non-deterministic. For a family of commands, its
 sub-commands are listed.

 For example:
 {replicate {addroot data showroots showdata rmroot rmdata disable
 reset enable setoptions scrub masrename}}

SEE ALSO

 defaults on, defaults refresh, defaults set, defaults show,
 defaults state, command defaults

EXAMPLES

 To list all commands that support the command defaults system:

 stcl> defaults commands
 vhistory rmlogin showmcache {view {check get list put remove}} tag
 mkmod {replicate {addroot data showroots showdata rmroot rmdata
 disable reset enable setoptions scrub masrename}} mvfile unfreezemod
 showstatus contents mkbranch compare hcm lock {mcache {scan touch
 scrub show}} annotate rmfolder remove addbackref upgrade add
 reconnectmod switchlocker mvmod showmods migratetag edithrefs rmmod
 exportmod ci showlogins addhref cancel setview freezemod co populate
 rmfile mvfolder showhrefs unremove importmod purge showlocks
 rmversion addlogin {sitr {env integrate lookup mkbranch mkmod
 populate release select status submit update}} rmvault mvmember
 {swap {replace restore show}} retire unlock rmhref whereused version
 ls

 stcl>

defaults off

defaults off Command

NAME

 defaults off - Disables the command defaults system

Administration

848

DESCRIPTION

 Disables the command default system. If you do not specify an <expr>,
 the command default system is disabled until a subsequent "defaults on"
 command is run within the current client session. When a DesignSync
 client is started, the command defaults system is enabled.

 If you do specify an <expr>, the command defaults system is disabled for
 the duration of the execution of the supplied Tcl expression.

 The "defaults off" and "defaults on" commands do not "nest". The caller
 of those commands must ensure that the command defaults system is in
 the correct state at any time.

 Use the "defaults state" command to show whether the command defaults
 system is current enabled or disabled.

 To disable the command defaults system when running an individual
 command, specify the "-nodefaults" option to the command. Use "defaults
 off" if you are calling a user-defined procedure or alias that itself
 calls one or more DesignSync commands.

SYNOPSIS

 defaults off [<expr>]

RETURN VALUE

 If you do not specify an <expr>, the state value "off" is returned. If
 you do specify an <expr>, the result of that <expr> is returned. If the
 <expr> throws an error, "defaults off" will throw an error.

 When an <expr> is specified, the state of the command defaults system is
 always returned to what it was originally, even if the <expr> threw an
 error.

SEE ALSO

 defaults commands, defaults on, defaults refresh, defaults set,
 defaults show, defaults state, command defaults

EXAMPLES

 This example shows what happens when you set a default on a command,
 run the command. The example sets the default "-report verbose" for
 the ls command and then shows running the command with the default

ENOVIA Synchronicity Command Reference All -Vol2

849

 mode disabled.

 stcl> defaults set -- ls -report verbose

 The "defaults show" command confirms the default setting for "ls":

 stcl> defaults show ls
 {ls {-report verbose}}
 stcl>

 "ls" of an object, without specifying a "-report" option, uses the saved
 default mode of "-report verbose" (instead of the out-of-the-box default
 mode of "-report normal"):

 stcl> ls samp.asm
 Object Type Time Stamp Status Version Locked By Name
 ----------- ---------- ------ ------- --------- ----
 File 05/25/1997 22:04 Up-to-date 1.1 samp.asm
 Original Log: --> Created by tbarbg10 @05/26/2006 09:40:10
 --> Old DAC demo files
 Version Tags: Latest
 Branch Tags: Trunk
 stcl>

 To ignore saved default values while a command is run, preface the
 command invocation with "defaults off". For example, if the command
 defaults system is disabled while an "ls" is run, that "ls" will use
 the out-of-the-box default mode of "-report normal":

 stcl> defaults off ls samp.asm
 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 05/25/1997 22:04 1.1 Copy samp.asm
 stcl>

defaults on

defaults on Command

NAME

 defaults on - Enables the command defaults system

DESCRIPTION

 Re-enables the command default system. The command defaults system is
 enabled by default. The command defaults system remains enabled within
 a client session until the "defaults off" command is run.

 The "defaults off" and "defaults on" commands do not "nest". The caller
 of those commands must ensure that the command defaults system is in
 the correct state at any time.

Administration

850

SYNOPSIS

 defaults on

RETURN VALUE

 The state value "on".

SEE ALSO

 defaults commands, defaults off, defaults refresh, defaults set,
 defaults show, defaults state, command defaults

EXAMPLES

 The example shows enabling and disabling the command defaults system,
 and using the "default state" command to show whether defaults is
 enabled.

 stcl> defaults off
 off
 stcl> defaults state
 off
 stcl> defaults on
 on
 stcl> defaults state
 on
 stcl>

defaults refresh

defaults refresh Command

NAME

 defaults refresh - Refreshes the command defaults system

DESCRIPTION

 Refreshes the command defaults system, by re-reading the registry files
 sourced by the DesignSync client on startup. Default values set via the

ENOVIA Synchronicity Command Reference All -Vol2

851

 command defaults system are used by the DesignSync client from which the
 default values were set. If you saved default values in concurrent
 DesignSync client sessions, run the "defaults refresh" command to read
 all saved default values.

 Similarly, if default values were saved by a project lead or site
 administrator, run "defaults refresh" to read default values from all
 client registry files. See the DesignSync Data Manager User's Guide
 topic "Registry Files" for further information. New DesignSync client
 sessions read all saved default values (from registry files) on
 startup.

SYNOPSIS

 defaults refresh

RETURN VALUE

 Not defined.

SEE ALSO

 defaults commands, defaults off, defaults on, defaults set,
 defaults show, defaults state, command defaults, sregistry scope

EXAMPLES

 This example shows what happens when a default on a command
 in a different client than the one you're using, and you want to
 refresh your client to read in the new default value.

 stcl> defaults set -- ls -report verbose
 stcl>

 "defaults show" shows that the only saved default value for "ls" is
 the report mode:

 stcl> defaults show ls
 {ls {-report verbose}}
 stcl>

 In another stclc session, you save another default value for "ls":
 stcl> defaults set -- ls -report verbose -recursive
 stcl>

 Back in the stclc session from which you set the "-report verbose"
 default value, "-report verbose" is still the only default value saved

Administration

852

 for "ls":

 stcl> defaults show ls
 {ls {-report verbose}}
 stcl>

 Still in the stclc session from which you set the "-report verbose"
 default value, you run "defaults refresh", to re-read the client
 registry files:

 stcl> defaults refresh
 stcl>

 Now, that initial stclc recognizes the default values that were saved
 in the other stclc session:

 stcl> defaults show ls
 {ls {-recursive -report verbose}}
 stcl>

defaults set

defaults set Command

NAME

 defaults set - Defines the default values for a command

DESCRIPTION

• Note for Module Commands (Module-based)

 Defines the default values for a command or sub-command. For a default
 value to apply to all commands that support the specified option, specify
 a <command> value of "*". For a default value to apply to a family of
 commands, specify the parent command as the <command> value. For example,
 a <command> value of "access" applies the specified default values to all
 "access" sub-commands that support the specified option.

 Note: The values set as the new command default REPLACE the
 previously set command defaults. All previously set defaults
 specified for the same command level are removed. For example, if
 you have changed the report mode for the replicate command set, it
 will not remove the defaults set on the specific replicate commands.
 For more clarification, see the examples section.

 "defaults set" saves defaults for the user. To set default values for a
 project team, or for all users at a site, use the "sregistry scope"
 command. See the "sregistry scope" command documentation for details.

 To set a command line default value for the fetch state, specify the

ENOVIA Synchronicity Command Reference All -Vol2

853

 exact option name used by a command. To specify local copies as the
 default fetch state value, set the "-keep" option for the "cancel" and
 "ci" commands. And set the "-get" option for the "co" and "populate"
 commands.

 To remove the saved default values for a command, specify empty double
 quotes ("") as the option value. See the Examples section for syntax.

Note for Module Commands (Module-based)

 Note: You cannot set a global default value on module (hcm)
 commands. You must specify the command defaults individually;
 optimally by using the command name with no hcm prefix.

SYNOPSIS

 defaults set [-temporary | -nooverrule] -- <command> <option>
 [<option> ...]

OPTIONS

• -nooverrule
• -temporary
• --

-nooverrule

 -nooverrule The saved default value cannot be overridden. This option
 is intended for project leaders or site administrators.

 When using the "sregistry scope" command to set a default
 value for a project, specifying "-nooverrule" prevents
 a user's saved default value from overriding the project's
 default value.

 Similarly, when using the "sregistry scope" command to
 set a site-wide default value, specifying "-nooverrule"
 prevents project and user saved default values from
 overriding the site's default value.

 Command options specified by the user will be used, taking
 precedence over a "-nooverrule" setting.

-temporary

 -temporary The saved default value applies only to the DesignSync

Administration

854

 client session from which the "defaults set" command was
 run.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when an argument to the
 command begins with a hyphen (-).

RETURN VALUE

 Not defined.

SEE ALSO

 defaults commands, defaults off, defaults on, defaults refresh,
 defaults show, defaults state, command defaults, sregistry scope

EXAMPLES

• Example of Setting the Default Options for a Specific Command
• Example of Resolving Default Conflicts
• Example of Clearing the Defaults
• Example of Setting Defaults for All Commands

Example of Setting the Default Options for a Specific Command

 This example sets the following options for the ls command:
 * Sets the -report mode to "status"
 * Sets the -[no]path option to path

 stcl> defaults set -- ls -report status -path

 To see the saved defaults for the "ls" command
 stcl> defaults show ls
 {ls {-report status -path}}

Example of Resolving Default Conflicts

 This example shows how DesignSync resolves set default conflicts.
 Locally, you have set the default defined in Example 1. Your project
 team leader uses the "sregistry scope" command to save "-fullpath" as
 a default option to "ls".

ENOVIA Synchronicity Command Reference All -Vol2

855

 Adding the "-source" option to "defaults show" shows the two different
 (mutually exclusive) options that were saved at the user level ("-path")
 and at the project level ("-fullpath"):

 stcl> defaults show -source ls
 {ls temporary {} project -fullpath project_nooverrule {}
 user {-report status -path} user_nooverrule {} site {}
 site_nooverrule {} enterprise {} enterprise_nooverrule {}}

 The default value saved by the user ("-path") takes precedence, because
 the project leader did not specify "-nooverrule". (The project_nooverrule
 value in the "defaults show" output above is empty.) That is why
 "defaults show" (without "-source") still shows the default "-path"
 value that you saved:

 stcl> defaults show ls
 {ls {-report status -path}}

Example of Clearing the Defaults

 This example shows how to remove your saved default values for the
 "ls" command:
 stcl> defaults set ls ""

 Using the settings from example 2, the default "-fullpath" value is
 still valid because it was set at the project level:

 stcl> defaults show ls
 {ls -fullpath}
 stcl> defaults show -source ls
 {ls temporary {} project -fullpath project_nooverrule {} user {}
 user_nooverrule {} site {} site_nooverrule {} enterprise {}
 enterprise_nooverrule {}}

Example of Setting Defaults for All Commands

 This example shows setting the "-recursive" option as the default
 behavior for all commands that support the command defaults system
 (and have a "-recursive" option):

 Note: This does not remove any previously set defaults on specific
 commands or command sets. If you look at the ls command in the
 "defaults show" results displayed in this example, you will see that
 the command defaults set in the Example 1, for ls, are still set.

 stcl> defaults set -- * -recursive

 To see which commands now have "-recursive" saved as their default
 behavior:

 stcl> defaults show

Administration

856

 {vhistory -recursive} {rmlogin {}} {showmcache {}} {view {}} {{view
 check} {}} {{view get} {}} {{view list} {}} {{view put} {}} {{view
 remove} {}} {tag {-recursive -report normal}} {mkmod {}} {replicate
 {}} {{replicate addroot} {}} {{replicate data} {}} {{replicate
 showroots} {}} {{replicate showdata} {}} {{replicate rmroot} {}}
 {{replicate rmdata} {}} {{replicate disable} {}} {{replicate reset}
 {}} {{replicate enable} {}} {{replicate setoptions} {}} {{replicate
 scrub} {}} {{replicate masrename} {}} {mvfile {}} {showstatus
 -recursive} {contents -recursive} {mkbranch -recursive} {compare
 -recursive} {hcm -recursive} {lock {}} {mcache {}} {{mcache scan} {}}
 {{mcache touch} {}} {{mcache scrub} {}} {{mcache show} {}} {annotate
 {}} {rmfolder -recursive} {remove -recursive} {addbackref -recursive}
 {upgrade {}} {add {-recursive -report normal}} {switchlocker {}}
 {showmods {}} {migratetag {}} {rmmod -recursive} {ci {-recursive
 -report normal}} {showlogins {}} {addhref {}} {cancel -recursive}
 {setview -recursive} {co -recursive} {populate {-recursive -report
 normal}} {mvfolder {}} {rmfile {}} {showhrefs -recursive} {unremove
 {}} {purge -recursive} {rmversion {}} {showlocks -recursive}
 {addlogin {}} {sitr {}} {{sitr env} {}} {{sitr integrate} {}} {{sitr
 lookup} {}} {{sitr mkbranch} {}} {{sitr mkmod} {}} {{sitr populate}
 {}} {{sitr release} {}} {{sitr select} {}} {{sitr status} {}} {{sitr
 submit} {}} {{sitr update} {}} {mvmember {}} {swap {}} {{swap
 replace} {}} {{swap restore} {}} {{swap show} {}} {retire -recursive}
 {rmvault {}} {unlock -recursive} {rmhref {}} {whereused -recursive}
 {version {}} {ls {-recursive -report status -path}} {* -recursive}

 If you want an option, as in this example, -recursive, to be the
 default for the majority of command that support it, but have
 specific commands for which you would prefer a different mode, you
 can set the different mode as a specific default on the command.

 Note: The show output is truncated for clarify.

 stcl> defaults set -- populate -norecursive

 stcl> defaults show

 {vhistory -recursive} {rmlogin {}} {showmcache {}} {view {}}
 ...
 {setview -recursive} {co -recursive} {populate -norecursive}
 ...
 {ls {-recursive -report status -path}} {* -recursive}

defaults show

defaults show Command

NAME

 defaults show - Shows the current default values for a command

DESCRIPTION

ENOVIA Synchronicity Command Reference All -Vol2

857

• Note for Module Commands (Module-based)

 Shows the current default values for a command or sub-command. If no
 <command> is specified, then the current default values for all commands
 and sub-commands are reported.

 A <command> value of "*" will show the current default values saved
 against "*". Those default values will be applied to all commands that
 take those options.

 If a sub-command is specified as the <command> value, such as
 "replicate disable", default values for the specific sub-command
 ("replicate disable" in this case), its parent command ("replicate"
 in this example) and any global default values will be
 shown. Similarly, the results for a command combine the default
 values for the specific command, with any global default values.

 If a sub-command is specified as the <command> value and the -source
 option is selected, the default command returns ONLY the default
 values for the specific command. The reply does not include any
 global defaults or any parent command defaults.

Note for Module Commands (Module-based)

 Note: You cannot set a global default value on module (hcm) commands.
 You must specify the command defaults individually; optimally by
 using the command name with no hcm prefix.

SYNOPSIS

 defaults show [-source] [<command>]

OPTIONS

• -source

-source

 -source When specified, the output indicates where the default
 value is saved. By default, command default values are
 stored for the user who ran the "defaults set"
 command. Default values can also be stored for a
 project, or site-wide. See the "sregistry scope"
 command for details.

 When you specify both a command and the -source
 option, the command output displays ONLY the command
 default values associated with that command. Any

Administration

858

 values set on a parent command or globally do not
 display.

RETURN VALUE

 A list, where each entry in the list is the current setting of defaults
 for a command or subcommand. The order of the entries in the list is
 non-deterministic.

SEE ALSO

 defaults commands, defaults off, defaults on, defaults refresh,
 defaults set, defaults state, command defaults, sregistry scope

EXAMPLES

 An example in the "defaults set" command documentation sets "-recursive"
 as the default behavior, for every command that supports the command
 defaults system (and has a "-recursive" option).

 After having saved the global "-recursive" default, "defaults show" shows
 the default "-recursive" value for the "tag" command:

 stcl> defaults show tag
 {tag -recursive}

 Next, let's save "-modified" as default behavior for the "tag" command:

 stcl> defaults set -- tag -modified

 Now, "defaults show" shows both the global "-recursive" option, and the
 "-modified" default value that was explicitly saved for the "tag" command.

 stcl> defaults show tag
 {tag {-recursive -modified}}

 The above output from "defaults show" shows the combined defaults for the
 "tag" command. This represents exactly what options will be applied when
 the "tag" command is run.

 Adding the "-source" option to the "defaults show" command shows where
 the default values for the "tag" command were saved.

 stcl> defaults show -source tag
 {tag temporary {} project {} project_nooverrule {} user -modified
 user_nooverrule {} site {} site_nooverrule {} enterprise {}
 enterprise_nooverrule {}}

 The above output shows that the "-modified" option to "tag" was saved at

ENOVIA Synchronicity Command Reference All -Vol2

859

 the user level. The "-recursive" option is not shown, because that option
 was saved globally.

 For global default values, specify "*" as the command:

 stcl> defaults show -source *
 {* temporary {} project {} project_nooverrule {} user -recursive
 user_nooverrule {} site {} site_nooverrule {} enterprise {}
 enterprise_nooverrule {}}

 The above output shows that the "-recursive" option was set globally, at
 the user level.

defaults state

defaults state Command

NAME

 defaults state - Returns the state of the command defaults system

DESCRIPTION

 Returns whether the command defaults system is currently enabled ("on")
 or disabled ("off").

SYNOPSIS

 defaults state

RETURN VALUE

 The state value "on" or the state value "off".

SEE ALSO

 defaults commands, defaults off, defaults on, defaults refresh,
 defaults set, defaults show, command defaults

EXAMPLES

 This example shows the default state with the command defaults system

Administration

860

 enabled and disabled.

 stcl> defaults state
 on
 stcl> defaults off
 off
 stcl> defaults state
 off
 stcl>

Custom Type System

Custom Type Packages

ctp

ctp Commands

NAME

 ctp - Commands to list and verify Custom Type Packages

DESCRIPTION

 The 'ctp' commands help you to manage the installed Custom Type
 Packages (CTPs). You can list the CTPs using 'ctp list' and
 debug your CTPs using the 'ctp verify' command.

 A CTP is a Tcl file containing procedures that recognize and traverse
 your custom data hierarchy, grouping the data into collections. You
 install the CTP in one of the following Synchronicity custom hierarchy
 directories:

 o Project-level CTP:
 <SYNC_PROJECT_CFGDIR>/ctp/<ctp_file>.ctp

 o Site-level CTP:
 <SYNC_SITE_CUSTOM>/share/client/ctp/<ctp_file>.ctp

 When next you invoke a DesignSync client, the DesignSync Custom Type
 System registers the CTP so that each revision control operation can
 now recognize and manage the collection types defined in your CTP.

 To develop a CTP for your custom data, see the DesignSync Custom Type
 System Programmer's Guide.

SYNOPSIS

 ctp <ctp_command> [<ctp_command_options>]

ENOVIA Synchronicity Command Reference All -Vol2

861

 Usage: ctp [list|verify]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 ctp list, ctp verify, localversion, localversion delete,
 localversion list, localversion restore, localversion save

EXAMPLES

 See specific 'ctp' commands.

ctp list

ctp list Command

NAME

 ctp list - Lists installed Custom Type Packages

DESCRIPTION

 This command lists the names of all currently installed Custom Type
 Packages (CTPs). You run the 'ctp list' command from any directory,
 with no arguments.

 A CTP is a Tcl file containing procedures that recognize and
 traverse your custom data hierarchy, grouping the data into
 collections. You install the CTP in one of the following
 Synchronicity custom hierarchy directories:

 o Project-level CTP:
 <SYNC_PROJECT_CFGDIR>/ctp/<ctp_file>.ctp

 o Site-level CTP:
 <SYNC_SITE_CUSTOM>/share/client/ctp/<ctp_file>.ctp

Administration

862

 When next you invoke a DesignSync client, the DesignSync Custom
 Type System registers the CTP so that each revision control
 operation can now recognize and manage the collection types
 defined in your CTP.

 To develop a CTP for your custom data, see the
 DesignSync Custom Type System Programmer's Guide.

SYNOPSIS

 ctp list

ARGUMENTS

 None.

OPTIONS

 None.

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the
 return value is irrelevant.

 In stcl/stclc mode, the command returns a list of the installed
 CTPs and an empty list if there are no installed CTPs.

SEE ALSO

 ctp, ctp verify, localversion, localversion delete,
 localversion list, localversion save, localversion restore

EXAMPLES

 The following example lists all of the Custom Type Packages (CTPs)
 currently installed.

 stcl> ctp list
 collectionCTP localCTP kmlocalCTP dsmwCTP

ctp verify

ENOVIA Synchronicity Command Reference All -Vol2

863

ctp verify Command

NAME

 ctp verify - Validates installed Custom Type Package files

DESCRIPTION

 This command verifies all installed Custom Type Packages (CTPs).
 A CTP is a Tcl file containing procedures that recognize and traverse
 your custom data hierarchy, grouping the data into collections. You
 install the CTP in one of the following Synchronicity custom hierarchy
 directories:

 o Project-level CTP:
 <SYNC_PROJECT_CFGDIR>/ctp/<ctp_file>.ctp

 o Site-level CTP:
 <SYNC_SITE_CUSTOM>/share/client/ctp/<ctp_file>.ctp

 When next you invoke a DesignSync client, the DesignSync Custom Type
 System registers the CTP so that each revision control operation can
 now recognize and manage the collection types defined in your CTP.

 To develop a CTP for your custom data, see the DesignSync Custom
 Type System Programmer's Guide.

 The 'ctp verify' command tests for inconsistencies in the behavior
 of related procedures in the CTPs. There are several places where a
 CTP is required to return the same information in multiple places,
 and these must be consistent for the CTP to work correctly. For
 example, if mapViews assigns an objtype to a particular object, but
 updateObject does not, then the CTP will not behave correctly. 'ctp
 verify' flags this type of inconsistency. Among the ways a CTP can
 be internally inconsistent are:

 o The mapViews and determineFolderType procedures return different
 values for a given folder.

 o The mapViews procedure identifies an object as a member, but it is
 not returned by any collection's members procedure.

 o The mapViews procedure fails to identify an object as a member when
 it is returned by a collection's members procedure.

 o A collection member has an owner property identifying a collection,
 but that collection does not identify it as a member.

 o More than one collection identifies a file as a member.

 The 'ctp verify' command validates all of the installed CPTs against
 the data in the specified path. The command lists:

Administration

864

 o The installed and active CTPs

 o The folder and subfolders being validated

 o A status of the collection members in the folder and its subfolder

 The command lists the objects that are not members of any of the
 installed CTPs. It also lists the collections that have no members.
 These occurrences might flag an error in a CTP.

 It is important that you use the 'ctp verify' command to validate
 your CTPs before making them available for use with production
 design data. The Custom Type System checks for exceptions thrown
 by particular CTP procedures, but it does not check for inconsistent
 CTPs during revision control operations. These checks would
 greatly diminish the efficiency of DesignSync's data traversal.

 In order to fully validate your CTPs, it is important that you
 develop test data that exercises all aspects of the CTPs. See
 the DesignSync Custom Type System Programmer's Guide to help
 you design your test data to ensure that 'ctp verify' detects
 specific error conditions.

 In addition to applying 'ctp verify' to your CTPs, use the
 'ls -report OX' command to list objects and their collection
 owners. Use the 'url members' command to list a collection's
 members. These commands will help ensure that your CTP
 manages your data as intended.

SYNOPSIS

 ctp verify [<path>]

ARGUMENT

• path

path

 path The path to the directory/folder containing the
 data used to validate the installed CTPs. You can
 specify an absolute or relative path. If no path is
 specified, 'ctp verify' validates the installed CTPs
 against the current directory.

OPTIONS

 None.

ENOVIA Synchronicity Command Reference All -Vol2

865

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the
 return value is irrelevant.

 In stcl/stclc mode, the command returns the number of errors
 found.

SEE ALSO

 ctp, ctp list, localversion, localversion delete,
 localversion list, localversion save, localversion restore

EXAMPLES

• Example of a Clean ctp verify
• Example of a cpt verify Showing Errors

Example of a Clean ctp verify

 The following example shows verification of a clean CTP;
 the 'ctp verify' command returns an error count of 0.

 stcl> ctp verify
 =============== Verifying CTPs ======================
 The following CTPs are installed: collectionCTP dsmwCTP
 Verifying at root /home/karen/sf242data/jul16/coltest

 ---- Verifying /home/karen/sf242data/jul16/coltest

 ---- Verify collection member information
 0

Example of a cpt verify Showing Errors

 This next example verifies a single CTP, collection.ctp:

 stcl> ctp list
 collectionCTP
 stcl> ctp verify
 =============== Verifying CTPs ======================
 The following CTP's are installed: collectionCTP
 Verifying at root /home/karen/sf242data/sep2/ctp_tests/coltest

 ---- Verifying /home/karen/sf242data/sep2/ctp_tests/coltest
 ctp collectionCTP: For object 'g.sgc.tst', the property 'objtype' is
 not the same:

Administration

866

 'Test orange' is set in the updateObject proc and
 'Test collection' is set in the mapViews proc.
 ctp collectionCTP: For object 'f.sgc.tst', the property 'objtype' is
 not the same:
 'Test orange' is set in the updateObject proc and
 'Test collection' is set in the mapViews proc.
 ctp collectionCTP: For object 'a.sgc.tst', the property 'objtype' is
 not the same:
 'Test orange' is set in the updateObject proc and
 'Test collection' is set in the mapViews proc.
 ctp collectionCTP: For object 'd.sgc.tst', the property 'objtype' is
 not the same:
 'Test orange' is set in the updateObject proc and
 'Test collection' is set in the mapViews proc.

 ---- Verify collection member information
 4

Managing Local Versions of Collections

localversion

localversion Commands

NAME

 localversion - Commands to manage local versions of collections

DESCRIPTION

 Some design tools implement their own basic version management
 by making local copies of design objects. A local copy of a design
 object is referred to as a 'local version', to distinguish it
 from the DesignSync version, which is created in the DesignSync
 vault upon checkin (a vault version).

 Where DesignSync manages such data either through a predefined
 recognition package or through a developer's
 Custom Type Package (CTP), DesignSync incorporates the local version
 number into a tag name it applies upon checkin of the object.
 For example, if an object's local version is 6, DesignSync applies
 the tag <collection_type>_6 upon checkin.

 Depending upon the options you choose, the DesignSync 'co' and
 'populate' commands can remove local versions of an object,
 replacing them with the requested version from the DesignSync
 vault. You can save the local versions using the -savelocal
 option to the 'co' or 'populate' commands. You can also save the
 local versions using the 'localversion save' command and later
 retrieve them using the 'localversion restore' command. The
 'localversion list' command lets you view the saved local versions.

ENOVIA Synchronicity Command Reference All -Vol2

867

 You can change the local version default behavior so that DesignSync
 automatically saves all local versions before fetching. To change
 this setting, a Synchronicity administrator can use the Local
 Versions field on the Command Defaults pane of the SyncAdmin tool.
 For information, see SyncAdmin help.

SYNOPSIS

 localversion <localversion_command> [<localversion_command_options>]

 Usage: localversion [delete|list|restore|save]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 localversion delete, localversion list, localversion restore,
 localversion save, ctp,

EXAMPLES

 See specific 'localversion' commands.

localversion delete

localversion delete Command

NAME

 localversion delete - Deletes a saved version of the given collection

DESCRIPTION

 Use the 'localversion delete' command to delete a local version that
 was previously saved for the specified collection. Use the
 'localversion list' command to list the local versions to be deleted.

Administration

868

 Some design tools implement their own basic version management
 by making local copies of design objects. A local copy of a design
 object is referred to as a 'local version', to distinguish it
 from the DesignSync version, which is created in the DesignSync
 vault upon checkin (a vault version).

 Where DesignSync manages such data either through a predefined
 recognition package or through a developer's Custom Type Package
 (CTP), DesignSync incorporates the local version number into a tag
 name it applies upon checkin of the object. For example, if an
 object's local version is 6, DesignSync applies the tag
 <collection_type>_6 upon check-in.

 Note: This command only affects objects of a collection defined by
 the Custom Type Package (CTP). This command does not affect objects
 that are not part of a collection or collections that do not have
 local versions.

SYNOPSIS

 localversion delete <sync collection>|<sgc collection> <locint>

OPTIONS

• Synchronicity Collection
• Custom Generic Collection
• Local Version Integer

Synchronicity Collection

 sync collection - Specify a Synchronicity predefined collection
 in the format <object>.sync.<collectiontype>
 where

 <object> is the base name of the object, for
 example, a cell or view name.

 sync indicates a Synchronicity predefined
 collection.

 <collectiontype> is the collection name.
 Predefined collection names include cds
 and mw.

 Examples of Synchronicity predefined collection
 objects include NAND.sync.mw and cell1.sync.mw.

 You can specify the object as a local URL
 (starts with the file:/// protocol) or as an
 absolute or relative path.

ENOVIA Synchronicity Command Reference All -Vol2

869

Custom Generic Collection

 sgc collection - Specify a custom generic collection (defined
 in a Custom Type Package) using the format
 <object>.sgc.<collectiontype> where

 <object> is the base name of the object, for
 example, a cell or view name.

 sgc indicates a custom collection defined
 in a Custom Type Package.

 <collectiontype> is the collection name
 defined in a Custom Type Package (CTP).
 See the DesignSync Custom Type System
 Programmer's Guide for more information.
 An example of a custom generic collection
 object is symbol.sgc.mytool.

 You can specify the object as a local URL
 (starts with the file:/// protocol) or as an
 absolute or relative path.

Local Version Integer

 locint - Specify the integer assigned to the saved
 local version of the collection. If you
 do not know the integer, use the
 'localversion list' command to view the
 saved local version numbers.

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the
 return value is irrelevant.

 In stcl/stclc mode, the command returns the integer corresponding
 to the deleted local version. If a collection has no saved local
 versions or if the value specified for the saved local version
 number is not an integer, the command throws an error.

SEE ALSO

 localversion, localversion list, localversion save,
 localversion restore

Administration

870

EXAMPLES

 The following example deletes the saved local version of the
 local.sgc.loc collection. The example first lists the saved local
 versions of the local.sgc.loc collection.

 stcl> localversion list .
 local.sgc.loc {1 2 3}
 stcl> localversion delete local.sgc.loc 1
 1
 stcl> localversion list .
 local.sgc.loc {2 3}

localversion list

localversion list Command

NAME

 localversion list - Lists saved versions of collection objects

DESCRIPTION

 Use the 'localversion list' command to list the local versions that
 were previously saved for the specified collection. You can instead
 specify a directory name to list all of the collections with
 previously saved local versions in that directory. In this case,
 each collection is listed, followed by a list of its local version
 numbers. If a collection has no saved local versions or if
 a directory contains no collections with saved local versions,
 the 'localversion list' command returns an empty list.

 Some design tools implement their own basic version management
 by making local copies of design objects. A local copy of a design
 object is referred to as a 'local version', to distinguish it
 from the DesignSync version, which is created in the DesignSync
 vault upon checkin (a vault version).

 Where DesignSync manages such data either through a predefined
 recognition packageor through a developer's
 Custom Type Package (CTP), DesignSync incorporates the local version
 number into a tag name it applies upon checkin of the object.
 For example, if an object's local version is 6, DesignSync applies
 the tag <collection_type>_6 upon checkin.

 Note:
 This command only affects objects of a collection defined by the
 Custom Type Package (CTP). This command does not affect objects that
 are not part of a collection or collections that do not have local
 versions.

ENOVIA Synchronicity Command Reference All -Vol2

871

SYNOPSIS

 localversion list <sync collection>|<sgc collection>|<directory>

OPTIONS

• Synchronicity Predefined Collection
• Custom Generic Collection
• Collection Directory

Synchronicity Predefined Collection

 sync collection - Specify a Synchronicity predefined collection
 in the format <object>.sync.<collectiontype>
 where

 <object> is the base name of the object, for
 example, a cell or view name.

 sync indicates a Synchronicity predefined
 collection.

 <collectiontype> is the collection name.
 Predefined collection names include cds
 and mw.

 Examples of Synchronicity predefined collection
 objects include NAND.sync.mw and cell1.sync.mw.

 You can specify the object as a local URL
 (starts with the file:/// protocol) or as an
 absolute or relative path.

Custom Generic Collection

 sgc collection - Specify a custom generic collection (defined
 in a Custom Type Package) using the format
 <object>.sgc.<collectiontype> where

 <object> is the base name of the object, for
 example, a cell or view name.

 sgc indicates a custom collection defined
 in a Custom Type Package.

 <collectiontype> is the collection name
 defined in a Custom Type Package (CTP).
 See the DesignSync Custom Type System
 Programmer's Guide for more information.

Administration

872

 An example of a custom generic collection
 object is symbol.sgc.mytool.

 You can specify the object as a local URL
 (starts with the file:/// protocol) or as an
 absolute or relative path.

Collection Directory

 directory - Specify a directory containing a collection.
 You can specify the directory as a local URL
 (starts with the file:/// protocol) or as an
 absolute or relative path.

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode, the command returns a list of integers
 representing the saved local version numbers if you specify a
 collection. If you specify a directory, the command returns each
 collection in the directory with a corresponding list of saved local
 version numbers for the collection.

 If a specified collection does not exists, the command throws an
 error.

SEE ALSO

 localversion delete, localversion restore, localversion save

EXAMPLES

 The following example lists the saved local versions
 of the local.sgc.loc collection.

 stcl> localversion list local.sgc.loc
 1 2 3

 You can list all of the collections containing local versions
 in a particular directory by specifying a directory instead
 of a collection.

 stcl> localversion list .
 local.sgc.loc {1 2 3} kmlocal.sgc.loc2 3

ENOVIA Synchronicity Command Reference All -Vol2

873

localversion restore

localversion restore Command

NAME

 localversion restore- Restores a saved version of the given collection

DESCRIPTION

 Use the 'localversion restore' command to retrieve a local version that
 was previously saved for the specified collection.

 Some design tools implement their own basic version management
 by making local copies of design objects. A local copy of a design
 object is referred to as a 'local version', to distinguish it
 from the DesignSync version, which is created in the DesignSync
 vault upon checkin (a vault version).

 Where DesignSync manages such data either through a predefined
 recognition package or through a developer's Custom Type Package
 (CTP), DesignSync incorporates the local version number into a tag
 name it applies upon checkin of the object. For example, if an
 object's local version is 6, DesignSync applies the tag
 <collection_type>_6 upon check-in.

 You might want to save the local version using the 'localversion
 save' command before you check out or populate a collection. Then,
 you can use the 'localversion restore' command to retrieve your
 local version if you later decide to use it.

 Notes:
 o This command only affects objects of a collection defined by the
 Custom Type Package (CTP). This command does not affect objects
 that are not part of a collection or collections that do not have
 local versions.

 o DesignSync stores the saved local versions within the workspace
 directory. If you delete the workspace directory, you cannot
 recover the local versions.

 o If you apply 'localversion restore' to an unmanaged object, the
 command fails.

SYNOPSIS

 localversion restore <sync collection>|<sgc collection> <locint>

OPTIONS

Administration

874

• Synchronicity Predefined Collection
• Custom Generic Collection
• Local Version Integer

Synchronicity Predefined Collection

 sync collection - Specify a Synchronicity predefined collection
 in the format <object>.sync.<collectiontype>
 where

 <object> is the base name of the object, for
 example, a cell or view name.

 sync indicates a Synchronicity predefined
 collection.

 <collectiontype> is the collection name.
 Predefined collection names include cds
 and mw.

 Examples of Synchronicity predefined collection
 objects include NAND.sync.mw and cell1.sync.mw.

 You can specify the object as a local URL
 (starts with the file:/// protocol) or as an
 absolute or relative path.

Custom Generic Collection

 sgc collection - Specify a custom generic collection (defined
 in a Custom Type Package) using the format
 <object>.sgc.<collectiontype> where

 <object> is the base name of the object, for
 example, a cell or view name.

 sgc indicates a custom collection defined
 in a Custom Type Package.

 <collectiontype> is the collection name
 defined in a Custom Type Package (CTP).
 See the DesignSync Custom Type System
 Programmer's Guide for more information.
 An example of a custom generic collection
 object is symbol.sgc.mytool.

 You can specify the object as a local URL
 (starts with the file:/// protocol) or as an
 absolute or relative path.

ENOVIA Synchronicity Command Reference All -Vol2

875

Local Version Integer

 locint - Specify the integer assigned to the saved
 local version of the collection. If you
 do not know the integer, use the
 'localversion list' command to view the
 saved local version numbers.

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the
 return value is irrelevant.

 In stcl/stclc mode, the command returns the integer corresponding
 to the restored local version. If a collection has no saved local
 versions or if the value specified for the saved local version
 number is not an integer, the command throws an error.

SEE ALSO

 ctp, localversion, localversion delete, localversion list,
 localversion save

EXAMPLES

 The following example restores the saved local version of the
 local.sgc.loc collection. The example first lists the saved local
 versions of the local.sgc.loc collection.

 stcl> localversion list .
 local.sgc.loc {1 2 3}
 dss> localversion restore local.sgc.loc 3
 3

localversion save

localversion save Command

NAME

 localversion save - Saves local version of the given collection

DESCRIPTION

Administration

876

 Use the 'localversion save' command to save the current local
 version of a collection in preparation for fetching an
 alternate local version from the vault. This command does not
 remove the local version from your workspace. If you need a
 saved local version in the future, you use the 'localversion
 restore' command to retrieve it.

 Some design tools implement their own basic version management
 by making local copies of design objects. A local copy of a design
 object is referred to as a 'local version', to distinguish it
 from the DesignSync version, which is created in the DesignSync
 vault upon checkin (a vault version).

 Where DesignSync manages such data either through a predefined
 recognition package or through a developer's Custom Type Package
 (CTP), DesignSync incorporates the local version number into a tag
 name it applies upon checkin of the object. For example, if an
 object's local version is 6, DesignSync applies the tag
 <CollectionType>_6 upon checkin.

 Depending upon the options you choose, the DesignSync 'co' and
 'populate' commands can remove local versions of an object,
 replacing them with the requested version from the DesignSync
 vault. You can save the local versions using the -savelocal
 option to the 'co' or 'populate' commands. You can also save the
 local versions using the 'localversion save' command and later
 retrieve them using the 'localversion restore' command. The
 'localversion list' command lets you view the saved local versions.

 By default, check-out and populate operations on collections
 fail if your workspace contains a local version with a higher
 number than the local version being fetched. You can change the
 local version default behavior so that DesignSync automatically
 saves or removes the local versions before fetching. To change
 this setting, a Synchronicity administrator can use the Local
 Versions field on the Command Defaults pane of the SyncAdmin tool.
 For information, see SyncAdmin help.

 Notes:

 o This command only affects objects of a collection defined by the
 Custom Type Package (CTP). This command does not affect objects
 that are not part of a collection or collections that do not have
 local versions.

 o DesignSync stores the saved local versions within the workspace
 directory. If you delete the workspace directory, you cannot
 recover the local versions.

SYNOPSIS

 localversion save <sync collection>|<sgc collection>

ENOVIA Synchronicity Command Reference All -Vol2

877

OPTIONS

• Synchronicity Predefined Collection
• Custom Generic Collection

Synchronicity Predefined Collection

 sync collection - Specify a Synchronicity predefined collection
 in the format <object>.sync.<collectiontype>
 where

 <object> is the base name of the object, for
 example, a cell or view name.

 sync indicates a Synchronicity predefined
 collection.

 <collectiontype> is the collection name.
 Predefined collection names include cds
 and mw.

 Examples of Synchronicity predefined collection
 objects include NAND.sync.mw and cell1.sync.mw.

 You can specify the object as a local URL
 (starts with the file:/// protocol) or as an
 absolute or relative path.

Custom Generic Collection

 sgc collection - Specify a custom generic collection (defined
 in a Custom Type Package) using the format
 <object>.sgc.<collectiontype> where

 <object> is the base name of the object, for
 example, a cell or view name.

 sgc indicates a custom collection defined
 in a Custom Type Package.

 <collectiontype> is the collection name
 defined in a Custom Type Package (CTP).
 See the DesignSync Custom Type System
 Programmer's Guide for more information.
 An example of a custom generic collection
 object is symbol.sgc.mytool.

 You can specify the object as a local URL
 (starts with the file:/// protocol) or as an
 absolute or relative path.

Administration

878

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the
 return value is irrelevant.

 In stcl/stclc mode, the command returns an integer representing
 the saved local version.

 If a specified collection does not exists, the command throws
 an error.

SEE ALSO

 ctp, localversion, localversion delete, localversion list,
 localversion restore

EXAMPLES

• Example of Saving the Current Local Version
• Example of Saving Local Version of Milkyway Data

Example of Saving the Current Local Version

 The following example saves the current local version of the
 local.sgc.loc collection. The example lists the saved local
 versions of the local.sgc.loc collection.

 stcl> localversion save local.sgc.loc
 3
 stcl> localversion list local.sgc.loc
 1 2 3

Example of Saving Local Version of Milkyway Data

 This example shows how localversion commands might be used for
 Milkyway data.

 Note: The DesignSync Milkway integration has been deprecated. This
 example is meant to be used only as a reference.

 In this scenario, Fadi checks out the Milkyway collection object
 top_design.sync.mw to fix a defect assigned against the object,
 thus fetching local version number 2 to his workspace. He edits
 the object, creating local version 3. However, he finds out
 Jocelyn has already made a fix for the defect when she checked
 in her local version 3. Before he checks out her local version,
 he saves his local versions:

ENOVIA Synchronicity Command Reference All -Vol2

879

 stcl> cd /home/tfadi/top_design_library
 stcl> localversion save top_design.sync.mw
 3

 Later the team decides that Jocelyn's fix was not efficient, so
 Fadi decides to retrieve his local version.

 stcl> localversion list top_design.sync.mw
 3
 stcl> localversion restore top_design.sync.mw 3
 3

Data Import/Export with DesignSync

exportmod

exportmod Command

NAME

 exportmod - Export module from a specified URL

DESCRIPTION

 This command compresses the specified module into a tar file so it
 can be moved to a different location, a different
 category, or a different server. The command tars the entire module
 contents including the module history, the module members, the
 original host, port, and module URL, and references to and from the
 module.

 Note: Any notes, access controls, subscriptions, or mirrors
 associated with the module are not exported along with the module.

 The tar file that is created is stored on the server in the following
 unique location:
 <server-data-directory>/Export.sync/<category-path>/<module-name>.tar

 Note: By providing a single, unique location for the archive file,
 DesignSync avoids the possibility of overwriting the archive with a
 different module of the same name. It also ensures that only one
 tarred version of the of the module can exist on the server at any
 given time.

 The <server-data-directory> is:
 <sync_data_directory_defined_at_install_time>/<host>/<port>/server_vault

 Tip: When the export is created, the output of the export command
 provides the full path location to the export file. Save this
 information for use with the import command.

Administration

880

 Part of the moving process (export and import together) focuses on
 updating the hierarchical references to and from the module. This
 information is used when determining where the module is used (visible
 with the DesignSync whereused command). When the module is exported,
 the whereused information still identifies the original module
 location. When the module is imported to the new location, the
 hierarchical references are recreated and this new module is added to
 the whereused information of the referenced submodules. DesignSync
 does not remove, on import, the references to the old module since
 you are not required to delete the module.

 Important: By default, the command freezes the module before
 beginning the exportmod and does not remove the freeze when the
 operation completes.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 exportmod [-[no]force] [-[no]freeze] <ServerURL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the module. Specify the URL as
 follows:
 sync://<host>[:<port>]/Modules/[<category...>/]<module>
 or
 syncs://<host>[:<port>]/Modules/[<category...>/]<module>
 where 'sync://' or 'syncs://'
 is required, <host> is the machine on which the
 SyncServer is installed, <port> is the SyncServer
 port number (defaults to 2647/2679), [<category...>}
 is the optional category (and/or sub-category)
 containing the module, and <module> is the name of
 the module.
 For example:
 sync://serv1.abco.com:1024/Modules/ChipDesigns/Chip

OPTIONS

• -[no]force
• -[no]freeze

ENOVIA Synchronicity Command Reference All -Vol2

881

-[no]force

 -[no]force Overwrites the previous version of the exported
 module, if a previous version exists.

 -noforce does not remove the previous
 version. (Default)

 -force removes the previous version.

 Note: Because the name and location of the
 exported module is fixed based on the
 module and category name, only one version of
 the transportable module can exist at a
 time. For information on locating the
 exported module, see the Description section.

-[no]freeze

 -[no]freeze Freezes all the module branches on the server,
 so that no changes can be made, preserving the
 integrity of the information being exported.

 -nofreeze does not freeze module. This means
 changes can be made both during and after the
 exportmod operation.

 -freeze freezes the module so no changes can be
 made. This mode persists after the exportmod
 operation completes to support moving the
 module to a new location. (Default)

 Note: You can remove the module freeze using
 the unfreeze command.

RETURN VALUE

 There is no return value. DesignSync provides status messages while
 the command runs. If the command fails, DesignSync returns an error
 explaining the failure.

SEE ALSO

 importmod, freezemod, unfreezemod, mvmod

EXAMPLES

Administration

882

• Exporting a module

Exporting a module

 This example creates a transportable module from an existing, in
 production module to move to a new location.

 dss> exportmod sync://serv1.ABCo.com:2647/Modules/Chips/chip-nx1
 Beginning module export ...
 sync://serv1.ABCo.com:2647/Modules/Chips/chip-nx1 : Module is frozen.
 Module successfully exported.
 /V6R2014Server/syncdata/serv1/2647/server_vault/Export.sync/Modules/
 Chips/chip-nx1.tar

exportVaults

exportVaults

NAME

 exportVaults - Exports DesignSync vault folders

DESCRIPTION

 Use the exportVaults utility to export data from client vault folders.
 See DesignSync Data Manager User's Guide: "Using the Vault
 Utilities." For other export scenarios, use the ProjectSync Export
 Projects feature. See ProjectSync User's Guide:"Exporting Projects."

import

import Command

NAME

 import - Fetches an object, leaving it unmanaged

DESCRIPTION

 This command fetches local copies of the specified objects from the
 specified vault to your current workspace. Unlike fetching with the
 "co" command, imported files do not retain their association with the
 vault (are no longer managed).

ENOVIA Synchronicity Command Reference All -Vol2

883

 The "import" command can be used to switch an object's vault
 association. Perform the import on the object and then run the ci
 command on the new, unmanaged, object to check it into the new
 vault.

 Note: The selector list can be used to select what versions to fetch.
 If the select list is used, it is inherited from parent folder (the
 folder into which the objects are imported). If the selector is not
 appropriate for the vault from which you are importing use the
 -version option to specify the version. For DesignSync objects, the
 selector list will pick up tagged versions or version numbers. For
 modules, the selector list can only specify version numbers.

SYNOPSIS

 import [-force] [-version <selector>] [--]
 <argument> <object> [<object>...]

ARGUMENTS

• Module URL (Module-based)
• Vault URL (File-based)

Module URL (Module-based)

 <module URL> Specifies the DesignSync URL of the module for the
 object being imported. Specify the URL (for
 example:
 sync://srvr2.ABCo.com/Modules/Chip/chip.c;)
 when the object being imported is a member of a
 module.

Vault URL (File-based)

 <vault URL> Specifies the DesignSync vault URL for the object
 being imported. Specify the vault (for example:
 sync://system:30138/Projects/Sportster/test/runit;)
 when the object being imported is not a member of
 a module.

OBJECTS

• Module Member (Module-based)
• DesignSync File Object (File-based)

Module Member (Module-based)

Administration

884

 <module member> Specifies the module member to import. You cannot
 import folders.

DesignSync File Object (File-based)

 <DesignSync object> Specifies the file object to import. You cannot
 import folders.

OPTIONS

• -force
• -version (Module-based)
• -version (Legacy-based)
• -version (File-based)
• --

-force

 -force Overwrites a local object if the object has the
 same name as an object being imported. When
 -force is not specified, the default behavior is
 to not overwrite local objects and return an
 error message explaining why the objects were not
 imported.

-version (Module-based)

 -version <selector> Specifies the version of the objects being
 imported.

 If no version is specified, the default version
 imported is the latest object version in the
 module version specified by the module URL
 argument.

 Note: To use -version to specify a branch,
 specify both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

-version (Legacy-based)

ENOVIA Synchronicity Command Reference All -Vol2

885

 -version <selector> Specifies the version of the objects or
 individual member vault being imported.

 If no version is specified, DesignSync inherits
 the selector of the parent folder (the folder
 into which the objects are imported).

 Note: To use -version to specify a branch,
 specify both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector

-version (File-based)

 -version <selector> Specifies the version of the objects or
 individual member vault being imported.

 If no version is specified, DesignSync inherits
 the selector of the parent folder (the folder
 into which the objects are imported).

 Note: To use -version to specify a branch,
 specify both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 none

SEE ALSO

Administration

886

 co, populate, selectors

EXAMPLES

• Example of Importing a Specific Module Version (Module-based)
• Example of Importing a Module Member (Module-based)
• Example of Moving Files to a New Vault Associated with a Workspace (File-based)

Example of Importing a Specific Module Version (Module-based)

 This example fetches a specific version of a module object by its
 natural path.

 dss> import sync://cassini:2647/Modules/Chip;1.5 /libs/df2test/cdsinfo.tag

Example of Importing a Module Member (Module-based)

 This example shows fetching a specific module member vault version
 using the -version option to specify the version number.

 dss> import -version 1.3 sync://h:p/Modules/Chip;1.5\
 /libs/df2test/cdsinfo.tag

Example of Moving Files to a New Vault Associated with a Workspace (File-based)

 This example performs a "switch vault" operation, where files from
 one vault are imported into a work area, then checked into another
 vault (the vault associated with the work area).

 dss> scd /users/jane/myworkdir
 dss> import -version Trunk sync://cassini:2647/Projects/Saturn/Rocket \
 rover.doc lander.doc
 rover.doc: Success Imported
 lander.doc: Success Imported

 dss> ls rover.doc lander.doc
 Time Stamp Status Version Locked By Name
 ---------- ------ ------- --------- ----
 05/04/2000 09:24 - Unmanaged rover.doc
 05/04/2000 09:24 - Unmanaged lander.doc

 Jane can now check these files into the vault associated with her
 work area:

 dss> ci -new -nocom -keep rover.doc lander.doc

importmod

importmod Command

ENOVIA Synchronicity Command Reference All -Vol2

887

NAME

 importmod - Import exported module to new server location

DESCRIPTION

 This command uncompresses an exported module from the tar file to the
 specified location. The new module contains the full module history
 of the old module, the module members, the original host, port, and
 module URL information. It also contains the hierarchical reference
 information. In an additional step, you can recreate the hierarchical
 references using the reconnectmod command.

 Before you perform the import, you must copy the exported file to the
 specific location that corresponds to the desired location on the
 server. Copy the file to the following location:

 <server-data-directory>/Import.sync/Modules/<category_path>/ \
 <modulename>.tar

 Where:
 <server-data-directory> is:
 <path_to_syncdata>/<host>/<port>/

 If you are also changing the name of the module, as well as the
 location, rename the tar file to <newModuleName>.tar.

 Note: The specified module location must be empty in order to import
 the module. If there is already a module in that location, you must
 remove it before performing the import.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 importmod[-[no]freeze] [-[no]keep] <ServerURL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the module. Specify the URL as
 follows:
 sync://<host>[:<port>]/Modules/[<category...>/]<module>

Administration

888

 or
 syncs://<host>[:<port>]/Modules/[<category...>/]<module>
 where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, <port> is the SyncServer
 port number (defaults to 2647/2679), [<category...>}
 is the optional category (and/or sub-category)
 containing the module, and <module> is the name of
 the module.
 For example:
 sync://serv1.abco.com:1024/Modules/ChipDesigns/Chip

OPTIONS

• -[no]freeze
• -[no]keep

-[no]freeze

 -[no]freeze Freezes all the module branches on the server after
 the import completes so any additional changes can be
 made before the module is released for normal usage.

 -nofreeze immediately releases the freeze on the
 module after the import has completed. This means
 changes immediately upon completion of the importmod
 operation.

 -freeze leaves the module in a frozen state after the
 import so no changes can be made. (Default)

 Note: You can remove the module freeze using the
 unfreeze command.

-[no]keep

 -[no]keep Indicates whether DesignSync should keep or delete
 the module export file after the import is complete.

 -nokeep removes the module export file after
 completing the import. If the import is not
 successful, the export file is not removed,
 regardless of how this is set. (Default)

 -keep saves the module export file after completing
 the import.

RETURN VALUE

ENOVIA Synchronicity Command Reference All -Vol2

889

 There is no return value. DesignSync provides status messages while
 the command runs. If the command fails, DesignSync returns an error
 explaining the failure.

SEE ALSO

 exportmod, mvmod

EXAMPLES

• Example of Importing a module

Example of Importing a module

 This example copies a transportable module, created with the
 exportmod command, changes the name of the module, and imports the
 module to the new server location.

 syncmgr@serv1> cp

/usr/syncmgr/syncdata/serv1/2647/server_vault/Export.sync/Modules/Chips/Chip-
nx1.tar

/usr/syncgmr/syncdata/serv2/2647/server_vault/Import.sync/Modules/ChipDesign/
Chip-NX2.tar
 syncmgr@serv1> dssc
 dss> importmod sync://serv2.ABCo.com:2647/Modules/ChipDesign/Chip-NX2
 Beginning module import ...
 sync://serv2.ABCo.com:2647/Modules/ChipDesign/Chip-NX2 : Module is frozen.
 Module successfully imported.

importVaults

importVaults

NAME

 importVaults - Imports DesignSync vault folders

DESCRIPTION

 Use the importVaults utility to import data converted using the
 convertdata utility or data exported from a client vault. See
 DesignSync Data Manager User's Guide: "Using the Vault Utilities."
 For other import scenarios, use the ProjectSync Import Projects
 feature. See ProjectSync User's Guide: "Importing Projects."

Administration

890

upload

upload Command

NAME

 upload - Upload/Update compressed IP stored in DesignSync

DESCRIPTION

• Understanding How a Temporary Directory is used for Upload
• Order of Precedence for Temp Directory:

 The command allows you to upload or update a tar or gzipped tar
 archive to DesignSync in an efficient manner so that, instead of
 replacing the archive with the next version, DesignSync updates
 only the elements within the archive file that have changed from the
 previous version.

 By performing a change (delta) calculation and only checking in the
 changed object set, DesignSync provides both improved speed during
 checkin and checkout and reduces the amount of disk space required
 for storing the IP.

 The user running the upload should examine the tar file to make sure
 it contains none of
 the following:
 o unnecessary or undesired parent directories
 o absolute path directories

 These should be removed before performing the upload.

Notes:
 o The executables (binaries) for tar or gtar must be on the user's
 path in order for the command to work.

 o DesignSync also provides a graphical user interface for uploading
 IP through the DesignSync Web Interface. For more information, see
 the DesignSync Administrator's Guide.

 This command is subject to Access Controls on the server.

 This command supports the command defaults system.

Understanding How a Temporary Directory is used for Upload

 The compressed archive is exploded in a temporary directory and
 compared against the last version, if applicable, on the server and
 only the changed object set is checked in.

ENOVIA Synchronicity Command Reference All -Vol2

891

 Tip: For optimal operation, DesignSync recommends that the upload
 directory contain at least 2.5* the size of the uncompressed
 archive file.

 By default, this operation is performed in the temporary directory
 specified by the Upload_Tmp_Dir registry setting or the SYNC_TMP_DIR
 environment variable. If neither of these is set, DesignSync uses the /tmp
 directory on the repository server. For more information on setting
 the Upload_Tmp_Dir registry setting, or the SYNC_TMP_DIR environment
 variable, see the DesignSync Administrator's Guide.

 You can optionally specify either a local directory or an alternate
 location on the server. This is especially useful for servers where
 you cannot control the server space consumption; specifying an
 alternative disk partition or performing the delta comparison locally
 allows you to make sure you have enough space to perform the
 operation. Specifying an option on the command line overrides any
 existing settings.

Order of Precedence for Temp Directory:

 Note: DesignSync will use this order to determine which tmp
 directory to use for the upload operation. If there is no set value,
 DesignSync will check the next location on this. If there is a
 value set, but DesignSync is unable to use it, for example, because
 of incorrect write permissions, the command will fail.

 1. If the -vault option is used, and -servertmpdir or -localtmpdir
 is specified, the value of <tmpdir> is used. If the -workspace
 option is specified, the workspace is used as the tmp directory.

 2. If the command defaults system is used to set a value
 -servertmpdir or -localtmpdir, that value is used as the tmp
 directory.

 3. If the UploadTmpDir registry setting is specified, that value
 is used as the tmp directory.

 4. If the SYNC_TMP_DIR environment variable is set on the server
 machine, that value is used as the tmp directory.

 5. If the TMPDIR environment variable is set on the server machine,
 that value is used as the tmp directory.

 6. If no other values are set, DesignSync uses the /tmp directory on
 the server machine.

SYNOPSIS

 upload [-branch <branchname>] [-[no]collections]
 [-[no]comment <comment>] [-[no]new]

Administration

892

 [-report brief | normal | verbose] [-tag <tagname>]
 [-vault <vaulturl> [-servertmpdir <tmpdir>] |
 [-vault <vaulturl> [-localtmpdir <tmpdir>] |
 [-workspace <path>] <tarfile>

ARGUMENTS

• Tar file

Tar file

 <tarfile> Specify a tar or gzipped tar archive to upload or
 update on the server. The archive can be
 specified with an absolute or relative path. The
 file extension for the tar file must be either
 .tar or .tgz in order for DesignSync to
 recognize the file.

 NOTE: If the tar file contains .SYNC directories,
 they are automatically ignored and not checked in
 with the archive.

OPTIONS

• -branch
• -[no]collection
• -[no]comment
• -localtmpdir
• -[no]new
• -report (Module-based)
• -report (File-based)
• -servertmpdir
• -tag
• -vault (Module-based)
• -vault (File-based)
• -workspace

-branch

 -branch Specifies the branch on which to place the
 <branchname> archive. You can specify only one branch with this
 option. If no branch is specified, DesignSync
 uploads to the Trunk branch. You cannot specify a
 branch tag for the initial archive upload, which
 is always checked into the Trunk branch.

 For the <branchname>, specify a branch tag (for
 example, rel40) or branch numeric (for

ENOVIA Synchronicity Command Reference All -Vol2

893

 example, 1.4.2) only. Do not specify a colon
 (:) with the branchname.

 If a temp directory (other than the /tmp default)
 is specified for the upload, and the -branch
 option is used, the specified branch must already
 exist on the server.

 The -branch option is mutually exclusive with the
 -new option.

-[no]collection

 -[no]collection Specifies whether the compressed package includes
 collections objects. For more information on
 collection handling, see the DesignSync
 Administrator's Guide.

 -nocollection specifies that the compressed
 archive does not contain collection objects. This
 allows the upload process to use reference mode,
 improving the speed of operations. (Default)

 -collection specifies that the compressed archive
 contains collection objects. The upload process
 will not attempt to use reference mode which would
 process collections incorrectly.

-[no]comment

 -[no]comment Specifies whether a text description of the
 ["<comment>"] upload is stored with the checked in version.

 -nocomment performs the upload with no
 comment.(Default)

 -comment <text> stores the value of <text> as the
 module comment. To specify a multi-word comment,
 use quotation marks ("") around the comment text.

-localtmpdir

 -localtmpdir When -vault is used, the -localtmpdir option
 <tmpdir> is used to specify a tmp directory path on the
 local (client) machine to be used for the upload
 operation. When the upload is completed, any
 objects placed in this directory during upload are
 removed.

Administration

894

-[no]new

 -[no]new Performs the initial checkin of the archive. The
 initial archive checkin must be performed on the
 Trunk branch.

 -nonew is used to update the archive in revision
 control. If the archive does not exist and -nonew
 is selected, the command fails. (Default)

 -new is used to create or update the archive. If
 the archive exists and the -new option is
 specified, the archive is updated.

 The -new option is mutually exclusive with the
 -branch option.

-report (Module-based)

 -report brief | Controls the amount and type of information
 normal| verbose displayed by the command.

 brief mode reports the newly created module
 version, along with the generated tag.

 Normal mode additionally reports a list of the
 changes in the archive, including: added files,
 removed files and changed files.

 Verbose mode is equivalent to normal mode.

-report (File-based)

 -report brief | Controls the amount and type of information
 normal| verbose displayed by the command.

 brief mode reports the generated tag.

 Normal mode additionally reports a list of the
 changes in the archive, including: added files,
 retired files and changed files.

 Verbose mode is equivalent to normal mode.

-servertmpdir

 -servertmpdir When -vault is used, the -servertmpdir option
 <tmpdir> is used to specify a tmp directory path on the
 repository server to be used for the upload

ENOVIA Synchronicity Command Reference All -Vol2

895

 operation. When the upload is completed, any
 objects placed in this directory during upload are
 removed.

-tag

 -tag <tag> Applies the specified tag to the data being
 imported. This tag can be used to get the data
 later, or example, when populating the archive
 into a workspace.

 If the tag already exists it moves to the new
 version.

 Note: An automatically generated tag, in the form
 Archive.<#> is also applied to the data being
 imported, where the initial value of # is 1, and
 then the number is incremented as archive is
 updated.

-vault (Module-based)

 -vault <vaultURL> Specify the module URL and optionally a server
 [-servertmpdir <tmpdir>] or local path to use as a temporary upload
 | [-localtmpdir <tmpdir>] directory.

 Specify the module URL in the format:

sync[s]://<host>:<port>/Modules/[<category>...]/<Module>

 If the module does not exist, then it will be
 created, if the command is run with the -new
 option.

 When you specify an alternate tmp directory for
 upload, you can specify a server path on on the
 repository server or a local path on the
 client system. For more information on
 specifying a server path, see the -servertmpdir
 option. For more information on specifying a
 local path, see the -localtmpdir option.

 This option is mutually exclusive with
 -workspace. Either -workspace or -vault must be
 specified.

-vault (File-based)

 -vault <vaultURL> Specify the vault URL and optionally a server or
 [-servertmpdir <tmpdir>] local path to use as a temporary upload

Administration

896

 | [-localtmpdir <tmpdir>] directory.

 Specify the vault URL in the format:
 sync[s]://<host>:<port>/[<Project>...]/<vault>

 If the vault does not exist, then it will be
 created, if the command is run with the -new
 option.

 When you specify an alternate tmp directory for
 upload, you can specify a server path on on the
 repository server or a local path on the
 client system. For more information on
 specifying a server path, see the -servertmpdir
 option. For more information on specifying a
 local path, see the -localtmpdir option.

 This option is mutually exclusive with
 -workspace. Either -workspace or -vault must be
 specified.

-workspace

 -workspace Specify an existing, unmodified workspace
 <path> as a staging area to unpack the new archive,
 determine the changes necessary and send only
 the changes to the server. If this is used for
 an initial upload, the archive is unpacked in
 the workspace and the entire contents of the
 archive is uploaded. For the initial upload,
 DesignSync uses the persistent selector to
 determine the module/vault for checkin.

 This is a performance enhancement that minimizes
 the server processing time needed to compute the
 deltas by pre-computing the deltas in the
 workspace.

 The workspace must be owned and writable by the
 person running the command.

 The -workspace option is mutually exclusive
 with -vault and -branch. The -workspace option
 is only supported for UNIX workspaces.

RETURN VALUE

 This command does not return any TCL values. DesignSync provides
 status messages while the command runs. If the command fails,
 DesignSync returns an error explaining the failure.

ENOVIA Synchronicity Command Reference All -Vol2

897

SEE ALSO

 defaults, access, ci

EXAMPLES

• Example of Performing an Initial Upload (Module-based)
• Example of Specifying a Server Temporary Directory for Module Upload (Module-

based)
• Example of Specifying a Local Temporary Directory for Module Upload (Module-based)
• Example of Performing an Upload Using a Module Workspace (Module-based)
• Example of Performing an Initial Upload (File-based)
• Example of Performing an Upload Using a File-Based Workspace (File-based)
• Example of Specifying a Server Temporary Directory for File-based Upload (File-based)
• Example of Specifying a Local Temporary Directory for File-based Upload (File-based)

Example of Performing an Initial Upload (Module-based)

 This example shows performing an initial upload to a module.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 checked in. For brevity, those checkin lines have been removed.

 dss> upload -vault sync://qelwsun14:30126/Modules/IPWIP/FinalIP -new
 -comment "IP Finals version 1.0" FinalIP.tar

 Logging to /home/rsmith/dss_04012014_181455.log
 3DEXPERIENCE6R2022x

 Beginning Check in operation...

 Checking in objects in module FinalIP%0

 Total data to transfer: 7340 Kbytes (estimate), 626 file(s), 0
collection(s)
 Checking in:
 ...

 FinalIP%0: Version of module in workspace updated to 1.2

 Finished checkin of Module FinalIP%0, Created Version 1.2

 Time spent: 10.5 seconds, transferred 0 Kbytes, average data rate
 0.0 Kb/sec

 Checkin operation finished.

 NOTE: Workspace module argument 'FinalIP%0' supplied; will tag
 'sync://serv1.ABCo.com:2647/Modules/IPWIP/FinalIP;1.2'

Administration

898

 Beginning module tag operation on 'sync://qelwsun14:30126' ...

 Tagging: sync://serv1.ABCo.com:2647/Modules/IPWIP/FinalIP;1.2 :
 Added tag 'Archive.1' to version '1.2'

 Module tag operation finished on 'sync://serv1.ABCo.com:2647'.

Example of Specifying a Server Temporary Directory for Module Upload (Module-based)

 This example updates an IP checked into a module. It uses a
 specified directory on the server as its temporary storage area
 rather than the server default which allows you to make sure that the
 space you need for the operation is available.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 populated, checked in, and tagged. For brevity, the individual
 object detail lines have been removed.

 dss> upload -vault sync://serv1.ABCo.com:2647/Modules/CustomerIP
 -servertmpdir /home/syncadmin/tmp -comment "Uploaded IP"
 ./FinalIP.tar
 Beginning Check in operation...
 Checking in: ...
 ...
 Checkin operation finished.

 Beginning Tag operation...
 ...
 Tag operation finished.
 dss>

Example of Specifying a Local Temporary Directory for Module Upload (Module-based)

 This example updates an IP checked into a module. It uses a
 specified directory on the client machine as its temporary storage
 area rather than the server default which allows you to make sure
 that the space you need for the operation is available and reduces
 processing time on the server.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 populated, checked in, and tagged. For brevity, the individual
 object detail lines have been removed.

 dss> upload -vault sync://serv1.ABCo.com:2647/Modules/CustomerIP
 -localtmpdir ~/tmpfiles -comment "Uploading new version" FinalIP.tar

 Beginning Check in operation...
 Checking in: ...
 ...
 Checkin operation finished.

ENOVIA Synchronicity Command Reference All -Vol2

899

 Beginning Tag operation...
 ...
 Tag operation finished.
 dss>

Example of Performing an Upload Using a Module Workspace (Module-based)

 This example updates an IP checked into a module. It uses the module
 workspace as its temporary storage area rather than the server which
 reduces the processing time needed on the server.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 populated and checked in. For brevity, the individual object detail
 lines have been removed.

upload -comment "uploading IP Finals version 1.5" -workspace
 ~rsmith/MyMods/customerIP ../FinalIP.tar

 Beginning populate operation at Wed Apr 02 10:45:54 AM EDT 2014...

 Populating objects in Module FinalIP%0
 Base Directory /home/rsmith/MyMods/customerIP
 Without href recursion

 Fetching contents from selector 'Trunk:', module version '1.2'
 ... [Fetching List of Objects in Lock Mode]

 FinalIP%0 : Version of module in workspace retained as 1.2

 Finished populate of Module FinalIP%0 with base directory
/home/rsmith/MyMods/customerIP

 Time spent: 0.0 seconds, transferred 0 Kbytes, copied from local
 cache 0 Kbytes, average data rate 0.0 Kb/sec

 Finished populate operation.

 Beginning Check in operation...

 Checking in objects in module FinalIP%0

 Total data to transfer: 7102 Kbytes (estimate), 596 file(s), 0 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 1 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 4975 Kbytes, 404 file(s), 0 collection(s), 68.1% complete
 Progress: 7259 Kbytes, 596 file(s), 0 collection(s), 100.0% complete

 ... [Checking in new files, removing locks]

 FinalIP%0: Version of module in workspace updated to 1.3

Administration

900

 Finished checkin of Module FinalIP%0, Created Version 1.3

 Time spent: 15.7 seconds, transferred 7259 Kbytes, average data rate 463.8
Kb/sec

 Checkin operation finished.

 NOTE: Workspace module argument 'FinalIP%0' supplied; will tag
 'sync://serv1.ABCo.com/Modules/IPWIP/FinalIP;1.3'

 Beginning module tag operation on 'sync://serv1.ABCo.com:2647' ...

 Tagging: sync://serv1.ABCo.com:2647/Modules/IPWIP/FinalIP;1.3 :
 Added tag 'Archive.2' to version '1.3'

 Module tag operation finished on 'sync://serv1.ABCo.com:2647'.

Example of Performing an Initial Upload (File-based)

 This example shows performing an initial upload to a file-based vault.

 Note: This example has been run in normal mode, which means that each
 object processed in the tar file is listed in the command output.
 For brevity, these lines have been removed.

 dss> upload -comment "IP rel 1.0 handoff" -vault
 sync://serv1.ABCo.com:2647/Projects/customerIP -new FinalIP.tar

 Operation continuing, please wait...
 sync://serv1.ABCo.com:2647/Projects/customerIP Success Folder Made
 Logging to /home/rsmith/dss_04042014_123427.log
 3DEXPERIENCE6R2022x

 Beginning Tag operation...

 ... [List of tag files removed]

 Tag operation finished.

Example of Performing an Upload Using a File-Based Workspace (File-based)

 This example updates an IP checked into a file-based vault. It uses a
 workspace as its temporary storage area rather than the server which
 reduces the processing time needed on the server.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 populated, checked in, and tagged. For brevity, the individual
 object detail lines have been removed.

ENOVIA Synchronicity Command Reference All -Vol2

901

 dss> upload -comment "IP rel 2.0 handoff" -workspace
 ~rsmith/workspaces/customerIP FinalIP.tar

 Beginning populate operation at Fri Apr 04 02:22:56 PM EDT 2014...
 ...

 Populated '/home/rsmith/workspaces/customerIP'

 Finished populate operation.

 Beginning Check in operation...
 ...

 Checkin operation finished.

 Beginning Tag operation...
 ...

 Tag operation finished.

Example of Specifying a Server Temporary Directory for File-based Upload (File-based)

 This example updates an IP checked into a file-based vault. It uses a
 specified directory on the server as its temporary storage area
 rather than the server default which allows you to make sure that the
 space you need for the operation is available.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 populated, checked in, and tagged. For brevity, the individual
 object detail lines have been removed.

 dss> upload -vault sync://serv1.ABCo.com:2647/Projects/CustomerIP
 -servertmpdir /home/syncadmin/tmp -comment "Uploaded IP"
 ./FinalIP.tar
 Beginning Check in operation...
 Checking in: ...
 ...
 Checkin operation finished.

 Beginning Tag operation...
 ...
 Tag operation finished.
 dss>

Example of Specifying a Local Temporary Directory for File-based Upload (File-based)

 This example updates an IP checked into a file-based vault. It uses a
 specified directory on the client machine as its temporary storage
 area rather than the server default which allows you to make sure
 that the space you need for the operation is available and reduces

Administration

902

 processing time on the server.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 populated, checked in, and tagged. For brevity, the individual
 object detail lines have been removed.

 dss> upload -vault sync://serv1.ABCo.com:2647/Projects/CustomerIP
 -localtmpdir ~/tmpfiles -comment "Uploading new version" FinalIP.tar

 Beginning Check in operation...
 Checking in: ...
 ...
 Checkin operation finished.

 Beginning Tag operation...
 ...
 Tag operation finished.
 dss>

Data Replication

Data Replication System

replicate Command

NAME

 replicate - Data replication commands

DESCRIPTION

 These commands control the data replication system. The data
 replication system provides a configurable environment to
 automatically setup and manage mirrors, caches, and module caches
 associated with a server URL.

 The replicate command and sub-commands support the command default
 system.

SYNOPSIS

 replicate <replicate_command> [<replicate_command_options>]

 Usage: replicate [addroot, data, disable, enable, reset, rmdata,
 rmroot, showdata, showroots, setoptions]

ENOVIA Synchronicity Command Reference All -Vol2

903

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 mirror

EXAMPLES

 See specific "replicate" commands.

replicate addroot

replicate addroot Command

NAME

 replicate addroot - Associates a Data Replication Root with a MAS

DESCRIPTION

 This command associates a Data Replication Root (DRR) with a
 particular Mirror Administration Server (MAS). There are no limits
 to the number of DRRs that can be associated with a MAS.

 The DRR is associated with the MAS using a name that must be unique
 across the MAS. This name is a shortcut to identify the DRR when
 enabling, disabling, or checking the status of the DRR. The name is
 also used for any auto-generated mirrors that registered to
 handle updates to the data replicated within the DRR.

 In addition to registering the name with the MAS, the addroot
 command:

 o creates the DRR path (specified by the -path option), if it does
 not already exist. If the path given to the command isn't an
 absolute path, DesignSync uses the current working directory with
 the path value appended.

Administration

904

 o verifies that the path is suitable for storing a replication
 root. In order to store a replication root, the specified
 directory cannot contain a module cache or dynamic folder. It can
 contain an existing file cache.

 o sets the appropriate permissions on the folder.

 o creates the sub-folders needed to support data replication. The
 data replication system uses three folders: dynamic, for dynamic
 content; module_cache, for static module content; and file_cache,
 for static file and module member versions.

 This command is subject to access controls on the server.

 This command supports the command defaults system.

SYNOPSIS

 replicate addroot -name <name> -path <rootpath> [-readmode {all|group}]
 <serverURL>

ARGUMENTS

• Server URL

Server URL

 <serverURL> Specifies the URL of the MAS on which to store the
 data replication root. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -name
• -path
• -readmode

-name

 -name <name> Logical name of the DRR. This name must be unique
 with respect to all other DRRs defined on the
 MAS. This name is also used as the name of the
 mirror that handles updates to the replications
 registered in the DRR.

ENOVIA Synchronicity Command Reference All -Vol2

905

-path

 -path <rootpath> Specifies the path to the DRR being added.
 If the path does not exist, and is creatable, the
 command creates it.

 Note: The path cannot contain a module cache or
 dynamic folder. It can contain an existing file
 cache.

-readmode

 -readmode The read permissions set on the DRR directory. This
 [all|group] option is valid only when SUID mode is enabled.

 -readmode all sets the read permission be readable by
 all users, the primary group of the MAS owner, and
 the MAS owner.

 -readmode group sets the read permission to be
 readable by the primary group of the MAS owner, and
 the MAS owner.

 Note: If SUID is not enabled for the MAS
 installation, and the "enforce SUID" option is not
 enabled on the mirror, the system will enable read
 and write modes for all. If the "enforce SUID" option
 is enabled, the command will fail. The "enforce SUID"
 option is set on the Mirrors| General Settings page
 of the DesignSync Web Interface. For information on
 setting the "enforce SUID" option for the MAS, see
 the ENOVIA Synchronicity DesignSync Administrator's
 Guide.

RETURN VALUE

 Returns an empty string on success.

SEE ALSO

 mirror setoptions, replicate data, replicate rmroot

EXAMPLES

 This example shows the replicate addroot command and then the

Administration

906

 replicate showroots command showing that the DRR has been created.
 dss> replicate addroot -path /RepHome/repdata -name MainDRR -readmode
 all sync://data.ABCo.com
 dss> replicate showroots sync://data.ABCo.com
 Name Read Mode Path
 ---- --------- ----
 MainDRR all /RepHome/repdata

replicate data

replicate data Command

NAME

 replicate data - Replicates data on the replication root

DESCRIPTION

• Working with Modules Objects (Module-based)
• Working with File-Based Vaults (File-based)

 This command adds the desired data to the specified data replication root
 (DRR).

 This command is subject to access controls on the server.

 This command supports the command defaults system.

Working with Modules Objects (Module-based)

 When you add a module to DRR, the command determines where the module
 and all its submodules are located and adds them to the data
 repository.

 After the scripted mirrors have been registered with the MAS, the
 command creates a module instance corresponding to the module
 specified with the appropriate selector. This module instance will be
 created in the 'dynamic' folder.

Working with File-Based Vaults (File-based)

 For files-based vault data, the replicate data command calls the
 mirror create command in order to create the data replication
 mirror.

ENOVIA Synchronicity Command Reference All -Vol2

907

 The base directory of the replicated data is computed from the file
 path and selector information of the data, like this:
 <DRR/dynamic/<ServerHost>/<port>/<leafname>/<selector>/<basedir>

SYNOPSIS

 replicate data [-name <name>] -root <drr>
 [-selector <selector>[,<selector>...]] -vaulturl <URL>
 <ServerURL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the MAS on hosting the
 data replication root. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -name (File-based)
• -root
• -selector
• -vaulturl

-name (File-based)

 -name <name> A user friendly name for a file-based project. The
 name is used by the mirror create command,

-root

 -root <drr> Logical name of the DRR. This name is case
 sensitive. If you cannot remember the name of the
 DRR, you can use the replicate showroots command to
 see a list of defined DRRs on a MAS.

 Note: The DRR must exist on the MAS specified by the

Administration

908

 ServerURL argument.

-selector

 -selector <list> Specifies the selector, or selector list. If no
 selector is specified, the command will use the
 default selector, 'Trunk'.

-vaulturl

 -vaulturl <URL> Specifies the URL of the data location on the
 server. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 For example: sync://serv1.abco.com:1024

RETURN VALUE

 Returns an empty string on success.

SEE ALSO

 mirror create, replicate enable, replicate disable, replicate rmdata

EXAMPLES

• Example of Adding a Module Hierarchy to the DRR (Module-based)
• Example of Adding File-Based Data to the DRR (File-based)

Example of Adding a Module Hierarchy to the DRR (Module-based)

 This example shows adding a module hierarchy to the DRR and the
 subsequent replicate showdata command showing the module in the DRR.
 Note: Although only Chip, the top level module in the hierarchy, is
 specified, data replications are created for all submodules.

 dss> replicate data -vaulturl
 sync://data.ABCo.com:2647/Modules/ChipDesign/Chip -root MainDRR
 sync://mirror.ABCo.com:2647

ENOVIA Synchronicity Command Reference All -Vol2

909

 dss> replicate showdata -root MainDRR sync://mirror.ABCo.com:2647
 Name Enabled Status
 Vault URL Selector
 Base Dir
 ---- ------- ------
 --------- --------

 CPU%0 yes 1
 sync://data.ABCo.com:2647/Modules/Components/CPU Trunk:
 9b/1e/9b1e794175a7c24bd5a329b3a5bd8d7a/CPU/Trunk/basedir
 Chip%0 yes 1
 sync://data.ABCo.com:2647/Modules/ChipDesign/Chip Trunk:
 ef/ea/efea1173a39a7df9e42e3e8d821fd580/Chip/Trunk/basedir
 ROM%0 yes 1
 sync://data.ABCo.com:2647/Modules/Components/ROM Trunk:
 ee/f5/eef5d1b4b3eab3c9ec3f95b82b1b90dc/ROM/Trunk/basedir

Example of Adding File-Based Data to the DRR (File-based)

 This example shows adding a file-based vault URL to the DRR and the
 subsequent replicate showdata command showing the file-based vault
 URL in the DRR. .

 dss> replicate data -vaulturl sync://data.ABCo.com:2647/Projects/CPU
 -root MainDRR -name CPU sync://mirror.ABCo.com:2647

 dss> replicate showdata -root MainDRR sync://mirror.ABCo.com:2647
 Name Enabled Status Vault URL
 Selector Base Dir
 ---- ------- ------ ---------
 -------- --------
 EclipseProj yes 1
sync://data.ABCo.com:2647/Projects/EclipseProj
 Trunk:Latest 9d/71/9d711cc172956426eb333ae18fb131ba/Test1/Trunk/basedir

replicate disable

replicate disable Command

NAME

 replicate disable - Disables a replicated data instance

DESCRIPTION

 This command turns off updates for the specified data instance or all
 replicated instances on the MAS.

 This command is subject to access controls on the server.

Administration

910

 This command supports the command defaults system.

SYNOPSIS

 replicate disable -all | -name <name> -root <drr> <ServerURL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the MAS hosting the data
 replication root. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -all
• -name
• -root

-all

 -all Disables all active replication instances on the
 DRR. This option is mutually exclusive with the
 -name option.

-name

 -name <name> The name of the data replication to
 disable. When the -name option is specified, only
 the named data replication is disabled. Any
 referenced sub-modules continue to be updated. This
 option is mutually exclusive with the -all option.

-root

ENOVIA Synchronicity Command Reference All -Vol2

911

 -root <drr> Logical name of the DRR. This name is case
 sensitive. If you cannot remember the name of the
 DRR, you can use the replicate showroots command to
 see a list of defined DRRs on a MAS.

RETURN VALUE

 If the command succeeds, it returns an empty string (""). If the
 command fails, it returns an appropriate error to explain the cause
 of failure.

SEE ALSO

 replicate enable, mirror disable

EXAMPLES

 This example shows disabling all data replications on a DRR. This DRR
 consists of one file-based project, and one module hierarchy.

 Note: The reply from the server shows all the stopped data replications. In
 the example below, the CPU%0 and ROM%0 module instances are
 referenced submodules of Chip%0.

 dss> replicate disable -root MainDRR -all sync://mirror.ABCo.com
 disabling mirror 'CPU%0'
 disabling mirror 'Chip%0'
 disabling mirror 'ROM%0'
 Disabling files based mirror 'EclipseProj'

replicate enable

replicate enable Command

NAME

 replicate enable - Enables replication for a data replication

DESCRIPTION

 This command turns on updates for the specified data replication.
 If the data instance has file-based references, those are enabled by
 the replicate enable command running the mirror enable command on
 the mirror that controls the file-based updates.

Administration

912

 This command is subject to access controls on the server.

 This command supports the command defaults system.

SYNOPSIS

 replicate enable -all | -name <name> -root <drr> <ServerURL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the MAS hosting the data
 replication root. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -all
• -name
• -root

-all

 -all Enables all inactive data replications on the
 DRR. This option is mutually exclusive with the
 -name option.

-name

 -name <name> The name of the data replication to
 enable. This option is mutually exclusive with the
 -all option.

-root

ENOVIA Synchronicity Command Reference All -Vol2

913

 -root <drr> Logical name of the DRR. This name is case
 sensitive. If you cannot remember the name of the
 DRR, you can use the replicate showroots command to
 see a list of defined DRRs on a MAS.

RETURN VALUE

 If the command succeeds, it returns an empty string (""). If the
 command fails, it returns an appropriate error to explain the cause
 of failure.

SEE ALSO

 replicate disable, mirror enable

EXAMPLES

 This example shows enabling all data replications on the DRR. This
 example includes a modules-based and a files based DRR.

 Note: The response from the server does not display hierarchically
 referenced submodules. In the example below, the Chip%0 module has
 submodules CPU%0 and ROM%0 module which are enabled along with their
 parent module, Chip%0, but not listed separately.

 dss> replicate enable -root MainDRR -all sync://mirror.ABCo.com
 enabling mirror 'Chip%0'
 Enabling files based mirror 'EclipseProj'

replicate reset

replicate reset Command

NAME

 replicate reset - Manually updates a data replication

DESCRIPTION

 This command performs a manual update on a data replication.

 If the specified data replication is file-based or contains
 references to a file-based sub-instance, the replicate reset
 command calls the mirror reset command to update the files on the
 DRR.

Administration

914

 This command is subject to access controls on the server.

 This command supports the command defaults system.

SYNOPSIS

 replicate reset -name <name> -root <drr> <ServerURL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the MAS hosting the data
 replication root. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -name
• -root

-name

 -name <name> The name of the data replication to reset. The
 reset operates recursively on the named data
 replication.

-root

 -root <drr> Logical name of the DRR. This name is case
 sensitive. If you cannot remember the name of the
 DRR, you can use the replicate showroots command to
 see a list of defined DRRs on a MAS.

RETURN VALUE

ENOVIA Synchronicity Command Reference All -Vol2

915

 If the command succeeds, it returns an empty string (""). If the
 command fails, it returns an appropriate error to explain the cause
 of failure.

SEE ALSO

 mirror reset, replicate data, replicate showdata

EXAMPLES

 This example shows the reset command.
 dss> replicate reset -root MainDRR -name Chip%0 sync://qelwsun14:30125
 dss>

replicate rmdata

replicate rmdata Command

NAME

 replicate rmdata - Removes the data replication from the dynamic
 folder.

DESCRIPTION

• Notes for Modules Objects (Module-based)
• Notes for Files-Based Objects (File-based)

 This command removes the data replication from the 'dynamic'
 folder within the DRR. The deletion cannot be undone.

 Note: Although the deletion is permanent, you can recreate the
 data replication using the same name using the replicate data
 command.

 This command is subject to access controls on the server.

 This command supports the command defaults system.

Notes for Modules Objects (Module-based)

 Important: To support the optimal function of the replication system,
 you should use the replicate rmdata command to remove data from the
 'dynamic' folder, NOT the rmmod command. The rmmod command does not
 provide the additional clean-up functionality of the replicate rmdata
 command which, when reference counting is enabled, also cleans the

Administration

916

 file cache associated with the data replication.

 This command does not remove data from the module_cache folder. To
 remove data from the module_cache folder, use the mcache scrub
 command.

 This command does not run recursively along the module
 hierarchy. You must individually remove any referenced
 submodules. If you have removed a submodule, a future update to the
 top-level data replication may re-create the submodule.

Notes for Files-Based Objects (File-based)

 When replicate rmdata is run on a file-based replication or if a
 sub-module contains links to file-based data, the replicate rmdata
 command runs the mirror delete command to remove the data.

SYNOPSIS

 replicate rmdata -name <name> -root <drr> <Server-URL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the MAS hosting the
 DRR. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -name
• -root

-name

 -name <name> The name of the data replication to remove.

ENOVIA Synchronicity Command Reference All -Vol2

917

-root

 -root <drr> Logical name of the DRR. This name is case
 sensitive. If you cannot remember the name of the
 DRR, you can use the replicate showroots command to
 see a list of defined DRRs on a MAS.

RETURN VALUE

 If the command succeeds, it returns an empty string (""). If the
 command fails, it returns an appropriate error to explain the cause
 of failure.

SEE ALSO

 replicate data, replicate showdata, replicate rmroot, mirror delete,

EXAMPLES

• Example of Removing a Module Data Replication (Module-based)
• Example Showing Removing a File-Based Data Replication (File-based)

Example of Removing a Module Data Replication (Module-based)

 This example shows removing a module data replication. The replicate
 showdata command that follows shows that the Chip%0 module has been
 removed.

 dss> replicate rmdata -root MainDRR -name Chip%0
 sync://mirror.ABCo.com:2647

 dss> replicate showdata -root MainDRR sync://mirror.ABCo.com:2647

 Name Enabled Status
 Vault URL Selector
 Base Dir
 ---- ------- ------
 --------- --------

 CPU%0 yes 1
 sync://data.ABCo.com:2647/Modules/Components/CPU Trunk:
 9b/1e/9b1e794175a7c24bd5a329b3a5bd8d7a/CPU/Trunk/basedir
 EclipseProj yes 1
 sync://data.ABCo.com:2647/Projects/EclipseProj
 Trunk:Latest 9d/71/9d711cc172956426eb333ae18fb131ba/Test1/Trunk/basedir

Administration

918

Example Showing Removing a File-Based Data Replication (File-based)

 This example shows removing a file-based vault data replication. This
 shows the passed through output of the underlying mirror delete command.

 dss> replicate rmdata -root MainDRR -name EclipseProj
 sync://mirror.ABCo.com:2147
 Deleted empty directory '/RepHome/repdata/dynamic/9d/71/
 9d711cc172956426eb333ae18fb131ba/EclipseProj/Trunk'
 Deleted empty directory '/RepHome/repdata/dynamic/9d/71/
 9d711cc172956426eb333ae18fb131ba/EclipseProj'
 Deleted empty directory '/RepHome/repdata/dynamic/9d/71/
 9d711cc172956426eb333ae18fb131ba'
 Deleted empty directory '/RepHome/repdata/dynamic/9d/71'
 Deleted empty directory '/RepHome/repdata/dynamic/9d'

replicate rmroot

replicate rmroot Command

NAME

 replicate rmroot - removes the specified data replication root

DESCRIPTION

 This command removes the specified data replication root (DRR) from the
 list of registered replication roots. All the data and metadata
 within the DRR are deleted along with the DRR. The deletion cannot be
 undone.

 Note: Although the deletion is permanent, you can recreate the DRR
 using the same name.

 The command does not remove any symbolic links to items in the DRR. If
 users have created symbolic links, for example, workspaces still
 pointing to the file cache contained within a data replication,
 these need to be manually removed.

 This command is subject to access controls on the server.

 This command supports the command defaults system.

SYNOPSIS

 replicate rmroot -root <drr> <ServerURL>

ARGUMENTS

ENOVIA Synchronicity Command Reference All -Vol2

919

• Server URL

Server URL

 <ServerURL> Specifies the URL of the MAS hosting the
 DRR. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -root

-root

 -root <drr> Logical name of the DRR. This name is case
 sensitive. If you cannot remember the name of the
 DRR, you can use the replicate showroots command to
 see a list of defined DRRs on a MAS.

RETURN VALUE

 If the command succeeds, it returns an empty string (""). If the
 command fails, it returns an appropriate error to explain the cause
 of failure.

SEE ALSO

 replicate rmdata, replicate addroot, replicate data

EXAMPLES

 This example shows removing the DRR on a MAS that has both replicated
 modules and files-based data.

 dss> replicate rmroot -root MainDRR sync://mirror.ABCo.com:2647
 Removing files based mirror 'EclipseProj'
 Removing the data from '/RepHome/repdata'
 Removing the dynamic scripted (autogen) mirror
 Removing the static scripted (autogen) mirror
 Removing the metadata entry for replication root 'MainDRR'

Administration

920

replicate setoptions

replicate setoptions Command

NAME

 replicate setoptions - Sets replicate options

DESCRIPTION

 This command sets the options for data replication. The available
 options are described in the Options section.

 This command is subject to access controls on the server.

 This command supports the command defaults system.

SYNOPSIS

 replicate setoptions [-defaultuser <user>] [-[no]refcount]
 <ServerURL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the MAS hosting the data
 replication root. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -defaultuser
• -refcount

-defaultuser

 -defaultuser Species the default user for the data replication
 <user> system. You must specify the user name with the

ENOVIA Synchronicity Command Reference All -Vol2

921

 -defaultuser option. If this parameter is
 specified, you are prompted for the default user's
 password. Specifying this parameter makes
 'replicate setoptions' an interactive command.

 Note: You may also use the mirror setoptions
 command to set the defaultuser. There is only one
 default user stored for each MAS, regardless of
 whether you store the username/password with the
 mirror or replicate setoptions command.

-refcount

 -[no]refcount Specifies whether reference counting in the file
 cache is enabled or disabled for the system.

 -[no]refcount specifies that references should not
 be counted. It is used if the site policy is
 not to use reference counting and the corresponding
 site-wide setting, set in SyncAdmin as "Enable Cache
 optimizations" is also disabled.

 -refcount specifies that reference should be
 counted (Default). This allows DesignSync to
 maintain optimal performance by automatically
 removing files versions that are no longer linked
 to.

 Note: This option is not retroactive. Any existing
 data continues to have the refcount setting that
 was in use when the data was fetched. Any
 subsequently fetched data uses the newly set mode.

 For more information on enabling or disabling
 reference counting, see the ENOVIA Synchronicity
 DesignSync Data Manager Administrator's Guide.

RETURN VALUE

 If the command succeeds, it returns an empty string (""). If the
 command fail, it returns an appropriate error to explain the cause
 of failure.

SEE ALSO

 mirror setoptions, replicate addroot

EXAMPLES

Administration

922

 This example shows a single replicate setoptions command that sets
 the default user and disables reference counting.

 dss> replicate setoptions -defaultuser admin -norefcount
 sync://mirror.ABCo.com:2647
 Enter the password for the default user (admin): *****
 Processing BackupDRR
 Processing MainDRR
 Registering mirror for 'sync://mirror.ABCo.com:2647
 Done registering mirror for 'sync://mirror.ABCo.com:2647'

replicate showdata

replicate showdata Command

NAME

 replicate showdata - Lists the data replications in the DRR

DESCRIPTION

• Notes for File-Based Objects
• Understanding the Output

 This command lists all the replication instances in the 'dynamic'
 folder along with the important properties for the instance.

 This command is subject to access controls on the server.

 This command supports the command defaults system.

Notes for File-Based Objects

 For files-based vaults, the replicate showdata command calls the
 mirror status command.

Understanding the Output

 The output of the replicate showdata command can be formatted for
 easy viewing (-format text) or optimized for TCL processing (-format
 list). Both viewing formats show the same information, but may have
 different names. In the table below, the Column Titles column shows
 the text output column header and the Property Names column shows
 list output key value.

ENOVIA Synchronicity Command Reference All -Vol2

923

 The replicate showdata command, by default, displays the following
 information:

 Column Property
 Titles Names Description
 ------ ----- ------------
 Name name The name of the data replication.

 Base Dir basedir Base directory of the data replication.

 Status status Status of the DRR indicating whether the
 replication is functioning normally, or
 there are errors.
 o 1 (one) indicates that there are no
 failures in applying any updates.
 o 0 (zero) indicates there were failures
 in applying updates and the replication
 administrator should examine the
 replication log available from the
 DesignSync web interface.

 Vault URL vaulturl URL of the source vault for the
 data replication.

 Selector selector The selector for the data replication
 as supplied to the replicate data
 command. This varies depending on the
 type of href.

 Enabled enabled Activity status of the data replication.
 o Yes or 1 (one) indicates the
 data replication is active.
 o No or 0 (zero) indicates the
 data replication is inactive.

SYNOPSIS

 replicate showdata [-format {text|list}] [-name dataname]
 [-report {brief|normal|verbose}] -root <drr>

ARGUMENTS

• -root

-root

 -root <ddr> The name of the registered DRR to examine. You can
 use the replicate showroots command to view the
 list of the DRRs.

Administration

924

OPTIONS

• -format
• -name
• -report

-format

 -format text|list Determines the format of the output.

 -format text displays a text table with headers and
 columns. (Default) Objects are shown in
 alphabetical order

 -format list displays a TCL list containing
 name/value pairs.

 For a list of properties displayed, see the
 "Understanding the Output" section above.

-name

 -name <dataname> The name of a data replication. If you specify
 a name, the command returns only the results for
 that data replication. If no name is specified,
 the command returns information for all the
 data replications on the DRR.

-report

 -report brief| Determines what information is returned in the
 normal |verbose output of the command.

 Valid values are:
 o brief - outputs the name of the data
 replication and any failures. The -format
 option is ignored for this report mode.

 o normal - the properties list in the format
 specified with the -format option. (Default),

 o verbose - the properties list in the format
 specified with the -format option. There is no
 difference between the verbose and normal
 reports.

RETURN VALUE

ENOVIA Synchronicity Command Reference All -Vol2

925

 If you run the command with the '-format list' option, it returns a
 TCL list. If the command fails, it returns a TCL error. For all other
 options, it returns an empty string ("").

SEE ALSO

 replicate showroots, replicate data, replicate rmdata

EXAMPLES

• Example of Replicate Showdata in Text Format in Report Normal Mode
• Example of Replicate Showdata in Text Format in Report Brief Mode
• Example of Replicate Showdata in List Format in Report Normal Mode
• Example of Replicate Showdata in List Format in Report Brief Mode

Example of Replicate Showdata in Text Format in Report Normal Mode

 This example shows running replicate showdata in normal, text mode on
 a DRR containing both modules and file-based vaults. The
 module is a module hierarchy consisting of top-level module Chip and
 dynamically referenced submodules CPU and ROM.

 dss> replicate showdata -root MainDRR sync://mirror.ABCo.com:2647

 Name Enabled Status
 Vault URL Selector
 Base Dir
 ---- ------- ------
 --------- --------

 CPU%0 yes 1
 sync://data.ABCo.com:2647/Modules/Components/CPU Trunk:
 9b/1e/9b1e794175a7c24bd5a329b3a5bd8d7a/CPU/Trunk/basedir
 Chip%0 yes 1
 sync://data.ABCo.com:2647/Modules/ChipDesign/Chip Trunk:
 ef/ea/efea1173a39a7df9e42e3e8d821fd580/Chip/Trunk/basedir
 ROM%0 yes 1
 sync://data.ABCo.com:2647/Modules/Components/ROM Trunk:
 ee/f5/eef5d1b4b3eab3c9ec3f95b82b1b90dc/ROM/Trunk/basedir
 EclipseProj yes 1
 sync://data.ABCo.com:2647/Projects/Test1
 Trunk:Latest 9d/71/9d711cc172956426eb333ae18fb131ba/Test1/Trunk/basedir

Example of Replicate Showdata in Text Format in Report Brief Mode

 This example shows running replicate showdata in text mode with
 report -brief selected using the same data set as Example 1.

Administration

926

 dss> replicate showdata -report brief -root MainDRR
 sync://mirror.ABCo.com:30125

 CPU%0
 Chip%0
 ROM%0
 EclipseProj

Example of Replicate Showdata in List Format in Report Normal Mode

 This example shows running replicate showdata in -format list TCL and
 -report normal mode using the same data set as Example 1.
 Note: Because some of these strings exceed the line length for this
 documentation, the \ character is used to show that the string does
 not contain spaces.

 dss> replicate showdata -format list -root MainDRR
 sync://mirror.ABCo.com:2647

 {name CPU%0 target sync://data.ABCo.com:2647/Modules/Components/CPU
 basedir /home/RepHome/repdata/dynamic/9b/1e/\
 9b1e794175a7c24bd5a329b3a5bd8d7a/CPU/Trunk/basedir selector Trunk:
 version 1.3 enabled 1 reset 0 top 0 itags {} error {} seenlist \
 {{sync://data.ABCo.com:2647/Modules/Components/ROM;Trunk:}} touchtime
 1344447297 efile {} status 1 dynamic 1 ismodule 1} {name Chip%0 target
 sync://data.ABCo.com:2647/Modules/ChipDesign/Chip basedir
 /home/RepHome/repdata/dynamic/ef/ea/efea1173a39a7df9e42e3e8d821fd580/Chip/\
 Trunk/basedir selector Trunk: version 1.14 enabled 1 reset 0 top 1
 itags {} error {} seenlist
 {{sync://data.ABCo.com:2647/Modules/Components/CPU;Trunk:}} touchtime
 1344447292 efile {} status 1 dynamic 1 ismodule 1} {name ROM%0 target
 sync://data.ABCo.com:2647/Modules/Components/ROM basedir
 /home/RepHome/repdata/dynamic/ee/f5/eef5d1b4b3eab3c9ec3f95b82b1b90dc/\
 ROM/Trunk/basedir selector Trunk: version 1.2 enabled 1 reset 0 top 0
 itags {} error {} seenlist {} touchtime 1344447301 efile {} status 1
 dynamic 1 ismodule 1} {name EclipseProj target
 sync://data.ABCo.com:2647/Projects/Test1 basedir
 /home/RepHome/repdata/dynamic/9d/71/9d711cc172956426eb333ae18fb131ba/\
 Test1/Trunk/basedir selector Trunk:Latest enabled 1 reset 0 top 0
 itags {} error {} seenlist {} touchtime 0 dynamic 1 efile {} status 1
 ismodule 0}

Example of Replicate Showdata in List Format in Report Brief Mode

 This example shows running replicate showdata in with report -brief
 selected using the same data set as Example 1.

 dss> replicate showdata -report brief -root MainDRR
 sync://mirror.ABCo.com:2647

ENOVIA Synchronicity Command Reference All -Vol2

927

 CPU%0 Chip%0 ROM%0 EclipseProj

replicate showroots

replicate showroots Command

NAME

 replicate showroots - Lists the registered data replication roots

DESCRIPTION

• Understanding the Output

 This command lists the data replication roots (DRRs) and their
 properties registered on the MAS.

 This command is subject to access controls on the server.

 This command supports the command defaults system.

Understanding the Output

 The output of the replicate showroots command can be formatted for
 easy viewing (-format text) or optimized for TCL processing (-format
 list). Both viewing formats show the same information, but may have
 different names. In the table below, the Column Titles column shows
 the text output column header and the Property Names column shows
 list output key value.

 The replicate showroots command, by default, displays the following
 information:

 Column Property
 Titles Names Description
 ------ ----- ------------
 Name name The name of the DRR.

 Path path The root path to the DRR.

 File cache file_cache The name of the file cache subdirectory.

 Module cache module_cache The name of the module cache
 subdirectory.

 Read Mode readmode The readmode specified when the DRR was
 created. The possible values are 'all'
 and 'group.'

Administration

928

 Dynamic dynamic The name of the subdirectory where the
 dynamic data is mirrored.

SYNOPSIS

 replicate showroots [-format {text|list}] [-name <rootname>]
 [-report {brief|normal|verbose}] <ServerURL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the MAS hosting the data
 replication root. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or
 'syncs://' are required, <host> is the machine on
 which the SyncServer is installed, and <port> is
 the SyncServer port number (defaults to 2647).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -format
• -name
• -report

-format

 -format text|list Determines the format of the output.

 -format text displays a text table with headers and
 columns. (Default) Objects are shown in
 alphabetical order

 -format list displays a TCL list containing
 name/value pairs.

 For a list of properties displayed, see the
 "Understanding the Output" section above.

-name

ENOVIA Synchronicity Command Reference All -Vol2

929

 -name <rootname> Logical name of the DRR. This name must be unique
 with respect to all other DRRs defined on the
 MAS.

-report

 -report brief| Determines what information is returned in the
 normal |verbose output of the command.

 Valid values are:
 o brief - outputs the name of the DRRs. The
 -format option is ignored for this report mode.

 o normal - the properties list, in the format
 specified with the -format option. (Default)

 o verbose - the properties list, in the format
 specified with the -format option. This is
 identical to -report normal.

RETURN VALUE

 If you run the command with the '-format list' option, it returns a
 TCL list. If the command fails, it returns a TCL error. For all other
 options, it returns an empty string ("").

SEE ALSO

 replicate addroot, replicate enable, replicate disable,
 replicate rmroot

EXAMPLES

• Example of Replicate Showroots in Text Format in Report Normal Mode
• Example of Replicate Showroots in Text Format in Report Brief Mode
• Example of Replicate Showroots in List Format in Report Normal Mode

Example of Replicate Showroots in Text Format in Report Normal Mode

 This example shows running replicate showroots in normal, text mode.

 dss> replicate showroots -root MainDRR sync://mirror.ABCo.com:2647

 Name Read Mode Path
 ---- --------- ----
 BackupDRR all /home/RepBk/repdata

Administration

930

 MainDRR all /home/RepHome/repdata

Example of Replicate Showroots in Text Format in Report Brief Mode

 This example shows running replicate showroots in text mode with
 report -brief specified using the same data set as Example 1.

 dss> replicate showroots -report brief sync://mirror.ABCo.com:30125

 BackupDRR
 MainDRR

Example of Replicate Showroots in List Format in Report Normal Mode

 This example shows running replicate showroots in -format list and
 -report normal (default) mode using the same data set as Example 1.
 Note: Because some of these strings exceed the line length for this
 documentation, the \ character is used to show that the string does
 not contain spaces.

 dss> replicate showroots -format list sync://mirror.ABCo.com:2647

 {name BackupDRR path /home/RepBk/repdata readmode all dynamic dynamic
 module_cache module_cache file_cache file_cache} {name MainDRR path
 /home/RepHome/repdata readmode all dynamic dynamic module_cache
 module_cache file_cache file_cache}

File Cache Maintenance

cachescrubber

cachescrubber Command

NAME

 cachescrubber - Cleans the cache of outdated or unused files

DESCRIPTION

 This command, sometimes used in conjunction with the cachetouchlinks
 command, cleans your cache by deleting old or unused files.
 See cachetouchlinks for more information.

 The 'cachescrubber' command must be run from a Unix shell.

ENOVIA Synchronicity Command Reference All -Vol2

931

 Note: All users have access to the cachescrubber command, although
 it should only be run by the owner of the cache directory. It is
 possible for users to run it on a cache directory and remove files
 that should not be removed. To prevent users from inadvertently
 removing files from the cache, enable SUID for caches as described in
 the ENOVIA Synchronicity DesignSync Data Manager Administrator's Guide.

SYNOPSIS

 cachescrubber <cache directory> [<age in days>] [-dryrun] [-noref]
 [-preds32] [-report <mode>]

OPTIONS

• cache directory
• age in days
• -dryrun
• -noref
• -preds32
• -report

cache directory

 <cache directory> The directory to be scrubbed.
 This can be an absolute or relative path.

age in days

 <age in days> Versions this age and older will be scrubbed. When
 specified, this must follow the <cache directory>
 argument. You must supply an integer value.
 This is optional when the -noref or -preds32
 options are supplied, since when using those options
 the files in the cache are not removed based on age.
 If the <age in days> argument is specified in addition
 to the -noref and/or -preds32 options, then files that
 don't meet the no reference or pre-DS3.2 criteria will
 be removed if they meet the <age in days> criteria.

-dryrun

 -dryrun Do not remove any files but report what will be removed
 when run without this option. This option can be run
 with any of the report modes.

Administration

932

-noref

 -noref Remove versions in the cache that have no references.
 If the <age in days> argument is also specified, the
 versions with no references will be removed regardless
 of the age criteria.

-preds32

 -preds32 Remove versions put into the cache from pre-version 3.2
 DesignSync clients. If the <age in days> argument is
 also specified, the pre-3.2 versions will be removed
 regardless of the age criteria.

-report

 -report Where <mode> is brief, normal, or verbose. The 'normal'
 mode will only report warnings and errors. The 'brief'
 mode displays the same information as 'normal' mode.
 The 'verbose' mode will report all objects being
 removed. The default mode is 'normal'.

RETURN VALUE

 The cachescrubber Unix command line script will return a 0 for success
 and a 1 for failure.

SEE ALSO

 cachetouchlinks

EXAMPLES

 The following example shows how to run cachetouchlinks and
 cachescrubber from a shell script. If cachetouchlinks fails,
 cachescrubber will not run.

 #!/bin/csh -f
 #
 # Touch all cache files in all workspaces listed in "workspace_files"
 cachetouchlinks -file /home/syncmgr/workspace_files
 if ($status != 0) then
 echo "### cachetouchlinks failed when running with"

ENOVIA Synchronicity Command Reference All -Vol2

933

 echo " /home/syncmgr/workspace_files ###"
 exit 1
 endif
 echo "### successfully touched all cache files from workspaces listed in"
 echo " /home/syncmgr/workspace_files ###"
 # If cachetouchlinks was successful, run it on all cache directories
 cachescrubber /home/syncmgr/caches/sync_cache 1
 if ($status != 0) then
 echo "### cachescrubber failed while cleaning sync_cache ###"
 exit 1
 else
 echo "### successfully cleaned sync_cache ###"
 endif
 #
 cachescrubber /home/syncmgr/caches/ASIC_cache 1
 if ($status != 0) then
 echo "### cachescrubber failed while cleaning ASIC_cache ###"
 exit 1
 else
 echo "### successfully cleaned ASIC_cache ###"
 endif
 cachescrubber /home/syncmgr/caches/CPU_cache 1
 if ($status != 0) then
 echo "### cachescrubber failed while cleaning CPU_cache ###"
 exit 1
 else
 echo "### successfully cleaned CPU_cache ###"
 endif
 exit 0

 Note: If this shell script is run once a week, then the 'age in
 days' argument could be an integer greater than 1. If the
 cachetouchlinks script ran for more than 1 day, then this integer
 must be greater than 1. If 5 days were used and this script was
 run once a week, this would cover the situation where the
 cachetouchlinks script ran for more than 1 day (and less than 5
 days). Since cachetouchlinks was run 7 days earlier, then the 'age
 in days' should be less than 7. You should record the time that
 cachetouchlinks ran so that the cachescrubber could be run with an
 'age in days' argument that is greater than the number of days used
 with cachetouchlinks.

cachetouchlinks

cachetouchlinks Command

NAME

 cachetouchlinks - Determines which files to be cleaned by the
 cachescrubber command

DESCRIPTION

Administration

934

 Before cleaning the cache with the cachescrubber command,
 you can run cachetouchlinks on your workspace to identify which
 files should be deleted. Cachetouchlinks recurses
 through all specified workspaces and when it finds a local object
 that is a cache type, it reads the value of the symbolic link and
 "touches" the cached file that is referenced. For a collection object,
 it "touches" each cached member file.

 Notes:

 * The cachetouchlinks script does not consider hard links during
 processing.

 * If you unintentionally remove a cache file that is still being
 referenced, you can use the refreshcache command to recreate the
 links.

 * The cachetouchlinks command is both a UNIX command line script and
 Tcl command. Both commands have the same argument list, but
 return different values. See the Return Values section for more
 information.

SYNOPSIS

 cachetouchlinks [-checkerrors] [-dryrun] [-ignoreerrs]
 [-file <workspace-path-list>| -path <path-to-workspace-dir>]
 [-norecursive] [-report <mode>]

OPTIONS

• -checkerrors
• -dryrun
• -file
• -ignoreerrs
• -path
• -norecursive
• -report

-checkerrors

 -checkerrors Uses the workspace metadata to verify that objects in
 the cache state are linked to a cache. This option
 has a performance implication and should only be
 used when necessary.

-dryrun

ENOVIA Synchronicity Command Reference All -Vol2

935

 -dryrun Only report what will be done, do not touch any
 links. This can be run with any of the '-report'
 modes.

-file

 -file Valid path to a file containing the list of
 workspaces referring to caches that will be
 cleaned. The 'list file' can be specified as an
 absolute or relative path. The workspaces in the
 'list file' can be absolute or relative paths.
 (Entries in the file that are relative paths are
 relative to the current working directory, rather
 than relative to the file itself.) When using the
 directory list file, directories with spaces must
 not be escaped. Leading and trailing spaces are
 removed.

 Workspace list file syntax:
 one line for every workspace
 comments have line beginning with #

 Example workspace path list file:

 # workspace ASIC for user larry
 /home/larry/Projects/ASIC
 # workspace CPU for user larry
 /home/larry/Projects/CPU
 # all workspaces for user frank
 /home/frank/Projects
 # workspace ASIC for user rizzo
 /home/rizzo/Projects/ASIC
 # workspace CPU for user rizzo
 /home/rizzo/Projects/CPU

 Note: Paths listed in the workspace path list file
 could be absolute or relative paths. If spaces exist
 in a path, the path should not be escaped or
 enclosed in quotes.

-ignoreerrs

 -ignoreerrs Continue executing even if an error is encountered.
 The default is to stop at the first error.

-path

 -path Valid path to a workspace whose corresponding cache
 is to be cleaned. Absolute or relative paths are

Administration

936

 accepted. A path containing spaces must be
 escaped. If run from the Unix command line, escaping
 can be either using a backslash '\' preceding a
 space or enclosing the path in double quotes. When
 run from an stcl shell, escaping could be using a
 backslash preceding a space or enclosing the path in
 double quotes or braces '{}'. When run from a dss
 shell, the only escaping allowed is enclosing the
 path in double quotes. A valid directory must be
 specified following this option. If this option is
 not specified, cachetouchlinks will default to the
 current working directory

-norecursive

 -norecursive Do not recursively process the workspace(s).
 The default is to recursively process each
 workspace.

-report

 -report <mode> Where mode is brief, normal, or verbose.
 The 'normal' mode will report only warnings and
 errors. The 'brief' mode displays the same information
 as 'normal' mode. The 'verbose' mode will report all
 objects that are being touched. The default is 'normal'.

RETURN VALUE

 - On failure, an exception occurs (the return value is
 thrown, not returned).
 - If -ignoreerrs is specified, The cachetouchlinks Tcl procedure will
 return a TCL_ERROR (1) on failure.
 - On success, a TCL_OK (0) will be returned.

 The cachetouchlinks Unix command line script will return a 0 for success and
 a 1 for failure.

SEE ALSO

 cachescrubber, refreshcache

EXAMPLES

 The following example shows how you can run cachetouchlinks and

ENOVIA Synchronicity Command Reference All -Vol2

937

 cachescrubber from a shell script. If cachetouchlinks fails,
 cachescrubber will not run.

 #!/bin/csh -f
 #
 # Touch all cache files in all workspaces listed in "workspace_files"
 cachetouchlinks -file /home/syncmgr/workspace_files
 if ($status != 0) then
 echo "### cachetouchlinks failed when running with"
 echo " /home/syncmgr/workspace_files ###"
 exit 1
 endif
 echo "### successfully touched all cache files from workspaces listed in"
 echo " /home/syncmgr/workspace_files ###"
 # If cachetouchlinks was successful, run the cachescrubber
 # on all cache directories
 cachescrubber /home/syncmgr/caches/sync_cache 1
 if ($status != 0) then
 echo "### cachescrubber failed while cleaning sync_cache ###"
 exit 1
 else
 echo "### successfully cleaned sync_cache ###"
 endif
 #
 cachescrubber /home/syncmgr/caches/ASIC_cache 1
 if ($status != 0) then
 echo "### cachescrubber failed while cleaning ASIC_cache ###"
 exit 1
 else
 echo "### successfully cleaned ASIC_cache ###"
 endif
 cachescrubber /home/syncmgr/caches/CPU_cache 1
 if ($status != 0) then
 echo "### cachescrubber failed while cleaning CPU_cache ###"
 exit 1
 else
 echo "### successfully cleaned CPU_cache ###"
 endif
 exit 0

 Note: If this shell script is run once a week, then the 'age in
 days' argument could be an integer greater than 1. If the
 cachetouchlinks script ran for more than 1 day, then this integer
 must be greater than 1. If 5 days were used and this script was
 run once a week, this would cover the situation where the
 cachetouchlinks script ran for more than 1 day (and less than 5
 days). Since cachetouchlinks was run 7 days earlier, then the 'age
 in days' should be less than 7. You should record the time that
 cachetouchlinks ran so that the cachescrubber could be run with an
 'age in days' argument that is greater than the number of days used
 with cachetouchlinks.

refreshcache

refreshcache Command

Administration

938

NAME

 refreshcache - Refreshes a workspace, re-establishing cache links
 to point to either a new cache location or to new
 cache names

DESCRIPTION

 This command traverses the workspace directory hierarchy in search of
 objects that exist in the shared cache mode and recreates the link to the
 cache.

 This command can be used when moving a cache to re-establish links to
 the new cache directory. The cache file naming mechanism changed in
 DesignSync version 3.2 to address consistency and reliability issues.
 If pre-version 3.2 cache links still exist, the refreshcache command can be
 used to re-establish links to cache files using the new cache file name
 format. It is beneficial to re-establish links to cache files using the
 new cache name file format since there have been consistency and reliability
 issues addressed with the new cache naming. Links to the old cache file
names
 will still work.

 If you only have the latest version of any branch populated, first
 'populate -recursive -reference -unifystate' to replace any cache links
 with DesignSync references. Then 'populate -recursive -share -unifystate'
 to recreate the cache links, which will now lead to cached files in the
 new cache location. This will also replace pre- DS 3.2 style cache links
 with the newer cache link format.

 Note that the DesignSync reference state is only intended to be temporary.
 DesignSync references do not exist on disk, so tools requiring actual data
 will not work properly with DesignSync references.

 The refreshcache command is useful when non-latest versions exist in the
 workspace since it recreates a new link to the current version in the
 workspace.

SYNOPSIS

 refreshcache [-continue_on_error] [-dryrun]
 [-file <path> | -workspace <path>] [-norecursive]
 [-preds32] [-verbose]

OPTIONS

• -continue_on_error
• -dryrun
• -file

ENOVIA Synchronicity Command Reference All -Vol2

939

• -norecursive
• -preds32
• -workspace
• -verbose

-continue_on_error

 -continue_on_error If an error is encountered, do not exit, but
 continue processing workspace(s). By default, the
 refreshcache command will exit on encountering an
 error.

-dryrun

 -dryrun Only report what will be done, do not refresh any
 links.

-file

 -file A full or relative path to a file containing a
 list of workspaces to be refreshed. Either this
 option or the '-workspace' option must be
 supplied, but not both. The format of this file
 is one line for every workspace. A line beginning
 with a '#' is a comment.

-norecursive

 -norecursive Do not recursively process the workspace(s).

-preds32

 -preds32 The cache file naming mechanism changed in
 DesignSync Version 3.2 to address consistency
 and reliability issues. It is beneficial to
 re-establish links to the new cache file
 names. Using this option will only select links
 that are currently pointing to the old cache
 file name format and re-establish them so that
 they are linking to files using the new cache
 file name format.

 This can be useful if a user already has a

Administration

940

 workspace with a mix of links pointing to cache
 files with the old naming convention and the new
 naming convention. This way it would not waste time
 refreshing the links to files in the new name format.

-workspace

 -workspace The full path or relative path to workspace to be
 refreshed. Either this option or the '-file'
 option must be supplied, but not both.

-verbose

 -verbose Extra report processing - reports object being
 processed, version id, object type and old cache
 file links. The old cache file links are reported
 with -preds32 option.

RETURN VALUE

 If the refresh is successful, returns an empty string. If the refresh
 fails, returns an appropriate error.

SEE ALSO

 cachescrubber, cachetouchlinks, populate

EXAMPLES

• Example Showing a Dry Run
• Example Showing Updating Pre-3.2 Cache Files
• Example Showing Updating Workspaces From a File

Example Showing a Dry Run

 Reports all cache links in the asic hierarchy that will be refreshed,
 but doesn't refresh any:

 stcl> refreshcache -workspace /home/larry/Projects/asic -dryrun

Example Showing Updating Pre-3.2 Cache Files

ENOVIA Synchronicity Command Reference All -Vol2

941

 Add the -preds32 option and it will report all links that point to
 cache files using the old naming convention, which will be
 refreshed if the -dryrun option is not specified.

 Re-establishes cache links in workspace /home/larry/Projects/asic:

 stcl> refreshcache -workspace /home/larry/Projects/asic

 Can use the -preds32 option to only refresh cache links that were
 linked to files before version 3.2. These links are pointing to cache
 files that used the old naming convention.

 First report what will be refreshed.

 stcl> refreshcache -workspace /home/larry/Projects/asic -preds32 -dryrun

 Re-establishes cache links:

 stcl> refreshcache -workspace /home/larry/Projects/asic -preds32

Example Showing Updating Workspaces From a File

 Reports all cache links in all workspaces listed in file
 '/home/larry/workspace_list', which will be refreshed, but doesn't
 refresh any.

 The workspace list file might look like follows:

 # comment - ASIC project
 /home/larry/Projects/asic
 # CPU project
 /home/larry/Projects/cpu

 stcl> refreshcache -file /home/larry/workspace_list -dryrun

 Re-establishes cache links:

 stcl> refreshcache -file /home/larry/workspace_list

Caching Objects

caching

caching Command

NAME

 caching - Caching behavior commands

DESCRIPTION

Administration

942

 These commands provide a way to view and control the caching behavior
 of DesignSync objects; excepting or including intellectual property
 from the default caching.

SYNOPSIS

 caching <caching_command>

 Usage: caching disable|caching enable|caching list|caching status

ARGUMENTS

 Server URL

RETURN VALUE

 Various by command.

SEE ALSO

 caching disable, caching enable, caching list, caching status
,

EXAMPLES

 See specific command.

caching disable

caching disable Command

NAME

 caching disable - Disables object caching for server URLs

DESCRIPTION

 This command disables caching for specific objects specified by

ENOVIA Synchronicity Command Reference All -Vol2

943

 server URLs.

 When object caching is disabled, the caching property of the object
 URL is set to zero (0). The value of this property may be viewed with
 the caching status command.

 Note: Clients with this feature can disable the local caching
 functionality for objects on an older (pre-3DEXPERIENCE 2016x) server
 version, but older clients cannot use this feature on newer
 clients. Servers accepting commands from older clients can be set up
 to refuse enable/disable caching requests from older clients. For
 more information, see the DesignSync Data Manager Administrator's
 Guide.

 If the object for which caching is being disabled were already loaded
 into a cache, those caches are not automatically removed, however
 attempts to update the cache, for example with cancel, ci, populate,
 or co, will fail.

 This command is subject to access controls on the server.

SYNOPSIS

 caching disable <SyncURL>[<SyncURL>...]

ARGUMENTS

• URL

URL

 <syncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>]/[<path>] or
 syncs://<host>[:<port>]/[<path>]
 where 'sync://' or 'syncs://' are required, <host> is the
 machine on which the SyncServer is installed, and <port>
 is the SyncServer port number (defaults to 2647/2679).
 And the path is the server path to the desired object.
 For example, all of these are valid syncURLs:
 sync://apollo.spaceco.com:2647
 sync://apollo.spaceco.com:2647/Modules
 sync://apollo.spaceco.com:2647/Modules/Blueprints/FuelCell2
 sync://apollo.spaceco.com:2647/Projects/SpaceShuttle

RETURN VALUE

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,

Administration

944

 and the second list is non-empty if at least one object failed.
 If the command failed to run, DesignSync returns an appropriate error
 explaining the failure.

SEE ALSO

 caching enable, caching list, caching status, url getprop, url setprop

EXAMPLES

• Example Showing Disabling cachability for an object

Example Showing Disabling cachability for an object

 This example shows disabling the caching for a specific object and
 verifying that the cachability was disabled using the status command,
 which returns a status of zero (0).

 dss> caching disable sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 {Objects succeeded (1)} {}

 dss> caching status sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 0

caching enable

caching enable Command

NAME

 caching enable - Enables object caching for server URLs

DESCRIPTION

 This command enables caching for specific objects specified by
 server URLs.

 When object caching is enabled, the caching property of the object
 URL is set to one (1). The value of this property may be viewed with
 the caching status command.

 Note: Clients with this feature can enable the local caching
 functionality for objects on an older (pre-3DEXPERIENCE 2016x) server
 version, but older clients cannot use this feature on newer
 clients. Servers accepting commands from older clients can be set up
 to refuse enable/disable caching requests from older clients. For

ENOVIA Synchronicity Command Reference All -Vol2

945

 more information, see the DesignSync Data Manager Administrator's
 Guide.

 This command is subject to access controls on the server.

SYNOPSIS

 caching enable <SyncURL>[<SyncURL>...]

ARGUMENTS

• URL

URL

 <syncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>]/[<path>] or
 syncs://<host>[:<port>]/[<path>]
 where 'sync://' or 'syncs://' are required, <host> is the
 machine on which the SyncServer is installed, and <port>
 is the SyncServer port number (defaults to 2647/2679).
 And the path is the server path to the desired object.
 For example, all of these are valid syncURLs:
 sync://apollo.spaceco.com:2647
 sync://apollo.spaceco.com:2647/Modules
 sync://apollo.spaceco.com:2647/Modules/Blueprints/FuelCell2
 sync://apollo.spaceco.com:2647/Projects/SpaceShuttle

RETURN VALUE

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.
 If the command failed to run, DesignSync returns an appropriate error
 explaining the failure.

SEE ALSO

 caching disable, caching list, caching status

EXAMPLES

Administration

946

• Example Showing enabling cachability for an object

Example Showing enabling cachability for an object

 This example shows enabling the caching for a specific object and
 verifying that the cachability is enabled using the status command
 which returns a status of one (1).

 dss> caching enable sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 {Objects succeeded (1)} {}

 dss> caching status sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 1

caching list

caching list Command

NAME

 caching list - Displays the cache status for folders

DESCRIPTION

• Understanding the Output

 Displays a list of subfolders and/or parent folders for a specified vault
 that have an explicitly set cache status. An explicitly set cache status
indicates
 that caching is either enabled (on) or disabled (off) for the
 folder. Folders that inherit their state from their parents are not
 displayed.

 This command is subject to access controls on the server.
 This command respects the command defaults setting.

Understanding the Output

 The output of the caching list command can be formatted for
 easy viewing (-format text) or optimized for TCL processing (-format
 list). Both viewing formats show the same information, but may have
 different names. In the table below, the Column Titles column shows
 the text output column header and the Property Names column shows
 list output key value.

 The caching list command, by default, displays the following
 information:

ENOVIA Synchronicity Command Reference All -Vol2

947

 Column Property
 Titles Names Description

 Caching Status status Caching status for the folder.
 o Enabled - In text
 mode, if caching is
 active for folder, it
 displays Enabled. In list
 mode, it displays 1.
 o Disabled - In text
 mode, if caching is
 inactive for the
 folder, it displays
 Disabled. In list
 mode, it displays 0.
 Path path The server path to the folder.

SYNOPSIS

 caching list [-disabled] [-down] [-enabled] [-format list | text]
 [-up] <argument>

ARGUMENTS

• {} URL

{} URL

<SyncURL> Specifies the DesignSync vault URL. The command
 examines either backwards (up) or
 forwards (down) to determine whether the
 folder has an explicitly set cache
 status.
 The vault is specified as:
 sync://<host>[:<port>]/[<path>] or
 syncs://<host>[:<port>]/[<path>]
 where 'sync://' or 'syncs://' are required,
<host> is the
 machine on which the SyncServer is installed, and
<port>
 is the SyncServer port number (defaults to
2647/2679).
 And the path is the server path to the desired
object.
 For example, all of these are valid syncURLs:
 sync://serv1.abco.com:2647
 sync://serv1.abco.com:2647/Modules
 sync://serv1.abco.com:2647/Modules/ChipDesigns

sync://serv1.abco.com:2647/Projects/SharedLibraries

Administration

948

OPTIONS

• {}
• -down
• -enabled
• -format
• -up

{}

 -disabled Show all of the folders that have caching
 explicitly disabled.
 If this option is specified with -enabled,
 the command shows folders that have either
 enabled or disabled status specified,
 which is the same as specifying neither option.

-down

 -down Show all of the folders below the selected
 Sync URL argument.
 If this option is specified with -up, the
 command shows folders up and down from the
 specified Sync URL, which is the same as
 specifying neither option.

-enabled

 -enabled Show all of the folders that have caching
 explicitly enabled.
 If this option is specified with -disabled,
 the command shows folders that have either
 enabled or disabled status specified,
 which is the same as specifying neither option.

-format

 -format text|list Determines the format of the output.

 -format text displays a text table with headers and
 columns. (Default) Objects are shown in
 alphabetical order

ENOVIA Synchronicity Command Reference All -Vol2

949

 -format list displays a TCL list containing
 name/value pairs.

 For a list of properties displayed, see the
 "Understanding the Output" section above.

-up

 -up Show all of the folders below the selected
 Sync URL argument.
 If this option is specified with -up, the
 command shows folders up and down from the
 specified Sync URL, which is the same as
 specifying neither option.

RETURN VALUE

 Returns an empty string when -format text is used. Returns a TCL list
 as described in the Understanding the Output section when -format list
 is used.

SEE ALSO

 caching disable, caching enable, caching status

EXAMPLES

• Example of Listing the Cache Status using Text Formatting
• Example of Listing the Cache Status using List Formatting

Example of Listing the Cache Status using Text Formatting

 This example shows listing the status of caching for all folders above
 and below the specified vault folder.
 Note that in this example, the specified module is not displayed
 because it inherits it's state from the parent category,
"/Modules/ChipDesigns"

 stcl> caching list sync://serv1.ABCo.com:2647/Modules/ChipDesigns/NXZ-45
 Caching Status Path
 -------------- ----
 Enabled /Modules
 Disabled /Modules/TradeSecrets
 Enabled /Modules/ChipDesigns
 Disabled /Modules/ChipDesigns/NXZ-45/Proprietary
 Enabled /Modules/ChipDesigns/NXZ-45/Propertary/ReadyForRelease

Administration

950

Example of Listing the Cache Status using List Formatting

 This example shows listing the status of caching for all folders below
 the specified vault folder.
Stcl> caching list -down â€“format list
sync://serv1.ABCo.com:2647/Modules/ChipDesigns/NXZ-45

{
 {path /Modules/ChipDesigns/NXZ-45/Proprietary status 0}
 {path /Modules/ChipDesigns/NXZ-45/Proprietary/ReadyForRelease status 0}

caching status

caching status Command

NAME

 caching status - Displays caching status of server URLs

DESCRIPTION

 Displays the caching status (on or off) of the object URL. URLs can
 be explicitly excluded from the cache to protect access to the file
 and comply with intellectual property protection needs.

SYNOPSIS

 caching status <SyncURL>

ARGUMENTS

• URL

URL

 <syncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>]/[<path>] or
 syncs://<host>[:<port>]/[<path>]
 where 'sync://' or 'syncs://' are required, <host> is the
 machine on which the SyncServer is installed, and <port>
 is the SyncServer port number (defaults to 2647/2679).
 And the path is the server path to the desired object.
 For example, all of these are valid syncURLs:
 sync://serv1.abco.com:2647

ENOVIA Synchronicity Command Reference All -Vol2

951

 sync://serv1.abco.com:2647/Modules
 sync://serv1.abco.com:2647/Modules/Blueprints/FuelCell2
 sync://serv1.abco.com:2647/Projects/SpaceShuttle

RETURN VALUE

 Returns a value of zero (0) if the object can not be cached, or one
 (1) if the object is able to be cached.

SEE ALSO

 caching disable, caching enable, caching list

EXAMPLES

• Example Showing the cachability status for an object

Example Showing the cachability status for an object

 This example shows enabling/disabling the caching for a specific
 object and verifying that the cachability is enabled using the status
 command, which returns a zero (0) if cachability is disabled or one
 (1) if cachability is enabled.

 dss> caching enable sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 {Objects succeeded (1)} {}

 dss> caching status sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 1
 dss> caching disable sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 {Objects succeeded (1)} {}

 dss> caching status sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 0

Mirror System

mirror Commands

NAME

 mirror - Mirror management commands

DESCRIPTION

Administration

952

 The mirror commands allow you to create, view, edit, and
 check the status of mirrors. You also can administer mirrors
 using the DesignSync WebUI.

SYNOPSIS

 mirror <mirror_command> [<mirror_command_options>]

 Usage: mirror [create|delete|disable|edit|enable|get|getoptions|
 isenabled|ismirror|list|rename|requeue|reset|setoptions|
 status|wheremirrored]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror rename, mirror requeue,
 mirror reset, mirror setoptions, mirror status,
 mirrorsetdefaultuser, mirror wheremirrored

mirror

mirror Commands

NAME

 mirror - Mirror management commands

DESCRIPTION

 The mirror commands allow you to create, view, edit, and
 check the status of mirrors. You also can administer mirrors
 using the DesignSync WebUI.

ENOVIA Synchronicity Command Reference All -Vol2

953

SYNOPSIS

 mirror <mirror_command> [<mirror_command_options>]

 Usage: mirror [create|delete|disable|edit|enable|get|getoptions|
 isenabled|ismirror|list|rename|requeue|reset|setoptions|
 status|wheremirrored]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror rename, mirror requeue,
 mirror reset, mirror setoptions, mirror status,
 mirrorsetdefaultuser, mirror wheremirrored

mirror create

mirror create Command

NAME

 mirror create - Creates a mirror

DESCRIPTION

• Using Mirror Create with Modules (Module-based)

 This command creates a mirror. When a password is required, you are
 prompted and the command becomes interactive.

 Note: When you create a mirror, submirrors for referenced data are
 created automatically.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

Administration

954

Using Mirror Create with Modules (Module-based)

 When the mirror create command is run for a module, the mirror
 directory must either be empty or the vault set on the mirror
 directory must match that provided by the mirror create command.
 This allows a user to manually populate a mirror directory prior to
 registering it with the mirror system.

 Mirrors can be created for modules but a workspace is not allowed to
 link to it. Thus, a set mirror and a ci or populate with the mirror
 fetch state are not allowed with modules.

 Note: If you have two hrefs to a sub-module in a hierarchy, you
 cannot create a second sub-mirror to the second sub-module.

SYNOPSIS

 mirror create [-cachedir <path>] [-cachelinktype hard|soft]
 [-category <category>] [-description <description>]
 [-[no]enable] [-fetchstate get|share]
 [-hrefmode<static|dynamic|normal>] [-MASuser <user>]
 [-mcachemode link|server] -mirrordir <mirrorDir>
 -name <name> [-notify<email_list>]
 [-parentname <parent_mirror>] [-PMASuser <user>]
 [-primaryserver <serverURL>] [-[no]recursive]
 [-RSuser <user>] [-script <TCL_script>]
 [-selector <list>] [-type normal|primary|secondary]
 -vaultURL <vaultURL> <serverURL>

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the MAS where the mirror will be
 created. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 For example: sync://serv1.abco.com:1024

OPTIONS

ENOVIA Synchronicity Command Reference All -Vol2

955

• -cachedir
• -cachelinktype
• -category
• -description
• -[no]enable
• -fetchstate
• -hrefmode (Module-based)
• -MASuser
• -mcachemode (Module-based)
• -mirrordir (Module-based)
• -mirrordir (Legacy-based)
• -mirrordir (File-based)
• -name
• -notify
• -parentname
• -PMASuser (File-based)
• -primaryserver (File-based)
• -[no]recursive (Module-based)
• -RSuser
• -script
• -selector
• -type (Module-based)
• -type (File-based)
• -vaultURL

-cachedir

 -cachedir The -cache option allows you specify the path to the
 <path> mirror specific file cache. If you update mirrors
 with the share state and no file cache is specified,
 the default cache or project caches are used. The
 default cache is determined by the MUP's registry
 files which include the server's registry files and
 the MirrorRegistry.reg file.

-cachelinktype

 -cachelinktype The -cachelinktype option indicates whether creating
 hard|soft a mirror with cache links uses hard or soft
 (symbolic) links in the mirror. This option is
 ignored if the -fetchstate get option is used.

 "-cachelinktype hard" populates the mirror with hard
 links to the cache. Hard links require that mirror
 and the cache be on the same disk partition. If the
 system cannot create hard links to the cache, it
 will switch automatically to creating soft links to

Administration

956

 the cache.

 "-cachelinktype soft" populates the mirror with
 symbolic links to the cache. (Default)

 Note: This option does not use the registry settings
 that determine whether a hard link or soft link
 should be used. The default setting for this option
 is to use soft links.

-category

 -category An optional parameter to assign a category (arbitrary
 string) to a mirror. All mirrors belonging to a
 category can be selected by using the -category
 parameter of 'mirror list'. When mirror definitions
 are automatically generated as the result of
 encountering references, they will inherit the
 category of their parent mirror. A category must be
 composed of the following set [A-Za-z0-9_/-.] or a
 space.

-description

 -description An optional description of the mirror. A description
 must be composed of the following set [A-Za-z0-9_/-.]
 or a space.

-[no]enable

 -[no]enable Determine if the mirror should be enabled when it is
 created. The default is enable.

-fetchstate

 -fetchstate An optional mode to indicate whether the mirror
 get|share should be populated with local copies, or populated
 with file cache links.

 "-fetchstate get" populates the mirror with local
 copies. (Default)

 "-fetchstate share" populates the mirror with links
 the cache. You can use the -cachelinktype to specify
 whether the links should be soft links (symbolic
 links) or hard links.

ENOVIA Synchronicity Command Reference All -Vol2

957

-hrefmode (Module-based)

 -hrefmode An optional mode to enable the selection of a
 hierarchical reference mode when recursively
 populating the mirror.
 Valid values are:
 o normal (default)
 o static
 o dynamic

 This option is only meaningful when <vaultURL>
 refers to a non-legacy module.

 You can use the -hrefmode with -nomodulerecursive.
 The recursive nature of the mirror can be changed
 using the mirror edit command to recursively populate
 a module.

-MASuser

 -MASuser The name of the user to establish communication from
 the repository server (RS) to the mirror
 administration server (MAS). When this parameter is
 omitted, the default user (mirror setoptions
 -defaultuser) is used for this connection. If the
 default user is not set, an error will be thrown.
 If the 'mirror setoptions -enforcedefaultuser' option
 is set on the MAS and this parameter is specified, an
 error will be thrown. If this parameter is specified,
 the user will be prompted for the corresponding
 password. Therefore, specifying this parameter makes
 the 'mirror create' command an interactive command.

-mcachemode (Module-based)

 -mcachemode
 link|server When using the scripted mirror capability to populate
 an auto-generated mirror, this option specifies:
 o link - Attempt to create mcache links to referenced
 submodules by searching the mirror directory
 supplied with the scripted/autogen mirror.
 o server - Fetch the submodules from the server.

 When populating a normal mirror, this option
 specifies:
 o link - Attempt to create mcache links to
 referenced submodules by searching using the
 default mcache paths defined in the registry.

Administration

958

 o server - Fetch the submodules from the server.

-mirrordir (Module-based)

 -mirrordir The pathname of the mirror directory.
 Note: This parameter is required.

 The pathname must be unique with respect to
 all other mirrors defined on the mirror administration
 server (MAS).

 If this pathname contains a relative path with
 respect to the stcl's cwd, it is converted to an
 absolute pathname before the name is passed to the
 mirror administration server.

 If the mirror directory pathname contains a symbolic
 link (UNIX only), the user controls whether the
 symbolic link is resolved or used as is, with the
 EnableRealMirrorPaths registry key.

 The '~' home directory character is allowed (UNIX
 only).

 The directory pathname must be relevant on the same
 LAN as the mirror administration server.

 The directory name can be prefixed with 'file://' if
 an absolute pathname is specified.

 The path of a mirror directory can be shared by other
 mirrors defined on the MAS or used for multiple
 modules. Since the base directory for multiple
 modules can be the same, the base directory can work
 as a mirror directory.

 You cannot use a mirror directory for a module mirror
 that is already used for a legacy module or a
 DesignSync vault.

-mirrordir (Legacy-based)

 -mirrordir The pathname of the mirror directory.
 Note: This parameter is required.

 The pathname must be unique with respect to
 all other mirrors defined on the mirror administration
 server (MAS).

 If this pathname contains a relative path with
 respect to the stcl's cwd, it is converted to an

ENOVIA Synchronicity Command Reference All -Vol2

959

 absolute pathname before the name is passed to the
 mirror administration server.

 If the mirror directory pathname contains a symbolic
 link (UNIX only), the user controls whether the
 symbolic link is resolved or used as is, with the
 EnableRealMirrorPaths registry key.

 The '~' home directory character is allowed (UNIX
 only).

 The directory pathname must be relevant on the same
 LAN as the mirror administration server.

 The directory name can be prefixed with 'file://' if
 an absolute pathname is specified.

 The mirror directory path and the relative path of
 the legacy module must be unique. You cannot use a
 directory for a legacy module that is already in use
 by another mirror.

-mirrordir (File-based)

 -mirrordir The pathname of the mirror directory.
 Note: This parameter is required.

 The pathname must be unique with respect to
 all other mirrors defined on the mirror administration
 server (MAS).

 If this pathname contains a relative path with
 respect to the stcl's cwd, it is converted to an
 absolute pathname before the name is passed to the
 mirror administration server.

 If the mirror directory pathname contains a symbolic
 link (UNIX only), the user controls whether the
 symbolic link is resolved or used as is, with the
 EnableRealMirrorPaths registry key.

 The '~' home directory character is allowed (UNIX
 only).

 The directory pathname must be relevant on the same
 LAN as the mirror administration server.

 The directory name can be prefixed with 'file://' if
 an absolute pathname is specified.

 The mirror directory path and the relative path of
 the mirror must be unique. You cannot use a directory
 that is already in use by another mirror.

Administration

960

-name

 -name Logical name of the mirror. This name must be unique
 with respect to all other mirrors defined on the mirror
 administration server (MAS). When mirror definitions
 are automatically generated as the result of
 encountering references, the new mirror names should
 reflect the point in the mirror hierarchy where the
 reference was encountered. The hierarchical delimiter
 used must be a slash, '/'.
 EXAMPLE: If the mirror 'liba' uses mirror directory
 /home/libs/liba and during the initial populate a
 reference is encountered at the
 /home/libs/liba/iocells/scancells directory, a new
 mirror called 'liba/iocells/scancells' will be
 created. Names must be composed of the following set
 [A-Za-z0-9_/-.]. Mirror names cannot begin with a
 dash (-).

 When -name is used without the -parentname argument,
 the name parameter cannot be the name of an existing
 mirror. However, when used in combination with the
 -parentname argument, the name parameter can refer to
 an existing mirror. In this case, the mirror
 directory, vault URL, and selector are validated and
 if any of these parameters is incorrect, an error is
 thrown. When -name and -parentname are used in
 combination, all other parameters for the mirror
 create command are used only for validation.

 The -name value is required.

-notify

 -notify A comma-separated or space-separated list of email
 addresses and/or user names to send email to whenever
 the mirror generates notifications. The
 defaultnotifylist (see 'mirror setoptions') will be
 internally appended to this list. If the
 defaultnotifylist has not been set then this list
 will default to the email address in the user's
 profile for the user executing this command on the
 MAS. If user names are specified, the users must have
 user profiles on the MAS servers.

-parentname

 -parentname When you are creating a submirror, the logical name
 of the parent mirror. The parent mirror must already
 exist. See the -name argument description, above, for

ENOVIA Synchronicity Command Reference All -Vol2

961

 information on how the -name and -parentname arguments
 interact.

-PMASuser (File-based)

 -PMASuser The name of the user to establish communication from
 the mirror administration server (MAS) to the primary
 mirror server (PMAS). If the -type parameter is not set
 to "secondary", this parameter is silently ignored.
 When the -type is set to "secondary" then if this
 parameter is omitted, the default user (mirror
 setoptions -defaultuser) is used for this connection.
 If the default user is not set, an error will be
 thrown. If the 'mirror setoptions
 -enforcedefaultuser' option is set on the MAS and
 this parameter is specified, an error will be
 thrown. If this parameter is specified, the user will
 be prompted for the corresponding password.
 Therefore, specifying this parameter makes
 the 'mirror create' command an interactive command.

-primaryserver (File-based)

 -primaryserver Specifies the URL of the SyncServer hosting the primary
 mirror (PMAS). If the -type parameter is not set to
 "secondary", this parameter is silently ignored.
 Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the PMAS
 is installed, and <port> is the PMAS port number
 (defaults to 2647)
 For example" -primaryserver
 sync://serv1.abco.com:1024

-[no]recursive (Module-based)

 -[no]recursive Determines whether to mirror the module's contents
 only or the entire module hierarchy.

 -recursive specifies that the mirror populates a
 module's contents and the contents of all its
 sub-modules recursively. (Default)

 -norecursive specifies that the mirror
 populates a module without processing the module
 hierarchy.

Administration

962

-RSuser

 -RSuser The name of the user to establish communication from
 the mirror administration server (MAS) to the
 repository server (RS). This User must have a user
 profile on the RS. When this parameter is omitted, the
 default user (mirror setoptions -defaultuser) is used
 for this connection. If the default user is not set,
 an error will be thrown. If the 'mirror setoptions
 -enforcedefaultuser' option is set on the MAS and this
 parameter is specified, an error will be thrown.
 No companion password parameter is available for
 -RSuser. If this parameter is specified, the user will
 be prompted for the corresponding password. Therefore,
 specifying this parameter makes the 'mirror create'
 command an interactive command.

-script

 -script The -script option allows you to specify the TCL
 <TCL_script> script that defines the scripted mirror. The script
 must be in the syncinc/share/tcl, or
 custom/site/share/tcl directory. For information
 about how to create the TCL script, see the ENOVIA
 Synchroncity DesignSync Administrator's Guide.

 The -script option is mutually exclusive with the
 -type option.

-selector

 -selector The -selector option is used to choose which versions
 <list> of the files in the vault to place in the mirror
 directory. This value's syntax is checked to make
 sure the selector is valid. The default is
 'Trunk:Latest'.

-type (Module-based)

 -type The type of the mirror. The only type supported for
 modules is 'normal.'

 This option is mutually exclusive with the -script
 option.

-type (File-based)

ENOVIA Synchronicity Command Reference All -Vol2

963

 -type The type of the mirror. This must be 'normal',
 'primary', or 'secondary'. Secondary mirrors require
 the -primaryserver parameter and may specify the
 -PMASuser parameter. The default is
 'normal'.

 This option is mutually exclusive with the -script
 option.

-vaultURL

 -vaultURL Specifies the URL of the vault directory whose
 contents will be mirrored out. This parameter is
 required. Specify the URL as follows:
 sync://<host>[:<port>]/path_to_vault or
 syncs://<host>[:<port>]/path_to_vault where
 'sync://' or 'syncs://' are required,
 <host> is the remote server,
 <port> is the remote server's port number
 (defaults to 2647)
 and the path_to_vault is the path from the remote
 servers root to the vault directory being mirrored.

RETURN VALUE

 Returns an empty string on success.

SEE ALSO

 mirror delete, mirror disable, mirror edit,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror rename, mirror reset,
 mirror setoptions, mirror status, mirrorsetdefaultuser

EXAMPLES

 This example creates a primary mirror on the MAS sync://faure:30138.
 The default user, as specified in the 'mirror setoptions' example, is
 used for mirror communications. The mirror is not initially enabled.

 stcl> mirror create -recursive -type primary -description "FCS builds" \
 stcl> -noenable sync://faure:30138 -name releases -mirrordir \
 stcl> /home/tbarbg2/Mirrors/releases -vaultURL \
 stcl> sync://srv2.ABCo.com:2647/releases
 stcl>

Administration

964

mirror delete

mirror delete Command

NAME

 mirror delete - Deletes a mirror

DESCRIPTION

 This command deletes the mirror definition from both the MAS and the
 RS. It does not stop any updates that are in progress on the mirror's
 behalf or remove the mirror directory. If the MAS can be contacted
 but the mirror cannot be removed because the RS cannot be contacted,
 the mirror will be placed in a disabled state.

 Generated mirrors cannot be removed. Scripted mirrors, which are used
 to generate and modify the generated mirrors can be deleted.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirror delete [-force] -name <name> <serverURL>

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the MAS where the mirror will be
 deleted. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -force
• -name

ENOVIA Synchronicity Command Reference All -Vol2

965

-force

 -force Specifying this option deletes the mirror definition
 from the MAS (to clean up the status output and stop
 unwanted email) when the RS is not available.

 Note: Use this option only when the RS is not available
 and is not likely to become available.

 When the -force option is used and the RS is not
 accessible, the user gets the following message:
 "Connect failure. Server '<host>:<port>' may have
 reset the connection." But the mirror definition is
 removed from the MAS.

-name

 -name Name of the mirror to delete.

 Note: Generated mirrors cannot be removed. Generated
 mirrors use the <TCL_script>@<script_assigned_name>.
 Any mirror containing a "@" is a generated mirror.

 The -name option is required.

RETURN VALUE

 Returns an empty string on success.

SEE ALSO

 mirror create, mirror disable, mirror edit,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror rename, mirror reset,
 mirror setoptions, mirror status, mirrorsetdefaultuser

EXAMPLES

• Example Showing Deleting a Mirror
• Example Showing That the Mirror Cannot Be Deleted
• Example Using The Force Option to Delete a Mirror

Example Showing Deleting a Mirror

 This example deletes the 'Releases' mirror from the MAS

Administration

966

 sync://giovannelli:30138.

 stcl> mirror delete sync://giovannelli:30138 -name Releases
 stcl>

Example Showing That the Mirror Cannot Be Deleted

 This example cannot delete the 'NML8B0' mirror from the MAS
 sync://qechrhl02:30046 as the RS is disabled.

 stclc> mirror delete sync://qechrhl02:30046 -name NML8B0
 Connect failure. Server 'sting:30046' may have reset the connection.

 Could not remove the mirror's definition from the repository server.
 The mirror is disabled: NML8B0
 - Attempting to contact repository server...
 - som-E-11: Communication Connect Failure.

Example Using The Force Option to Delete a Mirror

 This example deletes the 'NML8B0' mirror from the MAS
 sync://qechrhl02:30046 even though the RS is disabled using the
 -force option.

 stclc> mirror delete sync://qechrhl02:30046 -force -name NML8B0
 Connect failure. Server 'sting:30046' may have reset the connection.

 stcl> mirror ismirror sync://qechrhl02:30046 -name NML8B0
 0

mirror disable

mirror disable Command

NAME

 mirror disable - Disables a mirror

DESCRIPTION

 The mirror disable command disables a single mirror or all mirrors
 depending on the parameter specified. When a mirror is disabled, it
 is marked disabled on the MAS and an attempt is made to remove the
 mirror definition from the mirror's repository server. Failing to
 remove the definition from the repository server does not cause an
 error. The RS mirror definition is replaced when the mirror is

ENOVIA Synchronicity Command Reference All -Vol2

967

 enabled or removed when the mirror is deleted.

 If an error occurs while processing one mirror in a list (during -all
 switch) all remaining mirrors are processed. An error is thrown if
 all mirrors being processed fail. If only one mirror is being
 processed, an empty string is returned on success. If multiple
 mirrors are processed, an error status message is printed for each
 mirror that fails and the return value shows success and failure
 status in the form { succeeded 3 failed 2 }.

 Note: When a parent scripted mirror is disabled, the mirrors
 generated by that script are also disabled. Additionally, the script
 can disable a generated mirror by returning a status value of 2,
 followed by a list of the generated mirrors to disable in the Mirrors
 list.

 Generated mirrors use the format <MirrorName>@<script_assigned_name>.
 Any mirror containing a "@" is a generated mirror.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirror disable <serverURL> -all | -name <name>

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the MAS where the mirror will be
 disabled. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -all
• -name

-all

Administration

968

 -all Evaluates all mirrors on the server.

-name

 -name Name of the mirror to disable.

RETURN VALUE

 If only one mirror is being processed, an empty string is returned on
 success. If multiple mirrors are being processed, an error status
 message is printed for each mirror that fails and the return
 value shows success and failure status in the form
 { succeeded 3 failed 2 }.
 An error is thrown if all of the mirrors being processed fail.

SEE ALSO

 mirror create, mirror delete, mirror edit,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror rename, mirror reset,
 mirror setoptions, mirror status, mirrorsetdefaultuser

EXAMPLES

 This example disables the "Releases" mirror on the MAS
 sync://giovannelli:30138.

 stcl> mirror disable sync://giovannelli:30138 -name Releases
 stcl>

mirror edit

mirror edit Command

NAME

 mirror edit - Modifies mirror parameters

DESCRIPTION

• Notes for File-Based and Legacy Module Objects

 The mirror edit command modifies specified mirror parameters

ENOVIA Synchronicity Command Reference All -Vol2

969

 Passwords are never specified on the command line for this command.
 When passwords are needed, you are prompted and the command
 becomes interactive.

 Note: You cannot change the name of the mirror using mirror edit. To
 change the mirror name, use the 'mirror rename' command.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

Notes for File-Based and Legacy Module Objects

 Vaults containing DesignSync references always recursively mirrors
 the contents of their reference vaults.

SYNOPSIS

 mirror edit [-cachedir <path>] [-cachelinktype hard|soft]
 [-category <category>] [-description <description>]
 [-fetchstate get|share] [-hrefmode <static|dynamic|normal>]
 [-MASuser <user>] [-mcachemode link | server]
 [-mirrordir <mirrorDir>] -name <name> [-notify <email_list>]
 [-PMASuser <user>] [-primaryserver <serverURL>]
 [-[no]recursive] [-RSuser <user>] [-vaultURL <vaultURL>]
 [-selector <selector_list>] [-script <TCL_script>]
 [-type normal|primary|secondary] <serverURL>

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the MAS where the mirror will be
 edited. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 Example: sync://serv1.abco.com:1024

OPTIONS

• -cachedir
• -cachelinktype

Administration

970

• -category
• -description
• -fetchstate
• -hrefmode (Module-based)
• -MASuser
• -mcachemode (Module-based)
• -mirrordir (Module-based)
• -mirrordir (File-based)
• -name
• -notify
• -PMASuser
• -primaryserver
• -[no]recursive (Module-based)
• -RSuser
• -script
• -selector
• -type (Module-based)
• -type (File-based)
• -vaultURL

-cachedir

 -cachedir The -cache option allows you specify the path to the
 <path> mirror specific file cache. If you update mirrors
 with the share state and no file cache is specified,
 the default cache or project caches are used. The
 default cache is determined by the MUP's registry
 files which include the server's registry files and
 the MirrorRegistry.reg file.

-cachelinktype

 -cachelinktype The -cachelinktype option indicates whether creating
 hard|soft a mirror with cache links uses hard or soft
 (symbolic) links in the mirror. This option is
 ignored if the -fetchstate get option is used.

 "-cachelinktype hard" populates the mirror with hard
 links to the cache. Hard links require that mirror
 and the cache be on the same disk partition. If the
 system cannot create hard links to the cache, it
 will switch automatically to creating soft links to
 the cache.

 "-cachelinktype soft" populates the mirror with
 symbolic links to the cache. (Default)

 Note: This option does not use the registry settings

ENOVIA Synchronicity Command Reference All -Vol2

971

 that determine whether a hard link or soft link
 should be used. The default setting for this option
 is to use hard links.

-category

 -category A parameter to assign a category (arbitrary string) to
 a mirror. All mirrors belonging to a category can be
 selected by using the -category parameter of
 'mirror list'. A category must be composed of the
 following set [A-Za-z0-9_/-.] or a space.

-description

 -description An optional description of the mirror. A description
 must be composed of the following set [A-Za-z0-9_/-.]
 or a space.

-fetchstate

 -fetchstate An optional mode to indicate whether the mirror
 get|share should be populated with local copies, or populated
 with file cache links.

 "-fetchstate get" populates the mirror with local
 copies. (Default)

 "-fetchstate share" populates the mirror with links
 the cache. You can use the -cachelinktype to specify
 whether the links should be soft links (symbolic
 links) or hard links.

-hrefmode (Module-based)

 -hrefmode An optional mode to enable the selection of a
 hierarchical reference mode when recursively
 populating the mirror for a module. The default mode
 is "normal". The other modes are "static" and
 "dynamic". This option is only meaningful when
 <vaultURL> refers to a non-legacy module.

-MASuser

Administration

972

 -MASuser The name of the user to establish communication from
 the repository server (RS) to the mirror administration
 server (MAS). If the 'mirror setoptions
 -enforcedefaultuser' option is set on the MAS and this
 parameter is specified, an error will be thrown. If
 this parameter is specified, the user will be prompted
 for the corresponding password. Therefore, specifying
 this parameter makes the 'mirror edit' command an
 interactive command.

-mcachemode (Module-based)

 -mcachemode
 link|server When using the scripted mirror capability to populate
 an auto-generated mirror, this option specifies:
 o link - Attempt to create mcache links to referenced
 submodules by searching the mirror directory supplied
 with the scripted/autogen mirror.
 o server - Fetch the submodules from the server.
 When populating a normal mirror, this option
 specifies:
 o link - Attempt to create mcache links to
 referenced submodules by searching using the
 default mcache paths defined in the registry.
 o server - Fetch the submodules from the server.

-mirrordir (Module-based)

 -mirrordir Pathname of the mirror directory. This pathname must
 be unique with respect to all other mirrors defined on
 the mirror administration server (MAS).

 If this pathname contains a relative path with
 respect to the stcl's cwd, it will be converted to an
 absolute pathname BEFORE the name is passed to the
 mirror administration server.

 If the mirror directory pathname contains a symbolic
 link (UNIX only), the user controls whether the
 symbolic link is resolved or used as is, with the
 EnableRealMirrorPaths registry key.

 The '~' home directory character is allowed (UNIX
 only). The directory pathname must be relevant on the
 same LAN as the mirror administration server. The
 directory name can be prefixed with 'file://' if an
 absolute pathname is specified.

 The path of a mirror directory can be shared by other
 mirrors defined on the MAS or used for multiple
 modules. Since the base directory for multiple

ENOVIA Synchronicity Command Reference All -Vol2

973

 modules can be the same, the base directory can work
 as a mirror directory.

 You cannot use a mirror directory for a module mirror
 that is already used for a legacy module or a
 DesignSync vault.

-mirrordir (File-based)

 -mirrordir Pathname of the mirror directory. This pathname must
 be unique with respect to all other mirrors defined on
 the mirror administration server (MAS).

 If this pathname contains a relative path with
 respect to the stcl's cwd, it will be converted to an
 absolute pathname BEFORE the name is passed to the
 mirror administration server.

 If the mirror directory pathname contains a symbolic
 link (UNIX only), the user controls whether the
 symbolic link is resolved or used as is, with the
 EnableRealMirrorPaths registry key.

 The '~' home directory character is allowed (UNIX
 only). The directory pathname must be relevant on the
 same LAN as the mirror administration server. The
 directory name can be prefixed with 'file://' if an
 absolute pathname is specified.

 The mirror directory path and the relative path of
 the legacy module must be unique. You cannot use a
 directory for a legacy module that is already in use
 by another mirror.

-name

 -name Name of the mirror to edit. This parameter is
 required.

-notify

 -notify A comma-separated or space-separated list of email
 addresses and/or user names to send email to whenever
 the mirror generates notifications. The
 defaultnotifylist (see 'mirror setoptions') will be
 appended to this list. If user names are specified,
 the users must have user profiles on the MAS servers.

Administration

974

-PMASuser

 -PMASuser The name of the user to establish communication from
 the mirror administration server (MAS) to the primary
 mirror administration server (PMAS). If the mirror's
 type is not set to "secondary", this parameter is
 silently ignored. If the 'mirror setoptions
 -enforcedefaultuser' option is set on the MAS and
 this parameter is specified, an error will be thrown.
 If this parameter is specified, the user will be
 prompted for the corresponding password. Therefore,
 specifying this parameter makes the 'mirror edit'
 command an interactive command.

-primaryserver

 -primaryserver Specifies the URL of the SyncServer hosting the
 primary mirror (PMAS). If the mirror's type is not
 set to "secondary", this parameter is silently
 ignored. Specify the URL as follows:
 sync://<host>[:<port>] or syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required, <host>
 is the machine on which the PMAS is installed, and
 <port> is the PMAS port number (defaults to 2647.
 Example: -primaryserver
 sync://serv1.abco.com:1024

-[no]recursive (Module-based)

 -[no]recursive Determines whether to mirror the module's contents
 only or the entire module hierarchy.

 -recursive specifies that the mirror populates a
 module's contents and the contents of all its
 sub-modules recursively. (Default)

 -norecursive specifies that the mirror
 populates a module without processing the module
 hierarchy. This does not remove the sub-module
 mirrors previously created.

-RSuser

 -RSuser The name of the user to establish communication from
 the mirror administration server (MAS) to the
 repository server (RS). This User must have a user
 profile on the RS. If the 'mirror setoptions

ENOVIA Synchronicity Command Reference All -Vol2

975

 -enforcedefaultuser' option is set on the MAS and this
 parameter is specified, an error will be thrown. No
 companion password parameter is available for -RSuser.
 If this parameter is specified, the user is prompted
 for the corresponding password. Therefore, specifying
 this parameter makes the 'mirror edit' command
 interactive.

-script

 -script The -script option allows you to specify the TCL
 <TCL_script> script that defines the scripted mirror. The script
 must be in the syncinc/share/tcl, or
 custom/site/share/tcl directory. For information
 about how to create the TCL script, see the ENOVIA
 Synchroncity DesignSync Administrator's Guide.

 IMPORTANT: You cannot use the -script option to
 change the mirror type. You can only use it to
 change which script controls the scripted mirror.
 The -script option is mutually exclusive with the
 -type option.

-selector

 -selector The selector_list to use to choose which versions of
 the files in the vault to place in the mirror
 directory.
 This value's syntax will be checked to make sure the
 selector is valid. With the exception of a scripted
 mirror, you cannot edit the selector when the mirror
 reflects a module.

-type (Module-based)

 -type The mirror type is always 'normal.'

-type (File-based)

 -type Specify the type of the mirror as 'normal', 'primary',
 or 'secondary'. Secondary mirrors require the
 -primaryserver parameter and may specify the
 -PMASuser parameter.

Administration

976

-vaultURL

 -vaultURL Specifies the URL of the vault directory whose
 contents will be mirrored out. Specify the URL as
 follows: sync://<host>[:<port>]/path_to_vault or
 syncs://<host>[:<port>]/path_to_vault where
 'sync://' or 'syncs://' are required, <host> is the
 remote server, <port> is the remote server's port
 number (defaults to 2647), and the path_to_vault is
 the path from the remote servers root to the vault
 directory to be mirrored out.

 Note:
 o You can edit the vault URL from a DS folder to a
 legacy module and vice versa.
 o You can edit the vault URL from one module folder to
 another module folder.
 o You cannot edit the vault URL when the mirror
 reflects a module.
 o You cannot edit the vault URL from a legacy module
 or a DS vault to non-legacy module or vice
 versa. If a mirror is created to populate a legacy
 module, it cannot be modified to populate a
 non-legacy module. Likewise, if a mirror is created
 to populate a non-legacy module, it cannot be
 modified to populate a legacy module. An error is
 generated if such an attempt is made.

RETURN VALUE

 Returns an empty string on success.

SEE ALSO

 mirror create, mirror delete, mirror disable,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror rename, mirror reset,
 mirror setoptions, mirror status, mirrorsetdefaultuser

EXAMPLES

 This example changes the mirror directory for the "releases" mirror that
 was created in the 'mirror create' example. The 'mirror rename' example
 shows how to change the mirror name.

 stcl> mirror edit sync://faure:30138 -name releases -mirrordir \
 stcl> /home/tbarbg2/Mirrors/Releases
 stcl>

ENOVIA Synchronicity Command Reference All -Vol2

977

mirror enable

mirror enable Command

NAME

 mirror enable - Enables a specified mirror

DESCRIPTION

 This command enables a single mirror, all disabled mirrors, or all
 mirrors depending on the parameter specified. When a mirror is enabled,
 it is effectively re-registered. The repository server for each mirror
 will be contacted and the mirrors definition on the repository server
 replaced. If the mirror cannot re-register, the mirror will remain in
 (or be moved to) the disabled state.

 Note that enabling an already enabled mirror could result in the
 mirror becoming disabled if the RS is unreachable. If an error occurs
 while processing one mirror in a list (-disabled or -all switches) all
 remaining mirrors will be processed. An error is thrown if all mirrors
 fail.

 Note: When a parent scripted mirror is enabled, the mirrors generated
 by that script are also enabled. Additionally, if the script returns
 a list of mirrors to generate, then those mirrors are automatically
 enabled, if they were in the disabled state.
 Generated mirrors use the format:
 <MirrorName>@<script_assigned_name>.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirror enable <serverURL> -all | -disabled | -name name

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the MAS where the mirror will be
 enabled. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'

Administration

978

 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 Example: sync://serv1.abco.com:1024

OPTIONS

• -all
• -disabled
• -name

-all

 -all Enables all the mirrors on the server.

 This option is mutually exclusive with -disabled and
 -name.

-disabled

 -disabled Enables all all mirrors on the server
 that are currently in the disabled state.

 This option is mutually exclusive with -all and
 -name.

-name

 -name <name> Name of the mirror to enable.
 Note: Generated mirrors cannot be enabled or
 disabled. If the parent scripted mirror is enabled,
 that, in turn, enables any disabled generated mirrors
 generated by that scripted mirror. Generated mirrors
 use the name <MirrorName>@<script_assigned_name>. Any
 mirror containing a "@" is a generated mirror.

 This option is mutually exclusive with -all and
 -disabled.

RETURN VALUE

 If only one mirror is being processed, an empty string is returned on
 success. If multiple mirrors are being processed, an error status
 message is printed for each mirror that fails and the return
 value shows success and failure status in the form
 { succeeded 3 failed 2 }. An error is thrown if all of the mirrors
 being processed fail.

ENOVIA Synchronicity Command Reference All -Vol2

979

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror rename, mirror reset,
 mirror setoptions, mirror status, mirrorsetdefaultuser

EXAMPLES

 This example enables the "Releases" mirror.

 stcl> mirror enable sync://faure:30138 -name Releases
 stcl>

mirror get

mirror get Command

NAME

 mirror get - Returns all parameters for specified mirror

DESCRIPTION

 The mirror get command returns all the parameters for a specified
 mirror. The following parameters are set to an empty
 string if they are not relevant or cannot be derived:

 'primaryserver'
 'usingdefPMASuser',
 'PMASuser'

 The following parameters return 1 or 0 when the format is 'list'
 and 'True' or 'False' when the format is 'text':

 'modulerecursion',
 'usingdefaultRSuser'
 'usingdefaultMASuser'
 'usingdefaultPMASuser'
 'enabled'

 The defaultuser is the user specified with:

 'mirror setoptions -defaultuser'

 Note: When a generated mirror is specified, the parameters returned
 are for the scripted mirror definitions with only the following

Administration

980

 parameters coming directly from the generated mirror:
 'vault'
 'selector'
 'mirror directory'
 'script' (empty)
 'type' (normal)

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirror get <serverURL> [-format text|list] -name <name>

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the MAS to get the mirror
 parameters from. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the
 SyncServer port number (defaults to 2647/2679).
 Example: sync://serv1.abco.com:1024

OPTIONS

• -format
• -name

-format

 -format Specifies the way the output is returned.
 The default is text. The format 'text' will return
 each mirror parameter on a new line in the format
 name=value. The format 'list' will list the values in
 a Tcl list in the form {name1 value1 name2 value2 ...}

-name

 -name <name> Name of the mirror. This parameter is required.

ENOVIA Synchronicity Command Reference All -Vol2

981

RETURN VALUE

 Returns the parameters for the mirror. The following parameters are
 returned:
 name
 mirrordir
 vaultURL
 selector
 script
 category
 description
 notifylist
 commonnotifylist
 modulerecursion
 hrefmode
 type
 enabled
 primaryserver
 defaultuser
 RSuser
 MASuser
 PMASuser
 usingdefaultRSuser
 usingdefaultPMASuser
 usingdefaultMASuser
 fetchstate
 cachelinktype
 cachedir
 mcachemode

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror enable, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror rename, mirror reset,
 mirror setoptions, mirror status, mirrorsetdefaultuser

EXAMPLES

• Example Showing the Parameters for a Non-Scripted Mirror
• Example Showing the Parameters for a Scripted Mirror

Example Showing the Parameters for a Non-Scripted Mirror

 This example returns the parameters for the "Releases" mirror
 (non-scripted) on the MAS sync://faure:30138.

 stcl> mirror get sync://faure:30138 -name Releases

Administration

982

 name = Releases
 mirrordir = /home/barbg/Mirrors/Releases
 vaultURL = sync://srv2.ABCo.com:2647/releases
 selector = Trunk:Latest
 script =
 category =
 description = FCS builds
 type = primary
 enabled = True
 modulerecursion = True
 hrefmode = Normal
 primaryserver =
 notifylist =
 commonnotifylist = barbg
 defaultuser = barbg
 usingdefaultMASuser = True
 MASuser = barbg
 usingdefaultRSuser = True
 RSuser = barbg
 usingdefaultPMASuser = False
 PMASuser =
 fetchstate = get
 cachelinktype = soft
 cachedir =
 mcachemode = server
 stcl>

Example Showing the Parameters for a Scripted Mirror

 This example returns the parameters for the "AUTO_RELEASES" scripted
 mirror on the MAS sync://qewflx10:30047.

stcl> mirror get sync://qewflx10:30047 -name SCR_1
 name = AUTO_RELEASES
 mirrordir = /home/tlarry1/Modules/mirrors/DS_AUTO_RELEASES
 vaultURL = sync://qewflx10:30047/Modules/Blocks
 selector = REL_*
 script = generate_mirror.tcl
 category =
 description =
 type = autogen
 enabled = True
 modulerecursion = True
 hrefmode = normal
 primaryserver =
 notifylist =
 commonnotifylist = masteradmin
 defaultuser = masteradmin
 usingdefaultMASuser = True
 MASuser = masteradmin
 usingdefaultRSuser = True
 RSuser = masteradmin
 usingdefaultPMASuser = False
 PMASuser =

ENOVIA Synchronicity Command Reference All -Vol2

983

 fetchstate = share
 cachelinktype = hard
 cachedir = /home/tlarry1/Modules/sync_cache
 mcachemode = link
 stcl>

mirror getoptions

mirror getoptions Command

NAME

 mirror getoptions - Gets mirror options on a server

DESCRIPTION

 This command is used to get general mirror options for all mirrors on
 a MAS or RS. Options that have not been set will return an empty
 string. The following parameters will return 1 or 0 when the format is
 'list' and 'True' or 'False' when the format is 'text':

 isdefaultuserenforced
 isRSenabled
 isMASenabled

 The parameter warnifstale will return 'No' if the value is 0 and the
 format is text.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirror getoptions <serverURL> [-format text|list]

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the SyncServer (RS or MAS).
 Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer

Administration

984

 port number (defaults to 2647/2679).
 Example: sync://serv1.abco.com:1024

OPTIONS

• -format

-format

 -format Specifies the way the output is returned. The
 default is text. The format 'text' will return each
 option on a new line in the format name=value.
 The format 'list' will list the options in a Tcl list
 in the form {name1 value1 name2 value2 ...}

RETURN VALUE

 Returns the general options for the mirrors on a server.
 The following parameters will be returned:
 defaultuser
 commonnotifylist
 name
 isdefaultuserenforced
 isRSenabled
 isMASenabled
 warnifstale
 isSUIDenforced

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror enable, mirror get, mirror isenabled,
 mirror ismirror, mirror list, mirror rename, mirror reset,
 mirror setoptions, mirror status, mirrorsetdefaultuser

EXAMPLES

• Example Showing the Mirror Options
• Example Showing the Mirror Options in a Formatted List

Example Showing the Mirror Options

 This example gets the general mirror options for the SyncServer
 sync://faure:30138.

 stcl> mirror getoptions sync://faure:30138
 isRSenabled = False

ENOVIA Synchronicity Command Reference All -Vol2

985

 isMASenabled = True
 name = faure
 defaultuser = barbg
 isdefaultuserenforced = True
 isSUIDenforced = False
 commonnotifylist = barbg
 warnifstale = No
 isSUIDenforced = Yes

 stcl>

Example Showing the Mirror Options in a Formatted List

 This example shows the "-format list" output format:

 stcl> mirror getoptions sync://faure:30138 -format list
 isRSenabled 0 isMASenabled 1 name faure:30138 defaultuser barbg
 isdefaultuserenforced 1 isSUIDenforced 0 commonnotifylist barbg
 warnifstale 0 isSUIDenforced 1
 stcl>

mirror isenabled

mirror isenabled Command

NAME

 mirror isenabled - Tests whether a mirror is enabled

DESCRIPTION

 Test if a mirror is enabled. Used primarily for scripting.

 Note: Generated mirrors cannot be disabled directly as an
 argument to this command. The mirror status command can be
 used to determine if a generated mirror is enabled or disabled.
 Generated mirrors are created with the name:
 <MirrorName>@<script_assigned_name>.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirror isenabled <serverURL> -name <name>

ARGUMENTS

Administration

986

• Server URL

Server URL

 serverURL Specifies the URL of the MAS where the mirror is
 defined. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 Example: sync://serv1.abco.com:1024

OPTIONS

• -name

-name

 -name Name of the mirror. This parameter is required.

RETURN VALUE

 Returns 1 if the mirror is enabled or 0 if the mirror is disabled.

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror enable, mirror get, mirror getoptions,
 mirror ismirror, mirror list, mirror rename, mirror reset,
 mirror setoptions, mirror status, mirrorsetdefaultuser

EXAMPLES

 In this example, 'mirror isenabled' returns 1, because the "Releases"
 mirror on the SyncServer sync://faure:30138 is enabled.

 stcl> mirror isenabled sync://faure:30138 -name Releases
 1
 stcl>

mirror ismirror

mirror ismirror Command

ENOVIA Synchronicity Command Reference All -Vol2

987

NAME

 mirror ismirror - Tests whether a name is valid for a defined
 mirror

DESCRIPTION

 Test if a name is valid for an existing mirror. Used primarily for
 scripting. Allows a name to be tested instead of one of the other
 commands throwing an error if the mirror name was wrong.

 Note: Generated mirrors cannot be validated using the mirror ismirror
 command. Generated mirrors are created with the name
 <MirrorName>@<script_assigned_name>. Any mirror containing a "@" is
 a generated mirror.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirror ismirror <serverURL> -name <name>

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the MAS where the mirror is
 defined. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 Example: sync://serv1.abco.com:1024

OPTIONS

• -name

-name

 -name Name of the mirror.

Administration

988

RETURN VALUE

 Returns 1 if the mirror is defined on the server or 0 if the mirror
 is not defined.

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror list, mirror rename, mirror reset,
 mirror setoptions, mirror status, mirrorsetdefaultuser

EXAMPLES

 In this example, 'mirror ismirror' returns 1, because there is a "Releases"
 mirror on the SyncServer sync://faure:30138.

 stcl> mirror ismirror sync://faure:30138 -name Releases
 1
 stcl>

mirror list

mirror list Command

NAME

 mirror list - Returns a list of all mirrors from a server

DESCRIPTION

 The mirror list command returns a list of all mirrors from a server
 that matches a specified search criterion. Used primarily for
 scripting. The -enabled, -disabled, and -all switches can be combined
 with patterns from the -category and -name parameters to reduce the
 number of mirrors returned in the list.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirror list <serverURL> [-category <category_pattern>]

ENOVIA Synchronicity Command Reference All -Vol2

989

 [-enabled|disabled|all] [-format text|list]
 [-name <name_pattern>]

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the MAS where the mirrors are
 defined. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 Example: sync://serv1.abco.com:1024

OPTIONS

• -all
• -category
• -disabled
• -enabled
• -format
• -name

-all

 -all Request a list of all mirrors from the server. This is
 the default.

-category

 -category A category pattern used to further reduce the list of
 mirrors returned. Mirror categories that do not match
 the pattern will be removed from the result list. A
 pattern is defined using UNIX glob-style notation.
 '*' matches any number of characters, '?' matches
 exactly one character, [chars] matches any characters
 in chars, and any other characters in the pattern are
 taken as literals that must match the input exactly.

-disabled

Administration

990

 -disabled Request a list of all disabled mirrors from the server.

-enabled

 -enabled Request a list of all enabled mirrors from the server.

-format

 -format Specifies the way the output is returned. The
 default is text.
 With the 'text' format, the matching mirrors are
 printed to the screen, one per line.
 With the 'list" format, the matching mirrors are
 returned as a Tcl list.

-name

 -name A name pattern used to further reduce the list of
 mirrors returned. Mirror names that do not match the
 pattern will be removed from the result list. A
 pattern is defined using UNIX glob-style notation.
 '*' matches any number of characters, '?' matches
 exactly one character, [chars] matches any characters
 in chars, and any other characters in the pattern are
 taken as literals that must match the input exactly.

RETURN VALUE

 Returns the names of all mirrors on the server that match the search
 criteria. If no mirrors match, an empty string is returned.

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror rename, mirror reset,
 mirror setoptions, mirror status, mirrorsetdefaultuser

EXAMPLES

• Example Showing Enabled Mirrors in Text Format

ENOVIA Synchronicity Command Reference All -Vol2

991

• Example Showing Enabled Mirrors in List Format

Example Showing Enabled Mirrors in Text Format

 This example returns all enabled mirrors on the SyncServer
 sync://faure:30138. There are two mirrors M01 and M02 that
 are enabled.

 stcl> mirror list sync://faure:30138 -enabled
 M01
 M02

Example Showing Enabled Mirrors in List Format

 The output format is different if you use the -format list
 option.

 stcl> mirror list sync://faure:30138 -enabled
 -format list
 M01 M02

mirror rename

mirror rename Command

NAME

 mirror rename - Changes the mirror name

DESCRIPTION

 The mirror rename command changes the mirrors name from <name> to
 <newname>. The repository server must be contacted for this command.

 This command cannot be used to rename scripted or generated mirrors.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirror rename <serverURL> -name <name> -newname <newname>

Administration

992

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the MAS where the mirror is
 defined. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 Example: sync://serv1.abco.com:1024

OPTIONS

• -name
• -newname

-name

 -name Current name of the mirror.

-newname

 -newname New name for the mirror. Names must be composed of
 the following set [A-Za-z0-9_/-.]. Mirror names cannot
 begin with a dash (-).

RETURN VALUE

 Returns an empty string on success.

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror reset,
 mirror setoptions, mirror status, mirrorsetdefaultuser

EXAMPLES

ENOVIA Synchronicity Command Reference All -Vol2

993

 This example changes the name of the "releases" mirror, created in the
 'mirror create' example, to "Releases".

 stcl> mirror rename sync://faure:30138 -name releases -newname Releases
 stcl>

mirror requeue

mirror requeue Command

NAME

 mirror requeue - Requeue a transaction in the mirror

DESCRIPTION

 This command provides a manual option to requeue mirror transactions
 stored in the transaction record. When a mirror is generated, the
 transactions that need to be processed are stored in a transaction
 log and submitted in batches for processing. If the mirror fails for
 some reason, the transactions can be manually resubmitted for
 processing either for a single mirror or for all the mirrors on the
 MAS.

 For more information on mirror requeuing, see the ENOVIA
 Synchronicity DesignSync Data Manager Administratorâ€™s Guide.

SYNOPSIS

 mirror requeue -name <mirror> <ServerURL>

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the MAS where the mirror is
 defined. Specify the URL as follows:
 sync://<host>[:<port>] or syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port number
 (if omitted, defaults to 2647/2679).
 Example: sync://serv1.abco.com:1024

OPTIONS

Administration

994

• -name

-name

 name <mirror> Name of the mirror.
 To requeue transactions for all mirrors, specify
 "*".

RETURN VALUE

 Returns an empty string on success. If there is a failure, DesignSync
 reports an appropriate error message.

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror enable

EXAMPLES

• Example of Requeuing Transactions for a Single Mirror
• Example of Requeuing Transactions for All Mirrors

Example of Requeuing Transactions for a Single Mirror

 This example shows transactions being requeued for a single mirror.

 dss> mirror requeue -name chipMirror1
 sync://serv1.ABCo.com:2647/Modules/Chip/Chip-419
 dss>

Example of Requeuing Transactions for All Mirrors

 This example shows transactions being requeued for all mirrors.

 dss> mirror requeue -name *
 sync://serv1.ABCo.com:2647/Modules/Chip/Chip-419
 dss>

mirror reset

mirror reset Command

NAME

ENOVIA Synchronicity Command Reference All -Vol2

995

 mirror reset - Populates the mirror's directory, leaving it in
 the same state as if the mirror had been removed
 and then repopulated

DESCRIPTION

 This command performs a full populate of the mirror and leaves
 the mirror directory in the same state as if the mirror had been
 removed and then repopulated. Resetting a mirror also resets its
 submirrors. If the mirror's submirrors are disabled, they are
 re-enabled by the reset operation.

 Note: You cannot reset a generated or scripted mirror. If a scripted
 mirror is specified, it is silently ignored. If a generated mirror is
 specified, you will see an error stating that the mirror cannot be
 reset.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirror reset <serverURL> -name <name>

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the MAS where the mirror is
 defined. Specify the URL as follows:
 sync://<host>[:<port>] or syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port number
 (if omitted, defaults to 2647/2679).
 Example: sync://serv1.abco.com:1024

OPTIONS

• -name

-name

Administration

996

 name Name of the mirror.

RETURN VALUE

 Returns an empty string on success.

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror rename,
 mirror setoptions, mirror status, mirrorsetdefaultuser

EXAMPLES

 This example resets the "Releases" mirror on the MAS sync://faure:30138.

 stcl> mirror reset sync://faure:30138 -name Releases
 stcl>

mirror setoptions

mirror setoptions Command

NAME

 mirror setoptions - Sets general mirror options

DESCRIPTION

 The mirror setoptions command sets general mirror options for all
 mirrors on a MAS or RS. Passwords are never specified on the
 command line for this command. For a UNIX command-line version of
 the -defaultUser option, see the mirrorsetdefaultuser shell script
 command.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirror setoptions <serverURL> [-commonnotifylist<email_list>]
 [-defaultuser <user>] [-disableMAS | -enableMAS]
 [-disableRS | -enableRS] [-[no]enforcedefaultuser]

ENOVIA Synchronicity Command Reference All -Vol2

997

 [-[no]enforceSUID] [-name <name>]
 [-warnifstale <time>]

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the SyncServer (RS or MAS).
 Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 Example: sync://serv1.abco.com:1024

OPTIONS

• -commonnotifylist
• -defaultuser
• -disableMAS
• -disableRS
• -enableMAS
• -enableRS
• -enforcedefaultuser
• -enforceSUID
• -name
• -noenforcedefaultuser
• -noenforceSUID
• -warnifstale

-commonnotifylist

 -commonnotifylist A comma-separated or space-separated list of email
 addresses and/or user names. This list is internally
 appended to the notify list specified with the
 'mirror create' command for each mirror. The combined
 list is used to send email whenever a mirror
 generates notifications. The default is a list
 of all Users who have the AdministrateServer AC
 right. This option is relevant only for an MAS.
 Notify lists are not defined on the RS but passed
 to it during the enabling of a mirror.

-defaultuser

Administration

998

 -defaultuser The default user to be used when one of the needed
 users is not specified for the 'mirror create' command.
 If this parameter is specified, you are prompted for
 the default user's password. Specifying this parameter
 makes 'mirror setoptions' an interactive command.
 This option is only relevant for an MAS.

-disableMAS

 -disableMAS Disables a server as mirror administration server

-disableRS

 -disableRS Do not declare a server a repository server.

-enableMAS

 -enableMAS Enables a server a mirror administration server

-enableRS

 -enableRS Declare a server a repository server.

-enforcedefaultuser

 -enforcedefaultuser Turn on the default user policy.
 When -enforcedefaultuser is in effect, users
 cannot be specified during the 'mirror create'
 command. This allows a company to establish a
 user as the mirror administration user (default
 user) for all servers and enforce that policy.
 This option is only relevant for a MAS.

-enforceSUID

 -enforceSUID Enable enforcement of SUID for creating or moving
 mirrors. This option sets the UNIX permissions on
 new mirror directories to the default setting of 755.
 This option is relevant only for an MAS.

ENOVIA Synchronicity Command Reference All -Vol2

999

-name

 -name Declare a user-friendly name for a MAS server.
 If this option is not set, all references to the MAS
 in status reports will use its hostname:port
 identifier. No attempt will be made to assure this
 name is unique across all MAS servers in a corporation.
 This is the user's responsibility.

-noenforcedefaultuser

 -noenforcedefaultuser Turn off the default user policy.
 When -enforcedefaultuser is in effect, users
 cannot be specified during the 'mirror create'
 command. This allows a company to establish a
 user as the mirror administration user (default
 user) for all servers and enforce that policy.
 This option is only relevant for a MAS.

-noenforceSUID

 -noenforceSUID Disable enforcement of SUID for creating or moving
 mirrors. If this option is selected, permissions
 on new mirror directories are set to 777 and are
 open to any user.

-warnifstale

 -warnifstale Change a mirror's status to "Warning" if the mirror
 has not been up-to-date in the specified number of
 minutes. This parameter allows the user to identify
 mirrors that have had update processes running for a
 long period of time. This condition may be normal for
 the customer's data set but also may indicate a
 problem. A value of zero (the default) means the
 server never enters the warning status for this reason.
 Only values of 0, 10, 20, 30, 60, 120, 180, 360, 720,
 and 1440 are allowed.

RETURN VALUE

 Returns an empty string on success.

SEE ALSO

Administration

1000

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror rename, mirror reset,
 mirror status, mirrorsetdefaultuser

EXAMPLES

 This example defines the general mirror settings for the MAS
 sync://faure:30138.

 stcl> mirror setoptions sync://faure:30138 -defaultuser barbg \
 stcl> -enforcedefaultuser -noenforceSUID -enableMAS -name faure \
 stcl> -commonnotifylist barbg

 Enter the password for the default user (barbg): ****

 stcl>

mirror status

mirror status Command

NAME

 mirror status - Returns the status for the mirror

DESCRIPTION

• Understanding the Output

 The mirror status command returns the status for the mirror
 specified with <name> or all the mirrors on a server if the name is
 not given. The <name> parameter is only valid when requesting status
 of mirrors on a MAS. When status is requested from an RS, the RS will
 make status calls to all the MASs that are registered with it. The
 status of a mirror from the RS will be the same information as if the
 status was requested directly from the MAS.
 [This assumes the RS/MAS communication is working. If it is not,
 status will only be shown for the mirrors where communication was
 established with a message showing where it could not.]
 The RS will include the MAS name where the mirror data came from in
 the status.

 Note: When you specify an RS as the -servertype, you cannot specify a
 specific mirror name.

Understanding the Output

ENOVIA Synchronicity Command Reference All -Vol2

1001

 The output of the mirror status command can be formatted for easy
 viewing (-format text) or optimized for Tcl processing (-format
 list). Both viewing formats show the same information.

 The mirror status command displays the following information for each
 mirror:

 Property
 Names Description
 ----- ------------
 name Unique name for the mirror defined when the mirror
 is created. The generated mirror name is in the
 format <MirrorName>@<Script_Assigned_Name>.

 status String indicating the health of the
 mirror. Possible values include:
 o good - There are no failures of any kind.
 o warning - A mirror update has failed and has not
 adequately been retried or the heartbeat is
 late.
 o failure - A mirror has repeatedly failed, the
 heartbeat was not received, or in the case of a
 scripted mirror, there was an error creating a
 generated mirror.
 o unknown - A mirror status is unknown.
 o incomplete - The mirror status file is
 incomplete or cannot be read.
 o disabled - the mirror is currently disabled.

 lastuptodatetime Last time the mirror was up-to-date. If the
 mirror is operating normally (no failures) then if
 there are no updates currently in progress for the
 mirror, this is the time of the last successful
 update or the last heartbeat, which ever is later.
 If there are updates in progress, this is the start
 time of the first update process to start.

 mirrordir The path to the mirror directory.

 vaultURL The Sync URL of the module, DesignSync vault or
 configuration for a legacy module being mirrored.

 selector The selector or tag applied to the objects in the
 mirror.

 Note: Even when a wildcard match was used to
 generate the mirror, you see the selector that
 matched the wildcard, not the wildcard value
 defined for the mirror.

 category User-defined category used to organize mirrors.

 type Type of mirror:
 o Normal - The default DesignSync mirror, which
 fetches design objects directly from the
 RS. Generated mirrors, even though they are

Administration

1002

 created from a scripted mirror are considered
 normal mirrors.

 o Scripted - A mirror that has an associated Tcl
 script. The script determines which mirrors are
 automatically generated at a MAS based on the
 revision control operations occurring on the
 associated URL at the RS.

 o Auto-generated (aka autogen) - Normal mirrors
 that get automatically generated by a scripted
 mirror. Autogen mirrors also go out of existence
 automatically when there's no revision control
 operations occurring on the associated URL
 at the RS.

 o Primary - The primary mirror fetches design
 objects directly from the RS and serves them to
 secondary mirrors. This option is not supported
 for modules.

 o Secondary - The secondary mirror fetches objects
 from a primary mirror instead of directly from
 the RS.

 MASname The name of the server hosting the mirror. This
 is the MAS's name as specified with 'mirror
 setoptions -name' or, if not set, the
 hostname:port for the MAS.

 heartbeat Time of last heartbeat received from the RS for
 the mirror.

 lastupdatetime The last time an update process successfully
 updated the mirror.

 inprogress A Boolean (0 or 1 for -format list and 'True' or
 'False' for -format text) indicating if any
 update processes are running on the mirror's
 behalf.

 firstfailuretime (FFT)Time of first update process failure. This
 is 0 if there are no update failures. This time
 does not reflect heartbeat failures.

 numberofretries Number of update attempts to correct an update
 failure.

 lastnotifytime (LNT) The last time email was sent to all the
 recipients of the mirror's notify list.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

ENOVIA Synchronicity Command Reference All -Vol2

1003

 mirror status <serverURL> [-format text|list] [-name <name>]
 [-servertype RS|MAS]

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the MAS or RS to obtain mirror
 status from. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 Example: sync://serv1.abco.com:1024

OPTIONS

• -format
• -name
• -servertype

-format

 -format Specifies the way the output will be returned. The
 text|list default is text. The format 'text' will output each
 mirror status parameter on a new line in the format
 name=value. When the status for more than one mirror
 is output, a blank line separates one mirror's
 status from another. The format 'list' will list the
 status in a Tcl list. If the <name> parameter is not
 specified, this command will return a list of lists
 with each sub-list holding the status of one mirror.
 The status for a mirror is in the form:
 {name1 value1 name2 value2 ...}.

-name

 -name Name of the mirror. This parameter is not allowed if
 the server type is 'RS' You can specified any mirror,
 including a generated or scripted mirror.

-servertype

Administration

1004

 -servertype This parameter is set to either 'RS' for repository
 RS|MAS server or 'MAS' for mirror administration server. The
 default is 'MAS' if the server is acting as both a MAS
 and RS. Otherwise, this parameter defaults to the
 mode the server is configured for. This parameter
 specifies which mirror status the user is requesting.

 "mirror status" with "-servertype RS" may take some
 time to run. For each mirror that is mirroring data
 on the RS, the mirror's MAS must be contacted. For
 faster results, use the "mirror wheremirrored" command
 with the RS as the <vaultURL> argument. Use the
 "-status" option to "mirror wheremirrored" to report
 mirror status, and specify other "mirror
 wheremirrored" options to decrease the number of
 mirrors whose status is reported.

RETURN VALUE

 Returns the status for a mirror or all the mirrors on a server. If
 only one mirror is being processed, the status is output (not
 returned) when the format is text or returned as a list when the
 format is list. If a mirror does not report its status, the command
 reports that as a failure in the form { succeeded 3 failed 2 }.
 An error is thrown if all mirrors being processed fail. If there are
 no mirrors defined, an error is thrown. Requesting status for a
 mirror server type that the server is not configured for is
 considered an error. If the format is list, the mirrors' status is
 returned in a list of lists as the last element in the return list.
 Example: { succeeded 4 failed 0 {{name ...} {name...} ...}}. The
 status for each mirror consists of a set of name value pairs.

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror rename, mirror reset,
 mirror setoptions, mirrorsetdefaultuser, mirror wheremirrored

EXAMPLES

• Example Showing Mirror Status for All Mirrors on an RS
• Example Showing Mirror Status for All Mirrors on an MAS
• Example Showing Mirror Status for the MAS in TCL List Format

Example Showing Mirror Status for All Mirrors on an RS

ENOVIA Synchronicity Command Reference All -Vol2

1005

 This example shows the status of all mirrors that are mirroring data on
 the RS sync://srv2.ABCo.com:2647.

 stcl> mirror status sync://srv2.ABCo.com:2647 -servertype RS
 name = Releases
 status = good
 lastuptodatetime = 2005-12-29 05:37:14
 mirrordir = /home/tbarbg2/Mirrors/Releases
 vaultURL = sync://srv2.ABCo.com:2647/releases
 selector = Trunk:Latest
 category =
 type = primary
 MASname = faure
 heartbeat = 2005-12-29 05:36:12
 lastupdatetime = 2005-12-29 05:37:14
 inprogress = False
 firstfailuretime = N/A
 numberofretries = 0
 lastnotifytime = N/A

 name = Releases
 status = good
 lastuptodatetime = 2005-12-29 05:48:18
 mirrordir = /home/tbarbg7/Mirrors/Releases
 vaultURL = sync://srv2.ABCo.com:2647/releases
 selector = Trunk:Latest
 category =
 type = secondary
 MASname = giovannelli
 heartbeat = 2005-12-29 05:47:12
 lastupdatetime = 2005-12-29 05:48:18
 inprogress = False
 firstfailuretime = N/A
 numberofretries = 0
 lastnotifytime = N/A

 succeeded 2 failed 0
 stcl>

Example Showing Mirror Status for All Mirrors on an MAS

 This example shows the status of all mirrors on the MAS sync://src:2647
 (2647 is the default cleartext port for DesignSync, so does not need to be
 specified.)

 stcl> mirror status sync://src -servertype MAS
 name = Trunky
 status = good
 lastuptodatetime = 2006-04-11 11:38:23
 mirrordir = /home/syncmgr/mirrors/Trunky
 vaultURL =
sync://src.matrixone.net:2647/Projects/SyncInc/build_tools
 selector = Trunk:Latest

Administration

1006

 category = test
 type = normal
 MASname = devserver
 heartbeat = 2006-04-11 11:38:23
 lastupdatetime = 2006-04-11 06:58:27
 inprogress = False
 firstfailuretime = N/A
 numberofretries = 0
 lastnotifytime = N/A

 name = docs
 status = good
 lastuptodatetime = 2006-04-11 11:38:23
 mirrordir =
/home/syncmgr/sync_custom/servers/moniuszko/2647/htdocs/docs
 vaultURL = sync://src.matrixone.net:2647/docs
 selector = Trunk:Latest
 category = devserver
 type = normal
 MASname = devserver
 heartbeat = 2006-04-11 11:38:23
 lastupdatetime = 2006-04-11 07:02:27
 inprogress = False
 firstfailuretime = N/A
 numberofretries = 0
 lastnotifytime = N/A

 name = testir
 status = good
 lastuptodatetime = 2006-04-11 11:38:23
 mirrordir =/home/syncmgr/sync_custom/servers/moniuszko
 /2647/htdocs/testir
 vaultURL = sync://src.matrixone.net:2647/Projects/testir
 selector = Trunk:Latest
 category = devserver
 type = normal
 MASname = devserver
 heartbeat = 2006-04-11 11:38:23
 lastupdatetime = 2006-04-11 06:54:06
 inprogress = False
 firstfailuretime = N/A
 numberofretries = 0
 lastnotifytime = N/A

 succeeded 3 failed 0
 stcl>

Example Showing Mirror Status for the MAS in TCL List Format

 This example shows the "-format list" output format:

 stcl> mirror status sync://src -servertype MAS -format list
 succeeded 3 failed 0 {{name Trunky status good lastuptodatetime 1144769903

ENOVIA Synchronicity Command Reference All -Vol2

1007

 mirrordir /home/syncmgr/mirrors/Trunky vaultURL
 sync://src.matrixone.net:2647/Projects/SyncInc/build_tools selector
Trunk:Latest
 category test type normal MASname devserver heartbeat 1144769903
lastupdatetime
 1144753107 inprogress 0 firstfailuretime 0 numberofretries 0 lastnotifytime
0}
 {name docs status good lastuptodatetime 1144769903 mirrordir
 /home/syncmgr/sync_custom/servers/moniuszko/2647/htdocs/docs vaultURL
 sync://src.matrixone.net:2647/docs selector Trunk:Latest category devserver
type
 normal MASname devserver heartbeat 1144769903 lastupdatetime 1144753347
 inprogress 0 firstfailuretime 0 numberofretries 0 lastnotifytime 0} {name
testir
 status good lastuptodatetime 1144769903 mirrordir
 /home/syncmgr/sync_custom/servers/moniuszko/2647/htdocs/testir vaultURL
 sync://src.matrixone.net:2647/Projects/testir selector Trunk:Latest category
 devserver type normal MASname devserver heartbeat 1144769903 lastupdatetime
 1144752846 inprogress 0 firstfailuretime 0 numberofretries 0 lastnotifytime
0}}
 stcl>

mirror wheremirrored

mirror wheremirrored Command

NAME

 mirror wheremirrored - Shows where vault data is mirrored

DESCRIPTION

• Pattern Matching
• Upgrading a Mirror with "wheremirrored" Information

 As an end user, use the "mirror wheremirrored" command to identify
 a mirror directory at your site to "setmirror" to. As a mirror
 administrator use the "mirror wheremirrored" command when defining a
 secondary mirror, to identify available primary mirrors. The "mirror
 wheremirrored" command can also be used to report the status of
 mirrors, and is faster than "mirror status" with the "-servertype RS"
 option. (When options to the "mirror wheremirrored" command are used
 to decrease the number of mirrors whose status is reported.) Only
 active (enabled) mirrors are reported by this command.

Pattern Matching

 Some of the options described below accept a pattern. A pattern is
 defined using UNIX glob-style notation (or the <pattern> described in

Administration

1008

 the Tcl "string match" command). "*" matches any number of characters,
 "?" matches exactly one character, and [chars] matches any characters in
 chars. Any other characters in the pattern are taken as literals that
 must match the input exactly. Also, \x an be used to match the single
 character x. This avoids the special interpretation of the characters
 *?[]\ in the pattern.

Upgrading a Mirror with "wheremirrored" Information

 The information shown by the "mirror wheremirrored" command is
 for Repository Servers (RSs) that are running version V6R2008-9 of
 the software or higher. RSs should be upgraded to a version that
 supports "wheremirrored" first,
 so that the RS's are able to receive "wheremirrored" information sent
 to them by the Mirror Administration Servers (MASs). If a
 MAS is upgraded to a version with "wheremirrored" first, the
 "wheremirrored" upgrade step must be performed after each associated
 RS is upgraded.

 If the information used by the "mirror wheremirrored" command is not
 present, the value "needs-upgrade" will be shown for most of the
 mirror properties. (The EXAMPLES section below has an example of
 this.) Similarly, the "wheremirrored" information shown for MASs at
 versions prior to the implementation of "wheremirrored" will have
 "needs-upgrade" for many of their mirror properties.

 Once both the MAS and an RS are at a version with "wheremirrored"
 support, the mirror properties used by the "mirror wheremirrored"
 command are set ("upgraded") for an existing mirror, when one of
 these occur:
 - The MAS is restarted, thereby restarting the mad (mirror
 administration daemon)
 - The resetmirrordaemons command is used to restart the mad
 - ProjectSync's "Reset MAS Daemon" is used
 - A disabled mirror is enabled

 The "upgrade" stores current information on the RS about a mirror,
 which the "wheremirrored" command uses. The "upgrade" occurs only
 once for each RS that has a mirror on the MAS.

 Creating a mirror sets the properties used by the "mirror
 wheremirrored" command on the RS, for the mirror that was
 created. The mirror's "wheremirrored" properties are also updated
 when a mirror definition is edited.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirror wheremirrored <vaultURL> [-category <category>]
 [-format text|list] [-name <name>]

ENOVIA Synchronicity Command Reference All -Vol2

1009

 [-selector <selector_list>]
 [-status good|warning|failure|unknown|none|any]
 [-type normal|primary|secondary|all]

ARGUMENTS

• Vault URL

Vault URL

 <vaultURL> Specifies the URL of the vault directory whose
 contents are being mirrored. This parameter is
 required. Specify the URL as follows:
 sync[s]://<host>[:<port>][/path_to_vault]
 where the <host> and <port> are that of the RS.
 If the <port> is omitted, the default ports are
 used (2647 for cleartext and 2679 for SSL)

 The path_to_vault is the path on the RS that is
 being mirrored. The path_to_vault part of the
 <vaultURL> can be a pattern, defined using the UNIX
 glob-style notation described above. If a
 path_to_vault is not specified, all mirrors mirroring
 data anywhere on the RS will be reported. The options
 below can be used to filter the mirrors that are
 reported.

OPTIONS

• -category
• -format
• -name
• -selector
• -status
• -type

-category

 -category The <category> pattern used to filter the list of
 mirrors returned. Mirrors whose category does not
 match the <category> pattern will be removed from the
 result list. A pattern is defined using the UNIX
 glob-style notation described above. If a literal
 value is specified for the <category>, it must be an
 exact match of the category stored with the mirror
 definition. (Mirrors whose categories are not an exact
 match will be removed from the result list.)

 If a mirror definition has not been upgraded and this

Administration

1010

 option is specified, the mirror will not be in the
 result list. That's because the mirror does not yet
 have a category set in the "wheremirrored" properties
 on the RS, for the "mirror wheremirrored" command to
 use as a "-category" filter.

-format

 -format Specifies the way the output will be returned. The
 default is text. The format 'text' will output each
 mirror parameter on a new line in the format
 name=value. When the properties for more than one
 mirror is output, a blank line separates one mirror's
 properties from another. The format 'list' will list
 the properties in a Tcl list. The command will return
 a list of 5 elements with the last element being a
 list of lists, with each sub-list holding the
 properties of one mirror. The properties for a mirror
 will be in the form {name1 value1 name2 value2 ...}.
 The first 4 elements will be "succeeded number-
 succeeded failed number-failed". See the RETURN VALUE
 section below for more details.

-name

 -name The <name> pattern used to filter the list of mirrors
 returned. Mirror names that do not match the <name>
 pattern will be removed from the result list. A
 pattern is defined using the UNIX glob-style notation
 described above. If a literal value is specified for
 the <name>, it must be an exact match of the name
 stored with the mirror definition. (Mirrors whose
 names are not an exact match will be removed from the
 result list.)

-selector

 -selector The <selector_list> pattern used to filter the list of
 mirrors returned. Mirrors whose selector list does not
 match the <selector_list> pattern will be removed from
 the result list. The <selector_list> may be specified
 as a pattern, defined using the UNIX glob-style
 notation described above. If a literal value is
 specified for the <selector_list>, it must be an exact
 match of the selector stored with the mirror
 definition. (Mirrors whose selectors are not an exact
 match will be removed from the result list.)

 However, branch selectors are normalized. I.e., a

ENOVIA Synchronicity Command Reference All -Vol2

1011

 <selector_list> value of "bugfix:" will match mirrors
 whose selectors are "bugfix:" or "bugfix:Latest".
 Similarly, the special branch value "Trunk" will match
 mirrors whose selectors are "Trunk:Latest" and
 "Trunk:".

-status

 -status The status of the mirror, used to filter the list of
 mirrors returned. The status specified must be either
 "good", "warning", "failure", "unknown", "none" or
 "any". Mirrors that do not match the status value will
 be removed from the result list.

 The default value is "none", which means that status
 will not be reported. This is the most efficient value
 for the status, because the RS does not need to
 contact each MAS for every mirror that is reported.
 Mirror status is not reported, for "-status none".

 Specifying a status value other than "none" will cause
 the RS to contact each MAS for every mirror that is
 reported. The status is the last criterion that is
 matched for a mirror. So, the request for status from
 a MAS is only sent by the RS if all other criteria
 are matched.

 A status value of "any" will cause the RS to contact
 each MAS to get the status of every mirror (that
 matches the other criteria specified), but will not
 filter on the status value. The status value will be
 shown for all mirrors (that match the other criteria
 specified).

-type

 -type The type of the mirror, used to filter the list of
 mirrors returned. The type specified must be either
 "normal", "primary", "secondary" or "all". The default
 value is "all". Mirrors that do not match the type
 value will be removed from the result list.

 If a mirror definition has not been upgraded and a
 type value other than "all" is specified, the mirror
 will not be in the result list. That's because the
 mirror does not yet have a type set in the
 "wheremirrored" properties on the RS, for the
 "mirror wheremirrored command to use as a "-type"
 filter.

Administration

1012

RETURN VALUE

 Returns properties and optionally status for each active (enabled)
 mirror meeting the specified criteria. When discussing the return
 value, the status of a mirror is considered to be a property.

 When the default "-format text" is used, the properties are output and
 a succeeded/failed count is returned.

 A specific mirror is only counted as a failure if there was a failure
 reporting the status of the mirror (when specifying a "-status" value
 other than "none"), and the mirror's status could not be retrieved
 from the MAS. If the mirror's status is "failure", then the "mirror
 wheremirrored" command has the mirror's "wheremirrored" return as
 succeeded, since the "mirror wheremirrored" command was successful in
 matching the mirror against the criteria specified with the command.
 Therefore, the "mirror wheremirrored" command counting a mirror as
 "succeeded" is independent of the status of the mirror. If a mirror is
 counted as "failed" due to not being able to get the status of a
 mirror, the "status" property for the mirror will have the value
 "unavailable".

 When "-format list" is used, the properties and status for each mirror
 meeting the criteria is returned in a list of lists, as the last
 element in the return list. The first four elements of the returned
 list are name/value pairs with the number succeeded and number failed.
 This is similar to the return value of the "mirror status" command.

 For example:
 succeeded 4 failed 1 {{name val MASname val ...} {name val
 MASname val ...}}

 An error will not be thrown if "-status" is used with a value other
 than "none", and no status could be retrieved for any of the matching
 mirrors (all mirrors reported as "failed" to get status).

 An error is thrown if the command itself fails. Such as, if the server
 housing the vault is not enabled as an RS, if there are no active
 (enabled) mirrors registered with the RS, if the RS cannot be
 contacted, if multiple arguments are specified, or if the mirror name,
 category or selector contain illegal characters.

 Mirrors created prior to their MAS being upgraded to a version that
 supports "where mirrored" do not have certain wheremirrored
 properties available at the RS. The value shown for those properties
 is "needs-upgrade". For details, see the "Upgrading a Mirror with
 wheremirrored Information" section above.

 The following properties will be returned for each matching mirror:

 name The name of the mirror, which is only unique within a
 particular MAS.
 MASname The name of the server hosting the mirror, from the
 MAS's General Settings. This could have a value of
 "needs-upgrade".
 MASurl The URL of the MAS where the mirror is defined.

ENOVIA Synchronicity Command Reference All -Vol2

1013

 vaultURL The URL of the vault that is being mirrored.
 selector The selector of the mirror.
 mirrordir The path to the mirror directory on the MAS's LAN.
 This could have a value of "needs-upgrade".
 category The category of the mirror on the MAS. This could
 have a value of "needs-upgrade".
 type The type of mirror: "normal", "primary", "secondary",
 or "needs-upgrade".
 primaryServer The MAS that is hosting the primary mirror. This
 could have a value of "needs-upgrade".

 See the "mirror create" documentation for further details on the above
 properties.

 If the "-status" option is specified with a value other than the
 default "none", then these additional properties are returned:

 status The mirror's status: "good", "warning", "failure",
 "unknown" or "unavailable". A status of "unavailable"
 is returned when the RS could not retrieve the status
 from the MAS. In which case, there may be a problem
 with the MAS, or the MAS may not be running.

 If a failure is encountered when trying to get the
 mirror status, the failure message will be reported
 when using the default "-format text" output. When
 "-format list" is used, the failure message will be
 returned in an additional "error" property.

 error The error message, if a failure is encountered when
 trying to get the mirror status. This property is
 only returned when "-format list" is used. If the
 default "-format text" is used, then this error
 message is output.

SEE ALSO

 mirror create, mirror status, setmirror

EXAMPLES

• Example Showing All Mirrors for a Server's Projects
• Example Showing Failures in TCL List Format
• Example Showing All Mirrors for a Specific Branch and Version
• Example Showing Finding the Primary Mirrors for a Project (File-based)

Example Showing All Mirrors for a Server's Projects

 To find all mirrors that are mirroring a server's projects:

 stcl> mirror wheremirrored sync://qewflx10:30018/Projects/*
 name = Top

Administration

1014

 MASname = North Carolina
 MASurl = sync://qewflx11.matrixone.net:30158
 vaultURL = sync://qewflx10:30018/Projects/Top
 selector = Trunk:Latest
 mirrordir = /home/tbarbg8/Mirrors/Secondary/Top/
 category = Test
 type = secondary
 primaryserver = sync://qewflx10:30148

 name = Test
 MASname = San Jose
 MASurl = sync://qewflx12.matrixone.net:30128
 vaultURL = sync://qewflx10:30018/Projects/Test
 selector = Trunk
 mirrordir = /home/tbarbg8/Mirrors/Normal/Test/
 category = Testing
 type = normal
 primaryserver =

 ...

Example Showing Failures in TCL List Format

 The "-format list" return when a failure is encountered while getting
 the status of a mirror:

 stcl> mirror wheremirrored sync://qewflx10:30018 -name */ALU \
 -status any -format list
 Connect failure. Server 'qewflx10.matrixone.net:30128' may have reset
 the connection.

 succeeded 2 failed 1 {{name Top/ALU MASname {San Jose} MASurl
 sync://qewflx12.matrixone.net:30128 vaultURL
 sync://qewflx10:30018/Projects/ALU selector Trunk:Latest mirrordir
 /home/tbarbg8/Mirrors/Normal/Top/ALU/ category Production type normal
 primaryserver {} status unavailable error {Failure getting status:
 Attempting to contact mirror administration server...
 - som-E-11: Communication Connect Failure.}} {name Top/ALU MASname
 Cambridge MASurl sync://qewflx10.matrixone.net:30148 vaultURL
 sync://qewflx10:30018/Projects/ALU selector Trunk:Latest mirrordir
 /home/tbarbg8/Mirrors/Primary/Top/ALU/ category Development type
 primary primaryserver {} status good} {name Top/ALU MASname
 {North Carolina} MASurl sync://qewflx11.matrixone.net:30158 vaultURL
 sync://qewflx10:30018/Projects/ALU selector Trunk:Latest mirrordir
 /home/tbarbg8/Mirrors/Secondary/Top/ALU/ category Test type secondary
 primaryserver sync://qewflx10:30148 status good}}
 stcl>

 In the above example, note that a pattern match was specified for the
 mirror name. "ALU" by itself would not match, because it is a
 submirror. And submirrors include the parent directory in their name.

Example Showing All Mirrors for a Specific Branch and Version

ENOVIA Synchronicity Command Reference All -Vol2

1015

 To find all mirrors that are mirroring the Latest version on any
 branch, for the specified RS:

 stcl> mirror wheremirrored sync://qewflx10:30018 -selector *:Latest
 name = Top
 MASname = North Carolina
 MASurl = sync://qewflx11.matrixone.net:30158
 vaultURL = sync://qewflx10:30018/Projects/Top
 selector = Trunk:Latest
 mirrordir = /home/tbarbg8/Mirrors/Secondary/Top/
 category = Test
 type = secondary
 primaryserver = sync://qewflx10:30148

 name = Test
 MASname = San Jose
 MASurl = sync://qewflx12.matrixone.net:30128
 vaultURL = sync://qewflx10:30018/Projects/Test
 selector = Trunk
 mirrordir = /home/tbarbg8/Mirrors/Normal/Test/
 category = Testing
 type = normal
 primaryserver =
 ...

Example Showing Finding the Primary Mirrors for a Project (File-based)

 To find primary mirrors that are mirroring a project's vault data:

 stcl> mirror wheremirrored sync://qewflx10:30018/Projects/Top \
 -type primary
 name = Top
 MASname = Cambridge
 MASurl = sync://qewflx10.matrixone.net:30148
 vaultURL = sync://qewflx10:30018/Projects/Top
 selector = Trunk:Latest
 mirrordir = /home/tbarbg8/Mirrors/Primary/Top/
 category = Development
 type = primary
 primaryserver =

 succeeded 1 failed 0
 stcl>

mirrorsetdefaultuser

mirrorsetdefaultuser

NAME

Administration

1016

 mirrorsetdefaultuser - Sets the default user and password using a
 UNIX shell script

DESCRIPTION

 Use this command to set the default user and password using a UNIX
 shell script.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirrorsetdefaultuser <serverURL> <defaultUser>

ARGUMENTS

• Server URL
• Default User

Server URL

 serverURL Specifies the URL of the MAS SyncServer. Specify the
 URL as follows:
 sync://<host>[:<port>] where 'sync://' is required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port number
 (defaults to 2647).
 Example: sync://serv1.abco.com:1024

Default User

 defaultUser The default user to be used when one of the needed
 users is not specified for the 'mirror create' Tcl
 shell command. If a Tcl shell command can be run
 interactively, see 'mirror setoptions' for an
 alternate way to specify this user.

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror rename, mirror reset,
 mirror setoptions, mirror status

ENOVIA Synchronicity Command Reference All -Vol2

1017

EXAMPLES

 This example sets the default user to "barbg", for the MAS
 SyncServer sync://srv2.ABCo.com:2647. The user is prompted for a password.

 % mirrorsetdefaultuser sync://srv2.ABCo.com:2647 barbg
 Enter the password for the default user (barbg): ****

 %

Module Cache Maintenance

Caching Objects

caching

caching Command

NAME

 caching - Caching behavior commands

DESCRIPTION

 These commands provide a way to view and control the caching behavior
 of DesignSync objects; excepting or including intellectual property
 from the default caching.

SYNOPSIS

 caching <caching_command>

 Usage: caching disable|caching enable|caching list|caching status

ARGUMENTS

 Server URL

RETURN VALUE

Administration

1018

 Various by command.

SEE ALSO

 caching disable, caching enable, caching list, caching status
,

EXAMPLES

 See specific command.

caching disable

caching disable Command

NAME

 caching disable - Disables object caching for server URLs

DESCRIPTION

 This command disables caching for specific objects specified by
 server URLs.

 When object caching is disabled, the caching property of the object
 URL is set to zero (0). The value of this property may be viewed with
 the caching status command.

 Note: Clients with this feature can disable the local caching
 functionality for objects on an older (pre-3DEXPERIENCE 2016x) server
 version, but older clients cannot use this feature on newer
 clients. Servers accepting commands from older clients can be set up
 to refuse enable/disable caching requests from older clients. For
 more information, see the DesignSync Data Manager Administrator's
 Guide.

 If the object for which caching is being disabled were already loaded
 into a cache, those caches are not automatically removed, however
 attempts to update the cache, for example with cancel, ci, populate,
 or co, will fail.

 This command is subject to access controls on the server.

SYNOPSIS

ENOVIA Synchronicity Command Reference All -Vol2

1019

 caching disable <SyncURL>[<SyncURL>...]

ARGUMENTS

• URL

URL

 <syncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>]/[<path>] or
 syncs://<host>[:<port>]/[<path>]
 where 'sync://' or 'syncs://' are required, <host> is the
 machine on which the SyncServer is installed, and <port>
 is the SyncServer port number (defaults to 2647/2679).
 And the path is the server path to the desired object.
 For example, all of these are valid syncURLs:
 sync://apollo.spaceco.com:2647
 sync://apollo.spaceco.com:2647/Modules
 sync://apollo.spaceco.com:2647/Modules/Blueprints/FuelCell2
 sync://apollo.spaceco.com:2647/Projects/SpaceShuttle

RETURN VALUE

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.
 If the command failed to run, DesignSync returns an appropriate error
 explaining the failure.

SEE ALSO

 caching enable, caching list, caching status, url getprop, url setprop

EXAMPLES

• Example Showing Disabling cachability for an object

Example Showing Disabling cachability for an object

 This example shows disabling the caching for a specific object and
 verifying that the cachability was disabled using the status command,
 which returns a status of zero (0).

Administration

1020

 dss> caching disable sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 {Objects succeeded (1)} {}

 dss> caching status sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 0

caching enable

caching enable Command

NAME

 caching enable - Enables object caching for server URLs

DESCRIPTION

 This command enables caching for specific objects specified by
 server URLs.

 When object caching is enabled, the caching property of the object
 URL is set to one (1). The value of this property may be viewed with
 the caching status command.

 Note: Clients with this feature can enable the local caching
 functionality for objects on an older (pre-3DEXPERIENCE 2016x) server
 version, but older clients cannot use this feature on newer
 clients. Servers accepting commands from older clients can be set up
 to refuse enable/disable caching requests from older clients. For
 more information, see the DesignSync Data Manager Administrator's
 Guide.

 This command is subject to access controls on the server.

SYNOPSIS

 caching enable <SyncURL>[<SyncURL>...]

ARGUMENTS

• URL

URL

 <syncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>]/[<path>] or

ENOVIA Synchronicity Command Reference All -Vol2

1021

 syncs://<host>[:<port>]/[<path>]
 where 'sync://' or 'syncs://' are required, <host> is the
 machine on which the SyncServer is installed, and <port>
 is the SyncServer port number (defaults to 2647/2679).
 And the path is the server path to the desired object.
 For example, all of these are valid syncURLs:
 sync://apollo.spaceco.com:2647
 sync://apollo.spaceco.com:2647/Modules
 sync://apollo.spaceco.com:2647/Modules/Blueprints/FuelCell2
 sync://apollo.spaceco.com:2647/Projects/SpaceShuttle

RETURN VALUE

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.
 If the command failed to run, DesignSync returns an appropriate error
 explaining the failure.

SEE ALSO

 caching disable, caching list, caching status

EXAMPLES

• Example Showing enabling cachability for an object

Example Showing enabling cachability for an object

 This example shows enabling the caching for a specific object and
 verifying that the cachability is enabled using the status command
 which returns a status of one (1).

 dss> caching enable sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 {Objects succeeded (1)} {}

 dss> caching status sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 1

caching status

caching status Command

NAME

Administration

1022

 caching status - Displays caching status of server URLs

DESCRIPTION

 Displays the caching status (on or off) of the object URL. URLs can
 be explicitly excluded from the cache to protect access to the file
 and comply with intellectual property protection needs.

SYNOPSIS

 caching status <SyncURL>

ARGUMENTS

• URL

URL

 <syncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>]/[<path>] or
 syncs://<host>[:<port>]/[<path>]
 where 'sync://' or 'syncs://' are required, <host> is the
 machine on which the SyncServer is installed, and <port>
 is the SyncServer port number (defaults to 2647/2679).
 And the path is the server path to the desired object.
 For example, all of these are valid syncURLs:
 sync://serv1.abco.com:2647
 sync://serv1.abco.com:2647/Modules
 sync://serv1.abco.com:2647/Modules/Blueprints/FuelCell2
 sync://serv1.abco.com:2647/Projects/SpaceShuttle

RETURN VALUE

 Returns a value of zero (0) if the object can not be cached, or one
 (1) if the object is able to be cached.

SEE ALSO

 caching disable, caching enable, caching list

EXAMPLES

ENOVIA Synchronicity Command Reference All -Vol2

1023

• Example Showing the cachability status for an object

Example Showing the cachability status for an object

 This example shows enabling/disabling the caching for a specific
 object and verifying that the cachability is enabled using the status
 command, which returns a zero (0) if cachability is disabled or one
 (1) if cachability is enabled.

 dss> caching enable sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 {Objects succeeded (1)} {}

 dss> caching status sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 1
 dss> caching disable sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 {Objects succeeded (1)} {}

 dss> caching status sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 0

mcache Commands

mcache Command

NAME

 mcache - Module cache management commands

DESCRIPTION

 The mcache commands enable an administrator to remove unused module
 instances from module caches. Instances may be candidates for removal
 because they are too old or not currently used. For example, if a set
 of known user workspaces don't contain any mcache links to module
 cache instances.

 "mcache scan" searches a given list of user workspace paths looking
 for module cache links to module instances within a list of provided
 module cache paths. When a link to a module instance in the cache is
 found, a property attached to the module cache instance is updated
 with a timestamp of the current date/time. This property reflects the
 last time a module cache instance was known to be referenced, and is
 referred to as the "touch time".

 "mcache touch" sets the "touch time" of a list of module cache
 instances to the current time. "mcache touch" updates a module cache
 instance timestamp property when it finds a module cache link to the
 instance within one or more provided workspace paths, similar to
 "cachetouchlinks" for file caches.

 You may have a work flow that pre-populates a module cache. It is

Administration

1024

 therefore possible for a newly fetched module cache instance to have
 no references from a user workspace when a scrub operation is run on
 the mcache. As a result, new module cache entries would be prematurely
 removed before having the opportunity to be referenced in a user
 workspace. For example, suppose that an administrator has set up a
 weekly touch/scrub cron job. If a new module release is populated to a
 module cache and then scrubbed before any users have populated their
 workspace with the new release, it will be removed from the mcache.
 To prevent the new release from being scrubbed, the administrator can
 "mcache touch" the release.

 Note that this does not consider auto-generated mirrors that populate
 modules into a module cache. To address this case, the populate
 command modifies the "touch time" of a module when its version
 changes. This ensures that modules freshly fetched into a module cache
 via a mirror have an accurate "touch time" that can be used to prevent
 their premature removal by a module cache scrub.

 "mcache show" displays the last time module cache instances were
 "touched".

 "mcache scrub" removes module cache instances in a list of module
 cache paths with a "touch time" older than a given age, similar to
 "cachescrubber" for file caches. Note that a module cache instance
 with parents cannot be removed regardless of the "touch time" unless
 all parents are also removed. This restriction is necessary to prevent
 module hierarchies from being damaged during a scrub.

 The mcache commands are directly callable from a UNIX shell, similar
 to how the "cachescrubber" and "cachetouchlinks" commands are made
 available. In particular, this allows the "mcache scan" and "mcache
 scrub" commands to be run as cron jobs, to support automating module
 cache maintenance.

 Note that there is no recognizable difference between a module cache
 and a workspace. As a result the mcache sub-commands cannot
 distinguish between them and therefore assume that the workspace on
 which they are directed to operate is in fact a module cache.

 You must run "mcache scan" or "mcache touch" prior to running "mcache
 scrub", to ensure that active module cache instances are not
 inadvertently removed by "mcache scrub". This also applies to auto-
 generated mirrors created prior to V6R2012x, which introduced the
 mcache command set.

 The mcache sub-commands all require one or more module cache paths on
 which to operate. Those that rely on a registry setting for a default
 list of module cache paths use SyncAdmin's General -> Modules "Default
 module cache paths" value.

 The mcache commands are intended for administrators who have write
 access to the module caches. No SUID functionality is provided.

 The mcache commands are only applicable to modern module caches. They
 cannot be used to maintain legacy module caches.

ENOVIA Synchronicity Command Reference All -Vol2

1025

SYNOPSIS

 mcache <mcache_command> [<mcache_command_options>]

 Usage: mcache [scan|scrub|show|touch]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 mcache scan, mcache scrub, mcache show, mcache touch

mcache scan

mcache scan Command

NAME

 mcache scan - Designates module cache instances as current

DESCRIPTION

• Understanding the Output

 This command searches one or more workspace paths looking for any
 module cache links within those paths to entries in any of the
 supplied module cache paths. Note that the search is performed over
 the root database within which the workspace path resides, looking for
 module cache link instances within that root database that exist at or
 below the provided path. The command will not perform a file system
 search for additional root directories or symbolic links. For each
 module cache link instance found the "touch time" of the entry will be
 updated to the current date/time. The "touch time" is the last time a
 module cache instance was known to be referenced.

 Run "mcache scan" or "mcache touch" prior to running "mcache scrub",
 to ensure that active module cache instances are not inadvertently
 removed by "mcache scrub".

Administration

1026

 The mcache commands are only applicable to modern module caches. They
 cannot be used to maintain legacy module caches.

 This command supports the command defaults system.

Understanding the Output

 The mcache scan command provides the option to specify the level of
 information the command outputs during processing. The -report option
 allows you to specify what type of information is displayed:

 If you run the mcache scan command with the '-report brief' option,
 the command outputs the following information:
 o Failure messages.
 o Warning messages.
 o Success/failure status.

 By default, or if you run the mcache scan command with the '-report
 normal' option, the command displays all the information contained in
 '-report brief', and the following additional information:
 o A status message indicating that the command is scanning workspaces
 for module cache links.
 o A status message indicating that the command is gathering addresses
 of linked module cache instances.
 o A status message indicating that the command is touching module
 cache instances.

 If you run the mcache scan command with the '-report verbose' option,
 the command displays all the information contained in '-report normal'
 and the following additional information:
 o The full URL of each module cache instance that is a candidate for
 touching.
 o The full URL of each module cache instance that was successfully
 touched.

SYNOPSIS

 mcache scan [-mcachepaths <path_list>]
 [-report {brief | normal | verbose}]
 [--] <argument>[<argument>...]

ARGUMENTS

• Workspace Path

Workspace Path

 <workspace path> Path of a workspace to search for module cache

ENOVIA Synchronicity Command Reference All -Vol2

1027

 links. If no argument is provided the command
 uses the current directory.

OPTIONS

• -mcachepaths
• -report
• --

-mcachepaths

 -mcachepaths <path_list>
 Identifies one or more module caches for the
 scan operation to update.

 To specify multiple paths, surround the path
 list with double quotation marks ("") and
 separate path names with a space. For
 example: "/dir1/cacheA /dir2/cacheB"

 NOTES:
 - To specify a path that includes spaces:
 o In stcl or stclc, surround the path
 containing the spaces with curly braces.
 For example:
 "/dir1/cache {/dir2/path name}".
 o In dss or dssc, use backslashes (\) to
 "escape" the spaces. For example:
 "/dir1/cache /dir2/path\ with\ spaces"

 The command scans the module caches specified
 with the -mcachepaths option or in the default
 module cache paths registry setting if this
 option is not supplied. (For information about
 the registry setting, see the "Modules Options"
 topic in the ENOVIA Synchronicity DesignSync
 Administrator's Guide.)

-report

 -report brief|normal| Determines what information is returned in the
 verbose output of the command. The information each
 option returns is discussed in detail in the
 "Understanding the Output" section above.

 Valid values are:
 o brief - outputs failures, warnings, and
 success/failure count.

 o normal - the default report mode, outputs

Administration

1028

 the command's progress. This is in addition
 to the information output in brief mode.

 o verbose - outputs cache module instances that
 are being touched. This is in addition to the
 information output in normal mode.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when
 arguments to the command begin with a hyphen
 (-).

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.

 Notes:
 - Scripts should only test for non-empty lists to
 determine success or failure. The actual content of a non-empty
 list currently takes the form "Objects succeeded (n)" and
 "Objects failed (n)", where 'n' is the number of objects that
 succeeded or failed. However, these return values are subject to
 change in a future release.
 - If there are no successes and at least one failure an exception
 occurs (the return value is thrown, not returned).

 The mcache scan UNIX command line script will return a 0 for success
 and a 1 for failure.

SEE ALSO

 command defaults, mcache scrub, mcache show, mcache touch

EXAMPLES

 In this example, "mcache scan" is run in verbose mode from UNIX, on
 two workspaces. The -mcachepaths option is not specified, because a
 default module cache path was set by the syncmgr in SyncAdmin's
 General -> Modules pane.

ENOVIA Synchronicity Command Reference All -Vol2

1029

 % mcache scan -report verbose /home/tbarbg8/sitar /home/tbarbg7/sitar
 Logging to /home/tbarbg8/logs/dss_07202011_083658.log
 V6R2012x

 Scanning workspaces for module cache links ...
 Scanning /home/tbarbg8/sitar ...
 Scanning /home/tbarbg7/sitar ...

 Gathering addresses of linked module cache instances ...
 /home/tbarbg8/mcache/qelwsun14_30148-Alu-1.2/Alu%0: Candidate for touching
...
 /home/tbarbg8/mcache/qelwsun14_30148-Decoder-1.2/Decoder%0: Candidate for
touching ...
 /home/tbarbg8/mcache/qelwsun14_30148-Instr_reg-1.2/Instr_reg%0: Candidate
for touching ...
 /home/tbarbg8/mcache/qelwsun14_30148-Addr_calc-1.2/Addr_calc%0: Candidate
for touching ...
 /home/tbarbg8/mcache/qelwsun14_30148-Stack_pointer-1.2/Stack_pointer%0:
Candidate for touching ...
 /home/tbarbg8/mcache/qelwsun14_30148-Alu-1.2/Alu%0: Candidate for touching
...
 /home/tbarbg8/mcache/qelwsun14_30148-Decoder-1.2/Decoder%0: Candidate for
touching ...
 /home/tbarbg8/mcache/qelwsun14_30148-Instr_reg-1.2/Instr_reg%0: Candidate
for touching ...
 /home/tbarbg8/mcache/qelwsun14_30148-Addr_calc-1.2/Addr_calc%0: Candidate
for touching ...
 /home/tbarbg8/mcache/qelwsun14_30148-Stack_pointer-1.2/Stack_pointer%0:
Candidate for touching ...

 Touching module cache instances ...

 /home/tbarbg8/mcache/qelwsun14_30148-Addr_calc-1.2/Addr_calc%0: Successfully
touched.
 /home/tbarbg8/mcache/qelwsun14_30148-Alu-1.2/Alu%0: Successfully touched.
 /home/tbarbg8/mcache/qelwsun14_30148-Decoder-1.2/Decoder%0: Successfully
touched.
 /home/tbarbg8/mcache/qelwsun14_30148-Instr_reg-1.2/Instr_reg%0: Successfully
touched.
 /home/tbarbg8/mcache/qelwsun14_30148-Stack_pointer-1.2/Stack_pointer%0:
Successfully touched.
 {Objects succeeded (5)} {}
 %

mcache scrub

mcache scrub Command

NAME

 mcache scrub - Removes old module instances from the mcache

DESCRIPTION

Administration

1030

• Understanding the Output

 This command removes any module instance from the module cache that
 has a "touch time" older than the supplied age. The "touch time" is
 the last time a module cache instance was known to be referenced.

 Note that any modules with parents will not be removed unless all of
 the parents are being removed.

 Run "mcache scan" or "mcache touch" prior to running "mcache scrub",
 to ensure that active module cache instances are not inadvertently
 removed by "mcache scrub".

 The mcache commands are only applicable to modern module caches. They
 cannot be used to maintain legacy module caches.

 This command supports the command defaults system.

Understanding the Output

 The mcache scrub command provides the option to specify the level of
 information the command outputs during processing. The -report option
 allows you to specify what type of information is displayed:

 If you run the mcache scrub command with the '-report brief' option,
 the command outputs the following information:
 o Failure messages.
 o Warning messages.
 o Success/failure status.

 By default, or if you run the mcache scrub command with the '-report
 normal' option, the command displays all the information contained in
 '-report brief', and the following additional information:
 o A status message indicating the module cache instance being
 removed.

 If you run the mcache scrub command with the '-report verbose' option,
 the command displays all the information contained in '-report normal'
 and the following additional information:
 o Module cache instances that are skipped, because they were touched
 within the specified number of days.
 o An informational note that all modules within the directory cone of
 each module that is a candidate for removal will also be removed.
 o Status messages for each module cache instance being removed, as
 the module content and module metadata are removed. Messages when
 the module has been deleted are also output.

SYNOPSIS

 mcache scrub [-mcachepaths <path_list>]

ENOVIA Synchronicity Command Reference All -Vol2

1031

 [-report {brief | normal | verbose}] [--] <age>

ARGUMENTS

• Age

Age

 <age> Integer value representing an age in days.
 Module instances with a "touch time" older than
 <age> and having no parents will be removed.

OPTIONS

• -mcachpaths
• -report
• --

-mcachpaths

 -mcachepaths <path_list>
 Identifies one or more module caches for the
 scrub operation to process.

 To specify multiple paths, surround the path
 list with double quotation marks ("") and
 separate path names with a space. For
 example: "/dir1/cacheA /dir2/cacheB"

 NOTES:
 - To specify a path that includes spaces:
 o In stcl or stclc, surround the path
 containing the spaces with curly braces.
 For example:
 "/dir1/cache {/dir2/path name}".
 o In dss or dssc, use backslashes (\) to
 "escape" the spaces. For example:
 "/dir1/cache /dir2/path\ with\ spaces"

 The command processes the module caches
 specified with the -mcachepaths option or in
 the default module cache paths registry setting
 if this option is not supplied. (For
 information about the registry setting, see
 the "Modules Options" topic in the ENOVIA
 Synchronicity DesignSync Administrator's Guide.)

-report

Administration

1032

 -report brief|normal| Determines what information is returned in the
 verbose output of the command. The information each
 option returns is discussed in detail in the
 "Understanding the Output" section above.

 Valid values are:
 o brief - outputs failures, warnings, and
 success/failure count.

 o normal - the default report mode, outputs a
 status message for each module cache instance
 being removed. This is in addition to the
 information output in brief mode.

 o verbose - outputs status messages are for
 module cache instances that are removed.
 Also lists cache module instances that are
 skipped. This is in addition to the
 information output in normal mode.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when
 arguments to the command begin with a hyphen
 (-).

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.

 Notes:
 - Scripts should only test for non-empty lists to
 determine success or failure. The actual content of a non-empty
 list currently takes the form "Objects succeeded (n)" and
 "Objects failed (n)", where 'n' is the number of objects that
 succeeded or failed. However, these return values are subject to
 change in a future release.
 - If there are no successes and at least one failure an exception
 occurs (the return value is thrown, not returned).

 The mcache scrub UNIX command line script will return a 0 for success
 and a 1 for failure.

SEE ALSO

ENOVIA Synchronicity Command Reference All -Vol2

1033

 command defaults, mcache scan, mcache show, mcache touch

EXAMPLES

 In this example, "mcache scrub" is run in verbose mode, to remove all
 module cache instances that haven't been touched in 120 days. The
 -mcachepaths option is not specified, because a default module cache
 path was set by the syncmgr in SyncAdmin's General -> Modules pane.

 stcl> mcache scrub -report verbose 120

 Reviewing modules in /home/tbarbg8/mcache ...
 Alu%0: Skipping; Touched within specified time.
 Decoder%0: Skipping; Touched within specified time.
 Instr_reg%0: Skipping; Touched within specified time.
 Stack_pointer%0: Skipping; Touched within specified time.

 Removing base directories for the following candidate modules:
 /home/tbarbg8/mcache/qelwsun14_30148-Addr_calc-1.2/Addr_calc%0

 Note that all modules within the directory cone of each candidate will also
be removed.

 /home/tbarbg8/mcache/qelwsun14_30148-Addr_calc-1.2/Addr_calc%0: Removing
workspace module content ...
 /home/tbarbg8/mcache/qelwsun14_30148-Addr_calc-1.2/Addr_calc%0: Removing
workspace module metadata ...
 /home/tbarbg8/mcache/qelwsun14_30148-Addr_calc-1.2/Addr_calc%0: Workspace
module removed.
 qelwsun14_30148-Addr_calc-1.2: Success deleted
 {Objects succeeded (1)} {}
 stcl>

mcache show

mcache show Command

NAME

 mcache show - Shows the "touch time" of module cache instances

DESCRIPTION

• Understanding the Output

 This command displays the last "touch time" of module instances in one
 or more module caches. The "touch time" is the last time a module
 cache instance was known to be referenced.

Administration

1034

 The mcache commands are only applicable to modern module caches. They
 cannot be used to maintain legacy module caches.

 This command supports the command defaults system.

Understanding the Output

 By default, or if you run the mcache show command with the "-format
 text" option, the command displays a table of information for the
 module cache instances found in the module cache paths.

 The table includes the following information as columns:

 If the mcache show command is run with the "-report brief" option:

 o Instance The module instance name.

 o Available Indicates whether the module is available for use
 by the populate command. Possible values are "yes"
 and "no", where a value of "yes" indicates the
 module is available for use. A module might be
 unavailable if, for example, it is currently being
 fetched to the module cache.

 o Last Touched The time the module was last touched.

 If the mcache show command is run with the default "-report normal"
 option, then in addition to the columns listed above, these columns
 are also shown:

 o Name The module name.

 o Version The version number of the module.

 o Href Mode Indicates which href mode was used to fetch the
 module. Possible values are:
 - dynamic - Resolves hrefs to determine what
 version of the submodules were populated.
 - static - Resolves hrefs to the specific
 submodules referenced at the time the href was
 created.
 - normal - Resolves hrefs according to how the
 hrefs were created. If a static href is
 reached, the persistent mode is set to "static"
 for that submodule and any submodules below it;
 otherwise, the persistent mode remains
 "normal".

 Note: The populate command will not create an
 mcache link to an mcached module version that
 was not fetched statically.

 o Hierarchical Indicates whether the module was recursively

ENOVIA Synchronicity Command Reference All -Vol2

1035

 populated into the module mcache. Possible values
 are "yes" and "no", where "yes" indicates that the
 module was recursively populated.

 If the mcache show command is run with the "-report verbose" option,
 then in addition to the columns shown with "-report normal", these
 columns are also shown:

 o Selector The selector used to fetch the module.

 o Base Directory The absolute path of the module version base
 directory.

 o Url The full URL of the module.

 If you run the mcache show command with "-format list", it returns a
 Tcl list of property names and values, for each module reported.

 Each module in the list has the following properties:

 If the mcache show command is run with the "-report brief" option:

 o modinstname The module instance name.

 o available Indicates whether the module is available for use
 by the populate command. Possible values are "1"
 and "0", where a value of "1" indicates the
 module is available for use. A module might be
 unavailable if, for example, it is currently being
 fetched to the module cache.

 o touched The time the module was last touched. This is an
 integer value. Use "clock format" to convert the
 value to a recognizable date/time.

 If the mcache show command is run with the default "-report normal"
 option, then in addition to the columns listed above, these columns
 are also shown:

 o name The module name.

 o version The version number of the module.

 o hrefmode Indicates which href mode was used to fetch the
 module. Possible values are:
 - dynamic - Resolves hrefs to determine what
 version of the submodules were populated.
 - static - Resolves hrefs to the specific
 submodules referenced at the time the href was
 created.
 - normal - Resolves hrefs according to how the
 hrefs were created. If a static href is
 reached, the persistent mode is set to "static"
 for that submodule and any submodules below it;
 otherwise, the persistent mode remains
 "normal".

Administration

1036

 Note: The populate command will not create an
 mcache link to an mcached module version that
 was not fetched statically.

 o hierarchical Indicates whether the module was recursively
 populated into the module mcache. Possible values
 are "1" and "0", where "1" indicates that the
 module was recursively populated.

 If the mcache show command is run with the "-report verbose" option,
 then in addition to the columns shown with "-report normal", these
 columns are also shown:

 o selector The selector used to fetch the module.

 o basedir The absolute path of the module version base
 directory.

 o url The full URL of the module.

SYNOPSIS

 mcache show [-format {list | text}] [-mcachepaths <path_list>]
 [-report { brief | normal | verbose}]

OPTIONS

• -format
• -mcachepaths
• -report

-format

 -format list|text Determines the format of the output.
 Valid values are:
 o text Display a text table with headers and
 columns. (Default) Objects are shown in
 alphabetical order.

 o list Tcl list structure, designed for further
 processing, and for easy conversion to a
 Tcl array structure. This means that it
 is a list structure in name-value pair
 format. The top level structure is:
 {
 property1 <value>
 property2 <value>
 ...
 }

ENOVIA Synchronicity Command Reference All -Vol2

1037

 A list is output for each module reported.

-mcachepaths

 -mcachepaths <path_list>
 Identifies one or more module caches for the
 mcache show operation to process.

 To specify multiple paths, surround the path
 list with double quotation marks ("") and
 separate path names with a space. For
 example: "/dir1/cacheA /dir2/cacheB"

 NOTES:
 - To specify a path that includes spaces:
 o In stcl or stclc, surround the path
 containing the spaces with curly braces.
 For example:
 "/dir1/cache {/dir2/path name}".
 o In dss or dssc, use backslashes (\) to
 "escape" the spaces. For example:
 "/dir1/cache /dir2/path\ with\ spaces"

 The command processes the module caches
 specified with the -mcachepaths option or in
 the default module cache paths registry
 setting if this option is not supplied. (For
 information about the registry setting, see
 the "Modules Options" topic in the ENOVIA
 Synchronicity DesignSync Administrator's Guide.)

-report

 -report brief|normal| Determines what information is returned in the
 verbose output of the command. The information each
 option returns is discussed in detail in the
 "Understanding the Output" section above.

 Valid values are:
 o brief - outputs the module instance, whether
 it is available to link to, and the last
 "touched time".

 o normal - the default report mode, outputs
 the module name, version, href mode, and
 whether the module was fetched recursively.
 This is in addition to the information output
 in brief mode.

 o verbose - outputs the module selector, base
 directory, and full URL. This is in addition

Administration

1038

 to the information output in normal mode.

RETURN VALUE

 An empty string.

SEE ALSO

 command defaults, mcache scan, mcache scrub, mcache touch

EXAMPLES

 In this example, "mcache show" is run in the default "-report normal"
 mode. The -mcachepaths option is not specified, because a
 default module cache path was set by the syncmgr in SyncAdmin's
 General -> Modules pane.

 stcl> mcache show

 Name Instance Version Href Mode Available Hierarchical Last
Touched
 --

 Alu Alu%0 1.2 static yes yes 03/13/2011
03:06
 Decoder Decoder%0 1.2 static yes yes 07/20/2011
13:38

 stcl>

mcache touch

mcache touch Command

NAME

 mcache touch - Updates the "touch time" of a module instance

DESCRIPTION

• Understanding the Output

 This command updates the "touch time" of a module instance to the
 current date/time. The "touch time" is the last time a module cache
 instance was known to be referenced.

ENOVIA Synchronicity Command Reference All -Vol2

1039

 Run "mcache touch" or "mcache scan" prior to running "mcache scrub",
 to ensure that active module cache instances are not inadvertently
 removed by "mcache scrub".

 The mcache commands are only applicable to modern module caches. They
 cannot be used to maintain legacy module caches.

 This command supports the command defaults system.

Understanding the Output

 The mcache touch command provides the option to specify the level of
 information the command outputs during processing. The -report option
 allows you to specify what type of information is displayed:

 If you run the mcache touch command with the '-report brief' option,
 the command outputs the following information:
 o Failure messages.
 o Warning messages.
 o Success/failure status.

 By default, or if you run the mcache touch command with the '-report
 normal' option, the command displays all the information contained in
 '-report brief', and the following additional information:
 o A progress message that module cache instances are being touched.

 If you run the mcache touch command with the '-report verbose' option,
 the command displays all the information contained in '-report normal'
 and the following additional information:
 o A status message with the full URL of each module cache instance
 that is being touched.

SYNOPSIS

 mcache touch [-report {brief | normal | verbose}] [--]
 <argument>[<argument>...]

ARGUMENTS

• Workspace Module

Workspace Module

 <workspace module> The module whose "touch time" will be updated.
 This can be a workspace module name (if it is
 unique in the workspace), a full workspace URL,
 or a module instance.

Administration

1040

OPTIONS

• -report
• --

-report

 -report brief|normal| Determines what information is returned in the
 verbose output of the command. The information each
 option returns is discussed in detail in the
 "Understanding the Output" section above.

 Valid values are:
 o brief - outputs failures, warnings, and
 success/failure count.

 o normal - the default report mode, outputs
 the command's progress. This is in addition
 to the information output in brief mode.

 o verbose - outputs cache module instances that
 are being touched. This is in addition to the
 information output in normal mode.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when
 arguments to the command begin with a hyphen
 (-).

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.

 Notes:
 - Scripts should only test for non-empty lists to
 determine success or failure. The actual content of a non-empty
 list currently takes the form "Objects succeeded (n)" and
 "Objects failed (n)", where 'n' is the number of objects that
 succeeded or failed. However, these return values are subject to
 change in a future release.
 - If there are no successes and at least one failure an exception
 occurs (the return value is thrown, not returned).

ENOVIA Synchronicity Command Reference All -Vol2

1041

 The mcache touch UNIX command line script will return a 0 for success
 and a 1 for failure.

SEE ALSO

 command defaults, mcache scan, mcache scrub, mcache show

EXAMPLES

 In this example, "mcache touch" is run in verbose mode on a module
 cache instance. The full workspace URL of the module instance is
 specified.

 stcl> mcache touch -report verbose \
 stcl> /home/tbarbg8/mcache/qelwsun14_30148-Alu-1.2/Alu%0

 Touching module cache instances ...

 /home/tbarbg8/mcache/qelwsun14_30148-Alu-1.2/Alu%0: Successfully touched.
 {Objects succeeded (1)} {}
 stcl>

Events and Triggers

Events

event

event Commands

NAME

 event - Event commands

DESCRIPTION

 These commands are used to manipulate custom events, which may be
 used to fire triggers.

SYNOPSIS

 event <event_command> [<event_command_options>]

 Usage: event [create]

Administration

1042

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 stcl, event create, event_prop, trigger, trigger fire, trigger list

event create

event create Command

NAME

 event create - Creates a custom event

DESCRIPTION

 Creates an event which may be used in conjunction with the 'trigger
 list' and 'trigger fire' commands to match and execute triggers.

 Events are generally created by the system, and the matching triggers
 automatically executed. This command is useful primarily to exercise
 triggers for testing and to extend the system by creating new kinds
 of events.

SYNOPSIS

 event create <name_value_list>

OPTIONS

• Name/Valueist

Name/Valueist

 name_value_list
 A Tcl list of the form {name1 value1 name2 value2 ...} giving

ENOVIA Synchronicity Command Reference All -Vol2

1043

 the names and values of all properties that define the event.
 Use the 'event_prop list' command to see the list of valid
 property names. 'event_prop create' can be used to create new
 event properties.

RETURN VALUE

 A new event object on success, an error if an invalid property was
 named.

EXAMPLES

 Suppose you want to test your triggers for the 'tag' command when the
 tag is 'GOLDEN'.

 set event [event create {command tag tag GOLDEN}]
 foreach trigger [trigger list -event $event] {
 trigger fire $trigger $event
 }

 Here's an example of creating your own event type. Suppose you want
 to automate some tasks whenever a piece of your design is ready for
 test. Further suppose that the way you know that something is ready
 for test is the application of the tag 'READY_FOR_TEST'.

 You could create all of your triggers like this:

 trigger create task1 \
 -require type preObject \
 -require command tag \
 -require tag READY_FOR_TEST \
 -exec "task1 $objURL"

 ... repeat for each task ...

 Unfortunately, if you change the way you indicate readiness for test,
 you will need to re-register all of your tasks. As an alternative,
 you could register a single trigger that generates 'readyForTest'
 events, like so:

 trigger create FireTestTriggers \
 -require type preObject \
 -require command tag \
 -require tag READY_FOR_TEST \
 -tcl_script {
 set event [event create {type readyForTest objUrl $objURL}]
 foreach t [trigger list -event $event] {
 trigger fire $t $event
 }
 }

 Now you can register each task for the 'readyForTest' event:

Administration

1044

 trigger create task1 -require type readyForTest -exec "task1 $objURL"
 trigger create task2 -require type readyForTest -exec "task1 $objURL"
 trigger create task3 -require type readyForTest -exec "task1 $objURL"
 ... etc. ...

 When you change how you know you're ready for test, you simply update
 the 'FireTestTriggers' trigger, and the individual task triggers can
 remain unchanged.

SEE ALSO

 stcl, event_prop, trigger, trigger fire, trigger list

event_prop

event_prop Commands

NAME

 event_prop - Event_prop commands

DESCRIPTION

 These commands are used to create, delete, and get information about
 the properties that can be associated with events.

SYNOPSIS

 event_prop <event_prop_command> [<event_prop_command_options>]

 Usage: event_prop [create|delete|get|list]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

ENOVIA Synchronicity Command Reference All -Vol2

1045

 stcl, event create, event_prop create, event_prop delete,
 event_prop get, event_prop list, trigger

event_prop create

event_prop create Command

NAME

 event_prop create - Defines a new event property

DESCRIPTION

 Defines a new property which may then be used to create events, which
 may be used in turn to fire triggers. See 'event create'.

SYNOPSIS

 event_prop create <name> [-prompt <prompt_string>] [-desc <description>]
 [-type <value>]

OPTIONS

• -desc
• -name
• -prompt
• -type

-desc

 -desc <description>
 A more verbose description of the property used to provide more
 extensive information than the prompt string. If not provided,
 the prompt string is used.

-name

 name
 The name of the new event property. Must be unique among set of
 known event properties.

Administration

1046

-prompt

 -prompt <prompt_string>
 A concise description of the property used to prompt the user for
 values. If no prompt is provided, the property name is used
 instead.

-type

 -type <value>
 Defines how the value of this property is passed between DesignSync
 and a trigger.
 Available -type values are:
 in - the value of property is passed from DesignSync to the trigger
 (this is the default)
 out - the value is passed out of trigger code to DesignSync
 inOut - the value is passed in and out.

SEE ALSO

 stcl, event create, event_prop delete,
 event_prop get, event_prop list, trigger

event_prop delete

event_prop delete Command

NAME

 event_prop delete - Deletes an event property definition

DESCRIPTION

 Delete a previously-defined event property definition. Note that
 system-defined event property definitions may not be deleted.

SYNOPSIS

 event_prop delete <name>

OPTIONS

ENOVIA Synchronicity Command Reference All -Vol2

1047

• name

name

 name
 The name of the event property to be deleted.

SEE ALSO

 stcl, event create, event_prop create, event_prop get,
 event_prop list, trigger

event_prop get

event_prop get Command

NAME

 event_prop get - Gets information about an event property definition

DESCRIPTION

 Gets the name, prompt, and description of an event property.

SYNOPSIS

 event_prop get <name>

OPTIONS

• name

name

 name
 The name of the event property definition being queried.

RETURN VALUE

 A list of names and values suitable for array construction via the Tcl
 array set command. The following attributes are defined:

Administration

1048

 name
 The name of the event property.

 prompt
 The prompt string for the event property.

 desc
 The verbose description of the event property.

SEE ALSO

 stcl, event create, event_prop create, event_prop delete,
 event_prop list, trigger

EXAMPLES

 To list the attributes of all event properties:

 foreach prop [event_prop list] {
 puts "$prop:"
 array set attrArray [event_prop get $prop]
 foreach attr [array names attrArray] {
 puts "\t$attr = $attrArray($attr)"
 }
 }

event_prop list

event_prop list Command

NAME

 event_prop list - Lists known event property definitions

DESCRIPTION

 Lists all event property definitions whose name match the given
 expression(s). If no arguments are given, all event properties
 are listed.

SYNOPSIS

 event_prop list [<expr> ...]

ENOVIA Synchronicity Command Reference All -Vol2

1049

OPTIONS

• expr_option

 expr
 This argument is a regular expression used to limit the list of
 event properties returned. Multiple expressions may be
 given. If no expressions are given, all known event properties
 are returned.

RETURN VALUE

 A list of the names of the matching event property definitions.

SEE ALSO

 stcl, event create, event_prop create, event_prop delete,
 event_prop get, trigger

EXAMPLES

 To list all event properties:

 event_prop list

 To list all properties with 'obj' in their names:

 event_prop list *obj*

 To list all properties with 'obj' or 'URL' in their names:

 event_prop list *obj* *URL*

Triggers

trigger

trigger Commands

NAME

 trigger - Trigger commands

DESCRIPTION

Administration

1050

 These commands are used to create, delete, enable, disable, fire, and
 get information about triggers.

SYNOPSIS

 trigger <trigger_command> [<trigger_command_options>]

 Usage: trigger [block|create|delete|disable|enable|fire|get|
 isEnabled|list|status|unblock]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 stcl, event, event_prop, trigger create, trigger delete,
 trigger disable, trigger enable, trigger fire, trigger get,
 trigger isEnabled, trigger list, trigger status

EXAMPLES

 See specific "trigger" commands.

trigger block

trigger block Command

NAME

 trigger block - Prevents recursive trigger script activation

DESCRIPTION

 This command is used within a trigger script to indicate that the
 script should not be invoked recursively when actions taken by the
 script cause the invocation of triggers.

ENOVIA Synchronicity Command Reference All -Vol2

1051

 Triggers are automatically unblocked after the body of code has
 been evaluated, regardless of how that code body terminates (e.g.,
 error, return, or normal). You therefore do not need to use the
 'trigger unblock' command with 'trigger block'.

 Scripts that use the 'trigger block' and 'trigger unblock'
 construct may cause instability. Any code written in the following
 format:

 trigger block
 <perform some action>
 trigger unblock

 should be rewritten as:

 trigger block {
 <perform some action>
 }

SYNOPSIS

 trigger block

OPTIONS

 none

RETURN VALUE

 **

SEE ALSO

 trigger unblock, server-side, rstcl

EXAMPLES

 Suppose that foo.tcl is a trigger script that is executed by
 the server whenever anyone edits a note. Within foo.tcl, a
 call is made to the 'note setprops' command, which changes a
 property of a note.

 Normally this scenario would cause the script foo.tcl to be
 immediately executed again because a note has changed.

Administration

1052

 To prevent this recursive script activation, use the trigger block
 command to tell the server not to invoke the script recursively.

 Following is an example of how the trigger block command might be used
 within a script (it is not a complete/functional script):
 trigger block
 note setprops $SYNC_NoteURL State closed

trigger create

trigger create Command

NAME

 trigger create - Creates or replaces a trigger

DESCRIPTION

 Creates a new trigger, or replaces an existing one.

 A trigger is a named action, generally a script or program, that is
 run by the system when a specified event occurs in the system (like a
 file is checked in, tagged, etc.).

 Each event has several named properties associated with it that
 describe what the system is doing. See the help for 'event'
 for more information.

 By specifying the values of event properties that are required for a
 trigger to execute (-require), or will prevent a trigger from firing
 (-exclude), a trigger can be configured to execute only when desired.

SYNOPSIS

 trigger create <name> [-exec <command_and_arguments> |
 -tcl_script <script_filename> | -tcl_file <file_name> |
 -tcl_store <file_name>] [-replace]
 [-require|exclude <name> <valueExprList> ...]

OPTIONS

• -exclude
• -exec
• Name
• -replace
• -require
• -tcl_file
• -tcl_script

ENOVIA Synchronicity Command Reference All -Vol2

1053

• -tcl_store

-exclude

 -exclude <name> Specifies that the trigger may only fire if the
 <valueExprList> value of the named event property does not match one
 of the regular expressions in the valueExprList. If
 the named property does not exist on the event, the
 event may still fire the trigger if all other
 criteria are satisfied.

-exec

 -exec <command The given command will be executed in a subprocess
 <and_arguments> and passed the provided arguments.

 Notes:

 o Before the command is executed, any variables in
 the command line will be replaced by the named
 event property value.

 o To include event property names as arguments: If
 you are using the dss or dssc command shell,
 precede the event property name with a dollar sign
 (using Tcl variable syntax). For example: dss>
 -exec "xterm -e vi $objURL" If you are using the
 stcl or stclc command shell, precede the event
 property name with a backslash and a dollar sign
 or put the entire argument inside curly
 braces. For example:
 stcl> -exec "xterm -e vi \$objURL"
 stcl> -exec {xterm -e vi $objURL}

Name

 <name>
 A unique name for the trigger.

-replace

 -replace Replace the existing trigger of the same name, if
 any. If this option is not given, and the named
 trigger already exists, an error is generated.

Administration

1054

-require

 -require <name> Specifies that the trigger may only fire if the value
 <valueExprList> of the named event property matches one of the
 regular expressions in the valueExprList. If the
 named property does not exist on the event, the
 trigger will not fire.

 Note: You cannot specify populate as a value for the
 command event property. Use co instead.

-tcl_file

 -tcl_file The named Tcl file is loaded and executed when the
 <file_name> trigger is fired. This enables users to edit the
 trigger script and have their changes take effect
 immediately without calling trigger create again.
 DesignSync looks in the current directory for the
 specified file; if the file is in another directory,
 use a full pathname for the <file_name>.

-tcl_script

 -tcl_script The given script will be evaluated by the system
 <script> directly.

-tcl_store

 -tcl_store The named Tcl file is loaded immediately and the
 <file_name> contents stored for later execution when the trigger
 is fired. This option is essentially the same as the
 -tcl_script option, except that the script is read
 from the file instead of the command arguments. Note
 that trigger create must be called again after any
 changes to the trigger script, otherwise the stored
 version of the script will not be updated.

RETURN VALUE

 If the command is successful, DesignSync returns an empty string
 (""). If the command cannot run, DesignSync throws an error message
 explaining the failure.

SEE ALSO

ENOVIA Synchronicity Command Reference All -Vol2

1055

 stcl, event, event_prop, trigger create, trigger delete,
 trigger disable, trigger enable, trigger fire, trigger get,
 trigger isEnabled, trigger list, trigger status

EXAMPLES

• Example of Registering a Tcl Script with a Trigger
• Examples of Running a Program on the Selected Files with a Trigger
• Example of Registering a Tcl File with a Trigger
• Example of Using Loading and Storing a TCL File with a Trigger

Example of Registering a Tcl Script with a Trigger

 Use -tcl_script to register a Tcl script that will keep a running
 log file of all .v and .vlog files that have been checked in.

 stcl> trigger create LogCheckins \
 -require objPath "*.v *.vlog" \
 -require command "ci" \
 -require type postObject \
 -tcl_script {
 set fd [open [glob ~/checkin.log] a]
 puts $fd "$objURL"
 close $fd
 }

Examples of Running a Program on the Selected Files with a Trigger

 Use -exec to run the program 'lint' on all .c files before checking
 them in, except for when user 'zeus' is the one doing the checkin:
 In stcl:
 stcl> trigger create LintCheck \
 -require objPath *.c \
 -require type preObject \
 -require command ci \
 -exclude user zeus \
 -exec "lint \$objPath"

 Note: There are alternative formats for how you can specify command
 using the -exec option. In stcl you can also use:
 -exec {lint $objPath}

 In dss mode, you can use:
 -exec "lint $objPath"

Example of Registering a Tcl File with a Trigger

 Use -tcl_file to register a Tcl file to be executed after every 'tag'

Administration

1056

 command that uses the tag 'GOLDEN':

 stcl> trigger create GoldenTag \
 -require command tag \
 -require tag GOLDEN \
 -require type postCommand \
 -tcl_file goldenTag.tcl

 Note: Unlike when tcl_store is used, the tcl file is not processed
 until the trigger runs.

Example of Using Loading and Storing a TCL File with a Trigger

 Use -tcl_store to immediately read and store the Tcl contained within
 a file for later execution before each checkin command:

 stcl> trigger create beforeCheckin \
 -require command ci \
 -require type preCommand \
 -tcl_store preCheckin.tcl

trigger delete

trigger delete Command

NAME

 trigger delete - Deletes an existing trigger

DESCRIPTION

 Deletes an existing trigger.

SYNOPSIS

 trigger delete <name>

OPTIONS

• Name

Name

 name The name of the trigger to be deleted.

ENOVIA Synchronicity Command Reference All -Vol2

1057

RETURN VALUE

 1 on success, error if the trigger does not exist.

SEE ALSO

 stcl, event, event_prop, trigger create, trigger delete,
 trigger disable, trigger enable, trigger fire, trigger get,
 trigger isEnabled, trigger list, trigger status

EXAMPLES

 Create a trigger named 'foo', then delete it.

 trigger create foo -tcl_script { puts "foo" }
 trigger delete foo

trigger disable

trigger disable Command

NAME

 trigger disable - Prevents a trigger from firing

DESCRIPTION

 The named trigger is marked as disabled, and will not be fired by the
 system. It can be subsequently re-enabled by using the 'trigger
 enable' command.

 Use 'trigger status' or 'trigger isEnabled' to determine whether or
 not a trigger is currently disabled.

SYNOPSIS

 trigger disable <name>

OPTIONS

• Name

Administration

1058

Name

 name The name of the trigger to be disabled.

RETURN VALUE

 1 on success, error if the trigger does not exist.

SEE ALSO

 stcl, event, event_prop, trigger create, trigger delete,
 trigger disable, trigger enable, trigger fire, trigger get,
 trigger isEnabled, trigger list, trigger status

EXAMPLES

 Create a trigger named 'foo', then disable it.

 trigger create foo -tcl_script { puts "foo" }
 trigger disable foo

 The stcl client returns:

trigger enable

trigger enable Command

NAME

 trigger enable - Makes a disabled trigger active again

DESCRIPTION

 The named trigger is marked as enabled, and will be fired by the
 system if an event matching its firing criteria is created.

 Use 'trigger status' or 'trigger isEnabled' to determine whether or
 not a trigger is currently enabled.

SYNOPSIS

 trigger enable <name>

ENOVIA Synchronicity Command Reference All -Vol2

1059

OPTIONS

• Name

Name

 name The name of the trigger to be enabled.

RETURN VALUE

 1 on success, error if the trigger does not exist.

SEE ALSO

 stcl, event, event_prop, trigger create, trigger delete,
 trigger disable, trigger enable, trigger fire, trigger get,
 trigger isEnabled, trigger list, trigger status

EXAMPLES

 Create a trigger named 'foo', and disable it.

 trigger create foo -tcl_script { puts "foo" }
 trigger disable foo

 The stcl client returns:
 1

 Re-enable the trigger named foo.

 trigger enable foo

 The stcl client returns:
 # 1

trigger fire

trigger fire Command

NAME

 trigger fire - Executes a trigger

Administration

1060

DESCRIPTION

 Execute the named trigger. Note that even disabled triggers may be
 executed by the 'trigger fire' command; this is useful to test
 triggers before enabling them.

SYNOPSIS

 trigger fire <name> <event>

OPTIONS

• Event
• Name

Event

 event
 An event returned by the 'event create' command.

Name

 name The name of the trigger to be executed.

RETURN VALUE

 1 if the trigger succeeded, 0 if it returned an error.

SEE ALSO

 stcl, event, event_prop, trigger create, trigger delete,
 trigger disable, trigger enable, trigger fire, trigger get,
 trigger isEnabled, trigger list, trigger status

EXAMPLES

 Create a test trigger named 'echo' intended to output the names of all
 non-filter events as they execute, then test it by creating a simple
 event and calling trigger fire.

 trigger create echo \

ENOVIA Synchronicity Command Reference All -Vol2

1061

 -exclude type *Filter \
 -tcl_script {
 puts "$trigger"
 }

 # create an event with the single property 'type' set to
 # 'testEvent'
 set event [event create {type testEvent}]

 # fire the trigger
 trigger fire echo $event

trigger get

trigger get Command

NAME

 trigger get - Gets information about a trigger

DESCRIPTION

 Returns a Tcl list of the names and values of various attributes of
 the named trigger. This command is primarily useful for use in Tcl
 scripts that manage triggers. For a user-friendly display of trigger
 information, use the 'trigger status' command.

SYNOPSIS

 trigger get <name>

OPTIONS

• Name

Name

 name The name of the trigger to be queried.

RETURN VALUE

 A Tcl list of name/value pairs of the form:
 {name1 value1 name2 value2 ...}
 This list can be converted into an array using 'array set'.
 The following attributes will be returned, as appropriate:

Administration

1062

 name - name of the trigger
 type - exec, tcl_script, tcl_file, or tcl_store
 fileName - name of file for tcl_file or tcl_store triggers
 commandLine - command line for exec triggers
 tclScript - the script for tcl_script or tcl_store triggers
 reqProps - required properties list
 exclProps - exclude properties list

SEE ALSO

 stcl, event, event_prop, trigger create, trigger delete,
 trigger disable, trigger enable, trigger fire, trigger get,
 trigger isEnabled, trigger list, trigger status

EXAMPLES

 Print the name and type of all known triggers:

 foreach trigger [trigger list -all] {
 array set props [trigger get $trigger]
 puts "Trigger $props(name)"
 puts " type = $props(type)"
 }

trigger isEnabled

trigger isEnabled Command

NAME

 trigger isEnabled - Determines whether or not a trigger is enabled

DESCRIPTION

 Queries the status of the named trigger, returning a 1 if the trigger
 is enabled.

SYNOPSIS

 trigger isEnabled <name>

OPTIONS

ENOVIA Synchronicity Command Reference All -Vol2

1063

• Name

Name

 name The name of the trigger to be queried.

RETURN VALUE

 1 if enabled, 0 if disabled, error if the trigger does not exist.

SEE ALSO

 stcl, event, event_prop, trigger create, trigger delete,
 trigger disable, trigger enable, trigger fire, trigger get,
 trigger isEnabled, trigger list, trigger status

EXAMPLES

 See if the trigger 'LintCheck' is enabled:

 if [trigger isEnabled LintCheck] {
 puts "Enabled"
 } else {
 puts "Disabled"
 }

trigger list

trigger list Command

NAME

 trigger list - Gets a list of triggers

DESCRIPTION

 Lists triggers that match the given criteria. If no arguments are
 given, all triggers are listed.

SYNOPSIS

 trigger list [-all | -disabled | -enabled] [-event event]

Administration

1064

 [name_expr ...]

OPTIONS

• -all
• -disabled
• -enabled
• -event
• Name Expression

-all

 -all If given, lists all triggers whether they are
 enabled or disabled.

 This option is mutually exclusive with -disabled and
 -enabled.

-disabled

 -disabled If given, lists only trigger that have been
 disabled.

 This option is mutually exclusive with -all and
 -enabled.

-enabled

 -enabled If given, lists only triggers that have not been
 disabled (Default.)

 This option is mutually exclusive with -all and
 -disabled.

-event

 -event event The event given is an object returned by the 'event
 create' function. If given, only triggers which
 would be fired for the given event are listed. This
 parameter is typically used without any other flags
 to determine the set of triggers to fire for an
 event.

ENOVIA Synchronicity Command Reference All -Vol2

1065

Name Expression

 name_expr ... Each name_expr gives a regular expression which is
 matched against the set of all known triggers. Only
 triggers with matching names are listed.

RETURN VALUE

 A list of matching triggers.

SEE ALSO

 stcl, event, event_prop, trigger create, trigger delete,
 trigger disable, trigger enable, trigger fire, trigger get,
 trigger isEnabled, trigger list, trigger status

EXAMPLES

• Example of Listing All Active Triggers
• Example of Listing All Disabled Triggers
• Example of Listing All Triggers that Match a Wildcard List
• Example of Using Trigger List in a Script

Example of Listing All Active Triggers

 To list all active (non-disabled) triggers:

 trigger list

Example of Listing All Disabled Triggers

 To get a list of all triggers that are currently disabled:

 trigger list -disabled

Example of Listing All Triggers that Match a Wildcard List

 List all enabled and disabled triggers that start with the letter
 'a' or the letter 'c':

 trigger list -all a* c*

Administration

1066

Example of Using Trigger List in a Script

 Here's how this function could be used in conjunction with 'trigger
 fire' to run all triggers that match an event, exiting the loop if
 any error are encountered.

 # first create an event - pretend we are the ci command
 set event(type) preCommand
 set event(command) ci
 set event(objPath) foo.v
 set e [event create [array get event]]

 # use trigger list to loop all trigger that match our event
 foreach trigger [trigger list -event $e] {
 if ![trigger fire $trigger $e] {
 error "trigger $trigger failed"
 }
 }

trigger status

trigger status Command

NAME

 trigger status - Shows the status of triggers

DESCRIPTION

 Prints a user-friendly list of triggers, whether or not they are
 enabled, what type they are, and more information based on their type.

SYNOPSIS

 trigger status [<name_expr> ...]

OPTIONS

• Name Expression

Name Expression

 name_expr ... Each name_expr gives a regular expression which is
 matched against the set of all known triggers. Only
 triggers with matching names are listed. If no
 expressions are given, all known triggers are

ENOVIA Synchronicity Command Reference All -Vol2

1067

 listed.

SEE ALSO

 stcl, event, event_prop, trigger create, trigger delete,
 trigger disable, trigger enable, trigger fire, trigger get,
 trigger isEnabled, trigger list

EXAMPLES

• Example of Listing Information about All Triggers
• Example of Listing Information for Triggers that Match a Wildcard List
• Example of Listing Trigger Information for a Specific Trigger

Example of Listing Information about All Triggers

 To list information about all triggers:

 trigger status

Example of Listing Information for Triggers that Match a Wildcard List

 List information about all triggers with names that start with the
 letter 'a' or the letter 'c':

 trigger status a* c*

Example of Listing Trigger Information for a Specific Trigger

 List information about a trigger named 'foo':

 trigger status foo

trigger unblock

trigger unblock Command

NAME

 trigger unblock - Deprecated command

DESCRIPTION

Administration

1068

 This command was used to allow a trigger script to be recursively
 executed when it created events for which it was a registered
 trigger. This command is deprecated because this behavior is
 the default for trigger scripts.

 This command was sometimes used to undo the effect of a
 previously executed 'trigger block' command. Under the new
 architecture, scripts that use the 'trigger block' and 'trigger
 unblock' construct may cause instability. Any code written in
 the following format:

 trigger block
 <perform some action>
 trigger unblock

 should be rewritten as:

 trigger block {
 <perform some action>
 }

SYNOPSIS

 trigger unblock

OPTIONS

 none

RETURN VALUE

 none

SEE ALSO

 trigger block, server-side, rstcl

Registry File Management

SyncAdmin

SyncAdmin

ENOVIA Synchronicity Command Reference All -Vol2

1069

NAME

 SyncAdmin - Synchronicity Administrator tool

DESCRIPTION

 Synchronicity's SyncAdmin tool is a graphical user interface that
 lets system administrators, project leaders, and users configure
 DesignSync clients (command-line and graphical) for
 site, project, or individual use.

 You execute SyncAdmin from your operating system shell, not
 from a Synchronicity client shell (dss/dssc/stcl/stclc). On
 Windows platforms, you invoke SyncAdmin from the Windows
 Start menu, typically:
 Start->Programs->Dassault Systems <version>->SyncAdmin

 See SyncAdmin help for details on SyncAdmin. From the GUI, click
 the Help button on any SyncAdmin page.

SYNOPSIS

 SyncAdmin [-file <filename> | -project | -site | -user]

OPTIONS

• -file
• -project
• -site
• -user

-file

 -file <filename> Edit the specified registry file, bypassing the initial
 SyncAdmin window (where you select which registry
 file to edit).

-project

 -project Edit the project registry file, bypassing the initial
 SyncAdmin window (where you select which registry
 file to edit).

-site

Administration

1070

 -site Edit the site registry file, bypassing the initial
 SyncAdmin window (where you select which registry
 file to edit).

-user

 -user Edit the user registry file, bypassing the initial
 SyncAdmin window (where you select which registry
 file to edit).

RETURN VALUE

 none

SEE ALSO

 DesSync

EXAMPLES

 This example invokes SyncAdmin:
 % SyncAdmin

 This example invokes SyncAdmin, in background mode, to edit the
 user registry:
 % SyncAdmin -user &

sregistry

sregistry Commands

NAME

 sregistry - SyncAdmin file registry commands

DESCRIPTION

 The sregistry commands allow you to view and edit the Synchronicity
 Administrator registries from the command line.

ENOVIA Synchronicity Command Reference All -Vol2

1071

SYNOPSIS

 sregistry <sregistry_command> [<sregistry_command_options>]

 Usage: sregistry [delete|get|keys|reset|scope|set|source|values]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 sregistry delete, sregistry get, sregistry keys, sregistry reset,
 sregistry set, sregistry scope, sregistry source, sregistry values

EXAMPLES

 See specific "sregistry" commands.

sregistry delete

sregistry delete Command

NAME

 sregistry delete - Delete registry key or value

DESCRIPTION

 This command deletes keys and values associated with selected
 SyncAdmin registry files. This command will not delete
 read-only registry files.

 After you run the "sregistry delete" command, be sure to run the
 "sregistry reset" command to update the registry file. You can do this
 from the client for client registry files, or in a server-side script

Administration

1072

 for the server's registry files. You can also do this by restarting
 the client or server applications.

SYNOPSIS

 Client-Side Invocation
 sregistry delete [-currentuser | -localmachine | -synch]
 [-file <filename> | -project | -site | -user]
 <keyPath> <value>

 Server-Side Invocation
 sregistry delete [-currentuser | -localmachine | -synch]
 [-file <filename> | -port | -site]
 <keyPath> <value>

OPTIONS

• -currentuser
• -file
• keyPath
• -localmachine
• -port
• -project
• -site
• -synch
• -user
• value

-currentuser

 -currentuser Directs the command to HKEY_CURRENT_USER by adding
 a prefix to the key 'KeyPath' with
 "HKEY_CURRENT_USER\Software\Synchronicity"

 This option is mutually exclusive with
 -localmachine and -synch.

-file

 -file <filename> Executes the command using only the registry file
 'Filename'. No other files, including
 SyncRegistry.reg, are read. You must have write
 permission for the specified file.

 When invoked from the client-side, this option
 is mutually exclusive with -project, -site, and
 -user. When invoked from a server-side script,
 this option is mutually exclusive with -port,

ENOVIA Synchronicity Command Reference All -Vol2

1073

 and -site.

keyPath

 <keyPath> Specifies the key or partial key where the
 registry value lives. If more than one
 hierarchical level is specified in the path, the
 syntax is very important.

 In an stclc shell, the KeyPath must be enclosed
 in double quotes and the path elements delimited
 with two backslashes:
 "General\\Options"
 or, the KeyPath must be enclosed in braces and
 the path elements delimited with one backslash:
 {General\Options}.

 In a dssc shell, the KeyPath must be enclosed in
 double quotes and the path elements delimited
 with one backslash:
 "General\Options"

 If the root is not specified in the KeyPath or
 with the -currentuser or -localmachine options,
 HKEY_CURRENT_USER is searched.

-localmachine

 -localmachine Directs the command to HKEY_LOCAL_MACHINE by
 adding a prefix to the key 'KeyPath' with
 "HKEY_LOCAL_MACHINE\Software\Synchronicity"

 This option is mutually exclusive with
 -currentuser and -synch.

-port

 -port This is the default context and executes the
 command
 using the registry context: PortRegistry.reg,
 SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. The -port option is only valid
 when called from a server side script.

 This option is mutually exclusive with -file and
 -site.

-project

Administration

1074

 -project Executes the command using the registry context:
 ProjectRegistry.reg, SiteRegistry.reg,
 EntRegistry.reg, SyncRegistry.reg. If the
 project registry is not available because
 $SYNC_PROJECT_CFGDIR is not defined, an error
 will be generated. The -project option is not
 allowed from a server side script as the project
 registry is only valid from a client tool.
 Requires write permission to
 ProjectRegistry.reg.

 This option is mutually exclusive with -file,
 -site, -user.

-site

 -site Executes the command using the registry context:
 SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. Requires write permission to
 SiteRegistry.reg.

 When invoked from the client-side, this option
 is mutually exclusive with -file, -project, and
 -user. When invoked from a server-side script,
 this option is mutually exclusive with -file,
 and -port.

-synch

 -synch Directs the command to Software\Synchronicity by
 adding a prefix to the key 'KeyPath' with
 "Software\Synchronicity"

 This option is mutually exclusive with
 -currentuser and -localmachine.

-user

 -user This is the default context and executes the
 command using the registry context:
 UserRegistry.reg, ProjectRegistry.reg,
 SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. The -user option is valid only
 when called from a client tool. Requires write
 permission to UserRegistry.reg.

 This option is mutually exclusive with -file,
 -project, and -site.

ENOVIA Synchronicity Command Reference All -Vol2

1075

value

 <value> The name of the registry value to retrieve the
 data from.

RETURN VALUE

 Returns an empty string on success. Deleting a value that does not
 exist will return an empty string. Deleting a key where the leaf
 name does not exist will return an empty string.

 If a Value is not specified, the key and all its values are removed.
 If the key contains sub-keys, neither the key nor it values are
 removed. You can not remove a key that contains subkeys.

 The delete command can only delete keys and values that are in the
 registry file that is open for write (the first file listed in the
 registry context). If you try to delete a value that exists in
 one of the read-only registry files, an error will be generated. If
 you try to delete a key and the key and all its values exist in
 read-only registry files, an error will be generated. If some of the
 key's values are in the writable registry file, only those values
 will be deleted and the command will return OK. The key and the values
 in the read-only registry files will still remain.

SEE ALSO

 sregistry get, sregistry set, sregistry keys, sregistry reset,
 sregistry source, sregistry values

EXAMPLES

 Continuing from the 'sregistry set' example, which showed a user setting
 their own default fetch state, overriding the site-wide "share" preference.

 stcl> sregistry set -currentuser -user "General\\Options" \
 stcl> DefaultFetchType get
 get
 stcl>

 The user can remove their default fetch state setting:

 stcl> sregistry delete -currentuser -user "General\\Options"
DefaultFetchType
 stcl>

Administration

1076

sregistry get

sregistry get Command

NAME

 sregistry get - Get a registry value

DESCRIPTION

 Retrives the value of a registry key from the specified registry. The
 complete list of available registry keys is contained in the ENOVIA
 Synchronicity DesignSync Administrator's Guide.

SYNOPSIS

 Client-side Invocation
 sregistry get [-base dec | hex]
 [-currentuser | -localmachine | -synch]
 [-default <dataPath>] [-format text | list]
 [-user | -project | -site | -file <filename>]
 <keyPath> <value>

 Server-side Invocation
 sregistry get [-base dec | hex]
 [-currentuser | -localmachine | -synch]
 [-default <dataPath>] [-format text | list]
 [-port | -site | -file <filename>] <keyPath> <value>

OPTIONS

• -base
• -currentuser
• -default
• -file
• -format
• -localmachine
• -port
• -project
• -site
• -synch
• -user
• Key Path
• Value

ENOVIA Synchronicity Command Reference All -Vol2

1077

-base

 -base Specifies how to represent numerical data. The default
 is dec (decimal). The -base option has no effect if the
 data is of type string. If the base is selected as dec,
 the data will be represented as a signed integer. If the
 base is selected as hex (hexadecimal), the data will be
 output in unsigned hexadecimal format starting with
 0x and showing all four bytes. For example, the same
 registry value might output 0xffffffff in hex base
 and -1 in dec base.

-currentuser

 -currentuser Directs the command to HKEY_CURRENT_USER by adding
 a prefix to the key 'KeyPath' with
 "HKEY_CURRENT_USER\Software\Synchronicity"

 This option is mutually exclusive with
 -localmachine and -synch.

-default

 -default If a default value, <dataPath>, is specified, the
 <dataPath> command will return DefaultData if the value was not
 found in the registry. If a default is not specified
 and the value is not found in the registry, an error
 is returned.

-file

 -file <filename> Executes the command using only the registry file
 <filename>. No other files, including
 SyncRegistry.reg, are read. You must have write
 permission for the specified file.

 When invoked from the client-side, this option is
 mutually exclusive with -project, -site, and
 -user. When invoked from a server-side script,
 this option is mutually exclusive with -port,
 -site, and -user.

-format

 -format Specifies the way the output will be returned.
 The default is text. The format text will return the
 data from the registry as a string. If the registry

Administration

1078

 value is a dword, the return value is a string
 representing the dword. The format list will return
 a tcl list of name value pairs. The following named
 values will display:

 data: The data requested from the registry with the
 get command.

 type: The type of the data that was returned
 from the registry. The type will be
 either number or string.
 If the value was not found in the registry,
 and the default data was returned, the type
 will be set to string.
 source: A string indicating which registry file the
 value was found in. The string will be
 one of the following: Current, Default,
 Override, or None. See the sregistry
 source command for more information.
 root: A string containing the name of the root
 (hive) where the value was found. The
 string will be either "HKEY_CURRENT_USER"
 or "HKEY_LOCAL_MACHINE".
 If the value was not found in the
 registry, and the default data was
 returned, this value will be set to
 "HKEY_CURRENT_USER".

-localmachine

 -localmachine Directs the command to HKEY_LOCAL_MACHINE by adding
 a prefix to the key 'KeyPath' with
 "HKEY_LOCAL_MACHINE\Software\Synchronicity"

 This option is mutually exclusive with
 -currentuser and -sync.

-port

 -port This is the default context and executes the command
 using the registry context: PortRegistry.reg,
 SiteRegistry.reg, EntRegistry.reg, SyncRegistry.reg.
 The -port option is only valid when called from a
 server side script.

 This option is mutually exclusive with -file and
 -site.

-project

ENOVIA Synchronicity Command Reference All -Vol2

1079

 -project Executes the command using the registry context:
 ProjectRegistry.reg, SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. If the project registry is not
 available because $SYNC_PROJECT_CFGDIR is not defined,
 an error will be generated. The -project option is not
 allowed from a server side script as the project
 registry is only valid from a client tool. Requires
 write permission to ProjectRegistry.reg.

 This option is mutually exclusive with -file,
 -site, and -user.

-site

 -site Executes the command using the registry context:
 SiteRegistry.reg, EntRegistry.reg, SyncRegistry.reg.
 Requires write permission to SiteRegistry.reg.

 When invoked from the client-side, this option is
 mutually exclusive with -file, -project, and
 -user. When invoked from a server-side script,
 this option is mutually exclusive with -file,
 -port, and -user.

-synch

 -synch Directs the command to Software\Synchronicity by
 adding a prefix to the key 'KeyPath' with
 "Software\Synchronicity"

 This option is mutually exclusive with
 -currentuser and -localmachine.

-user

 -user This is the default context and executes the command
 using the registry context: UserRegistry.reg,
 ProjectRegistry.reg, SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. The -user option is only valid when
 called from a client tool. Requires write permission
 to UserRegistry.reg.

 This option is mutually exclusive with -file,
 -project, and -site.

Key Path

Administration

1080

 <keyPath> Specifies the key or partial key where the registry
 value lives. If more than one hierarchical level is
 specified in the path, the syntax is very important.

 In an stclc shell, the key path must be enclosed in
 double quotes and the path elements delimited with
 two backslashes:
 "General\\Options"
 or, the key path must be enclosed in braces and the
 path elements delimited with one backslash:
 {General\Options}.

 In a dssc shell, the key path must be enclosed in
 double quotes and the path elements delimited with
 one backslash:
 "General\Options"

 If the root is not specified in the key path or
 with the -currentuser or -localmachine options,
 HKEY_CURRENT_USER is searched first for the
 value, and if it is not found,
 HKEY_LOCAL_MACHINE is searched.

Value

 <value> The name of the registry value to retrieve the data
 from.

SEE ALSO

 sregistry set, sregistry keys, sregistry values, sregistry delete,
 sregistry source, sregistry reset

EXAMPLES

 Continuing from the 'sregistry values' example, which showed:

 stcl> sregistry values -currentuser -site "General\\Options"
 DefaultFetchType
 stcl>

 To find the site-wide default fetch state value:

 stcl> sregistry get -currentuser -site "General\\Options" DefaultFetchType
 share
 stcl>

 See the 'sregistry set' example for how a user would set their own default

ENOVIA Synchronicity Command Reference All -Vol2

1081

 fetch state, overriding the site default value.

sregistry keys

sregistry keys Command

NAME

 sregistry keys - Displays sub-keys in registry value

DESCRIPTION

 This command displays a list of the sub-keys associated with a specified
 KeyPath.

SYNOPSIS

 Client-side invocation:
 sregistry keys [-currentuser | -localmachine | -synch]
 [-user | -project | -site | -file <filename>]
 [-format text | list] <KeyPath>

 Server-side invocation:
 sregistry keys [-currentuser | -localmachine | -synch]
 [-format text | list]
 [-port | -site | -file <filename>] <KeyPath>

OPTIONS

• -currentuser
• -file
• -format
• Key Path
• -localmachine
• -port
• -project
• -site
• -synch
• -user

-currentuser

 -currentuser Adds the following prefix to the key <KeyPath>:
 "HKEY_CURRENT_USER\Software\Synchronicity"

Administration

1082

 This option is mutually exclusive with
 -localmachine, and -synch.

-file

 -file <filename> Executes the command using only the registry file
 <filename>. No other files are read, including
 SyncRegistry.reg. You must have write permission
 for the specified file.

 When invoked from the client-side, this option is
 mutually exclusive with -project, -site, and
 -user. When invoked from a server-side script,
 this option is mutually exclusive with -port, and
 -site.

-format

 -format Specifies the way the output will be returned. The
 default is text. The format text will return each
 key on a new line. The format list will list the keys
 in a tcl list.

Key Path

 <KeyPath> Specifies the top-level key path or partial key path.
 If more than one hierarchical level is
 specified in the path, the syntax is very important.

 In an stclc shell, the KeyPath must be enclosed in
 double quotes and the path elements delimited with
 two backslashes:
 "General\\Options"
 or, the KeyPath must be enclosed in braces and the
 path elements delimited with one backslash:
 {General\Options}.

 In a dssc shell, the KeyPath must be enclosed in
 double quotes and the path elements delimited with
 one backslash:
 "General\Options"

 If the root is not specified in the KeyPath or
 with the -currentuser or -localmachine options,
 HKEY_CURRENT_USER is searched.

-localmachine

ENOVIA Synchronicity Command Reference All -Vol2

1083

 -localmachine Adds the following prefix to the key <KeyPath>:
 "HKEY_LOCAL_MACHINE\Software\Synchronicity"

 This option is mutually exclusive with
 -currentuser and -synch.

-port

 -port Executes the command using this registry hierarchy:
 PortRegistry.reg, SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. The -port option is the default.
 This option is only valid when called from a
 server-side script.

 This operation is mutually exclusive with -file,
 and -site.

-project

 -project Executes the command using this registry hierarchy:
 ProjectRegistry.reg, SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. If the project registry is not
 available because $SYNC_PROJECT_CFGDIR is not defined,
 an error will be generated. The -project option is not
 allowed from a server side script as the project
 registry is only valid from a client tool.

 This operation is mutually exclusive with
 -file, -site, and -user.

-site

 -site Executes the command using this registry hierarchy:
 SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg.

 When invoked from the client-side, this option is
 mutually exclusive with -file, -project, and -user.
 When invoked from a server-side script,
 this option is mutually exclusive with -file, and
 -port.

-synch

 -synch Adds the following prefix to the key <KeyPath>:
 "Software\Synchronicity"

Administration

1084

 This option is mutually exclusive with
 -currentuser and -localmachine.

-user

 -user Executes the command using this registry hierarchy:
 UserRegistry.reg, ProjectRegistry.reg,
 SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. The -user option is the
 default. This option is valid only when called
 from a client tool.

 This operation is mutually exclusive with -file,
 -project, and -site.

RETURN VALUE

 A list of the sub-keys of KeyPath. If no subkeys exist, then an empty
 list is returned.

SEE ALSO

 sregistry get, sregistry set, sregistry values, sregistry delete,
 sregistry source, sregistry reset

EXAMPLES

 The example below finds the site-wide General registry keys. When an
 empty string is returned, that means there are no sub-keys below the
 specified KeyPath.

 stcl> sregistry keys -currentuser -site General
 ExtensionTypes
 CmdTable
 Options
 stcl> sregistry keys -currentuser -site "General\\ExtensionTypes"
 stcl> sregistry keys -currentuser -site "General\\Options"
 stcl> sregistry keys -currentuser -site "General\\CmdTable"
 DefaultLogDir
 stcl>

 The 'sregistry values' example shows how to use the above result.

sregistry reset

ENOVIA Synchronicity Command Reference All -Vol2

1085

sregistry reset Command

NAME

 sregistry reset - Forces a refresh of all registry files

DESCRIPTION

 This command forces the re-reading of all registry files,
 including the read-only files. It returns an empty string upon
 successful completion. It is important to note that reloading all the
 registry files may not be sufficient to cause Synchronicity tools
 (client and server) to immediately see the new settings. This is
 because some values are cached by the programs. To assure all new
 values are being read by an application, the application should be
 restarted.

SYNOPSIS

 sregistry reset

OPTIONS

 None.

SEE ALSO

 sregistry get, sregistry set, sregistry keys, sregistry values
 sregistry source, sregistry delete

sregistry scope

sregistry scope Command

NAME

 sregistry scope - Temporarily changes which registry files are active

DESCRIPTION

Administration

1086

 Used only with the command defaults system, to temporarily change which
 registry files are active. By default, "defaults set" stores default
 values in the user's registry file. Use "sregistry scope" to store
 default values in other registry files that are sourced by the DesignSync
 client on startup, such as the installation's site registry file.

 Within a DesignSync client session, run "defaults refresh" to read all
 default values from the client registry files. See the DesignSync
 Data Manager User's Guide topic "Registry Files" for further information.

 To prevent users' saved default values from overriding site or project
 default values, specify the "-nooverrule" option to the "defaults set"
 command. See the "defaults set" command documentation for details.

SYNOPSIS

 sregistry scope [-project | -site]
 {defaults set -- <command> <option> [<option> ...]}

OPTIONS

• -project
• -site

-project

 -project If <SYNC_PROJECT_CFGDIR> is defined, store default values
 in the <SYNC_PROJECT_CFGDIR>/ProjectRegistry.reg file.
 Requires write permission to the ProjectRegistry.reg file.

-site

 -site Store default values in the site-wide registry file,
 <SYNC_SITE_CNFG_DIR>/SiteRegistry.reg. If not defined,
 <SYNC_SITE_CNFG_DIR> resolves to <SYNC_SITE_CUSTOM>/config
 which, in turn, resolves to <SYNC_CUSTOM_DIR>/site/config.
 Requires write permission to the SiteRegistry.reg file.

RETURN VALUE

 The result of the expression given to the "sregistry scope" command.

SEE ALSO

ENOVIA Synchronicity Command Reference All -Vol2

1087

 defaults refresh, defaults set, defaults show, command defaults

EXAMPLES

 As the installation owner, to set a default report mode for the "ls"
 command, for all users at your site:

 stcl> sregistry scope -site {defaults set -- ls -report verbose}

 The "defaults show" command confirms that the "-report verbose" default
 value for the "ls" command is set in the site registry file.

 stcl> defaults show -source ls
 {ls temporary {} project {} project_nooverrule {} user {} user_nooverrule
 {} site {-report verbose} site_nooverrule {} enterprise {}
 enterprise_nooverrule {}}
 stcl>

sregistry set

sregistry set Command

NAME

 sregistry set - Sets a registry value

DESCRIPTION

 The 'sregistry set' and related 'sregistry' commands allow you to edit
 the Synchronicity Administrator registries from the command
 line. When you enter the command, you choose the client registry
 or the server registry. You also need to specify the key or
 where the registry value lives (HKEY_CURRENT_USER or
 HKEY_LOCAL_MACHINE). The last part of the command identifies the
 KeyPath (SyncAdmin settings tree) and the key name you want to retrieve.

 After you run the "sregistry delete" command, be sure to run the
 "sregistry reset" command to update the registry file. You can do this
 from the client for client registry files, or in a server-side script
 for the server's registry files. You can also do this by restarting
 the client or server applications.

SYNOPSIS

 Client-Side Invocation
 sregistry set [-currentuser | -localmachine | -synch]
 [-file <filename> | -project | -site | -user]

Administration

1088

 <keyPath> [-type number|string] <value> [--] Data

 Server-Side Invocation
 sregistry set [-currentuser | -localmachine | -synch]
 [-file <filename> | -site | -port]
 <keyPath> [-type number|string] <value> [--] Data

ARGUMENTS

• Data

Data

 Data Specifies the data to write into the registry. Data
 must match the type specified with -type. A number
 can be an integer (signed or unsigned) or a
 hexadecimal value. Hexadecimal numbers must be
 prefixed with '0x' or '0X' For Example: 0xFF2A.

OPTIONS

• -currentuser
• -file
• keypath
• -localmachine
• -port
• -project
• -site
• -synch
• -type
• -user
• Value
• --

-currentuser

 -currentuser Directs the command to HKEY_CURRENT_USER by adding
 a prefix to the key 'KeyPath' with
 "HKEY_CURRENT_USER\Software\Synchronicity"

 This option is mutually exclusive with
 -localmachine and -synch.

-file

ENOVIA Synchronicity Command Reference All -Vol2

1089

 -file <filename> Executes the command using only the registry file
 'Filename'. No other files, including SyncRegistry.reg,
 are read. You must have write permission for the
 specified file.

 When invoked from the client-side, this option is
 mutually exclusive with -project, -site, and -user.
 When invoked from a server-side script,
 this option is mutually exclusive with -port,
 and -site.

keypath

 <keyPath> Specifies the key or partial key where the registry
 value lives. If more than one hierarchical level is
 specified in the path, the syntax is very important.

 In an stclc shell, the key path must be enclosed in
 double quotes and the path elements delimited with
 two backslashes:
 "General\\Options"
 or, the key path must be enclosed in braces and the
 path elements delimited with one backslash:
 {General\Options}.

 In a dssc shell, the key path must be enclosed in
 double quotes and the path elements delimited with
 one backslash:
 "General\Options"

 If the root is not specified in the key path or
 with the -currentuser or -localmachine options,
 HKEY_CURRENT_USER is used.

-localmachine

 -localmachine Directs the command to HKEY_LOCAL_MACHINE by adding
 a prefix to the key 'KeyPath' with
 "HKEY_LOCAL_MACHINE\Software\Synchronicity"

 This option is mutually exclusive with
 -currentuser and -synch.

-port

 -port This is the default context and executes the command
 using the registry context: PortRegistry.reg,
 SiteRegistry.reg, EntRegistry.reg, SyncRegistry.reg.
 The -port option is only valid when called from a
 server-side script.

Administration

1090

 This option is mutually exclusive with -file and
 -site.

-project

 -project Executes the command using the registry context:
 ProjectRegistry.reg, SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. If the project registry is not
 available because $SYNC_PROJECT_CFGDIR is not defined,
 an error will be generated. The -project option is not
 allowed from a server side script as the project
 registry is only valid from a client tool. Requires
 write permission to ProjectRegistry.reg.

 This option is mutually exclusive with -file,
 -site, and -user.

-site

 -site Executes the command using the registry context:
 SiteRegistry.reg, EntRegistry.reg, SyncRegistry.reg.
 Requires write permission to configuration
 directory for the site ($SYNC_SITE_CNFG_DIR) and
 the SiteRegistry.reg file.

 When invoked from the client-side, this option is
 mutually exclusive with -file, -project, and -user.
 When invoked from a server-side script,
 this option is mutually exclusive with -file, and
 -port.

-synch

 -synch Directs the command to Software\Synchronicity by
 adding a prefix to the key 'KeyPath' with
 "Software\Synchronicity"

 This option is mutually exclusive with
 -currentuser and -localmachine.

-type

 -type Specifies the type of data to store in the registry.
 Can be either string or number with string being
 the default.

-user

ENOVIA Synchronicity Command Reference All -Vol2

1091

 -user This is the default context and executes the command
 using the registry context: UserRegistry.reg,
 ProjectRegistry.reg, SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. The -user option is only valid when
 called from a client tool. Requires write permission
 to UserRegistry.reg.

 This option is musually exclusive with -file,
 -project, and -site.

Value

 <value> The name of the registry value to retrieve the data
 from.

--

 -- Specifies that there are no more switches to follow
 on the command line.

RETURN VALUE

 The value of Data is returned.

SEE ALSO

 sregistry get, sregistry keys, sregistry values, sregistry delete,
 sregistry source, sregistry reset

EXAMPLES

 Continuing from the 'sregistry get' example, which showed the site-wide
 default fetch state:

 stcl> sregistry get -currentuser -site "General\\Options" DefaultFetchType
 share
 stcl>

 A user can set their own default fetch state, overriding the site-wide
 preference.

 stcl> sregistry set -currentuser -user "General\\Options" \
 stcl> DefaultFetchType get
 get

Administration

1092

 stcl>

 See the 'sregistry source' example for how to determine which registry
 file's default fetch state value is being used.

sregistry source

sregistry source Command

NAME

 sregistry source - Displays the source of a registry value

DESCRIPTION

 This command displays the source (registry file) of a SyncAdmin
 registry value.

SYNOPSIS

 Client-Side Invocation
 sregistry source [-currentuser | -localmachine | -synch]
 [-file <filename> | -project | -site | -user]
 <keyPath> <value>

 Server-Side Invocation
 sregistry source [-currentuser | -localmachine | -synch]
 [-file <filename> | -port | -site]
 <keyPath> <value>

OPTIONS

• -currentuser
• -file
• KeyPath
• -localmachine
• -port
• -project
• -site
• -synch
• -user
• value

-currentuser

ENOVIA Synchronicity Command Reference All -Vol2

1093

 -currentuser Directs the command to HKEY_CURRENT_USER by adding
 a prefix to the key 'KeyPath' with
 "HKEY_CURRENT_USER\Software\Synchronicity"

 This option is mutually exclusive with
 -localmachine and -synch.

-file

 -file <filename> Executes the command using only the registry file
 'Filename'. No other files, including SyncRegistry.reg,
 are read. You must have write permission for the
 specified file.

 When invoked from the client-side, this option is
 mutually exclusive with -project, -site, and
 -user. When invoked from a server-side script,
 this option is mutually exclusive with -port, and
 -site.

KeyPath

 <keyPath> Specifies the key or partial key where the registry
 value lives. If more than one hierarchical level is
 specified in the path, the syntax is very important.

 In an stclc shell, the key path must be enclosed in
 double quotes and the path elements delimited with
 two backslashes:
 "General\\Options"
 or, the key path must be enclosed in braces and the
 path elements delimited with one backslash:
 {General\Options}.

 In a dssc shell, the key path must be enclosed in
 double quotes and the path elements delimited with
 one backslash:
 "General\Options"

 If the root is not specified in the key path or
 with the -currentuser or -localmachine options,
 HKEY_CURRENT_USER is searched.

-localmachine

 -localmachine Directs the command to HKEY_LOCAL_MACHINE by adding
 a prefix to the key 'KeyPath' with
 "HKEY_LOCAL_MACHINE\Software\Synchronicity"

Administration

1094

 This option is mutually exclusive with
 -currentuser and -synch.

-port

 -port This is the default context and executes the command
 using the registry context: PortRegistry.reg,
 SiteRegistry.reg, EntRegistry.reg, SyncRegistry.reg.
 The -port option is only valid when called from a
 server-side script.

 This option is mutually exclusive with -file and
 -site.

-project

 -project Executes the command using the registry context:
 ProjectRegistry.reg, SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. If the project registry is not
 available because $SYNC_PROJECT_CFGDIR is not defined,
 an error will be generated. The -project option is not
 allowed from a server side script as the project
 registry is only valid from a client tool. Requires
 write permission to ProjectRegistry.reg.

 This option is mutually exclusive with -file,
 -site, and -user.

-site

 -site Executes the command using the registry context:
 SiteRegistry.reg, EntRegistry.reg, SyncRegistry.reg.
 Requires write permission to SiteRegistry.reg.

 When invoked from the client-side, this option is
 mutually exclusive with -file, -project, and
 -user. When invoked from a server-side
 script, this option is mutually exclusive with
 -file, and -port.

-synch

 -synch Directs the command to Software\Synchronicity by
 adding a prefix to the key 'KeyPath' with
 "Software\Synchronicity"

 This option is mutually exclusive with
 -currentuser and -synch.

ENOVIA Synchronicity Command Reference All -Vol2

1095

-user

 -user This is the default context and executes the command
 using the registry context: UserRegistry.reg,
 ProjectRegistry.reg, SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. The -user option is only valid when
 called from a client tool. Requires write permission
 to UserRegistry.reg.

 This option is mutually exclusive with -file,
 -project, and -site.

value

 <value> The name of the registry value to retrieve the data
 from.

RETURN VALUE

 Current|Default|Override|None
 Returns 'Current' if the value comes from the registry file currently
 open for write.
 Returns 'Default' if the value comes from a registry with lower
 precedence than the registry file currently open for write.
 Returns 'Override' if the value comes from a registry with higher
 precedence than the registry file currently open for write.
 Returns 'None' if the value is not found in the registry.

SEE ALSO

 sregistry get, sregistry set, sregistry keys, sregistry reset
 sregistry delete, sregistry values

EXAMPLES

 Continuing from the 'sregistry set' example, which showed a user setting
 their own default fetch state, overriding the site-wide "share" preference.

 stcl> sregistry set -currentuser -user "General\\Options" \
 stcl> DefaultFetchType get
 get
 stcl>

 To determine which registry file (the site-wide registry file or the user's

Administration

1096

 registry file) is being sourced for the default fetch state value:

 stcl> sregistry source -currentuser -user "General\\Options"
DefaultFetchType
 Current
 stcl>

 This shows that the default fetch state value in the user's registry file
 (the registry file currently open for writing by the DesignSync client) is
 in use.

sregistry values

sregistry values Command

NAME

 sregistry values - Displays the available registry values

DESCRIPTION

 This command displays a list of Values available under the <keyPath> key.

SYNOPSIS

 Client-Side Invocation
 sregistry values [-currentuser | -localmachine | -synch]
 [-user | -project | -site | -file <filename>]
 [-port | -site | -file <filename>]
 [-format text | list] <keyPath>

 Server-Side Invocation
 sregistry values [-currentuser | -localmachine | -synch]
 [-user | -project | -site | -file <filename>]
 [-port | -site | -file <filename>]
 [-format text | list] <keyPath>

OPTIONS

• -currentuser
• -file
• -format
• KeyPath
• -localmachine
• -port
• -project
• -site
• -synch

ENOVIA Synchronicity Command Reference All -Vol2

1097

• -user

-currentuser

 -currentuser Directs the command to HKEY_CURRENT_USER by adding
 a prefix to the key 'KeyPath' with
 "HKEY_CURRENT_USER\Software\Synchronicity"

 This option is mutually exclusive with
 -localmachine and -synch.

-file

 -file <filename> Executes the command using only the registry file
 'Filename'. Only the file ('Filename') will be read
 or written. No other files, including the
 SyncRegistry.reg file are read.

 When invoked from the client-side, this option is
 mutually exclusive with -project, -site, and
 -user. When invoked from a server-side script,
 this option is mutually exclusive with -port, and
 -site.

-format

 -format Specifies the way the output will be returned. The
 default is text. The format text will return each
 value on a new line. The format list will list the
 values in a tcl list.

KeyPath

 <keyPath> Specifies the key or partial key where the registry
 value lives. If more than one hierarchical level is
 specified in the path, the syntax is very important.

 In an stclc shell, the key path must be enclosed in
 double quotes and the path elements delimited with
 two backslashes:
 "General\\Options"
 or, the key path must be enclosed in braces and the
 path elements delimited with one backslash:
 General\Options}.

 In a dssc shell, the key path must be enclosed in
 double quotes and the path elements delimited with
 one backslash:
 "General\Options"

Administration

1098

 If the root is not specified in the key path or
 with the -currentuser or -localmachine options,
 HKEY_CURRENT_USER is searched.

-localmachine

 -localmachine Directs the command to HKEY_LOCAL_MACHINE by adding
 a prefix to the key 'KeyPath' with
 "HKEY_LOCAL_MACHINE\Software\Synchronicity"

 This option is mutually exclusive with
 -currentuser and -synch.

-port

 -port This is the default context and executes the command
 using the registry context: PortRegistry.reg,
 SiteRegistry.reg, EntRegistry.reg, SyncRegistry.reg.
 The -port option is only valid when called from a
 server-side script.

 This option is mutually exclusive with -file and
 -site.

-project

 -project Executes the command using the registry context:
 ProjectRegistry.reg, SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. If the project registry is not
 available because $SYNC_PROJECT_CFGDIR is not defined,
 an error will be generated. The -project option is not
 allowed from a server side script as the project
 registry is only valid from a client tool. Requires
 write permission to ProjectRegistry.reg.

 This option is mutually exclusive with -file,
 -site, and -user.

-site

 -site Executes the command using the registry context:
 SiteRegistry.reg, EntRegistry.reg, SyncRegistry.reg.
 Requires write permission to SiteRegistry.reg.

 When invoked from the client-side, this option is
 mutually exclusive with -file, -project, and -user.
 When invoked from a server-side script,

ENOVIA Synchronicity Command Reference All -Vol2

1099

 this option is mutually exclusive with -file and
 -port.

-synch

 -synch Directs the command to Software\Synchronicity by
 adding a prefix to the key 'KeyPath' with
 "Software\Synchronicity"

 This option is mutually exclusive with
 -currentuser and -localmachine.

-user

 -user This is the default context and executes the command
 using the registry context: UserRegistry.reg,
 ProjectRegistry.reg, SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. The -user option is only valid when
 called from a client tool. Requires write permission
 to UserRegistry.reg.

 This option is mutually exclusive with -file,
 -project, and -site.

RETURN VALUE

 A list of the Values available under the <keyPath> key.
 If no Values exist, then an empty list is returned.

SEE ALSO

 sregistry get, sregistry set, sregistry keys, sregistry delete,
 sregistry source, sregistry reset

EXAMPLES

 Continuing from the 'sregistry keys' example, which showed:

 stcl> sregistry keys -currentuser -site General\\Options
 stcl>

 To find the registry values available below General\\Options:

 stcl> sregistry values -currentuser -site "General\\Options"
 DefaultFetchType

Administration

1100

 stcl>

 This means that a default fetch state has been set site-wide.

 The 'sregistry get' example shows how to retrieve that default value.

Server Backup

backup

backup Command

NAME

 backup - Backs up a SyncServer

DESCRIPTION

 The backup command lets you back up a SyncServer, including its vault,
 metadata, and notes. You can use this command to run both full and
 incremental backups. Use the backup command in conjunction with
 your standard system back-up procedures. To create a back-up that
 lets you safely restore your server, you take two steps:

 1. Use the backup command to generate back-up data in the
 server_vault/Backup.sync area.
 2. Perform a standard system back-up of your server_vault area and
 your $SYNC_CUSTOM_DIR.

 The data stored in the Backup.sync directory creates a server
 snapshot that, in conjunction with a standard system back-up, lets
 you safely restore your server and vault.

 The backup command is server-side only and must be run using the rstcl
 command or by passing a script in a URL from your browser. See
 the 'server-side' topic or the ENOVIA Synchronicity stcl Programmer's
 Guide for details.

 The back-up operation includes the server vault, metadata,
 attachments, and all of the notes, note types, and property types.
 The back-up preserves the following directories:

 o The entire server_metadata hierarchy
 o The entire server_vault hierarchy
 o Parts of the $SYNC_CUSTOM_DIR/servers/<host>/<port>/share/data
 hierarchy.

 Only attachments are copied from the $SYNC_CUSTOM_DIR areas.
 Note customizations stored in the custom areas are not
 backed up.

ENOVIA Synchronicity Command Reference All -Vol2

1101

 The backup command does not compress the backed-up data.

 The data is backed up to the directory:

 $SYNC_DIR/../syncdata/<host>/<port>/server_vault/Backup.sync

 This directory contains a subdirectory for each back-up operation.
 The back-up subdirectory name has the following format:

 <year><month><day>_<hour><minute><second>

 The time is in 24-hour format according to the local time zone of
 the server.

 Within the dated subdirectory, the backed-up data is stored in the
 following directories:

 o Attachments - Hard links to the note attachment and definition
 files in the server's $SYNC_CUSTOM_DIR/servers/<host>/<port>/
 share/data area.
 o server_metadata/ and all directories below it - Copies of
 the metadata.
 o server_vault/ and all directories below it - Copies of the
 tags database are stored in the server_vault/Partitions
 subdirectories. Hard links to the server vault are stored in
 the server_vault directory.

 For example, data in:

 $SYNC_DIR/../syncdata/<host>/<port>/server_vault/Projects/P1/file1.rca

 might be backed up to:

 $SYNC_DIR/../syncdata/<host>/<port>/server_vault/Backup.sync/
 20010710_145601/Projects/P1/file1.rca

 The Backup.sync, Import.sync, and Export.sync directories under
 server_vault are not backed up.

 Note: The backup creates symbolic links to vault data if your
 Backup.sync area is on a different partition from your server or
 if your system does not support hardlinks. If the vault data is
 removed (for example, by an rmfolder command) the backed-up
 symbolic links cannot be used to restore your data. To avoid this
 problem, archive your Backup.sync area using a switch to
 de-reference the symbolic links.

 The back-up operation does not make the server completely
 inaccessible. The server is suspended for a short time at the
 beginning of the back-up but after that it is accessible for all
 ProjectSync operations. DesignSync users have read access to
 operations after the initial suspension. For example, after the
 initial suspension, DesignSync users can populate from a vault
 during a back-up.

 For each dated back-up subdirectory, a .cleanup executable file is
 generated in the Backup.sync directory. You can run this executable

Administration

1102

 to remove the corresponding backed-up data. For example, if your
 back-up directory is:

 $SYNC_DIR/../syncdata/<host>/<port>/server_vault/Backup.sync/
 20010710_145601

 You would enter "20010710_145601.cleanup" to remove the data in
 the 20010710_145601 directory.

 If the clean-up operation fails, you get an error message.

 During the backup, .inprogress is appended to the dated
 subdirectory of Backup.sync. This extension is removed when the
 back-up completes. You can use this feature to check the status of
 your back-up. If .inprogress is appended to the subdirectory
 name and you cannot write to the server, the back-up is still
 underway. If .inprogress is appended to the subdirectory name
 and you can write to the server, the server crashed and
 restarted while the back-up was underway.

 See the ProjectSync User's Guide: "Backing Up Your Server" help topic
 for information on recovering from server crashes, restoring
 your backed-up files, and enabling and scheduling automated backups.

 Note: If you choose to back up without using the backup command,
 you must stop your server, perform the backup, and then restart
 the server. When you use the backup command, all access to the
 metadata is refused while the metadata is copied; all write access
 to the vault is refused while the vault is copied. The metadata
 and the vault are backed up into a single archive. Most of the
 $SYNC_CUSTOM_DIR is not included in the back-up operation.

SYNOPSIS

 backup [-from <date>]

OPTIONS

• -from

-from

 -from <date> When the -from argument is specified, an
 incremental backup is performed based on
 the backup that occurred on <date>. The
 <date> value must match the timestamp of
 a previous full or incremental backup
 directory. For example, if you have a
 backup directory called "20031027_085512"
 then you can specify:

ENOVIA Synchronicity Command Reference All -Vol2

1103

 backup -from "20031027 085512"

 You also can specify the special value
 "last" to incrementally back up from
 the most recent back up.

RETURN VALUE

 Name of the back-up directory

SEE ALSO

 rstcl, access verify

EXAMPLES

 The following example illustrates how to use the backup command in
 a Tcl script. The script first calls access verify to ensure that
 the user has permission to perform a back-up. If not, the script
 returns "Permission denied." If the user has permission, the back-
 up operation performs an incremental backup based on the previous
 backup. If the operation fails, the script issues an error.

 if {[access verify AdministrateServer $SYNC_User]} {
 if {[catch { backup -from last } result]} {
 puts ""
 puts "** Backup Server Error **"
 puts "Stack Trace: $errorInfo"
 puts ""
 }
 } else {
 puts "Permission denied."
 }

 When using backup in a script, invoke the access verify command to
 ensure that only authorized users can back up the server. See the
 ENOVIA Synchronicity Access Control Guide for information on using
 the AdministrateServer access control to restrict access to server
 operations.

keydbcheckpoint

keydbcheckpoint Command

NAME

Administration

1104

 keydbcheckpoint - Back up for module-related metadata tables

DESCRIPTION

 This command is used internally to maintain the integrity of the
 module-related metadata tables.

SYNOPSIS

 keydbcheckpoint [-restore] [--]

restoreserver

restoreserver

NAME

 restoreserver - Restores the data from a backed-up server

DESCRIPTION

 The restoreserver script restores an entire server from your
 backed-up server data. This script lets you restore not only vault
 folders but also metadata, notes, and attachments. When you restore a
 Cadence view, all the objects in the view are restored. (Note: When
 you restore a collection object other than a Cadence view object, you
 must restore both the main collection object and all of its member
 file objects.)

 Your SyncServer is shut down during the restoration and restarted again
 when the operation is complete. You must be the server owner to run the
 restoreserver script.

 Before running the restoreserver script, you need to restore the
 server_vault and $SYNC_CUSTOM_DIR data from your system backup and then
 transfer the data in the Backup.sync area to the correct place within
 the server.

 Run the restoreserver script from the command line on the system where
 you run your SyncServer(s). To invoke the script, enter the following
 on the command line:

 restoreserver

 The script starts and opens a log file, restoreserver.log, in your
 home directory.

ENOVIA Synchronicity Command Reference All -Vol2

1105

 If your SyncServer has more than one port, the script prompts you to
 choose the port you want to restore. Enter the number for the port.

 If you have more than one set of backup data, the script prompts you
 to choose the backup data that you want to restore from. The script
 displays a numbered list showing each dated incremental and full backup.
 Enter the number for the date you want to restore from.

 If you choose an incremental backup date, the script first restores the
 last full backup and then restores each subsequent incremental backup.

 See "Restoring All Server Backup Data" in the ENOVIA Synchronicity
 DesignSync Data Manager Administrator's Guide for complete details on
 restoring your server data.

SYNOPSIS

 restoreserver

RETURN VALUE

 The restoreserver command logs its activity to the restoreserver.log
 file in your home directory. If the command fails, DesignSync
 returns an error explaining the failure.

SEE ALSO

 Backup

restorevault

restorevault Command

NAME

 restorevault - Restores specified server vault or directory data

DESCRIPTION

 This command lets you specify backed-up vault data to restore. You
 can restore vault folders, directories, or individual vault
 objects. When you restore a Cadence Cell View collection object, all
 vault objects within the equivalent view folder are also

Administration

1106

 restored. However, to restore vault data of other types of collection
 objects, you must restore both the collection object and each member
 file object.

 This command does not restore:
 o Backed-up metadata, notes, or attachments. For a full
 restoration of these objects, you must use the restoreserver
 script. See Restoring All Server Backup Data in the ProjectSync
 User's Guide for details.
 o Data for the Hierarchical Configuration Manager.
 o Vaults backed up from pre-4.0 versions of Developer Suite.

 The restorevault command is server-side only and must be run
 using the rstcl command or by passing a script in a URL from
 your browser. See the 'server-side' topic or the ENOVIA Synchronicity
 stcl Programmer's Guide for details.

 If you incorporate the restorevault command into an rstcl script,
 the access controls that govern who can restore a vault are
 not applied.

 Error messages are written to error_log in:
 $SYNC_DIR/custom/servers/<server>/<port>/logs

SYNOPSIS

 restorevault -from <backup_area> [-overwrite] [--] <path>

OPTIONS

• -from
• -overwrite
• --

-from

 -from <backup_area> The name of the directory inside Backup.sync
 that you want to restore from. For example,
 20030813_095027.

-overwrite

 -overwrite Specifies that items that exist in the vault
 are overwritten during the restoration. (See
 Restoring Your Server Vault Data in the
 ProjectSync User's Guide for examples of using
 this option.)

ENOVIA Synchronicity Command Reference All -Vol2

1107

--

 -- Indicates that the command should stop
 looking for command options. Use this
 option when the object you specify begins
 with a hyphen (-).

OPERANDS

• Vault Directory Path

Vault Directory Path

 <path> The path of the vault directory or vault
 object to be restored. If you specify a
 directory, the restoration is recursive.

RETURN VALUE

 None

SEE ALSO

 backup

EXAMPLES

 This example tcl script uses the restorevault command to restore
 the vault data from the and4 directory. Any existing files in the
 directory are overwritten:

 restorevault -overwrite -from 20030707_150817 /Projects/smallLib/and4

 This example restores vault data of the Cadence view object called
 layout and all of its member objects.

 restorevault -from /Projects/smallLib/mid2/layout.sync.cds

suspend

suspend Command

NAME

Administration

1108

 suspend - Sets the server to a semi-active state

DESCRIPTION

 The suspend command sets the server to a semi-active state. This
 command should only be used inside a server-side TCL script. The
 script should be invoked through rstcl. It will execute the suspend
 command, run the code specified in the tcl-code argument and terminate
 the suspend, restoring the server to normal operation.

 While the server is in a semi-active state, DesignSync rejects
 operations such as checkin, with a message explaining that the server
 is in a suspended state and returning the optional -because message.
 The administrator can define registry settings that determine whether
 the operation will retry, how many retry attempts will be attempted
 before the command fails, and how long to wait between retries. For
 more information, see the ENOVIA DesignSync Data Manager
 Administrator's Guide.

 Note: The backup functionality in DesignSync uses the suspend command
 to put the server in a restricted access state.

SYNOPSIS

 suspend [-because <why>] -maintenance | -readonly [-mode]
 {tcl-code}

ARGUMENTS

• tcl Code

tcl Code

 <tcl-code> The code to execute while the server is in suspend
 mode.

OPTIONS

• -because
• -maintenance
• -mode
• -readonly

-because

 -because <why> Specifies the reason the server is in semi-active

ENOVIA Synchronicity Command Reference All -Vol2

1109

 state. Any operations that fail to run while the
 server is in this state will return this as a reason
 to the user.

-maintenance

 -maintenance Sets the server to deny all read or write
 operations.

 This option is mutually exclusive with -readonly. You
 must specify either -readonly or -maintenance.

-mode

 -mode Sets a return string indicating whether the server is
 in 'normal,' 'readonly,' or 'maintenance,' mode.
 This can be used by scripts wishing to check the
 server status.

-readonly

 -readonly Sets the server to allow read-only vault operations,
 such as populate -get/-share, or compare, contents,
 ls, and other read-only commands. It does not allow
 operations that modify the vault such as populate
 -lock, ci, mkmod, etc.

 This option is mutually exclusive with
 -maintenance. You must specify either -readonly or
 -maintenance.

RETURN VALUE

 Not applicable.

SEE ALSO

 backup, rstcl

EXAMPLES

 This example shows a procedure that releases the global server lock,
 suspends the server for 100 seconds in both maintenance and readonly

Administration

1110

 mode.

 Releasing the global server lock is recommended to allow other
 commands past the locking gate to receive the 'in maintenance mode'
 failure. Otherwise, the lock prevents other server-side tcl scripts
 from being processed by the server.

 # first release the global lock
 # To avoid any output from the 'url syslock' command,
 # the record command places the output in the variable "msg"

 record {url syslock -release smdSrvrMetaDataLock} msg

 proc FullMaintenanceCode {} {
 # here the code that requires the server to reject
 # all requests, will be done
 after 100000
 }

 proc ReadOnlyMaintenanceCode {} {
 # here the maintenance which allows read ops
 # such as (populate -get/-share, ls, compare...)
 # but denies write ops,
 # such as (ci, populate -lock, tag, rmversion....)
 after 100000
 }

 suspend -maintenance \
 -because "Server Is Undergoing Required Maintenance" \
 {FullMaintenanceCode}

 suspend -readonly \
 -because "Server Is Undergoing Required Maintenance. \
 Read Operations are allowed" \
 {ReadOnlyMaintenanceCode}

Troubleshooting

syncinfo

syncinfo Command

NAME

 syncinfo - Returns Synchronicity environment information

DESCRIPTION

 This command returns information about the Synchronicity
 software environment, such as version number, location of
 registry files, and default editor and HTML browser. The command

ENOVIA Synchronicity Command Reference All -Vol2

1111

 can be run from the client to return client information, or from
 the server to return server information.

 By default (with no arguments specified), all available information
 is returned. You can request specific information by specifying
 one or more command arguments.

 If a given value has not been set or is not available, then
 'syncinfo' returns an empty string. For example, if you ask for
 portRegistryFile from the client, the return value is empty because
 portRegistryFile is only available from the server.

SYNOPSIS

 syncinfo [<arg> [<arg>...]]

ARGUMENTS

• General Information
• isServer
• syncDir
• version
• Registry Information
• clientRegistryFiles
• enterpriseRegistryFile
• portRegistryFile
• projectRegistryFile
• serverRegistryFiles
• siteRegistryFile
• syncRegistryFile
• userRegistryFile
• usingSyncRegistry
• Customization Information
• customDir
• customSiteDir
• customEntDir
• siteConfigDir
• usrConfigDir
• userConfigFile
• Client Information
• connectTimeout
• commAttempts
• defaultCache
• fileEditor
• htmlBrowser
• proxyNamePort

Administration

1112

• somTimeout
• Server Information
• berkdbIsShmEnabled
• berkdbShmKey
• isTestMode
• serverMetadataDir
• serverDataDir
• serverMachine
• serverName
• serverPort
• User Information
• home
• userName

General Information

isServer

 isServer Returns a Tcl boolean value (0 or 1) indicating
 whether the software executing the syncinfo
 command is acting as a server (1) or client (0).

syncDir

 syncDir Returns the root directory of the Synchronicity
 software installation. On UNIX, this value
 corresponds to the SYNC_DIR environment
 variable (on Windows, SYNC_DIR is not required).

version

 version Returns the version of the Synchronicity software
 as a string.

Registry Information

clientRegistryFiles

 clientRegistryFiles Returns a comma-separated list of registry
 files used by the Synchronicity clients
 (DesSync, stcl, dss, stclc, dssc).

enterpriseRegistryFile

ENOVIA Synchronicity Command Reference All -Vol2

1113

 enterpriseRegistryFile Returns the enterprise-wide registry file.

portRegistryFile

 portRegistryFile Returns the port-specific registry file.

projectRegistryFile

 projectRegistryFile Returns the project-specific registry file.

serverRegistryFiles

 serverRegistryFiles Returns a comma-separated list of registry
 files used by a Synchronicity server.

siteRegistryFile

 siteRegistryFile Returns the site-wide registry file.

syncRegistryFile

 syncRegistryFile Returns the Synchronicity-supplied standard
 registry file.

userRegistryFile

 userRegistryFile Returns the user-specific registry file.

usingSyncRegistry

 usingSyncRegistry Returns a Tcl boolean value (0 or 1)
 indicating whether the Synchronicity
 software is using the text-based registry (1)
 or the native Windows registry (0).

Customization Information

customDir

Administration

1114

 customDir Returns the root directory of the 'custom' branch
 of the Synchronicity installation hierarchy,
 which contains all site- and server-specific
 customization files. The default value,
 <SYNC_DIR>/custom, can be overridden by the
 SYNC_CUSTOM_DIR environment variable.

customSiteDir

 customSiteDir Returns the directory that contains site-specific
 customization files. The default value,
 <SYNC_CUSTOM_DIR>/site (which defaults to
 <SYNC_DIR>/custom/site), can be overridden by
 the SYNC_SITE_CUSTOM environment variable.

customEntDir

 customEntDir Returns the directory that contains enterprise-specific
 configuration files. The default value,
 <SYNC_ENT_CUSTOM> (which defaults
 to <SYNC_CUSTOM_DIR>/enterprise),
 can be overridden by the SYNC_ENT_CUSTOM
 environment variable.

siteConfigDir

 siteConfigDir Returns the directory that contains site-specific
 configuration files. The default value,
 <SYNC_SITE_CUSTOM>/config (which defaults
 to <SYNC_CUSTOM_DIR>/site/config, which
 defaults to <SYNC_DIR>/custom/site/config),
 can be overridden by the SYNC_SITE_CNFG_DIR
 environment variable.

usrConfigDir

 userConfigDir Returns the directory that contains user
 configuration files. The default value,
 <HOME>/.synchronicity, can be overridden
 by the SYNC_USER_CFGDIR environment variable.

userConfigFile

 userConfigFile Returns the user configuration file. The default
 value, <HOME>/.synchronicity/user.cfg, can be
 overridden by the SYNC_USER_CONFIG

ENOVIA Synchronicity Command Reference All -Vol2

1115

 environment variable.

Client Information

connectTimeout

 connectTimeout Returns the number of seconds the client will
 wait per communication attempt with the server.

commAttempts

 commAttempts Returns the number of times client/server
 communication is attempted before failing.
 Using multiple attempts protects against
 transient network problems. 'Connect Failure'
 failures do not trigger multiple connection
 attempts, because transient network problems
 rarely cause this error.

 Note: When the number of communication attempts
 is the default value of 3, 'syncinfo commAttempts'
 returns no value instead of returning 3.

defaultCache

 defaultCache Returns the default cache directory for the
 client as specified during installation or
 using SyncAdmin.

fileEditor

 fileEditor Returns the default file editor as specified
 during installation or using SyncAdmin.

htmlBrowser

 htmlBrowser (UNIX only) Returns the default HTML browser
 as specified during installation or using SyncAdmin.

proxyNamePort

 proxyNamePort Returns the <name>:<port> of a proxy, if
 one is defined in a client registry file or

Administration

1116

 using the ProxyNamePort environment variable.

somTimeout

 somTimeout Returns the number of milliseconds after an
 unsuccessful server connection attempt during
 which the client does not try to connect again.
 This timeout protects against an operation
 on many objects (such as 'ls' on a large
 directory) taking an excessively long time
 to complete when there is a connection failure
 (such as when the server is down). Instead of
 waiting the connectTimeout period for each
 object, the operation fails for all objects
 after the first connection failure.

Server Information

berkdbIsShmEnabled

 berkdbIsShmEnabled For Synchronicity internal use only.

berkdbShmKey

 berkdbShmKey For Synchronicity internal use only.

isTestMode

 isTestMode For Synchronicity internal use only.
 Returns a Tcl boolean value (0 or 1) indicating
 whether the software executing the syncinfo
 command is running in test mode (1) or not (0).
 This feature is useful for regression
 testing of servers.

serverMetadataDir

 serverMetadataDir Returns the directory that contains the
 server metadata (such as relational
 database) files.

serverDataDir

ENOVIA Synchronicity Command Reference All -Vol2

1117

 serverDataDir Returns the directory that contains vault
 (repository) data that is stored by a server.

serverMachine

 serverMachine Returns the name of the server as returned by
 gethostname(). This value is returned only
 when 'syncinfo' is run from a server-side script.

serverName

 serverName Returns the name of the server as it was
 specified in the URL used to contact the
 server. This value is returned only when
 'syncinfo' is run from a server-side script.

serverPort

 serverPort Returns the port number used by the server to
 respond to the syncinfo request. This value is
 returned only when 'syncinfo' is run from a
 server-side script.

User Information

home

 home Returns the home directory of the user
 running syncinfo (HOME on UNIX, or as
 defined in your user profile on Windows platforms).

userName

 userName Returns the account name of the user
 running syncinfo.

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode:
 - If no argument is specified, the return value is a

Administration

1118

 name/value list (Tcl 'array get' format) containing
 all available information.
 - If a single argument is specified, the return value is
 the requested value (not a list).
 - If more than one argument is specified, the return value
 is a name/value list containing the requested information.
 - If any argument is not known, an exception is thrown.

SEE ALSO

 server-side

EXAMPLES

• Example Showing the SyncInfo Version on Client Startup
• Example of Extracting SyncInfo Information to an Array
• Example Showing Extracting the Information from an Array
• Example of extracting Name/Value Pairs for Specific Arguments

Example Showing the SyncInfo Version on Client Startup

 When you start any Synchronicity client, 'syncinfo version'
 executes, which displays (and writes to your log file
 if logging is enabled) the Synchronicity version. In this
 example, the software is version 3.0.
 % stclc
 Logging to c:\goss\dss_01192000_092559.log
 V3.0

 stcl>

Example of Extracting SyncInfo Information to an Array

 The following stcl script fragment shows how to get all known
 information as a Tcl array variable. The 'version' string is
 then printed.
 array set info [syncinfo]
 puts "Version: $info(version)"

Example Showing Extracting the Information from an Array

 This example uses the single-argument form of syncinfo to print the
 same version information provided by the previous example:

 puts "Version: [syncinfo version]"

ENOVIA Synchronicity Command Reference All -Vol2

1119

Example of extracting Name/Value Pairs for Specific Arguments

 The following example uses command arguments to return a list
 of the 'syncDir' and 'userName' values. This example
 also shows how to enumerate the name/value list returned by
 syncinfo without storing it in an array variable.
 foreach {name value} [syncinfo syncDir userName] {
 puts "$name: $value"
 }

synctrace

synctrace Commands

NAME

 synctrace - Commands to help diagnose software problems

DESCRIPTION

 The 'synctrace' commands help Synchronicity diagnose software
 problems and performance issues by enabling or disabling software
 tracing.

 See the "synctrace set" command for details. Also see "Running a
 DesignSync Client in Debug Mode" in DesignSync Data Manager User's
 Guide.

SYNOPSIS

 synctrace [un]set [-server <serverURL>] 0

SEE ALSO

 synctrace set, synctrace unset

EXAMPLES

 See the "synctrace set" command.

synctrace set

Administration

1120

synctrace set Command

NAME

 synctrace set - Turns on software tracing

DESCRIPTION

 Helps Synchronicity diagnose software problems and performance
 issues by enabling software tracing. Synchronicity may ask you to
 enable tracing to help with problem diagnosis.

 When you use the synctrace command to set the trace level for a
 client or server, the trace is only in effect for the current
 client or server session. The trace terminates when you shut down
 the client or the server and does not start again when you restart
 the client or server, unless you reinvoke the command. If you have
 already set (or unset) synctrace, and you inadvertently set (or
 unset) the trace again, the second setting has no effect.

 The trace output is stored in the
 <SYNC_USER_CFGDIR>/logs/sync_client_trace_<date>_<time>.log file.
 In addition, the output is stored in the dss_<date>_<time>.log
 file. The trace output for a server is stored in
 <SYNC_CUSTOM_DIR>/servers/<host>/<port>/logs/error_log.

 If you want to have tracing on when you start the client or server,
 you should set the SYNC_TRACE environment variable to 0.
 See "Running a DesignSync Client in Debug Mode" in DesignSync Data
 Manager User's Guide
 for more details.

SYNOPSIS

 synctrace set [-server <serverURL>] 0

OPTIONS

• -server

-server

 -server <serverURL> Turns on the trace for the server you specify.
 If you omit the -server switch, the trace is
 turned on for the client session from which
 you invoked the command. Specify the URL
 as follows:

ENOVIA Synchronicity Command Reference All -Vol2

1121

 sync://<host>[:<port>]
 Where 'sync://' is required, <host> is the
 machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (if omitted, defaults to 2647/2679). For
 example, you might specify the following:
 -server sync://serv1.abco.com:30138

 Note: DesignSync also supports a syncs
 protocol for communicating with secure (SSL)
 SyncServer ports. In most cases, DesignSync
 automatically redirects requests to a
 cleartext (non-secure) port using the sync
 protocol to the secure port, if one is
 defined. The default Synchronicity secure
 port number is 2679. Your Synchronicity
 administrator defines what SyncServer ports
 are available and whether secure
 communications are required. See the
 "Overview of Secure Communications section"
 in DesignSync Data Manager User's Guide for
 more information.

 Enables tracing on all software
 components. While it is possible to
 selectively turn on tracing for specific
 software libraries, it is typically most
 useful to turn on all tracing.

RETURN VALUE

 none

EXAMPLES

• Example of Turning Tracing on for all Libraries
• Example of Turning Trace off for All Libraries
• Example of Turning Trace On for a Specific Server
• Example of Turning Trace Off for a Specific Server

Example of Turning Tracing on for all Libraries

 The following example turns on tracing for all libraries.
 stcl> synctrace set 0

Example of Turning Trace off for All Libraries

 The following example turns off tracing for all libraries.

Administration

1122

 stcl> synctrace unset 0

Example of Turning Trace On for a Specific Server

 The following example turns on tracing for the specified server:
 stcl> synctrace set -server sync://serv1.abco.com:30138 0

Example of Turning Trace Off for a Specific Server

 The following example turns off tracing for the specified server:
 stcl> synctrace unset -server sync://serv1.abco.com:30138 0

synctrace unset

synctrace unset Command

NAME

 synctrace unset - Turns off software tracing

DESCRIPTION

 See the "synctrace set" command.

SYNOPSIS

 synctrace unset [-server <serverURL>] 0

Utilities

convertdata

convertdata

NAME

 convertdata - Converts CVS/RCS vault files to DesignSync format

DESCRIPTION

ENOVIA Synchronicity Command Reference All -Vol2

1123

 The convertdata utility converts vault files from Concurrent Version
 System (CVS) or Revision Control System (RCS) data formats to the
 DesignSync format. See the DesignSync Data Manager Administrator's
 Guide: "Converting a Vault Repository from CVS/RCS Format to
 DesignSync Format".

convertutil

convertutil

NAME

 convertutil - Converts between supported vault file formats

DESCRIPTION

 The convertutil utility lets you recursively convert a vault folder from
 one format to another. The convertvault utility, another
 utility for converting vaults, provides more flexibility than the
 convertutil utility; however, for most conversion tasks, convertutil is
 sufficient. See the DesignSync Data Manager Administrator's Guide:
 "Converting Vault Data".

convertvault

convertvault

NAME

 convertvault - Converts specified vault files to supported formats

DESCRIPTION

 The convertvault utility lets you convert a single vault file type to
 another supported type or you can convert multiple vault files at one
 time. The convertutil utility, another utility for converting vaults,
 provides less flexibility than the convertvault utility; however, for
 most conversion tasks, convertutil is sufficient. See the DesignSync
 Data Manager Administrator's Guide: "Converting Vault Data".

exportVaults

exportVaults

Administration

1124

NAME

 exportVaults - Exports DesignSync vault folders

DESCRIPTION

 Use the exportVaults utility to export data from client vault folders.
 See DesignSync Data Manager User's Guide: "Using the Vault
 Utilities." For other export scenarios, use the ProjectSync Export
 Projects feature. See ProjectSync User's Guide:"Exporting Projects."

importVaults

importVaults

NAME

 importVaults - Imports DesignSync vault folders

DESCRIPTION

 Use the importVaults utility to import data converted using the
 convertdata utility or data exported from a client vault. See
 DesignSync Data Manager User's Guide: "Using the Vault Utilities."
 For other import scenarios, use the ProjectSync Import Projects
 feature. See ProjectSync User's Guide: "Importing Projects."

SyncAdmin

SyncAdmin

NAME

 SyncAdmin - Synchronicity Administrator tool

DESCRIPTION

 Synchronicity's SyncAdmin tool is a graphical user interface that
 lets system administrators, project leaders, and users configure
 DesignSync clients (command-line and graphical) for
 site, project, or individual use.

 You execute SyncAdmin from your operating system shell, not

ENOVIA Synchronicity Command Reference All -Vol2

1125

 from a Synchronicity client shell (dss/dssc/stcl/stclc). On
 Windows platforms, you invoke SyncAdmin from the Windows
 Start menu, typically:
 Start->Programs->Dassault Systems <version>->SyncAdmin

 See SyncAdmin help for details on SyncAdmin. From the GUI, click
 the Help button on any SyncAdmin page.

SYNOPSIS

 SyncAdmin [-file <filename> | -project | -site | -user]

OPTIONS

• -file
• -project
• -site
• -user

-file

 -file <filename> Edit the specified registry file, bypassing the initial
 SyncAdmin window (where you select which registry
 file to edit).

-project

 -project Edit the project registry file, bypassing the initial
 SyncAdmin window (where you select which registry
 file to edit).

-site

 -site Edit the site registry file, bypassing the initial
 SyncAdmin window (where you select which registry
 file to edit).

-user

 -user Edit the user registry file, bypassing the initial
 SyncAdmin window (where you select which registry
 file to edit).

Administration

1126

RETURN VALUE

 none

SEE ALSO

 DesSync

EXAMPLES

 This example invokes SyncAdmin:
 % SyncAdmin

 This example invokes SyncAdmin, in background mode, to edit the
 user registry:
 % SyncAdmin -user &

syncdadmin

syncdadmin Command

NAME

 syncdadmin - Manages syncd processes

DESCRIPTION

 This command manages Synchronicity daemon (syncd) processes on a
 per-user basis. 'syncdadmin' is not a DesignSync shell command, but
 is instead a standalone utility that you invoke from a standard
 shell or a shell script.

 The syncd process manages communication between dss/stcl
 sessions and SyncServers. The syncd process can manage multiple
 dss/stcl requests per user, allowing one user to run parallel
 dss/stcl sessions. Note that dssc and stclc do not use syncd;
 they communicate directly with a SyncServer.

 When you invoke dss or stcl, they connect to your syncd process if
 one is already running. Otherwise, they attempt to start
 syncd. There is at most one syncd process running per user per
 machine at any time.

 On Unix systems, the syncd process times out after 180 minutes of
 inactivity (after the last dss/stcl session communicating with the

ENOVIA Synchronicity Command Reference All -Vol2

1127

 syncd process exits). The syncd process will not time out if there
 is an active dss or stcl session, or if there is a lock on the
 syncd process. You can define the SYNC_DAEMON_TIMEOUT environment
 variable to change the default time-out period of 180 minutes:

 setenv SYNC_DAEMON_TIMEOUT <n>

 where <n> is the number of minutes syncd waits before timing out.

 On Windows platforms, syncd never times out. However, you can
 stop syncd from the Windows Start menu, typically:
 Start->Programs->Dassault Systems <version>->Stop SyncDaemon

 Note: When using dss/stcl, many environment changes (including setting
 SYNC_DAEMON_TIMEOUT) do not take effect until syncd is stopped and
 restarted.

SYNOPSIS

 syncdadmin [begin | close [-force] | lock | start |
 status [-verbose] | stop [-force] | unlock |]

ARGUMENTS

• begin
• close
• lock
• start
• status
• stop
• unlock

begin

 begin Same as 'start'. The 'begin' argument may be removed in a
 future release.

close

 close Same as 'stop'. The 'close' argument may be removed in a
 future release.

lock

 lock Locks the syncd process so that 'syncdadmin stop'
 will not terminate syncd (unless you use the -force

Administration

1128

 option). 'syncdadmin lock' also starts syncd if it
 is not already running.

 You typically lock syncd at the beginning of a shell
 script that calls dss/stcl several times. The lock
 prevents syncd from being terminated inadvertently.
 For example:

 #!/bin/csh
 syncdadmin lock
 dss ci *.cpp
 <some shell (non dss/stcl) commands>
 dss ci *.h
 syncdadmin unlock

start

 start Starts the syncd process if one is not already running.
 The 'syncdadmin start' command is typically used in a
 shell script to invoke syncd (if necessary) before
 invoking Synchronicity commands. For example:

 #!/bin/csh
 syncdadmin start
 dss ci ...

 In this script fragment, 'syncdadmin start':
 - Starts syncd only if syncd is not already running
 - Does not allow the next line of the script to
 execute until syncd is running

 Note: There is a short start-up time associated with syncd,
 during which it does not accept commands. To prevent
 a race condition, avoid starting syncd as follows:

 % syncd &
 % dss ci ... << Likely to fail because syncd is
 still starting up

status

 status Indicates whether the syncd process is currently
 running and on which machine. Use the -verbose
 option to output additional information, such as
 whether syncd is locked.

stop

 stop Attempts to terminate the syncd process. The syncd process
 will not terminate if there is an active dss/stcl session

ENOVIA Synchronicity Command Reference All -Vol2

1129

 running or if a lock has been set on the syncd process.
 Use the -force option to override these constraints.

unlock

 unlock Removes the lock from a syncd process. You typically
 lock syncd from a script that calls dss/stcl multiple
 times. You would then unlock syncd at the completion
 of the script.

RETURN VALUE

 none

EXAMPLES

 This example displays the syncd status before and after starting
 syncd:
 % syncdadmin status
 SYNC: syncd is not running.
 % syncdadmin start
 SYNC: Attempting to spawn daemon.
 SYNC: Syncd ready.
 % syncdadmin status
 SYNC: syncd is running on linus.
 %

sync_setup

sync_setup Command

NAME

 sync_setup - Installing and configuring the DesignSync server

DESCRIPTION

 This script installs or updates the configuration of the DesignSync
 server. You can run this script interactively, to set up a single
 server, or call it from a script to perform a non-interactive
 DesignSync server setup on a single service or multiple servers at
 once.

 Note: Passwords should ideally not be passed through the the script,

Administration

1130

 but specified as a key/value pair on the command line, particularly
 with respect the postgres database password. The ENOVIA 3DPassport
 password can be encrypted and passed, encrypted to the script, but
 the postgres must be in cleartext. Therefore it is not necessarily
 desirable to include it in any scripts or in the XML configuration
 file.

 Tip: If you want to automatically start any servers that have been
 installed/configured by the sync_install script, do any of the
 following:
 o Set the StartDesignSyncServer setting to true in the SiteSettings
 section of the configuration file, to start all the servers
 installed/configure during the command operation.
 o Set the StartDesignSyncServer setting to true in the
 ServerSettings section of the configuration file for all servers you
 want to start.
 o Use the return value of the command, 0, indicating success, to
 start all the servers configured by the command.

 DesignSync recommends using the StartDesignSyncServer setting rather
 than the command return value.

SYNOPSIS

 sync_setup [-config=<UserConfig.xml>] [-[no]debug] [-dryrun]
 [-log=<filename>]
 [-report={normal|verbose}] [<key>=<value> [...]]

ARGUMENTS

• key/value pair

key/value pair

 <key>=<value> Optional arguments to specify to the sync_setup
 script. Any options specified to the script allow
 become the default option for any settings that
 hat use that information, or ovrride any settings
 set in the file specified by the -config switch,
 any environment variables, or the defined system
 defaults.

OPTIONS

• -config
• -[no]debug
• -[no]dryrun
• -log
• -report

ENOVIA Synchronicity Command Reference All -Vol2

1131

-config

 -config= The name of the XML file containing the
 <UserConfig.xml> the list of defined settings for the sync_setup
 script to use. All the settings can be defined
 within a single script, even if you are
 configuring multiple servers.

 For information on defining the user script and a
 sample script, see the ENOVIA Synchronicity
 DesignSync Administrator's Guide.

 Tip: If you want to use multiple configuration
 files within a batch operation, you can create a
 script that runs sync_setup more than once, each
 time specifying the desired configuration file.

 When -config is specified, the server does not
 allow any input from the user. If any options are
 missing, the command fails with an appropriate
 error message.

-[no]debug

 -[no]debug This option indicates whether debugging is
 enabled. This helps the Dassault Systems support
 team diagnose server installation problems by
 enabling tracing during the server installation
 and configuration process. Use this option only
 if you are experiencing problems with software
 installation.

 -debug turns on tracing for the sync_setup
 script. This should be used only when sync_setup
 is failing and you need help understanding why.

 -nodebug indicates that debug information should
 not be output by the command. (Default)

 Tip: When you use this option, you should specify
 a log file for the output so it can be reviewed by
 the support team.

-[no]dryrun

 -[no]dryrun Specifies whether to treat the operation as a
 trial run or perform the server configuration.

 -dryrun does not perform server
 configuration. Using the -dryrun option helps
 detect problems that might prevent the server

Administration

1132

 installation/configuration operation from
 succeeding. The dryrun can show you which
 settings are specified incorrectly, or need to be
 specified, but are not in the configuration
 file.
 Errors such as permissions or inaccessible
 servers are not reported by a dry run. Note that
 a dry run setup is faster than a normal
 server installation/configuration. If -dryrun is
 specified, no servers are are actually
 configured.

 -nodryrun perform the server
 configuration/installation as
 specified. (Default)

-log

 -log <filename> Specify the name of the log file. If the filename
 doesn't exist, DesignSync creates it. If the
 file does exist, DesignSync appends the new
 information to the end of the log file.

 The filename can be specified with an absolute
 or relative path. If you specify a path for the
 log file, the directory you specify must already
 exist and you must have write permissions to the
 directory in order for the log to be placed into
 it, DesignSync does not create the path.

-report

 -report [error| Controls the verbosity of the output to the screen or
 brief|normal to the log file.
 verbose]
 -report error reports only the errors.
 -report brief reports only the errors.
 -report normal reports the typical messages seen when
 sync_setup is run interactively.
 -report verbose reports all of the generated output.

RETURN VALUE

 Returns a value of 0 is the command runs successfully. If the command
 is unsuccessful, you receive a message explaining the failure.

SEE ALSO

ENOVIA Synchronicity Command Reference All -Vol2

1133

 synctrace

EXAMPLES

1135

ProjectSync Data Manipulation

Note Manipulation

note

note Commands

NAME

 note - Server-side commands for accessing notes

DESCRIPTION

 Users create notes and manage note links using the ProjectSync
 graphical interface. The 'note' commands are for advanced users who
 need programmatic access to note capabilities.

 The 'note' family of commands provide access to the note web
 object type. URLs for notes have the following form:

 sync:///Note/SyncNotes/<notetype>/<noteid>

 For example, the following URL specifies the 5th note of the
 BugReport notetype:

 sync:///Note/SyncNotes/BugReport/5

 Notes can only be accessed from server-side scripts, so always use
 the sync:/// syntax (no <host>:<port> specification).

 Note: The "notetype schema" command provides access to the database
 structure of notetypes.

SYNOPSIS

 note <note_command> [<note_command_options>]

 Usage: note [attach|counts|create|delete|detach|getprop|links|query|
 relink|setprops|systems|]

EXAMPLES

 See specific "note" commands.

ProjectSync Data Manipulation

1136

note attach

note attach Command

NAME

 note attach - Creates a link between a note and an object

DESCRIPTION

 This command attaches a note to the specified object, creating
 a notelink -- a link between an object and a note.

 The <noteURL> argument must be a reference to an existing note.
 The <objURL> argument can be a reference to any valid object,
 including another note. If <objURL> is a local note URL, then
 the note that it refers to also must exist. However, for any
 other <objURL> type, including notes on remote servers, the
 existence of the object is not checked. Only the structure of
 the URL is checked.

 It is not possible to create a duplicate notelink. However, the
 attempt does not cause an error; attempts to create duplicate
 notelinks are silently ignored.

 The successful execution of this command generates an atomic
 note attach event and fires the corresponding triggers
 in response.

 This command is available only from server-side scripts.

SYNOPSIS

 note attach <noteURL> <objURL>

OPTIONS

 none

RETURN VALUE

 none

ENOVIA Synchronicity Command Reference All -Vol2

1137

SEE ALSO

 note detach, note links, server-side, rstcl

EXAMPLES

• Example of Attaching a Note to a Project
• Example of Attaching a Note to a Tagged Configuration

Example of Attaching a Note to a Project

 This example attaches a bug report to the Asic project:

 note attach sync:///Note/SyncNotes/BugReport/2 sync:///Projects/Asic

Example of Attaching a Note to a Tagged Configuration

 This example attaches the bug report to the Rel1 configuration
 of the Asic project:

 note attach sync:///Note/SyncNotes/BugReport/2 \
 sync:///Projects/Asic@Rel1

note counts

note counts Command

NAME

 note counts - Computes statistics about notes and
 the frequency of values

DESCRIPTION

 This command runs a query against a note type and breaks
 down the results according to the values it finds in selected
 properties of the notes matched by the query. The breakdown can
 be zero, one-dimensional, or multi-dimensional. Dimensions of
 breakdown are note properties selected in the query, with the
 results of the query grouped by value in the selected properties
 (dimensions).

 The results of the query (that is, the counts of how many notes
 fit the search criteria and had the same values in the selected
 properties) is stored in an output variable whose name is given

ProjectSync Data Manipulation

1138

 to the command. The command treats the variable as an array into
 which to store the results. The array has indices of all
 combinations of values that were found for the selected properties
 in notes matching the query criteria. The mapped values at those
 indices are the number of notes that had that particular
 combination of values.

 For one-dimensional breakdowns (that is, breakdowns by a single
 property), the indices in the output array variable are the same
 as values found for that property in notes that matched the query.
 For two- or three-dimensional queries, the indices are a
 concatenation of values for each of the selected properties,
 separated by commas. If any of the values contain comma characters,
 then the comma characters are replaced with periods, so that the
 comma characters retain their separator semantics. The output
 array contains only non-zero entries.

 The note counts command can operate on (break down by) properties
 of any type. However, the command is practical only for operations
 on enumerable property types, such as state machines, choice
 types, user fields, and perhaps integers. Results of breakdowns
 by floating-point properties and wide strings are generally not
 useful, but such use is not disallowed. Imprudent use of this
 command can copy very large amounts of data from the database
 into memory (for example, if you were doing a breakdown by the
 Body property of a note type).

 You can generate simple time-based statistics by doing a
 breakdown on any Date or Timestamp property of a note type.
 In the resulting array, the indices will be dates and the values
 will be how many notes had that date value in that field. The
 resolution of the buckets for time-based statistics is controlled
 with the -dateresolution option. This option allows for
 specifying a unit of time (years, months, days, etc.) used to
 indicate the granularity of the statistical buckets.

 This command is available only from server-side scripts.

SYNOPSIS

 note counts <NotetypeName>
 [-countlinks] [-dateresolution <Resolution>]
 [[-dbquery <dbase_expr>] | [-sqlquery <sql_expr>]]
 [<OutVarName> [Dimension0 [Dimension1 [Dimension2]]]]

OPTIONS

• -countlinks
• -dateresolution
• -dbquery
• -sqlquery

ENOVIA Synchronicity Command Reference All -Vol2

1139

-countlinks

 -countlinks This option is used only for RevisionControl
 notes. Use this option to count the
 number of objects in each RevisionControl
 note instead of counting only the
 individual notes. When using this option,
 you must specify <OutVarName>.

-dateresolution

 -dateresolution If one or more of the Dimension arguments
 <Resolution> references a property of type Date or
 Timestamp, specifies a resolution of the
 bucketing of notes in the output array.

 The resolution is specified in terms of date
 granularity. The set of valid values are:
 years, months, weeks, and days.

 The value of the resolution affects the values
 used to form the indices in the returned array.
 The format for the index values for a given
 resolution are:

 years yyyy
 months yyyy-mm
 weeks yyyy-Www
 days yyyy-mm-dd

 If -dateresolution is not given as an option,
 the command defaults to a resolution of days.

-dbquery

 -dbquery A valid dBase query, which is converted
 <dbase_expr> to an equivalent SQL expression, and used
 to query the database. Analogous to the
 -dbquery option to note query.

-sqlquery

 -sqlquery Filters the set of notes that are counted
 <sql_expr> by the note counts command. Analogous to
 the -sqlquery option to note query.

 -sqlquery and -dbquery are mutually
 exclusive.

ProjectSync Data Manipulation

1140

OPERANDS

• Notetype Name
• Out Var Name
• Dimensions

Notetype Name

 <NotetypeName> The name of an existing note type.

Out Var Name

 <OutVarName> The name of a Tcl array variable in which
 to place specific notes that match the query
 criteria. The indices of the returned array
 are comma-separated concatenations of the
 Dimension0...2 property values. The array
 values are the number of notes that match
 the array index.

Dimensions

 Dimension0 Up to three arguments that specify the
 Dimension1 bucketing criteria for the results. The
 Dimension2 values must be the name of an existing
 property name on the note type.

RETURN VALUE

 The total number of notes that match the query criteria.

SEE ALSO

 note query

EXAMPLES

• Example Showing Reporting Against Fields in the Notetype
• Example Showing Time-Based Reporting on NoteTypes

Example Showing Reporting Against Fields in the Notetype

ENOVIA Synchronicity Command Reference All -Vol2

1141

 Suppose you have a note type called BugReport, with a State field
 (type SyncState), a Priority field (type SyncPriority) field, and a
 Resp field (type SyncUserList), plus all the standard note fields.
 This note type is populated with notes as follows:

 Id Author Resp State Priority

 1 caroline cara closed high
 2 jack cara closed high
 3 bert ron fixed high
 4 bert mark fixed medium
 5 lindsey mark fixed high
 6 bert mark analyzed high
 7 lindsey jason analyzed low
 8 bert jason closed high
 9 bert mark open medium
 10 caroline mark open stopper

 To find out how many BugReport notes are currently in-process (in
 any state except "closed"), you would specify:

 note counts BugReport -dbquery "State#'closed'"

 which would return the answer: 7

 To get a breakdown of whom the notes are assigned to, give two
 extra parameters: 1. The name of a Tcl variable into which
 the note counts command will store its results. 2. The name of
 the note property that you wish to do a breakdown of - in this
 case, Resp:

 note counts BugReport -dbquery "State#'closed'" MyMap Resp

 This command also returns the number 7 but stores the following
 data in the array variable MyMap:

 MyMap(ron) 1
 MyMap(mark) 5
 MyMap(jason) 1

 Use array names or array get to extract the data from the MyMap
 array. For example:

 array names MyMap

 would return

 "ron mark jason"

 and

 array get MyMap

 would return

 "ron 1 mark 5 jason 1"

ProjectSync Data Manipulation

1142

 To find the BugReports assigned to each engineer and get a breakdown
 by priority, you pass one additional parameter: the name of the
 additional property to break down by - in this case, Priority:

 note counts BugReport -dbquery "State#'closed'" MyMap Resp Priority

 You do not need to specify any additional output parameters when you
 add additional dimensions to the report; the results all go into the
 single output array parameter (MyMap), which in this example would
 be filled as follows:

 MyMap(ron,high) 1
 MyMap(mark,medium) 2
 MyMap(mark,high) 2
 MyMap(mark,stopper) 1
 MyMap(jason,low) 1

 The array contains only non-zero entries. For instance, user jason
 is not assigned any high-priority BugReports, so the report does
 not include the entry:

 MyMap(jason,high) 0

 Thus MyMap could be termed a sparse matrix.

 It is also possible to further break down data by a third dimension.

 In most cases, you would not use this command to generate this type
 of report. Like all the other note commands, the note counts command
 is best used as a building block.

Example Showing Time-Based Reporting on NoteTypes

 This example illustrates time-based reporting.

 To chart the incoming rate for BugReports, with a breakdown by month,
 you would use the following command:

 note counts BugReport MyMap DateCreate -dateresolution months

 The resulting map might look like this:

 MyMap(2002-01) 2

 MyMap(2002-02) 3

 MyMap(2002-04) 5

 This result indicates that two BugReports were filed in January 2002,
 three in February, and five in April. Empty buckets are not included:
 no BugReports were filed in March so there is no MyMap(2002-03)
 entry. Getting resolution by week would be difficult. You would have
 to use %W formatting (Week-of-year, 0-52) and convert the resulting
 data to get back to human-readable dates.

ENOVIA Synchronicity Command Reference All -Vol2

1143

 EXAMPLE 3
 The following command itemized the objects in RevisionControl notes
 for each command and and for each user.

 note counts RevisionControl -countlinks MyMap Command Author
 parray MyMap

 The output of the MyMap variable is:

 MyMap(ci,) = 0
 MyMap(ci,Administrator) = 1
 MyMap(ci,Debra) = 4
 MyMap(ci,George) = 0
 MyMap(ci,Loren) = 6
 MyMap(co lock,George) = 2
 MyMap(co lock,Harry) = 0
 MyMap(co lock,Debra) = 7
 MyMap(co lock,Loren) = 0

note create

note create Command

NAME

 note create - Creates a new note

DESCRIPTION

 This command creates a new note of a specified note type.

 Certain default behaviors apply when a note is created:

 * Notes are assigned a unique ID number that is 1 greater
 than the largest note ID number created in the database for
 a note of this type. However, two note create calls
 in a row would not necessarily return ID numbers that were
 incremented by 1. Another call in a different process could
 have created a note of the same note type.

 * The default creation date of a note (i.e., its DateCreate
 property) is set to the current server time.

 * The Author field defaults to the user ID (user name) of the
 person executing the command.

 All of these default behaviors can be overridden with the note create
 command.

 You can set any number of properties when a note is created. If an
 invalid value is supplied for any property, the entire note creation

ProjectSync Data Manipulation

1144

 process fails. If a property is not assigned an explicit value in
 the command, the default value for the note type is used. It is not
 an error to omit values for properties that are required by the note
 type.

 If a property name is specified multiple times with different
 values, the last value is stored.

 The successful execution of this command causes an atomic note
 create event and fires the corresponding triggers in response.

 This command is available only from server-side scripts.

SYNOPSIS

 note create [-date <date>] [-id <id>] -type <type_name>
 [{<name> <value>} [...]]

ARGUMENTS

• Name/Value for Note Properties

Name/Value for Note Properties

 {<name> <value>} Additional properties of the note, expressed as
 a list of name/value pairs. The first element of
 the pair is a valid property name of the note
 type and the second is the property value,
 which must be legal for the property type.

 If a value for the Id property is specified,
 use it as if the -id option had been used. An
 AMBIGUOUS_ID error is thrown if -id is used as
 well as an Id property value.

 Similarly, if both the -date argument and the
 DateCreate property are specified, an
 AMBIGUOUS_DATE error is thrown.

 Note that the curly braces specify the Tcl list
 syntax; they do not indicate a required
 argument as is true in most syntax descriptions.

 The note create command currently accepts
 multiple name/value pair lists for backward
 compatibility; however, this form is deprecated
 and Synchronicity strongly recommends avoiding
 this form.

OPTIONS

ENOVIA Synchronicity Command Reference All -Vol2

1145

• -date
• -id
• -type

-date

 -date <date> A date value representing the creation date of
 the note. The <date> value should be an ISO-8601
 formatted date in UTC - for example:

 2003-05-29 12:34:56

 If the -date option is omitted, the note
 creation time is the current time, stored in UTC.

 Although the creation time is stored in UTC,
 the GUI displays the creation time in the
 client's local time.

-id

 -id <id> The unique ID number for the note. If this
 number is not unique, the note is not
 created and you get the DUPLICATE_ID error code.
 If the -id option is omitted, the next
 available ID number is used.

 Each note type maintains its own internal ID
 generator. If the explicit ID number is higher
 than the currently existing internal ID of the
 generator, then the generator is adjusted to
 this new maximum ID number. That is, the next
 calls to note create with the -id option omitted
 will generate a number that is higher than the
 explicitly given ID number in this call. This
 behavior prevents collisions between the
 automatically generated IDs and explicitly
 created ones.

 If two processes are creating notes of the same
 note type and one is using the -id option while
 the other is using the default assigned ID, one
 of the processes is likely to fail because of
 conflicting ID numbers.

 If the delta number that the generator has to
 skip over is very high (e.g., above 10,000),
 then the command execution time may be much
 higher than normal, as the process has to skip
 over this delta. This case also increases the
 likelihood of failing with conflicting ID
 numbers.

ProjectSync Data Manipulation

1146

-type

 -type <type_name> The name of a note type (for example, Note or
 "BugReport") for which a new note is created.

 A note type name is limited to 24 characters and
 can contain only letters, numbers, hyphens, and
 underscores. Note type names cannot begin with
 hyphens or numbers and cannot contain spaces or
 special characters.

RETURN VALUE

 The URL of the new note.

SEE ALSO

 note delete, note attach, note detach, note links, server-side, rstcl

EXAMPLES

• Example Showing Creating of a New Note with a Specific ID.
• Example Showing Creating a Note Using the Default ID

Example Showing Creating of a New Note with a Specific ID.

 This example creates a new note of the Note notetype.

 note create -type Note \
 -id 6674 \
 -date 2002-05-29 \
 {Title "Hello, World!"} {Body "Main portion of a note."} \
 {Author goss}

Example Showing Creating a Note Using the Default ID

 This example creates a new BugReport using the next available ID
 number and sets the creation time as the current time:

 note create -type "BugReport" {Title "Broken!"} \
 {Body "It broke."} {Author norm}

note delete

ENOVIA Synchronicity Command Reference All -Vol2

1147

note delete Command

NAME

 note delete - Deletes a note and associated notelinks

DESCRIPTION

 This command deletes a note and any associated notelinks --
 the links between the note and any objects to which it is
 attached. The note delete command also deletes any files
 attached to the note in fileattach fields. The note to be
 deleted must exist.

 The successful execution of this command causes an atomic note
 delete event and fires the corresponding triggers in response.

 This command is available only from server-side scripts.

SYNOPSIS

 note delete <NoteURL>

OPTIONS

 none

OPERANDS

• Note URL

Note URL

 <NoteURL> A valid URL for the note to be deleted.

RETURN VALUE

 none

SEE ALSO

ProjectSync Data Manipulation

1148

 note detach, note links, note create, server-side, rstcl

EXAMPLES

 This example deletes BugReport note 2:

 note delete sync:///Note/SyncNotes/BugReport/2

note detach

note detach Command

NAME

 note detach - Deletes the link between a note and an object

DESCRIPTION

 This command detaches a note from the specified object, deleting
 the notelink -- the link between the object and the note.

 The <NoteURL> argument must be to a note object. The <ObjURL>
 argument can be to any legal URL, including another note.

 It is not an error to attempt to remove a notelink that does not
 exist. However, <NoteURL> and <ObjURL> both must exist if the object
 is a note. It is not an error to remove a non-note object that does
 not exist. (Although, as with all note commands, the URLs must be
 well-formed.)

 The successful execution of this command causes an atomic note
 detach event and fires the corresponding triggers in response.

 This command is available only from server-side scripts.

SYNOPSIS

 note detach <NoteURL> <ObjURL>

OPTIONS

 none

ENOVIA Synchronicity Command Reference All -Vol2

1149

OPERANDS

• Note URL
• Object URL

Note URL

 <NoteURL> A valid note URL.

Object URL

 <ObjURL> A valid URL to an object to detach
 from the note.

RETURN VALUE

 none

SEE ALSO

 note attach, note delete, note links, server-side, rstcl

EXAMPLES

• Example of Detaching a Bug Report from a Project
• Example of Detaching a Bug Report from a Tagged Configuration

Example of Detaching a Bug Report from a Project

 This example detaches the bug report from the Asic project:

 note detach sync:///Note/SyncNotes/BugReport/2 sync:///Projects/Asic

Example of Detaching a Bug Report from a Tagged Configuration

 This example detaches the bug report from the Rel1 configuration
 of the Asic project:

 note detach sync:///Note/SyncNotes/BugReport/2 \
 sync:///Projects/Asic@Rel1

ProjectSync Data Manipulation

1150

note getprop

note getprop Command

NAME

 note getprop - Retrieves a property of a note

DESCRIPTION

 This command retrieves the value of a single property on a note,
 such as might have been stored with note setprops, url setprop,
 or note create. The note must exist and the property name must be
 one of the property names contained in the note type of the note.

 This command only works in server-side scripts.

SYNOPSIS

 note getprop <NoteURL> <PropertyName>

OPTIONS

 None

OPERANDS

• Note URL
• Property Name

Note URL

 <NoteURL> The URL of a note, which must exist.

Property Name

 <PropertyName> The name of a property on the note.

RETURN VALUE

ENOVIA Synchronicity Command Reference All -Vol2

1151

 Returns the property value, as a string.

SEE ALSO

 note setprops, url properties

EXAMPLES

 This example extracts and prints the Title property of $noteURL,
 where the $noteURL stands for a URL such as
 sync:///Note/SyncNotes/BugReport/42:

 puts "Note Title: [note getprop $noteURL Title]"

note links

note links Command

NAME

 note links - Returns the set of links for a note

DESCRIPTION

 This command returns information about notelinks. A notelink is a
 relationship between a particular note and another object. The note
 links command queries the database for notelinks that match certain
 constraints or, if no constraints are given, all notelinks. The
 constraints can be that the notelink be from a particular note, or
 to a particular object, or both. Additionally, wildcarding is
 supported to allow broadening the query to match groups of notes
 or objects rather than specific notes and objects.

 The 'note links' command with no arguments returns a list of
 lists, where each sublist has two elements: the first is the object
 URL, the second is the note URL.

 With the -object option, only the URLs of notes linked to a given
 object are returned.

 With the -note option, URLs for all objects that are linked to
 the specified note are returned.

 This command is available only from server-side scripts.

ProjectSync Data Manipulation

1152

SYNOPSIS

 note links [-norec] [-note <noteURL> | -object <objURL>] [-pairs]

OPTIONS

• -norec
• -note
• -object
• -pairs

-norec

 -norec This option must be used in conjunction with -object
 and with wildcarding in <objURL>. It modifies the
 meaning of the wildcard to prevent it from matching the
 forward slash character (/), thus limiting the wildcard
 to matching object URLs at the same hierarchical level as
 the wildcard and not below.

-note

 -note <noteURL> Returns all of the objects that have
 the specified note attached.

 The <noteURL> argument is the note URL pattern
 to match against in the query. In this URL, an
 asterisk (*) may be used as a wildcard in place
 of a note ID, to match any note of a particular
 type, or an asterisk may be used instead of the
 note type, the note ID, and the slash that would
 separate them, to match any note of any type.
 Valid URLs are of the form:

 sync:///Note/SyncNotes/<notetypeName>/<id>
 sync:///Note/SyncNotes/<notetypeName>/*
 sync:///Note/SyncNotes/*

 No other form of wildcarding is allowed; in
 particular, a wildcard may not be used to match
 part of a note ID, or part of a note type name,
 or the word SyncNotes, or anything to the left
 of SyncNotes.

-object

 -object <objURL> Returns all of the notes that are attached to

ENOVIA Synchronicity Command Reference All -Vol2

1153

 the specified object.

 The <objURL> argument is the object URL pattern
 to match against in the query. In this URL, a
 trailing asterisk may be used as a wildcard to
 match attached objects whose URL begins with the
 specified pattern.

 If the object URL pattern to be matched is a
 note, then the same wildcarding restrictions
 apply as for <noteURL>. Additionally, if the
 object URL to be matched is a user URL, only
 the trailing component (the user ID) may be
 wildcarded, and only in its entirety.

 If the object URL pattern to be matched is not
 a note or user URL, slightly more flexible rules
 apply. The wildcard may still appear only as the
 end (last character), but unlike for <noteURL> it
 is allowed to match partial path elements. The
 pattern matching is strictly a substring search;
 the wildcard will match trailing @configname and
 ;versioned components and any number of embedded
 forward slashes (except when -norec is used).

 This option must be used in conjunction with
 -object and with wildcarding in <ObjUrlPat>. It
 modifies the meaning of the wildcard to prevent
 it from matching the forward slash character (/),
 thus limiting the wildcard to matching object
 URLs at the same hierarchical level as the
 wildcard and not below.

 This option forces the note links command to
 return a list of lists, even if -note, -object,
 or both, are specified. See the RETURN VALUE
 section for more detail.

-pairs

 -pairs This option forces the note links command to return
 a list of lists, even if -note, -object, or both, are
 specified. See the Return Value section for more detail.

RETURN VALUE

 This command returns results in a variety of forms, depending on
 the command options you specify. In general, the output is whatever
 was not specified as an input:

 1. If neither -object nor -note are used, then return all
 notelinks as a list of lists, with each sublist having an

ProjectSync Data Manipulation

1154

 object URL and a note URL, in that order.

 2. If -object <objURL> is used, then return a list of just the
 corresponding note URLs.

 3. If -note <noteURL> is used, then return a list of just the
 corresponding object URLs.

 4. If both -note and -object are used, then return no URLs,
 only the number of matching notelinks.

 5. If -pairs is specified, the output is in the form described
 in rule 1, taking precedence over rules 2, 3, and 4.

 The behavior ensures that if you passed in a note URL or an
 object URL, you get back its counterpart directly and do not
 have to extract it from a sublist. However, when either <objURL>
 or <noteURL> or both include wildcards, it is usually desirable
 to get back entire notelinks, with both the constituent URLs for
 each link. The use of -pairs forces this complete form of return
 value.

 Note: URLs for notetype snapshots contain the note type name
 appended by _OLD.

SEE ALSO

 note attach, note detach, server-side, rstcl

EXAMPLES

• Example Showing All the Notes Attached to a Project
• Example Showing The Objects to which a Specific Note is Attached

Example Showing All the Notes Attached to a Project

 This example displays the notes that are attached to the Asic
 project before and after attaching a new note.

 foreach note [note links -object sync:///Projects/Asic] {
 puts "$note
"
 }
 puts "
"
 note attach sync:///Note/SyncNotes/BugReport/2 sync:///Projects/Asic
 foreach note [note links -object sync:///Projects/Asic] {
 puts "$note
"
 }

Example Showing The Objects to which a Specific Note is Attached

ENOVIA Synchronicity Command Reference All -Vol2

1155

 This example displays the objects to which BugReport #2 is
 attached (the Asic project, and the Beta configuration of Asic):

 set objects [note links -note sync:///Note/SyncNotes/BugReport/1]
 foreach note $objects {
 puts "$obj
"
 }

 Running this script outputs the following:

 sync:///Projects/Asic
 sync:///Projects/Asic@Beta

note query

note query Command

NAME

 note query - Queries the note system and returns note URLs
 and values

DESCRIPTION

 This command allows general queries against the notes database and
 returns note URLs and values

 This command is available only from server-side scripts.

SYNOPSIS

 note query [[-attached <ObjUrl> [-norec]]
 [[-dbquery <dbase_expr>] | [-sqlquery <sql_expr>]]
 [-filter ViewNote | EditNote] [-select <PropertyList>]
 [-type <notetype>]

OPTIONS

• -attached
• -dbquery
• -filter
• -norec
• -select
• -sqlquery
• -type

ProjectSync Data Manipulation

1156

-attached

 -attached <ObjUrl> Limits results to notes that are attached
 to objects whose URLs match <ObjUrl>.
 <ObjUrl> may contain a trailing wildcard
 (*) as specified for -object <ObjUrl> in
 the note links command.

 When used with RevisionControl notes, the
 -attached option applies to the Objects
 field.

-dbquery

 -dbquery <dbase_expr> Returns only notes that match this
 query string. Must be a valid dBase query.
 This query is converted to an equivalent
 SQL expression and used to query the
 database.

 Only a subset of dBase syntax is
 supported and dBase queries may be
 retired in a future release.

-filter

 -filter For access controls, accepts either the
 ViewNote or EditNote action and returns a
 list of the notes allowed for the specified
 action.

-norec

 -norec Affects the way <ObjUrl> wildcards
 work, as specified for the note links
 command. This option must be used in
 conjunction with the -attached option and
 with wildcards.

-select

 -select <PropertyList> Returns both the URLs of notes matching the
 query and, for each matching note, the
 value for each property named in
 <PropertyList>. When -select is specified,
 the return value is a list of lists.
 Within each sublist, the first element is

ENOVIA Synchronicity Command Reference All -Vol2

1157

 the URL of a note matching the criteria;
 the others are values in that note for
 each of the properties specified in
 <PropertyList>.

 You can include the keyword @LINKS as a
 property in <PropertyList> to return the
 note's attachments as a list within the
 return value.

-sqlquery

 -sqlquery <sql_expr> Returns only notes that match this
 query string. Must be a valid SQL
 expression. The expression is used
 verbatim in the WHERE clause of an SQL
 SELECT statement. No error checking is
 performed on this expression; it is passed
 directly to the database.

 To avoid conflicts with property names and
 SQL keywords, the column names in the
 database are formed by prefixing the
 string f_ to the note property name. Thus
 a query for notes whose ID number is less
 than 10 and whose Author is 'joe' must be
 written in a -sqlquery clause as:

 f_Id<10 AND f_Author='joe'

 This prefixing is not necessary for
 -dbquery syntax.

-type

 -type <notetype> Returns only notes of this type, which
 must exist. If not specified, then the
 query is applied to all note types.

RETURN VALUE

 If -select is not specified, a list of URLs matching the query
 criteria.

 If -select is specified, the return value is a list of lists.
 If no notes match the query criteria, an empty list is returned.

SEE ALSO

ProjectSync Data Manipulation

1158

 url notes, server-side, rstcl

EXAMPLES

• Example Showing a list of URLS for all Note Types
• Example Displaying a Specific Note Type Attached to a Project
• Example Returning Notes Created by a Specific User
• Example Returning Notes Attached to a Specific Project

Example Showing a list of URLS for all Note Types

 This example displays a list of URLs of all notes of all types:
 puts [note query]

 The resulting HTML page for a server with two notetypes (BugReport
 and Note) with two notes of each notetype is:
 {sync:///Note/SyncNotes/BugReport/1} {sync:///Note/SyncNotes/
 BugReport/2} sync:///Note/SyncNotes/Note/1
 sync:///Note/SyncNotes/Note/2

Example Displaying a Specific Note Type Attached to a Project

 The following example displays only notes of type Note that are
 attached to the Asic project:
 puts [note query -type Note -attached sync:///Projects/Asic]

 The resulting HTML page displays the URL of the only note to match
 the query:
 sync:///Note/SyncNotes/Note/1

Example Returning Notes Created by a Specific User

 This example returns a list of every note of any type that was
 entered by sal, and then displays an pHTML page with the NoteID and
 Title of each note:

 set noteList [note query -dbquery Author='sal']
 foreach noteUrl $noteList {
 url properties $noteUrl noteProps
 puts "NoteID $noteProps(Id) => $noteProps(Title)
"
 }

Example Returning Notes Attached to a Specific Project

 This example returns a list of every note that is attached to

ENOVIA Synchronicity Command Reference All -Vol2

1159

 objects under MyProj (including MyProj itself):
 set urls [note query -attached sync:///Projects/MyProj*]
 whereas this example excludes MyProj:
 set urls [note query -attached sync:///Projects/MyProj/*]

 With the 2.5 release, ProjectSync introduced a client-server
 database (PostgreSQL). Consequently, some pre-2.5 constructs
 using the note query command or combinations of commands may suffer
 from degraded performance. Note query constructs like the following
 may perform more slowly than they did under the pre-2.5 database:

 foreach note [note query] {
 url getprop $note prop1
 }

 Such constructs should be changed to the following form:

 note query -select {prop1}

note relink

note relink Command

NAME

 note relink - Moves note attachments from one object
 to another

DESCRIPTION

 This command moves all note attachments from one object to another,
 including links saved for a snapshot. The command also can move
 attachments to objects below the original source object to
 corresponding objects below the destination object; the effect is
 to maintain the same relative tree structure before and after the
 operation by re-rooting the tree at the destination object.
 If the destination object does not have a tree of objects below it
 to match the origin object tree, the attachments are moved but
 are broken.

 This command typically is used when a ProjectSync/DesignSync project
 is relocated (renamed). <FromObjURL> and <ToObjURL> cannot be note
 or user URLs, which cannot be renamed. However, the objects can
 refer to a note type when a note type is renamed.

SYNOPSIS

 note relink <FromObjURL> <ToObjURL> [-norec]

ProjectSync Data Manipulation

1160

OPTIONS

• -norec

-norec

 -norec Causes the command to operate on (re-link) only
 notes attached directly to the <FromObjURL>
 object, and not any notes attached to objects
 below it.

OPERANDS

• From Object URL
• To Object URL

From Object URL

 <FromObjURL> The object to rename. Must be a valid URL, but
 may not reference a note or user object.

To Object URL

 <ToObjURL> The object to change the references to. Must be
 a valid URL, but may not be a note or user object.

RETURN VALUE

 The number of links that were updated.

SEE ALSO

 note attach, note detach, note links, notetype rename

EXAMPLES

 Move all the attachments from the Maine project to the Indiana
 project:

 note relink sync:///Projects/Maine sync:///Projects/Indiana

ENOVIA Synchronicity Command Reference All -Vol2

1161

note schema

note schema Command

NAME

 note schema - Extracts information about a note type's
 structure

DESCRIPTION

 This command provides programmatic (stcl) access to the schema
 that defines a note type.

 This command is a wrapper to the notetype schema command and is
 available for backward compatibility only. We discourage the use
 of this command, as it may be dropped in future releases.

 This command is available only from server-side scripts.

note setprops

note setprops Command

NAME

 note setprops - Sets property values on a note

DESCRIPTION

 This command sets one or more property values (database fields)
 on a note. This command gives you programmatic (stcl) access to the
 note-editing capabilities of the ProjectSync graphical interface.

 The first argument must be the URL for an existing note. Remaining
 arguments can be either:
 o One or more pairs of database field name / new value, or
 o A single list containing pairs of field name / new value pairs
 The latter form is useful when you do not know ahead of time
 what properties you will be setting; build a list of the same
 form that would be used for the Tcl "array set" command and then
 pass the list to note setprops. This list can be empty.

 The property values you supply must be legal for the corresponding
 property type. The new property values specified in this command
 are checked against the current values of the property. If they are
 the same, the new value is discarded. Therefore, if all the values

ProjectSync Data Manipulation

1162

 specified in the command match their current values, the entire
 command is ignored. The command always attempts to set the complete
 set of property values on the object. If one or more attempts fail
 because of invalid values, no change is committed and the entire
 set of invalid property values is returned in the resultant error.

 If a property name is specified multiple times with different
 values, the last value is stored.

 It is not possible to change a note's ID number after the note is
 created.

 The successful execution of this command causes an atomic note
 modify event and fires the corresponding triggers in response. If
 no property value is changed by the execution of the command, no
 event is generated.

 When setting multiple properties on the same note, it is better
 to set them all in a single call to "note setprops" so that trigger
 activity is reduced.

 The related "url setprop" command is limited to one name/value pair,
 but can operate on any object type, not just notes.

 This command is available only from server-side scripts.

SYNOPSIS

 note setprops [--] <note_url> <propname> <propvalue>
 [<propname> <propvalue>]...
 note setprops [--] <note_url> <proplist>

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when property
 names or values begin with a hyphen (-).

OPERANDS

• Note URL
• Property Name
• Property Value
• Property List Name/Value Pairs

ENOVIA Synchronicity Command Reference All -Vol2

1163

Note URL

 <note_url> The URL of a note, which must exist, for which to
 set property values.

Property Name

 <propname> The name of a property on the note, which must exist
 on the note's note type.

Property Value

 <propvalue> A value to set the property of the note to, which
 must be a valid value for the property type.

Property List Name/Value Pairs

 <proplist> A list of property name and value pairs, in the style
 of Tcl's array set command - for example: {name1 val1
 name2 val2 ...}. The names must all be valid property
 names on the note type and the values must all be
 legal values for the property type.

RETURN VALUE

 none

SEE ALSO

 note getprop, url setprop, url getprop, url properties, server-side,
 rstcl

EXAMPLES

• Example of Setting the Title on a Specific Note
• Example of Setting the Title and History for a Specific Note
• Example of Setting Various Properties on Specific Note

Example of Setting the Title on a Specific Note

 This example sets the title on SyncDefect 42:

ProjectSync Data Manipulation

1164

 note setprops sync:///Note/SyncNotes/SyncDefect/42
 Title "A test"

Example of Setting the Title and History for a Specific Note

 This example sets the title and entire history on SyncDefect 42:

 note setprops sync:///Note/SyncNotes/SyncDefect/42 \
 Title "A test" Body "This is a test"

Example of Setting Various Properties on Specific Note

 This example sets several properties on SyncDefect 42, using a
 property list:

 set newvalues(Resp) sal
 set newvalues(State) closed
 set newvalues(Priority) low

 note setprops sync:///Note/SyncNotes/SyncDefect/42 [array
 get newvalues]

note systems

note systems Command

NAME

 note systems - Gets a list of note systems

DESCRIPTION

 A list of all note systems on the server. If no note systems exist,
 an empty list is returned.

 Currently, only a single note system is defined, SyncNotes. This
 note system always exists.

SYNOPSIS

 note systems

ENOVIA Synchronicity Command Reference All -Vol2

1165

RETURN VALUE

 A list of all note systems on the server. Currently, this command
 always returns a single item, SyncNotes.

EXAMPLES

 Returns the list of note systems on the server:

 note systems

note types

note types Command

NAME

 note types - Gets a list of defined note types for all
 note systems

DESCRIPTION

 Returns a list of note type URLs for all note types of all note
 systems on the server. If no note types exist, an empty list is
 returned.

 This command is a wrapper to the notetype enumerate command and is
 available for backward compatibility only. Synchronicity discourages
 the use of this command, which may be dropped in future releases.

Note Type Manipulation

note types

note types Command

NAME

 note types - Gets a list of defined note types for all
 note systems

DESCRIPTION

ProjectSync Data Manipulation

1166

 Returns a list of note type URLs for all note types of all note
 systems on the server. If no note types exist, an empty list is
 returned.

 This command is a wrapper to the notetype enumerate command and is
 available for backward compatibility only. Synchronicity discourages
 the use of this command, which may be dropped in future releases.

notetype

notetype Commands

NAME

 notetype - Server-side commands to manipulate note types

DESCRIPTION

 The 'notetype' family of commands provides access to the notetype web
 object type. URLs for notetypes have the following form:

 sync:///Note/SyncNotes/<notetype>

 For example, the following URL specifies the BugReport notetype:

 sync:///Note/SyncNotes/BugReport

 Notes can only be accessed from server-side scripts, so always use
 the sync:/// syntax (no <host>:<port> specification).

SYNOPSIS

 notetype <notetype_command> [<notetype_command_options>]

 Usage: notetype [create|delete|enumerate|getdescription|rename|
 schema]

EXAMPLES

 See specific "notetype" commands.

notetype create

notetype create Command

ENOVIA Synchronicity Command Reference All -Vol2

1167

NAME

 notetype create - Creates a new note type

DESCRIPTION

 This command creates a new note type with the name you
 specify. The properties Id, Title, Body, DateCreate, and Author
 are automatically defined for all new note types.

 You also can specify additional properties as a list of lists.
 Each sublist within the property list defines an individual
 property. A property definition consists of the following five
 pieces of information, all of which must be specified: property
 name, prompt string, IsRequired, property type, default value.

 If you define other properties for the note type, you must specify
 order-dependent values for each property. If you do not specify
 additional properties, you must supply an empty Tcl list {}
 following the NoteTypeName option.

 This command is server-side only.

SYNOPSIS

 notetype create [-description <DescStr>] [--]
 <NotetypeName> {
 [{<PropertyName> <PromptName> <IsRequired>
 <PropertyTypeName> <DefaultValue>}...]
 }

OPTIONS

• -description
• --

-description

 -description Specifies a description for the note type; if
 <DescStr> not specified, the description defaults to the
 name of the note type. Enter the description in
 quotation marks or curly braces following the
 -description option. The description is limited
 to 256 characters.

--

ProjectSync Data Manipulation

1168

 -- Indicates that the command should stop
 looking for command options. Use this option
 when an argument begins with a hyphen (-).

OPERANDS

• Note Type Name
• Property Name
• Prompt Name
• Is Required
• Property Type Name
• Default Value

Note Type Name

 <NoteTypeName> A valid name that you assign to the note type.
 A note type name is limited to 24 characters.
 Spaces are not allowed in note type names, and
 the legal character set for note type names
 consists of alphanumerics, hyphens, and
 underscores. The first character in a note type
 name cannot be a hyphen or a number.

Property Name

 <PropertyName> A unique name that you assign to the property.
 A property name is limited to 24 characters.
 Spaces are not allowed in property names,
 and the legal character set for property
 names consists of alphanumerics and underscores.

Prompt Name

 <PromptName> The prompt displayed on the GUI for users. Use
 only alphanumeric characters, not special
 characters or punctuation marks.

Is Required

 <IsRequired> A Tcl Boolean indicating whether a value for
 the property is required or optional. This
 setting is enforced only at the application
 level.

ENOVIA Synchronicity Command Reference All -Vol2

1169

Property Type Name

 <PropertyTypeName> The name of a predefined property type. You can
 use either one of ProjectSync's predefined
 property types (such as Boolean, String80, Date)
 or a property type you have defined yourself
 using the Note Type Manager on the ProjectSync
 GUI.

Default Value

 <DefaultValue> The default value for this property. If there is
 no default value, specify an empty string "" as
 a placeholder; the default value will be supplied
 by the system. If you specify a default value, it
 must be one of the valid values for this
 property type. For example, if you have
 defined a Choice property type, the default
 value must be in your choice list.

 The default value for a property in a note type
 may be given as an empty string, meaning no
 default. In this case, and when a note is created
 with the note create command without a value for
 the corresponding property, the property in the
 note will remain unset.

RETURN VALUE

 none

SEE ALSO

 notetype delete, notetype getdescription, notetype rename,
 server-side, rstcl

EXAMPLES

 The following example creates a note type named BugReport, used
 for defect tracking. In addition to the standard built-in property
 set, this note type defines four additional properties: a required
 user list field, Resp; a required State field; a required Severity
 field; and an optional CC list.

 notetype create BugReport -description "Defect tracking" \
 {{Resp Responsible 1 SyncUserList ""} \

ProjectSync Data Manipulation

1170

 {State State 1 BR_State new} \
 {Severity Severity 1 BR_Severity serious} \
 {cclist CCList 0 String240 ""}}

notetype delete

notetype delete Command

NAME

 notetype delete - Deletes the specified note type

DESCRIPTION

 This command deletes the specified note type. You can specify only
 one note type at a time. Any internal links to and from the
 note type and any snapshots of the note type also are removed.
 However, this command does not remove any triggers or customization
 files associated with the note type.

 Important: It is strongly recommended that you do not delete the
 RevisionControl note type, which is a standard part of
 ProjectSync. This note type is designed to work with DesignSync
 for projects under revision control. Removing this note type
 could cause problems if you later want to use ProjectSync notes
 with DesignSync.

 If the note type contains any notes, the -purgenotes option must
 be specified to confirm your intent to delete the note type
 (analogous to requiring rm -r for a nonempty directory).

 This command is server-side only.

SYNOPSIS

 notetype delete [-purgenotes] <NoteTypeName>

OPTIONS

• -purgenotes

-purgenotes

 -purgenotes Forces the deletion of all notes attached
 to the specified note type. If you do not
 specify this option and the note type you

ENOVIA Synchronicity Command Reference All -Vol2

1171

 want to delete contains notes, you get an
 error and the note type is not deleted.

OPERANDS

• Note Type Name

Note Type Name

 <NoteTypeName> The name of the note type to delete, which
 must exist.

RETURN VALUE

 none

SEE ALSO

 notetype create, notetype rename

EXAMPLES

 The following example deletes the SyncDefect note type, including
 all notelinks, even if some notes exist for the note type:

 notetype delete SyncDefect -purgenotes

notetype enumerate

notetype enumerate Command

NAME

 notetype enumerate - Gets a list of defined note types for all
 note systems

DESCRIPTION

 Returns a list of note type names for all visible note types of
 all note systems on the server. If no note types exist, an empty
 list is returned.

ProjectSync Data Manipulation

1172

SYNOPSIS

 notetype enumerate [-dbtablenames <dbTablenameVar>] [-urls]

OPTIONS

• -dbtablenames
• -urls

-dbtablenames

 -dbtablenames Store a map of the SQL table names by note
 <dbTablenameVar> type name in the Tcl array named
 <dbTablenameVar>. The table name is the
 note type name prefixed by t_, but this
 convention may not be used in the future. If
 a note type name contains a hyphen, the
 hyphen is converted to an underscore in the
 table name. The information from this option
 can be used to construct SQL statements
 dynamically.

-urls

 -urls The return list is formatted as note type
 URLs instead of the note type names. This
 output format is compatible with the format
 from the note types command.

RETURN VALUE

 A list of all note type names for all note systems.

SEE ALSO

 note systems, notetype create, notetype delete, notetype rename,
 url contents

EXAMPLES

ENOVIA Synchronicity Command Reference All -Vol2

1173

 Returns the list of note types on the server:

 puts [notetype enumerate]
 SyncDefect SW-Defect-1

notetype getdescription

notetype getdescription Command

NAME

 notetype getdescription - Returns a brief description of the
 note type

DESCRIPTION

 Returns a brief description of the note type. The description
 was set when the note type was created.

SYNOPSIS

 notetype getdescription <NotetypeName>

OPERANDS

• Note Type Name

Note Type Name

 <NotetypeName> The name of the note type, which must
 exist. <NotetypeName> is case-sensitive.

RETURN VALUE

 A string containing the value of the brief description recorded
 when the note type was created.

SEE ALSO

 notetype create, url setprop

ProjectSync Data Manipulation

1174

EXAMPLES

 Returns the description of the SyncDefect note type:

 notetype getdescription SyncDefect

notetype rename

notetype rename Command

NAME

 notetype rename - Renames an existing note type

DESCRIPTION

 Renames an existing note type from <CurrentName> to <NewName>. The
 note type specified by <NewName> must not already exist.

 Any notelinks associated with the note type being renamed are also
 converted to be associated with the renamed note type name. This
 includes attachments both to and from the note type. Any snapshot of
 the note type also is renamed.

 The note-type-specific files in
 $SYNC_CUSTOM_DIR/servers/<host>/<port>/share/data are not renamed as
 part of the operation. However, these files are renamed if you
 use the ProjectSync Note Type Manager to rename the note type.

 This command is server-side only.

 Important: It is strongly recommended that you do not rename the
 RevisionControl note type, which is a standard part of
 ProjectSync. This note type is designed to work with DesignSync
 for projects under revision control. Renaming this note type
 could cause problems if you later want to use ProjectSync notes
 with DesignSync.

SYNOPSIS

 notetype rename <CurrentName> <NewName>

OPTIONS

 none

ENOVIA Synchronicity Command Reference All -Vol2

1175

OPERANDS

• Current Name
• New Name

Current Name

 <CurrentName> The existing note type name that you want to
 change.

New Name

 <NewName> The new, legal note type name that you want to
 use. A note type name is limited to 24 characters.
 Spaces are not allowed in note type names, and
 the legal character set for note type names
 consists of alphanumerics, hyphens, and
 underscores. The first character in a note type
 name cannot be a hyphen or a number.

RETURN VALUE

 none

SEE ALSO

 note relink, notetype create, notetype delete

EXAMPLES

 The following example changes the name of the note type
 from AcmeBug to AjaxBug:

 notetype rename AcmeBug AjaxBug

notetype schema

notetype schema Command

NAME

ProjectSync Data Manipulation

1176

 notetype schema - Extracts information about a note type's
 structure

DESCRIPTION

 This command provides programmatic (stcl) access to the schema that
 defines a note type.

 The base set of information provided by this command is the list of
 fields that make up the note type. This information is provided in the
 return value of the command. The various command-line options allow for
 retrieving additional attribute information about each property on the
 note type. The results for each type of property information are
 returned in Tcl arrays that are passed in by name. The Tcl arrays need
 not exist prior to the execution of the command. If the arrays do exist
 or are of a scalar variable type, they are first cleared of all
 information. The data returned in these Tcl arrays is indexed by
 property name.

SYNOPSIS

 notetype schema <NotetypeName> [-dbcolumns <ColumnsVar>]
 [-defaults <DefaultsVar>] [-notesys <NoteSystemName>]
 [-prompts <PromptsVar>] [-ptypes <TypesVar>]
 [-required <ReqdVar>]

OPTIONS

• -dbcolumns
• -defaults
• -notesys
• -prompts
• -ptypes
• -required

-dbcolumns

 -dbcolumns Stores a map of column names by field name in
 <ColumnsVar> the Tcl array named <ColumnsVar>. Currently, the
 column name is always the field name prefixed by
 f_, but this convention may not be used in the
 future. This information from this option can be
 used to construct SQL statements dynamically.

-defaults

ENOVIA Synchronicity Command Reference All -Vol2

1177

 -defaults Stores a map of default values by field name in
 <DefaultsVar> the Tcl array named by <DefaultsVar>

-notesys

 -notesys A valid note system name. Defaults to SyncNotes.
 <NoteSystemName> (This name is an input parameter, not an output
 array name.)

-prompts

 -prompts Stores a map of field prompt strings by field
 <PromptsVar> name in the Tcl array named by <PromptsVar>

-ptypes

 -ptypes Stores a map of property type names by field
 <PtypesVar> name in the Tcl array named by <PtypesVar>

-required

 -required Stores a map of required flags (1 or 0) by field
 <ReqdVar> name in the Tcl array named by <ReqdVar>

RETURN VALUE

 A list of all field names in the specified note type.

SEE ALSO

 note getprop, notetype create, url getprop, url properties

EXAMPLES

• Example Returning all Fields in the Specified Note Type
• Example Displaying the Types for Each Field

Example Returning all Fields in the Specified Note Type

ProjectSync Data Manipulation

1178

 This example returns all the fields in the SyncDefect note type:

 set field_names [notetype schema SyncDefect]

Example Displaying the Types for Each Field

 This example displays the type of each field:

 set field_names [notetype schema -ptypes types SyncDefect]
 foreach field $field_names {
 puts "$field: $types($field)
"
 }

 The above example generates output such as this:

 KeyWords: String80
 Browser: SD-Browser
 Title: String80
 Class: SD-Class
 Platform: SD-Platform
 Customer: SD-Customers
 DateCreate: Timestamp

 This example determines whether the FixDate field in a note type
 called ECO is required:

 notetype schema -required reqd ECO
 if {$reqd(FixDate)} { puts "FixDate is required." }

Property Type Information

ptype

ptype Commands

NAME

 ptype - Commands that get information about property types

DESCRIPTION

 The ptype commands return information about property types.
 Property types are the data types available for note type
 properties (fields). When you create a note type field
 such as 'SpecAuthor', you assign it a property type, such as
 'String80'. Synchronicity provides a number of predefined
 property types, or you can create your own. You create and
 modify property types from the Property Type Manager

ENOVIA Synchronicity Command Reference All -Vol2

1179

 (accessed from the Note Type Manager in ProjectSync's graphical
 user interface). See the ProjectSync User's Guide for
 more information on property types.

 The ptype commands are not server-side only, but are typically
 used when accessing note and note-type objects, which are
 only accessible from server-side scripts.

SYNOPSIS

 ptype <ptype_command> [<ptype_command_options>]

 Usage: ptype [choices|class|enumerate|is|strwidth|transitions]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 ptype choices, ptype class, ptype enumerate, ptype is,
 ptype strwidth, ptype transitions

EXAMPLES

 See specific "ptype" commands.

ptype choices

ptype choices Command

NAME

 ptype choices - Returns the set of legal values for
 an enumerated type

DESCRIPTION

ProjectSync Data Manipulation

1180

 This command returns the set of legal values for an existing choice
 or state machine property type. For a state machine, the set of
 choices returned is the entire list of possible state values. Only
 choice and state machine property types may be specified. It is an
 error to supply a property of any other type.

SYNOPSIS

 ptype choices <ptype_name>

OPERANDS

• Custom Property Type Name

Custom Property Type Name

 <ptype_name> The name of an existing choice or state machine
 custom property type.

RETURN VALUE

 The list of legal values for the property type.

SEE ALSO

 ptype is, ptype class, ptype transitions

EXAMPLES

 This examples shows 'ptype choices' applied to several property
 types:
 puts [ptype choices SyncPriority] # choice class
 => low medium high stopper
 puts [ptype choices SyncState] # state-machine class
 => open analyzed fixed closed

ptype class

ptype class Command

NAME

ENOVIA Synchronicity Command Reference All -Vol2

1181

 ptype class - Returns the class of a property type

DESCRIPTION

 This command returns the class of a property type, where a class
 is a general category of property types. For example, String10,
 String80, and String are all property types of the 'string'
 class. Note that state-machine property types belong to both the
 'machine' and 'choice' classes; the dominant class is 'machine'
 and is therefore returned by 'ptype class'.

SYNOPSIS

 ptype class <ptype_name>

OPERANDS

• Custom Property Type Name

Custom Property Type Name

 <ptype_name> The name of an existing property type.

RETURN VALUE

 Returns one of the following strings:
 boolean - for boolean types
 choice - for choice (enumeration) types
 date - for Date types
 machine - for state machine types
 number - for integer, float and other numeric types
 string - for string types (of any size)
 time - for Time types
 timestamp - for Timestamp types
 userlist - for user list types

SEE ALSO

 ptype choices, ptype enumerate, ptype is

EXAMPLES

ProjectSync Data Manipulation

1182

 This example shows 'ptype class' applied to several property
 types:
 puts [ptype class String80]
 => string
 puts [ptype class String]
 => string
 puts [ptype class SyncState]
 => machine

ptype enumerate

ptype enumerate Command

NAME

 ptype enumerate - Returns a list of all property types

DESCRIPTION

 Generates a list of all property types on the server. The set of
 property types returned consists of all custom choice and state
 machine property types plus the built-in base property types:

 String Boolean SyncClass
 String10 Integer SyncUserList
 String20 Float SyncPriority
 String80 Date SyncRevCtrlCmd
 String240 Time SyncState
 String512 Timestamp
 String4000b "WebObject"

 This list excludes the string-derived property types like cclist,
 keywords, and fileattach. These are all defined, and their semantics
 imposed, at the note panel level.

SYNOPSIS

 ptype enumerate

OPTIONS

 none

RETURN VALUE

ENOVIA Synchronicity Command Reference All -Vol2

1183

 List of property types.

EXAMPLES

 This example lists all the property types known to the server:

 puts [ptype enumerate]
 => String80 String Boolean String240 Integer SyncClass String20
 Float String10 SyncRevCtrlCmd {WebObject } String512 SyncPriority
 Time Timestamp Date String4000b SyncUserList SyncState

ptype is

ptype is Command

NAME

 ptype is - Tests whether a property type is of a
 certain class

DESCRIPTION

 This command tests whether the specified property type is of the
 specified class, where a class is a general category of property
 types. For example, String10, String80, and String are all
 property types of the 'string' class. Note that state-machine
 property types belong to both the 'machine' and 'choice' classes.

SYNOPSIS

 ptype is <[-boolean] | [-choice] | [-date]
 | [-machine] | [-number] | [-string]
 | [-time] | [-timestamp] [-userlist]>
 <PropertyTypeName>

OPTIONS

• -boolean
• -choice
• -date
• -machine
• -number
• -string

ProjectSync Data Manipulation

1184

• -time
• -timestamp
• -userlist

-boolean

 -boolean Check if the property type is a boolean.

-choice

 -choice Check if the property type is a choice (enumeration)
 type. Note that 'ptype is -choice' also returns 1
 (TRUE) if the property type is a state machine.

-date

 -date Check if the property type is a date.

-machine

 -machine Check if the property type is a state machine.

-number

 -number Check if the property type is an integer, float, or
 other numeric type.

-string

 -string Check if the property type is a string (of any size).

-time

 -time Check if the property type is a time.

-timestamp

 -timestamp Check if the property type is a timestamp.

ENOVIA Synchronicity Command Reference All -Vol2

1185

-userlist

 -userlist Check if the property type is a user list.

OPERANDS

• Custom Property Type Name

Custom Property Type Name

 <PropertyTypeName> The name of an existing property type

RETURN VALUE

 Returns 1 (TRUE) if the property type is of the specified class;
 0 (FALSE) otherwise.

SEE ALSO

 ptype class, ptype enumerate

EXAMPLES

 This example verifies that the SyncPriority property type is of
 the 'choice' class (and not of the 'string' class).

 puts [ptype is -choice SyncPriority]
 => 1
 puts [ptype is -string SyncPriority]
 => 0

ptype strwidth

ptype strwidth Command

NAME

 ptype strwidth - Returns the maximum width for strings of this type

DESCRIPTION

ProjectSync Data Manipulation

1186

 This command returns the maximum number of characters a string-based
 property type can hold. The property type specified must be based on
 a string class. This command deals with character width, not byte width.

SYNOPSIS

 ptype strwidth <ptype_name>

OPERANDS

• Custom Property Type Name

Custom Property Type Name

 <ptype_name> The name of an existing property type.

RETURN VALUE

 Returns the maximum number of characters allowed for the given property
 type. For the String property type, -1 is returned, indicating no
 maximum.

SEE ALSO

 ptype is, ptype class

EXAMPLES

 This example shows 'ptype strwidth' applied to several
 property types.
 puts [ptype strwidth String80]
 => 80
 puts [ptype strwidth String10]
 => 10
 puts [ptype strwidth String]
 => -1
 puts [ptype strwidth Boolean]
 => Boolean: not a string type

ptype transitions

ptype transitions Command

ENOVIA Synchronicity Command Reference All -Vol2

1187

NAME

 ptype transitions - For the value of a state machine, returns
 the set of values that are legal for that
 value to change to

DESCRIPTION

 This command returns a list of the valid next states for any
 specified state of a State Machine property type. The -from
 option is required and indicates the state for which you want to
 know all possible next states.

SYNOPSIS

 ptype transitions <PropertyTypeName> <-from <PropertyValue>>

OPTIONS

• -from

-from

 -from Returns the list of states that are valid from
 <PropertyValue> <PropertyValue>, which must be a legal value for
 the state machine.

OPERANDS

• Custom Property Type Name

Custom Property Type Name

 <PropertyTypeName> The name of an existing property type.

RETURN VALUE

 A list of legal state values from the value specified.

SEE ALSO

ProjectSync Data Manipulation

1188

 ptype choices, ptype is

EXAMPLES

 The following example returns a list of all the valid next states for the
 state 'fixed' of the SyncState property type.

 puts [ptype choices SyncState]
 => open analyzed fixed closed
 puts [ptype transitions SyncState -from fixed]
 => open closed

Email Subscription Manipulation

subscription

subscription Commands

NAME

 subscription - Commands to manipulate email subscriptions

DESCRIPTION

 These commands allow you to manage ProjectSync email subscriptions
 which let you be notified when certain kinds of activity, such as
 revision control operations, or defect tracking, take place in
 DesignSync or ProjectSync.

SYNOPSIS

 subscription <subscription_command> [<subscription_command_options>]

 Usage: subscription [add|delete|edit|get|list]

OPTIONS

 Vary by command.

subscription add

ENOVIA Synchronicity Command Reference All -Vol2

1189

subscription add Command

NAME

 subscription add - Subscribes for email related to specified
 objects

DESCRIPTION

 This command has two basic forms. The first form of this command is
 general. It allows you to subscribe for email notifications related
 to any note type on the server managing the vaults for the specified
 objects.

 The second form of this command is specific to RevisionControl
 notes. It allows you to subscribe for email notifications related
 to RevisionControl notes on the server managing the vaults for the
 specified objects. This form also has convenient options for
 limiting the subscription to certain RC operations.

 Note that a single 'subscription add' command invocation can cause
 multiple entries in the subscription database, as reported by
 the 'subscription list' command. For example, this command
 creates two entries:
 subscription add *.tcl *.html
 and this one creates four entries:
 subscription add -ci -tag *.tcl *.html

 Note: If you specify a subscription for the tag command, but do not have a
 subscription for the ci command, you will not get notifications for
 any ci -tag operations that specify a tag. In order to get all tag
 activity, you must also subscribe to ci command notifications.

SYNOPSIS

 subscription add [-ci] [-colock] [-conolock] [-filter Expr]
 [-noteType noteType] [-server serverURL] [-tag]
 [-tagname TagName] [-unlock] [-user user] object...

ARGUMENTS

• Object

Object

 object An expression (possibly containing wildcards) that must
 match one of the objects associated with a note in order

ProjectSync Data Manipulation

1190

 for you to receive email. If no objects are provided, the
 default is to subscribe for ALL objects.

OPTIONS

• -ci
• -colock
• -conolock
• -filter
• -notetype
• -server
• -tag
• -tagname
• -unlock
• -user

-ci

 -ci Indicates that you wish to receive email when the objects
 listed are checked in. Implies the note type
 'RevisionControl'.

-colock

 -colock Indicates that you wish to receive email when the objects
 listed are checked out with a lock. Implies the note type
 'RevisionControl'. The same assumptions are applied for
 'populate -lock' operations.

-conolock

 -conolock Indicates that you wish to receive email when the
 objects listed are checked out without a lock. For the
 'co -get' and 'populate -get' operations, the note type
 'RevisionControl' is assumed.

-filter

 -filter Gives an expression describing which modifications to
 notes of the given type(s) will cause email to be
 sent. For a complete explanation of the filter
 expression syntax, see the ProjectSync
 User's Guide 'Advanced Email Subscriptions' topic. Note
 that if stcl is used the '$' operator needs to be
 escaped when used in a filter. For example, -filter

ENOVIA Synchronicity Command Reference All -Vol2

1191

 Title\$Test.

-notetype

 -noteType Specifies the name of the note type for which subscriptions
 are to be added.

 If -ci, -conolock, -colock, -unlock, or -tag are used, then
 the noteType is assumed to be 'RevisionControl'.

 If a note type is not provided and there are not any revision
 control operations listed, subscriptions for ALL note
 types will be modified.

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-tag

 -tag Indicates that you wish to receive email when the objects
 listed are tagged. Implies the note type
 'RevisionControl'.

-tagname

 -tagName Limits your email subscriptions to those concerning
 revision control operations associated with the
 given tag.

-unlock

 -unlock Indicates that you wish to receive email when the
 objects listed are unlocked. Implies the note type
 'RevisionControl'. The same assumptions are applied for
 'cancel' operations.

-user

 -user Allows you to add subscriptions for another user. By
 default, subscriptions are shown for the user running

ProjectSync Data Manipulation

1192

 the client.

RETURN VALUE

 none

SEE ALSO

 subscription delete, subscription edit, subscription get,
 subscription list

EXAMPLES

• Example of Subscribing to SyncDefect Notes
• Example of Subscribing to Specific Objects Tagged with a Specific Tag
• Example of Subscribing to Specified RC Notes
• Example of Subscribing to all Notes Attached to a Module (Module-based)
• Example of Subscribing to all Notes for Modules in a Category (Module-based)
• Example of Subscribing to all Notes Attached to a Project (File-based)

Example of Subscribing to SyncDefect Notes

 This example shows subscribing to SyncDefect notes attached to any
 object under project ASIC on the SyncServer.

 dss> subscription add -noteType SyncDefect sync:///Projects/ASIC

Example of Subscribing to Specific Objects Tagged with a Specific Tag

 This example shows two different ways to subscribe to RevisionControl
 notes when objects representing the .tcl files under [url vault .]
 are tagged as golden.

 dss> subscription add -noteType RevisionControl -filter \
 "Command=tag;Tag=Golden" *.tcl

 dss> subscription add -tag -tagname Golden *.tcl

Example of Subscribing to Specified RC Notes

 Subscribe to RC notes for objects *.tcl and *.ini for operations:
 checkin, checkout with lock.

ENOVIA Synchronicity Command Reference All -Vol2

1193

 dss> subscription add -ci -colock *.tcl *.ini

Example of Subscribing to all Notes Attached to a Module (Module-based)

 This example subscribes to all notes attached to a module.

 dss> subscription add -server sync://serv1.ABCo.com:2647 \
 sync:///Modules/ChipDesign/NXZ-21x

Example of Subscribing to all Notes for Modules in a Category (Module-based)

 dss> subscription add -server sync://serv1.ABCo.com:2647 \
 sync:///Modules/ChipDesign

Example of Subscribing to all Notes Attached to a Project (File-based)

 This example subscribes to all notes attached to objects
 sync:///Projects/ASIC on the SyncServer.

 dss> subscription add ASIC

subscription delete

subscription delete Command

NAME

 subscription delete - Deletes email subscriptions for specified objects

DESCRIPTION

 This command allows you to delete email subscriptions for the specified
 objects. For each object you specify, the server hosting the vault for
 that object will be searched for subscriptions.

 Use the 'subscription list' command to view your existing
 subscriptions.

 This command provides several different ways to delete subscriptions.
 * Delete all subscriptions for a specified user on the server.
 * Delete any subscriptions which were defined to refer to ALL
 (objects).
 * Deletes any subscriptions for a specified note type which were
 defined to refer to ALL (objects).

ProjectSync Data Manipulation

1194

 * Delete subscriptions for a user on a specified object, optionally
 for a specified note type.

 Examples of all of these methods are shown in the Examples section.

SYNOPSIS

 subscription delete [-noteType noteType] [-server serverURL]
 [-user user] [<object>[...]]

ARGUMENTS

• Object

Object

 object The objects for which subscriptions are to be deleted.
 For each object you specify, the server hosting the vault
 for that object is searched for subscriptions. You may use
 wildcards in the object value.

 Note: The object specification must match exactly the
 specification in the subscription database. For instance,
 if you subscribed for Projects/MyProj/Foo/bar, you cannot
 unsubscribe projects/MyProj/Foo/* because that is not an
 exact match.

 If an object is not specified, subscriptions to ALL
 objects (those subscriptions for which the user selected
 ALL objects instead of specifying a particular object) are
 deleted. If a noteType value is provided without an
 object, subscriptions to ALL objects for that noteType are
 deleted.

OPTIONS

• -notetype
• -server
• -user

-notetype

 -noteType Specifies the name of the note type for which subscriptions
 are to be deleted.

-server

ENOVIA Synchronicity Command Reference All -Vol2

1195

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-user

 -user Allows you to delete the subscriptions of a user other
 than the user you are logged in as. By default, the
 name of the user running the client is used.

RETURN VALUE

 none. After the command is run, it returns a single integer value
 showing how many subscriptions were deleted during the operation.

SEE ALSO

 subscription add, subscription edit, subscription get, subscription list

EXAMPLES

• Example of Deleting all Subscriptions for a User
• Example of Deleting Subscriptions for all Objects
• Example of Deleting Subscriptions for a NoteType for all Objects
• Example of Deleting all Subscriptions on the Specified Object
• Example of Deleting all Specified Notetypes for an Object

Example of Deleting all Subscriptions for a User

 This example shows deleting all subscriptions created for a specified
 user on the specified server.
 Note: By using the wildcard (*) for the object, you specify deleting
 all subscriptions for all objects for the user on the server.
 dss> subscription delete -user rsmith -server
 sync://srv1.ABCo.com:2647 *
 30

Example of Deleting Subscriptions for all Objects

 This example shows deleting the subscriptions created to match all
 objects (either by not specifying an object when the subscription was
 added or by choosing the ALL option).

ProjectSync Data Manipulation

1196

 Note: No value, not even wildcard, is specified for object.

 dss> subscription delete -user rsmith -server sync://srv1.ABCo.com:2647
 15

Example of Deleting Subscriptions for a NoteType for all Objects

 This examples shows deleting the subscriptions for the Defect note type.

 Note: By not specifying a user, the subscriptions deleted are those
 of the user running the command.

 dss> subscription delete -notetype Defect -server sync://srv1.ABCo.com:2647
 10

Example of Deleting all Subscriptions on the Specified Object

 This example shows deleting all subscriptions for the specified user
 for the specified project.
 Note: The /// construction shows that it is an object,not a reference
 to the server.

 dss> subscription delete -user rsmith sync:///Projects/ProjectSync/*
 30

Example of Deleting all Specified Notetypes for an Object

 This example shows deleting all Defect note types for all objects
 within the panels project.

 dss> subscription delete -noteType Defect panels/*
 8

subscription edit

subscription edit Command

NAME

 subscription edit - Edits email subscriptions

DESCRIPTION

ENOVIA Synchronicity Command Reference All -Vol2

1197

 This command invokes a web browser to edit the email subscription of
 the given user.

 On Unix platforms, the default browser chosen by your system
 administrator will be used. To change the default, use the 'SyncAdmin'
 tool. On Windows platforms, the default browser defined in the system
 registry will be used.

SYNOPSIS

 subscription edit [-server serverURL] [-user user]

OPTIONS

• -server
• -user

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-user

 -user Allows you to edit the subscriptions of a user other than
 the user you are logged in as. By default, the name of
 the user running the client is used.

RETURN VALUE

 1

SEE ALSO

 subscription add, subscription delete, subscription get,
 subscription list

EXAMPLES

• Example of Editing a Subscription on the Server Associated with cwd

ProjectSync Data Manipulation

1198

• Example of Editing a Subscription on a Specified Server

Example of Editing a Subscription on the Server Associated with cwd

 This example shows the command that launches your web browser to edit
 subscriptions on the server associated with the current working
 directory, pointed to by [url vault .]

 dss> subscription edit

Example of Editing a Subscription on a Specified Server

 Brings up your web browser to edit subscriptions on SyncServer:2647.

 dss> subscription edit -server sync://SyncServer:2647

subscription get

subscription get Command

NAME

 subscription get - Gets subscription information as a Tcl list

DESCRIPTION

 For a user-friendly view of the subscriptions, use the 'subscription
 list' command. This command is intended for use by those who wish to
 manipulate the subscription database using Tcl.

 Each subscription entry is returned as a Tcl list with alternating
 names and values ('array get' format). The following names are used:

 noteType The name of the NoteType for which the use is subscribed.
 object The object for which the user is subscribed.
 filter The filter string for the subscription.

SYNOPSIS

 subscription get [-noteType noteType] [-server serverURL] [-user user]

OPTIONS

• -noteType

ENOVIA Synchronicity Command Reference All -Vol2

1199

• -server
• -user

-noteType

 -noteType Specifies the name of the note type for which subscriptions
 are to be queried. If no note type is given,
 subscriptions for all note types are listed.

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-user

 -user Allows you to get the subscriptions of a user other than
 the user you are logged in as. By default, the name of
 the user running the client is used.

RETURN VALUE

 A Tcl list of subscriptions, where each subscription is represented
 in Tcl 'array get' format, with the array indices being 'noteType',
 'object', and 'filters'.

SEE ALSO

 subscription add, subscription delete, subscription edit,
 subscription list
,

EXAMPLES

 foreach sub [subscription get -user JDoe] {
 array set info $sub
 puts "NoteType: $info(noteType)"
 puts "Object: $info(object)"
 puts "Filter: $info(filters)"
 }

 The output would resemble the following:

ProjectSync Data Manipulation

1200

 NoteType: RevisionControl
 Object: *.tcl
 Filter: Tag=Golden;Command=tag

subscription list

subscription list Command

NAME

 subscription list - Lists email subscriptions

DESCRIPTION

 This command prints out a listing of your current subscriptions
 on a particular server.

 Note that a single 'subscription add' invocation can cause
 multiple entries in the subscription database, as reported by
 the 'subscription list' command. For example, this command
 creates two entries:
 subscription add *.tcl *.html
 and this one creates four entries:
 subscription add -ci -tag *.tcl *.htm

SYNOPSIS

 subscription list [-noteType noteType] [-server serverURL] [-user user]

OPTIONS

• -noteType
• -server
• -user

-noteType

 -noteType Specifies the name of the note type for which subscriptions
 are to be displayed. If no note type is given,
 subscriptions for all note types are listed.

-server

ENOVIA Synchronicity Command Reference All -Vol2

1201

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-user

 -user Allows you to view the subscriptions of a user other than
 the user you are logged in as. By default, the name of
 the user running the client is used.

RETURN VALUE

 none

SEE ALSO

 subscription add, subscription delete, subscription edit,
 subscription get

EXAMPLES

• Example Showing Listing Subscriptions on the server
• Example Showing Listing Subscriptions for Vault Associated with cwd

Example Showing Listing Subscriptions on the server

 This example shows a list of all subscriptions for a specified
 server.

 dss> subscription list -server sync://SyncServer:2647

 SyncDefect sync:///Projects/EmailPackage State->new;Class=enhancement
 SyncDefect sync:///Projects/EmailPackage State->new;Class=sw-bug
 SyncDefect sync:///Projects/ProjectSync Class=sw-bug
 SyncDefect sync:///Projects/ProjectSync Severity->STOPPER
 HW-Defect-1 sync:///Projects/ProjectSync
 Note sync:///Projects/ProjectSync

Example Showing Listing Subscriptions for Vault Associated with cwd

 This example shows a list of all the subscriptions for the vault
 associated with the current working directory. You could also
 specify current working directory as "[url vault .]".

ProjectSync Data Manipulation

1202

 dss> subscription list -noteType Note

User Profile Manipulation

user

user Commands

NAME

 user - Server-side commands to edit user profiles

DESCRIPTION

 The 'user' family of commands lets you access SyncServer user
 profiles. You can add and delete user IDs and profiles.

SYNOPSIS

 user <user_command> [user_command_options>]

 Usage: user [counts|create|delete]

EXAMPLES

 See specific "user" commands.

user counts

user counts Command

NAME

 user counts - Counts the number of user records

DESCRIPTION

 Counts the number of currently defined user records. This command

ENOVIA Synchronicity Command Reference All -Vol2

1203

 is equivalent to length [url users sync:///], but is faster.

SYNOPSIS

 user counts

OPTIONS

 none

RETURN VALUE

 Returns the number of currently defined user records.

SEE ALSO

 note counts, user create

EXAMPLES

 This command outputs the number of users:

 puts [user counts]

 25

user create

user create Command

NAME

 user create - Creates a new user id with the specified profile

DESCRIPTION

 This command creates a new user ID and profile with the name, email
 address and password that you specify. The user ID cannot already
 exist. This command is available only from server-side scripts.

ProjectSync Data Manipulation

1204

 A username should consist of alphanumeric characters. Do not include
 spaces, single quotation marks ('), double quotation marks ("), leading
 dashes (-), dollar signs ($), ampersands (&), or slashes (/) in user
 names.

 The user profile attributes are specified as a list of name/value
 pairs. The user create command accepts the following attribute names:

 Name - The user's name.
 EmailAddr - The user's email address.
 ClearKey - The user's password, in cleartext. The value is
 encrypted using MD5 encoding.
 Key - The user's password, assumed to be in MD5 format.
 The value is used as is.
 PhoneNumbr - The user's phone number.
 PageNumber - The user's pager number.

 Values for the name, email address, and password attributes must be
 supplied.

 For the password attribute, either ClearKey or Key may be used, but
 not both. If ClearKey is used, the value is assumed to be
 cleartext and is first encrypted using MD5 encoding. Use the
 ClearKey argument when the password is not encoded.

 If Key is used, the value is assumed to be encrypted and is used as
 is. Use the Key argument when the user's password is encrypted with
 Unix style crypt() or when transferring user accounts, including
 passwords, from the Unix NIS database into ProjectSync. You can set
 the Key with url setprop and retrieve it with url getprop. ClearKey
 is write-only, so you can set it with url setprop but you cannot
 retrieve it with url getprop. For more information, see the Tcl
 Script for Importing Users and Changing User Passwords topics in the
 ENOVIA Synchronicity DesignSync Data Manager Administrator's Guide.

 If the same property is specified more than once with different
 values, the last value is stored.

 Note: If you use LDAP to store user information, you can use
 ProjectSync's LDAP client to give users from an LDAP database access
 to ProjectSync. For other user databases, you can create a trigger
 that fires whenever a user tries to access an area of ProjectSync
 that requires user authentication. See the topics Enabling LDAP and
 Creating User Authentication Scripts in the ENOVIA Synchronicity
 DesignSync Data Manager Administrator's Guide for more information.

SYNOPSIS

 user create <userid> <{Name Value Name Value...}>

OPTIONS

ENOVIA Synchronicity Command Reference All -Vol2

1205

 none

OPERANDS

• User ID
• Name/Value Pairs for Attribute Values

User ID

 <userid> A unique user ID for new user profile.

Name/Value Pairs for Attribute Values

 {Name Value User profile attribute values, in array list
 Name Value...} format. The names must match the existing
 property names on the user profile and the
 values must be legal for the property types.

RETURN VALUE

 none

SEE ALSO

 user delete, url properties, url getprop, url setprop

EXAMPLES

 This example creates a user profile for the username jane. The
 user's full name is Jane Doe, her email address is jane@hb.com
 and her password is abcde.

 user create jane {Name "Jane Doe" EmailAddr "jane@hb.com" ClearKey "abcde"}

user delete

user delete Command

NAME

ProjectSync Data Manipulation

1206

 user delete - Deletes the specified user ID and corresponding
profile

DESCRIPTION

 This command deletes a specified user ID and corresponding profile
 from the SyncServer. Additional user data associated with this profile,
 such as email subscriptions, are not modified by this command. The
 user interface performs these additional clean-up operations.

 This command is available only from server-side scripts.

SYNOPSIS

 user delete <username>

OPTIONS

 none

OPERANDS

• User ID

User ID

 <username> The user ID of the user profile to be deleted,
 which must exist.

RETURN VALUE

 none

SEE ALSO

 user create

EXAMPLES

ENOVIA Synchronicity Command Reference All -Vol2

1207

 In this example, you delete the username "jane" and corresponding
 profile from the SyncServer.

 user delete jane

1209

Getting Assistance

Using Help
ENOVIA Synchronicity DesignSync Data Manager Product Documentation provides
information you need to use the product effectively. The Online Help is delivered
through WebHelp® , an HTML-based format.

Note:

Use SyncAdmin to change your default Web browser, as specified during ENOVIA
Synchronicity DesignSync tools installation. See SyncAdmin Help for details.

This help is available as both as text only within the command line interface and the
HTML guide, which is currently being viewed. The command line interface help
displays in the standard output window.

To bring up the online help from the tool you are using, do one the following:

 Type help <command> from the tool you are using. This displays the full
command description, usage (syntax), explanation of options, examples, and
error messages. If the command contains a prefix, enclose the command in
double quotes, for example: help "url properties" displays help for the
url properties command.

 Type <command> -help from the tool you are using. This displays the full
command description, usage (syntax), explanation of options, examples, and
error messages.

 Type <command> -usage from the tool you are using. This displays the short
command description and the command syntax.

Note: DesignSync also features a webhelp command in the command line interface,
which opens the HTML page for the specified command.

When the HTML Online Help is open, you can find information in several ways:

• Use the Contents tab to see the help topics organized hierarchically.
• Use the Index tab to access the keyword index.
• Use the Search tab to perform a full-text search.

Within each topic, there are the following navigation buttons:

• Show and Hide: Clicking these buttons toggles the display of the navigation (left)
pane of WebHelp, which contains the Contents, Index, and Search tabs. Hiding
the navigation pane gives more screen real estate to the displayed topic.

Getting Assistance

1210

Showing the navigation pane givens you access to the Contents, Index, and
Search navigation tools.

• << and >>: Clicking these buttons moves you to the previous or next topic in a
series within the help system.

You can also use your browser navigation aids, such as the Back and Forward
buttons, to navigate the help system.

Related Topics

Getting a Printable Version of Help

Getting a Printable Version of Help
The ENOVIA Synchronicity Command Reference is available in book format from the
ENOVIA Documentation CD or the DSDocumentationPortal_Server installation
available on the 3ds support website (http://media.3ds.com/support/progdir/). The
content of the book is identical to that of the help system. Use the book format when
you want to print the documentation, otherwise the help format is recommended so you
can take advantage of the extensive hyperlinks available in the DesignSync Help.

You must have Adobe® Acrobat® Reader™ Version 8 or later installed to view the
documentation. You can download Acrobat Reader from the Adobe web site.

Contacting ENOVIA
For solutions to technical problems, please use the 3ds web-based support system:

http://media.3ds.com/support/

From the 3ds support website, you can access the Knowledge Base, General Issues,
Closed Issues, New Product Features and Enhancements, and Q&A's. If you are not
able to solve your problem using this information, you can submit a Service Request
(SR) that will be answered by an ENOVIA Synchronicity Support Engineer.

If you are not a registered user of the 3ds support site, send email to ENOVIA Customer
Support requesting an account for product support:

enovia.matrixone.help@3ds.com

http://media.3ds.com/support/progdir/
http://www.adobe.com/acrobat/readermain.html
http://media.3ds.com/support/
mailto:enovia.matrixone.help@3ds.com

1211

Index
A

Access Commands

access allow command 801

access db_filter command 804

access deny command 817

access filter command 817

access global command 820

access init command 823

access reset command 826

access verify command 828

Access Controls

access decline 813

access define 815

access list 825

B

Branch

creating 334

retiring 366

C

Cache

cleaning 930, 933

disabling 942, 1018

displaying 950, 1021

enabling 944, 1020

refreshing 937

caching

list 946

caching list 946

Check In

objects 148

Checkout

canceling 137

objects 190

Command

defaults

defining the default values 852

disabling the system 847

enabling the system 849

listing commands that support the
system 846

refreshing 850

showing defaults 856

state of the system 859

Comparing Objects

comparing files 431, 481

1212

compressed archive

upload 408, 890

Custom Type Package (CTP)

listing and validating 860, 861, 863

D

Data Replication

disabling 909

enabling 911

listing 922

removing 915

setting options 920

updating 913

Data Replication Root

associating with a MAS 903

listing 927

removing 918

replicating on the replication root 906

Date Selectors 120

Development Area

changing 5, 590

creating 9

GUI 594

joining 595

listing 597

removing 599

Directories

changing current directory 421

changing location 422

displaying path 421

displaying URL location 425

E

Email Subscriptions

deleting 1193

editing 1196

information 1198

listing 1200

subscribing to email for objects 1189

Enterprise Develoments

add mcache paths 619

create reference workspace 622

list mcache paths 624

remove mcache path 626

Enterprise Objects

enterprise object revisions 611

enterprise objects and module
versions 613

set policy 607

ENOVIA Synchronicity Command Reference All -Vol2

1213

set product type 609

show id 604

show platform management 604

show policy 605

show workspace 611

synchronize enterprise objects with
DesignSync 613

Events

creating 1042

properties

defining 1045

deleting 1046

getting information 1047

listing definitions 1048

F

Folders

creating 342

deleting 376

moving 350

G

Get

reading a string 748

H

Help

contacting ENOVIA 1210

getting help 494

printing 1210

using 1209

viewing 584

I

ip

upload 408, 890

L

Local Version

deleting 867

listing 870

restoring 873

saving 875

Locking

changing lock owner 393

releasing from a server 397

Login

displaying stored logins 837

removing stored logins 835

storing 832

storing username and password 841

1214

M

Metadata

backing up tables 1103

Mirrors

creating 953

deleting 964

disabling 966

displaying status 1000

editing 968

enabling 977, 985

getting options 983

mapping the directories 116

mirroring vault data 1007

mirrors on the server 988

naming 986, 991

parameters 979

populating the directory 994

removing directory associations 116

Module

branching 334

changing 428

comparing 431

exporting 879

importing 886

information 457, 480, 501

locking 397

members

removing 373

tagging 303

moving on the server 129

purging 353

selector 120

tagging 303

Module Cache

designating instances 1025

removing old module instances 1029

touch time 1033, 1038

N

Note Types

creating 1166

deleting 1170

description 1173

information 1175

list of note types for system 1165,
1171

manipulating 1166

renaming 1174

ENOVIA Synchronicity Command Reference All -Vol2

1215

Notes

attachments 1159

creating 1143

deleting 1147

deleting links 1148

information 1161

link 1136, 1151

listing note systems 1164

note statistics 1137

properties 1150, 1161

querying 1155

O

Objects

deleting 373

listing information 501

moving 343

properties 656, 719

P

Populate

objects 25, 212

Property Type

class of property type 1180, 1183

legal values 1179, 1186

listing 1182

string width 1185

R

Registry Files

available values 1096

changing active files 1085

deleting 1071

getting a registry value 1076

refreshing 1085

setting a registry value 1087

source of registry values 1092

sub-keys 1081

S

Selectors

persistent 120

Server

backing up 1100

login 835

restoring all backup data 1104

restoring vault data 1105

setting the server to semi-active state
1107

SyncAdmin

administrator tool 1068, 1124

1216

syncd processes 1126

SyncRef 1

T

Tag

branches 303

versions 303

tar

upload 408, 890

Triggers

blocking 1050

deleting 1056

disabling 1057

displaying status 1066

enabling 1058, 1062

information 1061

listing triggers 1063

trigger create 1052

trigger fire 1059

Troubleshooting

diagnosing software problems 1119

returning environment information
551, 1110

software tracing 1120, 1122

U

upload

command 408, 890

URL

registry keys and commands

checking if a file merge had
conflicts (url inconflict) 659

checking if an object has been
modified (url modified) 670

checking whether an object is under
revision control (url registered)
692

determining collection object
dependencies (url relations) 696

extracting path section of a URL (url
path) 681

finding the members of collections
(url members) 667

finding the natural path for a
module member (url naturalpath)
673

finding the URL of a local directory's
mirror (url mirror) 669

finding when a branch was locked
(url locktime) 664

finding whether an object exists (url
exists) 645

getting branch number of an object
(url branchid) 632

ENOVIA Synchronicity Command Reference All -Vol2

1217

getting configurations of a
ProjectSync project (url configs)
635

getting fetched state of an object
(url fetchedstate) 648

getting persistent filter for
workspace module (url filter) 654

getting the leaf of a URL (url leaf)
662

getting the object containing an
object (url container) 637

getting the objects in a container
object (url contents) 472, 638

getting the time when an object was
fetched (url fetchtime) 651

receiving all users defined for an
object's server (url users) 731

receiving persistent view list for
workspace module (url view) 741

receiving server-list definitions (url
servers) 716

receiving URL of an object's vault
(url vault) 732

receiving URLs of an object's
versions (url versions) 739

receiving version number of objects
(url versionid) 735

receiving version tags associated
with objects (url tags) 727

removing specified properties for
module object from local
metadata (url rmprop) 708

retrieving property of an object (url
getprop) 656

returning a SyncServer's
ProjectSync projects (url projects)
683

returning closest common ancestor
of two versions (url
resolveancestor) 698

returning notes attached to an
object (url notes) 675

returning object's persistent selector
list (url selector) 713

returning owner of an object (url
owner) 678

returning properties for objects (url
properties) 685

returning version number
associated with selector (url
resolvetag) 702

returning whether a branch is
retired (url retired) 706

returning workspace root for given
path (url root) 710

setting property on objects (url
setprop) 719

setting system lock on a lock name
or file path (url syslock) 723

URL navigation commands (url)
629, 630

User Profiles

counting user records 1202

1218

creating 1203

deleting 1205

editing 1202

V

Vaults

converting data 1122, 1123

deleting 380

deleting version 383

disassociating a vault 134

exporting 882, 1123

importing 889, 1124

purging 353

restoring vault 1105

vault association 129

Versions

history

displaying 560

W

Workspace

roots

setting 118

	Introduction to the PDF version of the DesignSync Command Reference
	ENOVIA Synchronicity Command Reference
	Using this Guide with Different Methodologies
	Module Based Commands
	Legacy Module Based Commands
	File Based Commands

	Organization of the Command Reference
	Syntax Description
	Accessing Command Descriptions from Client Shells

	File-Based Design
	Workspace Setup
	Enterprise Design Development Area
	sda cd
	sda cd Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sda mk
	sda mk Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Exclude from Workspace
	exclude
	exclude Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	exclude add
	exclude add Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	PATTERN
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	exclude list
	exclude list Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	exclude remove
	exclude remove Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	PATTERN
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	populate
	populate Command
	NAME
	DESCRIPTION
	Object States
	How Populate Handles Selectors
	Populate Log
	How Populate Handles Collections with Local Versions
	Populating Module Objects (Module-based)
	Setting up Your Workspace (Module-based)
	How Populate Handles Module Snapshots (Module-based)
	How Populate Handles Module Views (Module-based)
	Resolving Module Conflicts with Populate (Module-based)
	Module Cache (Module-based)
	External Module Support (Module-based)
	Populating Modules Recursively (Module-based)
	Module Version Updating (Module-based)
	Incremental Versus Full Populate (Module-based)
	How Populate Handles Moved and Removed Module Members (Module-based)
	Merging Across Branches (Module-based)
	Understanding the Output (Module-based)
	Forcing, Replacing, and Non-Replacing Modes (Module-based)
	Interacting with Legacy Modules (Legacy-based)
	Incremental Versus Full Populate (Legacy-based)
	Setting up Your Workspace (File-based)
	Incremental Versus Full Populate (File-based)
	How Populate Handles Retired Objects (File-based)
	Merging Across Branches (File-based)
	Populate Versus Checkout (File-based)
	Understanding the Output (File-based)
	Forcing, Replacing, and Non-Replacing Modes (File-based)

	SYNOPSIS
	ARGUMENTS
	Server Module URL (Module-based)
	Workspace Module (Module-based)
	Module Folder (Module-based)
	Module Member (Module-based)
	Hierarchical Reference (Module-based)
	External Module (Module-based)
	DesignSync Object (File-based)
	DesignSync Folder (File-based)

	OPTIONS
	-[no]connectinstances (Module-based)
	-[no]emptydirs
	-exclude (Module-based)
	-exclude (File-based)
	-filter (Module-based)
	-[no]force (Module-based)
	-[no]force (File-based)
	-from
	-full
	-get (Module-based)
	-get (File-based)
	-hreffilter (Module-based)
	-hrefmode (Module-based)
	-incremental
	-keys (Module-based)
	-keys (File-based)
	-lock (Module-based)
	-lock (Legacy-based)
	-lock (File-based)
	-lock -reference (Module-based)
	-lock -reference (File-based)
	-log
	-mcachemode (Module-based)
	-mcachemode (Legacy-based)
	-mcachepaths (Module / Legacy-based)
	-[no]merge (Module-based)
	-merge (File-based)
	-mirror (File-based)
	-modulecontext (Module-based)
	-[no]new (Module-based)
	-overlay
	-path (Module-based)
	-path (Legacy-based)
	-path (File-based)
	-[no]recursive (Module-based)
	-[no]recursive (Legacy-based)
	-[no]recursive (File-based)
	-reference
	-[no]replace (Module-based)
	-[no]replace (File-based)
	-report
	-[no]retain
	-savelocal
	-share
	-target (Legacy-based)
	-trigarg
	-[no]unifystate
	-version (Module-based)
	-version (File / Legacy-based)
	-view (Module-based)
	-xtras (Module-based)

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Populating a Module (Module-based)
	Example of Populating a Specific Module Member (Module-based)
	Example of Populating a Module with a Static Selector (Module-based)
	Example of Populating a Module Using Version-Extended Naming (Module-based)
	Example of Creating a Module Cache (Module-based)
	Example of Populating an Mcache Link (Module-based)
	Example of Populating a Module View (Module-based)
	Example of Specifying a Hierarchical Hreffilter (Module-based)
	Example of Merge Across Branches (Module-based)
	Example of Creating a new work area from a DesignSync vault (File-based)
	Example of Creating a New Work Area from a DesignSync Vault Branch (File-based)
	Example of Updating an Existing Workspace with a Full Populate (File-based)
	Example of Updating the State of Objects in the Workspace (File-based)
	Example of Performing a Merge into a Workspace (File-based)
	Example of Replacing Modified Files with the Server Versions (File-based)

	setmirror
	setmirror Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	setroot
	setroot Command
	NAME
	DESCRIPTION
	Notes for Modules Root

	SYNOPSIS
	ARGUMENTS
	Workspace Folder

	OPTIONS
	-[un]set (Module-based)
	-[un]set (File-based)
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Setting the Workspace Root for a Module (Module-based)
	Unsetting the Workspace Root for a Module (Module-based)
	Setting the Workspace Root For Files-Based Objects (File-based)

	setselector
	setselector Command
	NAME
	DESCRIPTION
	Notes for Using setselector (Module-based)
	Notes for Using setselector (File-based)
	Valid Selectors for Module Objects (Module-based)
	Valid Selectors for Files-Based Objects (File-based)
	Configuration Mapping (Legacy-based)

	SYNOPSIS
	SELECTORS
	-selector

	ARGUMENTS
	Workspace Module (Module-based)
	Workspace Folder
	Workspace Objects

	OPTIONS
	-recursive (Module-based)
	-recursive (Legacy-based)
	-recursive (File-based)
	-selected
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Using Setselector with Module Snapshots (Module-based)
	Example Using the Persistent Selector List in a multi-branch environment (File-based)
	Example of Using Setselector to Auto-Branch (File-based)

	setvault
	setvault Command
	NAME
	DESCRIPTION
	Note for Module Workspaces (Module-based)
	Using setvault with Modules (Module-based)
	Using setvault with DesignSync objects (File-based)

	SYNOPSIS
	ARGUMENTS
	Vault URL
	Local Module (Module-based)
	Local Folder (File-based)

	OPTIONS
	-recursive (File-based)
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Associating a Server Vault with the Current Folder
	Example of Associating a Server Vault with a Specified Directory
	Example of Changing the Vault Association Recursively in a Workspace
	Example of Associating a Local Vault with a Specified Directory

	unsetvault
	unsetvault Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	DesignSync Object
	Workspace Folder

	OPTIONS
	-[no]recursive
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Primary Revision Control
	cancel
	cancel Command
	NAME
	DESCRIPTION
	Notes on Using cancel with Collections
	Notes on Using Cancel with Modules (Module-based)
	Notes on Using cancel with File-Based Objects (File-based)
	Auto-Branching for File Objects and Legacy Modules Objects (File-based)

	SYNOPSIS
	ARGUMENTS
	Member Module/Member Folder (Module-based)
	Workspace Module (Module-based)
	DesignSync File Object (File-based)
	DesignSync Folder (File-based)

	OPTIONS
	-exclude
	-filter (Module-based)
	-[no]force
	-hreffilter (Module-based)
	-keep
	-mirror (File-based)
	-modulecontext (Module-based)
	-[no]recursive (Module-based)
	-[no]recursive (File-based)
	-reference
	-[no]retain
	-[no]selected
	-share
	-trigarg
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	ci
	ci Command
	NAME
	DESCRIPTION
	Versions and Branches
	Changing Checkin Comments
	Understanding the Output
	Object States (Module-based)
	Determining the Objects to be Checked In (Module-based)
	Determining Which Branch is Selected for the Check In (Module-based)
	Filtering or Excluding Objects From Checkin (Module-based)
	Checking in Module Objects (Module-based)
	Branching Modules (Module-based)
	Automerging of Module Objects (Module-based)
	How Checkin Works with Enterprise Design Synchronization (Module-based)
	Checking in Legacy Module Data (Legacy-based)
	Object States (File-based)
	Determining the Objects to be Checked In (File-based)
	Determining Which Branch is Selected for the Check In (File-based)
	Filtering or Excluding Objects From Checkin (File-based)
	Interaction with Mirrors (File-based)

	SYNOPSIS
	ARGUMENTS
	Module Folder (Module-based)
	Module Member (Module-based)
	Workspace Module (Module-based)
	DesignSync File Objects (File-based)
	DesignSync Folder Objects (File-based)

	OPTIONS
	-autohrefversions (Module-based)
	-branch (Module-based)
	-branch (File-based)
	-[no]comment (Module-based)
	-[no]comment (File-based)
	-cfile
	-datatype (Module-based)
	-datatype (File-based)
	-[no]dryrun
	-exclude (Module-based)
	-exclude (File-based)
	-filter (Module-based)
	-[no]force
	-hreffilter (Module-based)
	-[no]hrefversions (Module-based)
	-[no]iflock (Module-based)
	-[no]iflock (File-based)
	-keep
	-keys
	-lock
	-mirror (File-based)
	-modulecontext (Module-based)
	-[no]new (Module-based)
	-[no]new (File-based)
	-[no]recursive (Module-based)
	-recursive (Legacy-based)
	-recursive (File-based)
	-reference
	-report
	-[no]resume (Module-based)
	-[no]retain
	-[no]retry (Module-based)
	-[no]selected
	-share
	-[no]skip (Module-based)
	-[no]skip (File-based)
	-tag (Module-based)
	-tag (File-based)
	-trigarg
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Creating a Module and Performing an Initial File Checkin (Module-based)
	Example of Checking in Module Structure Changes (Module-based)
	Example of Checking in on a New Branch (Module-based)
	Example of Attempting to Modify A Member in a Static Workspace (Module-based)
	Example of Checking in a File without a Comment (File-based)
	Example of Checking in New Files (File-based)
	Example of Checking in Recursively (File-based)
	Example of a Dry-Run Checkin Showcasing Wildcard Usage (File-based)
	Example of Checkin to a Branch (File-based)

	co
	co Command
	NAME
	DESCRIPTION
	Object States
	Determining the Objects to be Checked Out
	Checking Out Objects with Different Version Selectors
	Checkout Versus Populate
	How the Check-Out Operation Handles Collections with Local Versions
	Auto-Branching

	SYNOPSIS
	ARGUMENTS
	DesignSync Object
	DesignSync Folder

	OPTIONS
	-comment
	-exclude
	-force
	-from
	-get
	-keys
	-lock
	-merge
	-mirror
	-overlay
	-[no]recursive
	-reference
	-[no]retain
	-savelocal
	-[no]selected
	-share
	-trigarg
	-[no]unifystate
	-version
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Checking Out a File with a Lock
	Example of Checking Out a File From a Branch
	Example of Updating File Links in the Current Directory Recursively
	Example of Merging a File into Your Work Area
	Example of Merging From a Different Branch
	Example of Checking out and Locking a File Reference
	Example of Checking Out Objects With Different Version Selectors
	Example of Checking Out a Collection Object

	populate
	populate Command
	NAME
	DESCRIPTION
	Object States
	How Populate Handles Selectors
	Populate Log
	How Populate Handles Collections with Local Versions
	Populating Module Objects (Module-based)
	Setting up Your Workspace (Module-based)
	How Populate Handles Module Snapshots (Module-based)
	How Populate Handles Module Views (Module-based)
	Resolving Module Conflicts with Populate (Module-based)
	Module Cache (Module-based)
	External Module Support (Module-based)
	Populating Modules Recursively (Module-based)
	Module Version Updating (Module-based)
	Incremental Versus Full Populate (Module-based)
	How Populate Handles Moved and Removed Module Members (Module-based)
	Merging Across Branches (Module-based)
	Understanding the Output (Module-based)
	Forcing, Replacing, and Non-Replacing Modes (Module-based)
	Interacting with Legacy Modules (Legacy-based)
	Incremental Versus Full Populate (Legacy-based)
	Setting up Your Workspace (File-based)
	Incremental Versus Full Populate (File-based)
	How Populate Handles Retired Objects (File-based)
	Merging Across Branches (File-based)
	Populate Versus Checkout (File-based)
	Understanding the Output (File-based)
	Forcing, Replacing, and Non-Replacing Modes (File-based)

	SYNOPSIS
	ARGUMENTS
	Server Module URL (Module-based)
	Workspace Module (Module-based)
	Module Folder (Module-based)
	Module Member (Module-based)
	Hierarchical Reference (Module-based)
	External Module (Module-based)
	DesignSync Object (File-based)
	DesignSync Folder (File-based)

	OPTIONS
	-[no]connectinstances (Module-based)
	-[no]emptydirs
	-exclude (Module-based)
	-exclude (File-based)
	-filter (Module-based)
	-[no]force (Module-based)
	-[no]force (File-based)
	-from
	-full
	-get (Module-based)
	-get (File-based)
	-hreffilter (Module-based)
	-hrefmode (Module-based)
	-incremental
	-keys (Module-based)
	-keys (File-based)
	-lock (Module-based)
	-lock (Legacy-based)
	-lock (File-based)
	-lock -reference (Module-based)
	-lock -reference (File-based)
	-log
	-mcachemode (Module-based)
	-mcachemode (Legacy-based)
	-mcachepaths (Module / Legacy-based)
	-[no]merge (Module-based)
	-merge (File-based)
	-mirror (File-based)
	-modulecontext (Module-based)
	-[no]new (Module-based)
	-overlay
	-path (Module-based)
	-path (Legacy-based)
	-path (File-based)
	-[no]recursive (Module-based)
	-[no]recursive (Legacy-based)
	-[no]recursive (File-based)
	-reference
	-[no]replace (Module-based)
	-[no]replace (File-based)
	-report
	-[no]retain
	-savelocal
	-share
	-target (Legacy-based)
	-trigarg
	-[no]unifystate
	-version (Module-based)
	-version (File / Legacy-based)
	-view (Module-based)
	-xtras (Module-based)

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Populating a Module (Module-based)
	Example of Populating a Specific Module Member (Module-based)
	Example of Populating a Module with a Static Selector (Module-based)
	Example of Populating a Module Using Version-Extended Naming (Module-based)
	Example of Creating a Module Cache (Module-based)
	Example of Populating an Mcache Link (Module-based)
	Example of Populating a Module View (Module-based)
	Example of Specifying a Hierarchical Hreffilter (Module-based)
	Example of Merge Across Branches (Module-based)
	Example of Creating a new work area from a DesignSync vault (File-based)
	Example of Creating a New Work Area from a DesignSync Vault Branch (File-based)
	Example of Updating an Existing Workspace with a Full Populate (File-based)
	Example of Updating the State of Objects in the Workspace (File-based)
	Example of Performing a Merge into a Workspace (File-based)
	Example of Replacing Modified Files with the Server Versions (File-based)

	tag
	tag Command
	NAME
	DESCRIPTION
	Working with Tags
	Branch Tags Versus Version Tags
	Tagging Modules (Module-based)
	Module Snapshots (Module-based)
	Tag Name Syntax (Module-based)
	Determining the Objects to be Tagged (Module-based)
	Using Tags on Module Versions (Module-based)
	Interaction with Legacy Modules (Legacy-based)
	Tagging Files-Based DesignSync Objects (File-based)
	Tag Name Syntax (File-based)
	Determining the Objects to be Tagged (File-based)
	Interaction with Objects from a Mirror (File-based)

	SYNOPSIS
	ARGUMENTS
	Server Module (Module-based)
	Module Folder (Module-based)
	Module Member (Module-based)
	Workspace Module (Module-based)
	External Module (Module-based)
	DesignSync Object (File-based)
	DesignSync Folder (File-based)

	OPTIONS
	-branch
	-[no]comment (Module-based)
	-[no]delete (Module-based)
	-[no]delete (File-based)
	-exclude (Module-based)
	-exclude (File-based)
	-filter (Module-based)
	-[no]modified (File-based)
	-modulecontext (Module-based)
	-[im]mutable (Module-based)
	-[no]recursive (Module-based)
	-[no]recursive (Legacy-based)
	-[no]recursive (File-based)
	-[no]replace (Module-based)
	-[no]replace (File-based)
	-report
	-[no]selected
	-trigarg
	-version (Module-based)
	-version (File-based)
	-warn
	-xtras (Module-based)
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Tagging a Module with an Immutable Tag (Module-based)
	Example of Tagging All Files Matching a Wildcarded String (File-based)
	Example of Tagging a Specified Version of Files (File-based)
	Example Showing Tagging Modified File in the Workspace (File-based)
	Example of Tagging Locked Files (File-based)
	Example of Using Exclude to Restrict Which Files are Tagged (File-based)
	Example of Tagging a Branch (File-based)
	Example of Deleting a Tag (File-based)
	Example of Adding a Tag to a Branch or Version (File-based)
	Examples of Tagging an Object on the Server (File-based)

	Advanced Revision Control
	import
	import Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module URL (Module-based)
	Vault URL (File-based)

	OBJECTS
	Module Member (Module-based)
	DesignSync File Object (File-based)

	OPTIONS
	-force
	-version (Module-based)
	-version (Legacy-based)
	-version (File-based)
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Importing a Specific Module Version (Module-based)
	Example of Importing a Module Member (Module-based)
	Example of Moving Files to a New Vault Associated with a Workspace (File-based)

	mkbranch
	mkbranch Command
	NAME
	DESCRIPTION
	Branching Modules (Module-based)
	Branching File-based Objects (File-based)

	SYNOPSIS
	ARGUMENTS
	Branch Name (Module-based)
	Branch Name (Legacy-based)
	Branch Name (File-based)
	Server Module Version (Module-based)
	DesignSync Object (File-based)

	OPTIONS
	-[no]comment (Module-based)
	-exclude
	-[no]recursive (File / Legacy-based)
	-[no]selected
	-version
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Module Branching (Module-based)
	Example of Branching Two Files From Your Workspace (File-based)
	Example Showing Branching The File Objects in the Workspace Recursively (File-based)
	Example Showing Branching the Server Version of a File (File-based)
	Example Branching the Entire Project from the Server (File-based)

	mkfolder
	mkfolder Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	--

	SEE ALSO
	EXAMPLES

	mvfile
	mvfile Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Object
	Server URL object
	Destination
	Server URL Destination

	OPTIONS
	-[no]allconfigs

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Renaming a File
	Example Showing Moving the File to a New Folder
	Example Showing Renaming a File on the Server
	Example Showing Moving a File on the Server
	Example Showing Renaming and Moving a Cadence Cell View
	Example Showing The History of a Moved File

	mvfolder
	mvfolder Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Folder
	Destination

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Renaming a Folder
	Example Showing Moving a Folder to a New Path
	Example Showing Moving a Cadence Cell to a Different Library
	Example Showing a Vault Rename

	purge
	purge Command
	NAME
	DESCRIPTION
	Restrictions
	Triggers and Revision Control Notes and 'purge'
	Error Handling
	Using Purge with Modules (Module-based)
	Using Purge with Files-Based Objects (File-based)

	SYNOPSIS
	ARGUMENTS
	Module URL (Module-based)
	Module Workspace (Module-based)
	DesignSync Object (File-based)
	DesignSync Folder (File-based)

	OPTIONS
	-branch
	-dryrun
	-exclude (File-based)
	-[no]force (Module-based)
	-[no]force (File-based)
	-keepsince
	-keepversions (Module-based)
	-keepversions (File-based)
	-recursive (File-based)
	-report
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Purging All but a 4 Versions of a Collection Object
	Example of Using Keep Since to Maintain 30 Days of Versions
	Example of Using both the -keepsince and -keepversions Options
	Example of Purging Versions from the Server
	Example of Making then Purging a Branch
	Example Showing Module Purge on the Trunk Branch (Module-based)

	retire
	retire Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL
	Workspace Object
	DesignSync Folder

	OPTIONS
	-branch
	-[no]force
	-[no]keep
	-[no]recursive
	-[un]retire
	-[no]selected
	-trigarg
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Retiring Files
	Example of Retiring a Branch
	Example of Retiring a Specific File on a Branch

	rmfile
	rmfile Command
	NAME
	DESCRIPTION
	Notes for Module Objects (Module-based)

	SYNOPSIS
	ARGUMENTS
	Object

	OPTIONS
	-trigarg
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Removing a Specific File in the Current Working Directory
	Example of Removing Two Files
	Example of Removing a File with a Leading "-"
	Example of Removing a Member of a Collection

	rmfolder
	rmfolder Command
	NAME
	DESCRIPTION
	Notes for Modules (Module-based)

	SYNOPSIS
	ARGUMENTS
	Folder

	OPTIONS
	-[no]keepvid
	-[no]recursive
	-trigarg

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Removing Folder without Recursive
	Example of Removing Folders Recursively
	Example of Removing a Folder on the Server
	Example of Removing a Folder Containing References

	rmvault
	rmvault Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-[no]force
	-[no]keepvid
	-trigarg
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Removing the Vault for a Single File
	Example of Removing the Vault using URL Vault
	Example of Removing the Vault using the Server URL

	rmversion
	rmversion Command
	NAME
	DESCRIPTION
	Notes for Modules (Module-based)
	Removing Orphaned Module Members (Module-based)

	SYNOPSIS
	ARGUMENTS
	DesignSync Object
	Server Module URL (Module-based)
	Workspace Module (Module-based)

	OPTIONS
	-force (Module-based)
	-force (File-based)
	-report (Module-based)
	-report (File-based)
	-[no]scrub (Module-based)
	-trigarg
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Removing a File Version
	Example of Removing a File Specified with a Path
	Example of Removing Multiple Files with Associated Tags

	select
	select Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server Module (Module-based)
	Workspace Module (Module-based)
	Module Member (Module-based)
	DesignSync Object (File-based)

	OPTIONS
	-show
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Using Select on the Command Line to Select Files
	Example of Using Select within a Script

	setowner
	setowner Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Setting the Ownership for a Project
	Example of Setting the Owner of a Branch

	switchlocker
	switchlocker Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Username of New Locker
	Server Module Branch (Module-based)
	Module Member Argument (Module-based)
	DesignSync Object (File-based)

	OPTIONS
	-modulecontext (Module-based)
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Switching the Locker for a Module Member (Module-based)
	Example of Switching the Locker for a DesignSync File-Basd Objects (File-based)

	unlock
	unlock Command
	NAME
	DESCRIPTION
	Notes on Modules (Module-based)
	Note on File-Based Objects (File-based)
	Auto-Branching (File-based)

	SYNOPSIS
	ARGUMENTS
	Module Branch/Module Version (Module-based)
	Module Member (Module-based)
	Module Folder (Module-based)
	DesignSync Object (File-based)
	DesignSync Folder (File-based)
	DesignSync Vault (File-based)

	OPTIONS
	-branch (Module-based)
	-branch (File-based)
	-exclude
	-modulecontext (Module-based)
	-[no]recursive (Module-based)
	-[no]recursive (File-based)
	-[no]selected
	-trigarg
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Unlocking a Module Member in the Workspace (Module-based)
	Example of Unlocking a Module Member Using -modulecontext (Module-based)
	Example of Unlocking Specific Files (File-based)
	Example of Unlocking the Contents of a Directory Recursively (File-based)

	unselect
	unselect Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server Module (Module-based)
	Workspace Module (Module-based)
	Workspace Module Member (Module-based)
	DesignSync Object (File-based)

	OPTIONS
	-all
	-quiet
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Removing Specified Objects from the Select List
	Example of Removing All Objects from the Select List

	upload
	upload Command
	NAME
	DESCRIPTION
	Understanding How a Temporary Directory is used for Upload
	Order of Precedence for Temp Directory:

	SYNOPSIS
	ARGUMENTS
	Tar file

	OPTIONS
	-branch
	-[no]collection
	-[no]comment
	-localtmpdir
	-[no]new
	-report (Module-based)
	-report (File-based)
	-servertmpdir
	-tag
	-vault (Module-based)
	-vault (File-based)
	-workspace

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Performing an Initial Upload (Module-based)
	Example of Specifying a Server Temporary Directory for Module Upload (Module-based)
	Example of Specifying a Local Temporary Directory for Module Upload (Module-based)
	Example of Performing an Upload Using a Module Workspace (Module-based)
	Example of Performing an Initial Upload (File-based)
	Example of Performing an Upload Using a File-Based Workspace (File-based)
	Example of Specifying a Server Temporary Directory for File-based Upload (File-based)
	Example of Specifying a Local Temporary Directory for File-based Upload (File-based)

	Navigational
	cd
	cd Command
	NAME
	DESCRIPTION
	SYNOPSIS
	SEE ALSO

	pwd
	pwd Command
	NAME
	DESCRIPTION
	SYNOPSIS
	SEE ALSO

	scd
	scd Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Specifying an Absolute Path Name
	Example of Specifying a Relative Path Name
	Example of Specifying a Server-Side Vault Location
	Example of Navigating on the Server
	Example of Changing to a Calculated Server Directory

	spwd
	spwd Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Using spwd on a Local Folder
	Example of Using spwd on a Vault Folder
	Example of Using spwd on a Vault File Object

	Informational
	annotate
	annotate Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Workspace File
	Server File

	OPTIONS
	-back
	-from
	-output
	-version
	-[no]white
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	compare
	compare Command
	NAME
	DESCRIPTION
	Understanding the Types of Possible Compare Operations
	Understanding the Output
	Understanding Status Values in the Ouput
	Running Compare on Modules (Module-based)
	Understanding Columns Returned When Comparing Module Objects (Module-based)
	Using Compare with Legacy Module Objects (Legacy-based)
	Using Compare with File-Based Objects (File-based)
	Understanding Columns Returned When Comparing File Objects (File-based)

	SYNOPSIS
	ARGUMENTS
	Module Folder (Module-based)
	DesignSync Folder (File-based)
	Server Folder (File-based)

	OPTIONS
	-exclude
	-filter (Module-based)
	-format
	-[no]history (File-based)
	-hreffilter (Module-based)
	-hrefmode (Module-based)
	-hrefmode2 (Module-based)
	-modulecontext (Module-based)
	-output
	-[no]path
	-[no]recursive (Module-based)
	-[no]recursive (Legacy-based)
	-[no]recursive (File-based)
	-report
	-[no]same
	-selector (Module-based)
	-selector (File-based)
	-selector2 (Module-based)
	-selector2 (File-based)
	-view (Module-based)
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Comparing Two Selectors
	Example of Comparing Two Selectors with a URL
	Example of Comparing the Current Directory Against Another Directory
	Example of how to use '-format list' option
	Example Comparing a Workspace to a Server Module Version (Module-based)
	Example of Compare the Current Workspace Against A Module (Module-based)
	Example of Current Workspace Against Server Module Version (Module-based)
	Example of Comparing a Module with different Hrefmodes (Module-based)
	Example of Comparing a Tagging Module Version Against Latest (Module-based)
	Example of Comparing the Workspace Version to the Server Version (File-based)
	Example of Comparing Two Workspace Directories (File-based)

	compare-foreach
	compare-foreach Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Loop Variables
	Result List
	Tcl Script

	OPTIONS
	-nofolder
	-path (Module-based)
	-path (File-based)

	SEE ALSO
	EXAMPLE
	Example of Using compare-foreach On a Result List From compare

	contents
	contents Command
	NAME
	DESCRIPTION
	Using Contents on Modules (Module-based)
	Understanding Module Hierarchy Output (Module-based)
	Understanding the path option (Module-based)
	Using Contents on Legacy Modules (Legacy-based)
	Notes for legacy modules (Legacy-based)
	Using Contents on File-Based Objects (File-based)

	SYNOPSIS
	ARGUMENTS
	Module (Module-based)
	Module Folder (Module-based)
	Workspace or Server Folder (File-based)

	OPTIONS
	-exclude
	-filter (Module-based)
	-format
	-fullpath
	-hreffilter (Module-based)
	-hrefmode (Module-based)
	-modulecontext (Module-based)
	-output
	-path
	-recursive (Module-based)
	-recursive (Legacy-based)
	-recursive (File-based)
	-report
	-selector (Module-based)
	-selector (File-based)
	-stream
	-version
	-view (Module-based)
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Contents of Server for Current Working Directory
	Example Showing Contents Output to a Stream
	Example Showing Contents of a Module Instance (Module-based)
	Example Showing Contents of Server Module Version (Module-based)
	Example Showing Contents of a Legacy Module Configuration (Legacy-based)

	url contents Command
	NAME
	DESCRIPTION
	Notes for Modules (Module-based)

	SYNOPSIS
	ARGUMENTS
	Module Folder (Module-based)
	DesignSync Folder (File-based)
	DesignSync Vault (File-based)

	OPTIONS
	-all
	-ifpopulated
	-incremental
	-prefetch
	-version
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the Contents of a Module Folder (Module-based)
	Sample File Structure for Examples (File-based)
	Example of Local Folder Contents (File-based)
	Example of Vault Folder Contents (File-based)
	Example of Returning the Contents of a Branch (File-based)
	Example Showing the Contents Resulting from Full Populate (File-based)
	Example Showing the Contents Resulting From Incremental Populate (File-based)
	Example Showing Contents Resulting From Populate with Selector (File-based)
	Example Showing Contents Resulting from Populate with Configuration (File-based)

	contents-foreach
	contents-foreach Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	var
	results_list
	tcl_script

	OPTIONS
	-nofolder
	-path

	SEE ALSO
	EXAMPLE

	datasheet
	datasheet Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	EXAMPLES

	diff
	diff Command
	NAME
	DESCRIPTION
	Notes for Collection Objects
	Note for Modules (Module-based)

	SYNOPSIS
	ARGUMENTS
	File Object (Module-based)
	File Object (File-based)

	OPTIONS
	-ancestor (Module-based)
	-ancestor (File-based)
	-annotate
	-binary
	-case
	-embed
	-file1
	-file2
	-gui
	-kk
	-member
	-modulecontext (Module-based)
	-output
	-standard
	-syncdiff
	-unified
	-usemoduleversions (Module-based)
	-version (Module-based)
	-version (File-based)
	-white
	--

	SEE ALSO
	EXAMPLES
	Examples of Comparing a File against the Original Version
	Examples of Comparing a File Against the Latest Server Version
	Example of Comparing a File Against A Specified Version
	Example of Comparing Original File Against Latest Server Version
	Example of Showing Conflicts in Your Local Version
	Examples of Comparing Collection Cell View Versions
	Example of Comparing Against the Local Cell View Version
	Example of Comparing Files Using the Module Version (Module-based)
	Example of Comparing Files Using the Member Version (Module-based)
	Example Comparing a Module Member to a Non-Local Module Member (Module-based)
	Example of Specifying the Module Version with the Ancestor * Option (Module-based)

	help
	help Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-all
	-brief
	-output
	-summary

	RETURN VALUE
	EXAMPLES

	locate
	locate Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Object Name

	OPTIONS
	-all
	-env
	-first
	-nothrow
	-path
	-reverse
	-url
	--

	RETURN VALUE
	EXAMPLES
	Examples of using locate
	Example of Using -nothrow with locate

	ls
	ls Command
	NAME
	DESCRIPTION
	Notes for Module Objects and Module Snapshots (Module-based)
	Notes on Legacy Modules (Legacy-based)
	Notes for Files-Based Objects (File-based)
	Report Options
	Report Data Keys Table (Module-based)
	Status Values for Modules and Modules Members (Module-based)
	Report Data Keys Table (File-based)
	Status Values for File-Based Objects (File-based)

	SYNOPSIS
	ARGUMENT
	Server Folder
	Server Object
	Workspace Module (Module-based)
	Module Member or Folder (Module-based)
	External Module (Module-based)
	DesignSync Object or Unmanaged Objects (File-based)

	OPTIONS
	-[no]addselect
	-branch
	-[un]changed
	-exclude
	-filter (Module-based)
	-format (Module-based)
	-format (File-based)
	-fullpath
	-[no]header
	-hreffilter (Module-based)
	-[un]locked (Module-based)
	-[un]locked (File-based)
	-[un]managed (Module-based)
	-[un]managed (File-based)
	-merged
	-[un]modified (Module-based)
	-[un]modified (File-based)
	-modulecontext (Module-based)
	-[no]needsmerge
	-output
	-path
	-[no]recursive (Module-based)
	-[no]recursive (Legacy-based)
	-[no]recursive (File-based)
	-report
	-[no]selected
	-stream
	-[non]versionable
	-workspace/-vault
	-writeableunlocked (Module-based)
	-writeableunlocked (File-based)
	-xtras (Module-based)
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the Contents of the Current Folder
	Example Showing the Contents of the Specified Folder
	Example Showing Objects that Need to be Merged
	Example Showing Objects that do not Need to be Merged
	Example Showing a Recursive Directory Listening
	Example Showing the ls Output in List Format
	Example Showing Locked Objects in the Workspace
	Example Showing All Locked Objects
	Example Showing All Locked Objects with Users
	Example Showing Locked Server Objects Using Status Report Mode
	Example Showing Locked Workspace Objects in Status Report Mode
	Example Showing Unmanaged Objects in Current Folder
	Example Showing Unlocked Writable Objects in the Workspace
	Example Showing Excluding Objects
	Example Showing a Variety of ls Commands To Display Object Vault
	Examples Showing Writing to an Output File or TCL stream
	Example Showing Locked References
	Example Showing Collection List
	Example Showing Module Structural Changes (Module-based)
	Example Showing the Contents of a Legacy Module Configuration (Legacy-based)

	ls-foreach
	ls-foreach Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Loop Variable
	List of Objects to be Processed
	TCL script

	OPTIONS
	-nofolder
	-path

	SEE ALSO
	EXAMPLE

	syncinfo
	syncinfo Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	General Information
	isServer
	syncDir
	version
	Registry Information
	clientRegistryFiles
	enterpriseRegistryFile
	portRegistryFile
	projectRegistryFile
	serverRegistryFiles
	siteRegistryFile
	syncRegistryFile
	userRegistryFile
	usingSyncRegistry
	Customization Information
	customDir
	customSiteDir
	customEntDir
	siteConfigDir
	usrConfigDir
	userConfigFile
	Client Information
	connectTimeout
	commAttempts
	defaultCache
	fileEditor
	htmlBrowser
	proxyNamePort
	somTimeout
	Server Information
	berkdbIsShmEnabled
	berkdbShmKey
	isTestMode
	serverMetadataDir
	serverDataDir
	serverMachine
	serverName
	serverPort
	User Information
	home
	userName

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the SyncInfo Version on Client Startup
	Example of Extracting SyncInfo Information to an Array
	Example Showing Extracting the Information from an Array
	Example of extracting Name/Value Pairs for Specific Arguments

	version
	hcm version Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	vhistory
	vhistory Command
	NAME
	DESCRIPTION
	Reporting on Modules (Module-based)
	Report options (Module-based)
	Understanding the output (Module-based)
	Report options (File-based)
	Understanding the output (File-based)

	SYNOPSIS
	ARGUMENTS
	Module Member (Module-based)
	Workspace Module (Module-based)
	Server Module (Module-based)
	DesignSync Object (File-based)
	Workspace Folder (File-based)
	Server Folder (File-based)

	OPTIONS
	-all
	-branch
	-descendants
	-exclude
	-format
	-lastbranches
	-lastversions
	-maxtags
	-modulecontext (Module-based)
	-output
	-[no]recursive (File-based)
	-report
	-[no]selected
	-stream
	-xtras (Module-based)
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Version History of a Module Branch (Module-based)
	Example of Version History Showing Module Rollback Operation (Module-based)
	Example of Vhistory Showing a Retired Branch (File-based)

	vhistory-foreach
	vhistory-foreach Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Object Loop Variable
	Results List
	Tcl Script

	SEE ALSO
	EXAMPLE

	vhistory-foreach-obj
	vhistory-foreach-obj Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Version/Branch Loop Variable
	Object Tcl Array
	Tcl Code

	SEE ALSO
	EXAMPLE

	webhelp
	webhelp Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENT
	Topic

	OPTIONS
	-mode

	RETURN VALUE
	EXAMPLES
	Example of Opening a Single Tab in the Default Mode
	Example of Opening Multiple Tab Help for a Specified Mode (Module-based)
	Example of Opening Multiple Tab Help for a Specified Mode (File-based)

	Enterprise Design Development
	Development Areas
	sda
	sda Command
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sda cd
	sda cd Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Development Area Name
	Tool

	OPTIONS
	-development
	-gui
	-suite
	-[no]update
	-version

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Running sda cd in Interactive Mode
	Running sda cd in non-interactive mode

	sda gui
	sda gui Command
	NAME
	DESCRIPTION
	SYNOPSIS
	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Starting sda GUI in the Background

	sda join
	sda join Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Area Name

	OPTIONS
	-development
	-gui

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sda ls
	sda ls Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-area
	-development
	-gui
	-noheader
	-report

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the List of Development Areas

	sda rm
	sda rm Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-development
	-gui
	-noconfirm

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Removing a Development
	Example Showing Removing a Development in Interactive Mode

	Enterprise Object Viewing and Synchronization
	entobj
	entobj Command
	NAME
	DESCRIPTION
	SYNOPSIS

	entobj id
	entobj id Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of a request for the id

	entobj isplatformmanaged
	entobj isplatformmanaged Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing That an Object is Managed from the Enterprise System
	Example Showing That an Object is Not Managed by the Enterprise System

	entobj policy
	entobj policy Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module instance
	Server URL

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Showing the Set Policy

	entobj setpolicy
	entobj setpolicy Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module instance
	Server URL

	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Setting the Policy on Enterprise Development Module
	Example of Removing the Policy on an Enterprise Development Module

	entobj settype
	entobj settype Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module instance
	Server URL

	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Setting the Product Type on Enterprise Development Module
	Example of Removing the Type from an Enterprise Development Module

	entobject show
	entobj show Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module instance
	Server URL

	OPTIONS
	-branch
	-version

	RETURN VALUE
	SEE ALSO

	entobject synchronize
	entobj synchronize Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL
	Workspace Module

	OPTIONS
	-depth
	-dryrun
	-report
	-tags
	-xtras

	RETURN VALUE
	SEE ALSO

	entobj type
	entobj type Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module instance
	Server URL

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Showing the Product Type

	Mcache Settings for Shared Developments
	eda
	eda Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO

	eda addmcachepath
	eda addmcachepath Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL

	OPTIONS
	-path
	-[no]replace
	-[no]validate

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Adding Paths to the Mcache Path List
	Example Showing Replacing the Paths in the Mcache Path List

	eda createrefws
	eda createrefws Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL

	OPTIONS
	-assignment
	-name

	RETURN VALUE
	SEE ALSO

	eda listmcachepath
	eda listmcachepath Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL

	OPTIONS
	-format

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing A List of the Mcache Paths in Text Format
	Example Showing A List of the Mcache Paths in TCL List Format

	eda removemcachepath
	eda removemcachepath Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL

	OPTIONS
	-path

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Removing a Path from the Mcache Path list

	URL Sync Object Model
	url Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	url
	url Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	url branchid
	url branchid Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module Member (Module-based)
	Workspace Module (Module-based)
	DesignSync Object (File-based)

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Examples of Displaying Branch ID (Module-based)
	Examples of Displaying the Branch ID (File-based)

	url configs
	url configs Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Workspace Folder
	Server Folder

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	url container
	url container Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Returning the Local Folder that Contains the Object
	Example Returning the Server Folder that Contains the Object

	url contents
	url contents Command
	NAME
	DESCRIPTION
	Notes for Modules (Module-based)

	SYNOPSIS
	ARGUMENTS
	Module Folder (Module-based)
	DesignSync Folder (File-based)
	DesignSync Vault (File-based)

	OPTIONS
	-all
	-ifpopulated
	-incremental
	-prefetch
	-version
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the Contents of a Module Folder (Module-based)
	Sample File Structure for Examples (File-based)
	Example of Local Folder Contents (File-based)
	Example of Vault Folder Contents (File-based)
	Example of Returning the Contents of a Branch (File-based)
	Example Showing the Contents Resulting from Full Populate (File-based)
	Example Showing the Contents Resulting From Incremental Populate (File-based)
	Example Showing Contents Resulting From Populate with Selector (File-based)
	Example Showing Contents Resulting from Populate with Configuration (File-based)

	url exists
	url exists Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module (Module-based)
	Module Member (Module-based)
	Module Folder (Module-based)
	DesignSync Object (File-based)

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Verifying the Existence of a Module (Module-based)
	Example of Verifying the Existence of a Module Member (Module-based)
	Example of Verifying the Existence of File-Based Objects (File-based)

	url fetchedstate
	url fetchedstate Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module Member (Module-based)
	DesignSync Object (File-based)

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Fetch State of a Module (Module-based)
	Example Showing Fetch State of a Module Member (Module-based)
	Example Showing Fetch State of File-Based Objects (File-based)

	url fetchtime
	url fetchtime Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module (Module-based)
	Module Member (Module-based)
	DesignSync Object (File-based)

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the Last Fetchtime of a Module (Module-based)
	Example Showing Last Fetchtime of a Module Member (Module-based)
	Example Showing Last Fetchtime of a DesignSync File-Based Object (File-based)

	url filter
	url filter Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Workspace Module

	OPTIONS
	-all
	-hreffilter
	-filter
	--

	RETURN VALUE
	EXAMPLES

	url getprop
	url getprop Command
	NAME
	DESCRIPTION
	Notes for Modules (Module-based)

	SYNOPSIS
	ARGUMENTS
	Module (Module-based)
	Module Member (Module-based)
	DesignSync Object (File-based)

	OPTIONS
	--

	OPERANDS
	Object
	Property Name

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Getting the DataType Property of a Module Member (Module-based)
	Example of Getting the Various Propreties of a Module (Module-based)
	Example of Getting a User Defined Property for Use in a Script (File-based)

	url inconflict
	url inconflict Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Workspace Module (Module-based)
	Module Member (Module-based)
	DesignSync Object (File-based)

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing The Status of File Merges for a Module (Module-based)
	Example Showing the Merge Status of a Module Member (Module-based)
	Example Showing the Merge Status of a File-Based Object (File-based)

	url leaf
	url leaf Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	url locktime
	url locktime Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module Object (Module-based)
	Module Member (Module-based)
	DesignSync Object (File-based)

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Viewing the Locktime of Server Module Version (Module-based)
	Example of Viewing the Locktime of a Workspace Module (Module-based)
	Example of Viewing the Locktime of a File (File-based)

	url members
	url members Command
	NAME
	DESCRIPTION
	Notes for Modules (Module-based)

	SYNOPSIS
	OPTIONS
	-[no]relative
	--

	RETURN VALUE
	EXAMPLES

	url mirror
	url mirror Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	url modified
	url modified Command
	NAME
	DESCRIPTION
	Notes for Modules (Module-based)

	SYNOPSIS
	ARGUMENTS
	Workspace Module (Module-based)
	Module Member (Module-based)
	DesignSync Object (File-based)

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing If the Module in the Workspace is Modified (Module-based)
	Example Showing If the Module Member in the Workspace is Modified (Module-based)
	Example Showing If the Files in the Workspace are Modified (File-based)

	url naturalpath
	url naturalpath Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Workspace Module Member

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the Natural Path of a Module Member
	Example Showing Using the Natural Path to Unlock a Module Member

	url notes
	url notes Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server Module Version (Module-based)
	DesignSync File (File-based)

	OPTIONS
	-type
	-dbquery
	--

	OPERANDS
	Object

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the List of Specific Note Types in a Specific State
	Example of a Script Fragment that Extracts Attached Note Information

	url owner
	url owner Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Workspace Module (Module-based)
	Module Member (Module-based)
	DesignSync Object (File-based)

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing The Owner of a Module (Module-based)
	Example Changing the Owner of a File-Based Object (File-based)
	Example of Returning the Owner of the File-based Project (File-based)

	url path
	url path Command
	NAME
	DESCRIPTION
	Module Notes (Module-based)

	SYNOPSIS
	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing How to Get Path and Reverse the Separator
	Example Showing the URL Path of the Server Module (Module-based)
	Example Showing the URL Path of a File-based Server Object (File-based)
	Example Showing the URL Path of a File-based Workspace Object (File-based)

	url projects
	url projects Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	url properties
	url properties Command
	NAME
	DESCRIPTION
	Properties Associated with Module Objects (Module-based)
	Properties of File Objects (File-based)

	SYNOPSIS
	ARGUMENTS
	Module (Module-based)
	DesignSync Object (File-based)
	Array Name

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the Properties of a Module (Module-based)
	Example Scripts Showing a Specific Property (File-based)
	Example Script Showing All Properties of a Project (File-based)

	url registered
	url registered Command
	NAME
	DESCRIPTION
	Notes for modules (Module-based)

	SYNOPSIS
	ARGUMENTS
	Workspace Module (Module-based)
	Module Member (Module-based)
	DesignSync Object (File-based)

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Whether a Module is Under Revision Control (Module-based)
	Example Showing Whether a Module Member is Under Revision Control (Module-based)
	Example Showing Whether a File Under Revision Control (File-based)
	Example Showing a File Deleted From the Server (File-based)

	url relations
	url relations Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	url resolveancestor
	url resolveancestor Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module (Module-based)
	Module Member (Module-based)
	DesignSync Object (File-based)

	OPTIONS
	-noedges
	-version
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Common Ancestor from Versions on the Same Branch
	Example Showing Common Ancestor from Versions on Different Branches
	Example Showing Common Ancestor Using Branch and Version Arguments

	url resolvetag
	url resolvetag Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module (Module-based)
	Module Member (Module-based)
	DesignSync Object (File-based)

	OPTIONS
	-version
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing a Resolved Version Tag
	Example Showing the Latest Version of an Object
	Example Showing the Latest Version on a Specified Branch
	Example of Using a Selector List
	Example Showing a Non-Existent Module Version (Module-based)

	url retired
	url retired Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	DesignSync Object

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the Status of a File Before/After Retirement
	Example Showing the Status of a Retired Branch

	url rmprop
	url rmprop Command
	NAME url rmprop
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Workspace Module Member

	OPTIONS
	Property

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Removal of the ci_rename Property
	Example Showing Removal of the ci_remove Property

	url root
	url root Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Path

	OPTIONS
	--

	RETURN VALUE
	Return Values for Modules (Module-based)
	Return Values for Files (File-based)

	SEE ALSO
	EXAMPLES
	Viewing the Root Directory for a Module Workspace (Module-based)
	Viewing the Root Directory for a File-Based Workspace (File-based)

	url selector
	url selector Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Workspace Module (Module-based)
	DesignSync Object (File-based)

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the Persistent Selector for the Module (Module-based)
	Example Showing the Persistent Selector List for a File (File-based)
	Example Showing a Single Persistent Selector (File-based)

	url servers
	url servers Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-all
	-enterprise
	-site
	-urls
	-user

	RETURN VALUE
	EXAMPLES

	url setprop
	url setprop Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	--

	OPERANDS
	Object URL
	Property Name
	Property Value

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Setting a User-Defined Property on a Module Workspace (Module-based)
	Example of Setting a User-Defined Property on a Module Member (Module-based)
	Example of Setting a User-Defined Property on a Server Vault (File-based)
	Example of Changing the DataType value for an Object (File-based)
	Example of Changing a Comment (File-based)

	url syslock
	url syslock Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-all
	-acquire
	-canonize
	-realmount
	-realpath
	-release
	-shared
	-showlocks
	-timeout
	-yield
	--

	RETURN VALUE
	EXAMPLES

	url tags
	url tags Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module (Module-based)
	Module Member (Module-based)
	DesignSync Object (File-based)

	OPTIONS
	-btags
	-version
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the Tags Associated with a Module (Module-based)
	Example Showing the Tags Associated with a File (File-based)
	Example Showing the Tags Associated with a Specified File Version (File-based)

	url users
	url users Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	OPERANDS
	Path to the Server

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	url vault
	url vault Command
	NAME
	DESCRIPTION
	Note for modules (Module-based)

	SYNOPSIS
	ARGUMENTS
	Workspace Module (Module-based)
	Module Folder (Module-based)
	Module Member (Module-based)
	Designsync Object (File-based)

	OPTIONS
	-modulecontext (Module-based)

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Getting the Module Vault Information (Module-based)
	Example of Getting Vault for the Current Working Directory (File-based)
	Example of Getting the Vault for a Specified File (File-based)
	Example of Using the url vault command within a Command (File-based)

	url versionid
	url versionid Command
	NAME
	DESCRIPTION
	Module Notes (Module-based)

	SYNOPSIS
	ARGUMENTS
	Workspace Module (Module-based)
	Module Member (Module-based)
	DesignSync Object (File-based)

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Different Return Values for Module Objects (Module-based)
	Example Showing a Variety of Different Return Values for File Objects (File-based)

	url versions
	url versions Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module Branch (Module-based)
	Module Member (Module-based)
	Server Module (Module-based)
	DesignSync Object (File-based)

	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Getting Versions Associated with a Server Module (Module-based)
	Example Showing Versions on the Trunk Branch (File-based)
	Example Showing Versions on File Vault Object (File-based)

	url view
	url view Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Workspace Module

	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing A View

	TCL Interface
	auto_mkindex
	auto_mkindex Command
	NAME
	DESCRIPTION
	SYNOPSIS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	auto_reset
	auto_reset Command
	NAME
	DESCRIPTION
	SYNOPSIS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	gets
	gets Command
	NAME
	DESCRIPTION
	SYNOPSIS
	EXAMPLES

	parray auto_index
	parray auto_index Command
	NAME
	DESCRIPTION
	SYNOPSIS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	puts
	puts Command
	NAME
	DESCRIPTION
	SYNOPSIS
	SEE ALSO

	rstcl
	rstcl Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-output
	-server
	-script
	-urlparams

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	run
	run Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-defaultdir
	-dryrun
	-ignoreerrs
	-verbose
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Third-Party Integrations
	DSDFII
	addcdslib
	addcdslib Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	--

	SEE ALSO
	EXAMPLES

	Administration
	Access Control
	ACAdmin Commands
	acadmin
	acadmin Command
	NAME
	DESCRIPTION
	SYNOPSIS
	EXAMPLES

	acadmin addgroup
	acadmin addgroup Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin addgroupusers
	acadmin addgroupusers Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin addobj
	acadmin addobj Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin addusers
	acadmin addusers Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin listcats
	acadmin listcats Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin listcmds
	acadmin listcmds Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin listgroups
	acadmin listgroups Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin listobjs
	acadmin listobjs Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin listperms
	acadmin listperms Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin listusers
	acadmin listusers Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin reset
	acadmin reset Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin rmgroup
	acadmin rmgroup Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin rmgroupusers
	acadmin rmgroupusers Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin rmobj
	acadmin rmobj Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin rmusers
	acadmin rmusers Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin setcatperm
	acadmin setcatperm Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Access Control Commands
	access Commands
	NAME
	DESCRIPTION
	Notes for Modules (Module-based)

	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	access
	access Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	access allow
	access allow Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	access db_filter
	access db_filter Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	API FUNCTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	access decline
	access decline Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	access define
	access define Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	access deny
	access deny Command
	NAME
	DESCRIPTION
	SYNOPSIS

	access filter
	access filter Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	access global
	access global Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	access init
	access init Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	access list
	access list Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	access reset
	access reset Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	access verify
	access verify Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Authentication
	hcm addlogin
	hcm addlogin Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-fromallusers
	-fromtarget
	-fromuser
	-toalltargets
	-totarget
	-touser

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Storing a User Login for a Specific Server
	Example of Storing a Guest Login For All Referenced Servers

	hcm rmlogin
	hcm rmlogin Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-fromallusers
	-fromtarget
	-fromuser

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Removing a User Login for a Specific Server
	Example of Removing the Guest Login for a Specific Server

	hcm showlogins
	hcm showlogins Command
	NAME
	DESCRIPTION
	Understanding the Output

	SYNOPSIS
	OPTIONS
	-fromallusers
	-fromtarget
	-fromuser
	-report

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	password
	password Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Command Defaults
	defaults Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Understanding Command Defaults
	command defaults Command
	NAME
	DESCRIPTION
	SEE ALSO
	EXAMPLES
	Example of Setting the Default
	Example of Showing the Saved Defaults
	Example of Overriding the Set Defaults for the Whole Command
	Example of Overriding a Specific Option

	defaults
	defaults Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	defaults commands
	defaults commands Command
	NAME
	DESCRIPTION
	Note for Legacy Module Mode (Legacy-based)

	SYNOPSIS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	defaults off
	defaults off Command
	NAME
	DESCRIPTION
	SYNOPSIS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	defaults on
	defaults on Command
	NAME
	DESCRIPTION
	SYNOPSIS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	defaults refresh
	defaults refresh Command
	NAME
	DESCRIPTION
	SYNOPSIS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	defaults set
	defaults set Command
	NAME
	DESCRIPTION
	Note for Module Commands (Module-based)

	SYNOPSIS
	OPTIONS
	-nooverrule
	-temporary
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Setting the Default Options for a Specific Command
	Example of Resolving Default Conflicts
	Example of Clearing the Defaults
	Example of Setting Defaults for All Commands

	defaults show
	defaults show Command
	NAME
	DESCRIPTION
	Note for Module Commands (Module-based)

	SYNOPSIS
	OPTIONS
	-source

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	defaults state
	defaults state Command
	NAME
	DESCRIPTION
	SYNOPSIS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Custom Type System
	Custom Type Packages
	ctp
	ctp Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	ctp list
	ctp list Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	ctp verify
	ctp verify Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENT
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Managing Local Versions of Collections
	localversion
	localversion Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	localversion delete
	localversion delete Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	localversion list
	localversion list Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	localversion restore
	localversion restore Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	localversion save
	localversion save Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Data Import/Export with DesignSync
	exportmod
	exportmod Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL

	OPTIONS
	-[no]force
	-[no]freeze

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Exporting a module

	exportVaults
	exportVaults
	NAME
	DESCRIPTION

	import
	import Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module URL (Module-based)
	Vault URL (File-based)

	OBJECTS
	Module Member (Module-based)
	DesignSync File Object (File-based)

	OPTIONS
	-force
	-version (Module-based)
	-version (Legacy-based)
	-version (File-based)
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Importing a Specific Module Version (Module-based)
	Example of Importing a Module Member (Module-based)
	Example of Moving Files to a New Vault Associated with a Workspace (File-based)

	importmod
	importmod Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL

	OPTIONS
	-[no]freeze
	-[no]keep

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Importing a module

	importVaults
	importVaults
	NAME
	DESCRIPTION

	upload
	upload Command
	NAME
	DESCRIPTION
	Understanding How a Temporary Directory is used for Upload
	Order of Precedence for Temp Directory:

	SYNOPSIS
	ARGUMENTS
	Tar file

	OPTIONS
	-branch
	-[no]collection
	-[no]comment
	-localtmpdir
	-[no]new
	-report (Module-based)
	-report (File-based)
	-servertmpdir
	-tag
	-vault (Module-based)
	-vault (File-based)
	-workspace

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Performing an Initial Upload (Module-based)
	Example of Specifying a Server Temporary Directory for Module Upload (Module-based)
	Example of Specifying a Local Temporary Directory for Module Upload (Module-based)
	Example of Performing an Upload Using a Module Workspace (Module-based)
	Example of Performing an Initial Upload (File-based)
	Example of Performing an Upload Using a File-Based Workspace (File-based)
	Example of Specifying a Server Temporary Directory for File-based Upload (File-based)
	Example of Specifying a Local Temporary Directory for File-based Upload (File-based)

	Data Replication
	Data Replication System
	replicate Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	replicate addroot
	replicate addroot Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	replicate data
	replicate data Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	replicate disable
	replicate disable Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	replicate enable
	replicate enable Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	replicate reset
	replicate reset Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	replicate rmdata
	replicate rmdata Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	replicate rmroot
	replicate rmroot Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	replicate setoptions
	replicate setoptions Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	replicate showdata
	replicate showdata Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	replicate showroots
	replicate showroots Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	File Cache Maintenance
	cachescrubber
	cachescrubber Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	cachetouchlinks
	cachetouchlinks Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	refreshcache
	refreshcache Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Caching Objects
	caching
	caching Command

	caching disable
	caching disable Command

	caching enable
	caching enable Command

	caching list
	caching list Command

	caching status
	caching status Command

	Mirror System
	mirror Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO

	mirror
	mirror Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO

	mirror create
	mirror create Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror delete
	mirror delete Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror disable
	mirror disable Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror edit
	mirror edit Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror enable
	mirror enable Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror get
	mirror get Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror getoptions
	mirror getoptions Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror isenabled
	mirror isenabled Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror ismirror
	mirror ismirror Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror list
	mirror list Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror rename
	mirror rename Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror requeue
	mirror requeue Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror reset
	mirror reset Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror setoptions
	mirror setoptions Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror status
	mirror status Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror wheremirrored
	mirror wheremirrored Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirrorsetdefaultuser
	mirrorsetdefaultuser
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	SEE ALSO
	EXAMPLES

	Module Cache Maintenance
	Caching Objects
	caching
	caching Command

	caching disable
	caching disable Command

	caching enable
	caching enable Command

	caching status
	caching status Command

	mcache Commands
	mcache Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO

	mcache scan
	mcache scan Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mcache scrub
	mcache scrub Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mcache show
	mcache show Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mcache touch
	mcache touch Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Events and Triggers
	Events
	event
	event Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO

	event create
	event create Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	EXAMPLES
	SEE ALSO

	event_prop
	event_prop Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO

	event_prop create
	event_prop create Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	SEE ALSO

	event_prop delete
	event_prop delete Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	SEE ALSO

	event_prop get
	event_prop get Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	event_prop list
	event_prop list Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Triggers
	trigger
	trigger Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	trigger block
	trigger block Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	trigger create
	trigger create Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	trigger delete
	trigger delete Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	trigger disable
	trigger disable Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	trigger enable
	trigger enable Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	trigger fire
	trigger fire Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	trigger get
	trigger get Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	trigger isEnabled
	trigger isEnabled Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	trigger list
	trigger list Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	trigger status
	trigger status Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	SEE ALSO
	EXAMPLES

	trigger unblock
	trigger unblock Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO

	Registry File Management
	SyncAdmin
	SyncAdmin
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-file
	-project
	-site
	-user

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sregistry
	sregistry Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sregistry delete
	sregistry delete Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-currentuser
	-file
	keyPath
	-localmachine
	-port
	-project
	-site
	-synch
	-user
	value

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sregistry get
	sregistry get Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-base
	-currentuser
	-default
	-file
	-format
	-localmachine
	-port
	-project
	-site
	-synch
	-user
	Key Path
	Value

	SEE ALSO
	EXAMPLES

	sregistry keys
	sregistry keys Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-currentuser
	-file
	-format
	Key Path
	-localmachine
	-port
	-project
	-site
	-synch
	-user

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sregistry reset
	sregistry reset Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	SEE ALSO

	sregistry scope
	sregistry scope Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-project
	-site

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sregistry set
	sregistry set Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Data

	OPTIONS
	-currentuser
	-file
	keypath
	-localmachine
	-port
	-project
	-site
	-synch
	-type
	-user
	Value
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sregistry source
	sregistry source Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-currentuser
	-file
	KeyPath
	-localmachine
	-port
	-project
	-site
	-synch
	-user
	value

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sregistry values
	sregistry values Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-currentuser
	-file
	-format
	KeyPath
	-localmachine
	-port
	-project
	-site
	-synch
	-user

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Server Backup
	backup
	backup Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-from

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	keydbcheckpoint
	keydbcheckpoint Command
	NAME
	DESCRIPTION
	SYNOPSIS

	restoreserver
	restoreserver
	NAME
	DESCRIPTION
	SYNOPSIS
	RETURN VALUE
	SEE ALSO

	restorevault
	restorevault Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-from
	-overwrite
	--

	OPERANDS
	Vault Directory Path

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	suspend
	suspend Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	tcl Code

	OPTIONS
	-because
	-maintenance
	-mode
	-readonly

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Troubleshooting
	syncinfo
	syncinfo Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	General Information
	isServer
	syncDir
	version
	Registry Information
	clientRegistryFiles
	enterpriseRegistryFile
	portRegistryFile
	projectRegistryFile
	serverRegistryFiles
	siteRegistryFile
	syncRegistryFile
	userRegistryFile
	usingSyncRegistry
	Customization Information
	customDir
	customSiteDir
	customEntDir
	siteConfigDir
	usrConfigDir
	userConfigFile
	Client Information
	connectTimeout
	commAttempts
	defaultCache
	fileEditor
	htmlBrowser
	proxyNamePort
	somTimeout
	Server Information
	berkdbIsShmEnabled
	berkdbShmKey
	isTestMode
	serverMetadataDir
	serverDataDir
	serverMachine
	serverName
	serverPort
	User Information
	home
	userName

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the SyncInfo Version on Client Startup
	Example of Extracting SyncInfo Information to an Array
	Example Showing Extracting the Information from an Array
	Example of extracting Name/Value Pairs for Specific Arguments

	synctrace
	synctrace Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	SEE ALSO
	EXAMPLES

	synctrace set
	synctrace set Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-server

	RETURN VALUE
	EXAMPLES
	Example of Turning Tracing on for all Libraries
	Example of Turning Trace off for All Libraries
	Example of Turning Trace On for a Specific Server
	Example of Turning Trace Off for a Specific Server

	synctrace unset
	synctrace unset Command
	NAME
	DESCRIPTION
	SYNOPSIS

	Utilities
	convertdata
	convertdata
	NAME
	DESCRIPTION

	convertutil
	convertutil
	NAME
	DESCRIPTION

	convertvault
	convertvault
	NAME
	DESCRIPTION

	exportVaults
	exportVaults
	NAME
	DESCRIPTION

	importVaults
	importVaults
	NAME
	DESCRIPTION

	SyncAdmin
	SyncAdmin
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-file
	-project
	-site
	-user

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	syncdadmin
	syncdadmin Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	begin
	close
	lock
	start
	status
	stop
	unlock

	RETURN VALUE
	EXAMPLES

	sync_setup
	sync_setup Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	key/value pair

	OPTIONS
	-config
	-[no]debug
	-[no]dryrun
	-log
	-report

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	ProjectSync Data Manipulation
	Note Manipulation
	note
	note Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	EXAMPLES

	note attach
	note attach Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Attaching a Note to a Project
	Example of Attaching a Note to a Tagged Configuration

	note counts
	note counts Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-countlinks
	-dateresolution
	-dbquery
	-sqlquery

	OPERANDS
	Notetype Name
	Out Var Name
	Dimensions

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Reporting Against Fields in the Notetype
	Example Showing Time-Based Reporting on NoteTypes

	note create
	note create Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Name/Value for Note Properties

	OPTIONS
	-date
	-id
	-type

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Creating of a New Note with a Specific ID.
	Example Showing Creating a Note Using the Default ID

	note delete
	note delete Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	OPERANDS
	Note URL

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	note detach
	note detach Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	OPERANDS
	Note URL
	Object URL

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Detaching a Bug Report from a Project
	Example of Detaching a Bug Report from a Tagged Configuration

	note getprop
	note getprop Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	OPERANDS
	Note URL
	Property Name

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	note links
	note links Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-norec
	-note
	-object
	-pairs

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing All the Notes Attached to a Project
	Example Showing The Objects to which a Specific Note is Attached

	note query
	note query Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-attached
	-dbquery
	-filter
	-norec
	-select
	-sqlquery
	-type

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing a list of URLS for all Note Types
	Example Displaying a Specific Note Type Attached to a Project
	Example Returning Notes Created by a Specific User
	Example Returning Notes Attached to a Specific Project

	note relink
	note relink Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-norec

	OPERANDS
	From Object URL
	To Object URL

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	note schema
	note schema Command
	NAME
	DESCRIPTION

	note setprops
	note setprops Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	--

	OPERANDS
	Note URL
	Property Name
	Property Value
	Property List Name/Value Pairs

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Setting the Title on a Specific Note
	Example of Setting the Title and History for a Specific Note
	Example of Setting Various Properties on Specific Note

	note systems
	note systems Command
	NAME
	DESCRIPTION
	SYNOPSIS
	RETURN VALUE
	EXAMPLES

	note types
	note types Command
	NAME
	DESCRIPTION

	Note Type Manipulation
	note types
	note types Command
	NAME
	DESCRIPTION

	notetype
	notetype Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	EXAMPLES

	notetype create
	notetype create Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-description
	--

	OPERANDS
	Note Type Name
	Property Name
	Prompt Name
	Is Required
	Property Type Name
	Default Value

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	notetype delete
	notetype delete Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-purgenotes

	OPERANDS
	Note Type Name

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	notetype enumerate
	notetype enumerate Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-dbtablenames
	-urls

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	notetype getdescription
	notetype getdescription Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPERANDS
	Note Type Name

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	notetype rename
	notetype rename Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	OPERANDS
	Current Name
	New Name

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	notetype schema
	notetype schema Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-dbcolumns
	-defaults
	-notesys
	-prompts
	-ptypes
	-required

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Returning all Fields in the Specified Note Type
	Example Displaying the Types for Each Field

	Property Type Information
	ptype
	ptype Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	ptype choices
	ptype choices Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPERANDS
	Custom Property Type Name

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	ptype class
	ptype class Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPERANDS
	Custom Property Type Name

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	ptype enumerate
	ptype enumerate Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	EXAMPLES

	ptype is
	ptype is Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-boolean
	-choice
	-date
	-machine
	-number
	-string
	-time
	-timestamp
	-userlist

	OPERANDS
	Custom Property Type Name

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	ptype strwidth
	ptype strwidth Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPERANDS
	Custom Property Type Name

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	ptype transitions
	ptype transitions Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-from

	OPERANDS
	Custom Property Type Name

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Email Subscription Manipulation
	subscription
	subscription Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS

	subscription add
	subscription add Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Object

	OPTIONS
	-ci
	-colock
	-conolock
	-filter
	-notetype
	-server
	-tag
	-tagname
	-unlock
	-user

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Subscribing to SyncDefect Notes
	Example of Subscribing to Specific Objects Tagged with a Specific Tag
	Example of Subscribing to Specified RC Notes
	Example of Subscribing to all Notes Attached to a Module (Module-based)
	Example of Subscribing to all Notes for Modules in a Category (Module-based)
	Example of Subscribing to all Notes Attached to a Project (File-based)

	subscription delete
	subscription delete Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Object

	OPTIONS
	-notetype
	-server
	-user

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Deleting all Subscriptions for a User
	Example of Deleting Subscriptions for all Objects
	Example of Deleting Subscriptions for a NoteType for all Objects
	Example of Deleting all Subscriptions on the Specified Object
	Example of Deleting all Specified Notetypes for an Object

	subscription edit
	subscription edit Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-server
	-user

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Editing a Subscription on the Server Associated with cwd
	Example of Editing a Subscription on a Specified Server

	subscription get
	subscription get Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-noteType
	-server
	-user

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	subscription list
	subscription list Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-noteType
	-server
	-user

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Listing Subscriptions on the server
	Example Showing Listing Subscriptions for Vault Associated with cwd

	User Profile Manipulation
	user
	user Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	EXAMPLES

	user counts
	user counts Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	user create
	user create Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	OPERANDS
	User ID
	Name/Value Pairs for Attribute Values

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	user delete
	user delete Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	OPERANDS
	User ID

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Getting Assistance
	Using Help
	Getting a Printable Version of Help
	Contacting ENOVIA

	Index

