
1

ENOVIA DesignSync
HCM User’s Guide

3DEXPERIENCE 2022

Overview

4

©2021 Dassault Systèmes. All rights reserved. 3DEXPERIENCE®, the Compass icon, the 3DS logo, CATIA, SOLIDWORKS, ENOVIA, DELMIA, SIMULIA, GEOVIA, EXALEAD, 3D VIA, BIOVIA, NETVIBES,
IFWE and 3DEXCITE are commercial trademarks or registered trademarks of Dassault Systèmes, a French “société européenne” (Versailles Commercial Register # B 322 306 440), or its subsidiaries in the
United States and/or other countries. All other trademarks are owned by their respective owners. Use of any Dassault Systèmes or its subsidiaries trademarks is subject to their express written approval.

i

Table of Contents
Overview ... 1

ENOVIA Synchronicity DesignSync Data Manager with HCM Capability 1

Using ENOVIA Synchronicity DesignSync Data manager with HCM User's Guide
Documentation .. 1

Before Reading this Guide ... 1

Related Topics ... 2

Introducing Modules .. 3

Overview of Modern and Legacy Module Command Sets .. 5

HCM Concepts .. 7

Module ... 7

Configuration ... 9

Hierarchical References .. 11

Base Directory ... 12

Alias ... 14

Guidelines for HCM Use .. 14

Using DesignSync with HCM ... 15

Using ProjectSync with HCM ... 17

Naming Guidelines .. 21

The Relationship Between HCM Modules and ProjectSync Projects 22

How the Release Operation Works .. 23

How HCM Operations Handle an Alias .. 25

Module Cache ... 26

A Comparison of Module Caches and DesignSync Caches 28

Table of Contents

ii

Using HCM from DesignSync .. 31

Commands in the DesignSync GUI client .. 31

Viewing Modules and Configurations ... 31

Viewing a Module Hierarchy .. 34

Getting a Module ... 35

Showing the Status of a Configuration ... 40

Moving an Alias to Another Release .. 42

Showing the Contents of Module Caches .. 44

Deleting HCM Objects ... 45

Removing a Hierarchical Reference from a Module Configuration 48

Scenarios for Using HCM .. 51

Overview .. 51

The Chip Architect Sets Up the Project Structure .. 52

The PLL Team Creates a Module and Its Contents ... 54

The ALU Team Creates a Module from a Vault ... 56

An ALU Designer Gets Files of a Module .. 57

A Designer Puts Files of a Module Back on the Server ... 60

A Designer Adds Files to a Configuration .. 62

A Designer Removes Files from a Configuration ... 66

The CPU Team References the ALU Module .. 69

The ALU Team Makes a Release Available .. 70

The CPU Team Subscribes to Email on a Hierarchy ... 73

The CPU Team Leader Queries for Defects .. 77

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

iii

The CPU Team References an IP Gear Deliverable ... 79

The CPU Team Changes a Reference to a New ALU Release 80

A CPU Designer Gets a Module Hierarchy .. 83

A Designer Puts a Module Hierarchy Back on the Server ... 85

The CPU Team Creates a Release ... 89

The ALU Team Creates an Alias for a Release ... 93

Designers Use the Module Cache ... 97

The MPU Team Upgrades to HCM .. 103

A Designer Creates a Configuration for Experimentation .. 106

The MPU Team References the ALU Work in Progress .. 108

The CPU Team Creates a Work-in-Progress Configuration from a Release 109

The CPU Team Develops a Checking Script Using HCM .. 110

The CPU Team References a Tools Module ... 112

The MPU Team Removes a Module .. 114

A Designer Removes a Configuration .. 117

The ALU Team Removes an Alias ... 119

Quick Steps ... 123

Quick Steps ... 123

HCM Administration .. 133

Overview of Administration Tasks.. 133

Enabling Legacy Module Support .. 135

Legacy Module Triggers and Email Notification ... 135

Mapping Note Types .. 137

Table of Contents

iv

Storing Logins .. 141

Setting Up Email Notification of HCM RevisionControl Notes 145

Access Controls ... 146

Module Caches .. 146

Command Reference .. 155

Accessing the Command Reference ... 155

Getting Assistance .. 157

Using Help ... 157

Getting a Printable Version of Help.. 158

Contacting ENOVIA ... 159

Index ... 161

1

Overview
HCM is software that supports development in a hierarchical fashion. With HCM, design
teams manipulate module configurations, which can correspond to blocks of a design.
Each module can represent any level of the design hierarchy, from leaf cell through
DSP core to the whole IC. HCM lets designers define hierarchical relationships between
blocks (module configurations) and provides interfaces to work on the entire hierarchy
of blocks as one entity (a module hierarchy).

ENOVIA Synchronicity DesignSync Data Manager with
HCM Capability
HCM enhances the ENOVIA Synchronicity command set with additional capabilities to
support legacy modules, including:

• Viewing Modules and Configurations
• Viewing a Module Hierarchy
• Getting a Module
• Showing the Status of a Configuration
• Moving an Alias to Another Release
• Showing the Contents of Module Caches
• Deleting HCM Objects
• Removing Hierarchical References from a Module Configuration

Using ENOVIA Synchronicity DesignSync Data manager
with HCM User's Guide Documentation
This guide is single-sourced in HTML and available from the Documentation Index
page.

• Windows - available from the Dassault Systems product group in the Windows Start
menu.

• UNIX, - available by by pointing your web browser to
$SYNC_DIR/share/content/doc/index.html

Note: References from the ENOVIA Synchronicity DesignSync Data Manager HCM
User's Guide to the ENOVIA Synchronicity Command Reference guide always link to
the ALL version of the guide, which contain information about all working methodologies
for DesignSync. For more information about the available working methodologies, see
 ENOVIA Synchronicity Command Reference.

Before Reading this Guide

Overview

2

You might need to refer to the following guides if you are learning to use the ENOVIA
Synchroncity DesignSync Data Manager for Visual Studio product.

ENOVIA Synchronicity Command
Reference Full documentation for all HCM commands.

ENOVIA Synchronicity DesignSync
Administrator's Guide

Describes the customizations available to
optimize performance and usability and allows
you to enable HCM.

Related Topics
Introducing Modules

Overview of Modern and Legacy Module Command Sets

3

Introducing Modules
The DesignSync Data Manager features two types of modules:

• Modern modules.
• Hierarchical Configuration Manager (HCM) modules, also called legacy modules.

This documentation focuses exclusively on legacy (HCM) modules.

HCM is software that supports development in a hierarchical fashion. With HCM, design
teams manipulate module configurations, which can correspond to blocks of a design.
Each module can represent any level of the design hierarchy, from leaf cell through
DSP core to the whole IC. HCM lets designers define hierarchical relationships between
blocks (module configurations) and provides interfaces to work on the entire hierarchy
of blocks as one entity (a module hierarchy).

HCM supports such activities such as tracking the version history of blocks and the
chips that use the blocks, releasing blocks that have met validation criteria, and
packaging blocks for re-use.

To use HCM software, you must:

1. Have an HCM license.
2. Enable HCM in DesignSync.
3. Run HCM commands from a command line, for example in a DesignSync

command shell (stcl, stclc, dss, dssc):

% stclc
stcl> hcm showmods -target sync://alu.ABCo.com:2647

Note: Modern modules documentation is fully integrated into the other documentation in
DesignSync as appropriate, for example, Access Controls for modules are documented
in the Access Control User's Guide; System Administrator tasks for modules are
documented in the DesignSync Data Manager Administrator's Guide, etc.

Related Topics

Release Information

5

Overview of Modern and Legacy Module Command
Sets

This table shows the command functionality available to users of V6 (modern) and
legacy modules.

Important: The command syntax is different between V6 and legacy module
commands, unless otherwise noted. For full command syntax, see the ENOVIA
Synchronicity Command Reference, or type <command> -usage in your DesignSync
client.

Command V6 Modules
command

Legacy Modules
command Description

Add add X Adds new objects to a module.

Addbackref addbackref X Adds whereused support to targets of
hierarchical references.

Addhref addhref hcm addhref Creates a hierarchical reference between
modules.

Addlogin addlogin hcm addlogin
Stores a server login to enable hierarchical
queries to legacy modules across servers.
Note: Command syntax is identical.

Doc X X This command is now obsolete.

Get populate hcm get

Fetches a legacy module configuration into
your work area.
Note: Command syntax is identical except
legacy module mode enabled the edit (and
edit recursive) and merge options.

Lock lock X Creates a server-side lock on a module branch.

Migratetag migratetag X Migrates DesignSync and legacy module tags
to modules.

Mkalias X hcm mkalias Creates an alias for a release of a legacy
module.

Mkconf X hcm mkconf Creates a legacy configuration for a module on
a server.

Mkedge mkedge X Creates a merge edge between specified
versions.

Mkmod mkmod hcm mkmod Creates a module on the server.
MvMember mvmember X Changes the natural path of a module member.
Put X hcm_put Checks in a legacy module configuration.

Release X hcm_release Creates a configuration that cannot be
modified.

Overview of Modern and Legacy Module Command Sets

6

Remove remove X Removes a module member from a module
Rmalias X hcm rmalias Removes an alias for a release.
Rmedge rmedge X Removes previously set merge edges.

Rmconf X hcm rmconf Removes a legacy configuration from the
server.

Rmhref rmhref hcm rmhref

Removes a hierarchical reference from a
modern or legacy (HCM) module to a modern
or legacy module, external module (modern
modules only), DesignSync vault, or IP Gear
deliverable.

Rmlogin rmlogin hcm rmlogin
Removes a stored server login used when
following hierarchical queries from legacy
modules across servers.
Note: Command syntax is identical.

Rmmod rmmod hcm rmmod Removes a module from a server or
workspace.

Rollback rollback X
Reverts a module back to a previous version,
rolling back any structural and content
changes.

Showconfs showconfs hcm showconfs Displays legacy module configurations.
Note: Command syntax is identical.

Showlogins showlogins showlogins Displays the logins stored on a server.
Showmcache showmcache hcm

showmcache Lists the modules in one or more caches.

Showmods showmods hcm showmods Displays the modules available on a server or
workspace.

Showstatus showstatus hcm
showstatus

Displays the status of a module in your
workspace.

Unremove unremove X Restores a previously removed module
member into the module workspace.

Upgrade upgrade hcm upgrade Upgrades a legacy module or a DesignSync
vault to a module or legacy module.

Version version hcm version Displays the DesignSync installation version.
Note: Command syntax is identical.

7

HCM Concepts
Module
A module is data that represents a level of the design hierarchy. For example, in the
following design hierarchy, any one of the levels can be a module.

Chip407
 CPU
 ALU
 FPU
 ADDER
 IOSTAT
 CACHE
 DesignCompiler
 PLL
 RAM

In the following example design hierarchy, Chip407 is the main module; CPU, PLL, and
RAM are submodules of Chip. The CPU module has submodules: ALU, IOSTAT,
CACHE, and DesignCompiler. The ALU submodule has submodules of its own: FPU
and ADDER.

A module's data includes:

• Files managed in DesignSync or an entire vault directory of files.

HCM Concepts

8

• (Optionally) Hierarchical references to other modules (submodules). The
contents of the submodules, however are not included. It is through hierarchical
references that a module hierarchy is created

Module Hierarchy

HCM lets designers define hierarchical relationships between blocks (represented in
modules) and provides simple yet powerful interfaces to work on the entire hierarchy of
such modules as one entity.

There are two general phases of the creation of a hierarchy of modules:

• Creation of the modules
• Creation of the connections between modules (hierarchical references)

Module Creation

HCM modules are created through the hcm mkmod operation or the Create a module
dialog. See The ALU Team Creates a Module from a Vault for an example scenario of
this operation.

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

9

Note: Modules can be removed from the server with the hcm rmmod command or the
Delete dialog. For an example scenario, see The MPU Team Removes a Module.

Hierarchical Reference Creation

A hierarchical reference is a connection between two module configurations that
specifies each module's place in a hierarchy. Because a hierarchical reference identifies
an upper-level module and a submodule, adding a hierarchical reference to a module
configuration in effect creates submodules.

Modules and Configurations

In HCM, a module is always associated with a configuration, either a default
configuration created by the hcm mkmod command (or the Create a module dialog) or
a configuration you create for a module with the hcm mkconf command (or the Create
a configuration for the module dialog).

Related Topics

hcm addhref Command

hcm mkmod Command

hcm rmmod Command

hcm mkconf Command

hcm rmconf Command

Configuration
A configuration is a group of managed files, each file at a particular version.

There are four types of configurations, depending on how the configuration was created:

HCM Concepts

10

• Release. A release is a group of managed files, fixed at a particular version, that
cannot be modified. A release is created with the hcm release operation. (Note:
Although the contents of a release cannot be changed, the release can be
removed from the server with the hcm rmmod command or the Delete dialog.
This operation removes a module's configuration definitions as well as the
module itself.)

• Branch configuration. A branch configuration is a group of managed files that
have a selector of <branch_name>:Latest.

A branch configuration is created by using the hcm mkconf operation with the -
branch option. This type of configuration can be removed from the server by
using the hcm rmconf operation.

• Default configuration. A default configuration is a branch configuration in which
files have the selector Trunk:Latest (a default branch selector of Trunk and
version selector of Latest). A default configuration is associated with a module by
default.

A default configuration is created by using the hcm mkmod operation. This type
of configuration can be removed from the server by using the hcm rmmod
operation.

Note: In HCM operations, when you specify a module without a configuration
name, the HCM operation uses the module's default configuration.

• Selector configuration. A selector configuration is a group of managed files,
each at a particular version. Selector configurations enable the full power of
DesignSync selector lists. In addition, ProjectSync configurations are
represented in HCM as selector configurations.

A selector configuration is created by using the hcm mkconf operation with the -
selector option. This type of configuration can be removed from the server by
using the hcm rmconf operation.

Note: Because an alias is a symbolic name for a release, it can be thought of as a type
of configuration. In addition, HCM operations such as hcm showconfs list aliases as
well as other configuration types.

To display a list of configurations of a module, use the hcm showconfs operation. For
example:

stcl> hcm showconfs -target
sync://alu.ABCo.com:2647/Projects/ALU

Configurations of module sync://alu.ABCo.com:2647/Projects/ALU:

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

11

NAME TYPE OWNER SELECTOR/ALIASED RELEASE

<Default> Branch Anne Trunk:Latest
R1 Release Anne
R2 Release Anne
GOLDEN Alias Anne R2

Related Topics

Module

hcm mkconf Command

Working with Configurations

hcm rmconf Command

hcm mkmod Command

hcm rmmod Command

hcm release Command

hcm showconfs Command

Hierarchical References
A hierarchical reference is a connection that defines a hierarchical relationship
between two module configurations.

A hierarchical reference connects an upper-level module configuration to any of the
following:

• Another module configuration (making that module a submodule of the upper-
level module)

• An IP Gear deliverable
• A DesignSync vault location

Creating a hierarchical reference lets you define a hierarchy of modules and
submodules. Such a reference is created with the hcm addhref command or the
Create a hierarchical reference for the configuration dialog. In this operation, you
specify:

• An upper level module URL (the -fromtarget option)
• A submodule URL (the -totarget option)

HCM Concepts

12

• The relative path from the upper-level module's base directory to the
submodule's base directory (the -relpath option). The hcm get operation uses
this value when users get a module hierarchy to their work areas. For more
information on how the get operation uses this value, see Base Directory.

Related Topics

hcm addhref Command

Working with a Module Hierarchy

hcm get Command

Base Directory
The base directory of a module is the file system directory into which a module is
fetched when users get the module to their work areas.

You specify the location of the base directory with the hcm get -path operation when
you get the module to your work area. (If you do not specify the -path option, the
operation uses your current work area directory.) For example:

To determine where to place a module hierarchy in your work area, the hcm get
operation:

• Uses the base directory you specify with the -path option.

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

13

• Adds to that the relative path (specified with the -relpath option when a
hierarchical reference was added with the hcm addhref operation). (HCM stores
this information as part of the configuration's data.)

The relative path is always in relation to the upper-level module's base directory.
When you fetch the module hierarchy with the hcm get -recursive operation,
HCM software places the submodules' directories and files in your work area in
relation to the upper-level module's base directory (specified with hcm get -
path).

The hcm get -recursive operation follows hierarchical references to the configuration's
submodules (if any) and fetches their files. Files are fetched into the directory locations
indicated by the relative path of each hierarchical reference. Thus a referenced
submodule is placed in the path <Path>/< RelativePath>.

For example, the CPU team leader adds a hierarchical reference from the CPU module
to the ALU module, specifying a -relpath of ALU. Later, a designer on the CPU team
then gets the CPU module hierarchy to her work area (with hcm get -recursive), using
the -path option to specify CPU be put in her current work area directory,
/dev/users/Marie/CPU.

Related Topics

hcm get Command

HCM Concepts

14

Alias
An alias is a symbolic name for a release. For example, the ALU design team might
create ALU@GOLDEN as the symbolic name for its ALU@R1 release.

You can use an alias just as you would other configuration types in a Synchronicity URL
passed to HCM commands or features. For example, when you create hierarchical
references to submodules, you can specify an alias as the submodule (the -totarget
value).

In addition, you can change an alias to point to a different release. For example, the
ALU team might initially use the GOLDEN alias to point to the ALU@R1 release. Later,
when it creates another release of the ALU design (ALU@R2), the team might change
the ALU@GOLDEN alias to point to the new release. By referencing the
ALU@GOLDEN alias, other design teams can get the appropriate release of the ALU
module.

In operating on an alias, HCM commands and features like hierarchical subscription
resolve the alias to the release to which it points and then operate on the release. For
more information, see How HCM Operations Handle an Alias.

To create an alias or to change it to point to a different release, use the hcm mkalias
operation or the Create an Alias for the release dialog. For an example scenario, see
The ALU team Creates an Alias for a Release.

To remove an alias from the server, use the hcm rmalias operation or the Delete
dialog. For an example scenario, see The ALU Team Removes an Alias.

Related Topics

Creating or Changing an Alias

Deleting HCM Objects

hcm addhref Command

hcm mkalias Command

hcm rmalias Command

Guidelines for HCM Use
When using HCM, follow these rules:

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

15

• When you use hcm mkconf -selector or hcm mkconf -branch to create a
hierarchical configuration, do not use --R in the -selector or -branch option
value. (See Naming Guidelines for more information.)

If the selector or branch value contains --R, HCM considers the configuration a
release or an alias. However, using the hcm mkconf operation to create a
release or an alias is not a good practice. Instead, use the hcm release and hcm
mkalias operations.

• When you specify a URL in HCM commands, always use the same host/domain
name for a particular host, regardless of whether the name is the actual machine
name or a DNS alias.

• For the hcm addhref operation, if the upper-level module and submodule reside
on the same server, specify the same domain name for the -fromtarget and -
totarget options. (A domain name is needed when the referenced submodule is
on the same server so that the reference can be followed by users outside the
server's LAN.)

For example, if you specify a -fromtarget that uses a fully qualified host name,
you should specify the same fully qualified host name for the -totarget. If you do
not specify the same domain name for both options, the addhref operation
succeeds, but HCM does not utilize a performance enhancement for references
on the same server.

• In HCM operations that specify a target (with -target, -fromtarget, and -totarget
options), specify a domain name that will work for all teams that want to access
and reuse your modules.

Related Topics:

Using DesignSync with HCM

Using ProjectSync with HCM

Naming Guidelines

Using DesignSync with HCM
When HCM is installed on your SyncServer, certain DesignSync behaviors change, and
in some cases you must use DesignSync differently if you want to use HCM. The
following is a list of changes:

• You cannot modify both legacy and modern modules in the same workspace. If
you have a hierarchical reference tree containing both, you should not modify the
sub-modules in the workspace containing the full hierarchy. You should create a
new workspace for the editing the sub-module.

HCM Concepts

16

• When you work with HCM modules, do not use the DesignSync mkbranch -
recursive command to branch an entire directory tree. (You can, however, use
mkbranch without the -recursive option. You can also use autobranching.)

Using the mkbranch -recursive operation results in the branching of files when
submodules are located within the directory structure of the upper level module.

To branch an entire directory tree, follow these steps:

Note: This procedure branches only the upper-level module of a module
hierarchy.

1. Use the hcm release command or the Release a module dialog to create a
release of the configuration you want to branch.
2. Use the DesignSync mkbranch command to create the branch of the module
configuration. For the argument, specify the vault URL of the upper-level module. For
the -version option, specify the release's name.

• Note: You can use the mkbranch -recursive operation in a work area to which
no hierarchical references (submodules) have been fetched. For an example
scenario, see The CPU Team Creates a Work-in-Progress Configuration from a
Release.

• Using previous versions of DesignSync, some design teams used vault
REFERENCEs to import modules from other design projects into their designs.
Such vault REFERENCEs performed a role similar to the one that hierarchical
references now perform in HCM.

When you are using HCM, you no longer need to use REFERENCE statements
to incorporate other design teams' work into your design. Instead, use
hierarchical references to create a hierarchy of HCM modules. In addition, you
can use the hcm upgrade operation to change vault REFERENCEs to HCM
hierarchical references. For an example scenario, see The MPU Team Upgrades
to HCM.

Note: Although you do not need to use REFERENCEs, you can still create
projects and provide vault paths as REFERENCE statements. HCM software
recognizes and follows REFERENCE statements.

• The hcm get operation supports the -edit option only on an upper-level module
of a module hierarchy. For example, suppose a module hierarchy has CPU as
the upper-level module. CPU contains files and a submodule called ALU, which
has a submodule, FPU. If you perform an hcm get -recursive -edit operation on
CPU, the operation locks only the files of the CPU module but not files of ALU or
its FPU submodule.

• In using HCM, you should be aware that, for the most part, HCM operations
follow DesignSync settings. For example, the hcm put operation follows the
Minimum checkin comment length setting. If you must provide a checkin

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

17

comment of a certain length when you check files in with the DesignSync checkin
(ci) operation, you will have to do the same when you use the hcm put
operation. Other examples of settings that HCM operations follow are: the
RmVaultKeepVid registry setting, (affects the behavior of the hcm rmmod -
vaultdata operation), the PopulateNoEmptyDirs registry setting (the hcm get
operation follows this setting if it is specified; if the setting is not specified, the get
operation removes empty directories), and the Cadence Recurse View Folders
setting (hcm get and hcm put operations follow this setting). Consult your
project leader or Synchronicity administrator about the effect of these settings on
HCM operations.

However, HCM operations do not follow certain DesignSync settings:

•
o The hcm get and hcm put operations do not support the default fetch

state of Always point to the latest version (Mirror). If this setting has
been specified in DesignSync, your project leader or Synchronicity
administrator will have to change it in order for you to use the get and put
operations. For information on the default fetch state, see Defining a
Default Fetch State in DesignSync Help.

If you want to maintain another workspace with links to the latest versions,
you can use the DesignSync populate -mirror operation. You must
explicitly specify the -mirror option. If you omit -mirror and your system
administrator has set the default fetch state to Always point to the latest
version (Mirror), HCM operations will fail.

o The hcm put operation does not follow settings that specify dereferencing
of symbolic links to files or directories. Consult your project leader or
Synchronicity administrator for information about this setting's effect on
HCM operations.

• For more information about the interaction of DesignSync settings and HCM
operations, see Overview of Administration Tasks.

• As Synchronicity administrator or project leader, you do not have to enable
RevisionControl notes for HCM operations. HCM installation enables
RevisionControl notes for HCM commands, and notes are automatically
generated in response to HCM commands.

• DesignSync commands treat module cache links as unmanaged directory links.
When using the DesignSync ci command, you should not use ci -new to check
in directory links.

Using ProjectSync with HCM
When HCM is installed on your SyncServer, certain ProjectSync forms have additional
fields, and in some cases you use ProjectSync differently for operations on HCM
objects (for example, a query on a module hierarchy). The following is a list of changes:

HCM Concepts

18

• With previous versions of DesignSync and ProjectSync, team members used
vault REFERENCEs to import modules from other design projects into their own
designs.

With HCM software, REFERENCE statements are not needed; HCM uses
hierarchical references (created with the hcm addhref command or the Create a
hierarchical reference for the configuration dialog) to incorporate design work
from other sources into a module hierarchy. For an example scenario, see The
CPU Team References the ALU Module.

• Certain HCM operations create or delete ProjectSync projects or configurations.

In certain cases, the hcm upgrade and the hcm mkmod operations create
ProjectSync projects in addition to HCM modules. (For information, see The
Relationship Between HCM Modules and ProjectSync Projects.) Configurations
created by the hcm mkconf, hcm release, and hcm mkalias operations (when
the target resides below the Projects vault folder) appear in ProjectSync as
Configurations.

The hcm rmmod, hcm rmconf, and hcm rmalias operations remove
ProjectSync projects or configurations. These operations also detach and,
optionally, delete ProjectSync notes.

o The hcm rmmod operation removes the ProjectSync project and/or
configurations associated with a module only when the -vaultdata option
is specified. (If the -vaultdata option is not specified, ProjectSync still
displays the module and its configurations as a project.) The rmmod
operation also detaches ProjectSync notes attached to the module and its
configurations. If the -notes option is specified, the operation deletes
those notes that were detached and not attached to other objects.

o The hcm rmconf and hcm rmalias operations remove the ProjectSync
configuration created with the hcm mkconf or mkalias operation. The
rmconf and rmalias operations also detach any ProjectSync notes
attached to the configuration. If the -notes option is specified, these
operations delete those notes that were detached and not attached to
other objects.

• The standard RevisionControl note type has the field Tag or HCM sub-cmd. For
HCM operations, this field displays the name of the HCM command, minus its
hcm prefix. For information on how to configure email notifications to display this
field, see Setting Up Email Notification of HCM RevisionControl Notes.

Email Subscriptions

When you use ProjectSync to subscribe for notes attached to any part of a module
hierarchy, ProjectSync's behavior depends on the extent of the subscription, as
specified in the Scope field.

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

19

• To subscribe to email for notes on an HCM module or module hierarchy (perform
a hierarchical subscription), use the ProjectSync Advanced Subscriptions
panel. (The standard Add New Subscriptions panel does not support
hierarchical subscriptions.) For an example scenario, see The CPU Team
Subscribes to Email on a Hierarchy.

• In the ProjectSync Advanced Subscriptions panel, to have an email
subscription apply only to a single object, specify the object's URL in the Object
Filter field and select This object only from Scope pulldown menu. This action
is equivalent to using the trailing slash in the Object Filter field in ProjectSync
when HCM is not installed.

• When you subscribe to email on a module configuration that is an alias,
ProjectSync resolves the alias to the release to which it points and adds the
subscription to that release. In the Subscription status panel, ProjectSync
displays the alias associated with the release.

• HCM does not automatically update email subscriptions when an alias changes
to point to a different release. You must manually update your email subscription
to subscribe to notes for the new release. For an example scenario, see Robert
Updates Email Subscriptions.

Query

To query for notes on an HCM module hierarchy (a hierarchical query), you first select
Standard Query from the ProjectSync menu. (The Advanced and Custom Query
forms do not support hierarchical references.) Then you use the ProjectSync Query
form's Project, Configuration, and Scope fields to specify the module configuration to
query and the extent of that query.

Note: All HCM modules located in the /Projects vault folder in DesignSync appear
as Projects in ProjectSync, and all of their configurations appear as ProjectSync
Configurations.

The selections of the Scope pulldown menu are:

• This object only
• This object and one level below
• This object and all levels below

The Project, Configuration, and Scope fields affect a query on a module configuration
in the following ways:

• If you query for notes on a module and you leave the configuration field blank,
you are performing a query on the module's default configuration.

• If you query for notes on a module but not its submodules (Scope=This object
only), then a default configuration query displays both:

o Notes that are attached to the module with no configuration (for example,
Project=CPU Configuration=<blank>)

HCM Concepts

20

o Notes that are attached to the module at a specific configuration (for
example, Project=CPU Configuration=C21)

• If you query for notes on a module and some or all of its submodules
(Scope=This object and one level below or Scope=This object and all levels
below), then a default configuration query behaves differently from one with
Scope=This object only. The query mechanism descends into the module
hierarchy according to the value in the Scope field, but at each level in the
hierarchy it displays only notes that are attached to the module at a specific
configuration (for example, Project=CPU Configuration=C21). For an example
scenario of this type of query, see The CPU Team Leader Queries for Defects.

• A query for notes on a configuration that is an alias displays the same results as
a query on the release to which the alias points. This behavior is due to the
NoteAttach functionality, which synchronizes notes on aliases and releases.

The NoteAttach Functionality

When a note is attached to an object:

If the object is... The note is attached to...
An alias The alias and the release configuration to which the alias

points
A release The release and any aliases that point to the release.

Notes:

• This behavior also applies to any notes you create and attach to objects.
• Upon installation, the HCM software enables the generation of RevisionControl

notes for HCM operations and attaches the notes to objects.

When the alias is changed to point to a different release, ProjectSync:

• Detaches from the alias any notes associated with the previous release
• Attaches any notes associated with the release to which the alias now points

Note: For the NoteAttach functionality to operate in this way, you must add the
hcmNoteAttach trigger. For information, see Adding the hcmNoteAttach Trigger.

Related Topics

hcm addhref Command

hcm mkalias Command

hcm mkconf Command

hcm mkmod Command

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

21

hcm release Command

hcm rmalias Command

hcm rmconf Command

hcm rmmod Command

hcm upgrade Command

Naming Guidelines
When you create a configuration, alias, or release, follow these guidelines for naming it.

• Configuration, release, and alias names:
o Can contain letters, numbers, underscores (_), periods (.), and hyphens (-

). All other characters, including whitespace, are prohibited.
o Cannot start with a number and consist solely of numbers and embedded

periods (for example, 5, 1.5, or 44.33.22).
o Cannot be any of the following reserved, case-insensitive keywords:

Latest, LatestFetchable, VaultLatest, VaultDate, After, VaultAfter, Current,
Date, Auto, Base, Next, Prev, Previous, Noon, Orig, Original, Upcoming,
SyncBud, SyncBranch, SyncDeleted.

• Configuration and alias names cannot end with '--R'. This tag is reserved for use
by HCM.

• Avoid using names starting with "Sync" (case-insensitive) because in the future,
Synchronicity may define new keywords using that naming convention.

• A configuration's name must be unique within the scope of the module. When
you create a configuration with hcm mkconf, if you specify a name that is the
same as an alias or release of the module, the mkconf operation fails.

• A release's name must be unique within the scope of a module. When you create
a release with hcm release, if you specify a name that is the same as any of the
module's other configurations, the release operation fails. However, you can use
the same release name for another module's configuration.

• The scope of an alias name is confined to the scope of a module. You can use
the same alias name for any number of modules, but each alias must point to a
different module's release.

• When you create a new alias with hcm mkalias, if you specify a name that is the
same as an existing release, branch, or selector configuration, the mkalias
operation fails.

• When you use hcm mkalias to change the release to which an alias points,
specify a name that matches an existing alias name.

Related Topics

hcm mkalias Command

HCM Concepts

22

hcm mkconf Command

hcm release Command

The Relationship Between HCM Modules and ProjectSync
Projects
An HCM module and a ProjectSync project are two different entities; however, with the
SOC Developer Suite, HCM modules and ProjectSync projects are often associated.
This association allows you to take fullest advantage of HCM capabilities.

An association between module and project can occur with the creation of HCM
modules. For example, when the hcm upgrade operation upgrades vault directories to
modules, ProjectSync projects are created accordingly. In addition, in certain cases, the
hcm mkmod operation not only creates an HCM module but also creates a ProjectSync
project. Two cases where the hcm mkmod operation creates a ProjectSync project are:

• When the files for the module reside in a DesignSync vault directory directly
below the Projects directory. In this case, the hcm mkmod operation creates a
ProjectSync project associated with the vault directory. For an example of this
use of the hcm mkmod operation, see The ALU Team Creates a Module from a
Vault.

Note: While modules can reside anywhere in the vault, Synchronicity
recommends that you place modules in the Projects vault folder. Locating
modules in this directory allows greatest use of ProjectSync features.

• When a ProjectSync project already exists for a vault directory and has
ProjectSync configurations that correspond to DesignSync configurations. In this
case, the hcm mkmod operation makes the project's configurations available in
HCM as configurations of the module.

Of course, not every ProjectSync project has an associated HCM module. However,
when a ProjectSync project has an upper-level module associated with it, the data that
makes up the project includes:

• Notes logged on the project
• (Optionally) The data of the project's uppermost-level module. The module's data

is design data associated with the top level of the design, for example, the
footprint of a chip or RTL describing the logical breakdown of the chip. Data
might also be specifications and test files for that level of the chip.

The hcm rmmod operation removes the ProjectSync project and/or configurations
associated with a module when the -vaultdata option is specified. (If the -vaultdata
option is not specified, ProjectSync still displays the module and its configurations as a

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

23

project.) The rmmod operation also detaches ProjectSync notes attached to the module
and its configurations. If the -notes option is specified, the operation deletes those
notes that were detached and not attached to other objects.

Related Topics:

Module

hcm mkmod Command

hcm rmmod Command

Using ProjectSync with HCM

What Are Projects? (in ProjectSync help)

How the Release Operation Works
A release is a special type of configuration that is "frozen"; the files and hierarchical
references it contains cannot be changed. Such a frozen configuration allows a design
team to cycle back to a known state of the design at any point in the future. A release is
created when you perform the hcm release operation (or use the Release a module
dialog) on a module configuration. (Note: Although the contents of a release cannot be
changed, the release can be removed from the server with the hcm rmmod command
or the Delete dialog. This operation removes a module's configuration definitions as well
as the module itself.)

The release operation is a client-side operation; you perform the operation on a module
and its submodules in your work area on a DesignSync client. The release operation
determines the contents of the release configuration from your work area and creates
the release on the server. By default, the release operation is recursive.

When a recursive release operation is performed on a module, the operation creates:

• A release of the each submodule that is a branch, selector, or default
configuration.

If a submodule resides on a remote SyncServer, the release operation creates its
release on that server. (The operation checks access controls to ensure the user
is allowed to run the release command on that server.)

• A release of the upper-level module.
• A hierarchical reference from the upper-level module release to each

submodule's release.

For example, for the following hierarchy:

HCM Concepts

24

CPU (default configuration)
 ALU@C4
 FPU@Dev1024

This hcm release command (includes -recursive by default):

% stclc
stcl> hcm release -path /users/Robert/CPU -name Rel1

Performs these actions:

• Creates a release of the FPU@Dev1024 module configuration (FPU@Rel1) on
the FPU module's SyncServer. Then creates a release of the ALU@C4 module
configuration (ALU@Rel1) on the ALU module's SyncServer.

• Creates a release of the CPU module's default configuration (CPU@Rel1) on the
CPU module's SyncServer.

• Creates hierarchical references from ALU@Rel1 to FPU@Rel1 and from
CPU@Rel1 to ALU@Rel1.

For a release operation on a module hierarchy, how the release operation handles
submodule configurations depends on the type of configuration:

If the module being released
has a hierarchical reference
to...

Then the release operation...

An IP Gear deliverable Adds a reference from the release of the upper
level module to the deliverable

A default configuration • Creates a release of the default
configuration

• Adds a reference from the release of the
upper level module to the release of the
default configuration

A branch configuration • Creates a release of the branch
configuration

• Adds a reference from the release of the
upper level module to the release of the
branch configuration

A release Adds a reference from the release of the upper
level module to the release

An alias Adds a reference from the release of the upper
level module to the release to which the alias
points

A selector configuration • Creates a release of the selector

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

25

configuration
• Adds a reference from the release of the

upper level module to the release of the
selector configuration

A vault folder on a SyncServer
that does not have HCM installed

Adds a reference from the release of the upper
level module to the folder and issues a warning.

Note: Because the contents of the referenced
folder can change, a release that includes this
type of reference is not immutable.

Note: During a release operation on a module hierarchy, if a submodule needs to be
released, then the name of the submodule release is uniquely determined, based on the
hierarchy.

Related Topics

hcm release Command

Releasing a Single Module

hcm rmmod Command

Deleting HCM Objects

How HCM Operations Handle an Alias
An alias is a symbolic name for a release. You can use an alias in HCM operations as
you would other module configuration types. For example, you can get files of an alias
or create a hierarchical reference to an alias. This section describes how HCM
operations handle an alias.

The hcm get Operation

If you use a nonrecursive get operation on a module configuration that is an alias, the
operation identifies the release to which the alias points and fetches the files of the
release to your work area. (Note: The hcm get operation is nonrecursive by default.)

If you use hcm get -recursive on a module configuration that is an alias or on a module
hierarchy that includes an alias, the operation identifies the release to which the alias
points and fetches the files of the release. The get operation also follows hierarchical
references to the configuration's submodules (if any) and fetches their files. Files are
fetched into the directory locations indicated by the relative path of each hierarchical
reference.

HCM Concepts

26

If you use the hcm get operation after an alias changes, the get operation fetches the
files of the release to which the alias currently points. For example, suppose the alias
ALU@GOLDEN was changed from ALU@R1 to point instead to ALU@R2. The next
time users get the ALU@GOLDEN configuration, the get operation fetches ALU@R2.

Note: If you are fetching the module configuration into the same work area directory
where you fetched the previous configuration, the get operation removes files in the
work area that don't match the contents of the new configuration on the server, unless
the files are locally modified. This behavior is standard for the hcm get operation, which
applies the -replace option by default.

The hcm release Operation

The hcm release operation "freezes" the module hierarchy; making it immutable.
Aliases by nature are dynamic and can be changed. When the release operation
encounters an alias in the module hierarchy, the operation resolves the alias to the
release to which it points. Then the operation adds a hierarchical reference from the
upper-level module to the release.

For a description of how ProjectSync subscription and query mechanisms and the
NoteAttach functionality handle an alias, see Using ProjectSync with HCM.

Related Topics

hcm get Command

hcm mkalias Command

hcm release Command

Module Cache
A module cache is a directory residing on the same local area network (LAN) as a
group of users and containing copies of releases fetched from an HCM server.

Note: A module cache should contain only HCM releases. The get operation ignores
default, branch, and selector configurations, as well as aliases in the module cache.

Using a module cache can reduce fetch time and save disk space for users. For
example, a design team working on the files of a module configuration can set up a
module cache to store copies of releases that the configuration references. When team
members fetch the configuration, they can specify that the get operation fetch any
releases from the module cache instead of the server. Because releases are fetched
from the local module cache, the overall time required to fetch a module configuration is
reduced. In addition, team members can save disk space by creating links from their

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

27

work areas to releases in the module cache, instead of fetching releases to their work
areas.

Users can fetch from the module cache any releases that:

• Are available in the module cache. (To determine if a release is available, use
the hcm showmcache command or the Show contents of module caches
dialog.)

• Match the hierarchical nature of the hcm get operation being performed.

If you specify an hcm get -recursive operation, then for releases to be fetched
from the module cache, the entire hierarchy of each release being fetched must
exist in the module cache. If you specify an hcm get operation without the -
recursive option, then just the upper-level module of each release being fetched
must exist in the module cache. Otherwise, the release is fetched from the
SyncServer. (To determine the nature of a release's hierarchy in the module
cache, use the hcm showmcache command or the Show contents of module
caches dialog.)

To allow a design team to take advantage of the benefits of a module cache, a design
team leader would first set up one or more module caches. Typically, the team leader
would then define the DesignSync registry settings that specify the default module
cache paths and default mode for fetching from the module cache (link or copy). Once
the registry settings are defined, team members can use hcm get as usual to fetch
releases from the module cache. Team members can override the default settings by
using hcm get with its -mcachepaths and -mcachemode options. These options can
also be used when registry settings haven't been set.

For more information about using the -mcachepaths and -mcachemode options, see
the hcm get command. For a scenario about fetching from or linking to a module cache,
see Designers Use the Module Cache.

Note: A module cache is different from a DesignSync LAN cache. See A Comparison of
Module Caches and DesignSync Caches for information.

Related Topics

hcm get Command

Getting a Module

hcm showmcache Command

Showing the Contents of Module Caches

Setting Up a Module Cache

HCM Concepts

28

Setting the Default Module Cache Path or Mode

A Comparison of Module Caches and DesignSync
Caches
In general, a module cache is similar to a DesignSync LAN cache. Both cache types are
directories residing on the same local area network (LAN) as a group of users and
containing copies of objects in the DesignSync vault. Both serve the same purpose: to
save time on fetches of updated design data and to save disk space.

However, the two cache types differ in their contents, method of access, and
setup/maintenance.

• A module cache stores copies of HCM module releases. (Note: Only releases
should be stored in the module cache; other HCM configuration types are
ignored by HCM operations.)

A DesignSync cache stores copies of DesignSync objects (file versions and
Cadence collections).

• To use the module cache, HCM users specify the -mcachemode and -
mcachepaths options with the hcm get operation.

To use the LAN cache, DesignSync users specify the -share option with the
DesignSync populate, co, ci, or cancel operation.

• Both DesignSync LAN caches and module caches let users link from their work
areas to items in the cache instead of fetching from the server. HCM users can
choose one of these modes:

o A link to the base directory of the release in the module cache (-
mcachemode link)

o A copy of the release from the cache (-mcachemode copy)
o A copy of the release from the server (-mcachemode server)

For DesignSync users, however, specifying the -share option always results in a
symbolic link from your work area to the file in the cache.

• Any number of module caches can be set up on a LAN; the number is
constrained only by local disk space. The hcm get operation lets users specify a
list of caches from which to fetch.

Due to the way the DesignSync cache is set up, only one DesignSync LAN
cache can be designated.

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

29

• A module cache is set up after HCM installation by a project leader or team
member who will be responsible for owning and updating the cache. To ensure
that releases cannot be changed, the module cache directory should have UNIX
read-only permissions for all users except the owner. The cache owner uses the
hcm get operation to fetch each release to the cache. In the same way, the
cache owner updates the cache with new releases. (The cache owner can set up
automated scripts to update the module cache when module releases are
created.) For more information, see Setting Up a Module Cache and Updating a
Module Cache.

A DesignSync cache is set up during Developer Suite installation, when the
installer specifies the location of the default cache directory (sync_cache). A LAN
administrator can later specify that a directory on the LAN be used as the default
cache directory instead. The cache directory must have UNIX permissions that
grant full access to users of the cache because certain user operations update
the cache directory. (Note: An alternative to granting full access to cache users
is to perform an SUID installation of DesignSync, which enforces the read-only
intent of DesignSync mirror and cache directories.) The LAN administrator does
not fetch files to the cache; file versions are fetched to the LAN cache when
users specify the -share option with the DesignSync populate, ci, co, or cancel
command. The cache is also updated in the same way. For more information,
see ENOVIA Synchronicity DesignSync Data Manager Administrator's Guide:
Setting Up a LAN Cache.

Related Topics

ENOVIA Synchronicity DesignSync Data Manager User's Guide: What Is a File Cache?

Module Cache

Setting Up a Module Cache

31

Using HCM from DesignSync
Commands in the DesignSync GUI client
HCM commands have limited support in the DesignSync GUI. You can use the
DesignSync to perform the following operations:

• Viewing Modules and Configurations
• Viewing a Module Hierarchy
• Getting a Module
• Showing the Status of a Configuration
• Deleting HCM Objects
• Showing the Contents of Module Caches

Additionally, while in the DesignSync GUI, you can type all available HCM commands
directly into the command bar which will graphically display the results of the command
in the Output Window and update the display in the List View pane.

Viewing Modules and Configurations
You can use DesignSync GUI (Tree View and List View) to display modules and
configurations that reside on the server or that you have fetched to your work area.

Viewing Modules and Configurations on the Server

Displaying modules and configurations that reside on the server is useful when you
want to display a list of module configurations in order to fetch one to your work area
(with the hcm get operation). In addition, it is from the server that you create and delete
module configurations, hierarchical references, and aliases for releases.

To view modules and configurations on the server:

1. In DesignSync Tree View, select the server where the modules reside. (Type the
path to the server in the Location field or click the server from the My Servers or
Visited Servers list.)

2. In Tree View, click the Modules folder. DesignSync List View lists the modules
(in alphabetical order by module folder name).

Once you have selected a module in DesignSync Tree View, you can expand it to
display its configurations. You can then select a configuration and display the
submodules that it contains. This example shows the submodules in the CPU module's
default configuration:

Using HCM from DesignSync

32

To view a list of hierarchical references for a module configuration, click the
configuration name in Tree View. DesignSync List View lists the hierarchical references
for the configuration.

See Viewing a Module Hierarchy for information on displaying an entire module
configuration hierarchy (a configuration's submodules, the submodules of those
submodules, and so on).

Viewing Modules and Configurations in Your Work Area

From DesignSync Tree View and List View, you can display modules and configurations
in your work area. You use this display when you want to view the files of a
configuration you have in your work area, update (get) a module configuration you
previously fetched, put a configuration back on the server (check in your changes to its
files), or create a release of a configuration.

The display of modules and configurations in your work area differs from that on the
server:

• The work area display does not show hierarchical references. To view a
configuration's hierarchical references, you need to display the hierarchy of
modules in the configuration. See Viewing a Module Hierarchy.

• When you click a module or configuration folder in your work area, DesignSync
List View displays the folder's contents and not the module hierarchy. This
example shows the contents of the CPU module's default configuration in a work
area:

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

33

Moving from a Workspace Configuration to the Configuration on
the Server

Much of the time when you work with module configurations, it will be in your
workspace: fetching a configuration to your workspace, creating and modifying design
files, then putting the configuration back on the server. But there are times when you
need to work with modules and configuration on the server. For example, creating (and
deleting) configurations, hierarchical references, and aliases.

To move from a workspace configuration to that configuration on the server:

1. In DesignSync Tree View, in your workspace, click the module configuration's
base directory in your workspace.

2. Select HCM=>Go to Configuration. DesignSync Tree View goes to the module
configuration on the server and highlights it.

Tip: To see if your workspace configuration is up-to-date, you can display the status of
the configuration in your work area as compared that same configuration on the server.
See Showing the Status of a Configuration.

Related Topics

Viewing a Module Hierarchy

DesignSync Help: Tree View Pane

DesignSync Help: List View Pane

Using HCM from DesignSync

34

Viewing a Module Hierarchy

Viewing a Module Hierarchy

You can display an entire module configuration hierarchy that resides on the server or
that you have fetched to your work area with the hcm get operation. Note: The
hierarchy displayed on the server can differ from that in your work area.

To view the hierarchy of a module configuration on the server:

1. In DesignSync Tree View, select the server where the module configurations
reside. Then click the Modules folder to display the modules.

2. In Tree View, click the module and then click the configuration you want to
display.

3. Select HCM=>Module Hierarchy. DesignSync displays the hierarchy in the
Module Hierarchy View.

This example shows the hierarchy for the default configuration of the CPU module on
the server:

Note: Module Hierarchy view displays hierarchical references to valid HCM Modules

with the Configuration Icon Release icon or Alias icon , as appropriate.

Module Hierarchy view displays the following hierarchical reference target objects with a

standard Folder icon :

• Level hierarchical references to IPGear Deliverables
• DesignSync Vaults and ProjectSync configurations
• Any hierarchical reference that cannot be located

To view the hierarchy of a configuration you have fetched to your work area:

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

35

1. In DesignSync Tree View, select the folder for the configuration.
2. Select HCM=>Module Hierarchy. HCM displays the module hierarchy in Module

Hierarchy View.

Tip: To go from a configuration in Module Hierarchy View to the List View of its
contents, right-click the configuration and select Visit from the pop-up menu.

Related Topics

Viewing Modules and Configurations

Getting a Module
The Get a module dialog lets you fetch a module configuration to your work area or
update a configuration you previously fetched.

Click the following illustration for information.

Using HCM from DesignSync

36

To get a module configuration to your work area or update a configuration:

1. In DesignSync Tree View or List View, on the server, click the module or
configuration you want to fetch to your work area. To update a module
configuration you already fetched to your work area, click that configuration in
your work area.

Notes:

• You cannot use the Get a module dialog to fetch files from a DesignSync
vault. To fetch files from a vault, use the hcm get command.

• To update a module you already fetched to your work area, you must
select the base configuration of the module to update it. You cannot

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

37

update a module from its subdirectory or from another module in the
module hierarchy.

2. Select HCM=>Get.

HCM displays the Get a module dialog.

3. In the Path field, click Browse to select the work area directory where you want
to place the module configuration. (You can also type the absolute path to the
directory.)

4. Select other options as needed.
5. Click OK.

Path

Specifies the path to the directory in your work area where you want the fetched module
to reside. Click Browse to select your work area directory where you want to place the
module configuration. You can also type the absolute path to the directory.

Configuration

Specifies the name of module configuration you are fetching. This field is required if you
selected a module or configuration on the server.

If you selected a module on the server, this field displays Default and HCM fetches the
default configuration of the module. To fetch another configuration of the module, select
its name from the pull-down menu.

If you selected a configuration on the server, this field displays the name of the
configuration you selected.

If you selected a configuration in your work area, this field displays the name of the
configuration.

Get modules recursively

Specifies a fetch of only the top-level module (the default) or a fetch of the top-level
module and each submodule in its hierarchy.

Incremental fetch

An incremental fetch updates the directories of the configuration in your work area only
if the corresponding DesignSync vault folders have been modified since you last fetched
the configuration. This option specifies whether the hcm get operation performs an
incremental fetch.

Using HCM from DesignSync

38

The hcm get operation follows the registry setting for Optimizations => Perform
incremental populate. By default, this setting is enabled; therefore, the option displays
a check and the get operation performs an incremental fetch. If the checkbox is
unchecked, the hcm get operation updates all of the directories of the configuration in
your work area. To disable the default setting, your Synchronicity administrator can use
the SyncAdmin tool. For information, see SyncAdmin Help: Command Defaults.

Merge with local changes

Fetches the Latest versions from the configuration on the server and merges them with
the current, locally modified versions.

You cannot use this option with Lock for editing.

Lock for editing

Locks the files of the module in DesignSync so that only you can edit them. By default,
this option is not checked.

You cannot use this option with Merge with local changes or with Incremental fetch.

Retain timestamps

Retains the last modified timestamp of the fetched objects as recorded when the object
was checked into the vault.

The hcm get operation follows the DesignSync registry setting for Retain last-
modification timestamps. By default, this setting is not enabled; therefore, the timestamp
of the local object is the time of the get operation. To change the default setting, your
Synchronicity administrator can use the SyncAdmin tool. For information, see
SyncAdmin Help: Command Defaults.

Replacement mode

Determines how the get operation updates your work area with the files of the modules
you are fetching. You can specify the update method the get operation uses by
selecting one of the following replacement mode options:

• Don't replace any objects. This option preserves local modifications you made
to objects/files and leaves intact any objects that are in your work area but are no
longer part of the configuration.

• This option causes the least disruption to your work area; however, it may require
you to clean up resulting work area data.

• Replace unmodified objects only. (The default.) This option updates managed
objects that have not been locally modified and that are part of the configuration

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

39

being fetched. The operation also removes any unmodified managed objects that
are not part of the configuration being fetched.

• This option leaves intact any managed objects you have locally modified.
• Force overwrite of modified objects. This option updates the managed objects

in our work area. The option replaces or removes managed objects whether you
have modified them locally or whether they are part of the configuration being
fetched or not.

• This option forces your work area's managed objects to match the set of objects
in the configuration being fetched.

Revision Control Keywords

Controls the processing of RCE revision-control keywords. You can select:

• Update values and keep keys. Expands keyword values and retains the
keywords in the file (default option). For example: $Revision 1.4 $

• Update values and remove keys. Expands keyword values but removes keys
from the file. This option is not recommended when you check out files for
editing. If you edit and then check in the files, future keyword updates are
impossible, because the value without the keyword is interpreted as regular text.
For example, 1.4.

• Remove values and keep keys. Keeps the keywords but removes keyword
values. This option is useful if you want to ignore differences in keyword
expansion, such as when you are comparing two different versions of a file. For
example, $Revision: 1.8 $

• Do not update. Keeps exactly the same keywords and values as were present
at checkin.

Module Cache Mode

Fetches the target configuration from the module cache instead of the server. Using
module cache mode can help decrease fetch time and save disk space. (Note: To be
fetched from the module cache, the module configuration must be an HCM release and
must exist in the module cache. See Showing the Contents of a Module Cache for
information.)

• Link to releases in the module cache. (Unix only) For each release it finds in
the module cache, the hcm get operation sets up a symbolic link from your work
area to the base directory of the release in the module cache. This is the default
mode on Unix platforms.

• Copy releases from the module cache. For each release it finds in the module
cache, the hcm get operation copies the release to your work area. Note: This
mode is the default mode on Windows platforms.

• Fetch releases from the server. Causes the hcm get operation to fetch
releases from the server, not from the module cache.

Using HCM from DesignSync

40

• This option overrides the default module cache mode registry setting. If the
registry value does not exist, the Module Cache Mode selection defaults to Link
to releases in the module cache (Unix platforms) or to Copy releases from
the module cache (Windows platforms).

Module Cache Paths

Specifies paths to the module caches that the hcm get operation searches. Click
Browse to select one or more paths or type paths in the field. Paths must exist. If you
do not specify a module cache path, the get operation fetches the module from the
server.

If you type paths in the field, you must specify the absolute path to each module cache.
To specify multiple paths, separate them with a comma (,).

OK

Closes the form and performs the operation.

Cancel

Closes the form without performing the operation.

Help

Invokes HCM Help and displays the topic associated with the current dialog.

Related Topics

hcm get Command

An ALU Designer Gets Files of a Module

A CPU Designer Gets a Module Hierarchy

Showing the Status of a Configuration
The Show status dialog lists the status of a configuration in your work area as
compared to the server. You can use this dialog to verify that your work area
configuration is up-to-date.

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

41

To show the status of a configuration:

1. Click the work area folder that contains the top-level module (base directory) of
the configuration.

2. Select HCM=>Show=>Module Status. HCM displays the Show status dialog.
3. Optionally, you can select to display the status of files (in additional to status of

the hierarchical references), status of releases, and the status of all submodules
in the configuration. You can also select a different report type.

4. Click OK. HCM displays the status report in Module Status View.

Show file status

Displays the status of each object contained by the work area configuration as
compared to the configuration on the server. If you specify this option, the value for
configuration status reflects the status of the configuration's objects in combination with
the status of its hierarchical references. If you do not select Show file status, the value
for configuration status reflects the status of the hierarchical references only.

Show release status

Displays the status of hierarchical references of the releases in your work area, in
addition to the status of hierarchical references of other configurations.

Note: You must use this option with the Show file status option in order to display the
current status of the hierarchical references of releases in your work area. Otherwise,
the status of hierarchical references of releases is always listed as up-to-date.

Recurse into references

Displays the status for the specified configuration and all referenced configurations and
identifies why particular hierarchical references are not recursed.

Using HCM from DesignSync

42

Report type

Specifies the type of status information to be displayed and the format in which the
output appears.

You can select:

• normal - Displays the status of the hierarchical references (and optionally, file
status) for the configuration in a user-friendly format. This is the default behavior.
(For a description of the status output, see the hcm showstatus Command in
Synchronicity Command Reference Help.)

• brief - Displays a summary and lists hierarchical references that are out-of-date.
(Optionally, you can use this option to list file status for files that are out-of-date.)

• summary - Displays the status of each configuration and reports the overall
status of the configuration in the work area.

OK

Closes the form and performs the operation.

Cancel

Closes the form without performing the operation.

Help

Invokes HCM Help and displays the topic associated with the current dialog.

Related Topics

hcm showstatus Command

The CPU Team Creates a Release

Moving an Alias to Another Release
You can use the Move an alias to another release dialog to move an alias from one
release to another.

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

43

Click the fields in the following illustration for information.

To move an alias:

1. In DesignSync Tree View, on the server, click the module to display its
configurations.

2. In Tree View or List View, click the alias you want to move.
3. Select HCM=>Move Alias.
4. From the Release pulldown menu, select the release to which you want to move

the alias.
5. Click OK. HCM moves the alias to the release you selected.

Release

Specifies the release to which you want to move the alias. From the pulldown menu,
select a release. The menu displays only existing, valid releases for the configuration.
The default is the current release to which the alias is assigned.

Description

Specifies a description for the alias. In this field, HCM displays the description of the
alias you selected; you can change the description. This field is optional.

OK

Closes the form and performs the operation.

Cancel

Closes the form without performing the operation.

Help

Invokes HCM Help and displays the topic associated with the current dialog.

Using HCM from DesignSync

44

Related Topics

Alias

The ALU Team Creates an Alias for a Release

hcm mkalias Command

Showing the Contents of Module Caches
To reduce fetch time of large configurations and to save disk space, a design team can
set up one or more module caches. The caches contain released configurations for the
design the team is working on. Designers can then fetch those releases from the cache
or link to them to save disk space.

The Show contents of module caches dialog lets you search module caches for
releases you can fetch with the get operation.

In order for you to select a module cache to search, your Developer Suite administrator
must first set up that module cache.

Click the fields in the following illustration for information.

To display the contents of module caches:

1. In DesignSync, from the HCM menu, select Show=>Module Cache.

HCM displays the Show contents of module caches dialog.

2. In the Module Cache Paths field, click Browse to select one or more module
caches to search or type the absolute path to the module cache. Note: If your
Developer Suite administrator has defined the DesignSync registry setting for
default module cache paths, HCM displays that module cache in the Module
Cache Paths field.

3. Click OK.

Module Cache Paths

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

45

Specifies the module caches to search. The paths must already exist. The field is
required.

Click Browse to select one or more module caches to search or type the absolute path
to the module cache. To specify more than one path, separate paths with a comma (,).

HCM searches the module caches in the order specified with the Module Cache Paths
field or the registry setting.

OK

Closes the form and performs the operation.

Cancel

Closes the form without performing the operation.

Help

Invokes HCM Help and displays the topic associated with the current dialog.

Related Topics

Designers Use the Module Cache

Setting up a Module Cache

Setting the Default Module Cache path or Mode

hcm showmcache Command

Deleting HCM Objects
The Delete dialog lets you delete HCM modules, configurations and aliases from the
server. (To delete hierarchical references from a module configuration, see Removing
Hierarchical References from a Module Configuration.)

Note: By default, HCM denies access to delete modules, configurations, and aliases for
all users. Your Synchronicity administrator can customize this access. See Access
Controls on HCM Operations.

Using HCM from DesignSync

46

Click the fields in the following illustration for information.

Remove notes after detaching

Removes those notes that were detached (by the operation that deletes the module,
configuration, or alias) and not attached to other objects. This option is available only if
you selected a module, configuration or alias for deletion.

By default, DesignSync does not remove notes (the checkbox is not checked).

Remove vault associated with module

Removes the vault folder in which the module contents reside and deletes all objects
(even locked objects) in that vault. This option is available only if you selected a module
for deletion.

By default, DesignSync does not remove the vault when deleting a module (the
checkbox is not checked).

Trigger Arguments

Type an argument to be passed from the command line to the triggers set on the delete
operation. Consult your project leader for information about any triggers that are in use
and how they use arguments.

To delete an HCM object:

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

47

1. In DesignSync Tree View, select the server where the HCM object (module,
configuration, or alias) resides. Then click the Modules folder to display the
modules. Note: Objects must deleted from the server. For example, you cannot
delete a configuration by selecting it in your workspace.

2. Click a module to select it for deletion or continue expanding the hierarchy to
select configurations (including aliases). Note: To delete the default configuration
or a release configuration of a module, you must select and delete the module.

3. Select File=>Delete or HCM=>Delete. DesignSync displays the Delete dialog.
(Note: To delete a hierarchical reference from a configuration, select
HCM=>Remove Href from Parent. See Removing Hierarchical References from
a Module Configuration.)

4. Optionally, select Advanced Options to:
o Remove notes after detaching
o Remove vault associated with a module

5. Click OK.

HCM deletes the objects you selected:

• If the object is a module, HCM removes the module and all its configurations
from the server and detaches the ProjectSync notes that are attached to the
module and its configurations. The operation also generates a RevisionControl
note.

• If the object is a configuration, HCM removes the configuration from the server. It
removes all hierarchical references from the deleted configuration and detaches
any ProjectSync notes that may have been attached to the configuration. The
operation also generates a RevisionControl note for the configuration and
attaches the note to the owning module.

• If the object is an alias (symbolic name for a release), HCM removes the alias
and detaches any ProjectSync notes that may have been attached to the alias.
The delete (rmalias) operation also generates a RevisionControl note and
attaches it to both the owning module and the release to which the alias points.

OK

Closes the form and performs the operation.

Cancel

Closes the form without performing the operation.

Help

Invokes HCM Help and displays the topic associated with the current dialog.

Related Topics

Using HCM from DesignSync

48

The MPU Team Removes a Module

hcm rmmod Command

A Designer Removes a Configuration

hcm rmconf Command

The ALU Team Removes an Alias

hcm rmalias Command

Removing Hierarchical References from a Module Configuration

Removing a Hierarchical Reference from a Module
Configuration
The Remove hierarchical reference from the configuration dialog lets you delete the
hierarchical reference from a module configuration to a submodule configuration.

Click the fields in the following illustration for information.

To remove a hierarchical reference from a configuration:

1. In DesignSync Tree View, select the server where the upper-level module
configuration resides. (Note: Hierarchical references must deleted from the
server.) Then click the Modules folder to display the modules.

2. In Tree View, click the module you want. Then click the configuration from which
you want to remove a hierarchical reference (the "from target").

3. Select HCM=>Show Module Hierarchy. DesignSync displays the configuration's
hierarchical references in Module Hierarchy View.

4. In Module Hierarchy View, right-click the hierarchical reference you want to
remove (the "to target"). The hierarchical reference can be a submodule
configuration, a DesignSync vault, or an IP Gear deliverable. For example, to
remove the hierarchical reference from the CPU default configuration to the
submodule configuration ALU@R1, you would right-click ALU@R1.

5. From the pop-up menu, select Remove Href from parent.
6. On the Confirm dialog, click OK.

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

49

HCM removes the hierarchical reference from the upper-level module configuration to
the submodule.

OK

Closes the form and performs the operation.

Cancel

Closes the form without performing the operation.

Help

Invokes HCM Help and displays the topic associated with the current dialog.

51

Scenarios for Using HCM
Overview
The scenarios in this section describe how design teams use the SOC Developer Suite
to share and reuse design work at a fictitious company called ABCo. ABCo has design
teams that are geographically distant. The designers' tasks are typical of those you
might perform, such as fetching files, updating your work area, and making files for a
block available for reuse in other teams' designs.

The chip architect has partitioned the overall design into major blocks and located the IP
for certain blocks that the project will incorporate from another team rather than develop
itself. The table shows the blocks and their sources, as well as whether the
development team uses HCM for development of the block:

Block Design
Source

Server/Location Synchronicity
Tool

chip407 New design
from chip
architect

srvr1.ABCo.com SOC Developer
Suite (DesignSync
+ HCM)

 CPU New design
from CPU
team

cpu.ABCo.com SOC Developer
Suite

 ALU New design
from ALU
team

alu.ABCo.com SOC Developer
Suite

 IOSTAT Design from
third party

ipgsrvr1.IOCo.com IP Gear

 CACHE New design
from CPU
team

cpu.ABCo.com SOC Developer
Suite

 DesignCompiler CAD Tools
Group of CPU
team

cpu.ABCo.com SOC Developer
Suite

 PLL New Design
from CPU
team

cpu.ABCo.com SOC Developer
Suite

 RAM Reuse of
design from
RAM team

ram.ABCo.com DesignSync (non-
HCM enabled
server)

Related Topics

Introducing HCM

Scenarios for Using HCM

52

Release Information

The Chip Architect Sets Up the Project Structure
After identifying the blocks for the SOC (Chip407) project (as shown in Overview), the
chip architect determines the overall module hierarchy and creates its upper levels:

1. Using HCM, the chip architect creates the upper-level chip module:

% stclc
stcl> hcm mkmod -target
sync://srvr1.ABCo.com:2647/Projects/chip407 -description
"hcm module for 407 chip"

The hcm mkmod operation creates a default configuration of a module called
Chip407. This module configuration resides on the srvr1 SyncServer.

The operation also creates a ProjectSync project because files for chip407 reside
in a DesignSync vault folder directly below the Projects directory. While modules
can reside anywhere in the vault, Synchronicity recommends that you place
modules in the Projects vault folder. Locating modules in this directory allows
greatest use of ProjectSync features. For an example scenario about creating a
module from a DesignSync vault, see The ALU Team Creates a Module from a
Vault.

2. The chip architect sends email to the leaders of the teams designing the CPU
and the Phase Locked Loop, telling them to create the CPU and PLL modules.
Each project leader uses hcm mkmod to create a module. For an example
scenario about creating a module and its files, see The PLL Team Creates a
Module and Its Contents.

3. The chip architect creates the next level of the chip407 hierarchy by adding
hierarchical references from the chip407 module to the newly-created CPU and
PLL modules:

stcl> hcm addhref -fromtarget
sync://srvr1.ABCo.com:2647/Projects/chip407 -totarget
sync://cpu.ABCo.com:2647/Projects/CPU -relpath CPU
stcl> hcm addhref -fromtarget
sync://srvr1.ABCo.com:2647/Projects/chip407 -totarget
sync://cpu.ABCo.com:2647/Projects/PLL -relpath PLL

Note: The -relpath option is not required. If a -relpath is not specified, the
addhref operation uses the -totarget module name as the name of the
submodule's base directory and places it directly below the upper-level module's
base directory. (In these examples, the result would be the same as the specified
value for -relpath.)

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

53

4. Chip407 will also incorporate an existing design for RAM. Files for that design
reside on a non HCM-enabled server running DesignSync v3.1. To incorporate
those files into the module hierarchy, the chip architect creates a hierarchical
reference from the chip407 module to the RAM vault folder:

stcl> hcm addhref -fromtarget
sync://srvr1.ABCo.com/Projects/chip407 -totarget
sync://ram.ABCo.com/Projects/RAM -relpath RAM

5. To get an idea of what the hierarchy looks like so far, the chip architect uses the
hcm showhrefs operation:

stcl> hcm showhrefs -target
sync://srvr1.ABCo.com/Projects/chip407 -report brief

Hierarchy for sync://srvr1.ABCo.com/Projects/chip407
TARGET URL
--
chip407 sync://srvr1.ABCo.com/Projects/chip407
 CPU sync://cpu.ABCo.com:2647/Projects/CPU
 PLL sync://cpu.ABCo.com:2647/Projects/PLL
 RAM sync://ram.ABCo.com/Projects/RAM

The CPU team further develops its design, incorporating work from other design teams
by adding hierarchical references to modules from those teams. (Other scenarios in this
section show the creation of other teams' modules and incorporation of them into the
CPU module.)

Note: To separate this project structure from the ongoing change of block development,
each submodule team can set up an alias for releases of their designs and the architect
can modify the hierarchy to reference each submodule's alias instead of a specific
release. Then, when a team creates a new release of a module, the hierarchy will
automatically include it. For an example scenario, see The ALU Team Creates an Alias
for a Release.

Eventually, the chip407 module hierarchy looks like this figure:

Scenarios for Using HCM

54

Related Topics

hcm addhref Command

hcm mkmod Command

hcm showhrefs Command

The PLL Team Creates a Module and Its Contents
(Creating a module for files that do not reside in a DesignSync vault)

Mike, the leader of the PLL team, receives email from the chip407 architect directing the
team to create a module for their design of the Phased Locked Loop (PLL). Because the
design is a new one, it has no files already existing in a DesignSync vault. The team will
be creating design files for the module.

1. Mike first uses hcm mkmod to create the PLL module on the cpu SyncServer:

% stclc
stcl> hcm mkmod -target
sync://cpu.ABCo.com:2647/Projects/PLL -description "PLL
design for chip407"

The hcm mkmod operation:

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

55

o Creates a default configuration of a module called PLL. This module
configuration resides on the cpu SyncServer. At this point, it does not exist
in Mike's work area.

o Creates a DesignSync vault folder (PLL) because there are no files
already existing on the server. (When vault data already exists, the
mkmod operation associates the module with that vault. For an example
scenario, see The ALU Team Creates a Module from a Vault.)

o Creates a ProjectSync project for the PLL module. This action allows
ProjectSync to recognize the PLL module. PLL team members can use
Query and other ProjectSync features to track and report on the module.

o Includes the description (specified with the -description option) in the
ProjectSync project. This information is also available in HCM through the
hcm showmods -report script operation.

2. Mike next prepares to get the module to his work area and create some initial
files for it. In his work area, he creates a folder for the module and changes
directory to it:

stcl> cd /dev/users/Mike/407project
stcl> mkfolder PLL
stcl> cd PLL

3. He uses the hcm get operation to fetch the default configuration of the PLL
module to his work area:

stcl> hcm get -target sync://cpu.ABCo.com:2647/Projects/PLL

Because Mike did not specify the -path option, the get operation uses his current
work area directory as the place to which it fetches the module.

The get operation fetches the module to Mike's work area. At this point the
module contains no files. However, the get operation associates Mike's work
area directory with the module's vault folder on the SyncServer and fetches some
metadata about the module to the work area.

4. Mike creates a file (procnotes.txt) containing information that all team
members need to know about the project.

5. He uses the DesignSync checkin operation to add the file to the module's default
configuration:

stcl> ci -new -comment "adding procedure notes"
procnotes.txt

Mike can use this checkin method because he is working with the PLL module's
default configuration, a branch configuration. If he is working with a selector
configuration, the steps for adding a file are different. See A Designer Adds Files
to a Configuration for information.

Scenarios for Using HCM

56

The checkin operation places the file under DesignSync management (in the PLL
vault folder) and includes the file in the default configuration of the PLL module.

Other members of the PLL team use the hcm get operation to fetch the default
configuration of the PLL module to their work areas. Then they can add their new files to
it with the ci command as Mike did, or they can modify the files already existing in the
module. To check in existing files they modified, they can use the hcm put operation.
For an example scenario, see A Designer Puts Files of a Module Back on the Server.

Related Topics

hcm addhref Command

hcm mkmod Command

ci Command

The ALU Team Creates a Module from a Vault
(Creating a module from a DesignSync vault)

One of the teams contributing to the Chip project, the ALU team, uses DesignSync to
manage its design data. The vault location for their project is
sync://alu.ABCo.com:2647/Projects/ALU. This location contains the
specifications, documentation, RTL, layout, and schematics for the ALU design.

During the design development, ALU team members have used the standard
DesignSync commands to check files in and out, update files, and so on. The team also
uses ProjectSync to track defects and specifications.

Recently, the team has installed the SOC Developer Suite (DesignSync V3.3 and HCM)
on its development SyncServer and is ready to create a module containing the ALU
design files.

Anne, the ALU team leader, invokes the Synchronicity Tcl command shell (stcl) and
uses the hcm mkmod operation to create the ALU module:

% stclc
stcl> hcm mkmod -target sync://alu.ABCo.com:2647/Projects/ALU -
description "hcm module for alu"

The mkmod operation:

• Defines the ALU vault folder as a module and creates a default configuration for
it.

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

57

• Creates a ProjectSync project for the ALU module. This action allows
ProjectSync to recognize the ALU module. ALU team members can use Query
and other ProjectSync features to track and report on the module.

The mkmod operation creates a ProjectSync project because files for ALU reside
in a DesignSync vault folder directly below the Projects directory. While modules
can reside anywhere in the vault, Synchronicity recommends that you place
modules in the Projects vault folder. Locating modules in this directory allows
greatest use of ProjectSync features.

• Includes the description (specified with the -description option) in the
ProjectSync project. This information is also available in HCM through the hcm
showmods -report script operation.

Anne and the ALU team members can now use the hcm get operation to fetch the
module to their work areas. (See An ALU Designer Gets Files of a Module for an
example scenario for the hcm get operation.)

IMPORTANT:

After the ALU module has been created, ALU team members always use the hcm get
operation to fetch the module's design files to their work areas. They no longer use the
DesignSync populate operation to fetch files of ALU or any other HCM module.

Related Topics

hcm get Command

hcm mkmod Command

hcm showmods Command

An ALU Designer Gets Files of a Module
Thomas, a designer on the ALU team, wants to fetch the design files of the ALU module
to his work area. To fetch the files, he uses the hcm get operation. (Note: This scenario
shows fetching from the HCM server. For a scenario that shows fetching from the
module cache, see Designers Use the Module Cache.)

1. To locate the module he wants to fetch, Thomas invokes the Synchronicity Tcl
(stcl) command shell and uses the hcm showmods operation. (This operation
lists all of the modules on a particular SyncServer.) For example:

% stclc
stcl> hcm showmods -target sync://alu.ABCo.com:2647

Scenarios for Using HCM

58

Modules hosted on server sync://alu.ABCo.com:2647

NAME OWNER VAULT PATH

ALU Anne /Projects/ALU

2. Then he uses hcm showconfs to list the configurations of the ALU module on
the SyncServer:

stcl> hcm showconfs -target
sync://alu.ABCo.com:2647/Projects/ALU

Configurations of module
sync://alu.ABCo.com:2647/Projects/ALU

NAME TYPE OWNER SELECTOR/ALIASED RELEASE
--
<Default> Branch Anne Trunk:Latest
C1 Selector Anne valid12.06.01

From the operation's output, Thomas sees that the first item is the default
configuration of the ALU module. The ALU team uses this configuration for its
development work, so he knows this is the configuration to fetch to his work area.

3. Thomas uses the hcm get operation to fetch all of the files for the ALU module's
default configuration to his work area:

stcl> hcm get -target sync://alu.ABCo.com:2647/Projects/ALU
-path /data/devel/users/Thomas/ALU

Because Thomas specified the ALU module without a configuration for the -
target option, the hcm get operation fetches the ALU module's default
configuration.

Thomas wants only the files of the ALU module, so he does not specify the -
recursive option. (This option is used to fetch not only a module's files but also
those of the module's submodules, their submodules, and so on down the
module hierarchy. For an example scenario of fetching a module hierarchy, see
A CPU Designer Gets a Module Hierarchy.)

The hcm get operation places the ALU files in the work area directory Thomas
specified with the -path option. (If Thomas does not specify the -path option, the
operation uses his current work area directory.) If the path Thomas specified
does not exist, the get operation creates it.

The value for the -path option becomes the base directory for the ALU module in
Thomas's work area.

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

59

4. Thomas works on the ALU design, checking out files for edit the files that he
wants to modify. To check out files for edit, he can use either:

o The hcm get -edit operation to check out all of the files in the ALU module
default configuration and lock them for edit

o The DesignSync co -lock operation to check out individual files and lock
them for edit

When he has finished the changes he wanted to make, Thomas puts the files
back on the server with the hcm put operation. (For an example scenario, see A
Designer Puts Files of a Module Back on the Server.)

5. To view and work with other team members' work on the ALU files, Thomas
regularly updates the ALU module in this work area. He changes directory to the
base directory for the ALU module. Then he uses the hcm get operation again,
but this time he does not need to specify the -target option. The HCM software
stores the value for -target and recalls the information he specified when he first
got the ALU module. And since Thomas' current directory is the location where
he wants to fetch the ALU module, he does not need to specify the -path option.

stcl> cd /data/devel/users/Thomas/ALU
stcl> hcm get

The hcm get operation uses the -replace option by default. The operation
updates Thomas' work area, making its contents match that of the ALU module
on the SyncServer. The operation:

o Fetches new files from the server to Thomas' work area.
o Replaces existing files with newer versions, unless Thomas has modified

the files in his work area.
o Updates hierarchical references to submodules, if any.

Since Thomas did not specify the -recursive option, the hcm get
operation considers only the hierarchical references of the upper-level
module. (The get operation is nonrecursive by default.) However, in this
scenario, the ALU module has no submodules yet, so hierarchical
references are not updated.

Related Topics

hcm get Command

hcm showconfs Command

hcm showmods Command

co Command

Scenarios for Using HCM

60

A Designer Puts Files of a Module Back on the Server
In the scenario An ALU Designer Gets Files of a Module, Thomas, a designer on the
ALU team, fetched files of the ALU module's default configuration to his work area with
the hcm get operation. In the course of his design work, he checked out several files for
edit (with the DesignSync co -lock command) and modified them.

Thomas has now finished with his work on the ALU design for the day and is ready to
check in the modified files to the SyncServer. He uses the hcm put operation. (Note:
Only branch or selector configurations can be checked in with the put operation.)

1. Because the put operation does not check in new (unmanaged) files, Thomas
uses the hcm showstatus command with the -files option. This option lists the
status of the files of the ALU configuration in the work area as compared to the
server. Using hcm showstatus -files lets Thomas identify new files and decide
whether he needs to check them in.

% stclc
stcl> cd /data/devel/users/Thomas/ALU
stcl> hcm showstatus -files

Target: sync://cpu.ABCo.com:2647/Projects/ALU
Base Directory: /data/devel/users/Thomas/ALU

No local or remote hierarchical references found for configuration.

Workspace Configuration Object
Version Version Name
--------- ------------- ------
1.1 (Locally Modified) 1.1 alu.v
Unmanaged reg8.v
1.2 (Locally Modified) 1.2 aludoc/aluprojinfo.txt
1.5 1.5 aludoc/aluprojlist.txt

Configuration status: Out-of-date

Summary: Out-of-date

The output from the hcm showstatus operation reminds Thomas that he has a
new file (reg8.v) that he wants to include in the ALU module. He uses the
DesignSync checkin (ci) operation to check in the file. Note: The checkin
operation Thomas uses depends on the type of configuration he wants to add the
files to. For an example scenario, see A Designer Adds Files to a Configuration.

2. Thomas uses the hcm put operation with the -lock option to check in all files he
modified but lock them for edit so that he can continue to modify them:

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

61

% stclc
stcl> cd /data/devel/users/Thomas/ALU
stcl> hcm put -lock

Thomas needs to put back on the SyncServer only the files of the ALU module
configuration, so he does not specify the -recursive option. (By default, the put
operation is not recursive.)

Because Thomas does not specify the -path option, the operation uses his
current work area directory.

The put operation:

o Checks in files that Thomas modified. These files include both files that he
locked for edit and files that he did not lock for edit but that are the latest
version on the branch. Note: The put operation does not check in files that
are up-to-date.

o Locks for edit the files checked in. This action is a result of specifying the -
lock option.

o Generates a RevisionControl note. Users receive email about the put
operation if they have subscribed to email notification of RevisionControl
notes on either the ALU module or the ALU configuration being checked
in.

3. Thomas examines the output from the put operation to see if any of the checkin
operations failed. (Messages appear at the end of the output for the operation.) If
there are any failures, Thomas fixes the problems that caused them.

4. When Thomas is satisfied that he has fixed all checkin problems, he uses the
hcm put operation again. For this put operation, however, he does not specify
the -lock option.

stcl> hcm put

The put operation:

o Checks in all modified files belonging to the ALU module's default
configuration

o Removes the locks from all files belonging to the configuration, even those
that were not locally modified (and therefore not checked in)

Note: Thomas can also use the DesignSync cancel command to remove locks
that he has placed on unmodified files (with the co -lock or ci -lock command).
This operation, in effect, performs an "un"checkout operation on the specified
locked object.

If another user has locked the files (with the hcm get -edit operation), Thomas
can use the DesignSync unlock command to unlock the files. However, the

Scenarios for Using HCM

62

unlock command typically is access controlled to allow only Synchronicity
administrators to break other users' locks.

Related Topics

A Designer Adds Files to a Configuration

hcm put Command

hcm showstatus Command

cancel Command

unlock Command

A Designer Adds Files to a Configuration
Thomas, an ALU designer, has been working on the ALU design files contained in the
ALU@Dev02 configuration. In the course of his design work, he has fetched the
configuration to his work area and has created some new files. Now he wants to make
the new (unmanaged) files part of the ALU@Dev02 configuration, so that the put
operation checks the files in along with other files of the configuration.

Note: If Thomas does not know which configuration of the ALU module he has in his
work area, he can use the hcm showhrefs operation with the -path option. (The
information for Target: provides the configuration name.) For example:

% stclc
stcl> hcm showhrefs -path /data/devel/users/Thomas/ALU

Target: sync://alu.ABCo.com:2647/Projects/ALU@Dev02
Path: /data/devel/users/Thomas/ALU
.
.

To add files to a configuration, Thomas first has to identify whether the configuration is a
branch or selector configuration. Note: Synchronicity does not recommend adding files
to an alias or a release.

Thomas uses the hcm showconfs operation to show information about the
configurations of the ALU module:

stcl> hcm showconfs -target
sync://alu.ABCo.com:2647/Projects/ALU

Configurations of module sync://alu.ABCo.com:2647/Projects/ALU

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

63

NAME TYPE OWNER SELECTOR/ALIASED RELEASE
--
<Default> Branch Anne Trunk:Latest
C1 Selector Anne Trunk:valid12.06.01
Dev02 Branch Anne Dev02:Latest

A Designer Adds Files to a Branch Configuration

Using the hcm showconfs operation, Thomas has identified the ALU@Dev02 as a
branch configuration with a selector of Dev02:Latest.

To add the new files to that configuration, Thomas first identifies the files and then
checks them in:

1. Thomas uses the DesignSync ls command to identify the new (unmanaged) files:

stcl> cd /data/devel/users/Thomas/ALU
stcl> ls -recursive -unmanaged

Note: A recursive ls operation lists files in all subdirectories of a given directory,
regardless of which HCM configuration the files belong to. Users must use
selectors to identify files belonging to each configuration.

2. He then uses the DesignSync checkin (ci) operation to check in the unmanaged
files he wants to add to the configuration:

stcl> ci -new -comment "adding mult8 logic" mult8.gv
mult8.v

Note: It is not necessary for Thomas to use the -branch option. By default, the ci
command uses the branch that the hcm get operation used to fetch the
configuration.

The checkin operation checks the two files into the Dev02 branch, making them
part of the ALU@Dev02 configuration. When Thomas fetches the configuration
or puts it back, the get and put operations will operate on these two files along
with the other files of the configuration.

Note: HCM does not follow symbolic links to files or folders. For more
information, see Overview of Administration Tasks.

A Designer Adds Files to a Selector Configuration

Suppose Thomas had been working on the design files of the ALU@C1 module
configuration. He has fetched the configuration to his work area and has modified some

Scenarios for Using HCM

64

of its files. In addition, he has created several new files he wants to add to the
configuration.

Using the hcm showconfs operation, Thomas has identified ALU@C1 as a selector
configuration created with the version tag valid12.06.01. To be part of a selector
configuration, new files must have one of the selectors associated with the
configuration. So Thomas checks in the new files to the appropriate branch and then
tags them with the valid12.06.01 tag:

1. Thomas uses the DesignSync ls command to identify the new (unmanaged) files:

stcl> cd /data/devel/users/Thomas/ALU
stcl> ls -recursive -unmanaged

Note: A recursive ls operation lists files in all subdirectories of a given directory,
regardless of which HCM configuration the files belong to. Users must use
selectors to identify files belonging to each configuration.

2. Thomas uses the DesignSync checkin (ci) operation to check in the unmanaged
files. He uses the -branch option to ensure that the files are checked in on the
branch appropriate for the ALU@C1 configuration (Trunk, in this example):

stcl> ci -new -comment "new files for mult8 logic" -branch
Trunk mult8.gv mult8.v

The checkin operation checks in the files to the Trunk branch on the SyncServer.

3. Next, he uses the DesignSync tag operation to tag the new files with the
valid12.06.01 version tag:

stcl> tag valid12.06.01 mult8.gv mult8.v

The tag operation adds the valid12.06.01 version tag to the two files, making
them part of the ALU@C1 configuration. Subsequent put operations of the
ALU@C1 configuration will check in these new files (if they have been modified).

Note: HCM does not follow symbolic links to files or folders. For more
information, see Overview of Administration Tasks.

Thomas Moves the Version Tag of Files Added to a Selector Configuration

When it is used on a selector configuration, the put operation checks in all modified
files. However, for files added to the configuration with a version tag (as shown in A
Designer Adds Files to a Selector Configuration), the put operation does not move the
version tag to the files' new versions. Users must manually move the tag. For example,
each time Thomas puts the ALU@C1 configuration back on the SyncServer, he must

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

65

move the valid12.06.01 tag to the new versions of the mult8.gv and mult8.v
files.

To update the version tag of files added to a selector configuration:

1. Thomas identifies selector configurations that the put operation checked in.
(These configurations are listed in the summary at the end of the output for the
put operation.)

2. He next uses the hcm showconfs operation to show the selectors used to
create the selector configurations. For example:

stcl> hcm showconfs -target
sync://alu.ABCo.com:2647/Projects/ALU

Configurations of module
sync://alu.ABCo.com:2647/Projects/ALU

NAME TYPE OWNER SELECTOR/ALIASED RELEASE
--
<Default> Branch Anne Trunk:Latest
C1 Selector Anne valid12.06.01
Dev02 Branch Anne Dev02:Latest

3. Thomas uses the DesignSync ls command to identify the files that need the
valid12.06.01 version tag moved to their new versions.

stcl> ls -recursive -report SNGHR

The operation shows each file's name, version and branch tags, and current
version.

4. For each file that needs the version tag moved to its new version, Thomas uses
the DesignSync tag operation to move the tag. For example, suppose the put
operation checked in mult8.gv, creating version 1.3. Thomas would use the
tag -replace command to move the valid12.06.01 tag to the new version of
the mult8.gv file:

stcl> tag -replace valid12.06.01 mult8.gv -version 1.3

Notes:

o Thomas does not have to include the -version option. The tag operation
uses the file versions in the work area to determine which versions to tag
on the server. Because Thomas used the put operation earlier to check in
modified files in his work area, version 1.3 of mult8.gv now exists on

Scenarios for Using HCM

66

the server as well as in his work area. From Thomas's work area, the tag
operation determines that it should tag mult8.gv;1.3 on the server.

o Thomas can also use the DesignSync Tag dialog box to move the version
tag. For information, see Tagging Versions and Branches in DesignSync
Help.

The new 1.3 version of mult8.gv is included in the ALU@C1 configuration.

Note: Each time that Thomas modifies these files and then uses the put operation to
check in the configuration, he must move the version tag to the new version of each file.

Related Topics

hcm put Command

hcm showconfs Command

ci Command

ls Command

selectors

tag Command

url selector Command

A Designer Removes Files from a Configuration
Thomas, an ALU designer, has been working on the ALU design files, fetching the
configuration to his work area, creating and revising files, and putting the configuration
back on the server. In the course of his development work, Thomas decides to combine
two source files (AluAddEx.v and AluDelEx.v) into one file (AluEx.v). He creates
the new file and adds it to the ALU configuration. (For information on adding files to a
configuration, see A Designer Adds Files to a Configuration.) Then, since the two
original files are no longer needed for the design, Thomas decides to remove them from
the configuration.

Note: If Thomas does not know which configuration of the ALU module he has in his
work area, he can use the hcm showhrefs operation with the -path option. (The
information for Target: provides the configuration name.) For example:

% stclc
stcl> hcm showhrefs -path /data/devel/users/Thomas/ALU

Target: sync://alu.ABCo.com:2647/Projects/ALU@Dev02

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

67

Path: /data/devel/users/Thomas/ALU
.
.

To remove files from a configuration, Thomas first has to identify whether the
configuration is a branch or selector configuration. (HCM software does not allow
removal of files from a release or an alias.) Note: To remove files from a default
configuration, Thomas would follow the same steps as for removing files from a branch
configuration.

Thomas uses the hcm showconfs operation to show information about the
configurations of the ALU module:

% stclc
stcl> hcm showconfs -target
sync://alu.ABCo.com:2647/Projects/ALU

Configurations of module sync://alu.ABCo.com:2647/Projects/ALU

NAME TYPE OWNER SELECTOR/ALIASED RELEASE
--
<Default> Branch Anne Trunk:Latest
C1 Selector Anne Trunk:valid12.06.01
Dev02 Branch Anne Dev02:Latest

A Designer Removes Files from a Branch Configuration

Using the hcm showconfs operation, Thomas has identified ALU@Dev02 as a branch
configuration with a selector of Dev02:Latest. To remove files from that configuration,
Thomas retires each file's Dev02 branch.

Thomas uses the DesignSync retire command to retire the Dev02 branch of
AluAddEx.v and AluDelEx.v:

stcl> retire AluAddEx.v AluDelEx.v

Note: Thomas can also use Revision Control=>Retire in DesignSync List View to
retire each file's branch. For information, see Retiring Branches in DesignSync Help.

The retire operation:

• Retires the Dev02 branch of AluAddEx.v and AluDelEx.v
• Deletes the local copies of AluAddEx.v and AluDelEx.v unless Thomas has

modified them or specified the -keep option of the retire operation

Scenarios for Using HCM

68

When Thomas uses the hcm get operation to fetch the files of the ALU@Dev02
configuration to his work area, the get operation does not fetch AluAddEx.v and
AluDelEx.v. (Because each file's Dev02 branch is retired, the files are no longer part
of the configuration.)

A Designer Removes Files from a Selector Configuration

Suppose Thomas had been working on the design files of the ALU@C1 module
configuration. He has fetched the configuration to his work area and has decided he
wants to remove two of the files from it.

Using the hcm showconfs operation, Thomas has identified ALU@C1 as a selector
configuration created with the version tag valid12.06.01. To be part of a selector
configuration, files must have one of the selectors (usually a version tag) associated
with the configuration. To remove files from a selector configuration, the configuration's
version tag must be deleted from each of the files.

To remove the files from the ALU@C1 configuration, Thomas must delete each file's
valid12.06.01 version tag:

1. Thomas first uses the DesignSync ls command to make sure that all of the files
in the configuration are up-to-date and to view the version tag and version
number of the files he wants to remove from the configuration (file4.v and
file2.v):

stcl> cd /data/devel/users/Thomas/ALU
stcl> ls -recursive -report SNGHR

The operation shows each file's name, version and branch tags, and current
version.

Note: A recursive ls operation lists files in all subdirectories of a given directory,
regardless of which HCM configuration the files belong to.

2. He then uses the DesignSync tag -delete command to remove the
valid12.06.01 version tag from the two files:

stcl> tag -delete valid12.06.01 file4.v file2.v

Note: Thomas can also use the DesignSync Tag dialog box to delete the version
tag. For information, see Tagging Versions and Branches in DesignSync Help.

The tag operation deletes the valid12.06.01 tag from file4.v and file2.v
on the server. Note: The tag operation does not delete the files from the server
or from Thomas's work area.

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

69

When Thomas uses the hcm get operation to fetch the files of the ALU@C1
configuration to his work area, the get operation does not fetch file4.v or file2.v.
(Because they do not have the valid12.06.01 version tag, the files are no longer part
of the configuration.) In addition, if Thomas has not modified file4.v or file2.v, the
get operation deletes them from his work area.

Related Topics

hcm showconfs Command

retire Command

tag Command

The CPU Team References the ALU Module
The CPU team is developing RTL code on its development SyncServer. In the course of
development, team members decide they need to incorporate into their design a new
release of the ALU module, ALU@R1, making it a submodule of their CPU module.

To make ALU@R1 a submodule of CPU, the CPU team leader (Robert) creates a
hierarchical reference:

1. Robert uses the hcm addhref operation to create the hierarchical reference
between the CPU module and the ALU@R1 module. (Adding this reference
makes a connection between the CPU module and ALU@R1, in effect adding
ALU@R1 as a submodule to CPU in the CPU module hierarchy.)

% stclc
stcl> hcm addhref -fromtarget
sync://cpu.ABCo.com:2647/Projects/CPU -totarget
sync://alu.ABCo.com:2647/Projects/ALU@R1 -relpath ALU

Robert identifies ALU@R1 as the submodule to add by identifying both ends of
the connection with the -fromtarget and -totarget options (required by hcm
addhref).

Because Robert specified only the CPU module (without a configuration) as the -
fromtarget, the hcm addhref operation creates a reference from the CPU
module's default configuration to the ALU module's R1 configuration.

The hcm addhref operation uses the -relpath value Robert specified as the path
from the base directory of the CPU module to that of the ALU module. (This path
does not need to exist; when users get the module to their work areas, the hcm

Scenarios for Using HCM

70

get operation creates directories and subdirectories as necessary.) If Robert
does not specify the -relpath option, the operation uses the -totarget module
name as the name of the submodule's base directory and places it directly below
the upper-level module's base directory. (In this example, the result would be the
same as the value Robert specified for -relpath.)

The hcm addhref operation creates the reference and stores the information
with the CPU module default configuration on the SyncServer.

To change or remove the reference, Robert would use the hcm rmhref
operation. For an example scenario, see The CPU Team Changes a Reference
to a New ALU Release.

2. To view the CPU module's references he just created on the SyncServer and any
others from the CPU module, Robert uses the hcm showhrefs operation:

stcl> hcm showhrefs -target sync://cpu.ABCo.com:2647/Projects/CPU

Target: sync://cpu.ABCo.com:2647/Projects/CPU

REFERENCE URL RELATIVE
PATH
--
ALU@R1 sync://alu.ABCo.com:2647/Projects/ALU@R1 ALU
CACHE@R4 sync://cpu.ABCo.com:2647/Projects/CACHE@R4 CACHE

Note: To show the whole hierarchy of the CPU module, its submodules, their
submodules, and so on, Robert could have used the hcm showhrefs -recursive
operation. See the hcm showhrefs command in the HCM Command Reference
for more information.

3. After adding the reference, Robert sends email to the CPU team members,
reminding them to consult Guidelines for HCM Use when working with the HCM
module configurations.

Related Topics

hcm addhref Command

hcm rmhref Command

hcm showhrefs Command

The CPU Team Changes a Reference to a New ALU Release

The ALU Team Makes a Release Available

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

71

(Release of a Single Module)

The ALU team's RTL design has reached a level of maturity such that the team decides
it is time to make the design available to other teams. To make the design available,
Anne, the ALU team leader, will use HCM to create a release of the ALU module's
default configuration.

Note: The team is releasing the default configuration of the ALU module, which at this
point contains no references to submodules (hierarchical references), only files in ALU
vault directory and subdirectories. Anne has already fetched the files of the ALU
module's default configuration to her work area with the hcm get operation.

The hcm release operation is a client-side operation, so Anne performs the operation
from her work area:

1. The hcm release operation determines the contents of the release from file
versions fetched to the work area. Locally modified or unmanaged files are not
included in the release.

To show the status of the ALU module's files in her work area, Anne uses the
DesignSync hcm showstatus -files option. This command compares the
configuration's files in her work area to those on the server and tells her such
information as whether each file is up-to-date. Using hcm showstatus -files also
allows Anne to spot locally modified or unmanaged files in her work area that she
may want in the release. (She can use the DesignSync ci -new operation to
check in unmanaged files and the hcm put operation to check in modified files.
For information, see A Designer Adds Files to a Configuration and A Designer
Puts Files of a Module Back on the Server.)

% stclc
stcl> cd /data/devel/users/Anne/ALU
stcl> hcm showstatus -files

Target: sync://cpu.ABCo.com:2647/Projects/ALU
Base Directory: /dev/users/Marie/ALU

No local or remote hierarchical references found for configuration.

Workspace Configuration Object
Version Version Name
--------- ------------- ------
1.1 (Locally Modified) 1.1 alu.v
1.3 1.3 reg8.v
Unmanaged aludoc/aluprojinfo.txt
1.8 1.8 aludoc/aluprojlist.txt

Configuration status: Out-of-date

Summary: Out-of-date

Scenarios for Using HCM

72

From the output of the showstatus operation, Anne sees that her work area has
an unmanaged file and a modified file she wants to include in the ALU release.
Because the files in the work area do not match those of that same
configurations on the server, the output from hcm showstatus -files shows
Configuration status: Out-of-date for the configuration. (When you
use the -files option, the showstatus operation determines each configuration's
status from both the status of its files and its hierarchical references. If either is
out-of-date with the configuration on the server, the status of the configuration is
out-of-date.)

2. She uses the hcm release operation to create the ALU release and give it the
name R1:

stcl> pwd
/data/devel/users/Anne/ALU
stcl> hcm release -name R1 -norecursive -description
"Initial release of ALU"

Because Anne did not specify the -path option, the hcm release operation uses
her current work area directory. The operation determines the contents of
ALU@R1 from Anne's ALU work area and then creates the release on the
SyncServer.

Because Anne specified the -norecursive option, the release operation creates
a release of the ALU module only; the operation does not release submodules.
(At this point, the ALU module's default configuration contains no submodules.)

The release operation includes the description (specified with the -description
option) in the ProjectSync project. (If the -description option is not specified, the
release operation provides a default description of "HCM release".) Team
members can view the description in ProjectSync and in the output of the hcm
showconfs -report script operation.

Other Teams Learn of New Releases

Other design teams at ABCo find that there is a new release of the ALU module. Teams
can then include the ALU@R1 module configuration in their design hierarchies by
creating a hierarchical reference to it. For an example scenario of creating a hierarchical
reference, see The CPU Team References the ALU Module.

There are several ways that a team can find out about module releases of other teams:

• By subscribing for email notification of RevisionControl notes for HCM operations
on the ALU module. For an example scenario, see Robert Subscribes to
RevisionControl Notes on HCM Operations.

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

73

• By using the hcm showmods operation to show modules on a server and hcm
showconfs to show configurations of a module. For an example scenario, see
An ALU Designer Gets Files of a Module.

Related Topics

hcm release Command

hcm showconfs Command

hcm showmods Command

hcm showstatus Command

The CPU Team Subscribes to Email on a Hierarchy
The CPU design is nearing its tape out date; any problem with the design at this point
must be scrutinized. Design work is focused on the CPU@C21 module configuration,
which contains the CPU module hierarchy. As CPU team leader, Robert wants to know
when a defect is filed against any part of the CPU@C21 configuration, including its
submodules. To be notified of these defects, Robert uses ProjectSync's Advanced
Subscription panel to subscribe for email about defects logged against the CPU
module hierarchy. This type of subscription is called a hierarchical subscription.

Note: This scenario assumes that:

• Robert has valid login accounts on all SyncServers with which the hierarchical
subscription will communicate. For example, if Robert subscribes for notes on a
module and all its submodules, he must have a login account on each
submodule server.

• Robert or the Synchronicity administrator has mapped note types to ensure that
hierarchical subscriptions to notes used on the cpu server include notes on
submodule servers using different note types. This note type mapping must be
done before performing hierarchical subscriptions or hierarchical queries. See
Mapping Note Types for more information.

• The hcmNoteAttach trigger is installed on the SyncServer for the CPU module as
well as all SyncServers hosting configurations referenced in the CPU module
hierarchy. See Adding the hcmNoteAttach Trigger for information.

To subscribe for email notification:

1. In his browser, Robert enters the URL of the ProjectSync server for the CPU
module (the same as the CPU development server).

2. From the User Profiles menu, he selects Email Subscriptions and then clicks
Advanced Subscriptions. ProjectSync displays the Add New Subscriptions
for ... panel.

Scenarios for Using HCM

74

Note: Hierarchical subscriptions (subscriptions to email about a module
hierarchy) can be done only through the Advanced Subscriptions panel.

3. In the Advanced Subscriptions part of the panel, Robert selects SyncDefect from
the Note Type pull-down menu.

4. Robert wants to receive email about all defects logged against the CPU@C21
module configuration, so he does not enter any value in the Property Filter field.

ProjectSync filters out, or excludes, items from email notification based on values
specified in this field. For example, if Robert wanted to receive email notification
only for CPU module defects with stopper priority, he could specify that property
value in this field. (For information on specifying values in this field, you can view
ProjectSync help information by clicking the Help button next to the Property
Filter field.)

5. From the Object Filter pull-down menu, Robert selects CPU. ProjectSync
displays the URL sync:///Projects/CPU in the Object Filter field.

Note: The CPU module is displayed below /Projects because it is a
ProjectSync object. (ProjectSync displays all ProjectSync objects below
/Projects.)

6. To the sync:///Projects/CPU URL, Robert appends the configuration name
as @C21.

Robert can also browse to find the configuration he wants by selecting Browse...
from the Object Filter pull-down menu. This action displays the Browse Server
window, from which he can navigate ProjectSync projects, selecting projects or
configurations. If Robert has already selected a project (as he did in step 5), the
browser is positioned at that project, displaying its configurations for selection.

7. Since Robert wants to be notified of defects not only on the upper-level CPU
module but also all of its submodules, he selects This object and all levels
below from the Scope field.

8. When he has completed his subscriptions, Robert clicks Submit.

ProjectSync sets up the email subscription and displays the Success panel. The
panel lists the email subscription for the SyncDefect note type on CPU@C21 and
subscriptions added for referenced submodules.

Note: Email subscriptions do not apply to referenced IP Gear deliverables.
However, IP Gear users can subscribe to information related to deliverables on
the IP Gear server.

Robert Deletes an Email Subscription

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

75

Robert is taking an extended vacation and does not want to receive email about the
CPU@C21 configuration while he is away.

To delete the email subscriptions to the CPU module and all its submodules, Robert
again selects Email Subscriptions. The panel lists all of his subscriptions, including the
CPU@C21 configuration. Robert clicks Delete for CPU@C21. Then he clicks Submit to
have the change take effect. ProjectSync deletes his subscription to not only CPU@C21
but also its submodules, their submodules, and so on down the module hierarchy.

Robert Subscribes to RevisionControl Notes on HCM Operations

During design development, module hierarchies can change as submodules are added
and removed or aliases are changed. HCM users, particularly module owners such as
project leaders, need to know of such changes so they can update their module
configurations or determine the effects of the changes on their work areas. To receive
notification of such changes, they can use ProjectSync to subscribe to email notification
of RevisionControl notes for HCM commands.

For example, suppose the CPU@C21 module configuration has a hierarchical reference
to the submodule ALU@CTO19. Robert, the CPU team leader, wants to know of
configuration changes at all levels in the CPU@C21 hierarchy. Using ProjectSync, he
subscribes to email notification of RevisionControl notes for hcm rmconf and hcm
mkconf operations on the CPU@C21 configuration and all submodules below it in the
hierarchy.

Note: These steps assume that Robert or the Synchronicity administrator has set up
email notification of HCM Revision Control notes on the alu server. For information, see
Setting Up Notification of HCM RevisionControl Notes.

1. Robert follows the steps for subscribing for email notification, clicking Advanced
Subscriptions.

2. At the Add New Subscriptions for... panel, for Note Type, he chooses
RevisionControl.

3. For Property Filter, he types the string Tag= and the HCM command for which
he wants notification. For example, Tag=rmconf.

Using this string causes ProjectSync to send email only for RevisionControl
notes for the hcm rmconf operation and no others.

4. From the Object Filter pull-down menu, Robert selects CPU. ProjectSync
displays the URL sync:///Projects/CPU in the Object Filter field.

5. To the sync:///Projects/CPU URL, Robert appends the configuration name
as @C21.

Robert can also browse to find the configuration he wants by selecting Browse...
from the Object Filter pull-down menu. This action displays the Browse Server

Scenarios for Using HCM

76

window, from which he can navigate ProjectSync projects, selecting projects or
configurations. If Robert has already selected a project (as he did in step 4), the
browser is positioned at that project, displaying its configurations for selection.

6. In the Scope field, he selects This object and all levels below.
7. He clicks Submit to have the subscription take effect.

ProjectSync sets up the email subscription and displays the Success panel. The
panel lists the email subscription for the RevisionControl note type on CPU@C21
and subscriptions added for referenced submodules.

8. Robert repeats the steps, this time subscribing to email notification of
RevisionControl notes for hcm mkconf operation on the CPU@C21
configuration.

A few weeks later, when the ALU team removes the ALU@CTO19 configuration from
the alu server, Robert receives email notification of the operation. He can then remove
the CPU module's reference to the ALU@CTO19 module and, if appropriate, replace it
with another reference.

Robert Updates Email Subscriptions

Module hierarchies can change after a user has subscribed for email notifications. For
example, suppose that the CPU module has a hierarchical reference to the submodule
ALU@GOLDEN and that ALU@GOLDEN is an alias pointing to the ALU@R1 release.
As development progresses, the ALU team creates a new release and then changes
the ALU@GOLDEN alias to point to a different release, ALU@R2.

Or suppose that Robert (the CPU team leader) subscribes for email notification of
defects on the CPU@C21 configuration and all of its submodules (a hierarchical
subscription). Then some time later, one of the ALU submodule's hierarchical
references changes from FPU@R1 to FPU@R2.

In each case, Robert must manually update his email subscriptions to reflect the
change.

Manual Update of Email Subscriptions When an Alias Changes

To manage subscriptions when aliases change, Robert takes the following steps.

1. If he has not done so, Robert uses ProjectSync to subscribe to RevisionControl
notes for the hcm mkalias operation. Taking this action ensures that he will
always be notified when an alias changes. For information, see Robert
Subscribes to RevisionControl Notes on HCM Operations.

2. When he receives email that an hcm mkalias operation has taken place on the
ALU@GOLDEN object, Robert uses ProjectSync to delete his subscription to the

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

77

release to which ALU@GOLDEN previously pointed (in this case ALU@R1).
(The email generated from an hcm mkalias command includes both the old and
the new alias.)

3. Robert then subscribes for email on the ALU@GOLDEN alias again. The
subscription now includes notes for the ALU@R2 submodule, to which the
ALU@GOLDEN alias currently points.

Manual Update of Email Subscriptions When a Hierarchical Reference Changes

To manage subscriptions when hierarchical references change, Robert takes the
following steps.

1. If he has not done so, Robert uses ProjectSync to subscribe to RevisionControl
notes for the hcm addhref and hcm rmhref operations. Taking this action
ensures that he will always be notified when a hierarchical reference changes.
For information, see Robert Subscribes to RevisionControl Notes on HCM
Operations.

2. Robert receives email notifications that an hcm rmhref removed ALU@C1's
reference to FPU@R1 and a subsequent hcm addhref added a reference to
FPU@R2. Robert resubscribes for notes on the CPU@C21 module hierarchy (a
hierarchical subscription). After Robert resubscribes for notes on the CPU@C21,
the subscription includes notes for the FPU@R2 submodule.

Notes:

o The email notification generated from the hcm rmhref and hcm addhref
operations includes the previous and current hierarchical references.

o Although resubscribing to the CPU@C21 module hierarchy includes a
subscription to notes on the new FPU@R2 submodule, it does not delete
subscriptions to notes on submodules that the hierarchy no longer
references (for example, FPU@R1). Robert must manually delete this
subscription.

The CPU Team Leader Queries for Defects
Robert, the CPU team leader, uses a ProjectSync note type on the cpu server to track
defects on the CPU module. He regularly uses ProjectSync to query for open defects
assigned to CPU.

Robert has decided that he wants to view not only defects logged against the CPU
module but also against all submodules referenced by CPU. Fortunately, with HCM
software installed, Robert can perform a hierarchical query, a ProjectSync query that
operates not only on the CPU module but all of its submodules, all of their submodules,
and so on down the hierarchy.

Scenarios for Using HCM

78

Note: This scenario assumes that Robert or the Synchronicity administrator has
mapped note types such that a query initiated on a module on one server can
successfully query submodule servers that use different note types. See Mapping Note
Types for more information.

Robert constructs the hierarchical query:

1. He invokes ProjectSync and from the Queries menu, he selects Standard.
2. From the Query Notes panel, he selects SyncDefect, which is the note type

used on the cpu server and the note type he wants to query. Note: Robert can
select any note type for his query, including the RevisionControl and custom note
types.

3. On the Query: SyncDefect form, Robert selects the CPU module in the Project
field.

4. Robert wants to query the CPU module's default configuration, so he does not
select a configuration from the Configuration field.

5. Robert now uses the Scope field to specify how far down the query should
extend into the CPU module hierarchy. The selections of the Scope pull-down
menu are:

o This object only
o This object and one level below
o This object and all levels below

For example, the CPU module's default configuration has submodules ALU,
IOSTAT, and CACHE, and some of those submodules have submodules, and so
on. For a query on the default configuration of CPU:

This selection... Queries for notes logged against...
This object only The CPU module only
This object and one
level below

The CPU module and its submodules (ALU,
IOSTAT, and CACHE) only. The query does not
extend to submodules of ALU, IOSTAT or CACHE.

This object and all
levels below

The CPU module, its submodules, their
submodules, and so on down through the hierarchy

Because he wants to view defects on all modules on all levels of the CPU
module hierarchy, Robert selects This object and all levels below.

Note: The behavior of a query on a module hierarchy depends on the values
specified in the Project, Configuration, and Scope fields. For information on
how these values affect a query, see Query.

6. Robert chooses Open as the State and clicks Submit.

The query mechanism queries the CPU module's default configuration (as
specified by the Configuration field value) and all levels of the hierarchy below

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

79

(as specified by the Scope field). At each level in the hierarchy, the query
displays only notes that are attached to the module's default configuration.

ProjectSync displays the results panel, which contains:

• Query criteria. This information includes:
o The note type queried
o The name of the project queried (in the case of a hierarchical query, the

module queried)
o The date the query was submitted

• Matches to the hierarchical query criteria. The panel displays the following
information about each match:

Module The module name, which is also a hyperlink to the module's
Project, Configuration, or directory Data Sheet, or the
Deliverable Home Page for an IP Gear deliverable.
Submodules are indented under the upper-level module.

Server The server's hostname, which is also a hyperlink to the
server's ProjectSync Welcome page

ID The note identifier, which is also a hyperlink to the note itself
Title The title of the note

• Notes:
o The fields displayed or downloaded will vary according to the report format

options you selected. However, the Module and Server columns are
always displayed or downloaded for a hierarchical query.

o For a hierarchical query to display information about submodules that are
IP Gear deliverables (such as IOSTAT in the example), the note type of
the upper-level module's SyncServer must be mapped to a note type on
the referenced IP Gear server, such as the CustTicket note type (on which
the IP Gear Ticket is based). For information, see Mapping Note Types.

The CPU Team References an IP Gear Deliverable
Members of the CPU team decide that for a part of their design work, they want to reuse
a block developed by the IOSTAT team at the IOCo company. No one on the CPU team
knows on which server the IOSTAT block was originally developed. However, they do
know that the IOSTAT team used IP Gear to publish the design for reuse. They also
know that the IP Gear server is sync://ipgsrvr1.IOCo.com:2647.

Robert, the CPU team leader, locates the IOSTAT block and includes it as a submodule
of the CPU module by creating a hierarchical reference to it:

1. Using the search features of IP Gear, Robert locates the IOSTAT block and
determines that it is deliverable number 1028. The deliverable number is

Scenarios for Using HCM

80

important because it must be specified when the hierarchical reference is
created.

2. Robert then uses the hcm addhref operation to create the hierarchical reference
from the CPU module to IP Gear deliverable 1028. For the -totarget value,
Robert specifies a URL of the form
sync://<IP_Gear_server_host>:<port>/Deliverable/<Deliverabl
e number>.

% stclc
stcl> hcm addhref -fromtarget
sync://cpu.ABCo.com:2647/Projects/CPU -totarget
sync://ipgsrvr1.IOCo.com:2647/Deliverable/1028 -relpath
IOSTAT

The hcm addhref operation creates the reference from CPU module's default
configuration to the IOSTAT block on the IP Gear server. The reference information is
stored with the CPU module default configuration on the SyncServer.

Note: The -relpath option is not required. If Robert did not specify the -relpath option,
the addhref operation would use the -totarget module name as the name of the
submodule's base directory and place it directly below the upper-level module's base
directory. In this example, the addhref operation would use 1028 as the -relpath value.

When Robert or any other CPU team member gets the CPU module hierarchy (with
hcm get -recursive) to his work area, the operation:

• Creates the IOSTAT subdirectory, if necessary.
• Fetches deliverable 1028's design files to the subdirectory.
• Creates a record of this fetch in IP Gear. (Prior to IP Gear 2.1, the record was in

a Usage note; as of 2.1, the record of the fetch is in a Download note.)
• Creates or updates the Usage note on the IP Gear server and registers Robert

for IP Gear information about the component to which the deliverable is attached.
(As of IP Gear 2.1, this registration happens automatically only if Usage tracking
is required for that deliverable in IP Gear. If Usage tracking is not required, but
Robert desires to be registered for updates, Robert can still register a Usage
note in IP Gear manually.)

Related Topics

hcm addhref Command

hcm get Command

The CPU Team Changes a Reference to a New ALU
Release

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

81

The ALU team has created another release of the ALU block. Because the CPU team
leader (Robert) has subscribed to notification of events for ALU, he is notified of the new
release.

Currently, the CPU module has a submodule, ALU, which is the ALU team's R1 release
(ALU@R1). The CPU team decides that it is time to remove the ALU@R1 submodule
from the CPU module's hierarchy and replace it with the new ALU release (ALU@R2) .

To change one CPU submodule for another, Robert, the CPU team leader, removes the
CPU module's hierarchical reference to ALU@R1 and then adds a new reference from
CPU toALU@R2:

1. Robert uses the hcm showconfs operation to display a list of available
configurations for the ALU module on the SyncServer:

% stclc
stcl> hcm showconfs -target
sync://alu.ABCo.com:2647/Projects/ALU

Configurations of module
sync://alu.ABCo.com:2647/Projects/ALU
NAME TYPE OWNER SELECTOR/ALIASED RELEASE
--
<Default> Branch Anne Trunk:Latest
C1 Selector Anne valid12.06.01
R1 Release Anne
R2 Release Anne

2. He uses the hcm showhrefs on the CPU module to display its hierarchical
references and choose the one to remove:

stcl> hcm showhrefs -target sync://cpu.ABCo.com:2647/Projects/CPU
Target: sync://cpu.ABCo.com:2647/Projects/CPU
REFERENCE URL RELATIVE
PATH

ALU@R1 sync://alu.ABCo.com:2647/Projects/ALU@R1 ALU
CACHE@R4 sync://cpu.ABCo.com:2647/Projects/CACHE@R4 CACHE
Deliverable/1028 sync://ipgsrvr1.IOCo.com:2647/Deliverable/1028 IOSTAT

3. Robert uses the hcm rmhref operation to remove the hierarchical reference
between the CPU module's default configuration (the -fromtarget) and the
ALU@R1 configuration (the -totarget). (Removing this reference removes the
connection between the CPU module and ALU@R1, in effect removing ALU@R1
from the CPU module hierarchy.)

Scenarios for Using HCM

82

stcl> hcm rmhref -fromtarget
sync://cpu.ABCo.com:2647/Projects/CPU -totarget
sync://alu.ABCo.com:2647/Projects/ALU@R1 -relpath ALU

Robert further identifies the ALU@R1 submodule by specifying ALU as the -
relpath option, which identifies the relative path from the base directory of the
CPU module to that of the ALU@R1 submodule. If the ALU@R1 submodule is
referenced multiple times, specifying the relative path helps identify it as the
particular submodule to remove. If no -relpath option is specified, all of the
references to the ALU@R1 submodule are deleted.

The hcm rmhref operation removes the reference from the CPU module's
default configuration on the SyncServer.

Note: The -fromtarget, -totarget, and -relpath options are not all required by
the hcm rmhref operation. See the hcm rmhref command for information.

4. Robert uses the hcm addhref operation to create a new reference from the CPU
module's default configuration to the ALU@R2 configuration:

stcl> hcm addhref -fromtarget
sync://cpu.ABCo.com:2647/Projects/CPU -totarget
sync://alu.ABCo.com:2647/Projects/ALU@R2 -relpath ALU

Note: The -relpath option is not required. If Robert did not specify the -relpath
option, the addhref operation would use the -totarget module name as the name
of the submodule's base directory and place it directly below the upper-level
module's base directory. (In this example, the result would be the same as the
specified value for -relpath.)

The hcm addhref operation creates the reference and stores the information
with the CPU module default configuration on the SyncServer.

When CPU team members find out about the change in hierarchical references, they
update their work areas with the hcm get operation. For an example scenario, see A
CPU Designer Gets a Module Hierarchy.

Related Topics

hcm addhref Command

hcm rmhref Command

hcm showconfs Command

hcm showhrefs Command

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

83

A CPU Designer Gets a Module Hierarchy
Marie is a designer who has just joined the CPU team. The CPU team leader has given
her the following information:

• The CPU team is using the SOC Developer Suite (DesignSync V3.3 and HCM).
The vault location of the CPU design is:
sync://cpu.ABCo.com:2647/Projects/CPU

• Her account is /dev/users/Marie

Marie decides to get an overall idea of the scope of the CPU design, look at the data
organization, and see what files and directories she'll be using. She uses the hcm get -
recursive operation to get the CPU design hierarchy to her work area for the first time.
(Note: This scenario shows fetching from the HCM server. For a scenario that shows
fetching from the module cache, see Designers Use the Module Cache.)

1. Marie invokes the stcl command shell and uses the hcm get -recursive
operation to get all of the files for the CPU module and its submodules to her
work area:

% stclc
stcl> hcm get -recursive -target
sync://cpu.ABCo.com:2647/Projects/CPU -path
/dev/users/Marie/CPU

Because Marie specified the CPU module without a configuration for the -target
option, the hcm get operation uses the CPU module's default configuration.

The get -recursive operation:

o Fetches all of the files in the CPU module to the work area directory
specified with the -path option. (If Marie does not specify the -path option,
the operation uses her current work area directory.) If the path Marie
specified does not exist, the get operation creates it.

o Follows CPU's hierarchical reference to each of its submodules (ALU,
CACHE, and IOSTAT). For each submodule, the operation creates a
subdirectory and fetches the submodule's files to it. (The location of this
subdirectory in Marie's work area is determined by the relative path
specified when the hierarchical reference was created.)

o Continues following hierarchical references down through each level of the
module hierarchy and fetching submodules' files until all files of the
hierarchy are fetched.

2. Marie works on her part of the CPU design, revising existing files and creating
new ones. When she has finished her work, she puts the hierarchy back on the
SyncServer. See A Designer Puts a Module Hierarchy Back on the Server for
information.

Scenarios for Using HCM

84

Marie Updates Her Work Area

Before she starts her work each morning, Marie uses the hcm get operation to update
her work area with changes to the entire CPU module hierarchy (the CPU module and
all its submodules).

1. Marie changes directory to the base directory for the CPU module configuration
and invokes the stcl command shell:

stcl> cd /dev/users/Marie/CPU

2. She uses the hcm get operation to fetch files that have been modified since the
last hcm get operation:

stcl> hcm get -recursive -incremental

Marie does not need to specify the -target option because the HCM software
stored the information she specified when she first got the CPU module. She
does not need to specify the -path option; by default the get operation uses her
current work area directory, which is the one she wants.

The -recursive option causes the get operation to update not only the CPU
module but all levels of the module hierarchy.

The -incremental option updates her work area directories only if their vault
folders on the server have changed since she last got the module to her work
area. Using this option is the fastest way to update.

By default, the hcm get operation applies the -replace option. This option
removes files in the work area that do not match the contents of the updated
modules on the server, unless the files are locally modified.

For example, suppose that on the CPU module on the server, two files were
deleted and one hierarchical reference was changed from the ALU@R2
configuration to ALU@R3. When Marie uses hcm get (which applies -replace by
default), the operation:

o Deletes the two files from Marie's work area, if she has not modified them.
If she has modified the files but does not want to keep the changes, she
can use the -force option to delete the modified files.

o Removes all unmodified files of ALU@R2 from the ALU directory of
Marie's work area and then fetches files of the ALU@R3 configuration to
that same directory. (This action takes place because the relative path for
the new reference is the same as the relative path for the old reference.)

Related Topics

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

85

hcm get Command

hcm showstatus Command

ls Command

A Designer Puts a Module Hierarchy Back on the Server
In the scenario A CPU Designer Gets a Module Hierarchy, Marie, a designer on the
CPU team, fetched files of the CPU module hierarchy to her work area with the hcm get
-recursive operation. In the course of her design work, Marie modified files in the CPU
module and created some new files. She also modified some files in the MEM
submodule.

Marie has now finished with her work on the CPU design and is ready to check in the
files she worked on to the SyncServer. She uses the hcm put -recursive operation:

1. To determine what configurations to check in, the put operation uses local data
about the module hierarchy as it exists in a user's work area. For this reason,
Marie uses the hcm showstatus -recursive operation to compare the
hierarchical references of the CPU module hierarchy in her work area with those
of the CPU hierarchy on the server. The put operation also does not check in
new (unmanaged) files, so Marie uses the -files option with the hcm
showstatus command. This option lists the status of the files of the CPU
configuration in the work area as compared to the server. Using hcm
showstatus -files lets Marie identify those files and decide whether she needs to
check them in.

% stclc
stcl> cd /dev/users/Marie/CPU
stcl> hcm showstatus -files -recursive
Target: sync://cpu.ABCo.com:2647/Projects/CPU
Base Directory: /dev/users/Marie/CPU

STATUS HREF RELATIVE PATH
--
Up-to-date sync://alu.ABCo.com:2647/Projects/ALU@R2 ALU
Up-to-date sync://cpu.ABCo.com:2647/Projects/CACHE@R4 CACHE
Up-to-date sync://ipgsrvr1.IOCo.com:2647/Deliverable/1028 IOSTAT
Up-to-date sync://cpu.ABCo.com:2647/Projects/MEM MEM

The status of the following hrefs will not be individually reviewed:
 HREF REASON

 sync://alu.ABCo.com:2647/Projects/ALU@R2 release
 sync://alu.ABCo.com:2647/Projects/CACHE@R4 release
 sync://ipgsrvr1.IOCo.com:2647/Deliverable/1028 IP Gear deliverable

Workspace Configuration Object
Version Version Name

Scenarios for Using HCM

86

--------- ------------- ------
1.1 (Locally Modified) 1.1 cpu.v
1.3 1.3 cpustat.v

Configuration status: Out-of-date

===
==

Target: sync://cpu.ABCo.com:2647/Projects/MEM
Parent: sync://cpu.ABCo.com:2647/Projects/CPU
Base Directory: /dev/users/Marie/CPU/MEM

No local or remote hierarchical references found for configuration.

Workspace Configuration Object
Version Version Name
--------- ------------- ------
1.6 (Locally Modified) 1.5 mem.v
Unmanaged memstat.v

Configuration status: Out-of-date

===
=

Status was not computed for the following configurations.
See above for details.

 sync://alu.ABCo.com:2647/Projects/ALU@R2
 sync://alu.ABCo.com:2647/Projects/CACHE@R4
 sync://ipgsrvr1.IOCo.com:2647/Deliverable/1028

===
=

Status of all visited configurations.
STATUS TARGET PATH

Out-of-date sync://cpu.ABCo.com:2647/Projects/MEM
/dev/users/Marie/CPU/MEM
Out-of-date sync://cpu.ABCo.com:2647/Projects/CPU /dev/users/Marie/CPU

Summary: Out-of-date

This output gives Marie the following information:

o The hierarchical references of the CPU module's default configuration in
her work area are up-to-date with those of the CPU module on the
SyncServer. (If she has references that are out-of-date, she can bring
them up-to-date by using the hcm get operation again. See Marie
Updates Her Work Area for information.)

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

87

o Even though a recursive hcm showstatus operation was specified, the
operation does not descend into the ALU@R2 submodule, the
CACHE@R4 submodule, or IP Gear Deliverable 1028 to review the status
of its hierarchical references or files. The showstatus operation behaves in
this way for a reference that is a release, an alias, an IP Gear deliverable,
a vault folder residing on a non HCM-enabled server, or a reference that
does not exist locally. The showstatus operation does descend into the
MEM submodule (a default configuration) to review its hierarchical
references.

o Because the files of the CPU configuration and the MEM submodule
configuration in the work area do not match those of that same
configurations on the server, the output from hcm showstatus -files
shows Configuration status: Out-of-date for both
configurations. (When you use the -files option, the showstatus operation
determines each configuration's status from both the status of its files and
its hierarchical references. If either is out-of-date with the configuration on
the server, the status of the configuration is out-of-date.)

2. The MEM submodule configuration has an unmanaged file (memstat.v), which
Marie wants to include in the configuration. Because the hcm put operation does
not check in unmanaged files, she uses the DesignSync checkin (ci -new)
operation to check in the file. Note: The checkin steps Marie uses for checking in
the unmanaged file depend on the type of configuration she wants to add the
files to. For an example scenario, see A Designer Adds Files to a Configuration.

3. The CPU and MEM configurations both have locally modified files. To put back
on the SyncServer not only the files of the CPU module configuration, but also
files of any submodule configuration that she modified, Marie uses the hcm put
operation with the -recursive option:

stcl> cd /dev/users/Marie/CPU
stcl> hcm put -recursive

Because Marie does not specify the -path option, the operation uses her current
work area directory.

The hcm put -recursive operation:

o Checks in modified files that Marie locked for edit and modified files that
Marie did not lock for edit but that are the latest version on the branch.
Note: The put operation does not check in files that are up-to-date.

o Cancels the locks on files locked for edit. This action occurs because
Marie did not specify the -lock option.

Note: Marie can also use the DesignSync cancel command to remove
locks that she has placed on unmodified files (with the co -lock or ci -lock
command). This operation, in effect, performs an "un"checkout operation
on the specified locked object.

Scenarios for Using HCM

88

If another user has locked the files (with the hcm get -edit operation),
Marie can use the DesignSync unlock command to unlock the files.
However, the unlock command typically is access controlled to allow only
Synchronicity administrators to break other users' locks.

o Follows the CPU module's hierarchical reference to the MEM submodule
and checks in files and cancels locks.

Note: The put operation does not operate on hierarchical references to
the ALU, CACHE, and IOSTAT submodules. The operation does not
operate on a hierarchical reference to a submodule that is a release, an
alias, an IP Gear deliverable, or that does not exist on the server (for
example, a configuration that has been removed from the server since
Marie fetched it to her work area with the get operation).

o Continues following hierarchical references down through each level of the
CPU module hierarchy (as defined by data in Marie's work area) and
checking in modified files until all modified files of the hierarchy are
checked in.

o Generates a RevisionControl note for each configuration in the CPU
module hierarchy that has been put back on the SyncServer. (Note: If no
files in the configuration were modified, no RevisionControl note for the
configuration will be generated.)

Users receive email about the put operation if they have subscribed to
email notification of RevisionControl notes on any of the modules or
configurations that were checked in to the server.

4. Marie examines the output from the put operation to see if any of the submodule
configurations in the hierarchy are selector configurations. (Output from the put
operation lists selector configurations.) If she modified any files added to a
configuration with a version tag and then checked the files in with hcm put, she
must move the version tag to the new file versions. For an example scenario, see
Thomas Moves the Version Tag of Files Added to a Selector Configuration.

5. Marie also examines the output from the put operation to see if any of the
checkin operations failed. (Messages appear at the end of the output for the
operation.) For example, the put operation may report errors for several files that
failed to be checked in because they require merging. If there are any failures,
Marie fixes the problems that caused them.

6. When Marie is satisfied that she has fixed all checkin problems, she uses the
hcm put operation again.

stcl> hcm put -recursive

Related Topics

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

89

A Designer Adds Files to a Configuration

hcm put Command

hcm showstatus Command

The CPU Team Creates a Release
(Release of a Module Hierarchy)

For some time now, the CPU team has been building the CPU design, working on CPU
design files and incorporating submodule releases such as release R2 of the ALU block.
Now the team members believe they are ready to create a release of their entire CPU
module hierarchy (the CPU module and all of its submodules).

The hcm release operation is a client-side operation, so Robert, the CPU team leader,
will create the release based on the CPU module configuration and its hierarchy of
submodules in his work area.

But before he performs the release operation, Robert wants to know if the files in his
work area are the ones the team wants to release and if those files are ready to release.
To check that he has the files the team wants to release, he uses the hcm showstatus
operation. Then to determine if files are ready to release, he runs the regression tests
his team has developed.

1. To see if any of the hierarchical references or files in his work area are out-of-
date, Robert uses the hcm showstatus -recursive operation with the -files and
-releases options. This operation compares the hierarchical references and files
of the CPU module in his work area with those of the CPU module on the server.
Because he specified the -recursive option, the showstatus operation shows the
status of hierarchical references and files not only for the CPU module but also
for each of its submodules, and so on down through the module hierarchy.

% stclc
stcl> cd /dev/users/Robert/CPU
stcl> hcm showstatus -files -recursive -releases
Target: sync://cpu.ABCo.com:2647/Projects/CPU
Base Directory: /dev/users/Robert/CPU

STATUS HREF RELATIVE PATH
--
Up-to-date sync://alu.ABCo.com:2647/Projects/ALU@R2 ALU
Local Only sync://cpu.ABCo.com:2647/Projects/CACHE CACHE
Server Only sync://cpu.ABCo.com:2647/Projects/CACHE@R4 CACHE
Up-to-date sync://ipgsrvr1.IOCo.com:2647/Deliverable/1028 IOSTAT
Up-to-date sync://cpu.ABCo.com:2647/Projects/MEM MEM

The status of the following hrefs will not be individually reviewed:
 HREF REASON

Scenarios for Using HCM

90

 sync://alu.ABCo.com:2647/Projects/CACHE@R4 not local
 sync://ipgsrvr1.IOCo.com:2647/Deliverable/1028 IP Gear deliverable

Workspace Configuration Object
Version Version Name
--------- ------------- ------
1.1 1.2 cpu.v
1.3 (Locally Modified) 1.3 cpustat.v

Configuration status: Out-of-date

===

Target: sync://alu.ABCo.com:2647/Projects/ALU@R2
Parent: sync://cpu.ABCo.com:2647/Projects/CPU
Base Directory: /dev/users/Robert/CPU/ALU

No local or remote hierarchical references found for configuration.

Workspace Configuration Object
Version Version Name
--------- ------------- ------
1.14 1.14 alu.v
1.11 1.11 reg8.v
1.5 1.5 aludoc/aluprojinfo.txt
1.9 1.9 aludoc/aluprojlist.txt

Configuration status: Up-to-date

===

Target: sync://cpu.ABCo.com:2647/Projects/CACHE
Parent: sync://cpu.ABCo.com:2647/Projects/CPU
Base Directory: /dev/users/Robert/CPU/CACHE

No local or remote hierarchical references found for configuration.

===
==

Target: sync://cpu.ABCo.com:2647/Projects/MEM
Parent: sync://cpu.ABCo.com:2647/Projects/CPU
Base Directory: /dev/users/Marie/CPU/MEM

No local or remote hierarchical references found for configuration.

Workspace Configuration Object
Version Version Name
--------- ------------- ------
1.6 1.7 mem.v
1.2 (Locally Modified) 1.2 memstat.v
Unmanaged memdoc.txt

Configuration status: Out-of-date

===

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

91

==

Status was not computed for the following configurations.
See above for details.

sync://ipgsrvr1.IOCo.com:2647/Deliverable/1028

===
=

Status of all visited configurations.
STATUS Target PATH

-
Up-to-date sync://alu.ABCo.com:2647/Projects/ALU@R2
 /dev/users/Marie/CPU/ALU
Up-to-date sync://cpu.ABCo.com:2647/Projects/CACHE@R4
/dev/users/Marie/CPU/CACHE
Unknown sync://alu.ABCo.com:2647/Projects/CACHE@R4
/dev/users/Marie/CPU/CACHE
Up-to-date sync://ipgsrvr1.IOCo.com:2647/Deliverable/1028
/dev/users/Marie/CPU/IOSTAT
Out-of-date sync://cpu.ABCo.com:2647/Projects/MEM
 /dev/users/Marie/CPU/MEM

Summary: Out-of-date

This output gives Robert the following information:

o The hierarchical references and files of the CPU module configuration in
his work area differ from those of the CPU module on the SyncServer. The
CPU module configuration on the server has a hierarchical reference to a
new release of the CACHE submodule, CACHE@R4. In addition, the
cpu.v file has a later version on the server. Robert needs to update his
work area if he wants to include CACHE@R4 in the release he is creating.

Because the hierarchical references and the files in Robert's work area do
not match those of the CPU configuration on the server, the output from
hcm showstatus -files shows Configuration status: Out-of-
date. (When you use the -files option, the showstatus operation
determines each configuration's status from both the status of its files and
its hierarchical references. If either or both are out-of-date with the
configuration on the server, the status of the configuration is out-of-date.)

o The files of the ALU@R2 release in his work area are up-to-date.

Because Robert specified the -releases option in addition to the -files
option, the showstatus operation lists the status of the hierarchical
references and files for the ALU@R2 release. Robert used this option
because he will be doing some regression testing before he creates a
release of the CPU module and he wants to know if he has added or

Scenarios for Using HCM

92

changed files of the ALU@R2 release in his work area, thereby affecting
regression test results.

o Even though a recursive hcm showstatus operation was specified, the
operation does not descend into the CACHE@R4 submodule or IP Gear
Deliverable 1028 to review the status of its hierarchical references or files.
The showstatus operation behaves in this way for a reference that is an
alias, an IP Gear deliverable, a vault folder residing on a non HCM-
enabled server, a reference that does not exist locally, or a release
(unless you specify the -releases option with the -files option). The
showstatus operation descends into the MEM submodule (a default
configuration) and the ALU@R2 submodule (because Robert specified the
-releases option with the -files option).

o The output from hcm showstatus -files shows Configuration
status: Out-of-date for the MEM configuration in Robert's work
area. The showstatus operation reported this status because he files of
the MEM submodule configuration in the work area do not match those of
that same configurations on the server. (When you use the -files option,
the showstatus operation determines each configuration's status from both
the status of its files and its hierarchical references. If either or both are
out-of-date with the configuration on the server, the status of the
configuration is out-of-date.)

2. From the output of the hcm showstatus -files operation, Robert can see that he
has one unmanaged file and several modified files in his work area. He wants to
include these files in the release, so he uses the DesignSync ci -new operation
to check in the unmanaged file and the hcm put operation to check in the
modified files. For information, see A Designer Adds Files to a Configuration and
A Designer Puts a Module Hierarchy Back on the Server.)

3. From the output of the hcm showstatus -files operation, Robert notices that one
of CPU module's hierarchical references (to CACHE) has changed to refer to a
new configuration (CACHE@R4). In addition, the CPU and MEM modules on the
server each contain a file version newer than the one in Robert's work area. To
include the new CACHE@R4 configuration and the new file versions in the
release, he updates his work area with a hcm get -recursive operation of the
CPU module. For an example of this operation, see A CPU Designer Gets a
Module Hierarchy.

4. After ensuring that he has all of the files and references the team wants in the
release, Robert runs the regression tests.

5. Upon successful outcome of regression testing, Robert uses the hcm release
operation to create a release. (The hcm release operation is recursive by
default, so Robert does not need to specify the -recursive option.)

stcl> pwd
/dev/users/Robert/CPU
stcl> hcm release -name R1 -description "Baseline release
of CPU hierarchy"

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

93

Since Robert did not specify the -path option, the release operation operates on
his current directory.

The hcm release operation:

• Creates the CPU@R1 release configuration on the server

• Creates a release for any submodule configuration that has not been released.
(Note: The hcm release operation does not create a release of an IP Gear
deliverable. Instead, the operation adds a reference from the release of the upper
level module to the deliverable.)

• Includes the description (specified with the -description option) in the
ProjectSync project. (If the -description option is not specified, the release
operation provides a default description of "HCM release".) Team members can
view the description in ProjectSync and in the output of the hcm showconfs -
report script operation.

By creating the release CPU@R1, the CPU team has captured a snapshot of CPU
design hierarchy at a particular stage of development. This "snapshot" cannot be
changed and therefore can be reconstructed, if need be, at any time.

Other users are now able to create a new work area for the CPU design by using the
hcm get operation. For an example of this operation, see A CPU Designer Gets a
Module Hierarchy.

Other teams find that there is a new release of the CPU module. Teams who want to
include the CPU design in their designs can now create a hierarchical reference from
their design hierarchy to CPU@R1. For an example scenario of creating a hierarchical
reference, see The CPU Team References the ALU Module.

Related Topics

hcm release Command

hcm showstatus Command

The ALU Team Creates an Alias for a Release
Over time, the ALU team creates ten or more releases of the ALU module. In addition,
the CPU module refers to five other submodules that change just as frequently as ALU.
The CPU team leader would prefer to monitor changes efficiently rather than to keep
changing the CPU module's reference to the latest release of ALU.

In addition, the ALU team has just released an R12 release, but the team feels it is not
ready for the CPU, MPU, and other teams to use the new release. So the team decides

Scenarios for Using HCM

94

to create an alias called GOLDEN and have it point to a release they want other teams
to use. For now, that release is the R11 release.

Anne, the ALU team leader, creates the alias:

1. Anne makes sure that the R11 configuration has been released by entering the
hcm showconfs command. For example:

% stclc
stcl> hcm showconfs -target
sync://alu.ABCo.com:2647/Projects/ALU

Configurations of sync://alu.ABCo.com:2647/Projects/ALU

NAME TYPE OWNER SELECTOR/ALIASED RELEASE
--
<Default> Branch Anne Trunk:Latest
C1 Selector Anne valid12.06.01
R1 Release Anne
R2 Release Anne
.
.
R11 Release Anne
R12 Release Anne

2. Anne creates the GOLDEN alias, specifying ALU@R11 as the configuration to
which GOLDEN refers. For example:

stcl> hcm mkalias -target
sync://alu.ABCo.com:2647/Projects/ALU@R11 -name GOLDEN -
description "Ready for distribution to other teams"

Notes:

o For information on alias names, see Naming Guidelines.
o The mkalias operation includes the description (specified with the -

description option) in the ProjectSync project. (If the -description option
is not specified, the mkalias operation provides a default description of
"HCM alias".) Team members can view the description in ProjectSync and
in the output of the hcm showconfs -report script operation.

Teams like the CPU team, who want to incorporate stable ALU releases into their
designs, can now create hierarchical references from their module configurations to the
alias ALU@GOLDEN.

The CPU Team Changes Its Reference to ALU's GOLDEN Release

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

95

Robert, the CPU team leader, is happy that the ALU team has created the GOLDEN
alias. If he creates a hierarchical reference from the CPU module to the ALU@GOLDEN
alias, he will not have to change CPU's reference to ALU every time the ALU team
issues a new release. Robert changes the CPU module's reference to ALU@GOLDEN:

1. To identify the ALU configuration used in the hierarchy, Robert uses the hcm
showhrefs operation:

% stclc
stcl> hcm showhrefs -target sync://cpu.ABCo.com:2647/Projects/CPU

Target: sync://cpu.ABCo.com:2647/Projects/CPU

REFERENCE URL RELATIVE PATH

ALU@R11 sync://cpu.ABCo.com:2647/Projects/ALU ALU
CACHE@R4 sync://alu.ABCo.com:2647/Projects/CACHE CACHE
Deliverable/1028 sync://ipgsrvr1.IOCo.com:2647/Deliverable/1028 IOSTAT

2. Next, Robert removes the CPU module's reference to ALU@R11 release:

stcl> cd /dev/users/Robert/CPU
stcl> hcm rmhref -fromtarget
sync://cpu.ABCo.com:2647/Projects/CPU -totarget
sync://alu.ABCo.com:2647/Projects/ALU@R11 -relpath ALU

Note: The -fromtarget, -totarget, and -relpath options are not all required by
the hcm rmhref operation. See the hcm rmhref command for information.

The rmhref operation removes the hierarchical reference from the server, in
effect removing the ALU@R11 submodule configuration from the CPU module
hierarchy.

3. Robert then adds a reference to the GOLDEN alias for ALU:

stcl> hcm addhref -fromtarget
sync://cpu.ABCo.com:2647/Projects/CPU -totarget
sync://alu.ABCo.com:2647/Projects/ALU@GOLDEN -relpath ALU

Note: The -relpath option is not required. If Robert did not specify the -relpath
option, the addhref operation would use the -totarget module name as the name
of the submodule's base directory and place it directly below the upper-level
module's base directory. (In this example, the result would be the same as the
specified value for -relpath.)

When CPU team members perform an hcm get -recursive operation of the CPU
module, they will continue to get ALU@R11, since that release is the one the GOLDEN

Scenarios for Using HCM

96

alias currently represents. However, if the GOLDEN alias is changed to point to a new
release of ALU, the recursive get operation fetches the new release.

Robert and other CPU team members subscribe to RevisionControl notes for the hcm
mkalias and hcm rmalias operations on the ALU@GOLDEN configuration. This action
ensures they will be notified whenever the GOLDEN alias is changed to point to a new
release or removed from the server. For information, see Robert Subscribes to
RevisionControl Notes on HCM Operations.

The ALU Team Designates a Different Release as "GOLDEN"

At some point, the ALU team determines that a more recent release (R12, for example)
is ready for other teams to use. Instead of having the other teams change their modules'
references to R12, the ALU team leader changes the GOLDEN alias to point to
ALU@R12. To change the alias, he uses the hcm mkalias operation again:

stcl> hcm mkalias -target
sync://alu.ABCo.com:2647/Projects/ALU@R12 -name GOLDEN -
description "Ready for distribution to other teams"

The mkalias operation:

• Changes the GOLDEN alias to point to ALU@R12
• Includes the description (specified with the -description option) in the

ProjectSync project. (If the -description option is not specified, the mkalias
operation provides a default description of "HCM alias".) Team members can
view the description in ProjectSync and in the output of the hcm showconfs -
report script operation.

The mkalias operation includes the description (specified with the -description option)
in the ProjectSync project. (If the -description option is not specified, the mkalias
operation provides a default description of "HCM alias".) Team members can view the
description in ProjectSync and in the output of the hcm showconfs -report script
operation.

Now when CPU team members perform an hcm get -recursive operation on the CPU
module, they get files from ALU@R12 in their work areas.

If the CPU team creates a release of the CPU module configuration (with hcm release,
which is recursive by default), the release operation resolves the GOLDEN alias to
ALU@R12. For more information, see How the Release Operation Works.

Related Topics

hcm addhref Command

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

97

hcm mkalias Command

hcm rmalias Command

hcm rmhref Command

hcm showconfs Command

How HCM Operations Handle an Alias

The ALU Team Removes an Alias

Designers Use the Module Cache
ChipA543 is a large design; the design team would like to fetch the ChipA543 hierarchy
from the HCM server in a shorter amount of time than the fetch has been taking. To
decrease fetch time, the team leader has set up a local module cache, which contains
releases of two of the submodules included in the ChipA543 hierarchy: CPU and
STDLIB. When team members fetch the ChipA543 hierarchy, they can fetch these
releases from the module cache instead of the HCM server.

The team leader has also set the default module cache paths and default module cache
mode settings in the DesignSync registry. The setting for the default module cache
paths is /A543/cache1. The setting for default module cache mode is link mode.

Because the default module cache paths and mode are set, team members do not need
to specify the module cache path or mode when they use the get operation to fetch the
releases from the module cache.

A Designer Creates Links to the Module Cache

Joe, a designer on the ChipA543 design team, has decided to take advantage of faster
fetch time by using the team's module cache. In addition, he wants to save disk space
required in his work area to hold the ChipA543 hierarchy. So he decides to have the get
operation create links from his work area to the releases in the module cache.

To link from his work area to releases in the module cache, Joe takes these steps:

1. Joe isn't sure which submodules of the ChipA543 default configuration are in the
module cache, so he uses the hcm showmcache operation to display the
contents of the module cache:

% stclc
stcl> hcm showmcache

Mcachepaths search order:

Scenarios for Using HCM

98

/A543/cache1

Configurations found:

PATH TARGET
 AVAILABLE HIERARCHY

/A543/cache1/CPU sync://cpu.ABCo.com:2647/Projects/CPU@Rel1
 yes yes
/A543/cache1/STDLIB sync://srvr1.ABCo.com:2647/Projects/STDLIB@RelA
yes yes

Note: Because Joe's team leader has set the default module cache paths, Joe
does not need to specify the -mcachepaths option. The showmcache operation
uses the DesignSync registry setting to locate the module caches. Joe needs to
specify the -mcachepaths option only if he wants to view module caches
different from the default.

From the display, Joe sees that the module cache contains two of the releases
used in the ChipA543 configuration. In addition, the AVAILABLE column of the
display tells him that the releases are available for fetching or linking. The
HIERARCHY column indicates that the entire hierarchy of each release is in the
module cache. This hierarchy information pleases Joe; he wants to fetch the
entire hierarchy of each release. (If only the upper-level module of each release
is in the module cache, the get operation does not find the releases there and
fetches them from the server instead.)

2. Joe creates a directory in his work area for the ChipA543 configuration hierarchy.
He then changes directory to that directory:

stcl> cd /dev/users/Joe/designs

Note: For Joe to use module cache link mode, his work area directory must not
contain a previously fetched HCM configuration. The get operation does not
replace the contents of a work area directory with a link to the module cache.

3. He then uses the hcm get operation to fetch the ChipA543@Alpha configuration.
Because Joe is using the default module cache path (/A543/cache1) and mode
(link), he does not need to specify the -mcachepaths or -mcachemode options.
(Note: Using -mcachemode link is not allowed on Windows platforms and the
default module cache mode is copy.)

stcl> hcm get -recursive -target
sync://srvr1.ABCo.com:2647/Projects/ChipA543@Alpha -path
ChipA543

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

99

The get operation creates the ChipA543 directory specified with -path and then
fetches the ChipA543 module hierarchy as directed by the -recursive option.

The get operation searches the module cache (specified in the default module
cache paths registry setting) for releases of submodules in the ChipA543@Alpha
configuration hierarchy. In this case, the get operation finds releases for the CPU
and STDLIB submodules because the entire hierarchy of the each release exists
in the module cache and that hierarchy level matches the hierarchy level Joe
specified with hcm get -recursive.

Because the default module cache mode registry setting specifies link mode, the
get operation creates a link from Joe's work area to each release's base directory
in the module cache.

Note: Submodules in the ChipA543@Alpha hierarchy that do not have a release
in the module cache are fetched from the server.

4. Joe decides that he wants to see which configurations he now has in the A543
directory in his work area. To list all of the configurations in that directory's
hierarchy, he uses the hcm showconfs operation with the -path and -
directoryrecursive options. For example:

stcl> hcm showconfs -path ChipA543 -directoryrecursive

PATH TARGET TYPE
 HIERARCHY

Cpu sync://cpu.ABCo.com:2647/Projects/CPU@Rel1 Release
(mcached) yes
Cpu/Alu
 sync://alu.ABCo.com:2647/Projects/ALU@Rel4 Release yes
Mem sync://cpu.ABCo.com:2647/Projects/MEM@Golden Alias to
Rel6 yes
Pll sync://cpu.ABCo.com:2647/Projects/PLL@BetaBr Branch
 no
SLib sync://srvr1.ABCo.com:2647/Projects/STDLIB@RelA Release
(mcached) yes

The showconfs operation lists:

• Each directory that contains a configuration. (Note: Because Joe specified a
relative path for the -path option, the showconfs operation shows the relative
path for each directory.)

• The URL of the configuration on the SyncServer.
• The configuration type (alias, branch, release, or selector). For aliases, the TYPE

column lists the alias and the release to which it points. For releases,
(mcached) shows that the directory contains a link to a release in the module
cache.

Scenarios for Using HCM

100

• Whether the entire hierarchy of the configuration is present in the directory or not.

A Designer Copies a Release from the Module Cache

Sara is also a member of the ChipA543 design team. Like Joe and the other designers,
she wants to use the module cache instead of fetching from the server. Unlike Joe, Sara
plans to use a design tool that writes temporary files to the directories that hold the
CPU@Rel1 and STDLIB@RelA module configurations.

Because the design tool needs write permission to the CPU and STDLIB directories and
the module cache has read-only permission, Sara cannot use the get operation in link
mode (the default module cache mode) to create links from her work area to the
releases in the cache. Still, she wants to avoid fetching the CPU@Rel1 and
STDLIB@RelA module configurations from the server. Instead of using link mode, she
uses copy mode (-mcachemode copy) with the get operation:

1. Sara creates a directory in her work area where she wants to place the top-level
ChipA543 module. She then changes directory to that directory:

stcl> cd /dev/users/Sara/projects

Note: For Sara to use module cache copy mode, her work area directory must
not contain a previously fetched HCM configuration. The get operation does not
replace the contents of a work area directory with a copy from the module cache.

2. To fetch the ChipA543@Alpha hierarchy she uses the get operation with the -
recursive option. In addition, she specifies the -mcachemode copy option
because she wants to override the default module cache mode (link).

stcl> hcm get -recursive -target
sync://srvr1.ABCo.com:2647/Projects/ChipA543@Alpha -path
A543 -mcachemode copy

Note: Because Sara is using the default module cache path (/A543/cache1),
she does not need to specify the -mcachepaths option. She needs to specify
that option only if she wants to use module caches different from the default.

The get operation creates the A543 directory specified with -path and then
fetches the ChipA543 module hierarchy as directed by the -recursive option.

The get operation searches the module cache (specified in the default module
cache paths registry setting) for releases of submodules in the ChipA543@Alpha
configuration hierarchy. In this case, the get operation finds releases for the CPU
and STDLIB submodules because the entire hierarchy of the each release exists
in the module cache and that hierarchy level matches the hierarchy level Sara
specified with hcm get -recursive.

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

101

Because Sara specified -mcachemode copy, the get operation copies the CPU
and STDLIB releases the cache to Sara's work area.

Note: Submodules in the ChipA543@Alpha hierarchy that do not have a release
in the module cache are fetched from the server.

A Designer Uses Both Links to and Copies from the Cache

Marc is a member of the ChipA543 design team who, like Joe, wants to save disk space
by linking to releases in the module cache. So Marc plans to use the module cache
when he fetches the ChipA543 configuration to his work area. However, he also plans
to run a parasitic extraction tool on the CPU configuration to create a log file and
parasitics file in the CPU directory. The need to write files to the directory poses a
problem. If Marc creates links from his work area to the CPU module in the cache, the
parasitics tool will not be allowed to create files in the cache directory because it is
write-protected. So, he needs to have a copy of the CPU release in his work area, not a
link to the module cache.

To solve the problem, Marc uses link mode to fetch the ChipA543 configuration
hierarchy and then uses copy mode to fetch just the CPU submodule configuration:

1. Marc uses the hcm showmcache operation to display the contents of the
module cache:

% stclc
stcl> hcm showmcache

Mcachepaths search order:

/A543/cache1

Configurations found:

PATH TARGET
 AVAILABLE HIERARCHY

/A543/cache1/CPU sync://cpu.ABCo.com:2647/Projects/CPU@Rel1
 yes yes
/A543/cache1/CPUTop sync://cpu.ABCo.com:2647/Projects/CPU@Rel1
 yes no
/A543/cache1/STDLIB sync://srvr1.ABCo.com:2647/Projects/STDLIB@RelA
yes yes

Note: Because the team leader has set the default module cache paths, Marc
does not need to specify the -mcachepaths option. The showmcache operation
uses the DesignSync registry setting to locate the module caches. Marc needs to
specify the -mcachepaths option only if he wants to view module caches
different from the default.

Scenarios for Using HCM

102

From the display, Marc sees that the module cache contains the releases used in
the ChipA543 configuration. He also sees that there are two cache entries for the
CPU@Rel1, one in a directory called CPU, the other in CPUTop. The
HIERARCHY column tells him that the first CPU entry is the entire hierarchy of the
CPU release and the second entry is just the upper-level module of the CPU
configuration. In addition, the AVAILABLE column of the display indicates that
the releases are available for fetching or linking.

2. Marc changes directory to the work area directory where he wants to place the
ChipA543@Alpha configuration:

stcl> cd /dev/users/Marc/designs

Note: For Marc to use module cache link or copy mode, his work area directory
must not contain a previously fetched HCM configuration. The get operation does
not replace the contents of a work area directory with a copy from the module
cache.

3. He uses hcm get option to fetch the ChipA543 configuration. (Note: Because
Marc is using the default module cache path (/A543/cache1) and mode (link),
he does not need to specify the -mcachepaths or -mcachemode options.)

stcl> hcm get -target
sync://srvr1.ABCo.com:2647/Projects/ChipA543@Test -
recursive -path A543Parasitics

The get operation searches the module cache (specified in the default module
cache paths registry setting) for releases of submodules in the ChipA543@Alpha
configuration hierarchy. In this case, the get operation finds releases for the CPU
and STDLIB submodules because the entire hierarchy of the each release exists
in the module cache and that hierarchy level matches the hierarchy level Marc
specified with hcm get -recursive.

Because the default module cache mode registry setting specifies link mode, the
get operation creates a link from Marc's work area to each release's base
directory in the module cache.

4. To fetch a copy of just the upper-level module of the CPU@Rel1 release
configuration from the module cache to the CPU directory in his work area, Marc
uses the get operation again. However, this time there are two differences:

o He uses hcm get without the -recursive option to fetch just the upper-
level module of the CPU@Rel1 release configuration. (Having the files of
the CPU module in a writable work area directory is all Marc needs to run
his parasitic extraction tool.)

o He specifies the -mcachemode copy option to override the default
module cache mode (link).

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

103

stcl> hcm get -target
sync://srvr1.ABCo.com:2647/Projects/CPU@Rel1 -path
A543Parasitics/CPU -mcachemode copy

The operation searches the module cache (specified in the default module cache
paths registry setting) for the CPU@REL1 release. In this case, the get operation
finds the CPU release submodule because the upper-level module of that
release's hierarchy exists as a separate entry in the module cache and that
hierarchy level matches the hierarchy level Marc specified by using hcm get
without -recursive.

Because he specified -mcachemode copy, the get operation removes the link
from Marc's work area to the CPU release in the module cache. Then get
operation then copies the CPU release to his work area.

Note: For the steps to work, Marc must perform them in the order shown
(fetching in link mode before fetching in copy mode). The hcm get operation does
not allow overwriting the contents of a work area with links to the module cache.
If Marc fetched ChipA543@Alpha in copy mode and then tried to fetch
CPU@REL1 in link mode, the fetch of CPU would fail.

Related Topics

hcm get Command

hcm showconfs Command

hcm showmcache Command

Module Cache

Setting the Default Module Cache Path or Mode

The MPU Team Upgrades to HCM
Drawn by the success of the CPU team, the MPU design team wants to be a consumer
of the ALU module.

In the past, the MPU team used REFERENCE statements in a ProjectSync project to
import modules from other design projects into the MPU design. Recently, the
Synchronicity administrator installed HCM software on the MPU development server.
The MPU team decides to upgrade their existing DesignSync vault directories to HCM
modules and change vault REFERENCEs to HCM hierarchical references.

Jeanne, the MPU team leader, performs the upgrade:

Scenarios for Using HCM

104

1. To determine which DesignSync vault directories are good candidates to be
HCM modules, Jeanne identifies the ProjectSync projects. To view a list of all
ProjectSync projects defined on the mpu SyncServer, she clicks Data Sheet on
the ProjectSync menu. She can also use the DesignSync url projects command
for this task. For example:

% stclc
stcl> url projects sync://mpu.ABCo.com:2647

2. Jeanne runs the hcm upgrade operation on each vault directory that is a
potential module. For example, suppose that Jeanne identifies the MPU vault
directory as a potential module. She uses the hcm upgrade operation,
specifying the MPU vault directory as the target of the operation:

stcl> hcm upgrade -target
sync://mpu.ABCo.com:2647/Projects/MPU

The hcm upgrade operation:

• Creates an HCM module from the vault directory specified with the -target
option.

• Scans the vault directory specified by the -target option for sync_project.txt
files located anywhere in the directory structure below that vault directory.

• For sync_project.txt files containing REFERENCE or CONFIG statements,
the operation creates a hierarchical reference from each REFERENCE and
CONFIG statement. (The operation determines the relative path from the
REFERENCE statement.)

• Deletes the sync_project.txt file that contained the REFERENCEs and the
folder in which the file was located. (However, a copy of the file is saved in the
vault folder located one level above the folder that was deleted.)

• Updates existing email subscriptions associated with a vault path to subscriptions
on the newly-created module. Because the email subscriptions apply only to the
newly created module, not its submodules, the upgrade operation sets the
Scope field of each subscription to This object only (the default for HCM
modules). HCM also sets the Scope field to This object only for existing
subscriptions to any configurations of the module.

In addition, for each existing subscription associated with the vault path, the
upgrade operation adds a new subscription covering the entire vault structure
below the vault folder that is being converted into a module.

For example, suppose the vault directory
sync://mpu.ABCo.com:2647/Projects/MPU/blocks/ALU has a
sync_project.txt file containing the following entries:

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

105

NAME ALU
REFERENCE sync://alu.ABCo.com:2647/Projects/ALU
CONFIG R1 A3
CONFIG R2 A6
.
.

In this example, when Jeanne runs the hcm upgrade operation on the MPU vault
directory (sync://mpu.ABCo.com:2647/Projects/MPU), the operation:

• From the vault path, creates the MPU module and its default configuration.
• Scans the vault directory specified by the -target option for sync_project.txt

files and finds one in
sync://mpu.ABCo.com:2647/Projects/MPU/blocks/ALU.

• From the REFERENCE statement, creates a hierarchical reference from the
MPU module's default configuration to the ALU module's default configuration,
specifying blocks/ALU as the relative path.

• For each CONFIG statement, creates a hierarchical reference: from MPU@R1 to
ALU@A3 (with a relative path of blocks/ALU) and from MPU@R2 to ALU@A6
(with a relative path of blocks/ALU).

• Deletes the sync_project.txt file containing the REFERENCE statement.
(However, a copy of the file is saved to
<SYNC_DIR>/../syncdata/mpu/2647/server_vault/Projects/MPU/b
locks/.SYNC.ALU.sync_project.txt.)

• Deletes the ALU folder.
• Updates Jeanne's existing email subscriptions associated with the MPU vault

path to subscriptions on the MPU module default configuration, and for each
subscription, sets the Scope field to This object only. The upgrade operation
also sets the same scope for Jeanne's existing subscriptions to configurations of
MPU. Finally, for each existing subscription associated with the vault path, the
upgrade operation adds a new subscription covering the entire vault structure
below the vault folder that is being converted into a module.

Note: After performing the upgrade, Jeanne tells the MPU team to fetch each new
configuration to an empty work area rather than trying to update their existing work
areas. (Synchronicity recommends that users take this action after an hcm upgrade
operation.)

After the upgrade has been performed, the MPU team can use hcm showconfs to view
the HCM configurations and hcm showhrefs to view hierarchical references created by
the operation.

Related Topics

hcm showconfs Command

Scenarios for Using HCM

106

hcm showhrefs Command

hcm upgrade Command

url projects

A Designer Creates a Configuration for Experimentation
The CPU team does its development work on the CPU module's default configuration,
which has a hierarchical reference to the alias ALU@GOLDEN. Currently, the GOLDEN
alias points to the ALU@R12 release configuration. While it has created an R14
release, the ALU team has not yet changed the ALU@GOLDEN alias to point to
ALU@R14.

In order to make progress on her part of the CPU design, Shirley, a CPU designer,
needs to experiment with ALU@R14 and possibly later releases of other modules too.
Shirley wants to run an application against the CPU module's files as they currently
exist; she also wants to test against the latest ALU release, ALU@R14. But she knows
that releases cannot be changed, so she creates her own configuration for
experimentation:

1. Shirley uses the hcm mkconf operation with its -branch option to create the
configuration:

% stclc
stcl> hcm mkconf -branch Trunk -name Shirleyconf -target
sync://cpu.ABCo.com:2647/Projects/CPU -description
"Configuration of CPU for experiment"

Note: For information on configuration names, see Naming Guidelines.

Because Shirley specified no particular configuration of CPU as the target, the
hcm mkconf operation creates the new configuration from the CPU module's
default configuration.

The mkconf operation creates the new configuration on the SyncServer and
gives it the name CPU@Shirleyconf. In addition, the operation includes the
description (specified with the -description option) in the ProjectSync project. (If
the -description option is not specified, the mkconf operation provides a default
description of "HCM configuration".) Team members can view the description in
ProjectSync and in the output of the hcm showconfs -report script operation.

2. Shirley creates the clone script, a Tcl script that uses the hcm showhrefs and
hcm addhref operations to copy all of the hierarchical references from one
specified module configuration to another. The script might look something like
this example:

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

107

proc clone {from_target to_target} {
 foreach href [hcm showhrefs -target $from_target -report script] {
 array set hrefArray $href
 hcm addhref -from $to_target -to $hrefArray(target) -relpath
$hrefArray(relpath)
 }
}

3. She then sources the clone script and runs it:

stcl> source clone.tcl
stcl> clone sync://cpu.ABCo.com:2647/Projects/CPU
sync://cpu.ABCo.com:2647/Projects/CPU@Shirleyconf

The script recreates the hierarchical references of the CPU module's default
configuration. The result is a configuration (CPU@Shirleyconf) identical to the
one that the rest of the CPU team is using, except that Shirley can modify it.

4. As a final step, Shirley replaces the reference from the CPU module to
ALU@GOLDEN with a reference to ALU@R14:

stcl> hcm rmhref -fromtarget
sync://cpu.ABCo.com:2647/Projects/CPU@Shirleyconf -totarget
sync://alu.ABCo.com:2647/Projects/ALU@GOLDEN -relpath ALU

stcl> hcm addhref -fromtarget
sync://cpu.ABCo.com:2647/Projects/CPU@Shirleyconf -totarget
sync://alu.ABCo.com:2647/Projects/ALU@R14 -relpath ALU

Now Shirley can perform an hcm get -recursive operation on CPU@Shirleyconf and
experiment with the design without affecting the work of other members on the CPU
team.

Related Topics

hcm addhref Command

hcm get Command

hcm mkconf Command

hcm rmhref Command

hcm showhrefs Command

Using DesignSync with HCM

A Designer Removes a Configuration

Scenarios for Using HCM

108

The MPU Team References the ALU Work in Progress
The CPU team thinks of the ALU module as a reusable block with an interface they can
use to incorporate the block into their design. So the team relies on releases of the ALU
module.

The MPU team, on the other hand, considers the ALU module as part of their in-
progress design. For this reason, MPU team members feel that their module needs to
refer to the ALU team's work in progress, not just its releases.

To create a hierarchical reference to the ALU configuration that contains work in
progress, the MPU team leader uses the hcm addhref operation:

% stclc
stcl> hcm addhref -fromtarget
sync://mpu.ABCo.com:2647/Projects/MPU -totarget
sync://alu.ABCo.com:2647/Projects/ALU

Because the team leader did not specify a configuration for the MPU or the ALU
module, the HCM software creates the reference from the MPU module's default
configuration to the ALU module's default configuration.

Because the team leader did not specify a -relpath option, the addhref operation uses
ALU as the -relpath value. (By default, the operation uses the -totarget module name
as the name of the submodule's base directory and places it directly below the upper-
level module base directory.)

The addhref operation creates the reference and stores the information with the MPU
module default configuration on the SyncServer.

Note: Although this scenario shows use of a module's default configuration as the work-
in-progress configuration, any branch configuration can be used for this purpose. For
example, instead of using the default configuration, the ALU team could branch their
files and use hcm mkconf to create an HCM configuration called ALU@Work that the
team uses for development work in progress. For an example scenario of creating a
configuration from branched files, see The CPU Team Creates a Work-in-Progress
Configuration from a Release.

When an MPU designer uses the hcm get -recursive operation to get the MPU
module, the operation fetches the latest files on the Trunk branch of the MPU module
and the latest files on the Trunk branch the ALU module.

Related Topics

hcm addhref Command

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

109

hcm get Command

hcm mkconf Command

The CPU Team Creates a Work-in-Progress Configuration
from a Release
In the scenario A Designer Creates a Configuration for Experimentation, a designer on
the CPU team used the CPU module's default configuration to create a configuration to
experiment with the CPU design. The CPU team decides to use this method to create a
configuration they can use to solve a problem with a release.

The CPU team has discovered a problem on release R5 of the CPU module, which is in
wide-scale use by other teams. In addition, CPU team members have already made
significant code changes during development of release R6. To make bug fixes to
CPU@R5 code, the team decides it needs to create a branch of the CPU@R5 module
configuration.

The CPU team leader (Robert) creates the branch of the configuration:

1. Robert is going to create the configuration in his work area. He starts by creating
a new work area directory and changing directory to it:

% stclc
stcl> mkfolder /dev/users/Robert/CPU_R5_Bug_Fix
stcl> cd /dev/users/Robert/CPU_R5_Bug_Fix

2. Next he uses the hcm get operation to fetch to his work area only the upper-level
CPU module of the CPU@R5 release configuration. (Note: The hcm get
operation is nonrecursive by default.)

stcl> hcm get -target
sync://cpu.ABCo.com:2647/Projects/CPU@R5

Since Robert did not specify the -path option, the operation fetches the module
to his current work area directory.

3. He then uses the DesignSync mkbranch command to branch the files, calling
the branch R5_Bug_Fix.

stcl> mkbranch -recursive R5_Bug_Fix .

The mkbranch operation creates new branches of all files in the folder and
subfolders contained in the upper-level CPU module Robert fetched to his work
area with hcm get.

Scenarios for Using HCM

110

Note: Using the mkbranch -recursive command is not generally recommended
with HCM module configurations; however, its use is acceptable in this particular
case. See Using DesignSync with HCM for more information.

4. Robert creates a branch configuration of the new R5_Bug_Fix branch, giving
the configuration the same name as the branch:

stcl> hcm mkconf -branch R5_Bug_Fix -name R5_Bug_Fix -
target sync://cpu.ABCo.com:2647/Projects/CPU -description
"WIP configuration for R5 bug fix"

The mkconf operation:

o Creates the configuration from the R5_Bug_Fix branch
o Includes the description (specified with the -description option) in the

ProjectSync project. (If the -description option is not specified, the
mkconf operation provides a default description of "HCM configuration".)
Team members can view the description in ProjectSync and in the output
of the hcm showconfs -report script operation.

5. Robert uses the clone.tcl script to copy all of the CPU@R5 hierarchical
references to the new configuration, CPU@R5_Bug_Fix. (To view the script, see
A Designer Creates a Configuration for Experimentation.)

stcl> clone sync://cpu.ABCo.com:2647/Projects/CPU@R5
sync://cpu.ABCo.com:2647/Projects/CPU@R5_Bug_Fix

At this point, CPU team members get the CPU@R5_Bug_Fix module
configuration to their work areas and begin fixing the code. They can modify files
or hierarchical references. They also can branch any of the submodules, if need
be, to fix problems in a submodule's code.

Related Topics

hcm get Command

hcm mkconf Command

mkbranch Command

mkfolder Command

Using DesignSync with HCM

A Designer Creates a Configuration for Experimentation

The CPU Team Develops a Checking Script Using HCM

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

111

Through some trial and error, the CPU team discovers that their release process has
not caught some critical errors in the submodules of CPU. By doing queries of the
module hierarchy, the team was able to find all defects that were logged; however, one
variety of defect escaped detection until integration time.

The team discovers that a day can be lost assembling a massive chip and simulating it.
However, half the time of running the simulation and analyzing the results can be saved
if the data input to the simulation is itself validated before running the simulation.

To better identify defects during the development process, the team establishes release
criteria that each submodule must meet:

• Every module must have a test directory and a doc directory in its hierarchy .
• The test directory must contain a file that can be parsed in order to determine

that all the tests passed.
• The test directory's file must have a later date than one of the RTL files. In

addition, the date of the test results file must be later than all of the RTL files for
that module (thereby confirming that the test results are based on all of the latest
RTL files).

• The doc directory must have a non-empty file named after the module.

Robert, the CPU team leader, develops a script called mod_check to check that each
submodule meets the criteria. The script makes some assumptions about the CPU
module's vault structure:

• The test and doc directories contain files under DesignSync revision control.
• Also under revision control are the test results file and the doc directory's file

named after the submodule.
• To compare the dates of the files, the checking script must be able to locate the

modification date of the test files and of the RTL files against which it is checking.
• Project leaders use the hcm get operation to fetch files into their work areas so

that files can be checked and subsequently released.

Robert develops a script (project_check) to perform the submodule checks at each
level of the module hierarchy. This script:

• Identifies submodules (by using the hcm showhrefs operation without the -
target option) to display hierarchical references that reside with the module's
local data

• Executes the mod_check script at each level of the module hierarchy to check
for the existence of directories, files, and test results required to meet the criteria

• Uses DesignSync utilities such as url properties to determine the checkin time
of the files. These checkin times can be used to determine that the test results
were produced after the latest time of the RTL files for the module being
checked.

Scenarios for Using HCM

112

• (If all checks are successful) performs the hcm release operation on the module
and initiates regression tests.

Robert then performs the submodule checks:

1. Since he will perform the submodule checks and release the module from his
work area, Robert uses the hcm get -recursive operation to fetch the CPU
module hierarchy to his work area. For example:

% stclc
stcl> cd /dev/users/Robert/CPU
stcl> hcm get -recursive

Because he has used the hcm get operation on this module before, Robert does
not need to specify the -target option. (The HCM software stored the information
he specified when he first got the CPU module and recalls it.)

Because Robert did not specify a -path option, the operation uses his current
work area directory.

2. Robert then runs the project_check script, which checks each submodule
against the release criteria and, if all checks are successful, releases the module
and initiates regression tests.

Related Topics

hcm get Command

hcm release Command

hcm showhrefs Command

url properties

The CPU Team References a Tools Module
The CPU team is developing the CPU module, which relies on other submodules, as is
typical in HCM usage. However, the team also relies on some critical tools that are not
part of the CPU design project, for example, the Synopsys Design Compiler version 4.3.

While the Design Compiler tool doesn't have source files to be managed, the CPU team
wants to use ProjectSync to track any defects that affect the tool's use on projects going
on in the company. When team members perform a ProjectSync hierarchical query on
the CPU module, they want the query to show Design Compiler defects as well as those
on other contributing modules. They also want a hierarchical subscription for notes on
the CPU module to include Design Compiler notes.

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

113

To accomplish these goals, the team decides to create an HCM module for the Design
Compiler tool and include it as a submodule in the CPU module's hierarchy.

Robert, the CPU team leader, creates the module and makes it a submodule of CPU:

1. Robert uses the hcm mkmod operation to create a module for the Design
Compiler tool:

% stclc
stcl> hcm mkmod -target
sync://cpu.ABCo.com:2647/Projects/DesignCompiler -
description "hcm module for Design Compiler tool"

The mkmod operation:

o Defines the DesignCompiler vault folder as a module and creates a default
configuration for it.

o Creates a ProjectSync project for the DesignCompiler module. This action
allows ProjectSync to recognize the module.

o Includes the description (specified with the -description option) in the
ProjectSync project. This information is also available in HCM through the
hcm showmods -report script operation.

2. Next, he uses the hcm mkconf operation to create the v4.3 configuration of the
DesignCompiler module:

stcl> hcm mkconf -target
sync://cpu.ABCo.com:2647/Projects/DesignCompiler -name v4.3

3. To make DesignCompiler a submodule of CPU, Robert uses the hcm addhref
operation to create a hierarchical reference from the CPU module to the
DesignCompiler module.

In addition, Robert specifies an empty value (" ") for the -relpath option. This
empty value indicates that when the submodule is fetched with hcm get, the
operation should not fetch the submodule's contents (files and directories).
However, ProjectSync hierarchical subscription and queries on the upper-level
CPU module include the referenced DesignCompiler@v4.3 module configuration.

stcl> hcm addhref -fromtarget
sync://cpu.ABCo.com:2647/Projects/CPU -totarget
sync://cpu.ABCo.com:2647/Projects/DesignCompiler@v4.3 -
relpath ""

Because Robert specified only the CPU module (without a configuration) as the -
fromtarget, the hcm addhref operation creates a reference from the CPU

Scenarios for Using HCM

114

module's default configuration to the DesignCompiler@v4.3 module
configuration.

The hcm addhref operation creates the reference and stores the information
with the CPU module default configuration on the SyncServer.

To change or remove the reference, Robert would use the hcm rmhref
operation. For an example scenario, see The CPU Team Changes a Reference
to a New ALU Release.

Related Topics

hcm addhref Command

hcm rmhref Command

hcm mkconf Command

hcm mkmod Command

The MPU Team Removes a Module
(Removing a Module and Its Contents from the SyncServer)

When HCM was first installed, MPU team members wanted to experiment with its
functionality within their design environment. They created a module (TEST) for that
purpose and, in the course of their experiments, several configurations of TEST were
created as well.

The team has finished testing HCM functionality and no longer needs the TEST module.
They decide to remove the module and all its configurations from their server.

Note: This scenario assumes that the MPU team leader has access privileges to
remove modules. For information, see Access Controls on HCM Operations.

Jeanne, the MPU team leader, uses the hcm rmmod operation to remove the TEST
module:

1. Because the rmmod operation removes all configurations of a module, Jeanne
first uses the hcm showconfs operation to display the TEST module's
configurations:

% stclc
stcl> hcm showconfs -target
sync://mpu.ABCo.com:2647/Projects/TEST

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

115

Configurations of module
sync://mpu.ABCo.com:2647/Projects/TEST

NAME TYPE OWNER SELECTOR/ALIASED RELEASE
--
<Default> Branch Jeanne Trunk:Latest
C1 Selector Jeanne test031902
C2 Selector Jeanne test032502
R1 Release Jeanne
R2 Release Jeanne

2. Satisfied that the team no longer needs any of the TEST module's configurations,
Jeanne uses the hcm rmmod operation to remove the module from the
SyncServer:

stcl> hcm rmmod -target
sync://mpu.ABCo.com:2647/Projects/TEST -vaultdata -notes

The rmmod operation:

o Removes the TEST module and all its configurations from the mpu server.

Note: This operation does not affect the data in Jeanne's work area. For
example, suppose that Jeanne had fetched the TEST module to her work
area and then removed the module from the server. An hcm showstatus
operation comparing her work area to the server would show the deleted
TEST module configurations in her work area but report that they do not
exist on the server.

o Detaches the ProjectSync notes that are attached to the TEST module
and its configurations, except for the RevisionControl note generated by
the rmmod operation.

o Generates a RevisionControl note. Users who have subscribed to email
notification of RevisionControl notes on the TEST module or its
configurations receive email that the module has been removed.

o Removes all files (even locked files) in the vault folder in which the TEST
module resides. The operation also removes the vault folder and any
folders in the path specified. (This behavior is a result of the specifying the
-vaultdata option.)

o Deletes those notes that were detached and not attached to other objects
(a result of specifying the -notes option).

Now when the MPU or other teams use hcm showmods to display a list of the
modules on the server, the TEST module does not appear on the list.

Scenarios for Using HCM

116

3. The rmmod operation does not delete Jeanne's subscription to email on the
TEST module, so she deletes that subscription. (For an example scenario, see
Robert Deletes an Email Subscription.)

The MPU Team Leader Removes a Module Created By Mistake

(Removing a Module But Not Its Contents)

The MPU team decides to create a module that contains their design tools. Jeanne, the
MPU team leader, uses the hcm mkmod operation to create the module. However,
after creating the module, she realizes that she created the module with a target name
of Scripts instead of tclScripts.

1. Jeanne uses hcm rmmod to remove the module from the SyncServer. Because
she wants to remove just the Scripts module but not its contents or vault folder,
Jeanne does not specify the -vaultdata option:

stcl> hcm rmmod -target
sync://mpu.ABCo.com:2647/Projects/Scripts

The rmmod operation:

o Removes the Scripts module from the mpu server. The operation also
removes the hierarchical references of each of the module's configurations
(if any). (Note: This operation does not affect the data in Jeanne's work
area.)

o Detaches the ProjectSync notes attached to the module.
o Generates a RevisionControl note. Users subscribed to receive email

notification of RevisionControl notes on either the module or its
configurations receive notification that the module was removed.

Note: Because Jeanne did not specify the -vaultdata option, the rmmod
operation removes the Scripts module but does not remove its contents, vault
folder, or configurations. An hcm showconfs operation on the Scripts module
would still list the configurations of the Scripts module (if any), even though the
module was removed. In addition, because the Scripts vault folder resides in
the Projects folder on the server, ProjectSync still displays the Scripts module
and its configurations as a project.

2. Jeanne then uses the hcm mkmod operation to create the module from the
correct vault folder (tclScripts).

Related Topics

hcm rmmod Command

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

117

The ALU Team Creates a Module from a Vault

A Designer Removes a Configuration
In the scenario A Designer Creates a Configuration for Experimentation, Shirley, a CPU
designer, created a configuration of the CPU module so that she could experiment with
a submodule release not included in the CPU default configuration.

Shirley has finished her experiment and no longer needs the configuration she created
(CPU@Shirleyconf). She decides to remove the configuration from the SyncServer.

Note: This scenario assumes that Shirley has access privileges to remove
configurations. For information, see Access Controls on HCM Operations.

1. Shirley uses the hcm showconfs operation to display the configurations of CPU
on the cpu SyncServer:

% stclc
stcl> hcm showconfs -target
sync://cpu.ABCo.com:2647/Projects/CPU

Configurations of module
sync://cpu.ABCo.com:2647/Projects/CPU

NAME TYPE OWNER SELECTOR/ALIASED RELEASE

<Default> Branch Robert Trunk:Latest
R1 Release Robert
R2 Release Robert
Shirleyconf Branch Shirley Trunk:Latest

2. Next she uses the hcm rmconf operation to remove the CPU@Shirleyconf
module configuration from the SyncServer:

stcl> hcm rmconf -target
sync://cpu.ABCo.com:2647/Projects/CPU@Shirleyconf -notes

The rmconf operation:

o Removes the CPU@Shirleyconf configuration (a branch configuration)
from the server.

Note: This operation does not affect the data in Shirley's work area. For
example, suppose that Shirley had fetched the CPU@Shirleyconf
configuration to her work area and then removed the configuration from
the server. An hcm showstatus operation comparing her work area to the

Scenarios for Using HCM

118

server would show the CPU@Shirleyconf module configuration in her
work area but report that it does not exist on the server.

o Detaches any ProjectSync notes attached to the CPU@Shirleyconf
configuration.

o Deletes those notes that were detached and not attached to other objects
(a result of specifying the -notes option). Note: Notes for the Shirleyconf
configuration may not be deleted, even though Shirley specified the -
notes option. This behavior occurs when notes were created and attached
through the ProjectSync GUI, rather than some other means, such as a
server-side script. When you use the ProjectSync GUI to attach a note to
a configuration, ProjectSync also attaches it to the project (module). The
rmconf -notes operation does not delete the notes because they are
attached to the CPU project as well as its Shirleyconf configuration.

o Generates a RevisionControl note. Users who have subscribed to email
notification of RevisionControl notes on the CPU@Shirleyconf
configuration or the CPU module receive email that the configuration has
been removed.

Notes:

o The rmconf operation cannot remove a release or an alias.
o The rmconf operation is not recursive. For example, it does not follow

hierarchical references to submodules of CPU@Shirleyconf and remove
those submodule configurations. To remove the entire CPU@Shirleyconf
module hierarchy, Shirley would use the rmconf operation to remove each
submodule configuration in the hierarchy.

3. The rmconf operation does not delete Shirley's subscription to email on the
CPU@Shirleyconf configuration, so Shirley deletes that subscription. (For an
example scenario, see Robert Deletes an Email Subscription.)

Notes:

• The rmconf operation does not remove hierarchical references that other
modules have to the CPU@Shirleyconf configuration. For this reason, it is
important for users to subscribe to email notification of RevisionControl notes on
such HCM operations as hcm mkconf and hcm rmconf. If users receive
notification of creation and removal of configurations, they can update their
hierarchical references to the configurations accordingly. (For an example
scenario, see Robert Subscribes to RevisionControl Notes on HCM Operations.)

• Removing the reference to the CPU@Shirleyconf does not remove the data or
contents of CPU@Shirleyconf from users' work areas. However, users can
remove the contents of a removed configuration from their work areas in either of
two ways:

o Use the hcm get -recursive operation. If the removed configuration was
part of a module hierarchy, when users again fetch the hierarchy (using an

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

119

hcm get –recursive operation), the get operation deletes the contents of
the removed configuration from their work areas.

o Use the DesignSync rmfolder and rmfile commands. If the removed
configuration was not part of another module's hierarchy, users can use
the DesignSync rmfolder and rmfile commands to remove the
configuration's files and folders from their work areas. See Deleting
Design Objects in DesignSync Help for information.

In Shirley's case, the CPU@Shirleyconf configuration is not part of
another module's hierarchy. After removing CPU@Shirleyconf from the
server, Shirley no longer wants the its contents taking up space in her
work area. So she uses the DesignSync rmfolder and rmfile commands
to remove its files and folders.

Related Topics

A Designer Creates a Configuration for Experimentation

hcm rmconf Command

The ALU Team Removes an Alias
The ALU team has two aliases that it uses to identify releases of the ALU module at
different stages of the design process:

• ALU@SILVER identifies the Beta release of ALU. Currently, ALU@SILVER
points to ALU@R13.

• ALU@GOLDEN identifies the release of ALU that is ready for other teams to use.
Currently, ALU@GOLDEN points to R12.

After thoroughly testing R13, the ALU team decides that the GOLDEN alias should point
to R13 instead of R12.

In addition, at this time, no other release has passed the necessary test criteria to
qualify as the SILVER release. So the ALU team decides that the ALU@SILVER alias
should be removed from the server.

Anne, the ALU team leader, makes the changes to the aliases. (Note: This scenario
assumes that Anne has access privileges to remove aliases. For information, see
Access Controls on HCM Operations.)

1. Anne first uses hcm mkalias to change the GOLDEN alias to point to R13:

% stclc
stcl> hcm mkalias -target
sync://alu.ABCo.com:2647/Projects/ALU@R13 -name GOLDEN

Scenarios for Using HCM

120

The mkalias operation changes the ALU@GOLDEN alias to point to the
ALU@R13 release.

2. To confirm the alias change, Anne uses the hcm showconfs operation to
display the configurations of the ALU module:

stcl> hcm showconfs -target
sync://alu.ABCo.com:2647/Projects/ALU

Configurations of module
sync://alu.ABCo.com:2647/Projects/ALU

NAME TYPE OWNER SELECTOR/ALIASED RELEASE

<Default> Branch Anne Trunk:Latest
C1 Selector Anne valid12.06.01
GOLDEN Alias Anne R13
R1 Release Anne
.
.
R12 Release Anne
R13 Release Anne
SILVER Alias Anne R13

3. Anne uses hcm rmalias to remove the ALU@SILVER alias from the server:

stcl> hcm rmalias -target
sync://alu.ABCo.com:2647/Projects/ALU@SILVER

The rmalias operation:

o Removes the ALU@SILVER alias from the server but does not delete the
release to which the alias pointed (in this case, ALU@R13).

Note: The rmalias operation does not affect the data in users' work areas.
For example, suppose that ALU@SILVER is a submodule of
CPU@V0402 and that Anne had fetched the CPU@V0402 hierarchy to
her work area before she removed the ALU@SILVER alias from the
server. An hcm showstatus operation comparing her work area to the
server would show the ALU@SILVER alias configuration in her work area
but report that it does not exist on the server.

o Detaches the ProjectSync notes that are attached to the ALU@SILVER
alias.

o Generates a RevisionControl note. Users who have subscribed to email
notification of RevisionControl notes on the ALU@SILVER alias or the
owning module receive email that the alias has been removed.

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

121

4. Anne uses ProjectSync to delete her subscription to the release to which
ALU@SILVER pointed. (The release is identified by its Alias value of SILVER in
Anne's Subscription status summary.) Then she subscribes to email on
ALU@GOLDEN. (For an example scenario, see Robert Updates Email
Subscriptions.)

Notes:

• The rmalias operation does not remove hierarchical references that other
modules have to the ALU@SILVER configuration. For this reason, it is important
for users to subscribe to email notification of RevisionControl notes on such HCM
operations as hcm mkalias and hcm rmalias. If users receive notification of
creation and removal of aliases, they can update their hierarchical references to
the aliases accordingly. (For an example scenario, see Robert Subscribes to
RevisionControl Notes on HCM Operations.)

• Removing the reference to the ALU@SILVER submodule does not remove the
data or contents of ALU@SILVER from users' work areas. However, when users
again fetch the CPU@C1 hierarchy (using an hcm get –recursive operation),
the operation deletes the contents of ALU@SILVER from their work areas.

Related Topics

hcm rmalias Command

123

Quick Steps
Quick Steps
This topic presents a summary of steps and commands used in Scenarios for Using
HCM. This topic is intended to be a quick reminder of the commands for performing
tasks with HCM and assumes you are familiar with the scenarios.

Creating a Module

Creating a Module from a DesignSync Vault

% stclc
stcl> hcm mkmod -target sync://alu.ABCo.com:2647/Projects/ALU -
description "hcm module for alu"

Related scenario: The ALU Team Creates a Module from a Vault

Creating a Module and Its Contents

1. Create the module on the server.
2. Create a folder for the module and change directory to it.
3. Fetch the module to the work area.
4. Create files and add them to the module. (The example shows the operation for a

branch configuration. If you have a selector configuration, see Adding Files to a
Selector Configuration.)

% stclc
stcl> hcm mkmod -target sync://cpu.ABCo.com:2647/Projects/PLL -
description "PLL design for chip407"

stcl> mkfolder PLL
stcl> cd PLL

stcl> hcm get -target sync://cpu.ABCo.com:2647/Projects/PLL

stcl> ci -new -comment "adding procedure notes" procnotes.txt

Related Scenario: The PLL Team Creates a Module and Its Contents

Working with a Single Module

Fetching the Files of a Module for the First Time

1. Show the modules on the server.

Quick Steps

124

2. Show the module's configurations.
3. Fetch the files of the module configuration to the work area.

% stclc
stcl> hcm showmods -target sync://alu.ABCo.com:2647

stcl> hcm showconfs -target
sync://alu.ABCo.com:2647/Projects/ALU

stcl> hcm get -target sync://alu.ABCo.com:2647/Projects/ALU -
path /data/devel/users/Thomas/ALU

Related scenario: An ALU Designer Gets Files of a Module

Updating Your Work Area (Fetching the Same Module Subsequent Times)

% stclc
stcl> cd /data/devel/users/Thomas/ALU
stcl> hcm get

Related scenario: An ALU Designer Gets Files of a Module

Putting Modified Files of a Single Module Back on the Server (and Locking Them
for Edit)

1. Change directory to the base directory of the module in your work area.
2. Identify unmanaged files that you want to be part of the module and check in the

files. (The example shows the operation for a branch configuration. If you have a
selector configuration, see Adding Files to a Selector Configuration.)

3. Put the module configuration back on the server.

% stclc
stcl> cd /data/devel/users/Thomas/ALU

stcl> hcm showstatus -files
stcl> ci -new -comment "adding mult8 logic" mult8.gv mult8.v

stcl> hcm put -lock

Related scenario: A Designer Puts Files of a Module Back on the Server

Creating a Release of a Single Module

1. Change directory to the base directory of the module configuration you want to
release.

2. Identify unmanaged or modified files and check them in (using ci -new for
unmanaged files and hcm put for modified files). See Adding Files to a Module

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

125

Configuration or Putting Modified Files of a Single Module Back on the Server
(and Locking Them for Edit).

3. Create a release of the module configuration.

% stclc
stcl> cd /data/devel/users/Anne/ALU

stcl> hcm showstatus -files
stcl> hcm put

stcl> hcm release -name R1 -norecursive -description "Initial
release of ALU"

Related scenario: The ALU Team Makes a Release Available

Adding Files to a Module Configuration

Identify whether the configuration is a branch or selector configuration.

% stclc
stcl> hcm showconfs -target
sync://alu.ABCo.com:2647/Projects/ALU

Adding Files to a Branch Configuration

1. Change directory to the base directory of the configuration.
2. Identify the unmanaged files in your work area.
3. Check in the unmanaged files.

stcl> cd /data/devel/users/Thomas/ALU

stcl> ls -recursive -unmanaged

stcl> ci -new -comment "adding mult8 logic" mult8.gv mult8.v

Adding Files to a Selector Configuration

1. Change directory to the base directory of the configuration.
2. Identify the unmanaged files in your work area.
3. Check in the unmanaged files.
4. Tag the new file versions with the selector(s) for the configuration.

stcl> cd /data/devel/users/Thomas/ALU

stcl> ls -recursive -unmanaged

Quick Steps

126

stcl> ci -new -comment "new files for mult8 logic" -branch Trunk
mult8.gv mult8.v

stcl> tag valid12.06.01 mult8.gv mult8.v

Related scenario: A Designer Adds Files to a Configuration

Removing Files from a Module Configuration

Identify whether the configuration is a branch or selector configuration.

% stclc
stcl> hcm showconfs -target
sync://alu.ABCo.com:2647/Projects/ALU

Removing Files from a Branch Configuration

Use the DesignSync retire command to retire the files.

stcl> retire AluAddEx.v AluDelEx.v

Removing Files from a Selector Configuration

1. Change directory to the base directory of the configuration.
2. Make sure that all of the files in your work area are up-to-date.
3. Delete the version tag from the files you want to remove from the configuration.

stcl> cd /data/devel/users/Thomas/ALU
stcl> ls -recursive -report SNGHR
stcl> tag -delete valid12.06.01 file4.v file2.v

Working with a Module Hierarchy

Adding a Submodule to a Module Hierarchy (Creating a Hierarchical Reference)

1. Create a hierarchical reference from the upper-level module configuration to the
module configuration that will be the submodule.

2. Show the module's hierarchical references to all its submodules.

% stclc
stcl> hcm addhref -fromtarget
sync://cpu.ABCo.com:2647/Projects/CPU -totarget
sync://alu.ABCo.com:2647/Projects/ALU@R1 -relpath ALU

stcl> hcm showhrefs -target
sync://cpu.ABCo.com:2647/Projects/CPU

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

127

Related scenario: The CPU Team References the ALU Module

Creating a Reference to an IP Gear Deliverable

1. In IP Gear, search for the deliverable and determine its deliverable number.
2. In HCM, create a hierarchical reference from the upper-level module

configuration to the IP Gear deliverable.
3. Show the module's hierarchical references.

% stclc
stcl> hcm addhref -fromtarget
sync://cpu.ABCo.com:2647/Projects/CPU -totarget
sync://ipgsrvr1.IOCo.com:2647/Deliverable/1028 -relpath IOSTAT

stcl> hcm showhrefs -target
sync://cpu.ABCo.com:2647/Projects/CPU

Related scenario: The CPU Team References an IP Gear Deliverable

Changing a Reference

1. Identify the module configuration you want to add a hierarchical reference to.
2. Identify the reference to the submodule configuration that you want to remove.
3. Remove the existing hierarchical reference.
4. Add the new hierarchical reference.

% stclc
stcl> hcm showconfs -target
sync://alu.ABCo.com:2647/Projects/ALU

stcl> hcm showhrefs -target
sync://cpu.ABCo.com:2647/Projects/CPU

stcl> hcm rmhref -fromtarget
sync://cpu.ABCo.com:2647/Projects/CPU -totarget
sync://alu.ABCo.com:2647/Projects/ALU@R1 -relpath ALU

stcl> hcm addhref -fromtarget
sync://cpu.ABCo.com:2647/Projects/CPU -totarget
sync://alu.ABCo.com:2647/Projects/ALU@R2 -relpath ALU

Related scenario: The CPU Team Changes a Reference to a New ALU Release

Fetching the Files of a Module Hierarchy for the First Time

Quick Steps

128

% stclc
stcl> hcm get -recursive -target
sync://cpu.ABCo.com:2647/Projects/CPU -path /dev/users/Marie/CPU

Related scenario: A CPU Designer Gets a Module Hierarchy

Updating Your Work Area with a Module Hierarchy (Fetching the Hierarchy
Subsequent Times)

1. Change directory to the base directory for the hierarchy.
2. Update the hierarchy in the work area.

% stclc
stcl> cd /dev/users/Marie/CPU

stcl> hcm get -recursive -incremental

Putting a Module Hierarchy Back on the Server

1. Change directory to the base directory for the upper-level module.
2. Identify unmanaged files that you want to be part of the module and check in the

files. (The example shows the operation for a branch configuration. If you have a
selector configuration, see Adding Files to a Selector Configuration.)

3. Put the hierarchy back on the SyncServer.

% stclc

stcl> cd /dev/users/Marie/CPU

stcl> hcm showstatus -files -recursive
stcl> ci -new -comment "adding mult8 logic" mult8.gv mult8.v

stcl> hcm put -recursive

Related scenarios:

A Designer Puts a Module Hierarchy Back on the Server

A Designer Adds Files to a Configuration

Creating a Release of a Module Hierarchy

1. Change directory to the base directory for the upper-level module.
2. Show the status of the work area hierarchy as compared to the hierarchy on the

server.

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

129

3. Identify unmanaged or modified files and check them in (using ci -new for
unmanaged files and hcm put for modified files). See Adding Files to a Module
Configuration or Putting a Module Hierarchy Back on the Server.

4. Create the release of the hierarchy.

% stclc
stcl> cd /dev/users/Robert/CPU

stcl> hcm showstatus -recursive -files
stcl> hcm put

stcl> hcm release -name R1 -description "Baseline release of CPU
hierarchy"

Related scenario: The CPU Team Creates a Release

Fetching from the Module Cache

1. Show the contents of the module cache to see if releases are there.
2. Fetch the configuration, using module cache mode.

% stclc
stcl> hcm showmcache -mcachepaths /A543/cache1

stcl> hcm get -recursive -target
sync://cpu.ABCo.com:2647/Projects/CPU -path /dev/users/Marie/CPU
-mcachepaths /A543/cache1 -mcachemode link

Note: If the DesignSync registry settings for default module cache paths and default
module cache mode have been set, you need to specify the -mcachepaths and -
mcachemode options only if you want to override the defaults.

Related scenario: Designers Use the Module Cache

Creating or Changing an Alias for a Release

1. Identify the release you want to create the alias for or change an existing alias to.
2. Create the alias.

% stclc
stcl> hcm showconfs -target
sync://alu.ABCo.com:2647/Projects/ALU

stcl> hcm mkalias -target
sync://alu.ABCo.com:2647/Projects/ALU@R11 -name GOLDEN -
description "Ready for distribution to other teams"

Quick Steps

130

Related scenario: The ALU Team Creates an Alias for a Release

Upgrading to HCM

1. Determine which DesignSync vault directories are good candidates to be HCM
modules.

2. Upgrade each vault directory.

% stclc
stcl> url projects sync://mpu.ABCo.com:2647

stcl> hcm upgrade -target sync://mpu.ABCo.com:2647/Projects/MPU

Related scenario: The MPU Team Upgrades to HCM

Working with Configurations

Creating a Branch Configuration

% stclc
stcl> hcm mkconf -branch Trunk -name Shirleyconf -target
sync://cpu.ABCo.com:2647/Projects/CPU -description "WIP
configuration for R5 bug fix"

Related scenario: A Designer Creates a Configuration for Experimentation

Creating a Branch Configuration from a Release

1. Create a folder in your work area for the configuration and change directory to
the folder.

2. Get the release to your work area.
3. Branch the files of the release.
4. Create a configuration from the branch.
5. Use a script (clone.tcl, in the example) to recreate the hierarchical references

of the release in the new configuration. (This script is explained in The CPU
Team Creates a Work-in-Progress from a Release.)

% stclc
stcl> mkfolder /dev/users/Robert/CPU_R5_Bug_Fix
stcl> cd /dev/users/Robert/CPU_R5_Bug_Fix

stcl> hcm get -target sync://cpu.ABCo.com:2647/Projects/CPU@R5

stcl> mkbranch -recursive R5_Bug_Fix .

stcl> hcm mkconf -branch R5_Bug_Fix -name R5_Bug_Fix -target

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

131

sync://cpu.ABCo.com:2647/Projects/CPU

stcl> clone sync://cpu.ABCo.com:2647/Projects/CPU@R5
sync://cpu.ABCo.com:2647/Projects/CPU@R5_Bug_Fix

Related scenario: The CPU Team Creates a Work-in-Progress from a Release

Referencing a Work in Progress Configuration

% stclc
stcl> hcm addhref -fromtarget
sync://mpu.ABCo.com:2647/Projects/MPU -totarget
sync://alu.ABCo.com:2647/Projects/ALU -relpath ALU

Related scenario: The MPU Team References the ALU Work in Progress

Referencing a Tools Module

These steps create a module configuration and add it to a hierarchy, but specify that its
contents never be fetched to users' work areas. This method is useful for including a
tool in a module hierarchy, not to manage its files but to track notes or defects on it as
part of the ProjectSync project associated with the module.

1. Create the module.
2. Create the configuration.
3. Add the hierarchical reference from the upper-level module to the submodule but

specify that contents will never be fetched (-relpath "").

% stclc
stcl> hcm mkmod -target
sync://cpu.ABCo.com:2647/Projects/DesignCompiler -description
"hcm module for Design Compiler tool"

stcl> hcm mkconf -target
sync://cpu.ABCo.com:2647/Projects/DesignCompiler -name v4.3

stcl> hcm addhref -fromtarget
sync://cpu.ABCo.com:2647/Projects/CPU -totarget
sync://cpu.ABCo.com:2647/Projects/DesignCompiler@v4.3 -relpath
""

Related scenario: The CPU Team References a Tools Module

Removing a Module

Removing a Module and Configurations, Its Contents, and Notes

Quick Steps

132

1. Identify the module's configurations, since they will be removed with the module.
2. Remove the module.

% stclc
stcl> hcm showconfs -target
sync://mpu.ABCo.com:2647/Projects/TEST

stcl> hcm rmmod -target sync://mpu.ABCo.com:2647/Projects/TEST -
vaultdata -notes

Removing a Module but Not Its Configurations, Contents, or Notes

% stclc
stcl> hcm rmmod -target
sync://mpu.ABCo.com:2647/Projects/Scripts

Related scenario: The MPU Team Removes a Module

Removing a Configuration

1. Identify the configuration you want to remove.
2. Remove the configuration.

% stclc
stcl> hcm showconfs -target
sync://cpu.ABCo.com:2647/Projects/CPU

stcl> hcm rmconf -target
sync://cpu.ABCo.com:2647/Projects/CPU@Shirleyconf

Related scenario: A Designer Removes a Configuration

Removing an Alias

1. Identify the alias you want to remove.
2. Remove the alias.

% stclc
stcl> hcm showconfs -target
sync://alu.ABCo.com:2647/Projects/ALU

stcl> hcm rmalias -target
sync://alu.ABCo.com:2647/Projects/ALU@SILVER

Related scenario: The ALU Team Removes an Alias

133

HCM Administration
Overview of Administration Tasks
After you install the HCM software, you need to perform some tasks to set up HCM for
use and to ensure that it operates successfully:

• Add the hcmNoteAttach trigger. You must perform this task on each HCM
SyncServer. See Adding the hcmNoteAttach Trigger.

• Upgrade DesignSync REFERENCEs to HCM modules, if necessary. You should
perform this task in order to take advantage of HCM capabilities, such as
hierarchical queries and subscriptions. For an example scenario, see The MPU
Team Upgrades to HCM.

• Set up email notification of HCM RevisionControl notes. The HCM installation
process performs the first step of this task (enabling HCM RevisionControl
notes). For more information, see Setting Up Email Notification of HCM
RevisionControl Notes.

• Map note types, if necessary. You should perform this task if submodule
SyncServers use note types different from those of the upper-level module's
SyncServer. For information, see Mapping Note Types.

• Store logins, if necessary. You should perform this task if your users do not have
the same login on all SyncServers they access in their design work.

A simple test of whether you need to store logins is to set up the module
hierarchy and then perform a query. If the query succeeds, then you do not need
to store logins. For more information, see Storing Logins.

• Decide on and implement a policy regarding access to hcm commands. For
information see Access Controls on HCM Operations.

• Optionally, customize the display of HCM commands and command options in
the DesignSync GUI. For information, see Commands and Command Options in
SyncAdmin Help.

• Optionally, set up a module cache. For information, see Setting Up a Module
Cache.

• Consider how DesignSync settings affect the behavior of HCM operations and
adjust settings if necessary. In most cases, HCM follows DesignSync settings.
For example:

o Minimum checkin comment length. The hcm put operation follows this
setting. For information about the minimum checkin comment length
setting, see ENOVIA Synchronicity DesignSync Data Manager
Administrator's Guide: The General Tab-Administrator View.

o The registry setting for keeping version identifiers (RmVaultKeepVid).
The hcm rmmod -vaultdata operation follows this setting. For information
about this setting, see ENOVIA Synchronicity DesignSync Data Manager
Administrator's Guide: Keep Last-Version Information (RmVaultKeepVid)

HCM Administration

134

o The registry setting for choosing to delete or retain empty folders during a
populate (PopulateNoEmptyDirs). The hcm get operation follows this
setting. (Note: If this registry setting is not specified, the default behavior
of the get operation is to remove empty directories.) For information about
this setting, see ENOVIA Synchronicity DesignSync Data Manager
Administrator's Guide: Advanced Empty Directory Defaults
(PopulateNoEmptyDirs).

o The registry setting for Cadence non-collection members (Cadence View
Folder). The hcm get and hcm put operations follow this setting when
working on modules that include Cadence collections. For information
about this setting, see ENOVIA Synchronicity DesignSync Data Manager
Administrator's Guide: Advanced Registry Settings.

However, HCM does not follow these DesignSync settings:

o Default fetch state. HCM does not support the default fetch state of
Always point to the latest version (Mirror). If a default fetch state of
Mirror has been set in DesignSync, you must change that setting at the
site or project level in order for users to use the hcm get or hcm put
operations. For information about the default fetch state setting, see
ENOVIA Synchronicity DesignSync Data Manager Administrator's Guide:
The General Tab-Administrator View.

o Settings that specify dereferencing of symbolic links to files or directories.

Note: To operate on symbolic links to files or directories, the hcm put
operation requires links to be both under DesignSync management and
modified.

The table shows how each symbolic link setting is handled:

For this symbolic link
setting...

The hcm put operation...

Dereference links and
operate on the file/directory
pointed to by the link (the
default setting for symbolic
links)

Obeys the symbolic link setting for
links to files only if the link is
managed and has been modified.
Otherwise, the put operation does
not follow the link.

The put operation does not follow
links to directories. In HCM, the
contents of a configuration reside on
a single server in a single vault
folder. Symbolic links might point to
directories containing objects that do
not reside in the vault folder of the
configuration. If the put operation

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

135

followed directory links, problems
with maintaining configuration
content could occur.

Store links to files as links...
Dereference links to
directories...

Checks in links to files as links, as
specified by the setting.

The put operation does not follow
links to directories. In HCM, the
contents of a configuration reside on
a single server in a single vault
folder. Symbolic links might point to
directories containing objects that do
not reside in the vault folder of the
configuration. If the put operation
followed directory links, problems
with maintaining configuration
content could occur.

Store both links to files and
directories as links and
remember where they point
to on check out

Checks in both links to files and links
to directories as links, as specified by
the setting.

Note: Symbolic link settings do not affect the hcm get operation.

For information about the symbolic link mode setting, see The Symbolic
Links Tab in SyncAdmin Help.

Enabling Legacy Module Support
In order to take advantage of the functionality of HCM modules, you must enable legacy
module mode.

To enable legacy module mode:

1. Open SyncAdmin.
2. Open the General -> Modules tab.
3. Check the Activate legacy hcm command set option to enable legacy module

mode and click Apply or OK.
4. Reset the DesignSync server and restart any open DesignSync clients.

Legacy Module Triggers and Email Notification
Legacy modules have two predefined triggers that synchronize notes attached to an
alias with those attached to the module selector or release configuration to which the
alias points.

HCM Administration

136

Note: Modules do not use these predefined triggers.

You should disable both the triggers in order to stop Release or Alias note attachment
activity after you've upgraded your modules.

This Trigger... Is Enabled When...
hcmNoteAttach You add the trigger to the Note Objects triggers. See the

steps in the section To add the hcmNoteAttach trigger.

To disable the trigger, use the DesignSync Web interface to
edit the trigger and deselect its Active property. See ENOVIA
Synchronicity DesignSync Data Manager: Editing Note Object
Triggers for information.

hcmMakeAlias The first time the hcm mkalias operation is performed. You
do not need to take any action to enable this trigger.

To disable the trigger, include the following line in a server-
side script and run the script:

trigger disable hcmMakeAlias

To enable the trigger again (after disabling it), include the
following line in a server-side script and run the script:

trigger enable hcmMakeAlias

For information about server-side scripts, see Working with
Server stcl Scripts in the Synchronicity stcl Programmer's
Guide.

If you use legacy modules concurrently with new modules, you may need to create
email notification triggers for legacy module notes. To do so, you must add the
hcmNoteAttach trigger and create email notification for legacy module actions.

To add the hcmNoteAttach trigger:

Note: These steps assume that the email trigger has already been activated. See
 ENOVIA Synchronicity DesignSync Data Manager: Activating the Email Trigger.

1. Invoke the DesignSync Web interface.
2. In the Admin | Triggers menu, click Add. The DesignSync web displays the

Add Trigger: Define Attributes panel.
3. At the Add Trigger: Define Attributes panel, in the Name field, type:

hcmNoteAttach.
4. In the TCL File field, type: hcmNoteAttachTrigger.tbc.
5. For Command, select attach.

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

137

6. Select Atomic.
7. In the Object Type field, select Project Configuration.
8. Click Submit.

This adds the trigger to its list of triggers and activates the trigger. The Operation
Successful panel appears with a table that summarizes the properties of your new
trigger.

To enable email notification of legacy module actions:

1. Configure email notifications in the DesignSync Web interface. See the
DesignSync Data Manager Administrator's Guide: Configuring Email Notifications
for details.

2. From the Email Administrator Index of Operations page, select the Revision
Control link under Note Type Specific Email Formatting Attributes.
DesignSync displays the Revision Control Specific Settings panel.

3. For the Fields Included in Notifications field, select Tag or HCM sub-cmd from the
pull-down menu.

4. Click Review to review your changes. Then click Commit Changes to have the settings
take effect.

Users can then subscribe to email for RevisionControl notes, as they would for other
note types. The email contains the RevisionControl note's contents and a list of objects
(the URL of the relevant legacy modules, or legacy configurations affected by the
operation). For an example of a legacy module scenario, see The CPU Team
Subscribes to Email on a Hierarchy.

Mapping Note Types
When HCM is installed on a SyncServer, users can use ProjectSync to query for notes
on an entire module hierarchy (an HCM module and its submodules), regardless of
where submodules reside. However, submodule servers may have different
ProjectSync note types, which may contain different field names and field values. If
submodule servers use different note types, you, as Synchronicity administrator, must
map the upper-level module note types to those used on the submodule servers.
Mapping note types ensures the successful operation of not only queries but also
subscriptions to notes on a module hierarchy.

Mapping note types is required in order to successfully query for notes on a module
hierarchy containing IP Gear deliverables. By mapping a ProjectSync note type
(SyncDefect, for example) to an IP Gear Ticket (a note based on the ProjectSync
CustTicket note type), you ensure that a query on SyncDefects displays Tickets for the
IP Gear deliverable as well. For example mappings, see the
<SYNC_DIR>/share/config/hcmNoteMap.conf file.

HCM Administration

138

Note: Mapping of note types ensures successful queries and subscriptions to a module
hierarchy only when the user's login is the same as on the referenced server, or when a
login has been stored for the user. See Storing Logins for information.

To map note types:

1. Use the hcm showhrefs operation to identify submodules that reside on servers
different from the upper-level module. For example:

stcl> hcm showhrefs -target sync://cpu.ABCo.com:2647/Projects/CPU
Target: sync://cpu.ABCo.com:2647/Projects/CPU

REFERENCE URL RELATIVE
PATH

ALU@R1 sync://alu.ABCo.com:2647/Projects/ALU@R1 ALU
CACHE@R4 sync://cpu.ABCo.com:2647/Projects/CACHE@R4 CACHE
Deliverable/1028 sync://ipgsrvr1.IOCo.com:2647/Deliverable/1028 IOSTAT

2. On the upper-level module's SyncServer, use the ProjectSync NoteType
Manager to examine the note type structure. At the NoteType Manager, choose
Modify an active note type and use information in the first two screens
displayed.

3. For each submodule on a different SyncServer, log in to that server. Then use
ProjectSync NoteType Manager to view note types and their fields. (To get
information on choice and state machine field values, use the Property Type
Manager on the NoteType Manager panel.)

From the information displayed, determine the note types and fields you need to
map. To complete this step, you will have to know the semantics of how fields
are used.

For example, the hcm showhrefs operation for the CPU module's default
configuration lists the IOSTAT submodule as residing on an IP Gear Publisher
server. You know that the Publisher server uses the Ticket note type (based on
the ProjectSync CustTicket note type). You want a query based on the DateFixed
field of the SyncDefect note type to use the ClosedDate field in the CustTicket
note type.

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

139

From this information, you know that on the sync://cpu.ABCo.com:2647
server, you must map:

o The SyncDefect note type to the CustTicket note type
o The DateFixed field to the ClosedDate field

4. On the SyncServer where the upper-level module resides
(sync://cpu.ABCo.com:2647 in the example), create a configuration file
named hcmNoteMap.conf to contain note type maps. (Note: The upper level
module's SyncServer has the SyncDefect note type installed.)

HCM Administration

140

To create the file, copy the Synchronicity-supplied file
<SYNC_DIR>/share/config/hcmNoteMap.conf to the custom area of your
Synchronicity installation directory.

To apply
values to...

Copy the hcmNoteMap.conf file to this location...

Your entire
site

<SYNC_SITE_CUSTOM>/share/config/hcmNoteMap.conf

(The default definition of the environment variable SYNC_SITE_CUSTOM is
<SYNC_CUSTOM_DIR>/site)

A specific
SyncServer

<SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/config/hcmNote

where <host> and <port> are the server's name and port number

(The default definition of the environment variable SYNC_CUSTOM_DIR is
<SYNC_DIR>/custom.)

Note: Do not edit the Synchronicity-supplied
<SYNC_DIR>/share/config/hcmNoteMap.conf configuration file. Any
changes you make to this file will be lost upon upgrading your SyncServer.

5. Modify the site or server hcmNoteMap.conf file you created to map note types,
fields, and values. (The file contains syntax and examples to help you.)

For the example (Step 3) showing that the SyncDefect note type should be
mapped to the CustTicket note type, you would edit the hcmNoteMap.conf file
on the CPU module's SyncServer (sync://cpu.ABCo.com:2647) and add the
following lines:

lappend SyncNoteTypeMap(sync://ipgsrvr1.IOCo.com:2647) { \
localntype SyncDefect \
refntype CustTicket \
localfield DateFixed \
reffield ClosedDate}

Notes:

o Specify the server URL exactly as it appears in the output of the hcm
showhrefs operation, minus the module path.

o For additional examples, see the hcmNoteMap.conf file.
6. Reset the server. In the Server section of the ProjectSync menu, select Reset

Server. For more information, see ProjectSync Help: Resetting the SyncServer.

The mapping takes effect the next time a query is performed.

Limitations of Note Type Mapping:

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

141

• You can map multiple elements (note types, fields, or values) on the origin server
to one element on the referenced server. But you cannot map one element on
the origin server to multiple elements on the referenced server. For example, you
can map the BugReport and SyncDefect note types on the origin server to the
ProblemReport note type on the referenced server. But you cannot map the
SyncDefect note type on the origin server to both the ProblemReport and
TroubleNote note types on the referenced server.

• You cannot map substrings for text searches. For example, suppose that on the
sync://cpu.ABCo.com:2647 server you map the SyncDefect note type's
EVALUATED keyword to the REVIEWED keyword of the BugReport note type on
sync://srvr1.ABCo.com:2647:

lappend SyncNoteTypeMap(sync://srvr1.ABCo.com:2647) { \
localntype SyncDefect \
refntype "BugReport" \
localfield KeyWords \
valuemap {EVALUATED REVIEWED}

A Standard Query of SyncDefect for the CPU module, specifying This object
and one level below or This object and all levels below, plus Key Words
EVALUATED will not yield any matches.

Related Topics

hcm showhrefs Command

Storing Logins
In order for DesignSync Web UI Query operations to work on HCM submodules, the
SyncServer for the upper-level module (the origin server) must have authorization to
connect to servers where submodules reside (referenced servers). (Authorization takes
place through the ProjectSync login mechanism, which uses a username and
password.)

In many cases, you do not need to set up stored logins for the Query operations to
work. You do not need to store a login if users within a corporation have the same
username and password for the different servers they access.

You must store a login if a referenced server requires a login different from the one a
user uses to connect to the origin server. For example, if your login on your team's cpu
server (the origin server) is john, but your login on the alu server (the submodule
server) is jdonne, you need to store a login on the cpu server for the alu server. If you
do not store a login on the origin server, Query operations on a module hierarchy fail.

HCM Administration

142

As Synchronicity administrator or project leader, you can use the hcm addlogin
operation to store:

• A specific login for a user to access a submodule server
• A specific login for all users of the server to access a submodule server
• A default login the SyncServer uses when no stored login exists for a submodule

server

To store a login:

1. Identify the SyncServers on which submodules reside. To display a list of
submodules and their URLs, use the hcm showhrefs operation on the upper-
level module:

% stclc
stcl> hcm showhrefs -recursive -report brief -target
sync://cpu.ABCo.com:2647/Projects/CPU

2. Use the hcm addlogin operation to store a login for a specific server. For
example, suppose John (with username john on the cpu server) wants to store
a login to access the alu server, where he has the username jdonne. He would
enter:

stcl> hcm addlogin -fromtarget sync://cpu.ABCo.com:2647 -
totarget sync://alu.ABCo.com:2647 -fromuser john -touser
jdonne

Notes:

o The value you specify for the -totarget option must be exactly the same
as the value displayed by hcm showhrefs operation.

o Each user for whom you are storing a login must have an account
(username/password) on the submodule server. In the example, user
john already has a jdonne account on the alu server.

To store a login that allows all users on the cpu server (other than those that
have specific stored logins) to query for notes on the alu server, specify the -
fromallusers option. For example, suppose as Synchronicity administrator for
the cpu server, you want to set up a login that all cpu users can use to access
the alu server. On the cpu server you would enter:

stcl> hcm addlogin -fromtarget sync://cpu.ABCo.com:2647 -
fromallusers -totarget sync://alu.ABCo.com:2647 -touser
cputeam

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

143

Note: The account (cputeam in the example) must exist on the submodule
server for the stored login to work.

To store a login that the query uses on all referenced servers instead of reusing
the user's own login, use the -toalltargets option instead of the -totarget option.
For example:

stcl> hcm addlogin -fromtarget sync://cpu.ABCo.com:2647 -
fromallusers -toalltargets -touser guest

This example stores the login as a kind of fallback login that the cpu server uses
whenever it contacts submodule servers that don't have a specific login stored.

Note: For this stored login to work completely, the guest account first must exist
on each referenced server.

3. When the hcm addlogin operation prompts you, supply the password. For
example:

stcl> hcm addlogin -fromtarget sync://cpu.ABCo.com:2647 -fromuser john
-totarget sync://alu.ABCo.com:2647 -touser jdonne
Password for jdonne@alu: ****
Login stored.
User john on server cpu:2647 will contact referenced server
sync://alu:2647 using username 'jdonne'.
stcl>

Modifying a Stored Login

To modify a stored login, use the hcm addlogin operation to store the login again. For
example, suppose John (with username john on the cpu server) stored a login to
access the alu server with the username jdonne. John now wants to change the login
he stored to use the username tester. To make the change, he uses hcm addlogin
and specifies the new username:

stcl> hcm addlogin -fromtarget sync://cpu.ABCo.com:2647 -totarget
sync://alu.ABCo.com:2647 -fromuser john -touser tester
Password for tester@alu: ****
Stored login changed.
User john on server cpu:2647 will contact referenced server sync://alu:2647
using username 'tester'.
stcl>

Listing a Server's Stored Logins

To list all stored logins that a server uses to access other referenced (submodule)
servers, use the hcm showlogins command. For example, to show the logins stored
for the cpu server to access other submodule servers:

HCM Administration

144

stcl> hcm showlogins -fromtarget sync://cpu.ABCo.com:2647
fromuser totarget touser
--
john sync://alu.ABCo.com:2647 jdonne
ALLUSERS sync://alu.ABCo.com:2647 cputeam
ALLUSERS ALLTARGETS guest

In this example:

• Item 1 shows that on the cpu server, user john has a stored login (jdonne) for
querying the alu server.

• Item 2 shows that all users on the cpu server (except john) query the alu server
with the stored login cputeam. (The from user ALLUSERS usage indicates that
the -fromallusers option was used.)

• Item 3 shows that the cpu server uses the guest login whenever it contacts
submodule servers that don't have a login. (The fromuser ALLUSERS usage
indicates that the -fromallusers option was used. The totarget ALLTARGETS
usage indicates that the -fromalltargets option was used.)

Removing a Stored Login

To remove a stored login:

1. Use the hcm showlogins -report command operation to display the stored
logins. This option displays the logins in a form that is easy to cut and paste into
your hcm rmlogin command. For example:

stcl> hcm showlogins -fromtarget sync://cpu.ABCo.com:2647 -
report command
-fromtarget sync://cpu.ABCo.com:2647 -fromuser john -
totarget sync://alu.ABCo.com:2647 -touser jdonne
-fromtarget sync://cpu.ABCo.com:2647 -fromallusers -
totarget sync://alu.ABCo.com:2647 -touser cputeam
-fromtarget sync://cpu.ABCo.com:2647 -fromallusers -
toalltargets -touser guest

2. Use the hcm rmlogin operation to remove each login you don't want.

To remove a stored login of a specific user for a specific server:

stcl> hcm rmlogin -fromtarget sync://cpu.ABCo.com:2647 -
fromuser john -totarget sync://alu.ABCo.com:2647

To remove a stored login that allows all users on the origin server to query the
referenced (submodule) server:

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

145

stcl> hcm rmlogin -fromtarget sync://cpu.ABCo.com:2647 -
fromallusers -totarget sync://alu.ABCo.com:2647

To remove a stored login that allows the origin server to query all referenced
(submodule) servers:

stcl> hcm rmlogin -fromtarget sync://cpu.ABCo.com:2647 -
fromallusers -toalltargets

Note: As Synchronicity administrator or project leader, you can set up access controls
on the hcm addlogin, hcm rmlogin, and hcm showlogins operations. For information,
see Access Controls on HCM Operations.

Related Topics

hcm addlogin Command

hcm rmlogin Command

hcm showlogins Command

Setting Up Email Notification of HCM RevisionControl
Notes
A RevisionControl note is a ProjectSync note created automatically when a DesignSync
revision control operation (or in this case, an HCM operation) takes place. The HCM
installation process enables the generation of RevisionControl notes for these HCM
operations: hcm addhref, hcm mkalias, hcm mkconf, hcm mkmod, hcm put, hcm
release, hcm rmalias, hcm rmconf, hcm rmmod, and hcm rmhref.

As Synchronicity administrator, perform these steps to set up email notification of HCM
RevisionControl notes:

1. The HCM installation process enables the generation of RevisionControl notes
for HCM operations, so you do not need to perform this step as you do in
DesignSync.

Note: Unlike DesignSync RevisionControl notes, RevisionControl notes on HCM
operations cannot be enabled or disabled through the SyncAdmin
RevisionControl tab.

2. Configure email notifications in ProjectSync, if you have not done so. You specify
the behavior and format of email notifications using the Email Administrator. For
more information seeDesignSync Data Manager Administrator's Guide:
Configuring Email Notifications.

HCM Administration

146

3. Use the Email Administrator to include the Tag or HCM sub-cmd field among
the email notification fields for RevisionControl notes:

a. In the Triggers section of the ProjectSync menu, click Email Administrator.
b. Click Index. Then from the Index of Operations, select the Revision Control link
under Note Type Specific Email Formatting Attributes. ProjectSync displays the
Revision Control Specific Settings panel.
c. For the Fields Included in Notifications field, select Tag or HCM sub-cmd
from the pull-down menu.
d. Click Review to review your changes. Then click Commit Changes to have the
settings take effect.

Users can then use ProjectSync to subscribe to email for RevisionControl notes, as they
would for other note types. The email contains the RevisionControl note's contents and
a list of objects (for HCM operations, the URL of the relevant modules and
configurations affected by the operation). For an example scenario, see The CPU Team
Subscribes to Email on a Hierarchy.

Access Controls

Access Controls on HCM Operations

By default, HCM software allows all users access to HCM operations except for hcm
rmalias, hcm rmconf, and hcm rmmod operations. (For these operations, access is
denied to everyone by default.)

As Synchronicity administrator, you can customize access controls for all HCM
operations. For information, see the Synchronicity Access Control Guide.

Module Caches

Setting Up a Module Cache

To reduce fetch time of large configurations and to save disk space, a design team can
set up one or more module caches. The caches contain released configurations for the
design the team is working on. Designers can then fetch those releases from the cache
or link to them to save disk space. (For a scenario describing ways to use a module
cache, see Designers Use a Module Cache.)

Note: A module cache is different from a DesignSync cache. See A Comparison of
Module Caches and DesignSync Caches for information.

To set up a module cache:

1. Create a directory to contain the cache. For example:

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

147

% mkdir /A543/cache1

2. From your UNIX shell, set the permissions on the cache directory to read-only.
Grant write access only to the person who will update the cache (the owner),
usually the team leader or release librarian. For example, if your team has UNIX
groups set up to control access, you might specify:

% chmod 750 /A543/cache1

3. Change directory to the cache directory. Then use the hcm get -recursive
command to fetch each release to the module cache. Use the -path option to
specify a base directory directly below the module cache directory. (If the base
directory is more than one level below the cache directory, the get operation
does not find the release in the module cache.) For example:

% cd /A543/cache1
% stclc
stcl> hcm get -recursive -target
sync://cpu.ABCo.com:2647/Projects/CPU@Rel1 -path CPU
stcl> hcm get -recursive -target
sync://srvr1.ABCo.com:2647/Projects/STDLIB@RelA -path
STDLIB

 The get operation:

o Fetches the CPU@Rel1 configuration to the work area directory specified
with the -path option. If the specified path does not exist, the get operation
creates it. Then the get operation fetches the STDLIB@RelA configuration
in the same way.

o Because the -recursive option was specified, the get operation fetches all
of the files for the module and its submodules to the module cache.

Note: You do not have to use hcm get -recursive to fetch the entire
hierarchy of the release to the module cache. You can instead use a
nonrecursive get operation to fetch only the upper-level module of the
release. However, for a release to be fetched from the module cache, the
hierarchy of that release in the module cache must match the hierarchical
nature of the hcm get operation being performed. Otherwise, the user's
get operation will not find the release in the module cache. For example,
suppose the cache contains only the upper-level module of the release
(fetched to the cache using hcm get without -recursive). If a user
specifies a recursive fetch of a configuration, the get operation determines
that the entire hierarchy of the release is not in the module cache and
fetches that release from the server.

HCM Administration

148

To make sure that users' fetches from the module cache succeed,
whether they are recursive or nonrecursive, you might create two caches,
one with recursively fetched releases and one with nonrecursively fetched
releases. Then you might set the default module cache paths to include
both cache paths. As an alternative to setting up two module caches, you
might have one module cache but follow a naming convention that
identifies releases fetched recursively from those that were not. For
example, you might recursively fetch Chip@Rel1 to path Chip.hier and
nonrecursively fetch Chip@Rel1 to path Chip.nohier.

4. Optionally, set a module cache mode or list of module cache paths that the hcm
get operation uses by default. If you set up these defaults, users need to specify
the -mcachepaths and -mcachemode options only if the want to override the
defaults. For information, see Setting the Default Module Cache Path or Mode.

To set up another module cache, repeat these steps.

To view the hierarchy of the release in the module cache, use the hcm showmcache
operation. For example:

% stclc
stcl> hcm showmcache -mcachepaths /A543/cache1

Mcachepaths search order:
/A543/cache1

Configurations found:
PATH TARGET
 AVAILABLE HIERARCHY

/A543/cache1/CPU sync://cpu.ABCo.com:2647/Projects/CPU@Rel1 yes
 yes
/A543/cache1/STDLIB sync://srvr1.ABCo.com:2647/Projects/STDLIB@RelA yes
 yes

As the cache owner, it is up to you to add releases to and remove them from the
module cache as necessary. For guidelines on performing this task, see Updating a
Module Cache.

Related Topics

hcm get Command

hcm showmcache Command

Setting the Default Module Cache Path or Mode

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

149

The default module cache path is a DesignSync registry setting identifying the path to
one or more module caches. The hcm get operation uses this path to locate the module
cache when a user does not specify it with the -mcachepaths option.

When a user fetches a release with the get operation but does not specify the -
mcachepaths option, the get operation uses the path list specified in the default
module cache paths registry setting to locate the module cache. If neither -
mcachepaths nor its registry setting is specified, the get operation fetches releases
from the server. (Note: To override the default module cache paths, users can use the -
mcachepaths option to specify the module cache paths they want.)

The default module cache mode is a DesignSync registry setting identifying the
method (mode) that the hcm get operation uses to fetch releases when users do not
specify the -mcachemode option. (The mode can be link, copy, or server.)

When a user fetches a release with the get operation but does not specify the -
mcachemode option, the get operation uses the mode specified in the default module
cache mode registry setting to determine the mode to use for the fetch. If neither -
mcachemode nor its registry setting is specified, the mode that the get operation uses
by default depends on the platform on which HCM is running:

• On Unix platforms, the get operation uses link mode by default.
• On Windows platforms, the get operation uses copy mode by default.

To override the default module cache paths, users can use the -mcachemode option to
specify the mode they want. (Note: Using -mcachemode link is not allowed on
Windows platforms.)

As a Synchronicity administrator or project leader, you can define a registry setting for
the default module cache path or mode so that the setting applies to all users at a site
or users working on a project. Individual users can also define these registry settings for
their own use.

To set the default module cache path or mode, use the SyncAdmin tool. For
information, see ENOVIA Synchronicity DesignSync Data Manager Administrator's
Guide: Module Options.

Related Topics:

Designers Use the Module Cache

Setting Up a Module Cache

Updating a Module Cache

hcm get Command

HCM Administration

150

Updating a Module Cache

As module cache owner, you are responsible for updating the module cache with new
releases and removing releases no longer referenced in configurations that your design
team uses. To update the module cache, follow these guidelines:

• Subscribe for email notification of new releases of modules referenced in the
configuration hierarchies that your team works with. For information, see The
CPU Team Subscribes to Email on a Hierarchy.

• When you receive notification of a new release, use the hcm get operation to
fetch the release to the module cache. Specify a base directory (with the -path
option) that has a unique name and is located directly below the cache directory.
Note: For an example of a script that determines the releases that need to be
fetched to the module cache and then fetches those releases, see Example
Script for Updating a Module Cache.

• A nonrecursive fetch of a release to the module cache must have a different base
directory from the same release fetched recursively. For example, suppose you
have the entire hierarchy of a release in the module cache (fetched with hcm get
-recursive) but your team wants to create links to just the upper-level module of
the release. When you fetch the release to the module cache (using hcm get
without the -recursive option), you must specify a base directory that is different
from the one you specified when you fetched the release recursively.

• When a release is no longer referenced in a configuration's hierarchy, you can
use the DesignSync rmfolder -recursive command to remove the release's
folder and contents from the module cache. See Deleting Design Objects in
DesignSync Help for information.

• When releases are removed from a module cache, links from users' work areas
to those releases are broken. Cache users need to update their work areas by
using hcm get –recursive to refetch the module configurations containing the
releases. This update removes any broken links. After you remove release from
the module cache, it is a good idea to send email reminding cache users to
update their work areas.

• When you fetch a release hierarchy to the module cache (with hcm get -
recursive), you should guard against overwriting one release with another.

Overwriting can occur because the get operation allows you to fetch a different
configuration of the same module into an existing directory. For example, if you
fetch a configuration containing the submodule ALU@R3 to the module cache
and the ALU directory already contains ALU@R1, the get operation overwrites
ALU@R1 with the contents of ALU@R3. This behavior (the default for the get
operation) lets users update their work areas just by refetching a module
configuration.

In addition, in fetching to the module cache, it is possible for one or more of the
release's submodules to be fetched to the top of the cache directory or even to a
directory outside of the module cache directory. (This situation can occur

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

151

because the hcm addhref command allows specification of any relative path,
even one that falls outside of the directory hierarchy of the upper-level module.)
For example, some teams create module hierarchies that, when fetched to a
work area, organize directories such that all of the configurations in the design
are peers in a single, flat directory. (The hierarchical references all contain
relative paths of the form ../<submodule>.) Because all releases must reside as
at the top level of the module cache, a fetch of such a module to the cache might
overwrite releases in the cache with submodule releases being fetched to the
same directory.

To identify releases with the potential of overwriting each other in the module
cache, use the hcm showhrefs operation to review a configuration's hierarchy
before fetching it to the module cache. If a configuration looks as though it may
overwrite another, fetch it into a different module cache.

Example Script for Updating a Module Cache

This example script fetches the releases of a module into a module cache. The script
fetches only those releases that are not in the module cache, are not available, or were
not fetched to the module cache hierarchically.

You can use this example script to help you write your own module cache update script.
To use this example script:

1. Write a script to call this procedure for each module for which all releases should
be fetched.

2. Start a cron job to call the script.

Example Script:

Fetch the releases of a module into a module cache. Only
those releases that are not in the module cache, are not
available, or were not fetched to the module cache
hierarchically are fetched.

To use:
1. Write a script to call this procedure for each module
for which all releases should be fetched.
2. Start a cron job to call the script.

proc populateMCache {mcachepath moduleUrl} {
 global errorInfo

 #
 # Get a set of the releases for the module by fetching the
 # configurations for the module from the server and filtering
 # out all but those with a configuration type of "Release".
 #

HCM Administration

152

 if [catch {hcm showconfs -target $moduleUrl -report script} configList] {
 error "Failed to get configuration list from server." $errorInfo
 }
 foreach {configName configPropList} $configList {
 array unset configPropArray
 array set configPropArray $configPropList
 if {[string equal "Release" $configPropArray(type)]} {
 set releaseArray($configName) $configPropList
 }
 }

 #
 # If there are no releases for the module, we're done.
 #
 if {![info exists releaseArray]} {
 puts "No releases to fetch to the module cache."
 return
 }

 #
 # Now get a list of the releases of the provided module that
 # are available in the module cache and have been hierarchically
 # fetched. These releases do not need to be refetched. Any
 # release of the module that is not in the cache, not available,
 # or non-hierarchical needs to be fetched to the module cache.
 #
 if [catch {hcm showmcache -mcachepaths $mcachepath -report script}
cacheEntries] {
 error "Failed to read module cache." $errorInfo
 }

 set availableReleases ""
 foreach cacheEntry $cacheEntries {
 array unset cacheEntryPropArray
 array set cacheEntryPropArray $cacheEntry
 if {![string match "$moduleUrl*" $cacheEntryPropArray(target)]} {
 continue
 }
 if {!$cacheEntryPropArray(hierarchical) ||
!$cacheEntryPropArray(available)} {
 continue
 }
 lappend availableReleases $cacheEntry
 }

 #
 # Get a list of the releases that need to be fetched to the module
 # cache. This is done by removing from the list of releases
 # available on the server, every release that is already available
 # in the cache. What is left is a list of releases that are not
 # available in the cache.
 #
 foreach cacheRelease $availableReleases {

 #
 # Since we're dealing with releases of a single module, it is
 # sufficient to compare the release names only. The release

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

153

 # names will be unique within the context of a single module.
 # So, get the release name for the cached release and look for
 # it in the list of releases from the server.
 #
 array unset cacheEntryPropArray
 array set cacheEntryPropArray $cacheRelease
 set release [file tail $cacheEntryPropArray(target)]
 set releaseName [lindex [split $release @] 1]

 unset releaseArray($releaseName)
 }

 #
 # The releaseArray array now contains the releases that need to be
 # fetched.
 #
 if {![array size releaseArray]} {
 puts "No new releases to fetch to the module cache."
 return
 }

 #
 # Start fetching the releases that need to be fetched. Place
 # each in a directory name of <module-name>@<release-name>
 #
 set failed 0
 foreach {releaseName releasePropList} [array get releaseArray] {
 set target [join [list $moduleUrl $releaseName] @]
 set pathTail [file tail $target]
 set path [file join $mcachepath $pathTail]
 puts "\nFetching release to module cache."
 puts "\ttarget: $target"
 puts "\tpath: $path\n"
 if [catch {hcm get -target $target -path $path -recursive -mcachemode
server} result] {
 puts "Failed to fetch release."
 puts "\ttarget: $target"
 puts "\ncontinuing ..."
 set failed 1
 }
 }

 if {$failed} {
 error "Failed to fetch all releases."
 }

 return
}

Related Topics

hcm get Command

hcm showhrefs Command

HCM Administration

154

Setting Up a Module Cache

155

Command Reference
Accessing the Command Reference
The HCM Command Reference is part of the Synchronicity Command Reference, which
is available in its own help system.

When you follow this link, the Synchronicity Command Reference displays in its own
window and you have full access to Contents, Index, and Search.

157

Getting Assistance
Using Help
ENOVIA Synchronicity DesignSync Data Manager Product Documentation provides
information you need to use the product effectively. The Online Help is delivered
through WebHelp® , an HTML-based format.

Note:

Use SyncAdmin to change your default Web browser, as specified during
Synchronicity tools installation. See SyncAdmin Help for details.

The Hierarchical Configuration Manager (HCM) has a command-line interface. You can
bring up HCM command help from the ENOVIA Synchronicity Command Reference
from the command line.

This help is available as text only within the command line interface. The invoked help
displays in the standard output window.

To bring up the online help from the tool you are using, do one the following:

 Type help <command> from the tool you are using. This displays the full
command description, usage (syntax), explanation of options, examples, and
error messages. If the command contains a prefix, enclose the command in
double quotes, for example: help "hcm mkmod" displays help for the hcm
mkmod command.

 Type <command> -help from the tool you are using. This displays the full
command description, usage (syntax), explanation of options, examples, and
error messages.

 Type <command> -usage from the tool you are using. This displays the short
command description and the command syntax.

The DesignSync Data Manager HCM User's Guide is not tied to a GUI application and
is always opened as stand-alone help.

To display the DesignSync Data Manager HCM User's Guide in a browser:

• Enter the following URL from your Web browser:

http://<host>:<port>/syncinc/doc/hcm/hcm.htm

• where <host> and <port> are the SyncServer host and port information. Use this
server-based invocation when you are not on the same local area network (LAN)
as the Synchronicity installation.

Getting Assistance

158

• Enter the following URL from your Web browser:

file:///$SYNC_DIR/share/content/doc/hcm/hcm.htm

where SYNC_DIR is the location of the Synchronicity installation. Specify the
value of SYNC_DIR, not the variable itself. Use this invocation when you are on
the same LAN as the Synchronicity installation. This local invocation may be
faster than the server-based invocation, does not tie up a server process, and
can be used even when the SyncServer is unavailable.

Finding Information in Online Help

When the Online Help is open, you can find information in several ways:

• Use the Contents tab to see the help topics organized hierarchically.
• Use the Index tab to access the keyword index.
• Use the Search tab to perform a full-text search.

Within each topic, there are the following navigation buttons:

• Show and Hide: Clicking these buttons toggles the display of the navigation (left)
pane of WebHelp, which contains the Contents, Index, and Search tabs. Hiding
the navigation pane gives more screen real estate to the displayed topic.
Showing the navigation pane givens you access to the Contents, Index, and
Search navigation tools.

• << and >>: Clicking these buttons moves you to the previous or next topic in a
series within the help system.

You can also use your browser navigation aids, such as the Back and Forward
buttons, to navigate the help system.

Related Topics

Accessing the HCM Command Reference

hcm version Command

Getting a Printable Version of Help
The DesignSync Data Manager HCM User's Guide is available in book format from the
ENOVIA Documentation CD or the DSDocumentationPortal_Server installation
available on the 3ds support website (http://media.3ds.com/support/progdir/). The
content of the book is identical to that of the help system. Use the book format when
you want to print the documentation, otherwise the help format is recommended so you
can take advantage of the extensive hyperlinks available in the DesignSync Help.

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide

159

You must have Adobe® Acrobat® Reader™ Version 8 or later installed to view the
documentation. You can download Acrobat Reader from the Adobe web site.

Related Topics

Using Help

Contacting ENOVIA
For solutions to technical problems, please use the 3ds web-based support system:

http://media.3ds.com/support/

From the 3ds support website, you can access the Knowledge Base, General Issues,
Closed Issues, New Product Features and Enhancements, and Q&A's. If you are not
able to solve your problem using this information, you can submit a Service Request
(SR) that will be answered by an ENOVIA Synchronicity Support Engineer.

If you are not a registered user of the 3ds support site, send email to ENOVIA Customer
Support requesting an account for product support:

enovia.matrixone.help@3ds.com

Related Topics

Using Help

161

Index
A

Access Controls

HCM 146

Alias

HCM handling 25

moving to another release 42

naming 21

overview 14

removing 45

C

Configurations 9

deleting 45

status 40

viewing 31

D

DesignSync

comparing caches 28

HCM commands 31

with HCM 15

H

HCM 1

access controls 146

administration tasks 133

command reference 155

commands in DesignSync GUI 31

introduction 3

operations 5

scenarios 51

Help

contacting ENOVIA 159

printing 158

using 157

Hierarchical References 11

removing 48

L

Legacy Modules 7

command sets 5

deleting 45

enabling 135

fetching to your work area 35

relationship to ProjectSync projects
22

Login

storing 141

162

M

Module Cache 26

compared to DesignSync caches 28

setup 146

showing the contents 44

updating 150

Module Hierarchy

viewing 34

N

Note Types

mapping 137

P

ProjectSync

projects 22

using with HCM 17

R

Releases 9

operation 23

RevisionControl Notes 145

T

Triggers 135

	Overview
	ENOVIA Synchronicity DesignSync Data Manager with HCM Capability
	Using ENOVIA Synchronicity DesignSync Data manager with HCM User's Guide Documentation
	Before Reading this Guide
	Related Topics

	Introducing Modules
	Overview of Modern and Legacy Module Command Sets
	HCM Concepts
	Module
	Module Hierarchy
	Module Creation
	Hierarchical Reference Creation

	Modules and Configurations

	Configuration
	Hierarchical References
	Base Directory
	Alias
	Guidelines for HCM Use
	Using DesignSync with HCM
	Using ProjectSync with HCM
	Email Subscriptions
	Query
	The NoteAttach Functionality

	Naming Guidelines
	The Relationship Between HCM Modules and ProjectSync Projects
	How the Release Operation Works
	How HCM Operations Handle an Alias
	Module Cache
	A Comparison of Module Caches and DesignSync Caches

	Using HCM from DesignSync
	Commands in the DesignSync GUI client
	Viewing Modules and Configurations
	Viewing Modules and Configurations on the Server
	Viewing Modules and Configurations in Your Work Area
	Moving from a Workspace Configuration to the Configuration on the Server

	Viewing a Module Hierarchy
	Viewing a Module Hierarchy

	Getting a Module
	Showing the Status of a Configuration
	Moving an Alias to Another Release
	Showing the Contents of Module Caches
	Deleting HCM Objects
	Removing a Hierarchical Reference from a Module Configuration

	Scenarios for Using HCM
	Overview
	The Chip Architect Sets Up the Project Structure
	The PLL Team Creates a Module and Its Contents
	The ALU Team Creates a Module from a Vault
	An ALU Designer Gets Files of a Module
	A Designer Puts Files of a Module Back on the Server
	A Designer Adds Files to a Configuration
	A Designer Adds Files to a Branch Configuration
	A Designer Adds Files to a Selector Configuration
	Thomas Moves the Version Tag of Files Added to a Selector Configuration

	A Designer Removes Files from a Configuration
	A Designer Removes Files from a Branch Configuration
	A Designer Removes Files from a Selector Configuration

	The CPU Team References the ALU Module
	The ALU Team Makes a Release Available
	Other Teams Learn of New Releases

	The CPU Team Subscribes to Email on a Hierarchy
	Robert Deletes an Email Subscription
	Robert Subscribes to RevisionControl Notes on HCM Operations
	Robert Updates Email Subscriptions
	Manual Update of Email Subscriptions When an Alias Changes
	Manual Update of Email Subscriptions When a Hierarchical Reference Changes

	The CPU Team Leader Queries for Defects
	The CPU Team References an IP Gear Deliverable
	The CPU Team Changes a Reference to a New ALU Release
	A CPU Designer Gets a Module Hierarchy
	Marie Updates Her Work Area

	A Designer Puts a Module Hierarchy Back on the Server
	The CPU Team Creates a Release
	The ALU Team Creates an Alias for a Release
	The CPU Team Changes Its Reference to ALU's GOLDEN Release
	The ALU Team Designates a Different Release as "GOLDEN"

	Designers Use the Module Cache
	A Designer Creates Links to the Module Cache
	A Designer Copies a Release from the Module Cache
	A Designer Uses Both Links to and Copies from the Cache

	The MPU Team Upgrades to HCM
	A Designer Creates a Configuration for Experimentation
	The MPU Team References the ALU Work in Progress
	The CPU Team Creates a Work-in-Progress Configuration from a Release
	The CPU Team Develops a Checking Script Using HCM
	The CPU Team References a Tools Module
	The MPU Team Removes a Module
	The MPU Team Leader Removes a Module Created By Mistake

	A Designer Removes a Configuration
	The ALU Team Removes an Alias

	Quick Steps
	Quick Steps
	Creating a Module
	Creating a Module from a DesignSync Vault
	Creating a Module and Its Contents

	Working with a Single Module
	Fetching the Files of a Module for the First Time
	Updating Your Work Area (Fetching the Same Module Subsequent Times)
	Putting Modified Files of a Single Module Back on the Server (and Locking Them for Edit)
	Creating a Release of a Single Module

	Adding Files to a Module Configuration
	Adding Files to a Branch Configuration
	Adding Files to a Selector Configuration

	Removing Files from a Module Configuration
	Removing Files from a Branch Configuration
	Removing Files from a Selector Configuration

	Working with a Module Hierarchy
	Adding a Submodule to a Module Hierarchy (Creating a Hierarchical Reference)
	Creating a Reference to an IP Gear Deliverable
	Changing a Reference
	Fetching the Files of a Module Hierarchy for the First Time
	Updating Your Work Area with a Module Hierarchy (Fetching the Hierarchy Subsequent Times)
	Putting a Module Hierarchy Back on the Server
	Creating a Release of a Module Hierarchy

	Fetching from the Module Cache
	Creating or Changing an Alias for a Release
	Upgrading to HCM
	Working with Configurations
	Creating a Branch Configuration
	Creating a Branch Configuration from a Release
	Referencing a Work in Progress Configuration
	Referencing a Tools Module

	Removing a Module
	Removing a Module and Configurations, Its Contents, and Notes
	Removing a Module but Not Its Configurations, Contents, or Notes

	Removing a Configuration
	Removing an Alias

	HCM Administration
	Overview of Administration Tasks
	Enabling Legacy Module Support
	Legacy Module Triggers and Email Notification
	To add the hcmNoteAttach trigger:

	Mapping Note Types
	Storing Logins
	Modifying a Stored Login
	Listing a Server's Stored Logins
	Removing a Stored Login

	Setting Up Email Notification of HCM RevisionControl Notes
	Access Controls
	Access Controls on HCM Operations

	Module Caches
	Setting Up a Module Cache
	Setting the Default Module Cache Path or Mode
	Updating a Module Cache
	Example Script for Updating a Module Cache

	Command Reference
	Accessing the Command Reference

	Getting Assistance
	Using Help
	Finding Information in Online Help

	Getting a Printable Version of Help
	Contacting ENOVIA

	Index

