
1

ENOVIA DesignSync
Command Reference - Module

3DEXPERIENCE 2022

3

ENOVIA Synchronicity Command Reference

4

©2021 Dassault Systèmes. All rights reserved. 3DEXPERIENCE®, the Compass icon, the 3DS logo, CATIA, SOLIDWORKS, ENOVIA, DELMIA, SIMULIA, GEOVIA, EXALEAD, 3D VIA, BIOVIA, NETVIBES,
IFWE and 3DEXCITE are commercial trademarks or registered trademarks of Dassault Systèmes, a French “société européenne” (Versailles Commercial Register # B 322 306 440), or its subsidiaries in the
United States and/or other countries. All other trademarks are owned by their respective owners. Use of any Dassault Systèmes or its subsidiaries trademarks is subject to their express written approval.

i

Table of Contents

ENOVIA Synchronicity Command Reference ... 1

Using this Guide with Different Methodologies .. 1

Organization of the Command Reference ... 1

Syntax Description ... 2

Accessing Command Descriptions from Client Shells ... 3

Fundamental Topics .. 5

Overview of Module Commands .. 5

module Command .. 5

Understanding Fetch Preference ... 6

fetch preference ... 6

Understanding Server-Side Commands .. 8

server-side ... 8

Using Interrupt (Control-c) ... 10

interrupt .. 10

Using Revision Control Keywords.. 11

keywords .. 11

Using Selectors.. 14

selectors ... 14

Using Wildcards ... 24

wildcard .. 24

Client Applications ... 27

DesSync .. 27

Table of Contents

ii

DesSync Command ... 27

dss ... 29

dss Command .. 29

dssc ... 31

dssc Command .. 31

stcl ... 34

stcl Command .. 34

stclc ... 38

stclc Command .. 38

Client Shell Control.. 43

alias ... 43

alias Command .. 43

exit ... 44

exit Command .. 45

log .. 46

log Command ... 46

more .. 50

more Command ... 50

prompt ... 52

prompt Command .. 52

rstcl .. 53

rstcl Command ... 53

record .. 58

ENOVIA Synchronicity Command Reference - Module

iii

record Command ... 58

Workspace Setup .. 61

Enterprise Design Development Areas .. 61

sda ... 61

sda cd .. 62

sda gui ... 66

sda join ... 67

sda ls .. 69

sda mk ... 71

sda rm .. 77

Exclude from Workspace ... 79

exclude ... 79

exclude add .. 80

exclude list ... 84

exclude remove .. 87

Module Views .. 89

view .. 89

view check ... 90

view get .. 92

view list .. 95

view put .. 97

view remove ... 100

populate ... 101

Table of Contents

iv

populate Command .. 102

setfilter ... 163

setfilter Command .. 163

setselector ... 169

setselector Command .. 169

setroot .. 174

setroot Command ... 174

setvault .. 177

setvault Command ... 177

setview ... 180

setview Command .. 180

Primary Revision Control ... 185

add ... 185

add Command.. 185

cancel .. 193

cancel Command ... 193

ci .. 203

ci Command ... 203

mkmod ... 234

mkmod Command .. 234

populate ... 243

populate Command .. 243

showmods ... 304

ENOVIA Synchronicity Command Reference - Module

v

showmods Command .. 304

showstatus ... 314

showstatus Command .. 314

tag .. 335

tag Command... 335

Advanced Revision Control ... 353

duplicatews .. 353

duplicatews Command ... 353

exportmod .. 358

exportmod Command ... 358

freezemod .. 361

freezemod Command ... 361

import ... 363

import Command .. 363

importmod .. 365

importmod Command ... 366

lock .. 368

lock Command ... 368

migratetag .. 371

migratetag Command ... 371

mkbranch ... 374

mkbranch Command .. 374

mkedge .. 379

Table of Contents

vi

mkedge Command ... 379

mkfolder ... 383

mkfolder Command .. 383

mvmember ... 385

mvmember Command .. 385

mvmod ... 393

mvmod Command .. 393

purge ... 395

purge Command .. 396

reconnectmod .. 406

reconnectmod Command ... 406

remove ... 409

remove Command .. 409

rmedge .. 418

rmedge Command ... 418

rmfile .. 420

rmfile Command ... 420

rmfolder ... 423

rmfolder Command .. 423

rmmod ... 427

rmmod Command .. 427

rmversion ... 438

rmversion Command .. 438

ENOVIA Synchronicity Command Reference - Module

vii

rollback .. 443

rollback Command ... 443

select ... 447

select Command .. 447

setfilter ... 450

setfilter Command .. 450

setowner .. 456

setowner Command ... 456

switchlocker ... 457

switchlocker Command .. 457

unlock .. 460

unlock Command ... 460

unfreezemod .. 466

unfreezemod Command ... 466

unremove ... 468

unremove Command .. 468

unselect ... 472

unselect Command .. 472

upgrade ... 474

upgrade Command .. 474

upload Command ... 491

upload .. 501

upload Command ... 501

Table of Contents

viii

Navigational .. 511

cd ... 511

cd Command .. 511

pwd .. 511

pwd Command ... 511

Module Hierarchy Management .. 513

Module Swapping .. 513

swap ... 513

swap replace .. 515

swap restore .. 523

swap show ... 531

Module whereused .. 535

whereused ... 535

whereused member ... 544

whereused module ... 548

whereused vault ... 555

addbackref ... 561

addbackref Command .. 561

addhref .. 566

addhref Command ... 566

edithrefs ... 583

edithrefs Command .. 583

reconnectmod .. 595

ENOVIA Synchronicity Command Reference - Module

ix

reconnectmod Command ... 595

rmhref .. 598

rmhref Command ... 598

showhrefs .. 603

showhrefs Command ... 603

Informational ... 619

annotate ... 619

annotate Command .. 619

compare ... 622

compare Command .. 622

compare-foreach.. 641

compare-foreach Command .. 641

contents ... 643

contents Command .. 643

contents-foreach .. 655

contents-foreach Command ... 655

datasheet ... 657

datasheet Command .. 658

diff .. 659

diff Command ... 659

help .. 670

help Command ... 670

locate ... 673

Table of Contents

x

locate Command .. 673

ls .. 677

ls Command ... 677

ls-foreach ... 712

ls-foreach Command .. 712

showhrefs .. 715

showhrefs Command ... 715

showmcache .. 729

showmcache Command ... 729

showmods ... 735

showmods Command .. 735

showproduct .. 745

showproduct Command ... 745

showstatus ... 747

showstatus Command .. 747

showlocks .. 768

showlocks Command ... 769

syncinfo ... 772

syncinfo Command .. 772

version ... 781

hcm version Command .. 781

vhistory .. 782

vhistory Command ... 782

ENOVIA Synchronicity Command Reference - Module

xi

vhistory-foreach ... 798

vhistory-foreach Command .. 798

vhistory-foreach-obj ... 800

vhistory-foreach-obj Command .. 800

webhelp ... 801

webhelp Command .. 801

whereused ... 804

whereused Command .. 804

Workflows .. 815

SITaR .. 815

sitr Command ... 815

sitr .. 816

sitr context .. 817

sitr env ... 820

sitr integrate ... 825

sitr lookup ... 830

sitr mkbranch.. 838

sitr mkmod ... 844

sitr populate ... 849

sitr release ... 854

sitr select .. 859

sitr status .. 866

sitr submit ... 869

Table of Contents

xii

sitr update .. 876

Enterprise Design Development .. 883

Development Areas ... 883

sda cd .. 883

Enterprise Object Viewing and Synchronization .. 887

entobj ... 887

entobj id ... 888

entobj isplatformmanaged .. 889

entobj policy ... 891

entobj setpolicy .. 892

entobj settype ... 894

entobject show ... 896

entobject synchronize .. 899

entobj type ... 902

Mcache Settings for Shared Developments ... 904

eda ... 904

eda addmcachepath ... 905

eda createrefws.. 907

eda listmcachepath .. 909

eda removemcachepath ... 911

URL Sync Object Model .. 915

url Commands ... 915

NAME ... 915

ENOVIA Synchronicity Command Reference - Module

xiii

DESCRIPTION ... 915

SYNOPSIS ... 915

OPTIONS ... 916

RETURN VALUE ... 916

SEE ALSO ... 916

EXAMPLES .. 916

url ... 916

url Commands .. 916

url branchid .. 918

url branchid Command ... 918

url container ... 920

url container Command .. 920

url contents .. 921

url contents Command ... 922

url exists .. 926

url exists Command ... 926

url fetchedstate .. 928

url fetchedstate Command ... 928

url fetchtime ... 931

url fetchtime Command .. 931

url filter ... 933

url filter Command .. 933

url getprop ... 935

Table of Contents

xiv

url getprop Command .. 935

url inconflict .. 938

url inconflict Command ... 938

url leaf .. 940

url leaf Command ... 940

url locktime .. 942

url locktime Command ... 942

url members ... 944

url members Command .. 944

url modified .. 946

url modified Command ... 946

url naturalpath .. 949

url naturalpath Command ... 949

url notes ... 951

url notes Command .. 951

url owner .. 953

url owner Command ... 953

url path ... 955

url path Command .. 955

url properties .. 957

url properties Command ... 957

url registered .. 962

url registered Command ... 962

ENOVIA Synchronicity Command Reference - Module

xv

url relations .. 964

url relations Command ... 964

url resolveancestor .. 966

url resolveancestor Command ... 966

url resolvetag ... 971

url resolvetag Command .. 971

url rmprop .. 975

url rmprop Command ... 975

url root ... 977

url root Command .. 977

url selector ... 978

url selector Command .. 978

url servers .. 980

url servers Command ... 980

url setprop .. 984

url setprop Command ... 984

url syslock .. 987

url syslock Command ... 987

url tags ... 992

url tags Command .. 992

url users ... 994

url users Command .. 994

url vault .. 996

Table of Contents

xvi

url vault Command ... 996

url versionid ... 998

url versionid Command .. 998

url versions .. 1000

url versions Command ... 1000

url view .. 1002

url view Command ... 1002

TCL Interface .. 1005

auto_mkindex .. 1005

auto_mkindex Command ... 1005

auto_reset .. 1006

auto_reset Command ... 1006

gets .. 1007

gets Command ... 1008

parray auto_index .. 1008

parray auto_index Command ... 1008

puts .. 1010

puts Command ... 1010

rstcl .. 1010

rstcl Command ... 1010

run ... 1015

run Command .. 1015

Third-Party Integrations ... 1019

ENOVIA Synchronicity Command Reference - Module

xvii

DSDFII ... 1019

addcdslib .. 1019

Administration ... 1021

Access Control .. 1021

access Commands ... 1021

ACAdmin Commands ... 1022

Access Control Commands .. 1060

Authentication .. 1093

hcm addlogin .. 1093

hcm rmlogin ... 1096

hcm showlogins .. 1099

password .. 1102

Command Defaults .. 1103

defaults Command ... 1103

Command Defaults .. 1104

defaults .. 1106

defaults commands .. 1107

defaults off ... 1108

defaults on ... 1110

defaults refresh .. 1111

defaults set ... 1113

defaults show ... 1117

defaults state .. 1120

Table of Contents

xviii

Custom Type System .. 1121

Custom Type Packages ... 1121

Managing Local Versions of Collections .. 1127

Data Import/Export with DesignSync ... 1140

exportmod .. 1140

import ... 1143

importmod .. 1146

upload .. 1148

Data Replication .. 1158

Data Replication System .. 1158

File Cache Maintenance .. 1185

Mirror System ... 1206

Module Cache Maintenance .. 1268

Events and Triggers ... 1292

Events .. 1292

Triggers .. 1300

Registry File Management ... 1320

SyncAdmin ... 1320

sregistry ... 1321

sregistry delete ... 1322

sregistry get ... 1327

sregistry keys ... 1332

sregistry reset... 1336

ENOVIA Synchronicity Command Reference - Module

xix

sregistry scope ... 1336

sregistry set .. 1338

sregistry source .. 1343

sregistry values .. 1347

Server Backup ... 1351

backup ... 1351

keydbcheckpoint .. 1355

restoreserver .. 1355

restorevault .. 1356

suspend ... 1359

Troubleshooting ... 1369

syncinfo .. 1369

synctrace .. 1381

synctrace set .. 1384

synctrace unset .. 1386

Utilities ... 1387

convertdata .. 1387

convertutil ... 1387

convertvault .. 1388

SyncAdmin ... 1388

syncdadmin .. 1392

ProjectSync Data Manipulation ... 1397

Note Manipulation .. 1397

Table of Contents

xx

note .. 1397

note attach ... 1398

note counts .. 1399

note create ... 1405

note delete ... 1408

note detach .. 1410

note getprop ... 1412

note links .. 1413

note query .. 1417

note relink .. 1421

note schema .. 1431

note setprops ... 1432

note systems .. 1435

note types .. 1435

Note Type Manipulation ... 1436

note types .. 1436

notetype ... 1436

notetype create .. 1437

notetype delete... 1440

notetype enumerate ... 1442

notetype getdescription .. 1443

notetype rename .. 1444

notetype schema .. 1446

ENOVIA Synchronicity Command Reference - Module

xxi

Property Type Information Commands .. 1449

ptype .. 1449

ptype choices ... 1450

ptype class ... 1451

ptype enumerate .. 1452

ptype is ... 1454

ptype strwidth ... 1456

ptype transitions ... 1457

Email Subscription Manipulation .. 1459

subscription .. 1459

subscription add ... 1459

subscription delete ... 1472

subscription edit ... 1485

subscription get .. 1498

subscription list... 1511

User Profile Manipulation ... 1523

user .. 1523

user counts .. 1524

user create ... 1533

user delete ... 1547

Index ... 1551

1

ENOVIA Synchronicity Command Reference
This document contains command descriptions for the ENOVIA Synchronicity
DesignSync and ProjectSync® commands necessary for working in a module-based
environment. You can run most DesignSync commands from any DesignSync client.

The commands in this reference, along with the Tcl scripting language, are referred to
as Synchronicity tcl (stcl). You can include these commands in stcl scripts. For
DesignSync, you can create scripts for clients and servers (SyncServers). For
ProjectSync, you create server scripts. See the Synchronicity stcl Programmer's Guide
to learn how to use the Synchronicity commands in Tcl scripts.

Using this Guide with Different Methodologies
DesignSync features three command references. This command reference is for a
modules based environment containing only or predominately modules-based objects.

The module-based command set supports working in the modern modules
methodology. Modules are processed as a single versionable DesignSync vault object
that contains individual module members which are also versionable DesignSync
objects. Modules can also contain references to other versionable DesignSync objects.
All the information included in this guide is applicable in a modules environment. If you
are working with a hierarchy that includes non-module objects, the majority of
information you need is here, but for more complex file-based manipulation, you may
wish to use the ENOVIA Synchronicity Command Reference: All.

Important: This guide only includes only the commands, options, and arguments
applicable to modules. This may mean there are some differences from what you see
as available commands or options in the DesignSync client.

Organization of the Command Reference
The Synchronicity commands are ordered by methodology and function within the
Command Reference.

The command reference sections are organized into the following sections:

• Fundamental Topics - contains the commands that discuss the core concepts
underlying the DesignSync system. Understanding these concepts provides a
foundation that allows you to properly construct DesignSync Commands and
maximize their functionality. These topics include Overview of Module
Commands, Understanding Fetch Preferences, Using Interrupt, Using Revision
Control Keywords, selectors, server-side, and wildcards.

• Client Applications - contains the commands that launch DesignSync clients.
 These topics include DesSync (graphical user interface, or GUI), dss

ENOVIA Synchronicity Command Reference

2

(DesignSync shell), dssc (concurrent version of dss), stcl (Synchronicity Tcl
shell), and stclc (concurrent version of stcl). See DesignSync Help: DesignSync
Command Line Shells for details about the shells, as well as the types of
command line editing supported by each shell.

• Client Shell Control - contains the commands used within the DesignSync clients
to control the clients.

• Workspace Setup - commands used to initially set up a workspace.
• Primary Revision Control - primary commands used daily by the user to manage

their data.
• Advanced Revision Control - advanced commands used less often by the user to

support advanced revision control functionality.
• Navigational - commands that allow you to move around within the workspace or

the server to locate your files.
• Module Hierarchy Management - commands that provide information about

building and maintaining your module hierarchy.
• Informational - commands that provide information about the revision controlled

objects, or the contents of the files.
• Workflows - commands that provide information about work-flows built on top of

modules to provide a customized working methodology, like SiTaR.
• Enterprise Design Development - commands that support enterprise

development; the creation and maintenance of development areas, enterprise
object management, and mcache settings for shared developments.

• URL Sync Object Module - contains the commands that allow you to access
(view and modify) the Synchronicity Object Model information.

• TCL Interface - contains the commands that provide additional TCL scripting
functionality.

• Third-Party Integrations - contains the commands that provide an interface into
the DSDFII integration.

• Administration - contains the commands that provide administration resources,
such as data replication, caching, mirrors, authentication, command defaults
setup, triggers, etc.

• ProjectSync Data Manipulation - contains the commands that provide an
interface into the DesignSync Web interface, including note and notetype
manipulation, property type manipulation, etc.

Syntax Description
Every command description has a SYNOPSIS section that shows the syntax for the
command. Material within square brackets [] is optional. Material within curly brackets {
 } is required. A vertical bar | indicates mutual exclusion. For example, [-keep | -
lock] means that you can use the -keep option or the -lock option, but not both.

The command options descriptions are in alphabetical order in the TOC and within the
options section. In the syntax line, however, they are in approximate alphabetical order,
to allow exclusive options to remain together for readability.

ENOVIA Synchronicity Command Reference - Module

3

Accessing Command Descriptions from Client Shells
The command descriptions in the Synchronicity Command Reference are identical to
the command-line help you can access from any DesignSync client using the help
command or -help option. For example, you can enter either of the following
commands to get help for the populate command:

dss> help populate

dss> populate -help

You can also launch this file from any DesignSync client by using the webhelp
command. For example,

dss> webhelp populate

Opens your default web browser on the populate command page.

Note: Both the help and webhelp command respects the DesignSync methodology
specified in SyncAdmin. When a methodology is specified, Designsync shows the
custom help for the module specified. For more information on specifying methodology,
see the ENOVIA Synchronicity DesignSync Administrator's Guide: General Options.

5

Fundamental Topics

Overview of Module Commands

module Command

NAME

 module - Commands to manipulate module data

DESCRIPTION

 These commands allow you to create and manage your modules and module
 members. They do not need to be typed with a command prefix, such as
 hcm. If hcm legacy mode is enabled, you cannot type module commands
 with the "hcm" prefix; legacy module commands, by contrast, are
 always prefixed by hcm. For more information on legacy module
 commands, see hcm.

 Note: The module commands are available from all DesignSync client
 shells.

 Accessing Help

 You can access information about the module commands from the command
 line.
 - To display complete information for a module command, do any of the
 following:

 dss> help "<commandName>"

 dss> <commandName> -help

 dss> <commandName> -?

 The following examples return help information for the add
 command.

 dss> help add

 dss> add -help

 dss> add -?

 - To display brief (synopsis) information for a module command, do
 either of the following:

 dss> help -brief "<commandName>"

Fundamental Topics

6

 dss> <commandName> -usage

 The following examples return help information for the addhref
 command.

 dss> help -brief addhref

 dss> addhref -usage

SYNOPSIS

 <module_command> [<module_command_options>]

 Usage: [add|addbackref|addhref|addlogin|edithrefs|get|lock|migratetag|
 mkedge|mkmod|mvmember|remove|rollback|rmedge|rmhref|
 rmlogin|rmmod|showconfs|showhrefs|showlogins|showmcache|
 showmods|showstatus|whereused|unremove|upgrade|version]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 dss, dssc, help, stcl, stclc

EXAMPLES

 See specific module commands.

Understanding Fetch Preference

fetch preference

NAME

ENOVIA Synchronicity Command Reference - Module

7

 fetch preference - How to specify a default fetch state

DESCRIPTION

 DesignSync supports five object states: locked copy (original),
 unlocked copy (replica), link to the cache, link to the mirror,
 and reference. You have a locked copy when you want to edit an
 object to create a new version. You can also have a locked
 reference to lock an object that you intend to regenerate
 without fetching the last version of the object. The state
 you want for unlocked objects -- objects you have fetched
 into your work area -- typically depends on your team's
 project methodology. For example, if your team employs a
 file cache to share files, you would generally have links in
 your work area to objects in the cache.

 You can specify the object state each time you invoke a
 command that affects the state (ci, co, populate, cancel) --
 for example, always specifying -share. To simplify specifying
 your team's recommended fetch state, your project leader can
 define a default fetch state for these commands. Your project
 leader uses the SyncAdmin tool to define a default fetch state.

 DesignSync determines the fetch state for a given operation
 as follows:
 1. Operations use the state option (-lock, -get/-keep, -share,
 -mirror, -reference) specified on the command line.
 2. If no state option is specified, operations use the default
 fetch state as defined by your project leader.
 3. If no default fetch state has been defined, operations use
 the command's default behavior (-get for 'co' and 'populate',
 -keep for ci and 'cancel').
 The 'co' and 'populate' commands update the states of modified
 objects only. To update the states of all objects, use the
 -unifystate option.

 Note:
 Use of caches and mirrors is limited to UNIX
 machines. DesignSync displays an error message when a
 command tries to use an invalid default fetch preference.

SEE ALSO

 ci, populate, cancel

EXAMPLES

 This example demonstrates the behavior of the 'co' command
 first without, then with a default fetch state defined.

Fundamental Topics

8

 - No default fetch state defined
 dss> co top.v # Fetches a copy (default behavior for 'co')
 dss> co -get top.v # Fetches a copy
 dss> co -share top.v # Creates link to top.v in the cache

 - Default fetch state of 'mirror'
 dss> co top.v # Creates link to top.v in the mirror
 dss> co -get top.v # Fetches a copy (explicit option overrides default)
 dss> co -share top.v # Creates link to top.v in the cache

Understanding Server-Side Commands

server-side

NAME

 server-side - Understanding and using server-side commands

DESCRIPTION

 Server-side only commands can be run only on the SyncServer. You
 run server-side scripts either from your browser, or using the
 rstcl command from a DesignSync client:

 o From your browser, specify a URL as follows:
 http://<host>:<port>/scripts/isynch.dll?panel=TclScript&file=<filename>

 o From a DesignSync client, specify the following command:
 rstcl -server sync://<host>:<port> -script <filename>

 where <filename> is the name of your server-side script.

 The SyncServer looks for stcl scripts in the following locations (in the
 order listed):

 1. Server-specific Tcl scripts (UNIX only):
 <SYNC_DIR>/custom/servers/<host>/<port>/share/tcl

 2. Site-wide Tcl scripts:
 <SYNC_DIR>/custom/site/share/tcl

 3. Synchronicity-provided Tcl scripts:
 <SYNC_DIR>/share/tcl

 Do not put scripts in <SYNC_DIR>/share/tcl because this
 directory is reserved for Synchronicity scripts, and your
 scripts may be overwritten when you upgrade your
 Synchronicity software.

 Important: If you make modifications to your script, use the
 ProjectSync Reset Server menu option to force the SyncServer to

ENOVIA Synchronicity Command Reference - Module

9

 reread your script.

 When specifying 'sync:' URLs within scripts that are run on the
 server, do not specify the host and port. For example, specify:
 sync:///Projects/Asic
 not
 sync://holzt:2647/Projects/Asic
 Because the script is run on the server itself, host:port
 information is unnecessary and is stripped out by the
 server, which may lead to incorrect behavior during object-name
 comparisons.

 You must verify access controls explicitly in server-side scripts.
 Access controls are generally ignored in server-side scripts;
 the script itself must call the 'access verify' command for access
 controls it wishes to honor. The following server-side script
 verifies the built-in AdministrateServer access control:

 if [access verify AdministrateServer $SYNC_User] {
 access reset
 puts "AccessControl files reread."
 } else {
 puts "Permission denied."
 }

 If your server-side script operates on RevisionControl notes, you need
 to protect the integrity of your data by blocking access to the server
 while the script runs:

 1. Edit your custom AccessControl file to deny all actions that operate
 on RevisionControl notes, for example:

 access deny Checkin everyone
 access deny Tag everyone

 2. Load the modified AccessControl file by using the ProjectSync Access
 Reset menu item.

 3. Run your server-side script.

 4. Edit your custom AccessControl file and remove the 'access deny'
 commands.

 5. Load the modified AccessControl file by using the ProjectSync Access
 Reset menu item.

 See the 'access' commands for more information about custom
 AccessControl files.

 The following are examples (but not the exhaustive list) of
 server-side only commands:
 url users
 url notes
 note setprops
 note query
 access verify
 access reset

Fundamental Topics

10

 For more information on server-side development, see the ENOVIA
 Synchronicity stcl Programmer's Guide.

SEE ALSO

 rstcl

EXAMPLES

 The following is an example of passing parameters into a
 server side Tcl script.

 Assuming the script uses the TclScript panel, the arguments are
 passed using the same syntax that browsers use to pass parameters
 to CGI scripts. This makes it simple to invoke TclScript panels
 from HTML forms.

 All of the arguments are packaged as members of an array variable
 named SYNC_Parm. The index to the array is the name of the
 argument, and the value is the argument value.

 For example, to pass the color and shape of an object to a script
 called 'DrawShapes.tcl', you would have something like this:

 The URL to invoke the script (this example is meant to be a single
 line but is displayed across two for enhanced readability):

 http://holzt:2647/scripts/isynch.dll?panel=TclScript&file=DrawShapes.tcl
 &color=red&shape=triangle

 Within DrawShapes.tcl, you might print out the parameters:

 puts "Color = $SYNC_Parm(color)
"
 puts "Shape = $SYNC_Parm(shape)"

 In this example, submitting the URL should produce the output:

 Color = red
 Shape = triangle

 You could also execute this script using the rstcl command from a
 DesignSync client (dssc in this example):

 dss> rstcl -server sync://holzt:2647 -script DrawShapes.tcl \
 -urlparams color=red&shape=triangle

Using Interrupt (Control-c)

interrupt

ENOVIA Synchronicity Command Reference - Module

11

NAME

 interrupt - How to interrupt commands

DESCRIPTION

 To interrupt DesignSync commands, press Control-c. Not all DesignSync
 commands can be interrupted; you can only interrupt commands that
 perform multiple operations and do not complete immediately. These
 commands include cancel, ci, co, import, ls, populate, retire,
 setvault, setmirror, tag, and unlock.

 When a command is run on multiple files or directories, the command
 operates on multiple files or directories at once, as opposed to
 processing one file at time, one directory at a time. When a command
 is interrupted, before the command stops it will complete its
 processing of the current files or directories being operated on.

SYNOPSIS

 Control-c

EXAMPLES

 The following is an example of interrupting a recursive checkin:
 dss> ci -recursive -nocomment -force Sportster
 Beginning Check in operation...

 Checking in: Sportster/code/samp.asm
 Checking in: Sportster/code/samp.lst
 Checking in: Sportster/code/samp.mem
 Checking in: Sportster/code/samp.s19

 Interrupt detected!

 Checking in: Sportster/code/sample1.asm

 Command Interrupted!

 dss>

Using Revision Control Keywords

keywords

Fundamental Topics

12

NAME

 keywords - How to use revision control keywords

DESCRIPTION

• Module Note

 The revision control engine used by DesignSync is RCE.
 DesignSync supports RCE revision control keywords (or
 keys) in your design files. By including keywords in your files,
 you can access revision information (such as revision number,
 author, and comment log), which is stored in the RCE archive
 that underlies your vault.

 You use revision control keywords by inserting them in your files,
 typically within comments to keep programs that operate on your
 files from interpreting the keywords. Keywords are delimited by
 preceding and trailing dollar signs ($). There cannot be a space
 between a keyword and its dollar-sign delimiters. Keywords are
 expanded (keyword substitution) based on the version of the file
 that you are checking out. Because the keyword expansion usually
 changes the length of the file, keywords should only be used with
 files whose format is position independent, such as text files.
 You can control keyword expansion using the -keys option to the
 ci, co, and populate commands.

 Note: Revision control keyword expansion is not supported for:
 o files belonging to collections
 o the initial checkin of module data from "mkmod -checkin"

 The following are the revision control keywords. The keywords are
 case sensitive.

 $Aliases$ List of tag names assigned to the revision
 $Author$ Who checked the revision in
 $Date$ The date and time the revision was checked in
 For modules and module member objects, the time is
 displayed in GMT. For DesignSync objects, the time is
 displayed in the server's local time.
 $Header$ Concatenation of Source, Revision, Date, Author, and Locker
 Id Concatenation of RCSfile, Revision, Date, Author, and Locker
 $KeysEnd$ Not expanded, and stops further expansion of keys
 $Locker$ Who has locked this revision. If the revision is not
 locked, this value is empty (null).
 Log The full name of the archive file ($Source$) followed by
 the comment log (see Notes)
 $RCSfile$ The name of the archive file, without the path
 $Revision$ The revision number. For modules, the version provided
 is that of the module member.
 $Source$ The full name of the archive file, including the path

ENOVIA Synchronicity Command Reference - Module

13

 Notes:
 - The Log keyword, when expanded, permanently adds log
 information to your file -- later collapsing the keyword
 leaves the log information in your file. Existing
 log messages are not replaced. Instead, the new log information
 is inserted each time the keyword is expanded. Log is useful
 for accumulating a complete change log in a source file, but can
 result in differences or conflicts when doing merges or
 file comparisons. Log is the only keyword with this behavior.

 - When a keyword expansion requires spans multiple lines,
 the comment delimiter at the beginning of the line is repeated on
 subsequent lines. Therefore, make sure that the resulting syntax
 is valid. For example, in a C file, do not specify:

 /* Log
 */

 The resulting expansion has invalid comment syntax:

 /* $Log: /home/syncmgr/syncdata/adams/2647/Projects/Test/test.c.rca $
 /*
 /* Revision: 1.6 Wed Jun 20 09:12:07 2001 Adams
 /* *** empty comment string *** */

 Whereas if you specify:

 /*
 * Log
 */

 The resulting expansion is valid:

 /*
 * $Log: /home/syncmgr/syncdata/adams/2647/Projects/Test/test.c.rca $
 *
 * Revision: 1.6 Wed Jun 20 09:12:07 2001 Adams
 * *** empty comment string ***
 */

Module Note

 For module members, the $RCSfile$ keyword expands to show the full
 natural path of the module member.

 When module members are locked, the locker keyword is not updated and
 remains empty (null). To view the locker information in that case,
 use the ls command.

SEE ALSO

 ci, populate

Fundamental Topics

14

EXAMPLES

 The following is an example of keywords in a file before and after
 expansion. Note that the keywords appear within comment
 delimiters, in this case /* and */, such as a C file.

 /*
 * $Aliases$
 * $Author$
 * $Date$
 * $Header$
 * Id
 * $Locker$
 * Log
 *
 *
 * $RCSfile$
 * $Revision$
 * $Source$
 * $KeysEnd$
 * Id
 */

 Following substitution:

 /*
 * $Aliases: Key-Example $
 * $Author: ja $
 * $Date: Wed Jun 20 11:47:20 2001 $
 * $Header: /home/syncmgr/syncdata/adams/2647/Projects/Test/test.c.rca 1.1
Wed Jun 20 11:47:20 2001 ja Stable $
 * $Id: test.c.rca 1.1 Wed Jun 20 11:47:20 2001 ja Stable $
 * $Locker: $
 * $Log: /home/syncmgr/syncdata/adams/2647/Projects/Test/test.c.rca $
 *
 * Revision: 1.1 Wed Jun 20 11:47:20 2001 ja
 * Initial revision
 *
 * $RCSfile: test.c.rca $
 * $Revision: 1.1 $
 * $Source: /home/syncmgr/syncdata/adams/2647/Projects/Test/test.c.rca $
 * $KeysEnd$
 * Id
 */

Using Selectors

selectors

NAME

ENOVIA Synchronicity Command Reference - Module

15

 selectors - How to use selectors and selector lists

DESCRIPTION

• What Are Selectors?
• Static Selectors Versus Dynamic Selectors
• How Does DesignSync Resolve Branch and Version Selectors?
• What are Selector Lists and Persistant Selector Lists
• Selector Formats
• Date Formats

 DesignSync uses selectors and selector lists to determine the
 branch or version of an object to use for revision-control
 operations. Understanding and properly using selectors and
 selector lists is critical in multi-branch environments, but is
 also important when using a single branch.

 Note:
 DesignSync supports two distinct features: 'select lists'
 and 'selector lists'. Select lists, as managed by the
 'select' and 'unselect' commands and used by commands that
 support the '-selected' option, are an optional way to
 specify on which objects DesignSync commands should operate.
 Selector lists, as managed by the "setselector" command and
 the '-version' and '-branch' options to various commands,
 specify on which version or branch of a given object
 DesignSync commands should operate.

What Are Selectors?

 A selector is an expression that identifies a branch and version of
 a managed object. For example, the version selector 'gold', the branch
 selector 'Rel2:Latest', the version number '1.4', and the reserved
 keyword 'Latest' are all selectors.

Static Selectors Versus Dynamic Selectors

 Static selectors denote a set of objects whose contents are fixed.
 These fixed objects might constitute a group of objects being
 prepared for release. Static selectors include version selectors such
 as 'gold' and branch selectors with fixed versions, such as
 'Rel2:gold'. The objects denoted by a static selector do not change
 with subsequent checkins.

 Dynamic selectors denote a set of objects whose contents are
 not fixed. A branch selector such as 'Rel2:Latest' is a dynamic
 selector because the objects denoted by the selector change;

Fundamental Topics

16

 a new 'Latest' version is created on the Rel2 branch with each
 subsequent checkin.

How Does DesignSync Resolve Branch and Version Selectors?

 Branch tags and version tags share the same name space. To
 distinguish version selectors from branch selectors, you
 append ':<versiontag>' to the branch name; for example,
 'Gold:Latest' is a valid branch selector. You can leave off the
 'Latest' keyword as shorthand; for example, 'Gold:' is equivalent
 to 'Gold:Latest'. The selector 'Trunk' is also a valid branch
 selector; 'Trunk' is a shorthand selector for 'Trunk:Latest'.

 You cannot assign the same tag name to both a version and a branch
 of the same object. For example, a file called 'top.v' cannot have
 both a version tagged 'Gold' and a branch tagged 'Gold'. However,
 'top.v' can have a version tagged 'Gold' while another file, 'alu.v',
 can have a branch tagged 'Gold'.

 Consider adopting a consistent naming convention for branch
 and version tags to reduce confusion. For example, you might have a
 policy that branch tags always begin with an initial uppercase letter
 ('Rel2.1', for example) whereas version tags do not ('gold', for
 example).

 If the selector identifies a version, DesignSync resolves the
 selector to both the object's version number and branch number.
 For example, if version 1.2.1.3 is tagged 'Gold', DesignSync
 resolves 'Gold' as both version 1.2.1.3 and branch 1.2.1.
 A version selector only resolves if the object has a version
 tag of the same name; it does not resolve if the tag is a branch
 tag.

 If the selector identifies a branch, DesignSync resolves the selector
 to both that branch and the Latest version on that branch. If
 branch 1.2.4 has branch tag 'Rel2', DesignSync resolves
 'Rel2:Latest' as both branch 1.2.4 and the Latest version on that
 branch (say, 1.2.4.5). This behavior is important because some commands
 (such as 'co') operate on a version, some (such as 'ci') operate on a
 branch, and others (such as 'tag') operate on either a version or
 branch. If the tag cannot be resolved as a branch, DesignSync searches
 for a version of the same name, determines which branch the version is
 on, and resolves to the Latest version on that branch. For example,
 suppose an object, 'netlist.txt', has a version tagged 'beta' on
 its 1.2.4 branch. If the selector is 'beta', DesignSync first
 searches for a 'beta' branch. Finding no beta branch, DesignSync
 searches for a 'beta' version. DesignSync finds the 'beta' version,
 determines its branch, 1.2.4, and resolves to the Latest version
 on the 1.2.4 branch.

 A selector can also specify both a branch and a version, for example,
 'Rel2:gold'. This selector resolves if there is a branch 'Rel2' and if
 a version tagged 'gold' exists on the 'Rel2' branch.

ENOVIA Synchronicity Command Reference - Module

17

 A selector might not match any branch or version of a given object.
 For example, a file may not have a branch or version tagged
 'Gold'. Because selectors can fail, it is common to specify
 selector lists.

 Note: To resolve a selector, DesignSync does not search above the
 first folder that has a vault association. Thus, if a folder has no
 selector or persistent selector set, DesignSync searches up the
 hierarchy only as far as the first folder that has a vault
 association.

What are Selector Lists and Persistant Selector Lists

 Selector lists automatically combine to create a blended workspace
 containing elements from the specified selectors. The selector list,
 a comma-separated list of selectors. No whitespace between items is
 allowed.
 Examples of selector lists are:
 gold,silver,bronze,Trunk:Latest
 auto(Test),Main:Latest
 Dev2.1:Latest,Rel2.1:Latest,Trunk
 gold, 1.2, 1.2.1:Latest, Trunk

 The final item in the selector list, is the main selector. When
 used, the command using the selector list creates a module manifest
 from the main selector, and layers that with the contents of the
 other selectors, in reverse order, processing the first selector in
 the command last. The final manifest is then sent to the client.
 The server uses the natural path of the objects and the uuid to
 determine which module members to include in the workspace.

 A workspace created from the selector list can be checked in as a
 module member tagged workspace (aka: "snapshot"), or checked into
 the main selector, if the main selector is dynamic. If the main
 selector is a static selector, changes to the workspace can only be
 checked into as a snapshot.

 When a workspace is populated with a selector list during the
 initial populate, or when the selector list is specified with the
 -version tag, the selector list is set as the persistent selector
 for the workspace and will be used for all subsequent populate
 operations.

 Note: When using a selector list with -recursive, the operation
 recurses through a directory hierarchy according to the command it
 is used with, however it does not recurse through a static href, or
 a hierarchical reference to a legacy module, external module, or
 file based vault. The selector list is silently ignored when
 applied recursively to these sub-module types and the populate only
 considers the main selector.

Selector Formats

Fundamental Topics

18

 A selector can have one of several formats:

 o <number>

 A branch or version number. Branch and version numbers are also
 known as "dot numerics". Using branch or version numbers as
 selectors is typically less convenient than using tags or
 date-based selectors.

 A version <number> selector is a static selector; the objects
 denoted by the version <number> selector are fixed. A branch
 <number> selector is a dynamic selector; the objects denoted
 by the branch <number> selector change upon subsequent checkins.

 Examples: 1.1, 1.3.2.3 -- version <number> selectors
 1, 1.3.4, 1.1.1 -- branch <number> selectors

 o <versiontag>

 A version selector. If you specify a version selector, DesignSync
 resolves the selector to both the object's version number and
 branch number. For more details, see "How Does DesignSync
 Resolve Branch and Version Selectors?"

 A <versiontag> selector is a static selector; the objects denoted
 by the <versiontag> selector are fixed.

 A given tag name might be applied to a branch or to a version
 (but never both at the same time for the same object). Branch
 selectors use the syntax '<branchtag>:<versiontag>', for
 example, 'Rel2:Latest' to differentiate them from version
 selectors.

 If you specify a version selector during the check-in of a new
 object, the object is created, by default, on the Trunk branch.
 If you instead intend to check the object into a different
 branch, be sure to specify a branch selector rather than a
 version selector.

 Examples of version selectors: gold
 alpha

 o <branchtag>:Latest

 A branch selector that specifies the most recent version on
 the branch. A given tag name might be applied to a branch
 or to a version (but never both at the same time for the same
 object). To specify a branch selector, append ':<versiontag>',
 in this case, ':Latest' to the branch tag name, for example,
 'Rel2.1:Latest'. You can leave off the 'Latest' keyword as
 shorthand. For example, 'Rel2.1:' is equivalent to
 'Rel2.1:Latest'.

 A <branchtag>:Latest (or <branchtag>:) selector is a dynamic
 selector; the objects denoted by this selector change upon
 subsequent checkins.

ENOVIA Synchronicity Command Reference - Module

19

 If <branchtag> cannot be resolved as a branch tag, DesignSync
 searches for a version tag of that name and resolves to the Latest
 version on that version's branch. For more details, see "How Does
 DesignSync Resolve Branch and Version Selectors?"

 The tag 'Trunk' (shorthand for 'Trunk:Latest') has special
 significance; it is the default tag name for branch 1.

 Examples of branch selectors: Trunk -- branch 1 default
 (shorthand for
 Trunk:Latest)
 Rel2.1:Latest -- branch selector of
 most recent Rel2.1
 version
 Rel2.1: -- shorthand for
 Rel2.1:Latest

 Notes about using Latest and Date():

 - <branchtag>:Date(<a_date_in_the_future>)is equivalent to
 <branchtag>:Latest. Meaning that as long as the specified date is
 in the future, the <branchtag>:Date selector will resolve to the
 <branchtag>:Latest. Once the date has been reached, however;
 the last checked in version for the date becomes the version
 indicated for that selector.
 - When used with the 'setselector' command or as part of a
 selector list argument (more than one selector) to
 -version, Latest and Date() must be qualified with a branch:
 <branchtag>:Latest, <branchtag>:Date(<date>)
 - When used as the only selector to a -version option,
 DesignSync augments the selector with the persistent selector
 list. For example, if the persistent selector list is
 'Gold:,Trunk' and you specify 'co -version Latest', the
 selector list used for the operation is
 'Gold:Latest,Trunk:Latest'; the persistent selector list
 remains 'Gold:,Trunk' after the operation.

 Exception: When you check in an object whose branch you have
 locked (having done a 'co' or 'populate' with the
 -lock option), the date selector augments the
 current branch, not the persistent selector
 list. You typically want to remain working on the
 locked branch even if the persistent selector list
 has changed.

 These restrictions are required to avoid ambiguity about which
 branch a Latest or Date() selector applies to.

 o <branchtag>:<versiontag>

 A specific version on a specific branch. The <branchtag> and
 <versiontag> values are themselves selectors.

 Unlike the dynamic <branchtag>:Latest selector, a
 <branchtag>:<versiontag> selector is a static selector; the
 objects denoted by the <branchtag>:<versiontag> selector

Fundamental Topics

20

 are fixed.

 Examples: Rel2:alpha
 Trunk:Date(yesterday)

 Notes:
 - To specify a specific branch and version, the selector must
 contain both the branch and version. ':<versiontag>' is illegal.
 '<branchtag>:' resolves to the Latest version on the specified
 branch.
 - A selector such as 'Trunk:gold' is valid and indicates a version
 tagged 'gold' only if it is on a branch called 'Trunk'; otherwise,
 the selector fails.
 - A selector of the form 'Gold:Latest' looks for a branch
 tagged Gold, and if found, fetches the Latest version on that
 branch. If a 'Gold' branch is not found, DesignSync looks for a
 version tagged 'Gold', and if found, retrieves the Latest
 version on the branch that the 'Gold' version is on. Selectors
 of the form 'Gold:Date(<date>)' behave similarly.
 - For backward compatibility, DesignSync supports selectors of
 the form '<version_number>:Latest' and
 <version_number>:Date(<date>). DesignSync uses the branch of
 the specified version, and then applies the Latest or Date()
 selector. For example, 1.2:Latest resolves to 1:Latest, and
 1.3.2.1:Date(yesterday) resolves to 1.3.2:Date(yesterday).

 o <branchtag>:Date(<date>)

 The most recent version on the specified branch that was
 created on or before the specified date. The 'Date' keyword
 is case insensitive. Note that if you specify a date in the future,
 the selector is equivalent to using the the 'Latest' version
 selector until the date is reached.

 A <branchtag>:Date(<date>) selector is a static selector;
 the objects denoted by this selector date are fixed provided the
 specified date has been reached. If the date is in the future, the
 selector is dynamic until the date is reached.

 For example, <branchtag>:Date(yesterday) will always resolve to
 yesterday's last checked in version. But
 <branchtag:Date(<futureDate>) will match <branchtag>:Latest until
 the date specified has been reached, at which point the selector
 will resolve to the last checked in version before the date.

 You specify the Date selector as follows:
 <branchtag>:Date(<date>)
 where <branchtag> is a branch tag. If <branchtag> cannot be
 resolved as a branch tag, DesignSync searches for a version tag
 of that name and resolves to the most recent version created on
 or before the specified date on that version's branch.

 Examples: Trunk:Date(yesterday) -- Resolves to the last version
 checked in yesterday on the
 Trunk branch
 gold:date(4/11/00) -- If no branch is named 'gold',
 but there is a version selector

ENOVIA Synchronicity Command Reference - Module

21

 'gold', DesignSync resolves
 this selector to the last version
 checked in on or before 4/11/00
 on the branch containing the
 'gold' version
 Rel2:Date(today) -- Resolves to the last version
 checked in today on the Rel2
 branch

 See the "Date Formats" section below for details on how to specify
 dates. See <branchtag>:Latest for more information about specifying
 date selectors.

 o VaultDate(<date>)

 The most recent version on any branch that was created on or
 before the specified date. The 'VaultDate' keyword is case
 insensitive. Like the Date selector, the VaultDate
 specification can accept a branch tag, in the format:

 <branchtag>:VaultDate(<date>)

 where <branchtag>: is optional.

 A VaultDate(<date>) selector is a dynamic selector; the
 objects denoted by this selector are dependent on the
 date.

 Examples: VaultDate(yesterday)
 VaultDate(4/11/00)
 Rel40:VaultDate(today)

 See the "Date Formats" section for details on how to specify
 dates.

Date Formats

 This section describes how you can specify dates when using
 Date(<date>) and VaultDate(<date>) selectors. DesignSync uses a
 public-domain date parser that supports a wide range of date and
 time specifications. The parser is the same one used by the Gnu
 family of tools. Visit a Gnu website for a complete
 specification. This section documents the more common formats.

 Note: If the date specification contains spaces, you must surround
 the entire selector list with double quotes.
 For example: 'Gold:Date(last Tuesday),Trunk'

 Year Format:
 You can specify the year using 2 or 4 digits. DesignSync interprets
 2-digit year specifications between 00 and 69, inclusive, as 2000
 to 2069, and specifications between 70 and 99, inclusive, as 1970
 to 1999.

Fundamental Topics

22

 If you omit the year, the default is the current year.

 Month Format:
 You can specify the month as a number (1 through 12), or using the
 following names and abbreviations:
 January Jan Jan.
 February Feb Feb.
 March Mar Mar.
 April Apr Apr.
 May May May.
 June Jun Jun.
 July Jul Jul.
 August Aug Aug.
 September Sep Sep. Sept Sept.
 October Oct Oct.
 November Nov Nov.
 December Dec Dec.

 Note: September is the only month for which a 4-letter abbreviation
 is valid.

 If you omit the month, the default is the current month.

 Day Format:
 You can specify days of the week in full or with abbreviations:

 Sunday Sun Sun.
 Monday Mon Mon.
 Tuesday Tue Tue. Tues Tues.
 Wednesday Wed Wed. Wednes Wednes.
 Thursday Thu Thu. Thurs Thurs.
 Friday Fri Fri.
 Saturday Sat Sat.

 You can add words such as 'last' or 'next' before a day of the week to
 specify a date other than the nearest day of the same name. For
 example:

 Thursday Specifies the most recent past Thursday, or
 today, if today is Thursday.

 next Thursday Specifies one week after the most recent Thursday
 (includes the current day if today is Thursday).

 last Thursday Specifies one week before the most recent Thursday
 (includes the current day if today is Thursday).

 If you omit the day, the default is the current day.

 Note: A comma after a day of the week item is ignored.

 Time Format:
 You specify the time of the day as hour:minute:second, where hour
 is a number between 0 and 23, minute is a number between 0 and 59,
 and second is a number between 0 and 59.

 Any portion not specified defaults to '0', so a date specification

ENOVIA Synchronicity Command Reference - Module

23

 of 03/04/00 defaults to a time of 00:00:00, which is the start of
 the day (end of the previous day).

SEE ALSO

 select, setselector, setvault, unselect, url selector

EXAMPLES

 All of the following examples specify the same calendar date:

 Note: The preferred order in the U.S. may be ambiguous compared to
 other countries usage of DD-MM-YY if the number of either the month
 or the day is less than 10. For example, a date such as 9/12/00
 means September 12, 2000 in the U.S. but December 9, 2000 in many
 other countries.

 2000-09-24 # ISO 8601.
 00-09-24 # 00 indicates year 2000.
 00-9-24 # Leading zeros are not required. For
 example, '9' is equivalent to '09'.
 09/24/00 # U.S. preferred order. See previous note.
 24-sep-00 # Three-letter month abbreviations
 are allowed.
 24sep00 # Hyphen and slashes are not required
 delimiters.
 23 sep 00 # Spaces are permitted, but the entire
 selector list must be placed within double
 quotes.

 Note: The following three times represent local time, because no
 time zone is specified.

 20:02:0 # 2 minutes after 20 (8 PM)
 20:02 # 2 minutes after 20 (8 PM), zero seconds implied
 8:02pm # 2 minutes after 8 PM

 Note: The following time applies to Eastern U.S. Standard
 Time because the -0500 means 5 hours behind UTC (Coordinated
 Universal Time, also known as Greenwich Mean Time) time.
 The -0500 is a 'time zone item'.

 20:02-0500 # 2 minutes after 8 PM Eastern U.S. Time

 Note: You can combine a time and a date as follows:

 01/24/00 20:02 # 2 minutes after 8 PM on January 24th 2000.
 Contains spaces, so the entire selector
 list must be placed within double quotes.

Fundamental Topics

24

Using Wildcards

wildcard

NAME

 wildcard - Using wildcard characters in filenames

DESCRIPTION

 Wildcards are useful when you want to specify a large
 number of files without having to specify the name of
 each file. The following wildcards can be used in the
 filename portion of pathnames and URLs:

 ? Matches any single character
 [list] Matches any single character present in list
 * Matches any pattern

 Note: In stcl/stclc mode, you need to use a backslash (\) to escape
 the left bracket ([).

 Depending on where wildcards are specified, they are either
 immediately resolved (static list) or are resolved at the time
 of an operation (dynamic list).

 Exclude lists (-exclude option) are dynamic; wildcards are stored
 as the actual wildcard characters. When an operation is to be
 performed on files or directories, each file or directory is
 checked against the exclude list. If any object matches one of
 the names in the exclude list, that object is not processed. In
 addition to specifying -exclude on a per-operation basis, you can
 also define exclude lists, which apply to all revision-control
 operations that accept the -exclude option, from the DesignSync
 graphical interface (Tools->Options->General->Exclude Lists).

 Select lists (-selected option) are static; the select list
 resolves all wildcards to the exact names of the files or
 directories at the time the select list is created.
 This static select list can then be used by any
 revision-control operation that accepts the -selected option. Note
 that when wildcards are used in a list of objects to be processed by
 the unselect command, the wildcards are matched against objects in
 the select list, not against objects in the current directory.

 Note: If you use a wildcard with a -recursive option of a DesignSync
 command, DesignSync first matches that wildcard against the contents
 of the starting directory, and then processes any matching objects
 and recurses through any matching directories. DesignSync applies
 the wildcard only at the starting point, and not throughout the
 directory hierarchy.

ENOVIA Synchronicity Command Reference - Module

25

EXAMPLES

 This example lists any object in the directory mydir that begins
 with the 'a', '3', or '#' character, and ends with
 a '.' followed by any three characters.

 dss> ls /mydir/[a3#]*.???

 In stcl, you need to escape the left bracket:
 stcl> ls /mydir/\[a3#]*.???

 Example of wildcards in exclude lists:

 CVS Ignore any files or directories named "CVS".
 foo.obj Ignore any files or directories named "foo.obj".
 src/foo.obj Ignore any files named "foo.obj" in a directory
 named "src".
 src/foo* Ignore any files or directories beginning
 with "foo" in a directory named "src".

27

Client Applications

DesSync

DesSync Command

NAME

 DesSync - Invokes the DesignSync graphical interface

DESCRIPTION

 This command invokes the DesignSync graphical user interface
 (GUI). You execute DesSync from your operating system shell, not
 from a Synchronicity client shell (dss/dssc/stcl/stclc). On
 Windows platforms, you can also invoke DesSync from the Windows
 Start menu, typically:
 Start->Programs->Dassault Systems <VersionNumber>->DesignSync

 You can also execute all DesignSync command-line commands from
 the GUI.

 DesignSync Data Manager User's Guide describes the GUI. From the GUI,
 select Help->Help Topics, or click the book icon in the Tool Bar.

SYNOPSIS

 DesSync [-nosplash] [path]

OPTIONS

• -nosplash
• -path

-nosplash

 -nosplash Prevents the DesignSync splash screen from
 displaying at startup.

 You can also disable the splash screen site-wide or
 by user:

 Site Wide

Client Applications

28

 Change the last line of SYNC_DIR/bin/DesSync to the include
 the flag:

 exec .runjava -jar $SYNC_DIR/classes/dsj.jar -nosplash $*:q

 User

 Create a script with the following contents, and put it in the
 path ahead of SYNC_DIR/bin:

 #!/bin/csh -f
 exec ${SYNC_DIR}/bin/DesSync -nosplash $*:q

 Note: If you use spaces in your path arguments to the command,
 you must places them in quotes.

-path

 path The path to the directory/folder that you want
 DesignSync to expand at startup. You can specify an
 absolute or relative path. You can also set the
 DesignSync initial folder through a SyncAdmin option
 (GUI Options->Initial Folder).

RETURN VALUE

 none

SEE ALSO

 dss, dssc, stcl, stclc, SyncAdmin

EXAMPLES

• Example of Starting the DesignSync GUI
• Example of Starting the DesignSync GUI without the Splash Screen
• Example of Starting the DesignSync GUI Opened to the Current Directory
• Example of Starting the DesignSync Opened to Specified Path

Example of Starting the DesignSync GUI

 This example invokes the DesignSync GUI:
 % DesSync

ENOVIA Synchronicity Command Reference - Module

29

Example of Starting the DesignSync GUI without the Splash Screen

 This example invokes the GUI in background mode without displaying
 the splash screen:
 % DesSync -nosplash &

Example of Starting the DesignSync GUI Opened to the Current Directory

 This example invokes the GUI and specifies the current directory
 as the initial folder:
 % DesSync .

Example of Starting the DesignSync Opened to Specified Path

 This example invokes the GUI and specifies a specific project
 directory as the initial folder:
 % DesSync /home/projects/chip/alu

dss

dss Command

NAME

 dss - Invokes the DesignSync shell (dss)

DESCRIPTION

 This command invokes the DesignSync shell (dss), a DesignSync
 command-line interface. dss is one of the DesignSync client
 applications (along with dssc, stcl, stclc, and the DesSync
 graphical interface).

 You invoke dss from your operating-system (OS) shell in one of
 the following ways:

 o Specify no arguments to the dss command to enter the dss
 environment, indicated by the 'dss>' prompt. You remain in
 the dss shell until you issue the 'exit' command, which
 returns you to your OS shell.

 o Specify a DesignSync command to execute. DesignSync executes the
 command, then returns you to your OS shell.

Client Applications

30

 On Windows platforms, you can also invoke dss from the Windows
 Start menu, typically:
 Start->Programs->Dassault Systems <Version>
 ->DesignSync Shell (dss)

 The dss and stcl clients communicate with a Synchronicity server
 (SyncServer) through syncd, the Synchronicity daemon. If you do
 not already have a syncd process running, dss attempts to start
 one.

 The syncd process can manage multiple dss/stcl requests per user,
 allowing one user to run parallel dss/stcl sessions. However,
 syncd handles requests serially, which can cause operations from
 one dss session to be blocked while operations from another session
 execute. It is therefore recommended that you use dssc, the
 concurrent version of dss. The dssc and stclc clients do not use
 syncd; they communicate directly with a SyncServer. The dssc
 and stclc clients also have the advantage of supporting more
 robust command-line editing, including command and filename
 completion. The dss client does support DesignSync command
 abbreviations, like the dssc and stclc clients.

 The only advantage of dss over dssc is that dss start-up time when
 a syncd is already running is less than dssc start-up time. If you
 frequently run DesignSync commands from your OS shell using the
 form "dssc <command>" instead of staying in the dssc shell, use dss
 instead of dssc.

 If you want to use programming constructs (such as variables,
 loops, and conditionals) in conjunction with DesignSync commands,
 use stcl or stclc, the Synchronicity Tcl clients.

 Note: Both dss and stcl inherit their environments, such as
 environment variable definitions, from syncd. Therefore,
 you must stop and restart syncd (see the syncdadmin command)
 for your dss and stcl sessions to pick up environment changes.

SYNOPSIS

 dss [<command>]

OPTIONS

 none

RETURN VALUE

 Returns the success status of the last executed command: zero (0)

ENOVIA Synchronicity Command Reference - Module

31

 indicates success, non-zero indicates failure. You can specify a
 return value as an argument to the exit command, which is typically
 the last command executed.

SEE ALSO

 dssc, stcl, stclc, DesSync, syncdadmin, exit

EXAMPLES

• Example of Invoking DSS (DesignSync Shell)
• Example of Running a DSS Command From OS Shell

Example of Invoking DSS (DesignSync Shell)

 This example invokes the DesignSync shell, from which you can
 enter any number of dss commands. Use 'exit' to return to your
 OS shell.
 % dss
 Logging to /home/tgoss/dss_01192000_161324.log
 V3.0

 dss> spwd
 file:///home/tgoss/Projects/Sportster/code
 dss> exit
 %

Example of Running a DSS Command From OS Shell

 This example executes the 'co' command while remaining in your
 OS shell.

 % dss co -nocomment -lock samp.mem
 Logging to /home/tgoss/dss_01192000_160958.log
 V3.0

 Beginning Check out operation...

 Checking out: samp.mem : Success - Checked Out version: 1.1 -> 1.2

 Checkout command finished...
 %

dssc

dssc Command

Client Applications

32

NAME

 dssc - Invokes the concurrent version of dss

DESCRIPTION

 This command invokes the concurrent version of the DesignSync shell
 (dssc), a DesignSync command-line interface. dssc is one of the
 DesignSync client applications (along with dss, stcl, stclc, and
 the DesSync graphical interface).

 You invoke dssc from your operating-system (OS) shell in one of
 the following ways:

 o Specify no arguments to the dssc command to enter the dssc
 environment, indicated by the 'dss>' prompt. You remain in the
 dssc shell until you issue the 'exit' command, which returns
 you to your OS shell.

 o Specify a DesignSync command to execute. DesignSync executes the
 command, then returns you to your OS shell.

 Note: The UNIX shell does not pass a null string ("") to the
 DesignSync client when dssc is specified with a DesignSync command
 argument. If your command requires a null string, use the stcl
 or stclc client with the -exp option.

 On Windows platforms, you can also invoke dssc from the Windows Start
 menu, typically:
 Start->Programs->Dassault Systems <version>
 -> DesignSync Concurrent Shell (dssc)

 The dssc and stclc clients communicate directly with a
 Synchronicity server (SyncServer). Unlike dss and stcl, no
 Synchronicity daemon process (syncd) is used. Because syncd handles
 requests serially, using dssc eliminates a potential bottleneck
 when you have multiple shells communicating with a SyncServer. The
 one advantage dss has over dssc is that dss start-up time when a
 syncd is already running is less than dssc start-up time. If you
 frequently run DesignSync commands from your OS shell using the
 form "dssc <command>" instead of staying in the dssc shell, use dss
 instead of dssc.

 The dssc shell supports command-line editing:

 Behavior Control Keys Special Keys
 -------- ------------ ------------
 Forward one character Ctrl-f Right arrow
 Back one character Ctrl-b Left arrow
 Beginning of line Ctrl-a Home (only supported
 for Windows platforms)
 End of line Ctrl-e End (only supported
 for Windows platforms)

ENOVIA Synchronicity Command Reference - Module

33

 Kill rest of line Ctrl-k
 Kill line Ctrl-u Esc
 (Note: The Esc key
 instead invokes vi
 command mode if your
 <EDITOR> environment
 variable is set to vi
 or your ~/.inputrc file
 contains the line
 'set editing-mode vi'.
 Note also that the
 DesignSync GUI default
 editor setting does not
 affect the behavior
 of the Esc key.)
 Delete character Ctrl-d Delete
 Previous command from
 command history Ctrl-p Up arrow
 Next command from
 command history Ctrl-n Down arrow
 Exit stclc/dssc shell Ctrl-d

 The dssc shell also supports command, option, and filename
 completion, as well as DesignSync command abbreviations.
 See DesignSync Data Manager User's Guide for details.

 If you want to use programming constructs (such as variables,
 loops, and conditionals) in conjunction with DesignSync commands,
 use stcl or stclc, the Synchronicity Tcl clients.

SYNOPSIS

 dssc [<command>]

OPTIONS

 none

RETURN VALUE

 Returns the success status of the last executed command: zero (0)
 indicates success, non-zero indicates failure. You can specify a
 return value as an argument to the exit command, which is typically
 the last command executed.

SEE ALSO

Client Applications

34

 dss, stcl, stclc, DesSync, exit

EXAMPLES

• Example of Invoking DSSC (DesignSync Concurrent Shell)
• Example of Running a DSSC Command From OS Shell

Example of Invoking DSSC (DesignSync Concurrent Shell)

 This example invokes the DesignSync shell, from which you can
 enter any number of dss commands. Use 'exit' to return to your
 OS shell.
 % dssc
 Logging to /home/tgoss/dss_01192000_161324.log
 V3.0

 dss> spwd
 file:///home/tgoss/Projects/Sportster/code
 dss> exit
 %

Example of Running a DSSC Command From OS Shell

 This example executes the 'co' command while remaining in your
 OS shell.
 % dssc co -nocomment -lock samp.mem
 Logging to /home/tgoss/dss_01192000_160958.log
 V3.0

 Beginning Check out operation...

 Checking out: samp.mem : Success - Checked Out version: 1.1 -> 1.2

 Checkout command finished...
 %

stcl

stcl Command

NAME

 stcl - Invokes the Synchronicity Tcl interface

DESCRIPTION

ENOVIA Synchronicity Command Reference - Module

35

 This command invokes the Synchronicity Tcl (stcl) shell. stcl is
 one of the DesignSync client applications (along with dss, dssc,
 stclc, and the DesSync graphical interface). All DesignSync
 commands and commercial Tcl commands are available in the stcl
 environment. Note: To determine the version of Tcl included in
 your Synchronicity installation's stcl interpreter, use the
 Tcl 'info tclversion' and 'info patchlevel' commands within
 an stcl/stclc client shell.

 You invoke stcl from your operating-system (OS) shell in one of
 the following ways:

 o Specify no arguments to the stcl command to enter the stcl
 shell, indicated by the 'stcl>' prompt. You remain in the stcl
 shell until you issue the 'exit' command, which returns you to
 your OS shell.

 o Specify a script name to execute a Tcl script, which is
 equivalent to sourcing a Tcl script from within the stcl
 environment. For example:
 % stcl myscript.tcl
 ...script executes
 %
 is equivalent to
 % stcl
 stcl> source myscript.tcl
 ...script executes...
 stcl> exit
 %

 o Specify the -exp option to directly execute one or more
 DesignSync or Tcl commands. Use a semicolon (;) to
 separate multiple commands, and surround the entire command
 string with single quotes.

 On Windows platforms, you can also invoke stcl from the Windows
 Start menu, typically:
 Start->Programs-> Dassault Systems <version>->
 -> DesignSync Tcl Shell (stcl)

 Use the stcl shell when you need the scripting constructs of Tcl,
 such as conditionals (if/then/else), loops (while, for, foreach),
 and variable assignment (set). If you do not need Tcl constructs,
 dss provides a simpler command environment. With stcl:
 - You cannot abbreviate DesignSync commands. For example,
 you cannot abbreviate 'populate' to 'pop' as you might in
 dss/dssc/stclc.
 - You must use double quotes around objects that contain a
 semicolon (;), such as vaults, branches, and versions. The
 semicolon is the Tcl (and therefore stcl) command separator.
 - You must specify the -exp option to execute a DesignSync
 command from the OS shell. Because stcl is primarily a
 scripting shell, an argument specified without -exp is assumed
 to be a script. With dss, the syntax for specifying a single
 command is simpler.

Client Applications

36

 For more information on Tcl, including documentation for Tcl
 commands, visit these Web sites:

 http://www.tcl.tk
 http://tcl.sourceforge.net

 The stcl and dss clients communicate with a Synchronicity server
 (SyncServer) through syncd, the Synchronicity daemon. If you do
 not already have a syncd process running, stcl attempts to start
 one.

 The syncd process can manage multiple dss/stcl requests per user,
 allowing one user to run parallel dss/stcl sessions. However, syncd
 handles requests serially, which can cause operations from one
 dss/stcl session to be blocked while operations from another
 session execute. It is therefore recommended that you use stclc,
 the concurrent version of stcl. The stclc and dssc clients do not
 use syncd; they communicate directly with a SyncServer. The stclc
 client also has the advantage of supporting more robust command-line
 editing, including command and filename completion, as well as
 command history search and DesignSync command abbreviations.

 One advantage of stcl over stclc is that stcl start-up time when a
 syncd is already running is less than stclc start-up time. If you
 are frequently running DesignSync commands from your OS shell
 using the form "stclc -exp '<command>'" instead of staying in the
 stclc shell, use stcl instead of stclc.

 Note: Both stcl and dss inherit their environments, such as
 environment variable definitions, from syncd. Therefore,
 you must stop and restart syncd (see the syncdadmin command)
 for your stcl and dss sessions to pick up environment changes.

SYNOPSIS

 stcl [--] [-exp '<command>' | <scriptname>]

OPTIONS

• -exp
• --

-exp

 -exp '<command>' Executes one or more commands. Separate multiple
 commands with a semicolon, and surround the command
 expression with single quotes. Using double quotes
 works, but single quotes facilitate including
 double quotes within the command expression.

ENOVIA Synchronicity Command Reference - Module

37

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 Returns the success status of the last executed command: zero (0)
 indicates success, non-zero indicates failure (an exception was
 thrown). You can specify a return value as an argument to the exit
 command, which is typically the last command executed.

SEE ALSO

 stclc, dss, dssc, DesSync, syncdadmin, rstcl, exit

EXAMPLES

• Example of Invoking the stcl shell
• Example of Using stcl to Run a Script
• Example of Invoking Commands in stcl without Using the Shell
• Example of Invoking Commands that Include a Quoted String

Example of Invoking the stcl shell

 This example invokes the stcl shell:
 % stcl
 stcl>

Example of Using stcl to Run a Script

 This example invokes a Tcl script that populates a work area:
 % stcl update.tcl

Example of Invoking Commands in stcl without Using the Shell

 This example executes the 'ls' command followed by the 'spwd' command:
 % stcl -exp 'ls;spwd'

Client Applications

38

Example of Invoking Commands that Include a Quoted String

 This example shows a command string that includes double quotes:
 % stcl -exp 'ci -keep -comment "Fixed defect 4354" file.c'

stclc

stclc Command

NAME

 stclc - Invokes the concurrent version of stcl

DESCRIPTION

 This command invokes the concurrent version of the Synchronicity
 Tcl (stclc) shell. stclc is one of the DesignSync client
 applications (along with dss, dssc, stcl, and the DesSync graphical
 interface). All DesignSync commands and commercial Tcl
 commands are available in the stcl environment. Note: To determine
 the version of Tcl included in your Synchronicity installation's
 stcl interpreter, use the Tcl 'info tclversion' and
 'info patchlevel' commands within an stcl/stclc client shell.

 You invoke stclc from your operating-system (OS) shell in one of
 the following ways:

 o Specify no arguments to the stclc command to enter the stclc
 shell, indicated by the 'stcl>' prompt. You remain in the stclc
 shell until you issue the 'exit' command, which returns you to
 your OS shell.

 o Specify a script name to execute a Tcl script, which is
 equivalent to sourcing a Tcl script from within the stclc
 environment. For example:
 % stclc myscript.tcl
 ...script executes
 %
 is equivalent to
 % stclc
 stcl> source myscript.tcl
 ...script executes...
 stcl> exit
 %

 o Specify the -exp option to directly execute one or more
 DesignSync or Tcl commands. Use a semicolon (;) to
 separate multiple commands, and surround the entire command
 string with single quotes.

ENOVIA Synchronicity Command Reference - Module

39

 On Windows platforms, you can also invoke stclc from the Windows Start
 menu, typically:
 Start->Programs->Dassault Systems <version>
 ->DesignSync Concurrent Tcl Shell (stclc)

 Use the stclc shell when you need the scripting constructs of Tcl,
 such as conditionals (if/then/else), loops (while, for, foreach),
 and variable assignment (set). If you do not need Tcl constructs,
 dssc provides a simpler command environment. With stclc:
 - You must use double quotes around objects that contain a
 semicolon (;), such as vaults, branches, and versions. The
 semicolon is the Tcl (and therefore stclc) command separator.
 - You must specify the -exp option to execute a DesignSync
 command from the OS shell. Because stclc is primarily a
 scripting shell, an argument specified without -exp is assumed
 to be a script. With dssc, the syntax for specifying a single
 command is simpler.

 For more information on Tcl, including documentation for Tcl
 commands, visit these Web sites:

 http://www.tcl.tk
 http://tcl.sourceforge.net

 The stclc and dssc clients communicate directly with a
 Synchronicity server (SyncServer). Unlike dss and stcl, no
 Synchronicity daemon process (syncd) is used. Because syncd handles
 requests serially, using stclc eliminates a potential bottleneck
 when you have multiple shells communicating with a SyncServer. The
 one advantage stcl has over stclc is that stcl start-up time when a
 syncd is already running is less than stclc start-up time. If you
 are frequently running stcl commands from your OS shell
 using the form "stclc -exp '<command>'" instead of staying in the
 stclc shell, use stcl instead of stclc.

 The stclc shell supports command-line editing:

 Behavior Control Keys Special Keys
 -------- ------------ ------------
 Forward one character Ctrl-f Right arrow
 Back one character Ctrl-b Left arrow
 Beginning of line Ctrl-a Home (only supported
 for Windows platforms)
 End of line Ctrl-e End (only supported
 for Windows platforms)
 Kill rest of line Ctrl-k
 Kill line Ctrl-u Esc
 (Note: The Esc key
 instead invokes vi
 command mode if your
 <EDITOR> environment
 variable is set to vi
 or your ~/.inputrc file
 contains the line
 'set editing-mode vi'.
 Note also that the

Client Applications

40

 DesignSync GUI default
 editor setting does not
 affect the behavior
 of the Esc key.)
 Delete character Ctrl-d Delete
 Previous command from
 command history Ctrl-p Up arrow
 Next command from
 command history Ctrl-n Down arrow
 Exit stclc/dssc shell Ctrl-d

 The stclc shell also supports command, option, and filename
 completion, as well as command history search and DesignSync
 command abbreviations. See DesignSync Data Manager User's Guide for
 details.

 The stclc shell also supports Unix commands; if you enter a
 Unix command which is not also an stcl function, the
 interpreter automatically calls the Unix command. In this way,
 you can execute Unix programs without using the Tcl 'exec'
 command. Note: If you do not want Unix commands to be
 executed automatically, you can set the global variable,
 auto_noexec, to disable this behavior. For details, refer
 to Tcl documentation of the Tcl 'unknown' command.

SYNOPSIS

 stclc [--] [-exp '<command>' | <scriptname>]

OPTIONS

• -exp
• --

-exp

 -exp '<command>' Executes one or more commands. Separate multiple
 commands with a semicolon, and surround the command
 expression with single quotes. Using double quotes
 works, but single quotes facilitate including
 double quotes within the command expression.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

ENOVIA Synchronicity Command Reference - Module

41

RETURN VALUE

 Returns the success status of the last executed command: zero (0)
 indicates success, non-zero indicates failure (an exception was
 thrown). You can also specify a return value as an argument to the
 exit command, which is typically the last command executed.

 A failure results when an exception is thrown.

SEE ALSO

 stcl, dss, dssc, DesSync, rstcl, exit

EXAMPLES

• Example of Invoking the stclc shell
• Example of Invoking a Tcl Script
• Example of Invoking Commands with stclc
• Example of Invoking Commands including a Quoted String

Example of Invoking the stclc shell

 This example invokes the stclc shell:
 % stclc
 stcl>

Example of Invoking a Tcl Script

 This example invokes a Tcl script that populates a work area:
 % stclc update.tcl

Example of Invoking Commands with stclc

 This example executes the 'ls' command followed by the 'spwd' command:
 % stclc -exp 'ls;spwd'

Example of Invoking Commands including a Quoted String

 This example shows a command string that includes double quotes:
 % stclc -exp 'ci -keep -comment "Fixed defect 4354" file.c'

43

Client Shell Control

alias

alias Command

NAME

 alias - Creates, shows, or removes a command alias

DESCRIPTION

 This command defines an alias for a command or series of commands.
 The alias persists from one DesignSync session to the next unless
 you use the -temporary option.

 The symbols $1 through $n provide placeholders for argument
 substitution. You can create an alias for a sequence of commands.
 Use the symbol '&&' to separate commands on the command line.

 You cannot use the alias command to redefine the behavior of
 built-in DesignSync commands. For example, if you define an alias
 called 'co', DesignSync ignores the alias definition when you use
 the 'co' command.

 Alias definitions remember the mode, dss/dssc or stcl/stclc, in
 which they were defined. For example, if while in stcl/stclc mode you
 create an alias containing Tcl constructs, the alias will always
 execute in stcl/stclc mode even if you change to dss/dssc mode. Aliases
 provide the mechanism for you to define new stcl commands and make
 them available from dss/dssc.

SYNOPSIS

 alias [-args <#>] {-list | -delete <alias_name> | <alias_name>
 {<cmd> [&& <cmd> ...]}} [-temporary] [--]

OPTIONS

• -args
• -delete
• -list
• -temporary
• --

Client Shell Control

44

-args

 -args <#> Number of arguments accepted by the alias. A value of "*"
 represents any number of arguments.

-delete

 -delete <name> Delete the specified alias.

-list

 -list Display a list of known aliases.

-temporary

 -temporary Temporarily create or delete an alias. Without the
 -temporary option, the alias definition or deletion
 persists through future sessions.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 none

EXAMPLE

 This example creates a command called 'lss', which lists a directory
 using the "-report status" switch to report whether objects are up
 to date.

 stclc> alias -args * -- lss ls -report status {$*}

exit

ENOVIA Synchronicity Command Reference - Module

45

exit Command

NAME

 exit - Ends a DesignSync session, or an stcl script

DESCRIPTION

 This command ends your DesignSync shell (dss/dssc/stcl/stclc)
 session, or an stcl script. This command is the Tcl exit command
 with one extension: the ability to bring down syncd using the
 -daemon option.

 Note that 'exit' within a script not only stops script execution, but
 also exits your DesignSync shell session. To avoid this behavior,
 stcl programmers should use 'return' and 'error' in their scripts
 instead of 'exit'.

 You can optionally specify an integer exit status to pass to the
 parent process (OS shell). The default exit status is 0, which
 indicates success.

SYNOPSIS

 exit [-daemon [-force]] [<status>]

OPTIONS

• -daemon
• -force

-daemon

 -daemon Brings down syncd when exiting stcl or dss. This option
 has no effect when specified from the DesignSync
 graphical interface, stclc, or dssc, none of which
 communicates with syncd. The syncd process will not exit
 if there is another active dss/stcl session connected
 to syncd or if syncd is locked (see the 'syncdadmin
 lock' command) unless you specify -force.

-force

Client Shell Control

46

 -force Valid only when -daemon is specified, forces syncd to
 exit even if there is another active dss/stcl session
 connected to syncd or if syncd is locked (see
 the 'syncdadmin lock' command).

RETURN VALUE

 The return value is not of the 'exit' command itself, but of
 the shell or script that 'exit' is terminating. The default is '0'
 (success), but you can specify an alternative value using the
 status argument.

SEE ALSO

 syncdadmin

EXAMPLES

• Example of Exiting a dssc Session
• Example of Exiting a stcl Session and Stoppping the syncdaemon

Example of Exiting a dssc Session

 This example exits a dssc session. The default exit status is
 0 (success).

 dss> exit
 % echo $status
 0
 %

Example of Exiting a stcl Session and Stoppping the syncdaemon

 This example exits an stcl session, returns a failure exit status,
 and brings down syncd.
 stcl> exit -daemon 1
 % echo $status
 1
 %

log

log Command

ENOVIA Synchronicity Command Reference - Module

47

NAME

 log - Logs DesignSync commands and results to a file

DESCRIPTION

 This command controls the logging of DesignSync commands and
 command output. Use the run command to execute log files (no
 editing is needed) in order to repeat a series of commands.

 The log file is put in your home directory (as defined by $HOME on
 UNIX or your user profile, which is managed by the User Manager
 tool, on Windows platforms) unless you change the default using the
 -defaultdir option. Note that the run command and the log command
 use the same default directory to locate files.

 The default log filename is dss_<date>_<time>.log, where <date> and
 <time> reflect when the log file was created. For example, a log
 file of dss_04052000_111258.log was created on April 5, 2000, at
 11:12:58 AM. The time stamp ensures filename uniqueness so that log
 files from previous DesignSync sessions are retained. If you prefer
 to always use the same filename so that you do not collect log
 files from past sessions, you can do so with the log command. If a
 file with the same name as the specified log file already exists,
 then it is overwritten without warning. If you do not specify an
 extension for the log file, a '.log' extension is used by default.

 The default file size for the log file is 10MB. If the log file grows
 beyond the maximum log file size, the contents of the log file is
 moved to dss_<date>_<time>.bak.log, the log file is zeroed out, and
 the client continues logging. This process repeats every time the
 session log limit is reached. DesignSync only maintains one backup
 file, which essentially has the same maximum size as the log file.
 For information on changing the default log size, see the DesignSync
 Data Manager Administrator's Guide.

 To prevent large numbers of dss_<date>_<time>.log files from
 collecting in your log directory, DesignSync automatically deletes
 log files that are older than 2 days. If more than 20 log files
 remain, DesignSync deletes all log files older than 1 hour. If
 you want to retain a log file indefinitely, you must move or
 rename the file.

 If you are an administrator, you can change the logging
 settings for all users on a LAN or for all users of a particular project.
 See "The Logging Tab" topic in SyncAdmin online help for more
 information.

SYNOPSIS

Client Shell Control

48

 log [-defaultdir <dir>] [-off | -on] [-nooutput | -output] [-state]
 [--] [<logFileName>]

ARGUMENTS

• Log File Name

Log File Name

 <logFileName> Optionally enter a log file name. If no name is
 specified, DesignSync uses the default log name,
 as detailed in the DESCRIPTION section.

OPTIONS

• -defaultdir
• -nooutput
• off
• -on
• -output
• -state
• --

-defaultdir

 -defaultdir <dir> Set the default log directory. This value is
 saved between sessions. If you have not set a
 default log directory, then your home directory
 is used.

-nooutput

 -nooutput Record only the commands being executed. The
 default is for logging of both commands and
 command output (-output).

off

 -off Turn logging off. When you specify this option,
 information is displayed indicating not only
 that logging is disabled, but also the state
 of logging if it were enabled (what is being
 logged, the current log file, and the default
 log directory).

ENOVIA Synchronicity Command Reference - Module

49

-on

 -on Turn logging on. Turning logging off and
 then back on appends to the current log file if
 you do not specify a log filename.

-output

 -output Record command results as comments in addition
 to the commands themselves. This behavior is the
 default.

-state

 -state Display current logging state. Shows what
 log file is currently in use, whether logging
 is enabled, how much detail is being logged,
 and the name of the default log file directory.
 Specifying the log command without options has
 the same behavior as specifying -state.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when you
 specify a log file whose name begins with a
 hyphen (-).

RETURN VALUE

 none

SEE ALSO

 run

EXAMPLES

• Example of Setting the Default Log File Directory
• Example Showing the Current Logging State

Client Shell Control

50

Example of Setting the Default Log File Directory

 This example sets the default directory for the creation of log files
 for this and future sessions, and specifies the log file for the
 current session as 'pcimaster.log'. Specifying a default log
 directory and a log file are mutually exclusive operations, so two
 log commands must be used:
 dss> log -defaultdir c:\Logs
 dss> log pcimaster.log

Example Showing the Current Logging State

 This example displays the current logging state:
 dss> log -state (-state is optional)
 Logging: ON
 Output: Commands Only
 LogFile: c:\Logs\pcimaster.log
 Default Logging Dir: c:\Logs

more

more Command

NAME

 more - Controls the paging of command output

DESCRIPTION

 This command controls the paging of command output. You can precede
 any DesignSync command with "more" to prevent the command output
 from scrolling off the window. Output pauses after the number of
 lines determined as follows:
 1. As specified by the -lines option.
 2. If -lines is not specified, as determined by the size of your
 window.
 3. If "more" is unable to determine the size of your window (for
 example, you are using a telnet session), the default is 20 lines.

 To see the next block of output, press the Return (Enter) key. To
 stop the "more" command, use Ctrl-c; the command whose output you are
 paging may or may not be interrupted depending on if and when the
 command checks for interrupts.

 Important: The command whose output you are paging is
 suspended when the output is paused. The operation
 continues when you press the Return key.

ENOVIA Synchronicity Command Reference - Module

51

SYNOPSIS

 more [-lines <n>] [--] <command>

OPTIONS

• -lines
• --

-lines

 -lines <n> Specifies the number of lines to display in the
 window before pausing. A value of "0" means scrolling
 is not controlled; all output is displayed without
 pauses.

 If you do not specify -lines, the "more" command
 defaults to the number of lines that can be displayed
 in your window. In cases where "more" cannot determine
 your window size, the default is 20 lines.

 Note: You must specify -lines before the command
 you are executing. For example,
 "more ls -lines 5" is invalid and must instead be
 "more -lines 5 ls".

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 none

EXAMPLES

• Example Showing More With a Specified Amount of Lines
• Example Showing More with the Default Amount of Lines

Example Showing More With a Specified Amount of Lines

Client Shell Control

52

 The following example pauses the "ci" operation after each
 15 lines of output.
 dss> more -lines 15 ci -nocomment -recursive .

Example Showing More with the Default Amount of Lines

 The following example lists all objects in the current folder,
 pausing after each window of output. For example, if your window
 size is 40 lines, then each block of output is 40 lines.
 dss> more ls
 ...

prompt

prompt Command

NAME

 prompt - Sets the dss/dssc command-line prompt

DESCRIPTION

 This command sets the dss or dssc shell command-line prompt. The
 prompt can be either the URL of the current working directory, or
 the default prompt of 'dss>'.

 Note: You can only specify the prompt for dss and dssc shells, not
 for stcl or stclc shells.

SYNOPSIS

 prompt [-default | -url]

OPTIONS

• -default
• -url

-default

ENOVIA Synchronicity Command Reference - Module

53

 -default Sets the prompt to the string 'dss>'.

-url

 -url Sets the prompt to the current working directory URL. If
 you change working directories, the prompt
 automatically updates.

RETURN VALUE

 none

SEE ALSO

 dss, dssc

EXAMPLES

 This example demonstrates the prompt command:
 dss> prompt -url
 file:///home/goss/Projects/Sportster/code> scd ..
 file:///home/goss/Projects/Sportster> prompt -default
 dss>

rstcl

rstcl Command

NAME

 rstcl - Runs server-side stcl scripts

DESCRIPTION

 This command runs server-side stcl scripts from DesignSync
 clients. You can also execute server-side scripts by passing a URL
 to the SyncServer from your browser. See the 'server-side' topic or
 the ProjectSync User's Guide for details.

 You run client-side scripts using the DesignSync run command or the
 Tcl source command. The choice of whether to implement a script as

Client Shell Control

54

 client-side or server-side depends on what you are trying to
 accomplish. You can use client scripts to automate user tasks or
 implement enhancements to the built-in user command set. You create
 server-side scripts for any of the following reasons:
 - To set server-wide policies (such as triggers or access controls)
 - To create server customizations (such as customized ProjectSync
 panels or data sheets)
 - To reduce the amount of client/server traffic that a
 client-side script accessing vault data would require
 - To execute commands that are only available as server-side
 commands (such as 'access reset' and most ProjectSync commands)

 When you execute a script with rstcl, the SyncServer looks for the
 specified script in the following locations (in the order listed):

 1. Server-specific Tcl scripts (UNIX only):
 <SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/tcl

 2. Site-wide Tcl scripts:
 <SYNC_CUSTOM_DIR>/site/share/tcl

 3. Enterprise-wide Tcl scripts:
 <SYNC_CUSTOM_DIR>/enterprise/share/tcl

 4. Synchronicity-provided Tcl scripts:
 <SYNC_DIR>/share/tcl

 Do not put scripts in <SYNC_DIR>/share/tcl because this
 directory is reserved for Synchronicity scripts, and your
 scripts may be overwritten when you upgrade your
 Synchronicity software.

 rstcl requests mutually exclude each other. I.e. They all acquire the
 same exclusive lock, named smdSrvrMetaDataLock. If you analyze your
 script and know it to be safe to run in parallel with other scripts,
 you may release the exclusive lock from within your script by using
 'url syslock -release smdSrvrMetaDataLock'. If your script reads or
 writes an external file, it is probably not parallelizable. rstcl
 requests and panel= requests (invoked via ProjectSync) never mutually
 exclude each other; panel requests are entirely independent of rstcl's
 lock.

 Notes:
 - If you make modifications to your script, use the ProjectSync
 Reset Server menu option to force the SyncServer to reread your
 script.
 - When specifying 'sync:' URLs within scripts that are run on the
 server, do not specify the host and port. For example, specify:
 sync:///Projects/Asic
 not
 sync://holzt:2647/Projects/Asic
 Because the script is run on the server itself, host:port
 information is unnecessary and is stripped out by the
 server, which may lead to incorrect behavior during object-name
 comparisons.
 - The SYNC_ClientInfo variable is not defined when running
 server-side scripts with rstcl -- you must use the browser-based

ENOVIA Synchronicity Command Reference - Module

55

 invocation. All other SYNC_* variables (SYNC_Host, SYNC_Port,
 SYNC_Domain, SYNC_User, and SYNC_Parm if parameters are passed
 into the script) are available when using rstcl.

SYNOPSIS

 rstcl [-output <file>] -server <serverURL> -script <script>
 [-urlparams <name>=<value>[&<name>=value[...]]]

OPTIONS

• -output
• -server
• -script
• -urlparams

-output

 -output <file> Specifies the file to which script output is
 written. If omitted, the output is displayed.

-server

 -server <serverURL> Specifies the URL of the SyncServer that will
 execute the script. Specify the URL as follows:
 sync://<host>[:<port>]
 where 'sync://' is required, <host> is
 the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (if omitted, defaults to 2647/2679). For
 example, you might specify the following:
 -server sync://serv1.abco.com:1024

-script

 -script <script> Specifies the name of the script to be
 executed. This script must be in one of the Tcl
 script directories on the SyncServer specified
 by the -server option. The Tcl directories are
 (in the order in which they are searched):

 1. Server-specific Tcl scripts (UNIX only):
 <SYNC_DIR>/custom/servers/<host>/<port>/share/tcl

 2. Site-wide Tcl scripts:

Client Shell Control

56

 <SYNC_DIR>/custom/site/share/tcl

 3. Enterprise-wide Tcl scripts:
 <SYNC_DIR>/custom/enterprise/share/tcl

 4. Synchronicity-provided Tcl scripts:
 <SYNC_DIR>/share/tcl

 The script can contain Tcl constructs and
 Synchronicity commands, including server-side only
 commands.

-urlparams

 -urlparams <params> Specifies the parameters that are passed into
 the script. Specify each parameter as a
 name/value pair separated by an equal sign (=),
 and separate multiple parameters with an
 ampersand (&):
 <param1>=<value1>&<param2>=<value2>...
 For example:
 -urlparams Name=Joe&IDNum=1234

 Parameters are passed into the script using the
 global variable SYNC_Parm, which is a Tcl
 array. The array keys are the names of the
 parameters. To access the value of a parameter
 from within the script, use the following syntax:

 $SYNC_Parm(<param_name>)

 For example, the following Tcl line would
 display the value of the 'name' parameter:

 puts "The name is: $SYNC_Parm(name)"

 Note: If any parameter name or value
 contains whitespace, surround the entire
 parameter list with double quotes. For example:
 -urlparams "name=Joe Black&IDNum=1234"

RETURN VALUE

 o If -output is not specified, returns (and displays) the script
 output.
 o If -output is specified, output is written to the specified file
 and the return value is an empty string.

 If the script has an error, a Tcl exception is thrown from the
 client side and the Tcl stack trace is output. Proper usage
 for handling exceptions would be to provide an exception handler
 when you use the rstcl command:

ENOVIA Synchronicity Command Reference - Module

57

 if [catch {rstcl -server ...} result] {
 # Something bad happened.
 # 'result' contains the output generated by the script
 # prior to the error and the Tcl stack trace.
 } else { # All is fine.
 # 'result' contains whatever output is generated
 # by the script.
 }

 If the -output option to the rstcl command was specified, then
 the exception is still thrown, but the script output and Tcl stack
 trace are written to the specified output file.

SEE ALSO

 server-side, run, url syslock

EXAMPLES

 A common use of rstcl is to run the 'access reset' command, which
 restarts the SyncServer. See the 'access reset' command for details.

 Most ProjectSync-related scripts must be run on the server and
 could therefore use rstcl. This example creates a ProjectSync note
 using the 'note create' command, which is a server-side only
 command, and displays the URL of the new note. This output is then
 returned to the rstcl command in callNoteCreate.tcl.

 1.In the <SYNC_CUSTOM_DIR>/site/share/tcl directory on the
 holzt:2647 server is the noteCreate.tcl script, which contains
 the following:

 set noteUrl [note create -type Note \
 [list Title $SYNC_Parm(title)] [list Body $SYNC_Parm(body)] \
 [list Author $SYNC_Parm(author)]]
 puts "$noteUrl"

 2. On the client side, the callNoteCreate.tcl script provides an
 exception catcher in case the noteCreate.tcl script fails.

 if [catch {rstcl -server sync://holzt:2647 -script noteCreate.tcl \
 -urlparams "author=Goss&title=This is a note.&body=New note."} \
 result] {
 puts "Couldn't create the note!"
 } else {
 puts "Created note: $result"
 }

 3. From stcl, run the client script:

 stcl> source callNoteCreate.tcl

Client Shell Control

58

 Created note: sync:///Note/SyncNotes/Note/3

 You could also run the rstcl command directly from the command
 line (no exception catcher). Doing so creates a second note:

 stcl> rstcl -server sync://holzt:2647 -script noteCreate.tcl \
 -urlparams "author=Goss&title=Another note.&body=New note."
 sync:///Note/SyncNotes/Note/4

record

record Command

NAME

 record - Captures command output

DESCRIPTION

 This command captures the output from a command and stores it in a
 variable. stcl programmers can use this command as a debugging aid.

 The two required arguments to the record command are the command to
 execute and the variable in which to store the command output.
 Note that 'record' differs from 'set' in that 'record' stores
 the command output whereas 'set' would store the command's return
 value (see Examples for an illustration).

 The record command returns or throws whatever the command being executed
 produces. Therefore, replacing any command with a corresponding
 record command does not affect script execution.

 The record command runs in transaction mode and caches data about a
 file in memory. Subsequent operations may use the cached data, even
 when file has been updated on the disk.

SYNOPSIS

 record <command> <variable>

OPTIONS

 none

ENOVIA Synchronicity Command Reference - Module

59

RETURN VALUE

 Same as the command being executed.

SEE ALSO

 puts

EXAMPLES

• Example of Recording to a Variable
• Example Showing Typical Usage of Record
• Example Showing Using Command Arguments with Record

Example of Recording to a Variable

 The following example stores the result of an ls command in the
 variable 'listing':
 stcl> record ls listing

Example Showing Typical Usage of Record

 This example shows how grouping operators are commonly used with
 the record command:

 catch {record {ci -new -keep -rec -com $comment *.cds} text} ret

Example Showing Using Command Arguments with Record

 This example demonstrates the different behavior of the 'record'
 command:

 stcl> record {co -lock -nocom top.v} x
 {Objects succeeded (1)} {}
 stcl> puts $x

 Beginning Check out operation...

 Checking out: top.v : Success - Checked Out version: 1.1 -> 1.2

 Versus the 'set' command:

 stcl> set x [co -lock -nocom top.v]

Client Shell Control

60

 Beginning Check out operation...

 Checking out: top.v : Success - Checked Out version: 1.1 -> 1.2
 {Objects succeeded (1)} {}
 stcl> puts $x
 {Objects succeeded (1)} {}
 stcl>

61

Workspace Setup

Enterprise Design Development Areas

sda

sda Command

sda - Synchronicity development area commands

DESCRIPTION

 The sda commands allow you to manage your DesignSync development
 areas. For more information on development areas, see the
 Enterprise Design Administration User's Guide.

 Note: The sda commands must be run from your OS shell, not from
 within the DesignSync interfaces.

SYNOPSIS

 sda <sub_command> [<sub_command_options>]

 Usage: sda [cd|gui|join|ls|mk|rm]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 sda cd, sda gui, sda join, sda ls, sda mk, sda rm

EXAMPLES

Workspace Setup

62

 See specific "sda" commands.

sda cd

sda cd Command

NAME

 sda cd - Change development area and launch a tool command

DESCRIPTION

 This command allows the user to launch a tool from a development area they
 have created via "sda mk" or joined via "sda join". The tool runs using the
 development setting defined for the area.

 The sda cd command performs the following sequence of actions:
 1. If the -update option is selected, updates the development
 instance directory associated with an external development area.

 2. Sets up the environment by setting the following environment
 variables:
 o SYNC_DEVAREA_DIR - set to the requested development area
 directory.
 o SYNC_DEVAREA_TOP - set to the leaf name of the top module or
 directory in the development area.
 o SYNC_DEV_ASSIGNMENT - set to the assignment associated with
 the development area.
 o SYNC_DEVELOPMENT_DIR - set to the top of the development instance
 directory.
 o SYNC_PROJECT_CFGDIR - set to the directory holding the
 development setting for the assignment associated with the
 development area.
 o SYNC_WS_DEVAREA_TOP - set to the leaf name of the top module
 or directory in the development area. This variable can then
 be used for the starting directory in any commands you
 construct within the specified tool.

 3. Runs all of the set up scripts defined for the tools associated
 with the development area. Running all the scripts is required to
 support inter-tool dependencies and shell tools.
 Note: When a shell is defined as a tool, it should be defined to
 ignore the startup script for the shell. Any aliases, etc. defined
 in the startup script will not be available; however when a tool
 suite is defined, the admin can specify a script with the desired
 environment settings.

 4. Sets the current directory for the tool to the starting directory.
 The starting directory is the directory defined in the tool's
 definition. If no starting directory is specified, then the
 directory defined in the tool suite is used. If no starting

ENOVIA Synchronicity Command Reference - Module

63

 directory is specified in the tool suite either, the development
 area is used.
 The starting directories can be specified with environment
 variables and may be relative to the development area.

 5. Starts the requested tool. If the tool is graphical, the tool is
 spawned (detached) from sda. If the tool is non-graphical, on
 UNIX, the tool runs in the same shell as sda.

 Note: When a non-graphical tool is started, the sda process ends.

 If you run the command without specifying a development area or a
 tool, or the user specified an ambiguous argument, the command starts
 in interactive mode. In interactive mode, the user is prompted for
 the command arguments and options needed. Any arguments specified
 with the -gui command option are passed to the GUI and the
 appropriate fields are selected on the "Change Area" tab.

SYNOPSIS

 sda cd [<area_name>] [<tool>] [-development <name>] [-gui]
 [-suite <suite_name>] [-[no]update] [-version <version>]

ARGUMENTS

• Development Area Name
• Tool

Development Area Name

 area_name The development area name of the DesignSync
 Development. This argument is required and the
 development area must already exist.

Tool

 tool The tool name specified must be a tool that is
 defined for use with the specified development
 area. The list of available tools can be viewed from
 the development instance for the assignment
 associated with the area.

 Note: When a shell is defined as a tool, it should
 be defined to ignore the startup script for the
 shell. Any aliases, etc. defined in the startup
 script will not be available.

OPTIONS

Workspace Setup

64

• -development
• -gui
• -suite
• -[no]update
• -version

-development

 -development Specify the name of the development if the area name is
 <name> not unique for the user. Area names are unique
 within a development for a given user, but are not
 required to be unique across all developments.

-gui

 gui Starts the sda graphical user interface mode
 with the "Change Area" tab selected.

 If this option is used with the tool argument, the
 tool argument is silently ignored.

-suite

 -suite <suite> Specify the suite name for the tool suite, if the
 tool name is not unique across all tool suites for
 the development assignment.

-[no]update

 -[no]update Specifies whether the development instance
 definition should be updated, if it is an external
 area.

 -noupdate does not update the external development
 instance from the server before setting the
 environment variables for the area and starting the
 tool. (Default when the development setting
 is 'Mirror=False')

 -update performs the update of the external area
 before performing any other actions. (Default when
 'Mirror=True')

 If the area is not an external area and this option
 is specified, the tool exits without launching the
 tool.

 Note: If -update is explicitly specified, and no

ENOVIA Synchronicity Command Reference - Module

65

 tool is specified, DesignSync assumes the
 desired action is the update and does not
 prompt for tool in interactive mode.

-version

 -version Specify the version number of the tool suite if the
 <version> tool suite name is not unique within the
 development assignment. This option must be
 specified if there are multiple tools with the same
 name in multiple tool suites with the same name.

RETURN VALUE

 There is no TCL return value for this command.

SEE ALSO

 sda gui, sda join, sda ls, sda mk, sda rm

EXAMPLES

• Running sda cd in Interactive Mode
• Running sda cd in non-interactive mode

Running sda cd in Interactive Mode

 This example runs sda cd in interative mode, supplying no
 arguments. It is run from a Windows client and launches the
 DesignSync GUI which is configured as a tool for this development
 area.
 Note that the list of areas is prefixed with the development name for
 ease of idenfitication.

 C:\workspaces\chipNZ214> sda cd
 Logging to C:\Users\fyl\dss_11042013_100431.log
 V6R2014x

 Which development area would you like to work with?
 [1] (Chip-NZ214) documenter-1_rmsith
 [2] (Chip-QR2) verifier-1_thopkins
 [3] (Chip-NZ214) developer-1_rsmith
 [E] <EXIT sda>
 Select the number preceding the development area name or 'E' to exit
 [1-3,E]: 1

Workspace Setup

66

 Synchronizing the local development with the server ...
 Contacting host: serv1.ABCo.com:2164 ...
 Synchronization complete

 Which tool would you like to launch?
 [1] Authoring Tool
 [2] DesSync
 [E] <EXIT sda>
 Select the number preceding the tool name or 'E' to exit (1-2,E): 2

 c:\workspaces\chipNZ214>

Running sda cd in non-interactive mode

 This example specifies the area and tool and the -noupdate option.
 Note that it does not enter interactive mode, nor does it attempt to
 synchronize the development area. This example automatically
 launches the GUI tool, without requiring the -GUI option because of
 the way the tool is defined.

 C:\workspaces\chipNZ214> sda cd Chip-NZ214 DesSync -noupdate
 Logging to C:\Users\fyl\dss_11042013_103110.log
 V6R2014x
 [The DesignSync Development Area Manager launches in separate window]
 c:\workspaces\chipNZ214>

sda gui

sda gui Command

NAME

 sda gui - Start the sda area management graphical user
 interface

DESCRIPTION

 This command is used to start the graphical user interface
 sda tool. The sda GUI tool is a tabbed dialog based tool for
 development area management. When the GUI is opened from this
 command, it displays the most recently used tab.

 For information on using the sda GUI tool, see the Enterprise DesignSync
 Administration User's Guide

 Note: If you are running this from UNIX, you must use an environment that
 supports running graphical clients.

ENOVIA Synchronicity Command Reference - Module

67

SYNOPSIS

 sda gui

RETURN VALUE

 This command has no TCL return value. If the GUI is unable to
 launch, the command returns an appropriate error message.

SEE ALSO

 sda cd, sda join, sda ls, sda mk, sda rm

EXAMPLES

• Starting sda GUI in the Background

Starting sda GUI in the Background

 This example starts the sda GUI as a background process on UNIX,
 leaving the terminal free to type additional commands if needed.

 > sda GUI &

sda join

sda join Command

NAME

 sda join - Allow the user to join an existing development
 area

DESCRIPTION

 This command allows the user to join an existing eligible shared
 area of a development. Eligible shared areas are located by
 finding the participating development servers, looking at the
 developments on those servers and identifying the shared areas that
 have a local path and have not already been joined. For information
 on defining a development server, see the DesignSync Data Manager
 Administrator's Guide.

Workspace Setup

68

 If you don't specify arguments to sda join, it starts in interactive
 mode, prompting you for any information needed that was not provided
 on the command line.

SYNOPSIS

 sda join [<area_name>] [-development <name>] [-gui]

ARGUMENTS

• Area Name

Area Name

 area_name The name of the DesignSync development area. The
 area must already exist. If the area is not
 provided, or cannot be uniquely identified from the
 name, you are prompted for the area name in
 interactive mode.

 If an invalid area is specified, and the -gui
 option is used, the GUI starts on the
 "Join Area" tab and allows you to select a
 valid Area.

OPTIONS

• -development
• -gui

-development

 -development Specify the development name if the area name is
 <name> not unique for the user. Area names are unique
 within a development for a given user, but are not
 required to be unique across all developments.

-gui

 -gui Starts the sda graphical user interface mode
 with the "Join Area" tab selected.

RETURN VALUE

ENOVIA Synchronicity Command Reference - Module

69

 There is no TCL return value for this command. If the command fails,
 DesignSync returns an appropriate error.

SEE ALSO

 sda cd, sda gui, sda ls, sda mk, sda rm

EXAMPLES

sda ls

sda ls Command

NAME

 sda ls - List the areas or developments relevant to the
 user

DESCRIPTION

 This command lists the areas or developments that are currently
 active for the user, or registered with the development servers
 defined in SyncAdmin. For more information on defining development
 servers, see the DesignSync Data Manager Administrator's Guide.

SYNOPSIS

 sda ls [-area | -development] [-gui] [-noheader]
 [-report brief | normal | verbose]

OPTIONS

• -area
• -development
• -gui
• -noheader
• -report

-area

Workspace Setup

70

 -area Show all of the areas, sorted by name, that are
 currently active for the user.

-development

 -development Show all the developments available from the
 development servers associated with the
 distribution. Development servers are associated
 with a distribution using SyncAdmin.

-gui

 -gui Starts the sda graphical user interface mode
 with the "List Areas," or "List Developments" tab
 selected.

-noheader

 -noheader Specifies omitting column headers for the
 command line reports. This option is silently
 ignored when the -gui option is specified. If this
 option is not specified, the command line reports
 include column headers.

-report

 -report brief| Specifies the amount of output supplied by the
 normal|verbose command.
 When -area is specified:
 -report brief - lists area names.
 -report normal - lists the area name, development
 name, and assignment associated with the area.
 -report verbose - includes all the information
 from -report normal and the path to the area
 directory, development's local instance directory,
 and status (enabled, disabled, or deleted.)

 When -development is specified:
 -report brief - lists development names.
 -report normal - lists the development name and
 its supported assignments.
 -report verbose - includes all the information in
 -report normal and the data URL, selector,
 development path, server URL, and status
 (enabled, disabled, or deleted.)

ENOVIA Synchronicity Command Reference - Module

71

RETURN VALUE

 This command does not return any TCL values. If the command succeeds,
 it displays the list of development areas. If the command fails, it
 fails with an appropriate error.

SEE ALSO

 sda cd, sda gui, sda join, sda mk, sda rm

EXAMPLES

• Example Showing the List of Development Areas

Example Showing the List of Development Areas

 This example shows a list of the defined development areas. Note that
 this command runs at the shell, not in the dss/stcl environment.

 $> sda ls
 Logging to /home/rsmith/dss_08112016_103913.log
 3DEXPERIENCER2021x

 Development Development Area Assignment
 ----------- ---------------- ----------
 ChipNZ214 documenter-1_rsmith QATester

sda mk

sda mk Command

NAME

 sda mk - Make a new development area

DESCRIPTION

• Running in Interactive Mode
• Tips for Naming Your Development Area
• External Development Areas
• Notes for Modules-Based Development

Workspace Setup

72

 This command creates a new development area in the specified location
 and registers the development area with the development server
 managing the development. The development server and the
 development the area uses must already exist. For more information
 on defining a development server, see the DesignSync Data Manager
 Administrator's Guide. For more information on development areas,
 see the Enterprise DesignSync Administrator's Guide.

 The sda mk command performs the following sequence of actions.
 o Creates the development area directory, if necessary.

 o Sets up the environment by creating environment variables to point
 to the new development area. The environment variables are:
 * SYNC_DEVAREA_DIR - the new development area directory.
 * SYNC_DEVELOPMENT_DIR - the top-level of the development instance
 directory.
 * SYNC_PROJECT_CFGDIR - the setting for the assignment associated
 with the development area.
 o Populates the development area with the development's data using
 the development URL from the development instance definition; the
 selector from the assignment associated with the development area;
 the version of DesignSync tools specified with the assignment; and
 any settings specified in the setting for the assignment, for
 example, the fetch state setting. The development data is
 populated into a sub-directory of the development area named by
 using the leaf name of the containing server data. For more
 information see the appropriate note for your usage model.

 Note: For Windows development areas, the fetch state is
 automatically set to -get mode (Fetch Unlocked Copies).

 Note: Server access may require a username and password. If your
 password for the server is not already saved by the client, you may
 be prompted to enter it in order to access the server data. For more
 information, see the notes section.

 For information on defining a development server, see the DesignSync
 Data Manager Administrator's Guide.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

Running in Interactive Mode

 Running sda mk with no arguments causes the command to enter the
 interactive mode. In interactive mode, you are prompted for the
 command arguments and options needed.

 If you specify ambiguous or incomplete arguments, sda mk will enter
 interactive mode only to resolve the unspecified or ambiguous
 arguments.

 Any arguments that are specified with the -gui command option will be
 passed to the GUI and the appropriate fields will be pre-filled or

ENOVIA Synchronicity Command Reference - Module

73

 selected on the "Make Area" tab.

Tips for Naming Your Development Area

 A development area name must start with an alphanumeric character and
 be composed of alphanumeric characters, including dot (.), dash (-),
 or underscore (__). Development names must be unique within a
 development server. Development area names must be unique for a
 development instance.

 The command provides a unique default development area name in the
 following format:
 <Assignment>-<count>_<creator>
 Where:
 <assignment> corresponds to the assignment selected previously, or
 entered with the -assignment option.
 <count> is the next available number, starting from 1, of areas
 created. This is used to ensure the uniqueness of the name.
 <creator> Username of the creator of the development area.

 For example, User rsmith creating the first development area for the
 assignment Developer, has a default development area name of
 "Developer-1_rmsith"

 Note: Development areas are checked for uniqueness in the
 name/instance pair. You cannot have to development areas for the
 same instance using the same name. You can have two development
 areas with the same name if they are for different development
 instances.

External Development Areas

 An external development area is a development area whose physical
 presence is on a different network from the development server that
 it is associated with. External development areas are only allowed if
 the "Allow External Development Areas" parameter from the development
 definition on the development server is set to TRUE.

 When a user creates a new development area, the sda mk command looks
 up the development instance path from the development definition on
 the development server. If the sda mk is run on a different network
 and can't find the development instance path, the command knows to
 create an external development area. The command then verifies that
 there is a local development instance directory for the development
 to host the new development area by checking for the existence of the
 directory located in the "External Path" parameter of the development
 definition on the development server. If this directory does not
 already exist, the command creates it.

 The external development directory is similar in structure to
 the development instance created locally by the development
 server. The data replication root directory is replaced by a simple

Workspace Setup

74

 file cache directory. None of the external development's directory
 hierarchy is mirrored and no data is pushed to this directory
 directly from the development server. This is simply a local copy.

 If the external development directory does already exist, its local
 development definition and the setting for the selected assignment
 is updated.

 After the external development directory is in place and up to date,
 the normal development area creation procedure continues with the
 creation of the relevant environment variables and the data
 population.

Notes for Modules-Based Development

 If the development data is managed as a module, the development area
 directory is the workspace root directory and the module data is
 populated into a sub-directory with the module's name. This allows
 for the main module to contain hrefs to peer modules which when
 populated recursively show up as peer subdirectories at the
 same level as the root module's base directory.

 Server authentication for Windows systems using modules requires that
 the server be listed as a development server or pre-authenticated by
 saving the username/password for the server (using the password -save
 command). If the server is not authenticated, the development area is
 created, but the data is not populated.

SYNOPSIS

 sda mk [<area_name> [<dev_name>]] [-assignment <assignment>] [-gui]
 [-path <path>] [-shared]

ARGUMENTS

• Area Name
• Development Name

Area Name

 <area_name> The new area name for the development.
 If no area name is specified, and the command is not
 run interactively, DesignSync uses the default name,
 in the format:
 <Assignment>-<count>_<creator>
 Where:
 <assignment> corresponds to the assignment
 selected previously, or entered with the -assignment
 option.

ENOVIA Synchronicity Command Reference - Module

75

 <count> is the next available number, starting from
 1, of areas created. This is used to ensure the
 uniqueness of the name.
 <creator> User name of the creator of the
 development area.

Development Name

 <dev_name> The development name of the DesignSync development
 instance to which the new development area is
 associated. The development must already exist.

OPTIONS

• -assignment
• -gui
• -path
• -shared

-assignment

 -assignment Specifies an assignment from a predefined list of
 <assignment> available assignments for the development. The
 assignment can be used to specify a module view or a
 different selector, one other than the default
 defined with the development, for the populate. If no
 assignment is specified, the "<Default>" assignment
 is assumed. The assignment determines the settings
 associated with the development area.

-gui

 -gui Starts the sda graphical user interface mode
 with the "Make Area," tab selected.

-path

 -path <path> Specifies the area directory; the local
 directory path where the development data will be
 populated. If the directory already contains managed
 data, the URL and selector of the data already
 fetched into the directory must match the URL and
 selector of the development combined with the
 assignment.

 Note: If you specify this option and the "Allow

Workspace Setup

76

 user-defined development area paths" parameter is
 set to FALSE, the command exits with an error.

-shared

 -shared Designates the development area as a shared
 development area. Shared development areas can be
 joined by other users. All users of a shared
 development area conduct their work in the same
 development area directory.

RETURN VALUE

 This command does not return any TCL values. The command output displays
 information about success or failure of the command and status messages.

SEE ALSO

 sda cd, sda gui, sda join, sda ls, sda rm, replicate

EXAMPLES

• Example of Running sda mk in Interactive Mode

Example of Running sda mk in Interactive Mode

 $> sda mk
 Logging to C:\home\rsmith\logs\dss_03132014_103149.log
 V6R2019x
 Contacting host: serv1.ABCo.com:2647 ...

 Which development would you like to create a development area for?
 [1] Chip-NZ8
 [2] Chip-QR2
 [3] ROM-NZx
 Select the number preceding the development name or 'E' to exit (1-3): 1

 Which assignment will be assigned to this development area?
 [1] developer
 [2] documenter
 [3] verifier
 Select the number preceding the assignment or 'E' to exit (1-3): 2

 Please specify the name for the new development area
 [documenter-1_rsmith]:

 Please specify the path for the development area directory

ENOVIA Synchronicity Command Reference - Module

77

 [c:\Developments\rsmith\documenter-1_rsmith]:
 C:\User\rsmith\DevAreas\nz8ChipDev

 Should this be a shared development area (y/n) [n]:

 The development area 'nz8ChipDev' for development 'Chip-NZ8' has been
 created at c:\User\rsmith\DevAreas\nz8ChipDev

sda rm

sda rm Command

NAME

 sda rm - Remove an existing development area and its
 contents

DESCRIPTION

 This command removes a development area from its development
 definition on the development server and attempts to remove the
 local development area directory. If the development area is a shared
 development area, only the last user to remove the development area
 is allowed to remove the local development area directory. The
 command does not remove any design data from the repository server.

 Invoking sda rm without any arguments, or with incomplete or
 ambiguous arguments, causes the command to enter the interactive
 mode. In interactive mode, the user is prompted for the command
 arguments and options needed and must confirm the answers.

 In interactive mode, orphaned development areas, development areas
 where a development instance can't be found; are displayed
 preceded with a "!" and shared development areas are displayed
 preceded with a "*".

 Any arguments specified with the -gui command option are passed to
 the GUI and the appropriate fields are pre-filled on the Remove Area
 tab. The GUI ignores the -noconfirm option if it is used.

SYNOPSIS

 sda rm [<area_name>] [-development <name>] [-gui] [-noconfirm]

OPTIONS

Workspace Setup

78

• -development
• -gui
• -noconfirm

-development

 -development Specify the development name if the area name is
 <name> not unique for the user. Area names are unique
 within a development for a given user, but are not
 required to be unique across all developments.

-gui

 -gui Starts the sda graphical user interface mode
 with the "Remove Area," tab selected.

-noconfirm

 -noconfirm By default, the removal requires confirmation. Use
 the -noconfirm option to perform the removal
 without confirmation.

 Note: The GUI interface always requires
 confirmation. If -noconfirm is specified with
 -gui, the -noconfirm option is silently ignored.

RETURN VALUE

 This command does not return any TCL values. The command output displays
 information about success or failure of the command and status messages.

SEE ALSO

 sda cd, sda gui, sda join, sda ls, sda mk

EXAMPLES

• Example Showing Removing a Development
• Example Showing Removing a Development in Interactive Mode

Example Showing Removing a Development

ENOVIA Synchronicity Command Reference - Module

79

 $> sda rm nz8ChipDev
 ** You are removing both the development area definition and the
 development area directory. **
 Are you sure you want the remove development area 'nz8ChipDev' from
 development 'Chip-NZ8'? (y/n) [n]:y
 You have successfully removed development area 'nz8ChipDev' from
 development 'Chip-NZ8'.
 $>

Example Showing Removing a Development in Interactive Mode

 $> sda rm
 Which development area would you like to remove?
 [1] nz8ChipDev (Chip-NZ8)
 [2] nz8ChipDev (ROM-NZx)
 [3] Chip-QR2
 [4] ROM-NZx
 * Shared development area
 Select the number preceding the development area name (1-5):1

 ** You are removing both the development area definition and the
 directory. **
 Are you sure you want the remove development area 'nz8ChipDev' from
 development 'Chip-NZ8'? (y/n) [n]:y
 You have successfully removed development area 'nz8ChipDev' from
 development 'Chip-NZ8'.

Exclude from Workspace

exclude

exclude Command

NAME

 exclude - Commands for excluding objects from operations

DESCRIPTION

 The exclude command allow you to control which unmanaged objects are
 automatically excluded from check in or add operations on a per
 directory basis.

 Using the exclude commands, you can add, remove, or display the
 glob-style exclusion patterns. The exclusions are stored in one or
 more syncexclude files.

 Note: These exclusions are only applicable to unmanaged files. If a

Workspace Setup

80

 file is managed by the SyncServer, and you wish to exclude it from an
 operation, such as populate, ci, or tag, you must use exclude lists
 or filters (for example "populate -exclude *.doc").

 The exclude files can be maintained either using these commands, a
 graphical interface in the DesSync client, or by manually editing the
 exclude file. For more information on the files, the file format,
 and using the various interfaces, see the DesignSync User's Guide:
 Working with Exclude Files.

SYNOPSIS

 exclude <exclude_command> [<exclude_command_options>]

 Usage: exclude [add | list | remove]

ARGUMENTS

 See individual commands.

OPTIONS

 See individual commands.

RETURN VALUE

 See individual commands.

SEE ALSO

 ci

EXAMPLES

 See individual commands.

exclude add

exclude add Command

ENOVIA Synchronicity Command Reference - Module

81

NAME

 exclude add - Add objects to exclude from operations

DESCRIPTION

 This command appends the supplied pattern(s) to the end of the
 specified .syncexclude[*] file. If the specified file doesn't
 already exist, DesignSync will create it and place the supplied
 pattern(s) in it. Exclusions are processed in the order they appear
 in the file. You can edit the file to adjust the positioning of the
 exclusions or add an exclusion pattern with a higher priority.

 Specify the pattern in one of the following forms:
 -<pattern>
 +<pattern>

 When you use the "-<pattern>" form, you exclude objects that match
 the specified pattern at the folder level.

 When you use the "- .../<patern>" form, you exclude objects that
 match the specified pattern at the folder level and any
 subfolders.

 When you use the "+[.../]<pattern>" you create an exception to
 a previously excluded pattern. An example of using an exclude with
 an exception might be excluding all .doc files unless they're in the
 documentation subdirectory. So in the base-level .syncexclude, you
 could have this:

 # Exclude all doc files -".../*.doc"
 and in a .syncexclude file within the documentation directory, you
 could have this:

 +".../*.doc"

 Any other sub-folders of the base folder would inherit excepting the
 unmanaged .doc files from revision control operations. The
 documentation directory and any subfolders of the documentation
 directory would allow .doc files to be included in revision control
 operations.

 Note: Any changes to exclude files affect only unmanaged files. If
 a managed object matches the pattern, it remains unaffected. To
 exclude managed files, you must use -exclude or -filter, or an
 exclude list, as applicable. For more information on other types of
 exclusions, see the DesignSync User's Guide.

 You must have write permissions in order to create or append to the
 file.

 This command supports the command defaults system.

Workspace Setup

82

SYNOPSIS

 exclude add <argument> [--] <pattern>[<pattern>...]

ARGUMENTS

• File Path Argument
• Folder Path Argument

File Path Argument

 <FilePath> The path and name of the .syncexclude file. All
 .syncexclude files must begin with ".syncexclude" but
 can contain an extension which must begin with a "."
 character. For example, you could create a .syncexclude
 file that contains the module name, such as
 ".syncexclude.Chip." This allows you to include
 multiple .syncexclude files in the same directory. If
 the file extension does not being with a period, ".",
 it will not be understood by the system as a
 .syncexclude file.

 If the specified file does not exist, DesignSync
 automatically creates it. If you do not have write
 permissions to create or modify the file, the command
 fails with an appropriate error.

Folder Path Argument

 <FolderPath> The path to the location of the .syncexclude file(s).
 If there are multiple .syncexclude files within the
 directory, the pattern is added to all of the
 .syncexclude files.

 The command does not operate in a folder recursive
 manner. Only files at the specified directory level are
 updated.

 If there is no .syncexclude file in that folder,
 DesignSync automatically creates a new file called
 .syncexclude. If you do not have write permissions to
 create or modify the file, the command fails with an
 appropriate error.

OPTIONS

ENOVIA Synchronicity Command Reference - Module

83

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the pattern
 supplied to the command begins with a dash (-).

PATTERN

• Pattern for Exclude

Pattern for Exclude

 <pattern> Specifies a space-separated list of patterns that
 [...<pattern>] exclude or include unmanaged objects (collections,
 folders, or files) from check in or add
 operations, which would change the object from an
 unmanaged to a versionable object.

 Specify any pattern to exclude from operations that
 create managed objects or display unmanaged
 objects. Wildcards are allowed. Any patterns that end
 in foward-slash (/) apply to the folder and any
 files within the folder. Do not use the backslash (\)
 character as a folder indicator. For specific usage
 information, see the Examples.

RETURN VALUE

 No TCL value is returned. If the command succeeds, DesignSync
 displays a success message. If the command fails, DesignSync
 displays a message to explain the failure.

SEE ALSO

 ci, exclude list, exclude remove, ls

EXAMPLES

• Example Showing Adding an Exclusion to the Exclude File
• Example Showing Adding an Folder-Based Exclude

Example Showing Adding an Exclusion to the Exclude File

Workspace Setup

84

 This example excludes all unmanaged objects that end with a .log
 suffix from revision control operations, such as ci.

 Note: Because this is excluding a pattern, it requires the "--"
 option to indicate that the next "-" is associated with the pattern,
 not indicating an option.

 dss> exclude add . -- -*.log

Example Showing Adding an Folder-Based Exclude

 This example excludes all unmanaged objects in a folder that matches
 the specified pattern. In this example, we have a directory
 structure like this:
 rom
 doc
 rom.doc
 rom.fm
 rom.pdf
 rom.log
 log
 generatelog.log
 errorlog.log

 Using our previous example, we have at the rom folder level a
 .syncexclude that contains *.log. But the log files within the .log
 directory are files that should be checked in. This plus exception
 crteated in the same file allows the .log folder and all files within
 to be operated on.

 dss> exclude add . -- +../log/

exclude list

exclude list Command

NAME

 exclude list - Show object patterns excluded from operations

DESCRIPTION

 This command shows the contents of the exclude list files, allowing
 you to see which patterns are excluded or included by the files in
 the directory or .syncexclude file specified.

ENOVIA Synchronicity Command Reference - Module

85

 The command can display in either text or Tcl list form, to allow either
 for easy viewing or additional processing.

 This command supports the command defaults system.

SYNOPSIS

 exclude list [-format text|list] <path>

ARGUMENTS

• File Path Argument
• Folder Path Argument

File Path Argument

 <FilePath> The path and name of the .syncexclude file.

Folder Path Argument

 <FolderPath> The path to the location of the .syncexclude file(s).
 If there are multiple .syncexclude files within the
 directory, the list of patterns for all the
 .syncexclude files within the directory are returned
 in the order in which they are processed.

 The command does not operate in a folder recursive
 manner. Only files at the specified directory level
 and higher in the folder hierarchy; back to the
 workspace root folder, are displayed

OPTIONS

• -format

-format

 -format list|text Determines the format of the output.
 Valid values are:
 o text Display a text table with headers and
 columns. Objects are shown in processing
 order.

 o list Tcl list structure, designed for further
 processing, and for easy conversion to a

Workspace Setup

86

 Tcl array structure. (Default) This means
 that it is a list structure in name-value
 pair format. The structure is:
 {
 <path> <pattern>
 ...
 }

RETURN VALUE

 Empty string if -format value is text. Tcl list if the -format value
 is list.

SEE ALSO

 exclude add, exclude remove

EXAMPLES

• Example Showing Listing the Exclusions in text format
• Example Showing Listing the Exclusions in List Format

Example Showing Listing the Exclusions in text format

 This example shows the contents of a .syncexclude list in text
 format. This .syncexclude file removes .log and .doc and includes
 .readme, which was removed by a higher level .syncexclude.

 dss> exclude list -format text
 File Rule
 ---- ----
 C:/home/workspaces/Chip-ZN32/.syncexclude -*.log
 C:/home/workspaces/Chip-ZN32/.syncexclude -*.doc
 C:/home/workspaces/Chip-ZN32/.syncexclude +*.readme

Example Showing Listing the Exclusions in List Format

 This example shows the contents of a .syncexclude list in text
 format. This .syncexclude file removes .log and .doc and includes
 .readme, which was removed by a higher level .syncexclude.

 dss> exclude list
 {C:/home/workspaces/Chip-ZN32/.syncexclude -*.log}
 {C:/home/workspaces/Chip-ZN32/.syncexclude -*.doc}
 {C:/home/workspaces/Chip-ZN32/.syncexclude +*.readme}

ENOVIA Synchronicity Command Reference - Module

87

exclude remove

exclude remove Command

NAME

 exclude remove - Remove objects from being excluded

DESCRIPTION

 This command searches all the specified .syncexclude files and removes
 all occurrences of the specified pattern(s). The pattern specified
 must exactly match the pattern in the .syncexclude file(s). If the
 pattern uses wildcards in the .syncexclude file, you must use the
 same wildcard pattern when specifying its removal. Also, a wildcard
 that, if processed, would match the pattern, does not remove an
 entry. For example, if the pattern in the file was:
 -dss*.log
 specifying this pattern:
 -*.log
 does not remove the pattern from the syncexclude file because it is
 not an exact match.

 To view the list of patterns in the file, so you can correctly match
 the exclude pattern to remove it, you can use the exclude list
 command.

 You must have read and write access to the .syncexclude files and
 directory.

 This command supports the command defaults system.

SYNOPSIS

 exclude remove <path> [--] <pattern>{<pattern>...]

ARGUMENTS

• File Path Argument
• Folder Path Argument

File Path Argument

Workspace Setup

88

 <FilePath> The path and name of the .syncexclude file.

Folder Path Argument

 <FolderPath> The path to the location of the .syncexclude file(s).
 If there are multiple .syncexclude files within the
 directory, the pattern is removed from all of the
 .syncexclude files that contain that pattern.

 The command does not operate in a folder recursive
 manner. Only files at the specified directory level are
 updated.

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the pattern
 supplied to the command begins with a dash (-).

PATTERN

• Pattern for Exclude

Pattern for Exclude

 <pattern> Specifies a space-separated list of patterns that
 [...<pattern>] must exactly match a pattern specified in the
 .syncexclude files affected by the command.

RETURN VALUE

 Returns the number of removals. If there are no patterns that match
 the specified pattern, the removal number is zero "0". If the command
 fails, returns an error explaining the failure.

SEE ALSO

ENOVIA Synchronicity Command Reference - Module

89

 exclude add, exclude list

EXAMPLES

• Example Showing Removing an Exclusion from the Exclude File

Example Showing Removing an Exclusion from the Exclude File

 This example shows removing one of the exclusions created in an
 exclude add example.
 dss> exclude remove . -- -*.log
 2

Module Views

view

view Command

NAME

 view - Modules views commands

DESCRIPTION

 These commands allow you to create, manipulate, and remove module
 views. Module views use filters, extended include filters, and
 hreffilters to define a subset of module members. Usually a module view
 is created to support a particular user group that does not require
 access to the whole module, but would prefer to work with only a
 relevant subset of files.

 The view commands help provides information on creating and
 manipulating the module view. For help defining the module view, see
 the ENOVIA Synchronicity DesignSync Data Manager Administration Guide.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 view <view_command> [<view_command_options>]

Workspace Setup

90

 Usage: view [get, check, list, put, remove]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

EXAMPLES

 See specific "view" commands.

view check

view check Command

NAME

 view check - verifies the syntax & semantics of the view
 definition

DESCRIPTION

 This command parses the supplied view file or files and indicates
 whether the views define within are syntactically and semantically
 correct. If they are not correct, DesignSync provides a list of the
 failures.

 For information about defining module views, see the ENOVIA
 Synchronicity DesignSync Data Manager Administration Guide.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 view check <file>[,<file2>[,...]]

ENOVIA Synchronicity Command Reference - Module

91

ARGUMENTS

• File

File

 <file> One or more file objects containing a modules
 view definition.

RETURN VALUE

 In stcl/stclc mode, if all views in the local view file are
 syntactically and semantically correct, the view check command
 returns an empty string (""). If the local view file is not
 syntactically and semantically correct, the view check command
 returns an appropriate error message indicating what was incorrect.

SEE ALSO

 view list

EXAMPLES

• Example of Reading Correct View Definitions
• Example of Reading an Incorrect View Definition

Example of Reading Correct View Definitions

 This example shows reading a view definitions file with two views
 defined correctly.

 $ view check docviewdef.txt
 /home/ViewDefs/docviewdef.txt: Reading view definition file ...
 All view definitions successfully read.

Example of Reading an Incorrect View Definition

 This example shows reading a view definitions file where the
 description is missing in one of the view definitions.

 $ view check generalviewdef.txt
 /home/ViewDefs/generalviewdef.txt: Reading view definition file ...
 ERROR: View definition does not contain an even number of elements.
 Please ensure that the definition is a set of name/value
 pairs.

Workspace Setup

92

 (Name RTL Description Filter +.../*.h,+.../*.c,+.../*.tcl
 HrefFilter "")

 Errors occurred while checking view definition files. Please review
 the command output and correct the errors.

view get

view get Command

NAME

 view get - Shows the contents of a module view

DESCRIPTION

 This command displays the contents of a specified module view. The
 command displays the contents of the first available module view
 definition that matches the module view name specified with
 -name. The command takes a URL argument which serves as the starting
 point for the search. If no matching module view is found in that
 starting point, the command traverses up the directory tree to the
 Modules area looking for a match for the specified module view name.

 For information about defining module views, see the ENOVIA
 Synchronicity DesignSync Data Manager Administration Guide.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 view get [-format text|list] -name <viewname> [-output <localfile>]
 [--] <argument>

ARGUMENTS

• Module URL

Module URL

 <module URL> URL of the module on which to find the
 view. Specify the URL as follows:
 sync[s]://<host>[:<port>]/Modules/[<Category>...]

ENOVIA Synchronicity Command Reference - Module

93

 [/<module>;]
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer
 port number, <Category> identifies the
 optional category path, and <module> is the name
 of the module.

 Note: The argument is required. You can only
 specify one argument, however the command will
 climb the hierarchy in order to find specified
 view.

OPTIONS

• -format
• -name
• -output

-format

 -format text|list Determines the format of the output.
 Valid values are:
 o text - Display a text table with headers and
 columns. (Default)
 o list - Displays a list with the following
 format:
 {{ViewLocation <URL-where-view-found>}
 {Name <viewname>} {Description {text
 description}} {Filters
 {comma-separated-list}} {HrefFilters
 HrefFilter {comma-separated-list}
 {ViewPropagationMode none|name|rules}}

 Note: The output is written to the screen unless
 the -output option is specified.

-name

 -name <viewname> Specifies the name of the Module View targeted in
 the search. This option is required.

-output

-output <localfile> Specifies the name of the local output file in
 which to write the command output. If the
 specified file already exists, the file is
 overwritten with the new contents.

 If -output is not specified, the command output
 echoes to the screen or command output window.

Workspace Setup

94

RETURN VALUE

 For a successfully executed command, DesignSync returns either a null
 string ("") or a TCL list containing the module view definition.
 If there is no view matching the specified name, DesignSync returns
 an error.

SEE ALSO

 populate, setview, showstatus, url view, view list, view put,
 view remove

EXAMPLES

• Example of Getting the View in Text Format
• Example of Getting the View in List Format
• Example using the Extended Include Syntax

Example of Getting the View in Text Format

 This example shows running the view get command on the DOC view.
 stcl> view get -name DOC sync://srv2.ABCo.com:2647/Modules/Chip

 Sending get request to server ...

 Name Filter Href Filter
 Location Description
 --
--
 DOC +*.doc,+*.txt,+*.html,+*.htm,+*.xml,+*.gif,+*.jpg doc,images
 sync://qelwsun14:30126/Modules/Chip Basic Documentation view,
 formatted for easy reading

Example of Getting the View in List Format

 This example shows the DOC view using the -format list option.

 stcl> view get -name DOC -format list sync://srv2.ABCo.com:2647/Modules/Chip
 {Description {Basic Documentation view, formatted for easy reading}
 Location sync://qelwsun14:30126/Modules/Chip Name DOC Filter
 +*.doc,+*.txt,+*.html,+*.htm,+*.xml,+*.gif,+*.jpg HrefFilter
 doc,images}

Example using the Extended Include Syntax

ENOVIA Synchronicity Command Reference - Module

95

 This example shows the extended include syntax along with a standard
 include filter and HrefFilter.

view get -format list -name RTLSPECIFICFILES
 sync://srv2.ABCo.com:2647/Modules/SyncInc/DevSuiteDoc
 {Description {RTL view with standard include, extended include, and
 href filters} Location sync://src:2647/Modules/SyncInc/DevSuiteDoc
 Name RTLSPECIFICFILES Filter
 ++|.../RTL/NZ12-1.VHDL|.../RTL/NZ12-2.VHDL|.../RTL/NZ12-3.VHDL|,+.../*.doc
 HrefFilter doc,layout-tools}

view list

view list Command

NAME

 view list - Lists available module views and location

DESCRIPTION

 This command lists module views available for the indicated server
 module URL, along with the URL associated which each module
 view. Module views are listed in the order they are found. When
 multiple views are found at one level, they are listed
 alphabetically. For information about defining module views, see
 the ENOVIA Synchronicity DesignSync Data Manager Administration Guide.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 view list [-format text|list] [--] <argument>

ARGUMENTS

• Module URL

Module URL

 <module URL> URL of the module on which to find the

Workspace Setup

96

 view. Specify the URL as follows:
 sync[s]://<host>[:<port>]/Modules/[<Category>...]
 [/<module>;]
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer
 port number, <Category> identifies the
 optional category path, and <module> is the name
 of the module.

 Note: The argument is required. You can only
 specify one argument, however the command will
 climb the hierarchy in order to find specified
 view.

OPTIONS

• -format

-format

 -format text|list Determines the format of the output.
 Valid values are:
 o text - Display a text table with headers and
 columns. (Default)
 o list - Displays a list with the following
 format:
 {{<ViewName> <ViewLocationURL}...}

RETURN VALUE

 For a successfully executed command, DesignSync returns either a null
 string ("") or a TCL list containing the list of module views.
 If no views are found, DesignSync returns a null string("").

SEE ALSO

 showstatus, populate, setview, view get, view put, view remove

EXAMPLES

• Example of Showing All the Views in Text Format
• Example of Showing All the Views in List Format

Example of Showing All the Views in Text Format

 This example shows all the views in the Chip category using the

ENOVIA Synchronicity Command Reference - Module

97

 -format text option.

 stcl> view list -format text sync://srv2.ABCo.com:2647/Modules/Chip

 # Sending list request to server ...

 View Location

 DOC sync://srv2.ABCo.com:30126/Modules/Chip
 RTL sync://srv2.ABCo.com:30126/Modules/Chip VIEW LOCATION

Example of Showing All the Views in List Format

 This example shows all the views in the Chip category using the
 -format list option:

 stcl> view list -format list sync://srv2.ABCo.com:2647/Modules/Chip
 DOC sync://qelwsun14:30126/Modules/Chip RTL
 sync://qelwsun14:30126/Modules/Chip

view put

view put Command

NAME

 view put - Uploads module view definitions to the server

DESCRIPTION

 This command stores the definition of one or more module views from
 an input file to the specified module location on the server. For
 information about defining the input file, see the ENOVIA
 Synchronicity DesignSync Data Manager Administration Guide. The
 input file contains filters and hreffilters used to determine the
 contents of the view.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 view put -all|-name <viewName> -infile <inputFile> [-[no]replace]
 [--] <argument>

Workspace Setup

98

ARGUMENTS

• Module URL

Module URL

 <module URL> URL of the module location on which to find the
 view. Specify the URL as follows:
 sync[s]://<host>[:<port>]/Modules/[<Category>...]
 [/<module>;]
 where <host> is the SyncServer on which the
 category or module resides, <port> is the SyncServer
 port number, <Category> identifies the
 optional category path, and <module> is the name
 of the module.

OPTIONS

• -all
• -infile
• -name
• -[no]replace

-all

 -all Stores all module view definitions from the input
 file on the server.

 The -all option and the -name option are mutually
 exclusive. If the -all option is not specified,
 you must specify the -name option.

-infile

 -infile Specifies the local file that contains one or more
 <inputFile> module view definition to save onto the
 server. The DesignSync server expects a specific
 format. The format is described in detail in the
 ENOVIA Synchronicity DesignSync Data Manager
 Administrator's Guide.

-name

 -name <viewName> Specifies the name of the module view to save on
 the server. This name should correspond to a
 defined name in the input file.

ENOVIA Synchronicity Command Reference - Module

99

 The -name and -all options are mutually
 exclusive. If -name option is not specified, you
 must specify the -all option.

-[no]replace

-[no]replace Specifies whether the module view definition
 should replace an existing view definition.

 -noreplace indicates that the module view
 definition should not replace an existing view
 defintion for the same module location. If a
 module view with that name already exists, the
 command will fail. (Default)

 -replace indicates that the module view definition
 should replace an existing module view definition
 with the same name in the same module location.

RETURN VALUES

 For a successfully executed command, DesignSync returns an empty
 string ().
 For each successfully saved module view, DesignSync displays a
 success message.
 If errors are detected when a file is being read or saved, DesignSync
 displays the error.

SEE ALSO

 populate, setview, showstatus, view get, view list, view remove

EXAMPLES

• Example of Loading a Single View from a File
• Example of Loading All the Views in a File

Example of Loading a Single View from a File

 This example shows the loading of a single module view from a file
 containing a list of views.
view put -name DOC -infile ~/viewsdef/chipviews.txt
 sync://srv2.ABCo.com:2647/Modules/Chip

 ~/viewsdef/chipviews.txt: Reading view definition file ...

 Sending request to server ...

Workspace Setup

100

 View DOC: successfully saved.

Example of Loading All the Views in a File

 This example shows the loading of a view file containing a list of
 views. Note that the DOC view is already loaded and can't be replaced
 without the -replace option.

 dss> view put -all -infile ~/viewsdef/chipviews.txt
 sync://srv2.ABCo.com:2647/Modules/Chip

 ~/viewsdef/chipviews.txt: Reading view definition file ...

 Sending request to server ...
 View RTL: successfully saved.
 View DOC: Cannot replace existing module view.
 View RTLNOHREF: successfully saved.
 View RTLNOF: successfully saved.
 View RTLNODESCRIPTION: successfully saved.
 Operation partially or completely failed.

view remove

view remove Command

NAME

 view remove - Removes a module view from the server

DESCRIPTION

 This command removes the specified view from the server. It does not
 remove the file containing the view description from its location.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 view remove -name <viewName> [--] <argument>

ARGUMENTS

ENOVIA Synchronicity Command Reference - Module

101

• Module URL

Module URL

 <module URL> URL of the module on which to find the
 view. Specify the URL as follows:
 sync[s]://<host>[:<port>]/Modules/[<Category>...]
 [/<module>;]
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer
 port number, <Category> identifies the
 optional category path, and <module> is the name
 of the module.

OPTIONS

• -name

-name

 -name <viewName> Specifies the name of the module view to remove
 from the server. You may only specify one name per
 command.

RETURN VALUES

 For a successfully executed command, DesignSync returns the name of
 any module view removed and an empty string ().
 If the command fails, DesignSync returns an error explaining the
 failure.

SEE ALSO

 populate, setview, showstatus, view get, view list, view put

EXAMPLES

 This example shows removing the RTL view from the server.
 dss> view remove -name RTL sync://srv2.ABCo.com:2647/Modules/Chip

 Sending delete request to server ...

 View RTL: successfully removed.

populate

Workspace Setup

102

populate Command

NAME

 populate - Fetches or updates specified objects

DESCRIPTION

• Object States
• How Populate Handles Selectors
• Populate Log
• How Populate Handles Collections with Local Versions
• Populating Module Objects
• Setting up Your Workspace
• How Populate Handles Module Snapshots
• How Populate Handles Module Views
• Resolving Module Conflicts with Populate
• Module Cache
• External Module Support
• Populating Modules Recursively
• Module Version Updating
• Incremental Versus Full Populate
• How Populate Handles Moved and Removed Module Members
• Merging Across Branches
• Understanding the Output
• Forcing, Replacing, and Non-Replacing Modes

 This command fetches the specified objects from the server
 into your current workspace folder or a folder you specify
 with the -path option.

 Typically, you create your work area, or workspace, and perform your
 first populate, an initial populate, as a full populate. Once your
 work area is populated, you can use the populate, co, and ci commands
 to selectively check out and check in specific objects. You should
 also populate periodically to update your work area with newly
 managed objects, as well as newer versions of objects you have
 locally.

 Populate is used to create or update the objects in your
 workspace. Populate features many ways to control the data brought
 into your workspace. Because of the complexity of the populate
 features, the description section is divided into sections that
 detail the major features and functionality of populate.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

ENOVIA Synchronicity Command Reference - Module

103

 This command supports the command defaults system.

Object States

 Upon populating your workspace, DesignSync determines in what
 state to leave the fetched objects in your work area:
 1. DesignSync obeys the state option (-get, -lock, -share,
 -mirror, -reference) specified on the command line.
 2. If no state option is specified, DesignSync uses the default
 fetch state as specified by your project leader. See
 the "fetch preference" help topic for more information.
 3. If a default fetch state is not defined, the default
 behavior for 'populate' is -get.

 Important: For both incremental and full populate operations,
 DesignSync changes the state of only those objects that need
 updating. DesignSync does not change the state of up-to-date
 objects during the populate operation.

 The following methods let you override the default behavior
 to change the states of all objects during a populate operation:
 o To change the state of up-to-date objects during a populate,
 use the -unifystate option. To change the state of all
 objects that need an update as well as up-to-date
 and locally modified objects, use -unifystate with the -force
 option.
 o Unlocked locally modified objects are not overwritten unless
 you specify -force. For example, if you modify a fetched file,
 then execute a 'populate -share' command, your locally modified
 file is not replaced by a link to a file in the cache unless
 you also specify -force. Locked files are not overwritten by
 the -force option.
 o To make populating with links to the mirror a fast operation,
 links are created only if no object (locally modified or not)
 or link already exists in your work area. You must specify
 -unifystate to change the state of existing objects and links
 in this case. Use -force, as well, to overwrite locally
 modified objects that are not locked and to remove objects
 that are not in the current configuration.

 Note: If the object is designated as uncachable, attempts to place
 objects in the cache (populate -mirror; populate -share) will
 automatically populates the workspace with unlocked copies (-keep
 mode). For more information on cachability, see the "caching"
 commands.

How Populate Handles Selectors

 DesignSync determines what versions of objects to populate as
 follows:
 1. DesignSync obeys the selector list specified by the -version

Workspace Setup

104

 option.
 2. If -version is not specified, DesignSync uses the persistent
 selector list of the top-level folder being populated.
 The default persistent selector is 'Trunk', in which
 case DesignSync checks out the Latest versions from
 Trunk.

 Notes:
 o If you specify a selector or a selector list for the
 populate operation using the -version option and the selector
 does not exactly match the workspace selector, an incremental
 populate is no longer valid. In this case, DesignSync performs
 a full populate even if the -incremental option is specified.
 See "Incremental Versus Full Populate" above for more
 information.

 Important: The persistent selector lists of individual managed
 objects (files or collections) and subfolders are not obeyed by
 the 'populate -recursive' operation.

 o A 'populate -recursive' command without the -version option
 populates a work area based on the persistent selector list of
 the top-level folder you are populating, skipping any subfolder
 or managed object that has a persistent selector list that
 differs from the top-level folder. You must issue the populate
 command separately for any skipped subfolder.

 o A 'populate -recursive -version <selectorList>' command uses
 the specified selector list and ignores all persistent selector
 lists. In the case of '-version Latest', the persistent
 selector list of the top-level folder being populated is
 augmented with 'Latest' and that augmented persistent selector
 list is used for the populate operation.

 The supported DesignSync use models (single-branch development,
 project branching, and auto-branching) assume that persistent
 selector lists across a work area are consistent. Use caution
 when using commands that leave you with inconsistent local
 metadata, such as using 'setselector' or 'mkbranch' on individual
 objects.

 See the "selectors" help topic for details on selectors, selector
 lists, and persistent selector lists. For more information about how
 the -version switch is managed, see the -version in OPTIONS.

Populate Log

 Because populate operations can be long and complex, you may want to
 specify a log file to contain only the output of the populate command
 to store for later reference.

 You can specify the log file on an as needed basis using the -log
 option or by setting a log file name using the command defaults
 system. If the log file specified does not exist, DesignSync creates

ENOVIA Synchronicity Command Reference - Module

105

 it before it begins the populate command processing. If the log file
 does exist, DesignSync appends the new populate information to the
 file.

 Tip: If you set a default log value for populate, check the file size
 periodically and, if the file is getting too large to use
 comfortably, rename the file to save the information, or remove the
 file if you no longer need it.

 Notes:

 o If a log file is defined in the command defaults system and two
 users run populate simultaneously, the populate output may become
 interlaced in the log file.

 o Regardless of whether you create a populate log, the DesignSync
 client log file contains the output of the populate command along
 with all the other commands typed into the DesignSync client
 session.

How Populate Handles Collections with Local Versions

 For collection objects that have local versions (for example,
 custom generic collections), the populate operation handles local
 versions in the following way.

 When you populate a folder containing a collection object, the
 populate operation removes from your workspace any local version
 of the object that is unmodified. (Because these local versions
 exist in the vault, you can refetch them.) The operation then
 fetches from the vault the specified collection object (with the
 local version number it had at the time of checkin).

 If the current local version in your workspace is modified, the
 populate operation fails unless you specify 'co -force'. (The
 -force option lets the local version with the modified data be
 replaced with the local version of the object you are checking
 out.) Note: The current local version is the one with the highest
 local version number. DesignSync considers a local version to be
 modified if it contains modified members or if it is not the local
 version originally fetched from the vault when the collection
 object was checked out or populated to your workspace.

 The -savelocal option tells the populate operation what to do with
 local versions in your workspace other than a current local version
 that is modified. For information, see OPTIONS.

Populating Module Objects

 The populate command recognizes and fetches hierarchical module
 structure. These modules are data that represent a level of the
 design hierarchy. Such data includes objects or an entire vault

Workspace Setup

106

 folder hierarchy of objects managed in DesignSync, as well as
 hierarchical references to other modules. These modules can be stored
 on other SyncServers. For more information about modules, see
 DesignSync Data Manager User's Guide: "What is a Module?".

 Important: You must use the populate command rather than the
 co command when fetching modules or module objects. The co
 command does not support modules.

 To specify a module for an initial populate, you must specify
 its server URL, in the following format:
 sync://<machine>:<port>/Modules/<category>/<module_name>[;<selector>]

 DesignSync looks for an existing workspace root. If no workspace root
 exists and the registry key AllowAutoRootCreation is enabled,
 DesignSync automatically creates the workspace root based on the value
 set for DefaultAutoRoot path. If there is no existing workspace root
 path and DesignSync cannot create one, the populate fails. Workspace
 root path settings are in the DesignSync registry.

 During the initial populate, DesignSync performs an implicit setvault.
 If necessary, DesignSync also creates a workspace folder for the
 module. For subsequent populates, you do not have to specify the
 server URL for the module; you can populate the module by specifying
 just the module name or the module instance name if your current
 directory is within the workspace root (see the setroot command
 help), or using the full workspace address which is "<module base
 directory>/<module instance name>".

 If a top-level module (a module that is not hierarchically
 subordinate to another module populated in the workspace) is
 populated with the -version option, the persistent selector for the
 workspace is changed to the version specified.

 Overlapping of modules is supported. You use the -modulecontext
 option to indicate which module to populate if more than one module
 exists in the current directory (or that specified with the -path
 option). If no -modulecontext option is specified, all appropriate
 module objects from the candidate modules are populated.

 If a file is a member of both overlapping modules, a populate clash
 occurs. In this case, the first module to populate the file 'wins'.
 A subsequent attempt by an overlapping module to populate the same
 file fails.

 Two different versions of the same module cannot share the same base
 directory. However, you can populate two versions of the same module
 side by side.

 Notes:
 o Mirrors are not supported with module objects; you get an error
 if you use the -mirror option.
 o If a module member is checked out with a lock, the locker keyword
 is not expanded with the locker name.
 o You can use the -mcachemode, -mcachepaths, or -noreplace options
 only when populating a directory that is part of a module or a
 legacy module.

ENOVIA Synchronicity Command Reference - Module

107

 o After the upgrade command has been used to convert legacy modules
 to a module, fetch each new module to an empty work area. The
 upgrade command does not upgrade existing work areas.

Setting up Your Workspace

 Before you can use populate to maintain your workspace, you must set
 up your workspace.

 Note: The Workspace Wizard from the DesignSync graphical user
 interface simplifies the task of setting up a work area by taking you
 through a step-by-step process.

 The typical steps when you set up a new work area are:

 1. Create the folder for your workspace, if it does not already
 exist.

 2. Populate the work area with the specified design objects from
 the vault. Populate determines the set of versions from the
 persistent selector list or from the -version option, if
 applicable. Apply the -recursive option to create a local
 hierarchy that matches the vault's hierarchy. Without
 -recursive, populate only fetches the specified objects.

How Populate Handles Module Snapshots

 A module snapshot is a set of meaningful tagged module objects. The
 content and structure of a module snapshot is frozen to preserve
 important configurations. After the module snapshot has been created
 using the tag command, you can populate the snapshot into a local
 workspace for viewing, testing, or integrating into other work.

 When you populate a module snapshot as a fixed workspace for viewing
 or testing, you use the snapshot tag as a selector. This can be
 either the full snapshot branch and version name or the simple tag
 name. When you populate a snapshot module, you can update tags on
 module members or hrefs within your workspace, but cannot checkin any
 content or other structural changes to the module members or the
 module.

 When you populate a module snapshot to integrate with other work, you
 populate using a comma separated list of selectors ending with a
 "main" selector. This populates from the main selector first and
 replaces any matching objects with the member objects from the
 selectors in the selector list.

 This results in a workspace that uses the main selector as the base
 and the destination for any checkins, but some or all of the module
 member objects from the snapshot workspaces. For example, specifying
 the following version to populate:
 Beta,Alpha,Trunk:Latest

Workspace Setup

108

 The populate command creates a module manifest from the main
 selector, Trunk:Latest, and overlays that with the contents of the
 Alpha version, and then the Beta version. The final manifest is then
 sent to the client. The server uses the natural path of the objects
 and the uuid to determine which module members to replace.

 When hierarchical references are populated as part of the operation,
 the hierarchical reference versions come from the main selector list,
 not from the specified module snapshots.

 When the hierarchical references are populated recursively during the
 initial populate using a selector list, the module members within
 the populated submodules are also populated with the selector list. If
 hierarchical references are not populated recursively during the
 initial populate using a selector list, they will not overlay
 member items from the selector list on subsequent populates.

 Notes:
 o If the "main" selector list is a snapshot branch, or a static
 selector of any type, you will not be able to check in any
 changes from the workspace.

 o When populating a selector list, the module member objects in
 the specified snapshot are populated instead of the objects in the
 main selector. Populate will never attempt to merge the members.
 If you want to merge data from a module snapshot into your
 workspace, you will not use a selector list, but populate
 your snapshot with the -merge and -overlay options into a
 workspace that has the default selector defined as the desired
 destination for checkin.

 o Any hierarchical references that are defined as a static module
 version indicated by the selector on the href will not inherit any
 the selector list, even if the initial populate specifies using the
 selector list recursively.

How Populate Handles Module Views

 A module view is a defined subset of module members and hierarchical
 references that have significance as a unit. The module view
 definition is stored on the server with a unique module view
 name. During populate, you can specify the view name to restrict the
 populate operation to only those members in the view. You can
 populate using more than one view.

 Note: During initial populate, if you specify a view, the view
 specified persists in the workspace.

 The populate operation builds the list of module members and
 hierarchical references (if run recursively) to populate
 by first looking at the specified view(s) on the specified module and
 selector. After building this aggregate set of data, DesignSync
 applies the filtering rules from the -filter, -hreffilter and

ENOVIA Synchronicity Command Reference - Module

109

 -exclude options to determine what objects to populate into the
 workspace.

 On an initial populate, the module view name or names list provided
 is propagated through the hierarchy and applied to all fetched
 modules. The module view name or names list is also saved, or
 persisted in the workspace metadata so that all subsequent populates
 use the same view. The documentation refers to a view saved in the
 metadata as a "persistent module view" because, like a persistent
 selector, it persists through subsequent populates rather than
 needing to be specified with each command.

 If a persistent module view has been set on a module instance in a
 workspace any sub-modules subsequently populated use the persistent
 module view already defined by default.

 Note: You can set or clear a persistent selector by using the setview
 command.

Resolving Module Conflicts with Populate

 DesignSync provides the ability to define an overriding hierarchical
 reference to be used in cases where submodule references point to
 different versions of the same object. This can be used in both a
 peer-to-peer or hierarchical cone structure. In a peer-to-peer
 structure, it can be used to resolve conflicts and determine which
 version of the sub-module to populate into workspace.

 For example, a module called TOP with hrefs to sub-modules:
 ROM@1.23 -relpath ../ROM
 COM@1.15 -relpath ../COM

 where ROM and COM both contain an href to a common libraries
 directory, but to different versions:
 ROM -> LIB@1.3 -relpath ../LIB
 COM -> LIB@1.5 -relpath ../LIB

 Working in a peer-based structure, where your modules are
 populated in a flat directory setting, your workspace may look
 something like this:
 /home/workspace/TOP
 /home/workspace/ROM
 /home/workspace/COM
 /home/workspace/LIB

 DesignSync may experience a conflict determining what version of LIB
 (1.3 or 1.5, as referenced in the hierarchy)to populate in the peer
 directory /home/workspace/LIB.

 If an href is placed higher in the peer structure, however; it will
 become the overriding href. So, for example, if you add an href for
 TOP to LIB, as shown:
 TOP -> ROM@1.23 -relpath ../ROM
 -> COM@1.15 -relpath ../COM

Workspace Setup

110

 -> LIB@1.5 -relpath ../LIB

 When you populate the TOP workspace recursively into
 /home/workspace/TOP, DesignSync populates the LIB directory with the
 1.5 version, eliminating the guesswork.

 In a cone structure, it can be used to substitute a submodule version
 without modifying the hierarchy or branching the sub-module to update
 an href version. For example:

 Chip v1.10
 |
 |-----------------|
 ALU v1.5 ROM v1.7
 | |
 |---------| |----------|
 LIB v1.4 BIN v1.4 LIB v1.6 SRC v1.10

 If rather than branching ALU and updating the hierarchical reference
 to LIB, you add an href to the desired version of LIB at a higher
 level, for example, Chip, then that version of LIB will replace the
 lower level version with the same relpath when populated.

 Chip v1.10 ---HREF TO ./ALU/LIB v1.8
 |
 |-----------------|
 ALU v1.5 ROM v1.7
 | |
 |---------| |----------|
 LIB v1.8 BIN v1.4 LIB v1.6 SRC v1.10

 Notes:

 o The relpath of the hierarchical reference is what's used to
 determine which sub-module is replaced.

 o In order for the overriding href to be used by the system, you must
 populate recursively from the highest level module containing the
 override href. For example, if you were to populate either of the
 above examples at the ROM level, the ROM href is the one that is
 used to determine what submodule is populated; not the higher-level
 module.

Module Cache

 A module cache (mcache) can be thought of as a shared workspace. The
 populate command works with both module and legacy module mcaches.
 A module mcache contain modules while a legacy mcache contains only
 legacy releases.

 To create a module cache, team leaders should create a workspace and
 populate it with modules and or legacy modules using the -share
 option. This becomes the mcache directory. Usually a team leader
 creates the mcache for team members to access over the LAN. The

ENOVIA Synchronicity Command Reference - Module

111

 mcache should be writable only by the team leader. Team members
 should need permission to read the data, link to and copy the module
 or legacy module in the mcache.

 Note: The module cache must be the workspace root directory.

 An mcache is manually administrated. Modules and legacy modules can
 be fetched as needed. You can have multiple modules in the mcache.

 o You can have full copies of all the modules in an mcache.
 o If you use -share option to populate an mcache, it allows you to
 keep full copies of the DIFFERENCES between versions by populating
 the mcache from the DesignSync cache which stores the files.

 Note: Only statically fetched modules can be fetched from an mcache
 during populate.
 Only released configurations can be fetched from an mcache
 during populate.

 Since multiple modules can have the same base directory or have the
 same directory at various levels, it can cause confusion for mcache
 links and can even cause circular or inconsistent links. To keep the
 contents of a mcache consistent, an mcache link to an mcached
 directory containing modules are created for only one module version.

 An mcache can either be for modules or legacy modules, not both. A
 module can have hierarchical references to legacy modules, resulting
 in the legacy modules being populated to the module mcache. These
 legacy modules are ignored when creating mcache links or copies.

 The -mcachemode copy option is ignored for modules. You can, however,
 get the contents of a module from the LAN if your team lead fetches
 the modules from the server into the mcache using the -share
 option. This forces the module contents to get fetched into the
 DesignSync cache (different from an mcache). Symlinks are created in
 the mcache to point to these files in the DesignSync cache.

 If you specify -mcachemode copy to get full copies of a module's
 contents from the mcache, the populate operation automatically
 switches the command to use the default '-from local' mode to fetch
 the files.

 To use a module mcache the root directory of the mcache must be
 provided in the -mcachepaths option or the mcache paths registry
 setting. This root directory contains the metadata identifying the
 base directories of all module cache. See the section on -mcachepaths
 for more information.

 Note: If a module, module category, the Module area or server is
 designated uncachable, it cannot be stored in an mcache. If a module
 has already been populated into a cache and is then designated as
 uncachable, the module cache is not automatically removed.

External Module Support

Workspace Setup

112

 DesignSync supports populating an external module, an object or set
 of objects managed by a different change management system, within a
 module hierarchy. Using an external module in a DesignSync hierarchy
 allows you to manage code dependencies between module objects in
 DesignSync and files checked in to other change management systems.

 Within a parent module, you add an href that refers to an external
 module. The external module reference contains the name of an
 external module interface. The external module interface, provided by
 an administrator, defines a procedure to populate the sub-module
 using an external change management system.

 After creating the href to the external module, you populate it
 exactly as you would any other href, by specifying either the href
 name or the module instance name as the populate argument, or
 by populating the parent module with the -recursive option.

 The external module must be part of a module hierarchy. You cannot
 create an external module as a top-level module. Once in the
 workspace, the module itself, or any subfolders, or objects within
 the module may be individually populated according to the external
 module interface definition.

 Notes:
 o The external module's directory structure cannot overlap with
 any other module data.

 o If an external module populate fails and the populate command was
 run with the -report brief option specified, you may not have
 enough information to determine where the failure occurred. If you
 rerun the populate with the -report brief mode, you can locate the
 referenced object within the module hierarchy.

Populating Modules Recursively

 You can use populate to fetch entire modules or their members as
 follows:

 o To fetch a single module without fetching its submodules, specify
 the workspace or server module and apply the populate command
 without the -recursive option.
 The command populates the module members without following
 hierarchical references (hrefs).

 o To fetch all objects in an entire module hierarchy, specify the
 workspace or server module and use the populate command with the
 -recursive option.
 The command traverses the hierarchy in a module-centric fashion,
 populating all the objects in the module and following its hrefs
 to populate its referenced submodules.

 o To fetch all objects in a folder, specify a folder name
 and apply the populate command without the -recursive option.

ENOVIA Synchronicity Command Reference - Module

113

 The command fetches the objects in the folder, without following
 hrefs.

 o To fetch all objects in a folder and its subfolders, specify a
 folder name and apply the populate command with the -recursive
 option.
 The command traverses the folders in a folder-centric fashion,
 populating the modified objects in the folder and its subfolders,
 but without following hrefs. To follow hrefs, you must specify a
 workspace or server module instead of a folder.

 o To fetch all objects in a module or module hierarchy but restrict
 the fetch to a particular folder hierarchy, use the -modulecontext
 option to specify the module and provide the folder name.
 - Specify the -recursive option if the module hierarchy needs be
 traversed to fetch items from the sub-modules into that folder.
 - Specify -norecursive option to fetch only the items from the
 given module. Note that this operation is "module centric" and
 "folder recursive", in that all items in the module are fetched
 which belong to the given module or its sub-folders.
 - To restrict the operation to both a module and a single folder,
 use the -filter option to filter out items from sub folder.

 Note: You cannot specify the -recursive option, if you are performing
 a cross-branch merge (with pop -merge -overlay) on a module.

 When you fetch a module recursively, you update the module hierarchy.
 How that module hierarchy populates depends on the href mode
 specified, and the selector(s) specified within the href, the
 hreffilter string and possibly the populate selector for the selected
 module. For more information on how the module hierarchy is
 populated, see the "Module Hierarchy" topic in the ENOVIA
 Synchronicity DesignSync Data Manager User's Guide.

 Note: If the "HrefModeChangeWithTopStaticSelector" registry key is
 enabled, and the selected module is a static version, the static
 version is saved as the persistent selector in populate. For more
 information about setting the "HrefModeChangeWithTopStaticSelector"
 registry key, see the ENOVIA Synchronicity DesignSync Data Manager
 Administrator's Guide.

Module Version Updating

 The populate command updates the module version upon successfully
 fetching all members of the module. If the populate command is
 not completely successful, the fetched version number is not
 updated, as in the following scenarios:

 o A module member cannot be fetched if the member is locally
 modified (and -force is not applied). In this case, the module
 is not fully populated, and the module version is not updated.

 o A module member is not fetched if a -filter, -exclude, or
 -nonew option excludes it. In this case, the module is not

Workspace Setup

114

 fully populated, and the version number is not updated.

 If you do not have the Latest complete module version due to
 one of these cases, you can still check in a module; the ci
 command auto-merges members so that the module is fully
 updated upon checkin. See the ci command for details.

 You can use the showstatus command to detect whether a module has
 been fully populated. The showstatus command lists the module as
 'Needs Update' if the Latest version has not been successfully
 fetched.

 Unlike the cases where the module version is not updated,
 the module version is updated if a populate successfully
 updates the entire module, but fails to remove files that
 are no longer members of the module. If a member has been
 removed from the new module version, but the populate command
 cannot remove it from the workspace (because it is locally
 modified and -force was not applied), the workspace does
 contain the entire contents of the new module version, so
 the module version is updated.

Incremental Versus Full Populate

 By default, the populate command attempts to perform an incremental
 populate which updates only those local objects whose corresponding
 vaults have changed. For modules, DesignSync tracks the members
 changed on the server and in the workspace and performs an
 incremental populate. Avoiding a full populate improves the speed of
 the populate; however, some circumstances make a full populate
 necessary. In the following cases, DesignSync automatically performs
 a full populate:

 o If you are populating with a different configuration to
 that of the work area (having used setselector, setvault,
 'populate -version', or 'co -version' to change a selector),
 DesignSync performs a full populate. For example, if your last
 full populate specified the VendorA_Mem configuration, but
 you now want VendorB_Mem files, then DesignSync automatically
 performs a full (nonincremental) populate. If the selector
 you specify resolves to the same exact selector as that of the
 work area, DesignSync does perform the incremental populate.
 In this case, the selectors must be an exact match; for example,
 a selector which resolves to 'Main' does not match 'Main:Latest'.
 If you are populating with a new configuration, consider
 using the -force option to remove objects of the previous
 configuration from your work area.

 o If you have removed module data from the workspace
 with rmfile or rmfolder, DesignSync performs a full populate,
 refetching the removed files.

 o If you use the -lock option, DesignSync performs a full
 populate.

ENOVIA Synchronicity Command Reference - Module

115

 o If you use the -unifystate option, DesignSync performs
 a full populate.

 o If you perform a nonrecursive populate on a subfolder, all
 of the folders above the subfolder are invalidated for
 subsequent incremental populate operations. Incremental
 populate works by exploiting the fact that if a folder
 is up-to-date, all of its subfolders are also up-to-date,
 making it unnecessary to recurse into them. Because
 a recursive populate was not performed for the subfolder,
 DesignSync cannot ensure that its subfolders are up-to-date;
 thus, all incremental populates are invalidated up the
 hierarchy.

 o If you perform a nonrecursive populate on a folder,
 DesignSync essentially runs a full populate rather than
 the default incremental populate. Your next populate
 is incremental from the last recursive populate. If
 you have not previously run a recursive populate, the
 subsequent populate is a full populate.

 Note: If you are using a mirror (by specifying -mirror or
 having a default fetch state of Links to mirror), an incremental
 populate does not necessarily fetch new objects checked in, nor
 remove links to objects deleted by team members until after the
 mirror has been updated.

 For the following cases, you should perform a full populate instead
 of an incremental populate:

 o If you have excluded a folder by using the -exclude, -filter,
 or -noemptydirs option with the populate command, a
 subsequent incremental populate will not necessarily process
 the folder of the previously excluded object. DesignSync does
 not automatically perform a full populate in this case. To
 guarantee that previously excluded objects are fetched,
 specify the -full option for the subsequent populate operation.

 o Specify a full populate to force data that has been manually
 removed, removed locally, or renamed locally to be fetched again
 from the server. If the file was renamed, you may have to specify
 the -force option as well.

 Also, specify a full populate if you have an unchanged,
 but out-of-date or out-of-sync version in your workspace to force
 DesignSync to fetch the up-to-date version of the object.

 o If the system clock on the SyncServer machine where your vault
 is located is turned back (for example, to correct clock skew
 between machines), you must perform a full (nonincremental)
 populate to synchronize the client and server metadata.

 o If you interrupt a populate operation (using Control-c, for
 example), you should use populate -full on your next populate
 of that folder.

Workspace Setup

116

 The default populate mode is -incremental; however, your project
 leader can set this default using SyncAdmin.

 If you are updating mirrors, use the -incremental option. If you
 specify the -full option, mirror updates can take a long time
 to complete.

 Note: If you remove objects from the work area by using operating
 system commands rather than DesignSync commands, an incremental
 populate cannot fetch these objects. Perform a full populate
 (-full) or use the -unifystate option to fetch them.

How Populate Handles Moved and Removed Module Members

 When you populate a module, DesignSync does not populate
 any module member that has been removed on the server.
 Existing module members in your local workspace that have been
 removed on the server are removed during a populate.

 Module members that have been removed or moved locally, but those
 changes were not committed to server are preserved in the workspace
 unless populate is run with the -full and -force options which remove
 the local modifications (including the structural changes) and
 replace the workspace version with the server version.

 Merging module members that have been removed or renamed is discussed
 in Merging Across Branches

Merging Across Branches

 In multi-branch environments, you use the populate command to
 merge branches. In many cases, a new branch that is created is
 eventually merged back into the main development branch.

 The branch being merged is populated into a workspace containing the
 destination branch using the populate command with the -merge and
 -overlay options. This type of merge is called "cross-branch merge."

 As with all populate operations, cross-branch merging uses the filter
 and exclude filter lists set on the workspace, in the command
 defaults system,on the command line.

 Note: Filtering on module workspaces is applied to the natural path
 of the module members. If a module member's natural path has
 changed, creating a situation where either the new location or the
 old location, but not both is excluded, the module member is
 included in the merge.

 Important: When working with modules, you should lock your workspace
 branch before beginning a cross-branch merge. This reduces the risk
 of changes being committed by another user while you are merging the
 versions. After the merge has been completed, the changes have been

ENOVIA Synchronicity Command Reference - Module

117

 reviewed and accepted, and the new module version created, unlock the
 branch to make it available for general use.

 Merging includes two basic types of merging: file contents, and
 structural changes.

 o File content merging:
 File content merging is applicable to all DesignSync objects
 including module members. DesignSync merges the contents of files
 with the same natural path to the best of its ability. If the
 files are binary files which cannot be merged, populate returns an
 error message.

 o Structural change merging for Modules:
 Structural changes for modules are either committed when the module
 is checked in or can be individually committed. Structural changes
 for Modules include:

 - Removed objects - If an object is present in the local workspace,
 but has been removed on the merge version, it is marked with a
 metadata property to indicate that it was removed from the
 branch. If you want to remove it from the merged module version,
 you must manually remove the file from the workspace before
 creating the new module.

 If the object has been removed on the workspace, but:
 * is present on the server at the same member version removed
 from the workspace, the object remains in the same state, and
 is removed from the server during the next checkin.

 * is present on the server at a newer version or has been moved,
 or is on the overlay version, the new version is not merged
 into the workspace, and an error is returned stating there is
 new version. The version in the workspace remains in the
 removed state, but you will not able to check in the change
 until you resolve the merge conflict.

 - Added objects - If an object is present in the merge version,
 but not in local workspace, it is added to the module and is
 checked into the module when the next checkin operation on the
 module or the module member is performed.

 - Moved or Renamed objects - A moved (or renamed) object has a
 different natural path. Objects that have been moved on either
 the server or checked in from the workspace have been moved on
 the server. Objects that have been moved in the workspace, but
 have not been checked in are considered moved locally.

 If an object has been moved on the server, but not locally, the
 module member in the workspace retains the same name or location
 in the workspace, and a metadata property is added to the object
 to indicate the new path name. To determine what files have been
 moved, review the populate status information, log file, or run
 the ls command with the -merge rename option.

 If an object has been moved locally, and:

Workspace Setup

118

 * has been moved on the server to the same location, the merge
 operation is performed on the merged local version. Subsequent
 checkin checks in the merged file to the new location. If the
 content has changed, DesignSync will perform a content merge as
 well.

 * has been removed on the server, the new version is not merged
 into the workspace, and an error is returned by populate.
 new version. The version in the workspace remains in the moved
 state, but you will not able to check in the change until you
 resolve the merge conflict.

 * has been updated on the server, content changes are merged into
 the moved file, and subsequent checkin of the member moves the
 file on the server and updates the content.

 * has been moved on the server to a different location and
 updated, the content is merged, the workspace version remains
 in the same location in the workspace, and an error is logged
 in populate to alert you that the file has been moved on the
 server. In order to checkin, you must resolve the merge name
 conflict or checkin with the -skip option to move the file to
 name of the file in your local workspace.

 * and exists on the overlay version, the overlay version is not
 copied into the workspace, but a metadata property is placed on
 the local version to indicate that natural path of the object
 is different. You can see a list of these differences by using
 ls -merged.

 Note: If a file marked as renamed is subsequently renamed again,
 or removed from the module, the metadata property indicating that
 the file was renamed by merge may persist. To clear the
 property, perform the mvmember or remove command on the workspace
 object, or manually clear the property using the url rmprop
 command.

 - Added or Removed hierarchical references - Hierarchical reference
 changes cannot be merged. You must manually adjust your
 hierarchical references.

 After a cross-branch merge has been performed, you can view the
 status of the affected files using the ls command with the -merged
 <state> -report D options. The -merged option allows you to restrict
 the list to a particular type of merge operation (add, remove,
 rename, all) and the -report D option shows you the current state of
 the object in your workspace. For more information, see the ls
 command help.

 When a merge is performed on a DesignSync object, a merge edge is
 created automatically to maintain a list of the changes incorporated
 by the merge. This identifies a closer-common ancestor to provide
 for quicker subsequent merges. When performing a cross-branch merge
 on a module, however, you need to manually create the merge edge
 after committing the selected changes. For more information on
 creating a merge edge, see the mkedge command.

ENOVIA Synchronicity Command Reference - Module

119

 For more information about merging, see the -merge and -overlay
 options, and the DesignSync Data Manager User's Guide topic: "What Is
 Merging?"

 Notes:
 o Auto-branching is not supported for modules; you cannot specify
 the auto-branching construct, auto(), for modules.

Understanding the Output

 The populate command provides the option to specify the level of
 information the command outputs during processing. The -report option
 allows you to specify what type of information is displayed:

 If you run the command with the -report brief option, the populate
 command outputs a small amount of status information including, but
 not limited to:
 o Failure messages.
 o Warning messages.
 o Version of each module processed as a result of a recursive
 populate.
 o Removal message for any hierarchical reference. removed as part of
 a recursive module populate.
 o Informational messages concerning the status of the populate
 o Success/failure/skip status

 If you do not specify a value, or the command with the -normal
 option, the populate command outputs all the information presented
 with -report brief and the following additional information:
 o Informational messages for objects that are updated by the
 populate operation.
 o Messages for objects excluded from the operation (due to exclusion
 filters or explicit exclusions).
 o For module data, also outputs information about all objects that
 are fetched.

 If you run the command with the -report verbose option, the populate
 command outputs all the information presented with -report normal and
 the following additional information:
 o Informational message for every object examined but not updated.
 o For module data, also outputs information about all objects that
 are filtered.
 o For module versions that have been swapped, output indicates when
 the selector of a swapped sub-module is being used.

 If you run the command with the -report error option, the populate
 command outputs the following information:
 o Failure messages.
 o Warning messages.
 o Success/failure/skip status messages.

 Note: References to DesignSync Vault, IPGear Deliverables, or
 External modules do not have a module instance name to add to the
 object path. When running with the error report mode, if an object

Workspace Setup

120

 within a referenced DesignSync Vault, IPGear Deliverable, or External
 module fails, you may need to rerun the operation with the report
 -brief option to locate the referenced object within the module
 hierarchy.

Forcing, Replacing, and Non-Replacing Modes

 You can use these three modes to specify how the populate command
 updates your work area:

 o Forcing mode (specified with the -force option) synchronizes
 your work area with the incoming data, including locally
 modified objects. In this mode, the populate command updates
 the managed objects in your work area. It replaces or removes
 managed objects regardless of whether the objects have been
 locally modified and whether they are members of the module
 being fetched. Thus, forcing modifies your work area
 to match the set of module members being fetched. Note: The
 default -noforce option operates as if -replace has been
 specified.

 o Replacing mode (specified with the -replace option) also
 synchronizes your work area with the incoming data, but without
 affecting locally modified objects (the default behavior).
 For modules, the populate command updates managed members
 of the module that have not been locally modified. It also
 removes any unmodified managed objects that are not members
 of the module being fetched.

 Replacing mode, unlike forcing mode, leaves intact managed
 objects that have been locally modified.

 o Non-replacing mode (specified with the -noreplace option) is
 the least disruptive mode; this mode might require you to clean
 up the resulting work area data.

 In this mode, the populate command takes the incoming data and
 overlays it on top of the existing work area's data. It leaves
 intact both managed objects with local modifications and
 managed objects that are not members of the module being
 fetched. Thus, the work area essentially becomes a union of the
 data from the previous version and that of the module being
 fetched.

 Non-replacing mode, unlike forcing mode, leaves intact any
 objects that have been locally modified, and, unlike the
 replacing mode, leaves unmodified managed objects intact.
 See the -[no]replace option below for more details.

 Notes:
 o Unmanaged objects in your work area are not affected by any of
 these modes.
 o The following are illegal combinations of options:
 -replace and -noforce, as well as inverse options, such

ENOVIA Synchronicity Command Reference - Module

121

 as -replace and -noreplace.

SYNOPSIS

 populate [-[no]connectinstances] [-[no]emptydirs]
 [-exclude <object>[,<object>...]] [-filter <string>]
 [-[no]force] [-full | -incremental] [-hreffilter <string>]
 [-hrefmode {static | dynamic | normal}]
 [[-lock [-keys <mode> | -from {local | vault}]] |
 [-get [-keys <mode> | -from {local | vault}]]
 [-share] | [-reference] [-lock -reference]]
 [-log <filename>] [-mcachemode <mcache_mode>]
 [-mcachepaths <path_list>] [-[no]merge]
 [-modulecontext <context>] [-[no]new]]
 [[-overlay <selector>[,<selector>...]]|
 [-version <selector>[,<selector>...]]] [-path <path>]
 [-[no]recursive] [-[no]replace]
 [-report {error|brief|normal|verbose}] [-[no]retain]
 [-savelocal <value>] [-trigarg <arg>] [-[no]unifystate]
 [-view view1[,view2,...]] [-xtras <list>] [--]
 [<argument> [<argument>...]]

ARGUMENTS

• Server Module URL
• Workspace Module
• Module Folder
• Module Member
• Hierarchical Reference
• External Module

 The populate command accepts multiple arguments. If you want
 to populate the current folder, you need not specify an
 argument. Otherwise, specify one or more of the following
 arguments:

Server Module URL

 <server module> Fetches the specified module from its vault.
 For an initial populate of a module, you must
 specify the module's server URL in the format:
 sync://<machine>:<port>/Modules/<category>/
 <module_name>[;<selector>].

 The populate fetches all objects within the
 module, but does not follow hierarchical
 references (hrefs) by default; specify the

Workspace Setup

122

 -recursive option to follow hrefs and thus
 fetch the module's submodules.

Workspace Module

 <workspace module> Fetches the specified module from its vault,
 or updates the module to the appropriate
 module version specified by the selector in use.

 The populate fetches all objects within the
 module, but does not follow hierarchical
 references (hrefs) by default; specify the
 -recursive option to follow hrefs and thus
 fetch the module's submodules.

Module Folder

 <module folder> Populates objects in the specified folder
 regardless of which module the files belong
 to. Specify the -recursive option to recurse
 within the specified folder. Populate in
 this case, does not follow hierarchical
 references (hrefs).

 Note: To populate a module folder, the folder
 must already exist in the workspace.

 If you specify the -modulecontext option, the
 populate command updates the items belonging to
 the specified module in the specified folder and
 all the sub-folders. If you use the -recursive
 option in addition to the -modulecontext option,
 populate fetches any items from relevant
 sub-modules that fall within the folder specified
 (or its sub-folders.)

 Specify the module folder as an absolute
 path or a relative path. If you specify a
 relative path, it is assumed to be relative
 to the current directory or that specified
 by the -path option.

 Note: In previous releases, if the directory that
 was being populated was part of a legacy
 module, the entire module and not just the
 module members in the directory got
 populated.

Module Member

ENOVIA Synchronicity Command Reference - Module

123

 <module member> Fetches the module member.
 You can specify the -modulecontext option if
 more than one module exists in the workspace.

 Note: The -modulecontext option is not normally
 needed, as the system knows what module
 each member belongs to. When there are
 multiple overlapping modules and you are
 fetching an object that is not currently in
 the workspace (for example, to fetch
 something that was originally filtered, or
 was removed with rmfile), the
 -modulecontext option can be used to
 identify the module from which the object
 should be fetched.

 You can also provide the version-extended name if
 necessary. A version-extended name is a filename
 followed by a semicolon and a version number or
 tag name (for example, top.v;1.2 or top.v;rel13).
 In this case, DesignSync fetches the specific
 version of the member vault instead of fetching
 the version of this object that belongs with the
 module version.
 Note: If you specify the version-extended name,
 populate ignores the -version option.

Hierarchical Reference

 <href> Fetches the referenced target (submodule)
 identified by the hierarchical reference
 (href). You can use -hreffilter to exclude
 submodules. To include submodules, enter the href
 as the argument of the populate command. To
 indicate the module context of the href, use the
 -modulecontext option.

 Note: You can only specify hrefs directly
 within the specified module. For example, if
 a module Chip has an href to module CPU, and
 module CPU has an href to module ALU, you
 cannot reference the ALU. Thus, the
 following command invocations are invalid:
 'populate -modulecontext Chip ALU' and
 'populate -modulecontext Chip CPU/ALU'.

External Module

 <external module> Specifies the module instance of the external
 module in the workspace or the URL of the

Workspace Setup

124

 external module version to which you wish to
 create the connection. An external module is an
 object or set of objects managed by a different
 code management system but available for viewing
 and integration through DesignSync.
 Specify the external module in the workspace as a
 module instance name.
 Specify the external module Server URL as follows:
 sync[s]:///ExternalModule/<external-type>/<external-data>
 where ExternalModule is a constant that identifies
 this URL as an external module URL,
 <external-type> is the name of the external module
 procedure, and <external-data> contains the
 parameters and options to pass to the
 procedure. These parameters and options can be
 passed from the procedure to the external code
 management system or to DesignSync.

 Note: In order to specify an external module, you
 must have previously populated the module in the
 workspace. You may also specify the external
 module by href name only.

OPTIONS

• -[no]connectinstances
• -[no]emptydirs
• -exclude
• -filter
• -[no]force
• -from
• -full
• -get
• -hreffilter
• -hrefmode
• -incremental
• -keys
• -lock
• -lock -reference
• -log
• -mcachemode
• -mcachepaths
• -[no]merge
• -modulecontext
• -[no]new
• -overlay
• -path
• -[no]recursive
• -reference
• -[no]replace

ENOVIA Synchronicity Command Reference - Module

125

• -report
• -[no]retain
• -savelocal
• -share
• -trigarg
• -[no]unifystate
• -version
• -view
• -xtras

-[no]connectinstances

 -[no]connectinstances This option determines how to handle updating
 hierarchical reference within a top-level
 module.

 If your workspace is set up
 in a peer structure, containing your
 top-level module and modules which are
 referenced submodules, but have been
 populated independently, then when
 your workspace is populated non-recursively,
 DesignSync does not recognize the connection
 between the modules. When populated
 recursively, DesignSync may change the
 selector of the submodules to match the
 hierarchical reference definition. The
 -connectinstances option allows you to
 populate the top-level module, recognizes
 that the peer modules are, in fact,
 referenced submodules, and creates the
 relationship accordingly, but does not update
 the selector to match the hierarchical
 reference definition.

 This option is mutually
 exclusive with -recursive which updates the
 href to the referenced peer module.

 The -noconnectinstances option does not
 establish or identify a hierarchical
 relationship with referenced peer
 modules. (Default)

 Notes:
 * You can use the -connectinstances option
 with the -hreffilter option to identify
 specific submodules instead of updating the
 relationships for the entire module hierarchy.

 * The submodule must match the target module
 and relative path specified in the
 hierarchical reference in order to the

Workspace Setup

126

 update the href.

-[no]emptydirs

 -[no]emptydirs Determines whether empty directories are
 removed or retained when populating a
 directory. Specify -noemptydirs to remove
 empty directories or -emptydirs to retain
 them. The default for the populate operation
 is -noemptydirs.

 For example, if you are creating a directory
 structure to use as a template at the start of
 a project, you may want your team to populate
 the empty directories to retain the directory
 structure. In this case, you would specify
 'populate -rec -emptydirs'.

 If a populate operation using -noemptydirs
 empties a directory of its objects and if that
 directory is part of a managed data structure
 (its objects are under revision control), then
 the populate operation removes the empty
 directory. If the empty directory is not part
 of a managed data structure, then the
 operation does not remove the directory or its
 subdirectories. (A directory is considered part
 of the managed data structure if it has a
 corresponding folder in the DesignSync vault
 or if it contains a .SYNC client metadata
 directory.)

 Notes:
 o When used with 'populate -force
 -recursive', the -noemptydirs option removes
 empty directories that have never been
 managed.
 o When used with the -mirror option, the
 -noemptydirs option does not remove empty
 directories (unless -force -recursive is
 used) and does not populate directories that
 are empty in the mirror.
 o When the -noemptydirs option is used with
 '-report verbose', the command might output
 messages that additional directories are
 being deleted. Those are directories created
 by the populate, to mimic the directory
 structure in the vault. If no data is
 fetched into those directories (because
 no file versions match the selector),
 then those empty directories are deleted.

 If you do not specify -emptydirs or

ENOVIA Synchronicity Command Reference - Module

127

 -noemptydirs, the populate command follows
 the DesignSync registry setting for "Populate
 empty directories". By default, this setting
 is not enabled; therefore, the populate
 operation removes empty directories. To change
 the default setting, your Synchronicity
 administrator can use the SyncAdmin tool. For
 information, see SyncAdmin help. You typically
 want consistent behavior for all users, so
 adding the setting to the site registry is
 recommended.

-exclude

 -exclude <objects> Specifies a comma-separated list of objects
 (files, collections, folders, or module objects)
 to be excluded from the operation. Wildcards are
 allowed.

 Note: Use the -filter option to filter module
 objects. You can use the -exclude option, but
 the -filter option lets you include and exclude
 module objects. If you use both the -filter and
 -exclude options, the strings specified using
 -exclude take precedence.

 If you exclude objects during a populate, a
 subsequent incremental populate will not
 necessarily process the folders of the
 previously excluded objects. DesignSync does
 not automatically perform a full populate in
 this case. To guarantee that previously
 excluded objects are fetched, specify the
 -full option for the subsequent populate
 operation.

 The '-exclude' option is ignored if it is
 included in a 'populate -mirror' operation.

 Do not specify paths in your arguments to
 -exclude. Before operating on each object (such
 as during a recursive populate), DesignSync
 compares the object's leaf name (with the path
 stripped off) to the exclude list to see if there
 is a match. Because the object's path is removed,
 the object will not match any object in the
 exclude list specified with a path. For example,
 if you specify '-exclude bin/*.exe', you will not
 successfully exclude bin/foo.exe or any other
 *.exe file. You need to instead specify '-exclude
 *.exe', or '-exclude foo.exe' if you want to
 exclude only 'foo.exe'. The result is that you
 cannot exclude a specific instance of an object
 -- you exclude all matching objects.

Workspace Setup

128

 In addition to objects you specify using the
 -exclude option, the field, "These objects are
 always excluded", from the Tools->Options->
 General->Exclude Lists dialog box in
 DesignSync lists objects that are always
 excluded from revision-control operations.

 Note: Do not exclude members when you are
 fetching a module into the module cache; users
 cannot link to or copy from a filtered module in
 a module cache.

-filter

 -filter <string> Specify one or more extended glob-style
 expressions to identify an exact subset of module
 objects on which to operate. Use the -exclude
 option to filter out DesignSync objects that are
 not module objects.

 The -filter option takes a list of expressions
 separated by commas, for example:
 -filter +top*/.../*.v,-.../a*

 Prepend a '-' character to a glob-style expression
 to identify objects to be excluded (the default).
 Prepend a '+' character to a glob-style expression
 to identify objects to be included. Note that if
 the list of expressions begins with an include
 character ('+'), the filter excludes all objects
 except those that match the include string.

 Specify the paths in your glob-style expressions
 relative to the current directory, because
 DesignSync matches your expressions relative to
 that directory. For submodules followed through
 hrefs, DesignSync matches your expressions against
 the objects' natural paths -- their full relative
 paths. For example, if a module, Chip, references
 a submodule, CPU, and CPU contains a file,
 '/libs/cpu/cdsinfo.tag', DesignSync matches
 against '/libs/cpu/cdsinfo.tag', rather than
 matching directly within the 'cpu' directory.

 If your design contains symbolic links that are
 under revision control, DesignSync matches
 against the source path of the link rather than
 the dereferenced path. For example, if a
 symbolic link exists from 'tmp.txt' to
 'tmp2.txt', DesignSync matches against 'tmp.txt'.
 Similarly for hierarchical operations, DesignSync
 matches against the unresolved path. If, for
 example, a symbolic link exists from dirA to dirB

ENOVIA Synchronicity Command Reference - Module

129

 and dirB contains 'tmp.txt', DesignSync matches
 against 'dirA/tmp.txt'.

 The extended glob-style expressions you use to
 filter the objects are standard glob-style
 expressions, but they are extended so that you
 can use the "..." syntax to indicate that the
 expression matches any number of directory
 levels. For example, the expression,
 "top/.../lib/*.v" matches *.v files in a
 directory path that begins with "top", followed
 by zero or more levels, with one of those levels
 containing a lib directory. The command traverses
 the directory structure. If a directory name
 matches an exclude clause of the filter, then the
 entire directory and all its contents are
 filtered (the command stops descending at that
 point), otherwise the command continues
 traversing the directory structure searching for
 matching objects.

 If this is the first time a module is being
 populated, the filter becomes a persistent filter
 for the module, just as if you had invoked
 the setfilter command. For subsequent operations
 on the module, DesignSync applies persistent
 filters first, followed by those set using
 the -filter, -hreffilter, and -exclude options.

 Note: If a populate specifies a -filter value
 to filter out objects that were previously
 populated, the populate is not considered
 complete. In this case, the workspace module
 does not match the module in the vault; thus,
 the module version is not updated. Also, a
 subsequent incremental populate will not
 necessarily process the folders of the
 previously excluded objects. DesignSync does
 not automatically perform a full populate in
 this case. To guarantee that previously
 excluded objects are fetched, specify the
 -full option for the subsequent populate
 operation.

 Although the -filter option takes precedence over
 persistent filters, it does not override the
 exclude list set using SyncAdmin's
 General=>Exclude Lists tab; the items in the
 exclude list are combined with the filter
 expression. For example, an exclude list of
 "*%,*.reg" combined with '-filter .../*.doc' is
 equivalent to:
 '-filter .../*.doc,.../*%,.../*.reg'.

 Note: Do not filter a module that you are fetching
 into the module cache; users cannot link to or
 copy from a filtered module in a module cache.

Workspace Setup

130

-[no]force

 -[no]force Specifies whether to overwrite locally modified
 objects in order to match the workspace to the
 data being requested. To do so, the populate
 operation deletes locally managed objects that
 are not part of the populate command line,
 deleting objects that have been filtered out.
 'populate -force' only removes managed data,
 not unmanaged data. For module objects, the
 -force option removes objects from modules
 if they have been added by the add command, but
 have never been checked in. Again, although
 DesignSync removes these objects from the module
 manifest, it does not remove the unmanaged data.
 Also, if you specify -force while populating
 a module that overlaps with another module,
 the -force option does not remove data from
 the other module.

 Use this option with caution, because you might
 not be able to retrieve lost changes.

 By default (-noforce):
 o Locally modified objects are not overwritten
 by the populate operation. Specify -force if
 you want to overwrite locally modified
 objects. If the object is locked, the object
 is unaffected by the populate operation
 whether -force is specified or not.
 o Objects that are not part of the specified
 module remain in your work area. If you
 want to delete objects that are not part of
 the configuration, specify -force. Unmanaged
 objects are never deleted.

 Using -force with -unifystate changes the state
 of all objects including locally modified
 objects, in which case, local modifications are
 overwritten and objects are fetched according to
 the specified state or the default fetch state.

 Using -force with -noemptydirs for populate
 removes all existing empty directories from the
 workspace unless the directories themselves are
 members of the module.

 The -force option is mutually exclusive with
 both the -overlay and -noreplace options.

-from

ENOVIA Synchronicity Command Reference - Module

131

 -from <where> Specifies whether the object is fetched from
 the vault ('-from vault') or from the cache or
 mirror ('-from local'). By default,
 DesignSync fetches from the cache or
 mirror ('-from local'), a performance
 optimization specific to the 'co -lock',
 'co -get', 'populate -lock', and
 'populate -get' commands. For details, see the
 Performance Optimization Overview in the
 DesignSync Data Manager Administrator's
 Guide. Note that this option is silently ignored
 when the optimization is not possible, including
 when the -keys option is specified.

 The -from option can only be used with the -lock
 or -get fetch modes. It cannot be used with the
 -share, -mirror, -reference, or the -lock
 -reference combination fetch modes. If the -keys
 option is specified with the -from option, the
 -from option is silently ignored.

-full

 -full Performs a non-incremental populate by processing
 all objects and folders.

 Note: DesignSync performs an incremental
 populate by default. It automatically
 reverts to a full populate when necessary.
 For more information, see the "Incremental
 Versus Full Populate" section in the
 description.

 To change the default populate mode, your
 Synchronicity administrator can use the
 SyncAdmin tool.

 Note: Do not use the -full option to change the
 states of objects in your work area (for
 example, changing from locked to unlocked
 objects or unlocked objects to links to
 the cache). DesignSync changes the states
 of only those objects that need an
 update. Use the -unifystate option to
 change the state of objects in your work
 area.

-get

 -get Fetch unlocked copies.

 You can change whether the local object is

Workspace Setup

132

 read-only (typical when using the locking
 model) or read/write (typical when using the
 merging model) by default by using the
 "Check out read only when not locking" option
 from the Tools->Options->General dialog box in
 the DesignSync graphical interface. Your project
 leader can also set this option site-wide
 using SyncAdmin.

 This option is the default object-state option
 unless a default fetch preference has been
 defined. See the "fetch preference" help topic
 for more information.

 Using -force with -noemptydirs for
 'populate -get' removes all existing empty
 directories. Using -force with -emptydirs,
 however, creates empty directories for
 corresponding empty vault folders. Note that
 the populate command ignores the
 -noemptydirs option when operating on
 modules, because folders are members of
 their corresponding modules and therefore
 cannot be removed.

 The -get option is mutually exclusive with the
 other fetch modes: -lock, -share, -mirror, and
 -reference.

 Note: To replace mcache links with physical
 copies of module members, use the -mcachemode
 server option,

-hreffilter

 -hreffilter Excludes href values during recursive operations
 <string> on module hierarchies. Because hrefs
 link to submodules, you use -hreffilter
 to exclude particular submodules. Note that
 unlike the -filter option which lets you include
 and exclude items, the -hreffilter option only
 excludes hrefs and, thus, their corresponding
 submodules.

 Note: When populating a workspace with symbolic
 links to a module cache, the -hreffilter option
 does not apply and is silently ignored.

 Specify the -hreffilter string as a glob-style
 expression. The href filter can be specified
 either as a simple href filter or as a
 hierarchical href filter.

 A simple href filter is a simple leaf module

ENOVIA Synchronicity Command Reference - Module

133

 name; you cannot specify a path. DesignSync
 matches the specified href filter against hrefs
 anywhere in the hierarchy. Thus, DesignSync
 excludes all hrefs of this leaf name; you cannot
 exclude a unique instance of the href.

 A hierarchical href filter specifies a path and a
 leaf submodule, for example JRE/BIN excludes the
 BIN submodule only if it is directly beneath JRE
 in the hierarchy.

 When creating a hierarchical href filter, you do
 not specify the top-level module of the
 hierarchy. If you want to filter using the
 top-level module, you begin the hreffilter with
 /, for example, "/JRE," would filter any JRE href
 referenced by the top-level module.

 Note: You can use wildcards with both types of
 hreffilter, however, if a wildcard is used as the
 lone character in hierarchical href, it only
 matches a single level, for example: "JRE/*/BIN"
 would match a hierarchy like "JRE/SUB/BIN" but
 would not match "JRE/BIN" or "JRE/SUB/SUB2/BIN".

 You can prepend the '-' exclude character to your
 string, but it is not required. Because the
 -hreffilter option only supports excluding hrefs,
 a '+' character is interpreted as part of the glob
 expression.

 If this is the first time a module is being
 populated, the filter becomes a persistent filter
 for the module, just as if you had invoked
 the setfilter command. For subsequent operations
 on the module, DesignSync applies persistent
 filters first, followed by those set using
 the -filter, -hreffilter, and -exclude options.

 Note: Hierarchical hreffilters can only be
 specified during an initial populate. To add,
 change, or remove a hierarchical hreffilter after
 the initial populate, you must use the setfilter
 command.

 Whereas the -filter option can prevent a populate
 from being complete, thus preventing the version
 from being updated, the -hreffilter option
 does not prevent the version from being
 updated. The -hreffilter option prevents
 particular submodules from being fetched,
 but the failure to fetch a submodule does
 not affect the updating to a new version.

 Note: Do not filter a module that you are fetching
 into the module cache; users cannot link to or
 copy from a filtered module in a module cache.

Workspace Setup

134

-hrefmode

 -hrefmode For a recursive populate, determines whether
 to populate statically-specified submodules or
 dynamically-evaluated submodules.

 Valid values are:
 o dynamic - Expands hrefs at the time of the
 populate operation to identify the version
 of the submodules to be populated.
 o static - Populates with the submodules
 versions referenced by the hrefs when the
 module version was initially created.
 o normal - Expands the hrefs at the time of the
 populate operation until it reaches a static
 selector. If the reference uses a static
 version, the hrefmode is set to 'static' for the
 next level of submodules to be populated;
 otherwise, the hrefmode remains 'normal' for the
 next level. (Default). This behavior can be
 changed using the
 "HrefModeChangeWithTopStaticSelector" registry
 key to determine how hrefs are followed.

 Notes:
 o If the -hrefmode option is used, it is stored
 for subsequent populates; You do not have to
 specify the href mode again unless a different
 mode is required.

 o Use of the -hrefmode option is mutually
 exclusive with use of the -lock option.
 o If an href is created with a mutable version
 tag, and that version tag has moved, you must
 use dynamic mode (-hrefmode dynamic) to populate
 your workspace with the new tagged version. If
 you want the workspace to continue to point to
 the original version, you should populate with
 normal or static mode.
 o If you are fetching modules into the module
 cache, use the static mode (-herfmode static).
 You can only link to statically fetched module
 versions. See DesignSync Data Manager
 Administrator's Guide: "Setting up a Module
 Cache" for more information.

-incremental

 -incremental Performs a fast populate operation by
 updating only those folders whose
 corresponding vault folders contain

ENOVIA Synchronicity Command Reference - Module

135

 modified objects.
 Note: DesignSync performs an incremental
 populate by default. It automatically
 reverts to a full populate when necessary.
 For more information, see the "Incremental
 Versus Full Populate" section in the
 description.

 To change the default populate mode, your
 Synchronicity administrator can use the
 SyncAdmin tool.

 Note: Do not use the -incremental option to
 change the states of objects in your work
 area (for example, changing from locked to
 unlocked objects or unlocked objects to
 links to the cache). DesignSync changes
 the states of updated objects only. For
 an incremental populate, DesignSync only
 processes folders that contain objects
 that need an update. State changes,
 therefore are not guaranteed. Use the
 -unifystate option to change the state of
 objects in your work area.

-keys

 -keys <mode> Controls processing of vault
 revision-control keywords in populated
 objects. Note that keyword expansion is not
 the same as keyword update. For example, the
 $Date$ keyword is updated only during checkin;
 its value is not updated during checkout or
 populate. The -keys option only works with the
 -get and -lock options. If you use the -share
 or -mirror option, keywords are automatically
 expanded in cached or mirrored objects, as if
 the '-keys kkv' option was used.

 Available modes are:

 kkv - (keep keywords and values) The local
 object contains both revision control keywords
 and their expanded values; for example,
 $Revision: 1.4 $.

 kk - (keep keywords) The local object contains
 revision control keywords, but no values; for
 example, $Revision$. This option is useful if
 you want to ignore differences in keyword
 expansion, such as when comparing two different
 versions of an object.

 kv - (keep values) The local object contains

Workspace Setup

136

 expanded keyword values, but not the keywords
 themselves; for example, 1.4. This option is
 not recommended if you plan to check in your
 local objects. If you edit and then check in
 the objects, future keyword substitution is
 impossible, because the value without the
 keyword is interpreted as regular text.

 ko - (keep output) The local object contains
 the same keywords and values as were present at
 check in.

 The -keys option can only be used with the -lock
 or -get fetch modes. It cannot be used with the
 -share, -mirror, -reference, or the -lock
 -reference combination fetch modes. If the -keys
 option is specified with the -from option, the
 -from option is silently ignored.

 Note: When a module member is checked out with a
 lock, the locker keyword is not updated for the
 lock operation and remains null.

-lock

 -lock Lock the branch of the specified version for
 each module member object that is
 populated. Only the user who has the lock can
 check in a newer version of the object on that
 branch.

 The -lock option does not lock not the module
 branch. In so doing, the -lock option makes
 the members writable in the workspace, and
 converts cached objects to full copies. To
 lock the module branch itself without making
 members writable, use the lock command.

 Use the -lock option with the -reference option
 to populate with locked references. For more
 information, see the -lock -reference option.
 Locked references are useful if you intend to
 generate objects and want to lock them before
 regenerating, as opposed to editing the previous
 version. Upon generation of the objects, they
 automatically become locked copies rather than
 locked references. Obtaining locked references
 for generated objects is faster because
 DesignSync does not fetch the previously
 generated objects. If the objects exist already
 in the workspace, DesignSync deletes them. If
 the objects exist and are locally modified, the
 operation fails. If you intend to overwrite the
 modifications, use -force to create the locked

ENOVIA Synchronicity Command Reference - Module

137

 references. If the default fetch state is
 'reference' and you specify the -lock option
 without the -reference option, DesignSync leaves
 locked copies of the objects in your workspace;
 you must explicitly apply the -reference option
 with the -lock option if you want locked
 references in your workspace.

 The -lock option is mutually exclusive with the
 fetch modes: -get, -share, and -mirror and
 mutually exclusive with -recursive. The -lock
 option can be used with the -merge option.

 Notes:
 o If you specify 'populate -lock', then by
 default the populate operation also uses the
 '-from local' option. The result is that the
 populate operation locks the object in the
 vault and keeps local modifications in your
 workspace. See the -from option for
 information.
 o When a module member is checked out with a lock,
 the locker keyword is not expanded with the
 locker name.

-lock -reference

-lock -reference Use the -lock option with the -reference option
 to populate with locked references. Locked
 references are useful if you intend to generate
 objects and want to lock them before
 regenerating, as opposed to editing the previous
 version. Upon generation of the objects, they
 automatically become locked copies rather than
 locked references. Obtaining locked references
 for generated objects is faster because
 DesignSync does not fetch the previously
 generated objects. If the objects exist already
 in the workspace, DesignSync deletes them.
 If the objects exist and are locally modified,
 the operation fails. If you intend to overwrite
 the modifications, use -force to create the
 locked references. If the default fetch state
 is 'reference' and you specify the -lock option
 without the -reference option, DesignSync leaves
 locked copies of the objects in your workspace;
 you must explicitly apply the -reference option
 with the -lock option if you want locked
 references in your workspace.

 The -lock -reference combination of option is
 mutually exclusive with the fetch modes: -get,
 -share, and -mirror, and with the -recursive
 option.

Workspace Setup

138

 Note: You should not use the -reference option
 with Cadence data collection objects. When
 the -reference option is used on Cadence
 collections, DesignSync creates a
 reference in the metadata for the
 collection object but member files are not
 processed and are not included in the
 metadata.

-log

 -log <filename> Specify the name of the populate log file. If
 the filename doesn't exist, DesignSync creates
 it. If the file does exist, DesignSync appends
 the new information to the end of the log file.

 The filename can be specified with an absolute
 or relative path. If you specify a path for the
 log file, the directory you specify must already
 exist and you must have write permissions to the
 directory in order for the log to be placed into
 it, DesignSync does not create the path.

-mcachemode

 -mcachemode Specifies how the populate command fetches
 <mcache_mode> the module from the module cache.

 Note: The module cache should always be
 populated at the workspace root directory level.

 Available modes are:

 o link - For each module it finds in the module
 cache, the populate command sets up a symbolic
 link from your work area to the base directory
 of the module in the module cache. This is
 the default mode on UNIX platforms.

 Note:
 - This mode is supported on UNIX platforms
 only. If you specify link mode on a
 Windows platform, the populate operation
 fails.
 - You cannot create mcache links to
 dynamically fetched modules since there is
 no auto-refresh of mcaches.
 the populate command.

 o server - Causes the populate command to
 fetch modules as physical copies from the

ENOVIA Synchronicity Command Reference - Module

139

 server, not the module cache. (Default for
 Windows.)

 The -mcachemode option overrides the default
 module cache mode registry setting. If
 -mcachemode is not specified, the populate
 command uses the mode specified in the registry
 setting. If no registry setting is specified,
 the command uses link mode on Unix platforms and
 server mode on Windows platforms.

 Notes on mcaches:
 o If you run a populate with the -norecursive
 option, the module must have been fetched into
 the mcache in -norecursive mode as well, or
 the command will not create links to or copies
 from the module cache.

 o If the populate command is run using a filter,
 no mcache link to or copies are made.
 Therefore a filtered module can never be used
 in an mcache even if populate is run in a
 workspace that uses the same filter.

 o The mcache administrator can fetch modules
 into a module cache to link to or copy the
 contents of the module.

 o You cannot create mcache links to mcache
 directories containing members of more than
 one module version.

 If a request to link to the module cache is
 disallowed, DesignSync fetches the module from
 the server instead.

 For more information using populate with a
 module cache, see 'Module Caches' in the
 description section of the populate command.

-mcachepaths

 -mcachepaths Identifies one or more module caches to be
 searched for modules.

 Path names can be absolute or relative. You can
 specify multiple paths in a list of
 space-separated path names. To specify multiple
 paths, surround the path list with double
 quotation marks ("") and separate path names
 with a space. For example:"/dir/cacheA
 /dir2/cacheB".

 The path list can contain both module and legacy

Workspace Setup

140

 module mcache paths. For a module cache the
 path to the root directory of the module cache
 must be supplied.

 This option overrides the default module cache
 paths registry setting. If -mcachepaths is not
 specified, the command uses the list of paths
 specified in the registry setting. If no
 registry setting is specified, the populate
 command fetches modules from the server.

 Note:
 o To specify a path that includes spaces:
 - In stcl or stclc, surround the path
 containing the spaces with curly braces.
 For example:
 "/dir1/cache {/dir2/path name}"
 - In dss or dssc, use backslashes (\) to
 'escape' the spaces. For example:
 "/dir1/cache /dir2/path\ with\ spaces"
 o The populate command searches the mcache
 in the order specified with the -mcachepaths
 option or in the default module cache
 paths registry setting if this option
 is absent.

-[no]merge

 -[no]merge Indicates whether to populate with the Latest
 versions from the branch specified by the
 persistent selector list and merge them with
 the current, locally modified versions.
 The default value is -nomerge.

 If you are not doing an overlay merge (see
 -overlay) and the current version is not
 locally modified, the -merge defaults to a
 -get and fetches the new version without
 merging. By definition, a merge expects a
 locally modified object, so the -force option
 is not required.

 The -merge option supports the merging work
 model (as opposed to the locking work model)
 where multiple team members can check out and
 edit the Latest version concurrently. The
 first team member to check in creates the next
 version. Other team members must merge the new
 Latest version into their local copy before
 they can check in their changes.

 If there are no merge conflicts, the merge
 succeeds, leaving the merged files in
 your work area. If there are conflicts,

ENOVIA Synchronicity Command Reference - Module

141

 DesignSync issues a warning, and you must edit
 the merged file to resolve the conflicts
 before DesignSync allows you to check in the
 merged version. Conflicts are shown as
 follows:

 <<<<<<< local
 Lines from locally modified version
 =======
 Lines from selected server version
 >>>>>>> versionID

 DesignSync considers the conflicts resolved
 when the file no longer contains any of the
 conflict delimiters (exactly 7 less-than,
 greater-than, or equal signs starting in
 column 1). The status of an object, as
 displayed by ls or from the List View in the
 DesignSync graphical interface, indicates if
 conflicts exist. The url inconflict
 command also determines whether a file has
 conflicts.

 Most merges are between two versions on the
 same branch (the current branch and
 the branch specified by the persistent
 selector list are typically the same). However,
 a merge can also be performed across branches
 by setting the persistent selector list to a
 different branch. Following the merge, you are
 on the branch associated with the version
 specified by the persistent selector
 list (a 'merge to' operation). If you
 want to stay on the current branch instead,
 use the -overlay option. Overlay ('merge
 from') merges are more common when merging
 branches. See the -overlay option for details.

 Note:
 o When merging modules across branches, you
 should use -merge -overlay. For details about
 merging modules across branches, see the
 "Merging Across Branches section."
 o The -merge option implies -get, but you can
 also explicitly specify -get. For general
 DesignSync objects, the -merge option
 is mutually exclusive with all other state
 options (-lock, -share, -mirror, -reference,
 and -lock -reference).
 You can use -lock with -merge for modules and
 their members.
 o The -merge and -version options are mutually
 exclusive unless you specify '-version
 Latest'.

Workspace Setup

142

-modulecontext

 -modulecontext Identifies the module to be populated. Use the
 -modulecontext option if your workspace has
 overlapping modules, so that you can indicate
 which module to populate.

 You can use the -modulecontext option when
 specifying a folder to populate. In this case,
 the populate operation filters the folder,
 populating only those objects that belong to the
 module specified with the -modulecontext option.
 Use -modulecontext in a recursive populate to
 fetch members of the specified module throughout
 a hierarchy.

 You can also use -modulecontext option to
 identify which module to fetch items from when
 requesting an object that is not currently in the
 module.

 Specify an existing workspace module using the
 module name (for example, Chip) or a module
 instance name (for example, Chip%0). You also
 can specify -modulecontext as a server
 module URL (sync://server1:2647/Modules/Chip).

 Notes:
 o You cannot use a -modulecontext option to
 operate on objects from more than one module;
 the -modulecontext option takes only one
 argument, and you can use the -modulecontext
 option only once on a command line.

 o If you have overlapping modules, you must
 specify -modulecontext when populating a module
 that contains files not present in your
 workspace.

-[no]new

 -[no]new Specifies whether to fetch module objects that
 are not yet in the workspace.

 Apply the -new (default) to fetch all specified
 module objects (except those filtered out by
 options such as -filter and -exclude). Specify
 -nonew option to update only those objects
 already in the workspace.

 Using -new is another form of filtering. It can
 cause the subsequent populate to be a full
 rather than an incremental populate.

ENOVIA Synchronicity Command Reference - Module

143

 Note: This option is supported for module
 objects only.

-overlay

 -overlay <selectors> Replace your local copy of the module or
 DesignSync non-module object with the versions
 specified by the selector list (typically a
 branch tag). The current-version status, as
 stored in local metadata, is unchanged. For
 example, if you have version 1.5 (the Latest
 version) of the module or DesignSync object and
 you overlay version 1.3, your current version is
 still 1.5. You could then check in this overlaid
 version. This operation is equivalent
 to checking out version 1.3, then using 'ci
 -skip' to check in that version.

 The behavior of the overlay operation depends
 on the presence of a local version and the
 version you want to overlay:

 o If both the local version and the overlay
 version exist, the local version is replaced
 by the overlay version.
 o If there is no local version but an overlay
 version exists, DesignSync creates a
 local copy of the overlay version.
 o If a local version exists but there is no
 overlay version, the local version is
 unaffected by the operation.
 o If the overlay version was renamed or removed,
 the local object is not changed, but metadata
 is added to it, indicating the change. This
 information can be viewed using the ls command
 with the -merged option.

 Typically, you use -overlay with -merge to
 merge the two versions instead of overlaying
 one version onto another. The combination of
 -overlay and -merge lets you merge from one
 branch to another, the recommended method for
 merging across branches. Following the
 overlay merge, you are working on the same
 branch as before the operation.

 You specify the version you want to overlay
 as an argument to the -overlay option. The
 -overlay and -version options are mutually
 exclusive. The -version option always updates
 the 'current version' information in your work
 area, which is not correct for an overlay
 operation.

Workspace Setup

144

 o To use -overlay to specify a branch, specify
 both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

 When doing an overlay (with or without -merge),
 a number of combinations for the state of a
 module or DesignSync object on the two branches
 must be considered. For more information, see
 the "Merging Across Branches" section
 above. Hierarchical references in modules are
 not updated during an overlay.

 Notes:
 o The -overlay option implies -get, but
 you can also explicitly specify -get.
 o The -overlay option is mutually exclusive
 with the other state options (-mirror,
 -share, -lock, -reference) and -version.

-path

 -path <path> Specify the name of an alternate local folder
 to populate instead of the current folder. The
 populate command uses the vault and persistent
 selector list associated with the specified
 folder.
 Note: Using -path is equivalent to changing
 folders, executing the populate
 command, then changing back to the
 original folder.

 If you specify a folder using the -path option
 but the folder does not exist, DesignSync
 - verifies that a corresponding vault exists
 - creates the folder
 - populates the specified folder, creating
 any interim folders necessary to replicate
 the vault hierarchy locally.

 If you specify the -target option but the
 folder does not exist, DesignSync creates
 the folder.
 Generally, however, if the vault does not
 exist, DesignSync does not create the
 folder and leaves the workspace unchanged.

 Tip: When populating a workspace with links to a
 module cache, use -path to create the directory,

ENOVIA Synchronicity Command Reference - Module

145

 rather than specifying an existing directory.

 The -path option used to be the -dir option.
 The -dir option is still provided for backwards
 compatibility, but is not documented
 separately.

-[no]recursive

 -[no]recursive Specifies whether to perform this operation on
 the specified folder or module only (default),
 or to traverse its subfolders or submodules.

 If you invoke 'populate -recursive' and specify a
 folder, populate operates on the folder in a
 folder-centric fashion, fetching the objects in
 the folder and its subfolders.
 If the folders or subfolders contain modules
 or module members, populate fetches the objects,
 but does not follow hierarchical references
 (hrefs). To filter the set of objects on which
 to operate, use the -filter or -exclude options.

 If you invoke 'populate -recursive' and specify a
 module, populate operates on the specified module
 in a module-centric fashion, fetching all of the
 objects in the module and following its
 hierarchical references (hrefs) to fetch its
 referenced submodules. To filter the objects on
 which to operate, use the -filter or -hreffilter
 options.

 Note: Because of the way module merge handles
 hierarchical reference, you cannot specify
 -recursive when doing a cross branch merge on a
 module, (pop -merge -overlay).

 If you invoke 'populate -recursive' on a subfolder
 of a module and provide a -modulecontext, populate
 recurses within the specified folder, fetching any
 object which is a member of the named module
 or one of its referenced submodules.
 Note: For modules, you cannot use the -recursive
 option with the -lock option.

 Note: The populate operation might skip
 subfolders and individual managed objects
 if their persistent selector lists differ
 from the top-level folder being populated;
 see the Description section for details.

 If you specify -norecursive when operating on
 a folder, DesignSync operates only on objects in
 the specified folder. In this case, populate

Workspace Setup

146

 does not traverse the vault folder hierarchy.
 Likewise, if you specify -norecursive when
 operating on a module, DesignSync operates
 only on the module objects and does not follow
 hrefs.

-reference

 -reference Populate with DesignSync references to objects
 in the vault. A reference does not have a
 corresponding file on the file system but does
 have local metadata that makes the reference
 visible to Synchronicity programs. Populate
 with references when you want your work area to
 reflect the contents of the vault but you do
 not need physical copies. Use the -reference
 option with the -lock option to populate with
 locked references. Locked references are
 useful if you intend to generate objects
 and want to lock them before regenerating,
 as opposed to editing the previous versions.

 Note: You should not use the -reference option
 with Cadence data collection objects. When
 the -reference option is used on Cadence
 collections, DesignSync creates a
 reference in the metadata for the
 collection object but member files are not
 processed and are not included in the
 metadata.

-[no]replace

 -[no]replace This option determines how to handle locally
 modified objects when synchronizing your work
 area.

 The -replace option specifies that the populate
 operation updates locally unmodified workspace
 objects. This option leaves intact all managed
 objects that are not members of the module (if
 applicable) and all unmanaged objects. If an
 object has been removed from the version being
 fetched as a result of a remove operation or
 retired on the server, -replace removes the
 member from the workspace if it has not been
 locally modified. (Default)

 The -noreplace option specifies that the
 populate operation updates managed objects that
 have not been locally modified. The -noreplace
 option leaves intact all unmanaged objects. If

ENOVIA Synchronicity Command Reference - Module

147

 an object has been removed from the version
 being fetched as a result of a remove, mvmember,
 rmhref or any other similar operation,
 -noreplace does not remove the corresponding
 file in the workspace.

 During a recursive populate, -noreplace leaves
 intact managed objects belonging to a
 referenced submodule even when the href has
 been removed. If the href has been changed to
 reference a different submodule, -noreplace:
 o Leaves intact managed objects that belong to
 the previous submodule but not to the
 new submodule
 o Replaces managed members that belong to both
 modules with the version belonging to
 the new module

 Notes:
 o See "Forcing, Replacing, and Non-Replacing
 Modes" above to see how the -force option
 interacts with the -[no]replace option.
 o If you use populate -version to populate
 a directory containing a module, DesignSync
 uses the -noreplace option unless -replace is
 explicitly specified.
 o If you apply the -filter or -hreffilter
 options, populate applies the -[no]replace
 option on the filtered data.
 o With a recursive operation, populate applies
 -replace and -noreplace behaviors to the
 top-level module and then to each
 referenced submodule.

-report

 -report error| Specifies the amount and type of information
 brief|normal| displayed by the command. The information each
 verbose option returns is discussed in detail in the
 "Understanding the Output" section above.

 error - lists failures, warnings, and success
 failure count.

 brief - lists failures, warnings, module
 create/remove messages, some informational
 messages, and success/failure count.

 normal - includes all information from brief, and
 lists all the updated objects, and messages about
 objects excluded by filters from the
 operation. (Default)

 verbose - provides full status for each

Workspace Setup

148

 object processed, even if the object is not
 updated by the operation.

-[no]retain

 -[no]retain Indicates whether to retain the 'last modified'
 timestamp of the fetched objects as recorded
 when each object was checked into the vault. If
 the workspace is set to use a mirror, or the
 populate is run using -share, this will also
 apply to the object placed in the mirror or LAN
 cache if the object doesn't already exist in the
 mirror or cache. The links in your work area to
 the cache or mirror have timestamps of when the
 links were created.

 If you specify the -reference option, no object
 is created in your work area, so there is no
 timestamp information at all.

 If an object is checked into the vault and the
 setting of the -retain option is the only
 difference between the version in the vault and
 your local copy, DesignSync does not include the
 object in populate operations.

 If you do not specify '-retain' or -noretain',
 the populate command follows the DesignSync
 registry setting for Retain last-modification
 timestamps. By default, this setting is not
 enabled; therefore, the timestamp of the local
 object is the time of the populate
 operation. To change the default setting, your
 Synchronicity administrator can use the
 SyncAdmin tool. For information, see SyncAdmin
 Help.

 The mirror system, by default,fetches objects
 into the mirror with the -retain option. The
 mirror administrator, however, can define
 mirrors to use the -noretain option. The default
 setting should agree with the Retain
 last-modification timestamp registry setting to
 maintain consistency. See the "Mirror
 Administration Server Registry Settings" topic
 for setting of the co or populate options for
 mirrors.

 Note: When fetching from the cache or mirror (by
 specifying the '-from local' option), the last
 modified timestamp comes from the file in the
 cache or mirror, not from the version that was
 checked into the vault. If the file was fetched
 into the cache or mirror with the -retain

ENOVIA Synchronicity Command Reference - Module

149

 option, these two timestamps are the same. But
 if the file was fetched into the cache or mirror
 with the -noretain option and then fetched into
 the workspace with both the '-from local' and
 '-retain' options, the 'last modified' timestamp
 used is the time the object was fetched into the
 cache or mirror.

-savelocal

 -savelocal <value> This option affects collections that have local
 versions.

 When it fetches an object, the populate
 operation first removes from your workspace
 any local version that is unmodified. (To
 remove a local version containing modified
 data, specify 'pop -force'.) Then the populate
 operation fetches the object you are checking
 out (with the local version number it had at
 the time of checkin).

 The -savelocal option specifies the action
 that the populate operation takes with
 modified local versions in your workspace
 (other than the current, or highest numbered,
 local version). (DesignSync considers a local
 version to be modified if it contains modified
 members or if it is not the local version
 originally fetched from the vault when the
 collection object was checked out or populated
 to your workspace.)

 Specify the -savelocal option with one of the
 following values:

 save - If your workspace contains a local
 version other than the local version being
 fetched, the populate operation saves the
 local version for later retrieval. See the
 'localversion restore' command for information
 on retrieving local versions that were saved.

 fail - If your workspace contains an object
 with a local version number equal to or higher
 than the local version being fetched, the
 populate operation fails. This is the default
 action.

 Note: If your workspace contains an object
 with local version numbers lower than the
 local version being fetched and if these local
 versions are not in the DesignSync vault, the
 populate operation saves them. This behavior

Workspace Setup

150

 occurs even when you specify '-savelocal fail'

 delete - If your workspace contains a local
 version other than the local version being
 fetched, the populate operation deletes the
 local version from your workspace.

 If you do not specify the -savelocal option,
 the populate operation follows the DesignSync
 registry setting for SaveLocal. By default,
 this setting is "Fail if local versions exist"
 ('-savelocal fail'). To change the default
 setting, a Synchronicity administrator can use
 the Command Defaults options pane of the
 SyncAdmin tool. For information, see SyncAdmin
 Help.

 Note:
 o You may need to use the -force option with
 the -savelocal option to allow the object
 being fetched to overwrite a locally
 modified copy of the object. For an example
 scenario, see EXAMPLES.
 o The -savelocal option affects only objects of
 a collection defined by the Custom Type
 Package (CTP). This option does not affect
 objects that are not part of a collection or
 collections that do not have local versions.

-share

 -share Fetch shared copies. Shared objects are stored
 in the file cache directory and links to the
 cached objects are created in the work area.

 Notes:
 This option is not supported on Windows
 platforms.

 The -share option is mutually exclusive with the
 other fetch modes: -lock, -get, -mirror, and
 -reference. The -share option is also mutually
 exclusive with the -keys and -from options.

-trigarg

 -trigarg <arg> Specifies an argument to be passed from the
 command line to the triggers set on the
 populate operation. If the argument contains
 whitespace, enclose the argument within
 double quotation marks ("") if using the dss
 command shell or braces ({}) if using the stcl

ENOVIA Synchronicity Command Reference - Module

151

 command shell.

-[no]unifystate

 -[no]unifystate Indicates whether to set the state of all objects
 processed, even up-to-date objects, to the
 specified state (-get, -lock, -share, -mirror, or
 -reference) or to the default fetch state if no
 state option is specified. See the
 "fetch preference" help topic for more
 information.

 By default, populate changes the state of only
 those objects that are not up-to-date
 (-nounifystate). If the -unifystate option is
 specified, DesignSync changes the state of the
 up-to-date objects, as well, and thus performs
 a full populate.

 The -unifystate option does not change the state
 of locally modified objects; use -force with
 -unifystate to force a state change, thus
 overwriting local modifications. The -unifystate
 option does not change the state of objects not
 in the configuration; use -force with
 -unifystate to remove objects not in the
 configuration.
 The -unifystate option does not cancel locks;
 you can check in the locked files, use the
 'cancel' command to cancel locks you have
 acquired, or use the 'unlock' command to cancel
 team members' locks.

 Note: The -unifystate option is ignored when
 you lock design objects. If you populate with
 locked copies or locked references, DesignSync
 leaves all processed objects in the requested
 state.

-version

 -version <selector> Specifies the versions of the objects to
 populate. The selector list you specify
 (typically a version or branch tag) overrides
 the persistent selector lists of the objects you
 are populating. If you populate the top-level
 module in a hierarchy with the -version tag, you
 replace the persistent selector of the workspace
 with the version specified by this option. If
 you specify the -recursive option, the specified
 selector list is used to populate all subfolders
 during populates.

Workspace Setup

152

 If you specify a date selector (Latest or
 Date(<date>)), DesignSync augments the
 selector with the persistent selector list
 to determine the versions to populate. For
 example, if the persistent selector list
 is 'Gold:,Trunk', and you specify
 'populate -version Latest', then the selector
 list used for the populate operation is
 'Gold:Latest,Trunk:Latest'.

 For details on selectors and selector lists
 see the topic describing selectors.

 Note:
 o Using the -version option with the populate
 command changes the workspace selector if the
 populate was performed on a top-level
 module instance. If you are working in a
 module hierachy, you should use the swap
 replace command to change the sub-module
 version populated. If you populate individual
 module members or folders, the persistent
 selector is not updated.
 o If you use -version to populate a module
 member, populate fetches the version that is
 appropriate to the module version as
 identified by the version value.
 o If you use the -version option with the
 -incremental option, and the selector you
 specify does not exactly match the workspace
 selector, the incremental populate does not
 occur. DesignSync performs a full populate
 instead. See "Incremental Versus Full
 Populate" in the description section for more
 information.
 o When using -version to specify a branch,
 specify both the branch and version as
 follows: <branchtag>:<versiontag>, for
 example, Rel2:Latest. You can also use the
 shortcut, <branchtag>:, for example Rel2:.
 If you do not explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.
 o When you specify a version-extended name that
 reflects the object's version, for example,
 "file.txt;1.3", populate ignores the
 -version option.
 o Specify '-version <branchtag>:Latest' only if
 necessary. In some cases, DesignSync augments
 the selector to be <branchtag>:Latest.
 When you append ':Latest', it may not match
 the work area selector. This mismatch
 invalidates your next incremental populate
 resulting in a slower, full populate.
 o The -version option is mutually exclusive
 with -merge unless you specify '-version

ENOVIA Synchronicity Command Reference - Module

153

 Latest', the default.
 o The -version and -overlay options are
 mutually exclusive.

-view

 -view view1 Module view name or comma-delimited list of
 [,view2[,view...] module view names, applied to a module or module
 hierarchy when it is fetched.

 Note: This option is only valid for server
 module objects. If it is used with an argument
 type other than a server module url, the option
 is silently ignored.

 There is no default value for this option. You
 cannot set a default value in the command
 defaults system.

 On an initial populate, the module view name or
 names list provided is propagated through the
 hierarchy and applied to all fetched
 modules. The module view name or names list is
 also saved, or persisted in the workspace
 metadata for each module so that all subsequent
 populates use the same view. The documentation
 refers to a view saved in the metadata as a
 "persistent module view" because it persists
 through subsequent populates rather than
 needed to be specified with each command.

 If a persistent module view has been set on a
 workspace module, any sub-modules subsequently
 populated use the persistent module view already
 defined for parent module.

 Tip: Since populate calls the Checkout Access
 Control, you can write an Access Control filter
 to cause populate to fail if no module view is
 specified or tie users to specific module
 views.

 Notes:
 o If none of the specified module views exist on
 the server, DesignSync issues a warning and
 the populate command runs as if no view were
 specified. If, in a list of module views, one
 or more views exists, and one or more views
 does not exist, the populate command silently
 ignores the non-existent view(s).

 o When the persistent module view set on the
 workspace is changed, the subsequent populate
 is a full populate. For more information on

Workspace Setup

154

 changing or clearing the persistent view, see
 the setview command.

-xtras

 -xtras <list> List of command line options to pass to the
 external module change management system. Any
 options specified with the -xtras option are
 sent verbatim, with no processing by the
 populate command, to the Tcl script that defines
 the external module change management system.

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.

 Notes:
 - "successfully processed" may not mean "successfully populated".
 For example, a populate of an object that you already have in
 your work area is considered a success even though no checkout
 occurs.
 - Scripts should only test for non-empty lists to determine
 success or failure. The actual content of the non-empty
 lists might change in subsequent releases.
 - If all objects fail, an exception occurs (the return value is
 thrown, not returned).
 - Objects reported as "excluded by filter," may have been excluded
 either with the -filter option (for modules) or with the -exclude
 option (for any DesignSync objects.)

SEE ALSO

 caching, ci, command defaults, localversion, remove, selectors,
 setselector, setvault, setview, swap, url contents

EXAMPLES

• Example of Populating a Module
• Example of Populating a Specific Module Member
• Example of Populating a Module with a Static Selector
• Example of Populating a Module Using Version-Extended Naming
• Example of Creating a Module Cache

ENOVIA Synchronicity Command Reference - Module

155

• Example of Populating an Mcache Link
• Example of Populating a Module View
• Example of Specifying a Hierarchical Hreffilter
• Example of Merge Across Branches

Example of Populating a Module

 The following example shows how to populate module Chip in the
 workspace directory ~/chip.
 For an initial populate, provide the server URL of the module:

 stcl> pop sync://guaraldi:30077/Modules/Chip

 This creates the Chip module with the current directory
 as the base directory:

 Beginning populate operation...

 Making Module with
 Base Dir = /home/karen/chip
 Name = Chip
 URL = sync://guaraldi:30077/Modules/Chip
 Selector = Trunk:Latest

 Created Module with instname Chip%1

 Populating objects in Module Chip%1 with Base Dir /home/karen/chip...

 /chip/makefile: Success - Checked Out version: 1.1
 /DOC/Chip.doc: Success - Checked Out version: 1.1
 /chip/verilog/chip.v: Success - Checked Out version: 1.1

 Chip%1: Version of module in workspace updated to 1.2

 Finished populate of Module Chip%1 with Base Dir /home/karen/chip

 Finished populate operation...

 {Objects succeeded (3)} {}

 When you next update your work area using the populate command,
 you can supply the workspace module name or the workspace folder
 name. In the following example the workspace folder name is
 supplied, and there have been no changes since the last populate:

 stcl> pop -recursive ~/chip
 Beginning populate operation at Thu Apr 19 02:16:31 PM EDT 2007...

 Populating objects in Module Chip%1
 Base Directory /home/karen/chip
 Without href recursion

Workspace Setup

156

 Chip%1 : Version of module in workspace retained as 1.2

 Finished populate of Module Chip%1 with base directory
 /home/karen/chip

 Finished populate operation.

 {} {}

Example of Populating a Specific Module Member

 The following is an example of fetching a specific version of a
 module member:

 stcl> pop -version 1.4 File1.txt

 Populating objects in Module JitaMod1%0
 Base Directory /home/tachatterjee/JitaMOD
 Without href recursion

 Fetching contents from selector '1.4', module version '1.4'

 Total data to transfer: 0 Kbytes, 1 files, 0 collections
 Progress: 0 Kbytes, 1 files, 0 collections, 100.0% complete
 /File1.txt: Success - Checked Out version: 1.3

 Finished populate operation...

 This fetches the version of the file File1.txt contained in
 version 1.4 of the module.

Example of Populating a Module with a Static Selector

 The following example shows the messages you receive when you
 populate a static selector into a workspace.

 dss> populate -recursive -version Gold Chip-R419%0
 Beginning populate operation at Fri Oct 28 12:41:08 Eastern Daylight
 Time 2016...

 Setting Selector [Gold] on workspace module
 c:\workspaces\ChipDev419\chip\Chip-R419%0
 WARNING: Chip-R419%0: Changing the selector to a static value (Gold).
 You will not be able to check in module or member modifications.

 Selector on module c:\workspaces\ChipDev419\chip\Chip-R419%0 was
 modified.

 Populating objects in Module Chip-R419%0

ENOVIA Synchronicity Command Reference - Module

157

 Base Directory c:\workspaces\ChipDev419\chip
 With href recursion

 Fetching contents from selector 'Gold', module version '1.5.1.1'
...
 Finished populate operation.

 ##### WARNINGS and FAILURES LISTING #####
 #
 # WARNING: Chip-R419%0: Changing the selector to a static value
 #(Gold).
 # You will not be able to check in module or member modifications.
 #
 ###

 {Objects succeeded (6)} {Objects failed (0)}

Example of Populating a Module Using Version-Extended Naming

 The following example shows how to fetch a specific version of a
 module using a version-extended name.

 In this example, the latest version of the file is 1.5. You can
 do a vhistory to determine which version of the file you want to
 fetch.

 To fetch version 1.2 of the file:

 stcl> pop "File1.txt;1.2"

 Beginning Check out operation...

 Checking out: File1.txt : Success - Fetched version: 1.2

 Checkout operation finished.

 Finished populate operation...

Example of Creating a Module Cache

 The following example shows how to populate a module cache using the
 -share option to create a copy of the module in a centralized
 location.

 Note: The module cache directory must be writable by the
 creator/owner of the module cache, but not by the users of the module
 cache.

 stcl> populate -share -

Workspace Setup

158

Example of Populating an Mcache Link

 The following example shows how to populate module Chip
 using the -mcachepaths option to fetch contents from the module
 cache named 'designs' located in the mcacheDir directory.

 stcl> populate -get -recursive -hrefmode static
 -path /home/rsmith/MyModules/designs -mcachemode link -mcachepaths
 /home/mcacheDir/ sync://srv2.ABCo.com:2647/Modules/Chip/

 Beginning populate operation at Mon Jun 23 10:36:43 AM EDT 2008...

 sync://srv2.ABCo.com:2647/Modules/Chip/: : Created mcache
 symlink /home/rsmith/MyModules/designs.

 Creating Module Instance 'Chip%1' with base directory
 '/home/rsmith/MyModules/designs'

 Finished populate operation.

 {Objects succeeded (1)} {}

 Note: Any existing workspace content will not be replaced with
 module cache links. To replace workspace content you must first
 remove from the workspace those configurations to be replaced. Use
 the 'rmfolder -recursive' command on the configuration base
 directory, or specify a non-existent directory for the -path option
 to create a new directory for the module cache links.

Example of Populating a Module View

 This example shows populating a workspace with a module view list;
 specifically the the RTL and DOC Module Views.

 stcl> populate -get -view RTL,DOC -path ./Chip sync://
 srv2.ABCo.com:2647/Modules/Chip

 Beginning populate operation at Fri May 06 02:04:38 PM EDT 2011...

 Populating module instance with

 Base Directory = /users/larry/MyModules/Chip
 Name = Chip
 URL = sync:// srv2.ABCo.com:2647/Modules/Chip
 Selector = Trunk:
 Instance Name = Chip%2
 Metadata Root = / users/larry/MyModules
 View(s) = RTL,DOC

 Recursive Mode = Without href recursion

 Fetching contents from selector 'Trunk:', module version '1.9'
 Total data to transfer: 1 Kbytes (estimate), 5 file(s), 0 collection(s)

ENOVIA Synchronicity Command Reference - Module

159

 Progress - from local cache: 0 Kbytes, 0 file(s), 0 collection(s)
 Progress - from server: 1 Kbytes, 5 file(s), 0 collection(s), 100.0%
complete

 Chip%2/makefile : Success - Checked out version: 1.2
 Chip%2/README : Success - Checked out version: 1.3
 Chip%2/doc/chip.html : Success - Checked out version: 1.2
 Chip%2/doc/chip.doc : Success - Checked out version: 1.2
 Chip%2/verilog/chip.v : Success - Checked out version: 1.5
 Chip%2/verilog/chip_inc.v : Success - Checked out version: 1.3

 Chip%2 : Version of module in workspace updated to 1.9

 Finished populate of Module Chip%2 with base directory
 /users/larry/MyModules/Chip

 Time spent: 0.2 seconds, transferred 1 Kbytes, copied from local
 cache 0 Kbytes, average data rate 4.9 Kb/sec

 Finished populate operation.

 {Objects succeeded (5)} {}

Example of Specifying a Hierarchical Hreffilter

 This example shows an initial populate using a hierarchical href
 filter to exclude the /BIN module from the workspace when it appears
 beneath the /JRE module. In this example, the module hierarchy is set
 up like this:
 NZ214 <- ROM <- JRE <- BIN
 With NZ214 being the top-level Chip design module.

 Note: Whenever you use the -hreffilter option, you must populate
 recursively.

 dss> populate -recursive -retain -full -hreffilter JRE/BIN
 sync://serv1.ABCo.com:2647/Modules/Chip/NZ214

 Beginning populate operation at Wed Dec 11 13:24:31 Eastern Standard
 Time 2013...

 Populating module instance with
 Base Directory = c:\workspaces\V6R2014x\chipDesign
 Name = NZ214
 URL = sync://serv1.ABCo.com:2647/Modules/Chip/NZ214
 Selector = Trunk:
 Instance Name = NZ214%1
 Metadata Root = c:\workspaces\V6R2014x
 Recursive Mode = With href recursion

 Fetching contents from selector 'Trunk:', module version '1.3'

Workspace Setup

160

 Total data to transfer: 0 Kbytes (estimate), 6 file(s), 0 collection(s)
 Progress - from local cache: 0 Kbytes, 0 file(s), 0 collection(s)
 Progress - from local cache: 0 Kbytes, 0 file(s), 0 collection(s)

 Progress - from server: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress - from server: 1 Kbytes, 6 file(s), 0 collection(s), 100.0%
complete

 NZ214%1\chip.ver : Success - Checked out version: 1.1
 ...
 Creating sub module instance 'ROM%1' with base directory
 'c:\workspaces\V6R2014x\chipDesign\ROM'

 Finished populate of Module NZ214%1 with base directory
 c:\workspaces\V6R2014x\chipDesign

 Time spent: 0.3 seconds, transferred 1 Kbytes, copied from local cache 0
Kbytes, average data rate 3.4 Kb/sec

 ===

 Populating sub module instance with
 Base Directory = c:\workspaces\V6R2014x\chipDesign\ROM
 Name = ROM
 ...
 Creating sub module instance 'JRE%0' with base directory
 'c:\workspaces\V6R2014x\chipDesign\ROM\JRE'

 Finished populate of Module ROM%1 with base directory
 c:\workspaces\V6R2014x\chipDesign\ROM

 Time spent: 0.0 seconds, transferred 0 Kbytes, copied from local
 cache 0 Kbytes, average data rate 0.0 Kb/sec

 ===

 Populating sub module instance with
 Base Directory = c:\workspaces\V6R2014x\chipDesign\ROM\JRE
 ...
 JRE%0 : Version of module in workspace updated to 1.2

 BIN : Sub Module Excluded by Hierarchical Filter
 Finished populate of Module JRE%0 with base directory
 c:\workspaces\V6R2014x\chipDesign\ROM\JRE

 Time spent: 0.0 seconds, transferred 0 Kbytes, copied from local
 cache 0 Kbytes, average data rate 0.0 Kb/sec

 Finished populate operation.

 {Objects succeeded (8)} {}

Example of Merge Across Branches

ENOVIA Synchronicity Command Reference - Module

161

 This example shows a simple module merge across branches. After you
 perform the merge, you must check in your changes to apply the merge
 changes to the modules.

 dss> pop -merge -overlay Branch: ROM%1
 Beginning populate operation at Tue Apr 10 01:55:24 PM EDT 2007...

 Populating objects in Module ROM%1
 Base Directory /home/rsmith/MyModules/rom
 Without href recursion

 Fetching contents from selector 'Branch:', module version '1.3.1.3'

 Merging with Version: 1.3.1.3
 Common Ancestor is Version: 1.3

 ==
 Step 1: Identifying items to be merged and conflict situations
 ==

 /romMain.c : member will be fetched from merged version and
 added to workspace version on checkin.
 Use 'ls -merged added' to identify members added by merge.
 /rom.v : conflict - different member in merge version found at same natural
 path in workspace version. Cannot fetch member or merge contents
 with member from merge version; it will be skipped. If member from
 merge version is desired, remove or move member on workspace
 branch and then re-populate with overlay from merge version.
 /rom.v : Natural path different on merge version and workspace version.
 Contents will be merged, if required.
 /rom.doc : No merge required.
 /doc/rom.doc : No merge required.

 ==
 Step 2: Transferring data for any items to be fetched into the
 workspace
 ==

 Total data to transfer: 0 Kbytes (estimate), 1 file(s), 0 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 1 Kbytes, 1 file(s), 0 collection(s), 100.0% complete

 ===
 Step 3: Merging file contents as required into the workspace
 ===

 Beginning Check out operation...

 Checking out: rom.v : Success - Version
 1.1.1.1 has replaced version 1.1.
 Checking out: rom.c : Success - Version

Workspace Setup

162

 1.1.1.1 has replaced version 1.1.

 Checkout operation finished.

 ==
 Step 4: Updating files fetched into the workspace
 ==

 /romMain.c : Success - Version 1.1 fetched

 ROM%1 : Version of module in workspace not updated (Due to overlay
 operation).

 ==
 Step 5: Comparing hrefs for the workspace version and merge version:
 ==
 No hrefs present in workspace version
 No hrefs present in merge version

 Finished populate of Module ROM%1 with base directory
 /home/rsmith/MyModules/rom

 Time spent: 0.2 seconds, transferred 1 Kbytes, average data rate 4.3 Kb/sec

 Finished populate operation.

 {Objects succeeded (3)} {}

 After the populate has completed, run ci to create the new module
 version with the merge changes.

 dss> ci -comment "Incorporating changes on Branch:" ROM%1
 Beginning Check in operation...

 Checking in objects in module ROM%1

 Total data to transfer: 1 Kbytes (estimate), 3 file(s), 0 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 2 Kbytes, 3 file(s), 0 collection(s), 100.0% complete

 Checking in: /rom.c Success - New version: 1.2
 Checking in: /rom.v Success - New version: 1.2
 Checking in: /romMain.c Success - New version: 1.1.1.1

 ROM%1: Version of module in workspace updated to 1.5

 Finished checkin of Module ROM%1, Created Version 1.5

 Time spent: 0.7 seconds, transferred 2 Kbytes, average data rate 2.8 Kb/sec
 Checking in: /doc/rom.doc : Success - No new
 version created. Lock Removed.

 Checkin operation finished.

ENOVIA Synchronicity Command Reference - Module

163

 {Objects succeeded (4)} {}

 After the checkin has created the new module version, you can create
 a merge edge to store a record of the changes.

 dss> mkedge ROM%1
 Edge from 1.3.1.3 to 1.5 for module
 sync://srv2.ABCo.com:2647/Modules/ROM created successfully.

setfilter

setfilter Command

NAME

 setfilter - Sets the persistent filter or hreffilter list

DESCRIPTION

 This command sets the persistent filter or hreffilter for a
 module. This filter is applied each time the module is populated.
 The persistent filters defined here are applied to the appropriate
 commands before any filters or hreffilters specified on the command
 line are applied.

 If a module is initially populated using a -filter or -hreffilter on
 the command line, a persistent filter matching those settings is set
 automatically for that module.

 After a filter has been changed using the setfilter command, the next
 populate of the module is a full populate, since the filter has
 changed. Performing a setfilter replaces any previous filters set,
 including the filters set automatically with a filtered populate,
 with the new filter.

SYNOPSIS

 setfilter [-filter | -hreffilter] [-[no]recursive][--]
 <workspace module> <filter>|<hreffilter>

ARGUMENTS

• Workspace Module
• Filter

Workspace Setup

164

• Hreffilter

Workspace Module

 <workspace module> Specify the module identifier for the module
 receiving the persistent filter. The module must
 have already been populated in the workspace.

Filter

 <filter> Specify one or more extended glob-style
 expressions to identify an exact subset of module
 objects on which to operate. The expressions
 should be separated by commas, for example:
 +top*/.../*.v,-.../a*

 If you specify a null character ("") as the
 filter argument, all filter values are removed
 from the persistent filter list including the
 filters created during a filtered populate. The
 next time the directory is populated, DesignSync
 performs a full populate.

 Prepend a '-' character to a glob-style
 expression to identify objects to be
 excluded.(Default) Prepend a '+' character to a
 glob-style expression to identify objects to be
 included. Note that if the list of expressions
 begins with an include character ('+'), the
 filter excludes all objects except those that
 match the include string.

 Specify the paths in your glob-style expressions
 relative to the current directory, because
 DesignSync matches your expressions relative to
 that directory. For submodules followed through
 hrefs, DesignSync matches your expressions against
 the objects' natural paths, their full relative
 paths. For example, if a module Chip references
 a submodule, CPU, and CPU contains a file,
 '/libs/cpu/cdsinfo.tag', DesignSync matches
 against '/libs/cpu/cdsinfo.tag', rather than
 matching directly within the 'cpu' directory.

 If your design contains symbolic links that are
 under revision control, DesignSync matches
 against the source path of the link rather than
 the dereferenced path. For example, if a
 symbolic link exists from 'tmp.txt' to
 'tmp2.txt', DesignSync matches against 'tmp.txt'.
 Similarly for hierarchical operations, DesignSync
 matches against the unresolved path. If, for
 example, a symbolic link exists from dirA to dirB

ENOVIA Synchronicity Command Reference - Module

165

 and dirB contains 'tmp.txt', DesignSync matches
 against 'dirA/tmp.txt'.

 The extended glob-style expressions you use to
 filter the objects are standard glob-style
 expressions, but they are extended so that you
 can use the "..." syntax to indicate that the
 expression matches any number of directory
 levels. For example, the expression,
 "top/.../lib/*.v" matches *.v files in a
 directory path that begins with "top", followed
 by zero or more levels, with one of those levels
 containing a lib directory. The command traverses
 the directory structure. If a directory name
 matches an exclude clause of the filter, then the
 entire directory and all its contents are
 filtered (the command stops descending at that
 point), otherwise the command continues
 traversing the directory structure searching for
 matching objects.

 The exclude list set using SyncAdmin's
 General=>Exclude Lists tab take precedence
 over those set by -filter; the items in the
 exclude list are combined with the filter
 expression. For example, an exclude list of
 "*%,*.reg" combined with '-filter .../*.doc' is
 equivalent to
 '-filter .../*.doc,.../*%,.../*.reg'.

Hreffilter

 <hreffilter> Excludes href values during recursive populate of
 module hierarchies, excluding particular
 submodules from the populate. Note that
 unlike the -filter option which lets you include
 and exclude items, the -hreffilter option only
 excludes hrefs.

 Specify the -hreffilter string as a glob-style
 expression. The href filter can be specified
 either as a simple href filter or as a
 hierarchical href filter.

 Note: You can set both types of hreffilters,
 simple and hierarchical, for your workspace, but
 they must set in different operations.

 A simple href filter is a simple leaf module name
 or the href name (specified when you added the
 href). You cannot specify a path. DesignSync
 matches the specified href filter against hrefs
 anywhere in the hierarchy. Thus, DesignSync
 excludes all hrefs of this leaf name; you cannot

Workspace Setup

166

 exclude a unique instance of the href. When you
 specify a simple href, you must run the setfilter
 command in -norecursive mode (Default).

 A hierarchical href filter specifies a path and a
 leaf submodule, for example JRE/BIN excludes the
 BIN submodule only if it is directly beneath JRE
 in the hierarchy. When you specify a hierarchical
 href filter, you must run the setfilter command
 in -recursive mode.

 When creating a hierarchical href filter, you do
 not specify the top-level module of the
 hierarchy. If you want to filter using the
 top-level module, you begin the hreffilter with
 /, for example, "/JRE," would filter any JRE href
 referenced by the top-level module.

 Note: You can use wildcards with both types of
 hreffilter, however, if a wildcard is used as the
 lone character in hierarchical href, it only
 matches a single level, for example: "JRE/*/BIN"
 would match a hierarchy like "JRE/SUB/BIN" but
 would not match "JRE/BIN" or "JRE/SUB/SUB2/BIN".

 You can prepend the '-' exclude character to your
 string, but it is not required. Because the
 -hreffilter option only supports excluding hrefs,
 a '+' character is interpreted as part of the glob
 expression.

OPTIONS

• -filter
• -hreffilter
• -recursive
• --

-filter

 -filter Specifies that the persistent filter being set is
 a filter argument, not an href filter. Filter
 arguments can both exclude or include elements.

-hreffilter

 -hreffilter Specifies that the persistent filter being set is
 an hreffilter argument which prevents the
 updating of the specified hrefs during a populate
 operation.

ENOVIA Synchronicity Command Reference - Module

167

-recursive

 -[no]recursive Specifies whether the persistent filter is applied
 recursively through the module hierarchy.

 -norecursive does not apply the persistent
 filter recursively (Default). This is the
 standard operating mode for filters and simple
 href filters.

 -recursive applies the persistent filter
 recursively through the module hierarchy. This
 is the required mode when using hierarchical href
 filters.

 Note: When setting or removing hreffilters, only
 one type of hreffilter, simple or hierarchical,
 may be set at a time because they require
 different -recursive/-norecursive options.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when
 arguments to the command begin with a hyphen
 (-).

RETURN VALUE

 If the set filter command is successful, DesignSync returns an empty
 string (""). If the module does not exist in the workspace or the
 filter cannot be set, the setfilter commands returns an error.

SEE ALSO

 populate, url filter

EXAMPLES

• Example of setting a filter
• Example of setting an href filter
• Example of setting a hierarchical href filter
• Example of clearing an href filter

Workspace Setup

168

• Example of clearing a hierarchical href filter

Example of setting a filter

 This example shows setting a filter on your module, Chip, to filter
 out documentation files. After setting the filter, you may want to
 populate to bring the changes into your workspace.

 dss> setfilter -filter Chip%0 -.../doc/.../*
 Set Filter operation successfully completed.

Example of setting an href filter

 This filters out any submodule named BIN from your Chip module
 hierarchy. After setting the hreffilter, you may want to populate to
 bring the changes into your workspace.

 dss> setfilter -norecursive -hreffilter Chip%0 BIN
 Set Filter operation successfully completed.

Example of setting a hierarchical href filter

 This filters out the JRE/BIN submodule hierarchy within
 the Chip hierarchy. This operation is recursive through the module.
 After setting the hierarchical hreffilter, you may want to populate
 to bring the changes into your workspace.

 dss> setfilter -recursive -hreffilter Chip%0 JRE/BIN
 <Chip%0> Persistent hierarchical href filters set to <JRE/BIN>.
 Set Filter operation successfully completed.

Example of clearing an href filter

 This example removes all (simple) href filters set on the Chip module.

 dss> setfilter -norecursive -hreffilter Chip%0 ""
 <Chip%0> Persistent href filter cleared. It will no longer be used.
 Set Filter operation successfully completed.

Example of clearing a hierarchical href filter

 This example removes all hierarchical href filters set on the Chip
 module.
 dss> setfilter -recursive -hreffilter Chip%0 ""
 <Chip%0> Persistent hierarchical href filter cleared. It will no

ENOVIA Synchronicity Command Reference - Module

169

 longer be used.
 Set Filter operation successfully completed.

setselector

setselector Command

NAME

 setselector - Sets the persistent selector list

DESCRIPTION

• Notes for Using setselector
• Valid Selectors for Module Objects

 This command sets the persistent selector list, as stored in an
 object's local metadata, for the specified objects. Any previous
 selector list is overwritten or cleared.

 Note that two commands other than 'setselector' can also update the
 persistent selector list of an object:

 o The setvault command supports the following syntax:
 setvault [-recursive] <vault>@<selectorList> <workareaFolder>
 which is equivalent to doing a 'setvault' followed by
 a 'setselector'.

 o The populate command sets the persistent selector of the
 workspace when a version is specified using the -version option.

 Note:
 To resolve a selector, DesignSync does not search above the workspace root
of
 a workspace. Thus, if the workspace root is set on a folder
 (/Projects/ASIC/alu) and you apply the 'setselector' command at a
 higher-level folder (for example, /Projects/ASIC), the 'setselector'
 command is ignored at and below the folder where the setvault
 occurred (/Projects/ASIC/alu).

 For single-branch environments, you may not need the setselector
 command. The default persistent selector list is 'Trunk', which is
 the default branch tag for branch 1. If you will not be working
 with additional branches, this default 'Trunk' selector may be
 sufficient.

 The 'P' data key for the 'ls' command and the 'url selector'
 command report an object's persistent selector list.

 To clear, or unset, the persistent selector list, specify an empty

Workspace Setup

170

 string ("") as the selector-list argument. Clearing the persistent
 selector list restores the default behavior of having an object
 inherit its persistent selector list from the parent folder. Any
 persistent selector list in local metadata is removed.

 Note: You cannot unset the selector list from the UNIX command line
 using the DesignSync Concurrent Shell (dssc) client because null
 strings ("") are not passed from the UNIX command line to the
 DesignSync client. In order to clear the persistent selector list
 without invoking a DesignSync client, you must use the Synchroncity
 Tcl Shell (stcl) with the -exp option, for example:
 $ stcl -exp 'setselector "" <argument>'

 The object arguments to the 'setselector' command can be versionable
 objects (files or collections), local folders, or top-level
 modules. The object's persistent selector list is set to the
 specified value. If you are doing a recursive setselector, all
 subfolders and objects in the hierarchy have their persistent
 selector lists cleared (unless a subfolder is configuration-mapped;
 see Configuration Mapping).

 Important: Persistent selector lists set on subfolders or
 individual managed objects in a work area are not obeyed by the
 'populate -recursive' command. Therefore, the 'setselector' command
 issues a warning when you set the persistent selector list on an
 object to a value that differs from its inherited value.

Notes for Using setselector

 When using the ci and import commands, you can override the
 persistent selector on a per-operation basis with the -branch or
 -version options. When using the populate command with the -version
 tag, the persistent selector is automatically updated to match the
 command specified version.

Valid Selectors for Module Objects

 The selector-list argument is a comma-separated list of one or more
 selectors. The list cannot contain whitespace. Valid selectors are:
 o Top-level modules.
 Note: Persistent selectors can only be set on a top-level module.
 o Branch and version numbers:
 - 1.2.4 (A branch has an odd number of period-separated numbers.)
 - 1.2.4.1 (A version has an even number of period-separated
 numbers.)
 o Version tags
 o Branches specified as:
 - <branchtag>:<version>
 - <branchtag>:Latest
 - <branchtag>: (equivalent to <branchtag>:Latest)
 o Date selectors specified as:
 - <branchtag>:Date(<date>)

ENOVIA Synchronicity Command Reference - Module

171

 - VaultDate(<date>)
 o Auto-branch selectors specified as:
 - Auto(<tag>)
 Note: Auto-branches cannot be specified for modules.

 When a single selector is specified or set as the persistent selector
 for a workspace, the selector is resolved and used for the operation.
 When a selector list is specified, the last selector in the list
 becomes the main selector for the workspace, and the objects matching
 the specified selector are added into the workspace, replacing the
 objects specified by the main selector, if needed, blending the
 selectors sequentually up the selector list until the first item in
 the list is processed as the last selector to draw from. This
 blended workspace, containing objects from multiple versions can be
 checked in as a module snapshot, showing a specific combination of
 objects.

 Note: You must specify branches explicitly in selector lists.
 To do so, specify both the branch and version as follows:
 '<branchtag>:<versiontag>', for example, 'Rel2:Latest'.
 You can also use the shortcut, '<branchtag>:', for
 example "Rel2:". If you don't explicitly specify the
 branch selector in this way, DesignSync does not resolve
 the selector as a branch selector. See the "selectors"
 topic for details on selector lists, including descriptions
 of these selector types.

 Note: If the "HrefModeChangeWithTopStaticSelector" registry key is
 enabled and the populate hrefmode is set to static when the setselector
 command is run, the resolved static version is set as the persistant
 selector by the command. For more information about setting the
 "HrefModeChangeWithTopStaticSelector" registry key, see the ENOVIA
 Synchronicity DesignSync Data Manager Administrator's Guide

SYNOPSIS

 setselector [-recursive] [-selected] [--]
 <selector>[,<selector>...] <argument> [argument>...]

SELECTORS

• -selector

-selector

 <selector> Set the persistent selector, or selector list to the
 argument. For a full list of allowed selectors, see
 the command Description section.

Workspace Setup

172

ARGUMENTS

• Workspace Module
• Workspace Folder
• Workspace Objects

Workspace Module

 <workspace module> Sets the selector on the specified workspace
 module.

Workspace Folder

 <workspace folder> Sets the selector on the specified workspace
 folder.

Workspace Objects

 <workspace object> Sets the select on the specified workspace
 object. The object cannot be a member of a
 module.

OPTIONS

• -recursive
• -selected
• --

-recursive

 -recursive Perform this operation on all objects in all
 subfolders in the hierarchy. DesignSync sets the
 selector list on the top-level folder, and clears
 the persistent selector list for each object in
 the hierarchy. Clearing the persistent
 selector list restores the default behavior of
 inheriting the persistent selector list from the
 folder on which the setselector command was
 applied.

 If the setselector command reaches a static href, it
 does not operate recursively on that submodule. It
 also does not operate recursively into external
 modules, legacy modules, or references to file-based
 vault objects.

ENOVIA Synchronicity Command Reference - Module

173

-selected

 -selected Perform this operation on objects in the select
 list (see the 'select' command) as well as the objects
 specified on the command line. If no objects are
 specified on the command line, this option is
 implied.

 Note: 'Select lists' and 'selector lists' are two
 distinct features. 'Select lists', as managed
 by the 'select' and 'unselect' commands and used
 by commands that support the '-selected' option,
 are an optional way to specify on which objects
 DesignSync commands should operate. 'Selector
 lists', as managed by the 'setselector' command
 and the '-version' and '-branch' options to
 various commands, specify on which version or
 branch of a given object DesignSync commands
 should operate.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.

 Notes:
 - Scripts should only test for non-empty lists to
 determine success or failure. The actual content of a non-empty
 list currently takes the form "Objects succeeded (n)" and
 "Objects failed (n)", where 'n' is the number of objects that
 succeeded or failed. However, these return values are subject to
 change in a future release.
 - If all objects fail, an exception occurs (the return value is
 thrown, not returned).

SEE ALSO

Workspace Setup

174

 ci, populate, tag, selectors, setvault, url selector

EXAMPLES

• Example of Using Setselector with Module Snapshots

Example of Using Setselector with Module Snapshots

 The following examples shows setselector in a blended environment that
 has a module snapshot, Gold, and a main selector, Trunk:Latest.

 This example shows setting the selector to the Gold snapshot with a
 main selector Trunk:Latest in the Chip module. It is not recursive
 and does not affect the submodules in the module hierarchy.

 dss> setselector Gold,Trunk: Chip%0

 This example removes the overlay selector and does not modify the main
 selector. It is not recursive and does not affect submodules in the
 module hierarchy.

 dss> setselector Trunk: Chip%0

 This example sets the selector list recursively and modifies the main
 selector for the top level module only. You cannot modify the main
 selector for the submodules using the setselector command. The
 command output will remind you that the main selector was not changed
 within the submodules.

 dss> setselector -rec Gold,Trunk:Latest Chip%0

setroot

setroot Command

NAME

 setroot - Sets the root workspace location

DESCRIPTION

• Notes for Modules Root

 This command designates the workspace directory used as a storage
 area for a set of local metadata information for a collection of

ENOVIA Synchronicity Command Reference - Module

175

 data (module or files-based data). The metadata includes information
 about the DesigSync objects,

 When a DesignSync object is populated into a workspace that has not
 had a root folder set for it, then the parent folder of the base
 directory being populated is automatically set as the root folder.

 Note: You cannot define a root folder underneath (or within) an existing
 root directory.

Notes for Modules Root

 After the root folder is defined and the metadata is created, you can
 refer to a module by the module instance name, rather than specifying
 the full module path name.

SYNOPSIS

 setroot -[[un]set] [--] <workspace folder>

ARGUMENTS

• Workspace Folder

Workspace Folder

 <workspace The name of the workspace folder to designate as the
 folder> root folder. The folder must already exist to be
 designated as the root folder.

OPTIONS

• -[un]set
• --

-[un]set

 -[un]set Indicates whether to set the workspace root or remove
 the workspace root setting from a workspace.

 -unset removes the workspace root setting from a
 workspace and the associated metadata. If there are
 any modules populated, you cannot unset the workspacee
 root.

Workspace Setup

176

 -set sets the workspace root setting on a workspace and
 creates the initial metadata. (Default)

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 This command returns an empty string "" on success. If the command
 fails, it returns a failure message detailing the reason for the
 failure.

SEE ALSO

 url root, mkmod, populate, command defaults

EXAMPLES

• Setting the Workspace Root for a Module
• Unsetting the Workspace Root for a Module

Setting the Workspace Root for a Module

 This example shows setting the workspace root directory for the
 MyModules workspace.

 stcl> setroot MyModules
 Set Root operation successfully completed.

Unsetting the Workspace Root for a Module

 This example shows unsetting the workspace root directory for the
 MyModules workspace.

 dss> setroot -unset MyModules
 There are modules present in this workspace root. They must be
 removed first.

 dss> rmmod MyModules/Chip%1

ENOVIA Synchronicity Command Reference - Module

177

 ...

 dss> setroot -unset MyModules
 Set Root (unset) operation successfully completed.

setvault

setvault Command

NAME

 setvault - Associates a vault with a work area

DESCRIPTION

• Note for Module Workspaces
• Using setvault with Modules

 This command maps a local folder (directory) to a revision-control
 vault folder (repository). If there is no workspace root directory
 already set above the local folder, the root directory will be
 defined one level above the highest folder level containing a defined
 vault connection by default or as defined on the Workspace panel in
 SyncAdmin. For more information Workspace root definition, see the
 DesignSync Data Manager Administrator's Guide.

 Note: You can remove the mapping using the unsetvault command.

Note for Module Workspaces

 You can disable automatically setting the workspace root setting for
 module workspaces. For more information see the DesignSync Data
 Manager Administrator's Guide.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

Using setvault with Modules

 Setvault should only be run if you have relocated a module, for
 example, by moving it to a different disk or server. A module
 relocated to a different physical location retains its unique
 module identifier. When setvault is run on that module, DesignSync
 verifies that the new vault contains a module with the same name and

Workspace Setup

178

 unique identifier as the one in the workspace before performing the
 setvault. If the vault does not contain a module with the same name
 and identifier, the command fails.

 Note: You can only run setvault on a top-level module, not on one
 fetched by a hierarchical reference from a higher-level module.

 Note: If the "HrefModeChangeWithTopStaticSelector" registry key is
 enabled and the populate hrefmode is set to static when the setvault
 command is run, the resolved static version is set as the persistant
 selector by the command. For more information about setting the
 "HrefModeChangeWithTopStaticSelector" registry key, see the ENOVIA
 Synchronicity DesignSync Data Manager Administrator's Guide

SYNOPSIS

 setvault [--] <vaultURL>[@<selector>[,<selector>...]] <localFolder>

ARGUMENTS

• Vault URL
• Local Module

Vault URL

 <vaultURL> Specify the new location on the server for the
 top-level module or DesignSync object or folder.
 module should be specified in the following form:
 <protocol>://<host>:<port>/[Modules|Projects/] <path>

 o Protocol indicates whether to use a standard
 connection or an SSL connection. For a standard
 connection use "sync" as the protocol. For an SSL
 connection, use "syncs" as the protocol.
 o Host is the machine on which the vault's SyncServer
 is running. Specify a full domain name, such as
 myhost.myco.com. You can specify just the machine
 name ('myhost' in this example) if you are on the
 same LAN as the SyncServer host machine.
 o port is the SyncServer port. You can omit the
 port specification if the SyncServer is
 using the default port of 2647.
 o path is the path to the vault you are creating
 or accessing. For a client vault, the path
 is the full, absolute path on your local
 machine. For a server vault, the path is
 relative to the server root as specified
 during the SyncServer installation.

 Note: You must specify a top-level module folder. The

ENOVIA Synchronicity Command Reference - Module

179

 setvault command does not work on referenced modules.

Local Module

 <localModule> Specify the local module or folder to set as the
 <localFolder> workspace path for the server module or DesignSync
 folder.

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 none

SEE ALSO

 populate, unlock, tag, cancel, ci, url vault, setselector,
 selectors, setroot

EXAMPLES

• Example of Associating a Server Vault with the Current Folder
• Example of Associating a Server Vault with a Specified Directory
• Example of Changing the Vault Association Recursively in a Workspace
• Example of Associating a Local Vault with a Specified Directory

Example of Associating a Server Vault with the Current Folder

 This example associates a server vault with the current folder.
 The vault directory 'Projects/Sportster' is relative to
 the server root directory that was specified during server
 installation.
 dss> setvault sync://holzt.myco.com:2647/Projects/Sportster .

Workspace Setup

180

Example of Associating a Server Vault with a Specified Directory

 You can specify the local folder using relative or absolute paths,
 and you can omit the port specification because the SyncServer is
 using the default port of 2647:
 dss> setvault sync://holzt.myco.com/Projects/Sportster ../Sportster
 dss> setvault sync://holzt.myco.com/Projects/Sportster
/home/goss/Sportster

Example of Changing the Vault Association Recursively in a Workspace

 This example changes the vault association for a work area, which
 requires the -recursive option, and sets the work area persistent
 selector list to 'auto(Debug),Main:Latest':
 dss> setvault -rec \
 sync://holzt.myco.com/Projects/Sportster@auto(Debug),Main:Latest .

Example of Associating a Local Vault with a Specified Directory

 This example creates an association between the local folder
 '/home/goss/lunarLander' and the client vault
 'file:///home/goss/myVault/lunarLander'.
 dss> setvault file:///home/goss/myVault/lunarLander /home/goss/lunarLander

 Note: Client vaults cannot be shared across project teams. Only
 specify a client vault when you alone will be accessing the data.

setview

setview Command

NAME

 setview - Associates a view with a work area

DESCRIPTION

 This command sets the persistent module view, as stored in an
 object's local metadata, for the specified workspace. Any previous
 view list is overwritten or cleared. When the persistent view has
 been set or cleared, the next populate is automatically a full
 populate operation and all subsequent populate operations use the

ENOVIA Synchronicity Command Reference - Module

181

 stored view definition.

 Notes:
 o When the view option is used on an initial populate, it
 creates the workspace with the persistent module view in the
 metadata.

 o When operating recursively, if an mcache link is encountered in the
 workspace the module view associated with the mcache instance is
 updated, but the link is not traversed and the metadata within the
 mcache is not changed.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 setview [-[no]recursive [--] <argument> <view>[,<view>...]

ARGUMENTS

• Workspace Module

Workspace Module

 <workspace Workspace module instance name, for example
 module> Chip%1.

VIEWS

• Name of View(s)

Name of View(s)

 <view> Name of the view(s) to associate with the
 [,<view>...] workspace. If you are associating more than one
 view with the workspace, you must separate the view
 names with a comma.

 To remove all view associations from the workspace,
 specify, "none" as the view name.

 Note: The view specified overwrites any existing
 views set on the workspace. If you want to add a
 view to the existing views set on the workspace,

Workspace Setup

182

 you must specify ALL of the views for the
 workspace.

OPTIONS

• -recursive

-recursive

 -[no]recursive Determines whether to perform this operation on the
 instance specified only, or recurse through the
 module hierarchy.

 -norecursive performs the setview only on the
 specified module. (Default)

 -recursive recurses the operation through the
 modules hierarchy.

 Note: When operating recursively, if an mcache link
 is encountered in the workspace the module view
 associated with the mcache instance is updated, but
 the link is not traversed and the metadata within
 the mcache is not changed.

RETURN VALUES

 If the setview command is successful, DesignSync returns an empty
 string ("") and a success message is returned.
 If the module does not exist in the workspace or the module view
 cannot be set, the setview command returns an error and immediately
 terminates. It does not continue to attempt to traverse the module
 hierarchy when run recursively.

SEE ALSO

 populate, showstatus, view get, view list, view put, view remove

EXAMPLES

• Example of Setting a View for a Workspace

Example of Setting a View for a Workspace

ENOVIA Synchronicity Command Reference - Module

183

 dss> setview Chip%0 DOC
 <Chip%2> Persistent view replaced, set to <DOC>.
 Set View operation successfully completed.

185

Primary Revision Control

add

add Command

NAME

 add - Adds new objects to a module

DESCRIPTION

• Understanding the Output

 This command adds new objects to the workspace module. When the
 objects are checked in, (using ci) they are added to the module on
 the server and a new module version is created on the server.

 The -candidates option lists the path(s) to the unmanaged object(s) and
 specifies the list of modules to which the object could be added. The
 candidate modules listed will all have base directories at or above the
 path of the unmanaged object.

 Objects that have been added with the add command can be removed from
 the list of files to be added being checked into the server, or
 removed from the module after being checked in to the server. Module
 members that are removed in either case can be added back to the
 server. The add command remembers that the object was added to
 the server and indicates an "added back" status for these objects.

 Notes:
 o If an object has already been added to the module, you
 may also see the "added back" status if you attempt to add the
 object again.

 o You cannot add an object located in an external module directory to
 a module regardless of whether the object is being added to a
 DesignSync module or an external module.

 o Using syncexclude files, you can automatically exclude objects
 matching a defined pattern, for example, all .log files; from add
 operations. For more information about using exclude files, see the
 DesignSync User's Guide: Working with Exclude Files.

 This command supports the command defaults system.

Understanding the Output

Primary Revision Control

186

 The add command provides the option to specify the level of
 information the command outputs during processing. The -report option
 allows you to specify what type of information is displayed:

 By default, or if you run the command with the '-report brief'
 option, the add command outputs the following information:
 o Failure messages.
 o Warning messages.
 o Informational messages concerning the status of the checkin
 operation.
 o Success/failure/skip status.

 If you run the add command with the '-report normal' option, the
 command displays all the information contained in -report brief, and
 the following additional information:

 o A status message indicating the beginning of the add
 operation.
 o A real-time list of the objects added to the workspace
 module.
 o A status message indicating the end of the add operation.

 If you run the add command with the '-report verbose' option, it
 displays all the information contained in -report normal and the
 following additional information.

 o A status message indicating the directory currently being
 processed.
 o A status message indicating that an object was not added to
 the module ("skipped") for each of the following conditions:
 o Non-versionable objects matching the wildcard pattern.
 o Objects that are already members of the module.
 o Objects that are already members of a different module.
 o Objects that are filtered out of the operation.
 o A status message indicating if no objects matched the
 add criteria. This can happen when no objects in the
 directory structure match a specified wildcard operation.
 o A status message indicating the end of the add operation.

 If you run the add command with the -report error option, it displays
 the following information:
 o Failure messages.
 o Warning messages.
 o Success/failure/skip status.

 Note: If an object is explicitly specified and is already part of a
 module, you will see an error stating that the object was skipped.
 If an object is included in a recursive operation and is already
 part of a module, you will not see the error, it will be silently
 skipped.

SYNOPSIS

ENOVIA Synchronicity Command Reference - Module

187

 add [-[no]candidates] [-filter <string>] [-modulecontext <workspace>]
 [-[no]recursive [-[no]emptydirs]]]
 [-report {error | brief | normal | verbose}] [-no[selected]] [--]
 [<workspace module>] <argument> [<argument...]

ARGUMENTS

• Folder or Unmanaged Object
• Workspace Module
• Symbolic Link

Folder or Unmanaged Object

 <folder> | Adds a folder, objects in the folder, or
 <unmanaged object> specified objects to the specified workspace
 module. You can use wildcards in the argument.
 If the folder isn't a subfolder of the
 specified module, the add command fails.

Workspace Module

 <workspace module> When specified as the first argument, it
 indicates the module receiving new
 objects. You can also specify a workspace
 module with the -modulecontext option.

 If a workspace module is specified, it must be
 as the first argument. The -modulecontext
 option is mutually exclusive with specifying
 the workspace module.

Symbolic Link

 <symbolic link> Adds a symbolic links to a folders if
 management of symlinks is enabled, or follows
 the link to the target folder and adds the
 contents of the folder. If a folder symlink
 points to a folder outside the module base
 directory, the directory is not added to the
 module.

OPTIONS

• -[no]candidates
• -[no]emptydirs
• -filter

Primary Revision Control

188

• -modulecontext
• -[no]recursive
• -report
• -[no]selected
• --

-[no]candidates

 -[no]candidates Determines to which modules the processed
 unmanaged objects can be added.

 -nocandidates runs the add command in active
 mode and does not provide a -candidates
 (dryrun) type operation. (Default)

 -candidates runs the add command in a dryrun
 style mode. When add is run -candidates, the
 output contains the pathnames to the unmanaged
 objects and the list of modules to which each
 object could be added. The modules listed are
 located at or above the directory holding the
 unmanaged objects. No objects are added to
 any workspace module via this option. Any
 other option that filters the command output
 also filters the candidates list.

 Note: any unmanaged objects at or below a
 directory which has been setvault to a
 files-based vault URL do not appear in the
 candidates output.

-[no]emptydirs

 -[no]emptydirs Determines whether an empty folder found
 during an add -recursive operation is
 added to the module.

 -noemptydirs does not add empty subfolders
 to the module.(Default) This means that any
 subfolders that do not contain files or
 subfolders that contain files, are not added
 to the module.

 -emptydirs adds empty subdirectories to
 the module explicitly. This is used when
 creating the framework for a module.

 Note: If a directory is not recursed into, for
 instance, if it is a link outside of the
 module, then the directory itself is not
 added, whether empty or not.

ENOVIA Synchronicity Command Reference - Module

189

-filter

 -filter <string> Specify one or more extended glob-style
 expressions to identify an exact subset of
 objects on which to operate.

 The -filter option takes a list of expressions
 separated by commas, for example:
 -filter +top*/.../*.v,-.../a*

 Prepend a '-' character to a glob-style
 expression to identify objects to be excluded
 (the default). Prepend a '+' character to a
 glob-style expression to identify objects to
 be included. Note that if the list of
 expressions begins with an include character
 ('+'), the filter excludes all objects except
 those that match the include string.

 Specify the paths in your glob-style
 expressions relative to the current directory,
 because DesignSync matches your expressions
 relative to that directory.

 If your design contains symbolic links that are
 under revision control, DesignSync matches
 against the source path of the link rather than
 the dereferenced path. For example, if a
 symbolic link exists from 'tmp.txt' to
 'tmp2.txt', DesignSync matches against
 'tmp.txt'. Similarly for hierarchical
 operations, DesignSync matches against the
 unresolved path. If, for example, a symbolic
 link exists from dirA to dirB, and dirB
 contains 'tmp.txt', DesignSync matches
 against 'dirA/tmp.txt'.

 The extended glob-style expressions you use to
 filter the objects are standard glob-style
 expressions, but they are extended so that you
 can use the "..." syntax to indicate that the
 expression matches any number of directory
 levels. For example, the expression,
 "top/.../lib/*.v" matches *.v files in a
 directory path that begin with "top", followed
 by zero or more levels, with one of those
 levels containing a lib directory. The command
 traverses the directory structure. If a
 directory name matches an exclude clause of
 the filter, then the entire directory and all
 its contents are filtered (the command stops
 descending at that point), otherwise the
 command continues traversing the directory

Primary Revision Control

190

 structure searching for matching objects.

 The -filter option does not override the
 exclude list set using SyncAdmin's
 General=>Exclude Lists tab; the items in the
 exclude list are combined with the filter
 expression. For example, an exclude list of
 "*%,*.reg" combined with '-filter .../*.doc'
 is equivalent to: '-filter
 .../*.doc,.../*%,.../*.reg'.

-modulecontext

 -modulecontext Identifies the module to which the
 <context> objects are being added. Use the -modulecontext
 option to explicitly specify a module when there
 are multiple options for the objects being added,
 for example, when you have overlapping modules.

 If no modulecontext is specified, DesignSync uses
 smart module detection to identify the target
 module.For more information on how smart module
 detection identifies the target module, see the
 ENOVIA Synchronicity DesignSync Data Manager
 User's Guide topic: Understanding Smart Module
 Detection.

 Specify the desired module using the module name
 (for example, Chip), or a module instance name
 (for example, Chip%0), or server module URL
 (sync://server1:2647/Modules/Chip). If you use
 module context to add a server object, you
 must specify the latest version.

 Note that you cannot use a -modulecontext option
 to operate on objects from more than one module;
 the -modulecontext option takes only one
 argument, and you can use the -modulecontext
 option only once on a command line.

-[no]recursive

 -[no]recursive Determines whether to add the specified
 folder or all objects in the folder and any
 subfolders. This option is ignored if the
 argument is not a module folder.

 -norecursive adds only the specified
 folder.(Default) Any objects in the folder are
 not added. This is used to explicitly add a
 folder to a module. If a folder is explicitly
 added to a module, it remains even if the

ENOVIA Synchronicity Command Reference - Module

191

 folder becomes empty at any time.

 -recursive adds the contents of specified
 folder and any subfolders and the objects
 contained in those folders. Because this adds
 the folder implicitly, if the folder becomes
 empty, it is automatically removed from the
 module.

 Note: The recursive operation is always folder
 recursive, not module recursive. This does not
 mean that all new members are checked into the
 same module. Smart module detection is used
 to determine the appropriate target module.

-report

 -report error|brief| Determines what information is returned in
 normal|verbose the output of the add command. The
 information each option returns is discussed
 in detail in the "Understanding the Output"
 section above.

 Valid values are:
 o error - provides error and warning messages
 only.

 o brief - lists all the objects added to the
 workspace module.

 o normal - indicates when the command begins
 and ends processing and lists all the object
 added to the workspace module. (Default)

 o verbose - provides full status for each
 object processed.

-[no]selected

 -[no]selected Determines whether the operation is performed
 just on the objects specified at the command
 line or on objects specified at the command
 line and objects in the select list (see the
 'select' command)
 -noselected adds only objects specified on the
 command line. (Default)
 -selected adds objects specified on the
 command and in the select list.

--

Primary Revision Control

192

 -- Indicates that the command should stop looking
 for command options. Use this option when
 arguments to the command begin with a hyphen
 (-).

RETURN VALUE

 By default, this command returns a count showing how many objects
 succeeded and failed.

 For a full description of the output, see the "Understanding the Output"
 section.

SEE ALSO

 command defaults, remove, ci, mkmod

EXAMPLES

• Adding a File
• Adding Folders Recursively
• Listing the Candidate Modules to Add Objects

Adding a File

 This is an example of adding a file called "makefile" to the Chip
 module.
 stcl> add Chip makefile

 Beginning add operation...

 /Chip/makefile : Adding object

 Finished add operation.

 {Objects succeeded (1)} {}

Adding Folders Recursively

 This example shows adding folders verilog and doc and the contents of
 those directories to the Chip module using the verbose reporting
 option.
 stcl>add -recursive -report verbose Chip doc verilog

 Beginning add operation...

ENOVIA Synchronicity Command Reference - Module

193

 /MyModules/Chip/doc : Process recursive directory
 /Chip/doc/Chip.doc : Adding object
 /MyModules/Chip/verilog : Process recursive directory
 /Chip/verilog/chip.v : Adding object

 Finished add operation.

 {Objects succeeded (2)} {}

Listing the Candidate Modules to Add Objects

 This example shows using the -candidates option to see the list of
 modules to which the unmanaged objects found could be added.

 stcl> add -recursive -candidates .
 PATH CANDIDATES

 MyModules/Chip/doc/Chip.doc Chip%0
 MyModules/Chip/ROM/rom.h Chip%0, ROM%1

cancel

cancel Command

NAME

 cancel - Cancels a previous checkout operation

DESCRIPTION

• Notes on Using cancel with Collections
• Notes on Using Cancel with Modules

 This command effectively performs an "un"checkout operation on the
 specified locked object. This operation unlocks objects previously
 locked in that work area and leaves the objects in the specified
 state.

 If the object was modified locally, it remains in your directory by
 default. If you specify the "-force" option, the object is
 re-fetched from the server and the local modifications are
 discarded.

 You lock a branch by checking out an object by using the '-lock'

Primary Revision Control

194

 option with the 'co', 'populate', or 'ci' commands. Only one user can
 have a lock on an object at a time. Having a lock
 prohibits other users from checking in changes to that branch;
 however, other users (or the same user in different work
 areas) can independently lock, unlock, and check in changes to other
 branches. The cancel command only cancels a checkout you have
 performed. To unlock a file locked by another user, use the unlock
 command.

 DesignSync determines what state to leave files in your work area
 after the cancel operation completes as follows:
 1. DesignSync obeys the state option (-keep, -share,
 -mirror, -reference) specified on the command line.
 2. If no state option is specified, DesignSync uses the default
 fetch state as specified by your project leader. See
 the "fetch preference" help topic for more information.
 3. If a default fetch state is not defined, the default
 behavior for 'cancel' is -keep.

 Note: If the object being operated on has been designed uncachable,
 cancel automatically ignores the -share and -mirror option and
 performs the operation in -get mode. For more information, see the
 caching commands.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Notes on Using cancel with Collections

 If you specify a collection member as the object to be operated on,
 DesignSync skips the object and warns that the object is not
 versionable. If DesignSync attempts to operate on a collection member
 specified implicitly (through the use of wildcards or a recursive
 operation), DesignSync silently skips the object. You can change this
 behavior by using the SyncAdmin "Map operations on collection members
 to owner" setting. If you select this setting and DesignSync attempts
 to operate on a collection member during a revision control
 operation, DesignSync determines the member's owner collection and
 operates on the collection as a whole.

Notes on Using Cancel with Modules

 o Running cancel on a workspace in the module effects a cancel on
 all the objects within that module that are populated to the
 workspace

 o Module branch checkouts can not be canceled. To remove a module
 branch lock without a checkin, you must use the unlock command.

 o If an object was explicitly excluded from a cancel operation by

ENOVIA Synchronicity Command Reference - Module

195

 -filter or -exclude the command output message indicates that the
 object was "excluded by filter."

 o You cannot cancel the lock on a module member that has been removed
 or moved in the workspace.

SYNOPSIS

 cancel [-exclude <object>[,<object>...]] [-filter <string>]
 [-[no]force] [-hreffilter <string>]
 [-keep | -share | -reference] [-modulecontext <context>]
 [-[no]selected] [-[no]retain] [-trigarg <arg>] [--] [<argument>
 [<argument>...]]

ARGUMENTS

• Member Module/Member Folder
• Workspace Module

Member Module/Member Folder

 <module member | Specify a module member or module folder to
 module folder> cancel the lock on.

Workspace Module

 <workspace module> Specify the module to cancel the locks in.
 All locks in the module held by the user
 initiating the cancel are removed.
 Note: This does not remove a lock on a module
 branch.

OPTIONS

• -exclude
• -filter
• -[no]force
• -hreffilter
• -keep
• -modulecontext
• -[no]recursive
• -reference
• -[no]retain
• -[no]selected

Primary Revision Control

196

• -share
• -trigarg
• --

-exclude

 -exclude <fn> Specifies a comma-separated list of files and
 directories to be excluded from the operation.
 Wildcards are allowed.

 Do not specify paths in your arguments to
 -exclude. Before operating on each object
 (such as during a recursive cancel),
 DesignSync compares the object's leaf name
 (path stripped off) to the exclude list to see
 if there is a match. Because the object's path
 is removed, the object will not match any
 object in the exclude list specified with a
 path. For example, if you specify '-exclude
 bin/*.exe', you will not successfully exclude
 bin/foo.exe or any other *.exe file. You need
 to instead specify '-exclude *.exe', or
 '-exclude foo.exe' if you want to exclude only
 'foo.exe'. The result is that you cannot
 exclude a specific instance of an object --
 you exclude all matching objects.

 In addition to objects you specify using the
 -exclude option, the "These objects are always
 excluded" field from the Tools->Options->
 General->Exclude Lists dialog box in
 DesignSync lists objects that are always
 excluded from revision-control operations.

-filter

 -filter <string> Specify one or more extended glob-style
 expressions to identify an exact subset of
 module objects on which to operate. Use the
 -exclude option to filter out DesignSync
 objects that are not module objects.

 The -filter option takes a list of expressions
 separated by commas, for example: -filter
 +top*/.../*.v,-.../a*

 Prepend a '-' character to a glob-style
 expression to identify objects to be excluded
 (the default). Prepend a '+' character to a
 glob-style expression to identify objects to
 be included. Note that if the list of
 expressions begins with an include character

ENOVIA Synchronicity Command Reference - Module

197

 ('+'), the filter excludes all objects except
 those that match the include string.

 Specify the paths in your glob-style
 expressions relative to the current directory,
 because DesignSync matches your expressions
 relative to that directory. For submodules
 followed through hrefs, DesignSync matches
 your expressions against the objects' natural
 paths, their full relative paths. For
 example, if a module Chip references a
 submodule, CPU, and CPU contains a file,
 '/libs/cpu/cdsinfo.tag', DesignSync matches
 against '/libs/cpu/cdsinfo.tag', rather than
 matching directly within the 'cpu' directory.

 If your design contains symbolic links that
 are under revision control, DesignSync matches
 against the source path of the link rather
 than the dereferenced path. For example, if a
 symbolic link exists from 'tmp.txt' to
 'tmp2.txt', DesignSync matches against
 'tmp.txt'. Similarly for hierarchical
 operations, DesignSync matches against the
 unresolved path. If, for example, a symbolic
 link exists from dirA to dirB and dirB
 contains 'tmp.txt', DesignSync matches against
 'dirA/tmp.txt'.

 The extended glob-style expressions you use to
 filter the objects are standard glob-style
 expressions, but they are extended so that you
 can use the "..." syntax to indicate that the
 expression matches any number of directory
 levels. For example, the expression,
 "top/.../lib/*.v" matches *.v files in a
 directory path that begins with "top",
 followed by zero or more levels, with one of
 those levels containing a lib directory. The
 command traverses the directory structure. If
 a directory name matches an exclude clause of
 the filter, then the entire directory and all
 its contents are filtered (the command stops
 descending at that point), otherwise the
 command continues traversing the directory
 structure searching for matching objects.

 The exclude list set using SyncAdmin's
 General=>Exclude Lists tab takes precedence
 over those set by -filter; the items in the
 exclude list are combined with the filter
 expression. For example, an exclude list of
 "*%,*.reg" combined with '-filter .../*.doc'
 is equivalent to '-filter
 .../*.doc,.../*%,.../*.reg'.

Primary Revision Control

198

-[no]force

 -[no]force Specifies whether to overwrite locally
 modified objects with the server version
 after removing the lock on the objects.

 -noforce does not remove the file if a file
 has been locally modified. It does remove
 the lock, leaving the locally modified file
 in the workspace. (Default)
 -force removes the lock and the file even
 when the object was modified locally.

 Note: If a file is locally modified, and you
 do not specify -force in conjunction with
 -share or -mirror, the cancel operation fails.

-hreffilter

 -hreffilter <string> Excludes href values during recursive
 operations on module hierarchies. Because
 hrefs link to submodules, you use -hreffilter
 to exclude particular submodules. Note that
 unlike the -filter option which lets you
 include and exclude items, the -hreffilter
 option only excludes hrefs and, thus, their
 corresponding submodules.

 Specify the -hreffilter string as a glob-style
 expression. The string must represent a
 simple leaf name; you cannot specify a
 path. DesignSync matches the specified href
 filter against hrefs anywhere in the
 hierarchy. Thus, DesignSync excludes all
 hrefs by this leaf name; you cannot exclude a
 unique instance of the href.

 You can prepend the '-' exclude character to
 your string, but it is not required. Because
 the -hreffilter option only supports excluding
 hrefs, a '+' character is interpreted as part
 of the glob expression.

-keep

 -keep Specifies whether to keep a local copy
 of objects after canceling a lock
 operation. You can change whether the local
 file is read-only or read/write by default by
 using the "Check out read only when not

ENOVIA Synchronicity Command Reference - Module

199

 locking" option from the
 Tools->Options->General dialog box in the
 graphical interface.

 This option is the default object-state option
 unless a default object state has been defined
 (see the "fetch preference" help topic for
 more information).

 Note:
 - A locally modified object is left in your
 directory by default unless you choose
 "-force", in which case the object is
 re-fetched from the server and the local
 modifications are discarded.

 - If you fetch an object as a locked reference
 (using co -lock -reference, for example),
 specifying 'cancel -keep' for that object
 cancels the lock and fetches the file. To
 cancel the lock and keep a reference to the
 file, use 'cancel -reference'.

-modulecontext

 -modulecontext Identifies the module on which the cancel
 <context> operates. The -modulecontext option restricts
 the cancel operation to only a particular
 module if your workspace has overlapping
 modules.

 Specify the desired module using the module
 name (for example, Chip), module instance
 name (for example, Chip%0 or
 /home/Modules/Chip%0).

 Note that you cannot use a -modulecontext
 option to operate on objects from more than
 one module; the -modulecontext option takes
 only one argument, and you can use the
 -modulecontext option only once on a command
 line.

-[no]recursive

 -[no]recursive Determines whether to cancel the lock on the
 objects in the specified folder or all objects
 in the folder and all objects in the
 subfolders. This option is ignored if the
 argument is not a module or folder.

 -norecursive removes locks only from objects

Primary Revision Control

200

 in the specified folder or module. It does not
 remove locks from any subfolders or submodules
 of the specified argument. (Default)

 -recursive removes locks from the specified
 folder and all subfolders. If the object is a
 module, it removes all locks from the
 module objects and all objects in the
 subfolders, and submodules.

 Note: The -modulecontext option can be used to
 limit the operation of -recursive to only
 removing locked members of the specified
 module.

 Note: On GUI clients, -recursive is the
 initial default.

-reference

 -reference Keep a reference to the file in the directory
 after the cancel operation. A reference does
 not have a corresponding file on the file
 system but does have DesignSync metadata that
 makes it visible to Synchronicity programs.

 Note: When operating on a collection object,
 you should not use the -reference option. When
 the -reference option is used on a collection,
 DesignSync creates a reference in the metadata
 for the collection object but member files are
 not processed and are not included in the
 metadata.

-[no]retain

 -[no]retain Retain the 'last modified' timestamp of the
 checked-out object as recorded when the
 object was checked into the vault.

 The -retain option is applicable only when the
 cancel operation is dealing with physical
 copies, as is the case when you specify the
 -keep option. The -share and -mirror options
 create links to shared objects, so timestamps
 cannot be set on a per-user basis. The -share
 and -mirror options automatically use -retain
 behavior; objects in the mirror/cache retain
 their original timestamps. However, links in
 your work area to the cache/mirror have
 timestamps of when the links were created. If
 you specify the -reference option, no object

ENOVIA Synchronicity Command Reference - Module

201

 is created in your work area, so there is no
 timestamp information at all.

 If you do not specify '-retain' or -noretain',
 the cancel command follows the DesignSync
 registry setting for Retain last-modification
 timestamps. By default, this setting is not
 enabled; therefore, the timestamp of the local
 object is the time of the cancel operation. To
 change the default setting, your Synchronicity
 administrator can use the SyncAdmin tool. For
 information, see the SyncAdmin help.

-[no]selected

 -[no]selected Determines whether the operation is performed
 just on the objects specified at the command
 line or on objects specified at the command
 line and objects in the select list (see the
 'select' command)

 -noselected cancels the locks only for
 objects specified on the command
 line. (Default)
 -selected cancels the locks for objects
 specified on the command and in the select
 list.

 Note: If no objects are specified on the
 command line, the -selected option is implied.

-share

 -share Keep a copy of the file in the cache
 directory, and create a link from the working
 directory to the file in the cache.

 Note: This option is not supported on Windows
 platforms.

 If you use 'cancel -share' on a collection
 object, for any collection member that is a
 symbolic link, DesignSync creates a symbolic
 link to the member object itself and not to
 the cache. Note: Collections existing entirely
 of symbolic links are not supported.

-trigarg

Primary Revision Control

202

 -trigarg <arg> Specifies an argument to be passed from the
 command line to the triggers set on the cancel
 operation. If the argument contains
 whitespace, enclose the argument within double
 quotation marks ("") if using the dss command
 shell or braces ({}) if using the stcl command
 shell.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when an
 argument to the command begins with a hyphen
 (-).

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.

 Notes:
 - Scripts should only test for non-empty lists to
 determine success or failure. The actual content of a non-empty
 list currently takes the form "Objects succeeded (n)" and
 "Objects failed (n)", where 'n' is the number of objects that
 succeeded or failed. However, these return values are subject to
 change in a future release.
 - If all objects fail, an exception occurs (the return value is
 thrown, not returned).
 - Objects reported as "excluded by filter," may have been excluded
 either with the -filter option (for modules) or with the -exclude
 option (for DesignSync objects.)

SEE ALSO

 caching, command defaults, ci, populate, select, switchlocker, unlock

EXAMPLES

 This example cancels the checkout of all files ending in
 '.v', except those whose filenames begin with 'new', leaving
 links to files in the cache.

ENOVIA Synchronicity Command Reference - Module

203

 dss> cancel -share -exclude new* *.v

ci

ci Command

NAME

 ci - Checks in the specified objects

DESCRIPTION

• Versions and Branches
• Changing Checkin Comments
• Understanding the Output
• Object States
• Determining the Objects to be Checked In
• Determining Which Branch is Selected for the Check In
• Filtering or Excluding Objects From Checkin
• Checking in Module Objects
• Branching Modules
• Automerging of Module Objects
• How Checkin Works with Enterprise Design Synchronization

 This command checks in the specified objects, creating a new version
 in each object's vault.

 Note: The check-in operation requires that your work area folder be
 associated with a DesignSync vault location on the server. Otherwise,
 the operation will fail.

 Usually, you need to set up the vault association only once, as the
 first step in placing design data under revision control or before
 you do an initial populate of the work area. For modules, the vault
 association occurs automatically during populate operations. To
 determine if your work area is associated with a vault, use the
 url vault command. For information on setting up the association,
 see the setvault command. For information on setting up the
 association with a module, see the mkmod and populate commands.

 If you copied managed data into your workspace, ci detects that,
 and fails. To omit this check, see the "Advanced Registry Settings"
 topic in the DesignSync Data Manager Administrator's Guide.

 Note: DesignSync requires the names of objects being checked in
 contain only characters that are part of the standard ASCII character
 set. You should also avoid the following characters, which are
 explicitly disallowed only for module names, to minimize confusion:

Primary Revision Control

204

 ~ ! @ # $ % ^ & * () , ; : | ` ' " = [] / \ < >
 Using SyncAdmin, you can explicitly disallow any or all of these
 reserved characters in object and path names. For more information,
 see the DesignSync Administrator's Guide.

 This command supports Enterprise Design Synchronization. For more
 information on Enterprise Design Synchronization, see How Checkin
 Works with Enterprise Design Synchronization below.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Versions and Branches

 A version is a permanent, immutable snapshot of your design
 object. Each version is assigned a unique, consecutive version
 number that you can use to retrieve or otherwise identify the
 object in the future.

 Version numbers take the form of 1.1, 1.2, 1.3, and so on, where
 the number following the period identifies the version, and the '1'
 preceding the period identifies the branch (branch 1, also known as
 Trunk). A branch is a line of development. Projects that require
 multiple lines of development (parallel development) can define
 multiple branches. Version numbers on branches other than Trunk
 still take the form <branch>.<version>, where <branch> is an odd
 number of period-separated numbers. For example, version 1.2.4.3
 is the third version on branch 1.2.4, where 1.2.4 is the fourth
 branch off version 1.2, where 1.2 is the second version on branch 1.

 Because branch and version numbers are not memorable, you can apply
 symbolic names, called tags, to versions and branches. Tags also
 let you associate related versions of different design objects,
 called configurations. See the "tag" help topic for details.

Changing Checkin Comments

 The checkin comments for files checked into a vault can be modified
 using the url setprop command. The <new checkin comment> is optional
 on the command line and the user is prompted for it if not specified.
 Here is the syntax:
 url setprop <versionURL> log [<new checkin comment>]

 If the user changing the comment is not the author of the version,
 a note with the user name and date and stating that the comment was
 changed is prepended to the new comment.
 For example:
 stcl> url setprop [url vault new_d]1.5 log "New comment set from \
 other user"

ENOVIA Synchronicity Command Reference - Module

205

 New comment set from other user
 stcl> url getprop [url vault new_d]1.5 log
 Comment changed by JerryL Jun 02 2005, 08:19:13 EDT
 New comment set from other user
 stcl>

 If a comment is not specified at the command line, and DesignSync is
 set to use a file editor for comments, the designated file editor is
 launched, otherwise a comment can be entered interactively on the
 command line. For more information on defining a file editor for
 comments, see the DesignSync Administrator's Guide, "General
 Options."

 Note: The client-side minimum comment length is checked.

Understanding the Output

 The ci command provides the option to specify the level of
 information the command outputs during processing. The -report option
 allows you to specify what type of information is displayed:

 If you run the command with the -report brief option, the ci command
 outputs the following information:
 o Failure messages.
 o Warning messages.
 o Informational messages concerning the status of the checkin
 operation.
 o Success/failure/skip status.

 If you do not specify a value, or the command with the -normal
 option, the ci command outputs all the information presented with
 -report brief and the additional information for each successful
 object checkin, excluded objects, or omitted objects.

 If you run the command with the -report verbose option, the ci command
 outputs all the information presented with -report normal and
 information about each object examined or filtered.

 If you run the command with the -report error option, the ci command
 outputs the following information:
 o Failure messages.
 o Warning messages.
 o Success/failure/skip status messages.

Object States

 DesignSync determines what state to leave objects checked into
 your work area as follows:
 1. DesignSync obeys the state option (-keep, -lock, -share,
 -reference) specified on the command line.
 2. If no state option is specified, DesignSync uses the default
 fetch state as specified by your project leader. See

Primary Revision Control

206

 the "fetch preference" help topic for more information.
 3. If no default fetch state is defined, the default
 behavior for ci is -keep.

 Important:

 o The ci command processes only locked or modified objects.
 DesignSync changes the state of only those objects that have been
 checked in. To set all of the objects in your work area to the same
 state, use 'populate -unifystate'. To check in unmanaged (new)
 objects, use 'ci -new'.

 o PreFolder check-in triggers fire on folders that contain locked or
 modified objects being checked in. For some check-in operations
 like recursive checkins with -force or -new options, preFolder
 triggers might also fire on folders that do not contain modified or
 locked objects being checked in.

 o The fetch state of moved module members does not change during
 checkin unless content of the object, indicated by a modification
 to the timestamp, has changed.

 o If the object is designated as uncachable, attempts to place
 objects in the cache (ci -mirror; ci -share) will automatically
 populates the workspace with unlocked copies (-keep mode). For more
 information on cachability, see the "caching" commands.

 By default (unless you use the -force option), DesignSync does not
 create a new version when you attempt to check in an object that
 is not locally modified. An object is defined as "locally modified"
 if its timestamp has been changed or it is a module member that has
 been moved with the mvmember command with the -noimmediate option.

 For collections that have local versions, the check-in
 operation usually does not change the set of local versions in your
 workspace. However, there is an exception to this behavior. The
 check-in operation changes the set of local versions in your
 workspace when the originally fetched state of the object was Cache
 or Mirror. In this case, the check-in operation replaces files
 linked to the cache or mirror with physical copies.

Determining the Objects to be Checked In

 By default, DesignSync only checks in modified objects. An object is
 considered modified when it meets the following criteria:

 * The current timestamp of the object in the workspace is later than
 the fetched timestamp of the object.
 * The current size or checksum of the object is different than the
 fetched object size or checksum.
 * The module member is in the added/moved/removed state.

 Note: If a hierarchical reference to a submodule version has been
 overridden by a higher-level href, the hierarchical reference within

ENOVIA Synchronicity Command Reference - Module

207

 the parent module is NOT considered modified.

Determining Which Branch is Selected for the Check In

 Arguments to the ci command must represent versionable objects
 (modules, module members, or collections), or local folders
 (only meaningful when you use the -recursive option). The ci
 command operates on the current or specified branch of each of these
 objects. When you are in a multibranch design environment,
 DesignSync determines what branch you want to check into as follows:

 1. DesignSync obeys the -branch option, operating on the Latest
 version on the specified branch. Using this option is not
 typical, however, because the default behavior (without
 -branch) is usually the correct and intuitive behavior.

 2. If -branch is not specified and you have the current branch
 locked in your work area, DesignSync checks into the current
 branch.

 3. Otherwise, DesignSync uses the first selector of the object's
 persistent selector list ('Trunk' by default, or as defined
 by the setselector command). If the selector does not
 resolve to 'Trunk' or some other valid branch for the object
 (specified as <branch>:<version>, for example Rel2:Latest),
 the operation fails.

 Complex selector lists are a powerful capability for populate
 and check-out operations, but they can be dangerous for
 check-in operations. When creating a new version, there should
 be no uncertainty as to which branch to create the version
 on. Therefore, ci considers only the first selector in the
 persistent selector list.

 See the "selectors" help topic for details on selectors,
 selector lists, and persistent selector lists.

 For more details about checking in modules and module objects,
 see "Checking In Module Objects" below.

Filtering or Excluding Objects From Checkin

 DesignSync features three ways to control the objects being checked
 in. For objects in source control, exclude and filter lists are used
 to exclude/include DesignSync objects. Filter lists are used to
 include or exclude module objects or to include DesignSync
 objects. Exclude lists are used to exclude DesignSync objects.
 Both Filter and Exclusion lists can be saved with command defaults or
 specified using the -fiter or -exclude option.

 Note: Regardless of whether -filter or -exclude is used to exclude
 an object, the command output message indicates that the object was

Primary Revision Control

208

 "excluded by filter." For more information on filters, see the
 -filter and -exclude options in the options section.

 For objects that are not in source control, exclude files can be
 created on a per directory basis to prevent unmanaged objects from
 being checked in. Objects that are excluded by exclude files cannot
 be reincluded by a filter. Exclude files are processed before the
 filter and exclude options set either by the command defaults or
 specified on the command line. For more information on setting up
 exclude files, see the ENOVIA Synchronicity DesignSync Data Manager
 Administrator's Guide.

 If you specify a collection member as the object to be operated on,
 DesignSync skips the object and warns that the object is not
 versionable. If DesignSync attempts to operate on a collection member
 specified implicitly (through the use of wildcards or a recursive
 operation), DesignSync silently skips the object. You can change this
 behavior by using the SyncAdmin "Map operations on collection members
 to owner" setting. If you select this setting and DesignSync attempts
 to operate on a collection member during a revision control
 operation, DesignSync determines the member's owner collection and
 operates on the collection as a whole.

Checking in Module Objects

 The ci command recognizes and checks in modules, and their members. A
 module is data that represents a level of a design hierarchy. Such
 data includes objects or an entire vault folder hierarchy of objects
 managed in DesignSync, as well as hierarchical references to other
 modules. These modules can be stored on other SyncServers. For more
 information about modules, see DesignSync Data Manager User's Guide:
 "What is a Module?".

 The ci operation checks in modified objects. This can include not
 only objects with modified content, but also added, moved, renamed,
 or removed module members. The add command always operates in no
 immediate mode, meaning that any objects in an Added state are added
 when the next checkin operation affecting the Added module members
 occurs. The mvmember and remove commands operate by default in a
 "noimmediate" mode. If you added an object to a module using add, the
 object is considered to be managed already; in this case, use ci
 without the -new option to check in the object.

 When working with module data, the module object is
 version-controlled; module members are not independently
 version-controlled. For more information about module
 versions, see the populate command description subtopic,
 "Module Version Updating". See also "Automerging of Module
 Objects" below. You can branch a module during check-in, for more
 information, see the "Module Branching" section.

 Notes:
 o If a non-explicitly added folder becomes empty as the result of
 the checkin of removed module members, the folder is removed as

ENOVIA Synchronicity Command Reference - Module

209

 well. If an explicitly added folder is moved, but the full contents
 of folder are not, the explicitly added folder remains in the same
 position with the unmoved contents and a new implicitly added
 folder is created to contain the moved contents.

 o Moved module members with no content changes are moved, but the
 module member version is not incremented and the keywords within
 the file are not updated.

 o If there are no content changes to the module members, the objects
 retain the same state in the workspace. For example, if the objects
 are fetched in -get mode, a file is renamed but not otherwise
 modified, and then the checkin is done in -share mode, the renamed
 file remains in -get mode.

 A module checkin is an atomic operation; if a failure occurs
 during a module check-in, the ci command does not check in any of the
 specified module objects. After you resolve the failure, you can
 re-apply the ci command. By default, DesignSync optimizes the
 check-in by continuing where the failed check-in left off. Specify
 the -noresume option to start the check-in from scratch.

 Note: If there are structural changes to the module, such as removed
 or moved module members, the checkin always defaults to
 -noresume. The -resume operation is not applicable to module checkin
 operations with the -branch option.

 You can use ci to check in entire modules or their members as
 follows:

 o To check in a single module without checking in its submodules,
 specify the workspace module and apply the ci command without
 the -recursive option.

 The command checks in the module members without following
 hierarchical references (hrefs).

 o To check in all objects in an entire module hierarchy, specify the
 workspace module and use the ci command with the -recursive option.

 The command traverses the hierarchy in a module-centric fashion,
 checking in all of the objects in the module and following its hrefs
 to check in its referenced submodules.

 Notes:
 The ci command does not traverse legacy modules,
 even if you specify the -recursive option for the module. You
 must check in the legacy sub-module separately.

 If you specify ci with -new and -modulecontext is selected or
 smart module detection is able to identify the target module,
 unmanaged files are checked into the appropriate target
 module. When ci -new -recursive is specified, the
 operation does not traverse hierarchical references. The ci -new
 -recursive operation does traverse the hierarchy in a
 folder-centric method and smart module detection appropriately
 identifies new members are belonging to the appropriate module or

Primary Revision Control

210

 sub-module. For more information on how smart module detection
 determines the target module, see the ENOVIA Synchronicity
 DesignSync Data Manager User's Guide topic: Understanding Smart
 Module Detection.

 o To check in all modified objects in a folder and its subfolders,
 specify a folder name and apply the ci command with the -recursive
 option.

 The command traverses the folders in a folder-centric fashion,
 checking in the modified objects in the folder and its subfolders,
 but without following hrefs. To follow hrefs, you must specify a
 workspace module instead of a folder.

 Note: Smart module detection for new module members always works in a
 folder-centric, not a module-centric fashion.

 o To check in new files to a module, you should add the files with
 add, and then check in the files normally. The ci command with
 the -new option only checks in new files, when smart module
 detection can detect the target module or when the -modulecontext
 option specifies the module for the objects (ci -new -modulecontext
 <context>)

 o To check in files to a new branch, specify the module context and
 the branch options. The -new and -recursive options cannot be used
 to check into a new branch. For more information on module
 branching, see the Branching Modules section.

 Notes:

 o Mirrors are not supported with module objects; ci ignores the
 -mirror option if you use it while checking in a module object.

 o If a module contains an empty folder, DesignSync checks in the
 empty folder.

 o If the -modulecontext option is not specified when checking in a
 module member with the -new option, DesignSync uses smart module
 detection to identify the desired module. If DesignSync cannot
 identify the module, the command returns an error stating that the
 module can not be identified and recommending the use of the
 -modulecontext option.

Branching Modules

 You can check in a module to a new module branch with the
 checkin operation. The operation creates a new module version on the
 branch containing all managed objects in the workspace and on the
 server belonging to the specified module. This includes any of the
 following objects:

 * Added objects that have not been checked in yet.
 * Modified objects belonging to the specified module.

ENOVIA Synchronicity Command Reference - Module

211

 * Unmodified objects belonging to the specified module.
 * Objects that are part of the module on the server, but have not
 been populated into the workspace.
 * Objects in the workspace that were removed on the server in a
 later module version.

 Note: The module member version in the workspace is always considered
 the desired version for the ci -branch operation. If you have older
 member versions in the workspace, those will become the Latest
 version on the new branch.

 When you check a module into the new branch, DesignSync automatically
 modifies the workspace selector to the Latest version of the new
 branch tag (<Branch>:Latest).

 Note: DesignSync creates an initial, empty, module version, then
 creates a second version containing the module member files.

 The option to check into a branch requires that you check into a new
 branch.

 You must specify a single module for checkin. You cannot recurse
 through hierarchical references to branch submodules.

 If you have unmanaged files in the workspace that you want to include
 in the module checkin, add the files to the module first, then
 perform the checkin. You cannot specify the -new option with a
 module checkin to a new branch.

Automerging of Module Objects

 As you make changes to module objects, other team members might make
 changes to other module objects, thus creating new versions of the
 module. If you then check in your module objects, object versions
 in your workspace no longer match the target branch. If you had
 been working with non-module objects, you could either merge your
 changes first, or specify the -skip option to force a check-in.
 However, for module objects, DesignSync lets you check in the
 objects without specifying the -skip option. In this case,
 DesignSync performs an 'auto-merge' of the module objects. An
 auto-merge merges the module changes from your workspace into
 the latest version of the module in the vault, to create a new
 module version. This auto-merge occurs at the file level;
 DesignSync does not attempt to merge the contents of your module
 objects.

 During an auto-merge, DesignSync does not automatically refresh your
 workspace to bring in your team members' updated module objects.
 Consequently, an showstatus of the workspace module shows that the
 fetched version of the module is not the latest version. Perform a
 populate operation on the module to ensure that you have the latest
 versions of all of the module's objects.

 Note that if you attempt to check in a module object and a teammate

Primary Revision Control

212

 has created a newer version of that object, DesignSync does not
 attempt an auto-merge of that object. In this case, you must
 explicitly merge these objects using 'populate -merge'. See
 DesignSync Data Manager User's Guide to learn more about merging
 modules.

How Checkin Works with Enterprise Design Synchronization

 Operations submitted with checkin that can affect the global
 enterprise design such as tagging and hierarchical references changes,
 are stored in a queue until they are pushed to the Enterprise server.

 Not all checkin operations are sent to the queue, only the ones that
 include global changes, such as a checkin following a non-immediate
 remove of hierarchical references, or a checkin with tag operation
 (ci -tag).

 For more information on Enterprise Design management, see the
 Enterprise Design Administration User's Guide.

SYNOPSIS

 ci [-autohrefversions | -[no]hrefversions]
 [-branch <branch> | -branch auto(<branch>)]
 [-[no]comment"<text>" | -cfile <file>] [-datatype ascii | binary]
 [-[no]dryrun] [-exclude <object>[,<object>...]] [-filter <string>]
 [-[no]force] [-hreffilter <string>] [-[no]iflock]
 [-keep [-keys <mode>] | -lock [-keys <mode>] | -share | -reference]
 [-modulecontext <context>] [-[no]new]
 [-[no]recursive] [-report {error | brief | normal | verbose}]
 [-[no]resume] [-[no]retain] [-[no]retry] [-[no]selected]
 [-[no]skip] [-tag <tagname>] [-trigarg <arg>] [--] [<argument>
 [<argument>...]]

ARGUMENTS

• Module Folder
• Module Member
• Workspace Module

 Specify one or more of the following arguments:

Module Folder

 <module folder> The ci command does not check in module folders,
 but checks in their contents if you specify the

ENOVIA Synchronicity Command Reference - Module

213

 -recursive option. If the folder contains objects
 that have not yet been checked in, but have been
 added to the module using the add command, you do
 not need to apply the -new option. If you have
 new items to add to the workspace, you can use
 the -new option and smart module detection will
 determine the target module for the candidate
 member, or you can explicitly specify the module
 with the -modulecontext option.

Module Member

 <module member> Checks in the module member. If the member has
 not yet been checked in, but it has been added
 to the module using the add command, you do not
 need to apply the -new option. If you have
 new items to add to the workspace, you can use
 the -new option and smart module detection will
 determine the target module for the candidate
 member, or you can explicitly specify the module
 with the -modulecontext option.

Workspace Module

 <workspace module> Checks in the workspace module, creating a new
 version of the module. The check-in process checks
 in each updated member, but also registers other
 changes made to the module since the last
 check-in, such as versions of referenced
 submodules.

 Note: If you are trying to do a hierarchically
 recursive checkin (-recursive), you can't checkin
 new items that have not already been added. For
 more information, see the -new and -recursive
 options.

OPTIONS

• -autohrefversions
• -branch
• -[no]comment
• -cfile
• -datatype
• -[no]dryrun
• -exclude
• -filter
• -[no]force

Primary Revision Control

214

• -hreffilter
• -[no]hrefversions
• -[no]iflock
• -keep
• -keys
• -lock
• -modulecontext
• -[no]new
• -[no]recursive
• -reference
• -report
• -[no]resume
• -[no]retain
• -[no]retry
• -[no]selected
• -share
• -[no]skip
• -tag
• -trigarg
• --

-autohrefversions

 -autohrefversions Processes the static hrefs based on the type of
 checkin performed. If the checkin is performed
 on a module and -recursive is selected,
 DesignSync captures the currently populated
 versions of the module's hierarchically
 referenced sub-modules, and records those as
 part of the next module version, updating the
 static hierarchical references. If the checkin
 is performed on a file or folder within a module
 or a module is specified, but the -recursive
 option is not, the selected module members are
 checked in, but the hierarchical references are
 not updated. (Default)

 This option is mutually exclusive with
 -hrefversions.

-branch

 -branch <branch> Performs the checkin on the branch specified by
 | -branch the branch or version tag, auto-branch selector,
 auto(<branch>) or branch numeric. This option overrides the
 object's persistent selector list. If a version is
 retrieved in the workspace, this is used as the
 branch-point version for any new branch created.

ENOVIA Synchronicity Command Reference - Module

215

 For a checkin using an auto-branch selector, for
 example Auto(Golden), if there already exists a
 version 'Golden', the checkin fails. However, if
 'Golden' exists as a branch, the effective
 selector is 'Golden:Latest'; the checkin succeeds
 and no new branch is needed. If there is neither
 a version nor a branch named 'Golden' for the
 object, a new branch is created and it is named
 'Golden'. If a version is retrieved in the
 workspace, this is used as the branch-point
 version for the new branch created. For example,
 if version 'Golden' is retrieved in the
 workspace, it is used as the branch-point
 version. If version 'Golden' is retrieved but it
 has no metadata information as a consequence of
 being removed from the vault earlier, DesignSync
 uses the latest version on branch '1' as the
 branch-point version. Finally, if there is no
 vault (in this case, the -new option must be
 specified), DesignSync creates a new vault
 (branch 1). Branch 1 is named 'Golden'.

 When branching a module, you must create a new
 branch. You cannot specify an existing
 branch. The -branch tag when specified with a
 module is mutually exclusive with -recursive and
 -new. For more information on module branching,
 see the "Branching Modules" section in the ci
 command description.

 Notes:
 - The -branch option accepts a branch tag, a
 version tag, a single auto-branch selector tag,
 or a branch numeric. It does not accept a
 selector or selector list.
 - The ci command ignores this option if you
 specify a folder as the argument and the
 folder contains a module object; in this
 case, the checkin occurs on the fetched
 branch. If you specify a module as the
 argument and use the -branch option, the
 checkin fails.
 - The persistent selector list of the object
 you are checking in is not updated by the
 check-in operation. Subsequent operations
 that use the persistent selector list will
 not follow the branch you just checked
 into. If you want to continue working on this
 branch, you must set the persistent selector
 list with the setselector command.

-[no]comment

Primary Revision Control

216

 -[no]comment Specifies whether to check in the specified
 "<text>" object with or without a description of changes.
 If you specify -comment, enclose the description
 in double quotes if it contains spaces. The
 check-in comment is appended to the check-out
 comment if one was specified. The comments
 associated with a version are also called the
 "log". The ampersand (&) and equal (=) characters
 are replaced by the underscore (_) character in
 revision control notes.

 If you do not specify -comment, -nocomment, or
 -cfile DesignSync prompts you to enter a
 check-in comment either on the command or by
 spawning the defined file editor. The -cfile
 option is mutually exclusive with -[no]comment.
 For more information on defining a file editor,
 see the DesignSync Data Manager Administrator's
 Guide, "General Options."

 Note: If the -tag option is specified along with
 the -comment option, the comment text is used as
 both the tag comment and the checkin comment.

-cfile

 -cfile Specifies a file containing a text comment to use
 <file> as the description of the new release. DesignSync
 accepts a comment of any length up to 1MB. Long
 comments may be truncated in the output of
 commands that show comments. If the comment
 includes ampersand (&) or equal (=) characters,
 they are replaced by the underscore (_) character
 in revision control notes.

 This option respects the minimum comment length.

 The -cfile option is mutually exclusive with
 -[no]comment. If you do not specify one of the
 three options, -comment, -cfile, or -nocomment,
 DesignSync prompts you to enter a check-in
 comment either on the command line or by spawning
 the defined file editor. For more information on
 defining a file editor, see the DesignSync Data
 Manager Administrator's Guide, "General Options."

-datatype

 -datatype ascii| Indicates whether to disable the autodetect
 binary feature of DesignSync and create the object
 being checked in with the specified data
 type. The datatype can be changed during any

ENOVIA Synchronicity Command Reference - Module

217

 module version checkin.

 -datatype ascii creates the new object with a
 data type of ascii.

 -datatype binary creates the new object with a
 data type of binary. Binary objects cannot
 be merged, they can only be replaced. ZIP
 vaults are always checked in using binary mode,
 regardless of whether the vault's data type is
 designated as ascii.

-[no]dryrun

 -[no]dryrun Specifies whether to treat the operation as a
 trial run; if -dryrun is specified, no objects
 are actually checked in. By default (-nodryrun),
 ci performs a standard checkin.

 The -dryrun option helps detect problems that
 might prevent the checkin from succeeding.
 Because local object and vault states are not
 changed, a successful dry run does not guarantee
 a successful checkin. Errors that can be detected
 without state changes, such as a vault or branch
 not existing, merge conflicts, or a branch being
 locked by another user are reported. Errors such
 as permissions or access rights violations are
 not reported by a dry run. Note that a dry run
 checkin is significantly faster than a normal
 checkin.

-exclude

 -exclude <objects> Specifies a comma-separated list of objects
 (collections, folders, or module objects)
 to be excluded from the operation. Wildcards are
 allowed.

 Note: Use the -filter option to filter module
 objects. You can use the -exclude option, but
 the -filter option lets you include and exclude
 module objects. If you use both the -filter and
 -exclude options, the strings specified using
 -exclude take precedence.

 Do not specify paths in your arguments to
 -exclude. Before operating on each object (such
 as during a recursive checkin), DesignSync
 compares the object's leaf name (with the path
 stripped off) to the exclude list to see if there
 is a match. Because the object's path is removed,

Primary Revision Control

218

 the object will not match any object in the
 exclude list specified with a path. For example,
 if you specify '-exclude bin/*.exe', you will not
 successfully exclude bin/foo.exe or any other
 *.exe file. You need to instead specify '-exclude
 *.exe', or '-exclude foo.exe' if you want to
 exclude only 'foo.exe'. The result is that you
 cannot exclude a specific instance of an object
 -- you exclude all matching objects.

 In addition to objects you specify using the
 -exclude option, the "These objects are always
 excluded" field from the Tools->Options->
 General->Exclude Lists dialog box in
 DesignSync lists objects that are always
 excluded from revision-control operations.

-filter

 -filter <string> Specify one or more extended glob-style
 expressions to identify an exact subset of module
 objects on which to operate. Use the -exclude
 option to filter out DesignSync objects that are
 not module objects.

 The -filter option takes a list of expressions
 separated by commas, for example:
 -filter +top*/.../*.v,-.../a*

 Prepend a '-' character to a glob-style
 expression to identify objects to be excluded
 (the default). Prepend a '+' character to a
 glob-style expression to identify objects to be
 included. Note that if the list of expressions
 begins with an include character ('+'), the
 filter excludes all objects except those that
 match the include string.

 Specify the paths in your glob-style expressions
 relative to the current directory, because
 DesignSync matches your expressions relative to
 that directory. For submodules followed through
 hrefs, DesignSync matches your expressions against
 the objects' natural paths, their full relative
 paths. For example, if a module Chip references
 a submodule, CPU, and CPU contains a file,
 '/libs/cpu/cdsinfo.tag', DesignSync matches
 against '/libs/cpu/cdsinfo.tag', rather than
 matching directly within the 'cpu' directory.

 If your design contains symbolic links that are
 under revision control, DesignSync matches
 against the source path of the link rather than
 the dereferenced path. For example, if a

ENOVIA Synchronicity Command Reference - Module

219

 symbolic link exists from 'tmp.txt' to
 'tmp2.txt', DesignSync matches against 'tmp.txt'.
 Similarly for hierarchical operations, DesignSync
 matches against the unresolved path. If, for
 example, a symbolic link exists from dirA to dirB
 and dirB contains 'tmp.txt', DesignSync matches
 against 'dirA/tmp.txt'.

 The extended glob-style expressions you use to
 filter the objects are standard glob-style
 expressions, but they are extended so that you
 can use the "..." syntax to indicate that the
 expression matches any number of directory
 levels. For example, the expression,
 "top/.../lib/*.v" matches *.v files in a
 directory path that begins with "top", followed
 by zero or more levels, with one of those levels
 containing a lib directory. The command traverses
 the directory structure. If a directory name
 matches an exclude clause of the filter, then the
 entire directory and all its contents are
 filtered (the command stops descending at that
 point), otherwise the command continues
 traversing the directory structure searching for
 matching objects.

 The exclude list set using SyncAdmin's
 General=>Exclude Lists tab take precedence
 over those set by -filter; the items in the
 exclude list are combined with the filter
 expression. For example, an exclude list of
 "*%,*.reg" combined with '-filter .../*.doc' is
 equivalent to
 '-filter .../*.doc,.../*%,.../*.reg'.

-[no]force

 -[no]force Specifies whether to force the creation of a
 new version even if it is identical to the
 previous version. By default (-noforce), the
 timestamp of the file in the workspace is
 compared with the timestamp of the version
 in the vault. If the timestamp of the file to be
 checked in has not changed, then no new version
 is created. You might use -force to synchronize
 version numbers across several objects.

 Note that you must have a local copy of the
 object in your work area for a new version to
 be created. A new version is not created if
 the object does not exist or is a reference.

 Note: Use the -force option only if necessary.
 Using the -force option slows the check-in process

Primary Revision Control

220

 because ci must process all objects and not
 just the locked or modified objects.

-hreffilter

 -hreffilter Excludes href values during recursive operations
 <string> on module hierarchies. Because hrefs link to
 submodules, you use -hreffilter to exclude
 particular submodules. Note that unlike the
 -filter option which lets you include and exclude
 items, the -hreffilter option only excludes hrefs
 and, thus, their corresponding submodules.

 Specify the -hreffilter string as a glob-style
 expression. The string must represent a simple
 leaf name; you cannot specify a path. DesignSync
 matches the specified href filter against hrefs
 anywhere in the hierarchy. Thus, DesignSync
 excludes all hrefs by this leaf name; you cannot
 exclude a unique instance of the href.

 You can prepend the '-' exclude character to your
 string, but it is not required. Because the
 -hreffilter option only supports excluding hrefs,
 a '+' character is interpreted as part of the glob
 expression.

-[no]hrefversions

 -[no]hrefversions Controls whether the static version of a
 hierarchical reference is updated.

 -hrefversions updates the static version of a
 hierarchical reference so that the version
 reflects the fetched version of the corresponding
 submodule in the workspace.

 -nohrefversions saves only the module members and
 does not update the hierarchical references in
 any way. This is particularly useful if you have
 not made any submodule changes locally.

 The ci command ignores the -[no]hrefversion
 option if you are checking in non-module
 objects.

 Note: If you check in a module using the
 -hrefversions option and you have checked in an
 updated submodule from the same workspace, the
 static version updates to reflect the updated
 submodule, rather than the fetched version.

ENOVIA Synchronicity Command Reference - Module

221

 If either of these options are specified, they
 override the default, -autohrefversions.

 This option is mutually exclusive with
 -autohrefversions.

-[no]iflock

 -[no]iflock Specifies whether to check in all modified
 objects in the checkin selection or only the ones
 that meet any one the following criteria:
 * module member is added.
 * module member is removed.
 * module member is moved.

 -The noiflock option (Default) searches the
 entire selection of ci for modified files to
 checkin. This can mean different things for
 different operations, for example, it can mean
 all the files recursively in a directory, all the
 module members in a module or module hierarchy,
 or all the files that match a specified
 selector. This can be a labor-intensive option,
 but it can also pick up any changes that might
 have been forgotten.

 The -iflock option only checks in files that
 meet certain conditions, for example, module
 structural changes required to preserve the
 integrity of the module, and locked objects.
 This provides a quicker checkin operation as
 well as security to prevent accidental
 modifications to unintended files.

-keep

 -keep Leave a local copy of the object in the work
 area after checking it in. This option is the
 default object-state option unless a default
 object state has been defined (see the "fetch
 preference" help topic for more information).

 You cannot use this option when you have enabled
 Link-In of large files.

 Note: 'ci -keep' is equivalent to following the
 check-in operation with 'co -get'.

 You can change whether the local object is
 read-only or read/write by default by using
 the "Check out read only when not locking"
 option from the Tools->Options->General dialog

Primary Revision Control

222

 box in the DesignSync graphical interface, or
 your project leader can set this option
 site-wide using SyncAdmin.

-keys

 -keys <mode> Controls processing of RCS-style
 revision-control keywords in objects that
 remain in your work area after checkin. Note
 that keyword expansion is not the same as
 keyword update. For example, the $Date$ keyword
 is updated only during checkin; its value is
 not updated during checkout or populate.

 Available modes are:

 kkv - (keep keywords and values) The local
 object contains both revision control keywords
 and their expanded values; for example,
 $Revision: 1.4 $.

 kk - (keep keywords) The local object contains
 revision control keywords, but no values; for
 example, $Revision$. This option is useful if
 you want to ignore differences in keyword
 expansion, such as when comparing two different
 versions of an object.

 kv - (keep values) The local object contains
 expanded keyword values, but not the keywords
 themselves; for example, 1.4. This option is
 not recommended if you plan to check in your
 local objects. If you edit and then check in
 the objects, future keyword substitution is
 impossible, because the value without the
 keyword is interpreted as regular text.

 ko - (keep output) The local object contains
 the same keywords and values as were present at
 check in.

 Note:
 - The -keys option works only with the -keep
 and -lock options. If you use the -share or
 -mirror option, keywords are automatically
 expanded in cached or mirrored objects, as if
 the '-keys kkv' option was used.

 - The EnableKeywordExpansion setting controls
 the expansion of keys during a check-in
 operation. This setting overrides the -keys
 option; if disabled, there is no expansion of
 keys, regardless of the use of the -keys
 option. By default, this setting is enabled;

ENOVIA Synchronicity Command Reference - Module

223

 the check-in operation expands keywords. To
 change the default setting, your
 Synchronicity administrator can use the
 SyncAdmin tool. For information, see
 SyncAdmin help.

 - The check-in operation detects binary files
 and collections and does not expand keywords
 when operating on these objects, even if the
 Enable Keyword Expansion setting is on.

-lock

 -lock Keep a locked local copy of the object in the
 work area after checking it in. Use this
 option if you want to create a new version of
 the object while continuing to make changes.
 Unless you use this option, the branch
 is unlocked after the check-in operation.

 Note: To enforce the -lock option, you have to
 modify the access control file for DesignSync
 revision control operations. See Access Control
 guide for more information. For examples, see the
 "Using access filter to Check an Action" section
 in the "Sample Access Controls" topic.

-modulecontext

 -modulecontext Identifies the module instance from which the
 <context> checkin should occur. If no module context is
 provided for new files, smart module detection
 will attempt to identify the target module. If
 smart module detection cannot identify the
 target, use the --modulecontext to identify the
 target module.

 Note: The combination of the -modulecontext
 option and the -new option is mutually exclusive
 with the -recursive option. If you want to
 perform a recursive checkin with new objects in
 the module workspace, you must add the new
 objects with add and perform the ci command
 without the -new option. When this combination is
 specified, the -recursive option is silently
 ignored.

 You can also use the -modulecontext option when
 you are specifying a folder as the argument to be
 checked in. In this case, the check-in operation
 filters the folder, checking in only those
 objects that belong to the module specified with

Primary Revision Control

224

 the -modulecontext option. Use -modulecontext in
 a recursive check-in to check in members of the
 specified module throughout a hierarchy.

 Specify an existing workspace module using the
 module name (for example, Chip) or a module
 instance name (for example, Chip%0).

 Note that you cannot use a -modulecontext option
 to operate on objects from more than one module;
 the -modulecontext option takes only one
 argument, and you can use the -modulecontext
 option only once on a command line.

-[no]new

 -[no]new Performs the initial checkin of unmanaged objects;
 objects that are not under revision control.
 By default (without -new), the check-in operation
 processes only managed objects or objects that
 have previously been added to a module with the
 add command. It is not an error to specify
 this option with managed objects or previously
 added module members.

 The -new option is required to check in new
 objects you have not yet added to a module using
 the add command. The -new option is not needed
 if you have already added the objects using
 add. When you use the -new option to add new
 objects to a module, smart module detection
 identifies the target module, or, you can use the
 -modulecontext option to explicitly specify into
 which module the objects are to be added.

 Tip: Use the -new option only if you are checking
 in previously unmanaged objects. Using the -new
 option slows the check-in process because ci must
 process all objects and not just the locked or
 modified objects.

 Checking in a new object creates a new version
 (1.1) on a new branch (branch 1). The new version
 is created on the branch specified using the
 -branch option. If the -branch option is not
 specified, the version is created on the branch
 defined by the first selector in the persistent
 selector list. If the selector is not a valid
 branch selector (specified using the
 <branch>:<version> syntax), the default branch
 tag 'Trunk' is applied -- DesignSync expects
 every branch to have a tag. For example, if you
 apply 'setselector VaultDate(yesterday)' to a
 folder and then check in a previously unmanaged

ENOVIA Synchronicity Command Reference - Module

225

 object from that folder, the object's new branch
 is tagged 'Trunk' because 'VaultDate(yesterday)'
 is not a valid branch tag name. See the
 "selectors" help topic for more details about how
 DesignSync resolves selectors.

 Note: For a module object checkin, you cannot
 specify the -new option with the -recursive or
 the -branch options. This eliminates any issues
 with determining what module, module branch, or
 sub-module the new objects belong to.

-[no]recursive

 -[no]recursive Specifies whether to perform this operation in
 just the specified folder or module object
 (default) or in their subfolders/submodules.

 If you invoke 'ci -recursive' and specify a
 folder that is not part of a module on the
 command line, ci operates on that folder in a
 folder-centric fashion, checking in the modified
 objects in the folder and its subfolders. To
 filter the set of objects on which to operate,
 use the -filter or -exclude options.

 If you invoke 'ci -recursive' and specify a
 module on the command line, ci operates on that
 module in a module-centric fashion, checking in
 all of the modified objects in the module and
 submodules. To filter the objects on which to
 operate, use the -filter or -hreffilter options.
 If you invoke 'ci -recursive' on a subfolder of a
 module and provide a module context
 (-modulecontext), ci recurses within the
 specified folder, checking in any object which is
 a member of the named module or one of its
 referenced submodules.

 Note: You cannot specify the -recursive option
 with the -branch option when creating a new
 module branch.

 Note: When checking in new objects to a module
 using the -new option, the module hierarchy is
 never traversed. The command checks in any
 unmanaged objects in a folder-centric fashion,
 but does not traverse any module hierarchical
 references, even if -recursive is specified. To
 determine if your work area contains new objects,
 use 'ls -recursive -unmanaged'. To perform the
 checkin recursively, use add to add the objects
 to the appropriate module, then run the ci
 command. If the referenced sub-modules are

Primary Revision Control

226

 populated into the workspace, smart module
 detection does traverse into the folder and can
 correctly identify new members belonging to a
 submodule.

 If you specify -norecursive when operating on
 a folder object, DesignSync does not operate on
 objects within that folder.

 Note: The -nomodulerecursive option is no longer
 supported. For modules, this option is
 equivalent to the -norecursive option. If you
 specify the -nomodulerecursive option when
 operating on modules, ci applies the
 -norecursive option instead.

-reference

 -reference Keep a reference to the object in the work area
 after the check-in operation. A reference does
 not have a corresponding file on the file
 system but does have DesignSync metadata that
 makes it visible to Synchronicity
 programs. References are useful when you want
 to have the complete context of the objects in
 a project, but do not need the objects locally.

 Note: Synchronicity recommends against using
 the -reference option when operating on a
 collection object. If you use the -reference
 option, DesignSync creates a reference in the
 metadata for the collection object but member
 files are not processed and are not included in
 the metadata.

-report

 -report error| Controls the amount and type of information
 brief|normal| displayed by ci command. The information each
 verbose option returns is discussed in detail in the
 "Understanding the Output" section above.

 error - lists failures, warnings, and success
 failure count.

 brief - lists failures, warnings, module
 create/remove messages, some informational
 messages, and success/failure count.

 normal - includes all information from brief and
 lists all the updated objects, and messages about
 objects excluded by filters from the

ENOVIA Synchronicity Command Reference - Module

227

 operation. (Default)

 verbose - provides full status for each
 object processed, even if the object is not
 updated by the operation.

-[no]resume

 -[no]resume Specifies whether to perform a recovery check-in.
 Specify the -resume option (the default) if a
 previous recursive check-in of a module has
 failed. This option causes the check-in to
 continue from the point where the failure
 occurred. Specify the -noresume option to
 start the check-in from scratch.

 Note: If a module checkin fails, and the check in
 operation contains structural changes, such as
 moved or removed module members, the subsequent
 checkin always starts from scratch. The -resume
 option is silently ignored.

-[no]retain

 -[no]retain Indicates whether to retain the 'last modified'
 timestamp of the objects that remain in your work
 area. If you are using the -share option or a
 mirror is set on the workspace, then this also
 applies to the object put into the file cache or
 mirror. The links for the cache or mirror in
 your work area use the link creation time as the
 "last modified" time.

 If you specify the -reference option, no object
 is created in your work area, so there is no
 timestamp information at all.

 If you do not specify '-retain' or -noretain',
 the ci command follows the DesignSync registry
 setting for Retain last-modification
 timestamps. By default, this setting is not
 enabled; therefore, the timestamp of the local
 object is the time of the check-in
 operation. To change the default setting, your
 Synchronicity administrator can use the
 SyncAdmin tool. For information, see SyncAdmin
 Help.

 The mirror system by default fetches objects
 into the mirror with the -retain option. The
 mirror administrator can configure mirrors to use
 the -noretain option. The default setting should

Primary Revision Control

228

 agree with the Retain last-modification timestamp
 registry setting to maintain consistency.
 See the "Mirror Administration Server Registry
 Settings" topic for setting of the co or populate
 options for mirrors.

-[no]retry

 -[no]retry Specifies whether, if the module checkin fails,
 DesignSync attempts a retry of the checkin.

 -retry attempts to retry the checkin if the
 retryOnModuleCiFailureHook is enabled and the
 module meets the conditions defined within the
 hook for retry; or the checkin failure was due to
 a communication connect failure and the
 ModuleFailureRetryAttempts registry setting is
 set to a non-zero value, indicating one or
 more retries. The checkin will be retried as long
 as a communication connect failure is still the
 cause of failure and the number of checkin
 retries for this module has not surpassed the
 ModuleFailureRetryAttempts value. (Default)

 For more information on the
 retryOnModuleCiFailureHook or the
 ModuleFailureRetryAttempts registry keys, see the
 Administrator's Guide.

 -noretry does not attempt to retry to checkin. If
 the module checkin fails, the operation fails
 for that module. If it is part of a
 hierarchical module checkin, the checkin
 continues attempting to checkin the next module.

-[no]selected

 -[no]selected Specifies whether to perform this operation on
 objects in the select list (see the "select"
 command), as well as the objects specified on the
 command line. If no objects are specified on the
 command line, -selected is implied. By default
 (-noselected), ci operates only on the objects
 specified on the command line.

-share

 -share Put a copy of the object in the file cache
 directory, and create a link in the work area to

ENOVIA Synchronicity Command Reference - Module

229

 that cached object.

 Note: This option is not supported on Windows
 platforms.

 If you use 'ci -share' on a collection object,
 DesignSync checks in the symbolic link, unless it
 is a link to a cache.

-[no]skip

 -[no]skip Specifies whether to check in the version even
 if it is not derived from the Latest version
 (the branch contains higher-numbered versions).
 By default (-noskip), versions are not skipped.

 This situation can occur when you check out the
 Latest version without a lock and other users
 check in new versions prior to your checkin, or
 when you have intentionally checked out an older
 version of the object. You can use the -skip
 option with module members, to skip previous
 checkins of module members. The -skip option does
 not skip module versions. Any structural module
 changes made in the versions between the version
 populated in the workspace and the version
 created appear in the new version.

 You also typically need -skip when using
 -branch to check into a branch other than the
 current branch. See -branch for details.

 You must specify -force if the version you
 are checking in is not locally modified.

 You must have local copies of the file versions
 that you want to check in. You cannot have links
 to a cache.

 If the server contains structural changes, for
 example removed or moved files, that are not
 reflected in the workspace, you will be unable to
 perform a checkin, even with the -skip
 option.

 Cautions:

 o Changes in skipped versions are not reflected
 in the new Latest version and are effectively
 lost. Use the -skip option when you are
 intentionally promoting an older version of an
 object to be the Latest (similar to a rollback
 operation) If you are using modules, there is a
 modules rollback command that allows you to

Primary Revision Control

230

 create a new module version from an older
 version, skipping all structural and module
 member changes..

 o Use caution when you use -skip with module
 objects because the -skip option does not
 override intervening changes to the structure
 of a module. This means you may be unaware
 of structural module changes that have occurred
 that do not conflict with your actions, for
 example new, modified, or removed objects.

-tag

 -tag <tagname> Tags the object version or module version on the
 server with the specified tagname.

 For module objects, all objects are evaluated
 before the checkin begins. If the objects cannot
 be tagged, for example if the user does not have
 access to add a tag or because the tag exists and
 is immutable, the entire checkin fails.

 For more information on access controls, see the
 ENOVIA Synchronicity Access Control Guide. For
 more information on version tags, see the tag
 command.

 Note: The -tag option will not work on modules
 stored on DesignSync server versions prior to
 V6R2008-1.0.

-trigarg

 -trigarg <arg> Specifies an argument to be passed from the
 command line to the triggers set on the
 check-in operation. If the argument contains
 whitespace, enclose the argument within
 double quotation marks ("") if using the dss
 command shell or braces ({}) if using the stcl
 command shell.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when an
 argument to the command begins with a hyphen (-).

ENOVIA Synchronicity Command Reference - Module

231

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.

 Notes:
 - "successfully processed" may not mean "successfully checked
 in". For example, attempting to check in an object that is not
 locally modified is considered a success even though no new
 version is created.
 - Scripts should only test for non-empty lists to
 determine success or failure. The actual content of a non-empty
 list currently takes the form "Objects succeeded (n)" and
 "Objects failed (n)", where 'n' is the number of objects that
 succeeded or failed. However, these return values are subject to
 change in a future release.
 - If all objects fail, an exception occurs (the return value is
 thrown, not returned).
 - Objects reported as "excluded by filter," may have been excluded
 either with the -filter option (for modules) or with the -exclude
 option.
 - If a comment editor is defined, but cannot be used, the command
 automatically switches to the interactive command-line comment
 mode.

SEE ALSO

 caching, cancel, command defaults, populate, select, selectors,
 setselector, swap, tag, unlock

EXAMPLES

• Example of Creating a Module and Performing an Initial File Checkin
• Example of Checking in Module Structure Changes
• Example of Checking in on a New Branch
• Example of Attempting to Modify A Member in a Static Workspace

Example of Creating a Module and Performing an Initial File Checkin

The following example creates a module, Chip, version 1.1, adds
 module members, chip/makefile, chip/verilog/chip.v, and
 DOC/Chip.doc, and finally checks the members in, thus generating
 a new module version, 1.2:
 stcl> mkmod -comment "The main chip" \
 sync://mysrvr:2647/Modules/Chip \

Primary Revision Control

232

 -path /home/karen/MyModules
 stcl> add -recursive Chip chip DOC
 stcl> ci -keep -nocomment Chip

Example of Checking in Module Structure Changes

 The following example shows a checkin on a workspace that has
 renamed, removed, and added

 stcl> ci -nocomment Chip%1

 Beginning Check in operation...

 Checking in objects in module Chip%1

 Total data to transfer: 0 Kbytes (estimate), 10 file(s), 0 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 3 Kbytes, 10 file(s), 0 collection(s), 100.0% complete
 Progress: 3 Kbytes, 10 file(s), 0 collection(s), 100.0% complete

 Checking in: /chip.bat Success - Renamed from
/chip.exe
 Checking in: /doc/chip.doc Success - New version: 1.1
 Checking in: /doc/commands.html Success - Removed

 Chip%1: Version of module in workspace updated to 1.8

 Finished checkin of Module Chip%1, Created Version 1.8

 Time spent: 1.2 seconds, transferred 3 Kbytes, average data rate 2.5 Kb/sec

 Checkin operation finished.

 {Objects succeeded (3)} {}

Example of Checking in on a New Branch

 The following example creates a new branch from a module. In this
 example, one file was modified for the new version and another was
 added.

 Note: The workspace selector changes to the new branch when you run
 the checkin.

 stcl> ci -nodefaults -keep -retain -hrefversions -exclude *.log
 -branch Beta -keys kkv -nocomment -report normal Chip%1

 Beginning Check in operation...

 Chip%1: Creating branch Beta

ENOVIA Synchronicity Command Reference - Module

233

 Checking in objects in module Chip%1

 Total data to transfer: 10 Kbytes (estimate), 2 file(s), 0
 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 4 Kbytes, 1 file(s), 0 collection(s), 45.7% complete
 Progress: 11 Kbytes, 2 file(s), 0 collection(s), 100.0% complete

 Checking in: Chip%1\chip.docx Success - New version:
 1.1.1.1
 Checking in: Chip%1\chipsub.c Success - New version:
 1.1

 Chip%1: Version of module in workspace updated to 1.11.1.2
 Chip%1: Selector of module in workspace updated to Beta:

 Finished checkin of Module Chip%1, Created Version 1.11.1.2

 Time spent: 0.4 seconds, transferred 11 Kbytes, average data rate
 26.1 Kb/sec
 Checking in: \chip.c : Success - No new
 version created. Lock Removed.
 Checking in: \chip.h : Success - No new
 version created. Lock Removed.

 Checkin operation finished.

 {Objects succeeded (4)} {}

Example of Attempting to Modify A Member in a Static Workspace

 DesignSync does not allow modifications in workspaces that have been
 populated in static mode. The following example shows what happens
 when you modify and attempt to check in a workspace that has been
 populated with a static module selector.

 dss> populate -rec -version Gold Chip-R419%0
 Beginning populate operation at Fri Oct 28 12:41:08 Eastern Daylight
 Time 2016...

 Setting Selector [Gold] on workspace module c:\workspaces\ChipDev419
 \chip\Chip-R419%0
 WARNING: Chip-R419%0: Changing the selector to a static value (Gold).
 You will not be able to check in module or member modifications.

 Selector on module c:\workspaces\ChipDev419\chip\Chip-R419%0 was
 modified.
 ...
 Finished populate operation.
 ##### WARNINGS and FAILURES LISTING #####
 #
 # WARNING: Chip-R419%0: Changing the selector to a static value
 # (Gold).

Primary Revision Control

234

 # You will not be able to check in module or member modifications.
 ###
 {Objects succeeded (6)} {Objects failed (2)}

 dss> ci -comment "Checking in changes" Chip-R419%0

 Beginning Check in operation...
 Chip-R419%0: Cannot checkin module with static selector.

 Checkin operation finished.
 {} {}

 Note: If you have data that you need to check in, you should either
 change the selector for the workspace to dynamic selector, or move
 the modified data to a workspace that has the module populated with a
 dynamic selector.

mkmod

mkmod Command

NAME

 mkmod - Creates a module on a server

DESCRIPTION

• Understanding the Output

 This command creates a module on a server. A module is a
 collection of managed objects that together make up a single
 entity. For example, DeveloperSuite is a module composed of several
 sub-modules, such as ProjectSync and DesignSync, which contain all
 the code, examples, and documentation necessary to develop the
 applications.

 The data included in a module includes its own objects and
 references to other modules, but not the contents of the referenced
 modules. The mkmod operation creates the vault directory. The
 appropriate vault subdirectories are created when you first check
 data into the vault.

 When you create the module, the mkmod operation creates all the
 necessary server level directories required for the module.

 Note: Modules are always created in the Modules area.
 (sync[s]://<host>:<port>/Modules)

 You cannot use the mkmod command on an existing vault folder. You can

ENOVIA Synchronicity Command Reference - Module

235

 upgrade legacy modules or existing vaults to modules with the "hcm'
 upgrade" command.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details. Specifically,
 the topics "Access Controls for hcm mkmod" and "Creating a New Version
 of a Module". The latter topic is for the checkin aspect of the mkmod
 command.

 This command supports the command defaults system. Although there is
 a -checkin option to the mkmod command, none of the command defaults
 for the "ci" command apply to the "mkmod -checkin" operation.

Understanding the Output

 The mkmod command provides the option to specify the level of
 information the command outputs during processing. The -report option
 allows you to specify what type of information is displayed:

 If you run the command with the -report brief option, the mkmod
 command outputs the following information:
 o Failure messages.
 o Warning messages.
 o Informational messages concerning the status of the mkmod
 operation.
 o Success/failure/skip status.

 If you do not specify a -report value, or run the command with the
 default -report normal option, the mkmod command outputs all the
 information presented with -report brief and the following additional
 information:
 o Success message for each object successfully checked in.
 o Messages for objects excluded from the operation (due to exclusion
 filters).

 If you run the command with the -report verbose option, the mkmod
 command outputs all the information presented with -report normal and the
 following additional information:
 o Informational messages for the module creation.

 If you run the command with the -report error option, the mkmod
 command outputs only the following information, which is related to the
 checkin activity:
 o Failure messages.
 o Warning messages.
 o Success/failure/skip status messages.

SYNOPSIS

 mkmod [-checkin [-[no]retry]] [-[no]comment "<text>"] [-filter <string>]
 [-path <workspace_path>] [-report {error|brief|normal|verbose}]
 <argument>

Primary Revision Control

236

ARGUMENTS

• Server URL

Server URL

 <Server URL> Specifies the Synchronicity URL for the new
 module. The server URL takes the following
 form:
 <protocol>://<host>[:<port>]/Modules/[<category>]\
 /<module name>

 o protocol specifies whether to use a standard
 connection or an SSL connection. For a
 standard connection use "sync" as the
 protocol. For an SSL connection, use
 "syncs" as the protocol.
 o host specifies the hostname of the
 SyncServer for the new module.
 o port specifies the port number of the
 SyncServer. If no port number is specified,
 DesignSync uses the default port, which is
 2647 for a standard connection or 2679 for
 an SSL connection.
 o Modules is the virtual location on the
 server for all modules. All modules must
 be in the modules area.
 o Category provides a means of organizing
 modules. Specify a virtual path category to
 group related modules.
 For example, if you work with two different
 types of projects, Chip design and CPU
 design, you can create two categories /Chip
 and /CPU to store the different modules for
 each type of project. These paths do not map
 to actual paths on the server.
 o Module name specifies the name of the
 module.

 Module and category names must conform to the
 following standards:
 - Must contain only printable characters
 - May not contain spaces
 - May not contain any of the following
 characters:
 ~ ! @ # $ % ^ & * () , ; : | ` ' " = []
 / \ < >

 Tip: Module names should start with an
 initial capital letter in order to allow
 you to easily distinguish them from
 workspaces.

ENOVIA Synchronicity Command Reference - Module

237

OPTIONS

• -checkin
• -[no]comment
• -filter
• -path
• -report
• -[no]retry

-checkin

 -checkin The -checkin option is a performance optimization
 that is used only in conjunction with the -path
 option, to checkin unmanaged data from the -path
 workspace to the module. The option improves the
 performance for the initial check in of large
 datasets. Smaller datasets, in the hundreds or
 thousands of files range, may not benefit from
 this enhancement.

 Note: By default, the checkin option
 automatically retries the operation on failure
 using the settings in the registry keys to
 determine the number of retries and timeout
 interval. Using the -retry option may have an
 impact on the performance of the operation. This
 operation will also trigger scripts using the
 retryOnModuleCiFailure hook. For more
 information on setting the registry keys or
 using the retryOnModuleCiFailure hook, see the
 ENOVIA Synchronicity DesignSync
 Administratrator's Guide.

 Unmanaged files are recursively checked in,
 respecting the exclusions defined by the exclude
 files, creating version 1.2 of the module. Empty
 directories are not checked in. Already managed
 files are ignored. The data in the folder
 specified (by -path) as the base directory is
 operated on recursively. Use the -filter option
 to filter objects from the checkin. The exclude
 lists in SyncAdmin are used, as described in the
 -filter option description.

 Local data that was checked in is left in the
 workspace as unlocked copies. This is regardless
 of whether a different default fetch state has
 been set. The SyncAdmin option for whether to
 "Check out read only when not locking" is obeyed.

 Keyword expansion does not take place for this

Primary Revision Control

238

 initial checkin, as a performance optimization.
 That is regardless of whether the SyncAdmin
 option to "Enable keyword expansion" is set.
 Keywords are expanded by subsequent commands,
 if enabled by the command line -keys option or
 SyncAdmin setting.

 Because keywords are not expanded, the file on
 disk is left as is. Therefore, the file's date/
 timestamp is retained. This is regardless of
 whether the SyncAdmin option to "Retain last-
 modification timestamps" has been set.

 DesignSync client triggers for "ci" are fired
 off if defined, at the command level and the
 object level.

 If any files fail to checkin, they will be left
 as is, unmanaged. The files that successfully
 checkin become part of version 1.2 of the module.
 After addressing whatever caused the checkin
 failure, you can use "ci -new" to checkin the
 previously failed objects. This creates another
 module version. Thus there is no atomicity,
 whereas "ci" of module data is atomic.

-[no]comment

 -[no]comment "<text>" Specifies whether a text description of the newly
 created module is stored with the module. The
 description is used as the comment for branch 1
 and is shown in ProjectSync's Data Sheet for
 the module. The built-in comment used for
 version 1.1 of the module is "First Version".
 When the -checkin option is used, the specified
 comment is also for version 1.2 of the module,
 which contains the checked in member files.

 -nocomment creates the module without an
 initial description.(Default)

 -comment <text> stores the value of <text> as
 the module comment. To specify a multi-word
 comment, use quotation marks ("") around the
 comment text.

 If the -checkin option is specified, and you
 do not specify either -comment or -nocomment,
 DesignSync prompts you to enter a check-in
 comment.

-filter

ENOVIA Synchronicity Command Reference - Module

239

 -filter <string> Specify one or more extended glob-style
 expressions to identify an exact subset of objects
 for the -checkin option to process.

 The -filter option takes a list of expressions
 separated by commas, for example:
 -filter +top*/.../*.v,-.../a*

 Prepend a '-' character to a glob-style expression
 to identify objects to be excluded (the default).
 Prepend a '+' character to a glob-style expression
 to identify objects to be included. Note that if
 the list of expressions begins with an include
 character ('+'), the filter excludes all objects
 except those that match the include string.

 Specify the paths in your glob-style expressions
 relative to the current directory, because
 DesignSync matches your expressions relative to
 that directory.

 If your design contains symbolic links, DesignSync
 matches against the source path of the link rather
 than the dereferenced path. For example, if a
 symbolic link exists from 'tmp.txt' to
 'tmp2.txt', DesignSync matches against 'tmp.txt'.
 Similarly for hierarchical operations, DesignSync
 matches against the unresolved path. If, for
 example, a symbolic link exists from dirA to dirB
 and dirB contains 'tmp.txt', DesignSync matches
 against 'dirA/tmp.txt'.

 The extended glob-style expressions you use to
 filter the objects are standard glob-style
 expressions, but they are extended so that you
 can use the "..." syntax to indicate that the
 expression matches any number of directory
 levels. For example, the expression,
 "top/.../lib/*.v" matches *.v files in a
 directory path that begins with "top", followed
 by zero or more levels, with one of those levels
 containing a lib directory. The command traverses
 the directory structure. If a directory name
 matches an exclude clause of the filter, then the
 entire directory and all its contents are
 filtered (the command stops descending at that
 point), otherwise the command continues
 traversing the directory structure searching for
 matching objects.

 The exclude list set using SyncAdmin's
 General=>Exclude Lists tab take precedence
 over those set by -filter; the items in the
 exclude list are combined with the filter
 expression. For example, an exclude list of
 "*%,*.reg" combined with '-filter .../*.doc' is

Primary Revision Control

240

 equivalent to
 '-filter .../*.doc,.../*%,.../*.reg'.

-path

 -path <path> Specifies a workspace path to use as the
 module's base directory. Specifying a
 workspace path allows you to immediately begin
 adding objects to the new module. The module
 base directory must be contained in a workspace
 root directory. If there is no workspace root
 directory already defined, DesignSync will
 create one if AllowAutoRootCreation is
 enabled using the setting for
 DefaultRootPath. For more information on
 auto-setting root path, see the ENOVIA
 Synchronicity DesignSync Data Manager
 Administrator's Guide.

 Tip: To allow you to more easily differentiate
 between a module name and a workspace folder
 name, do not use an initial capital letter to
 begin the folder name and begin your module
 names with an initial capital letter.

 If no path is specified, or if the value for
 -path is "" (a null value), DesignSync creates
 the module without an associated local
 workspace.

 Note: If DesignSync cannot create the
 workspace directory for any reason, the module
 is still created on the server.

-report

 -report error| Controls the amount and type of information
 brief|normal| displayed by the mkmod command during checkin, if
 verbose the -checkin option is used. Otherwise the -report
 option is ignored. The information each -report
 option returns is discussed in detail in the
 "Understanding the Output" section above.

 error - lists failures, warnings, and success
 failure count.

 brief - lists failures, warnings, module
 create messages, some informational messages,
 and success/failure count.

 normal - includes all information that brief does,
 and lists all the updated objects, and messages

ENOVIA Synchronicity Command Reference - Module

241

 about objects excluded by filters from the
 operation. (Default)

 verbose - includes all information that normal,
 does and status messages for the module creation.

 The -report option only applies to the output
 from the -checkin option. If the -checkin option
 is not specified, then the "-report" option is
 ignored.

-[no]retry

 -[no]retry Specifies whether, if the module checkin
 performed with the mkmode operation, fails,
 DesignSync attempts a retry of the checkin.
 The mkmod -checkin -retry operation disables
 multithreading of the checkin operation, which
 may result in a perform impact.

 If mkmod -checkin -retry is performed, DesignSync
 attempts to retry the checkin if the
 retryOnModuleCiFailureHook is enabled and the
 module meets the conditions defined within the
 hook for retry; or the checkin failure was due to
 a communication connect failure and the
 ModuleFailureRetryAttempts registry setting is
 set to a non-zero value, indicating one or
 more retries. The checkin will be retried as long
 as a communication connect failure is still the
 cause of failure and the number of checkin
 retries for this module has not surpassed the
 ModuleFailureRetryAttempts value. (Default)

 For more information on the
 retryOnModuleCiFailureHook or the
 ModuleFailureRetryAttempts registry keys, see the
 Administrator's Guide.

 -noretry does not attempt to retry to checkin. If
 the module checkin fails, the module is still
 created, however no object are checked in.

 If -retry is explitly specified, but -checkin is
 not, the -retry option is silently ignored.

RETURN VALUE

 This command does not return Tcl values.

Primary Revision Control

242

SEE ALSO

 ci, rmmod, showmods, command defaults
,

EXAMPLES

• Example Creating a Module with a Specified Workspace Path
• Example Creating a Module and Checking in Workspace Files

Example Creating a Module with a Specified Workspace Path

 This example creates a Chip module in the Chip category and sets the
 workspace path to /home/build/Chip.

 dss> mkmod -comment "Chip module" -path /home/build/Chip \
 sync://chip.ABCo.com:2647/Modules/Chip/Chip
 Creating module Chip on the server...
 Module successfully created on the server.
 Creating module Chip with workspace base directory /home/build/Chip
 Created module instance: Chip%0
 Module creation completed.

Example Creating a Module and Checking in Workspace Files

 This example creates an Alu module on the server, sets the current
 directory as the module base directory, and checks in the files from
 the current directory to the module.

 stcl> mkmod -path . -checkin -report verbose \
 sync://qelwsun14:30148/Modules/Alu
 Creating module Alu on the server...
 Module successfully created on the server.

 Enter a check-in log message to describe your modifications,
 terminated with single '.' on a line by itself, or 'quit' to abort.
 --
 : Initial files.
 : .

 Attaching Log message:
 Initial files.

 Beginning Check in operation...

 Creating local instance of the module in the workspace
 Local instance 'Alu%0' of the module successfully created in the workspace.

 Starting checkin of module members

ENOVIA Synchronicity Command Reference - Module

243

 Checking in: alu.gv : Success - New version: 1.1 on New branch: 'Trunk'
(1)
 Checking in: mult8.gv : Success - New version: 1.1 on New branch: 'Trunk'
(1)
 Checking in: alu.v : Success - New version: 1.1 on New branch: 'Trunk'
(1)
 Checking in: mult8.v : Success - New version: 1.1 on New branch: 'Trunk'
(1)

 Finished checkin of module members.

 Starting creating module version on server
 Finished creating module version '1.2' on server.

 Starting creating module manifest in workspace

 Alu%0: Version of module in workspace updated to 1.2
 Starting saving module manifest in workspace
 Finished creating module manifest in workspace.

 Checkin operation finished.

 Module creation completed.
 {Objects succeeded (4)} {}
 stcl>

populate

populate Command

NAME

 populate - Fetches or updates specified objects

DESCRIPTION

• Object States
• How Populate Handles Selectors
• Populate Log
• How Populate Handles Collections with Local Versions
• Populating Module Objects
• Setting up Your Workspace
• How Populate Handles Module Snapshots
• How Populate Handles Module Views
• Resolving Module Conflicts with Populate
• Module Cache
• External Module Support
• Populating Modules Recursively
• Module Version Updating

Primary Revision Control

244

• Incremental Versus Full Populate
• How Populate Handles Moved and Removed Module Members
• Merging Across Branches
• Understanding the Output
• Forcing, Replacing, and Non-Replacing Modes

 This command fetches the specified objects from the server
 into your current workspace folder or a folder you specify
 with the -path option.

 Typically, you create your work area, or workspace, and perform your
 first populate, an initial populate, as a full populate. Once your
 work area is populated, you can use the populate, co, and ci commands
 to selectively check out and check in specific objects. You should
 also populate periodically to update your work area with newly
 managed objects, as well as newer versions of objects you have
 locally.

 Populate is used to create or update the objects in your
 workspace. Populate features many ways to control the data brought
 into your workspace. Because of the complexity of the populate
 features, the description section is divided into sections that
 detail the major features and functionality of populate.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Object States

 Upon populating your workspace, DesignSync determines in what
 state to leave the fetched objects in your work area:
 1. DesignSync obeys the state option (-get, -lock, -share,
 -mirror, -reference) specified on the command line.
 2. If no state option is specified, DesignSync uses the default
 fetch state as specified by your project leader. See
 the "fetch preference" help topic for more information.
 3. If a default fetch state is not defined, the default
 behavior for 'populate' is -get.

 Important: For both incremental and full populate operations,
 DesignSync changes the state of only those objects that need
 updating. DesignSync does not change the state of up-to-date
 objects during the populate operation.

 The following methods let you override the default behavior
 to change the states of all objects during a populate operation:
 o To change the state of up-to-date objects during a populate,
 use the -unifystate option. To change the state of all
 objects that need an update as well as up-to-date

ENOVIA Synchronicity Command Reference - Module

245

 and locally modified objects, use -unifystate with the -force
 option.
 o Unlocked locally modified objects are not overwritten unless
 you specify -force. For example, if you modify a fetched file,
 then execute a 'populate -share' command, your locally modified
 file is not replaced by a link to a file in the cache unless
 you also specify -force. Locked files are not overwritten by
 the -force option.
 o To make populating with links to the mirror a fast operation,
 links are created only if no object (locally modified or not)
 or link already exists in your work area. You must specify
 -unifystate to change the state of existing objects and links
 in this case. Use -force, as well, to overwrite locally
 modified objects that are not locked and to remove objects
 that are not in the current configuration.

 Note: If the object is designated as uncachable, attempts to place
 objects in the cache (populate -mirror; populate -share) will
 automatically populates the workspace with unlocked copies (-keep
 mode). For more information on cachability, see the "caching"
 commands.

How Populate Handles Selectors

 DesignSync determines what versions of objects to populate as
 follows:
 1. DesignSync obeys the selector list specified by the -version
 option.
 2. If -version is not specified, DesignSync uses the persistent
 selector list of the top-level folder being populated.
 The default persistent selector is 'Trunk', in which
 case DesignSync checks out the Latest versions from
 Trunk.

 Notes:
 o If you specify a selector or a selector list for the
 populate operation using the -version option and the selector
 does not exactly match the workspace selector, an incremental
 populate is no longer valid. In this case, DesignSync performs
 a full populate even if the -incremental option is specified.
 See "Incremental Versus Full Populate" above for more
 information.

 Important: The persistent selector lists of individual managed
 objects (files or collections) and subfolders are not obeyed by
 the 'populate -recursive' operation.

 o A 'populate -recursive' command without the -version option
 populates a work area based on the persistent selector list of
 the top-level folder you are populating, skipping any subfolder
 or managed object that has a persistent selector list that
 differs from the top-level folder. You must issue the populate
 command separately for any skipped subfolder.

Primary Revision Control

246

 o A 'populate -recursive -version <selectorList>' command uses
 the specified selector list and ignores all persistent selector
 lists. In the case of '-version Latest', the persistent
 selector list of the top-level folder being populated is
 augmented with 'Latest' and that augmented persistent selector
 list is used for the populate operation.

 The supported DesignSync use models (single-branch development,
 project branching, and auto-branching) assume that persistent
 selector lists across a work area are consistent. Use caution
 when using commands that leave you with inconsistent local
 metadata, such as using 'setselector' or 'mkbranch' on individual
 objects.

 See the "selectors" help topic for details on selectors, selector
 lists, and persistent selector lists. For more information about how
 the -version switch is managed, see the -version in OPTIONS.

Populate Log

 Because populate operations can be long and complex, you may want to
 specify a log file to contain only the output of the populate command
 to store for later reference.

 You can specify the log file on an as needed basis using the -log
 option or by setting a log file name using the command defaults
 system. If the log file specified does not exist, DesignSync creates
 it before it begins the populate command processing. If the log file
 does exist, DesignSync appends the new populate information to the
 file.

 Tip: If you set a default log value for populate, check the file size
 periodically and, if the file is getting too large to use
 comfortably, rename the file to save the information, or remove the
 file if you no longer need it.

 Notes:

 o If a log file is defined in the command defaults system and two
 users run populate simultaneously, the populate output may become
 interlaced in the log file.

 o Regardless of whether you create a populate log, the DesignSync
 client log file contains the output of the populate command along
 with all the other commands typed into the DesignSync client
 session.

How Populate Handles Collections with Local Versions

 For collection objects that have local versions (for example,
 custom generic collections), the populate operation handles local
 versions in the following way.

ENOVIA Synchronicity Command Reference - Module

247

 When you populate a folder containing a collection object, the
 populate operation removes from your workspace any local version
 of the object that is unmodified. (Because these local versions
 exist in the vault, you can refetch them.) The operation then
 fetches from the vault the specified collection object (with the
 local version number it had at the time of checkin).

 If the current local version in your workspace is modified, the
 populate operation fails unless you specify 'co -force'. (The
 -force option lets the local version with the modified data be
 replaced with the local version of the object you are checking
 out.) Note: The current local version is the one with the highest
 local version number. DesignSync considers a local version to be
 modified if it contains modified members or if it is not the local
 version originally fetched from the vault when the collection
 object was checked out or populated to your workspace.

 The -savelocal option tells the populate operation what to do with
 local versions in your workspace other than a current local version
 that is modified. For information, see OPTIONS.

Populating Module Objects

 The populate command recognizes and fetches hierarchical module
 structure. These modules are data that represent a level of the
 design hierarchy. Such data includes objects or an entire vault
 folder hierarchy of objects managed in DesignSync, as well as
 hierarchical references to other modules. These modules can be stored
 on other SyncServers. For more information about modules, see
 DesignSync Data Manager User's Guide: "What is a Module?".

 Important: You must use the populate command rather than the
 co command when fetching modules or module objects. The co
 command does not support modules.

 To specify a module for an initial populate, you must specify
 its server URL, in the following format:
 sync://<machine>:<port>/Modules/<category>/<module_name>[;<selector>]

 DesignSync looks for an existing workspace root. If no workspace root
 exists and the registry key AllowAutoRootCreation is enabled,
 DesignSync automatically creates the workspace root based on the value
 set for DefaultAutoRoot path. If there is no existing workspace root
 path and DesignSync cannot create one, the populate fails. Workspace
 root path settings are in the DesignSync registry.

 During the initial populate, DesignSync performs an implicit setvault.
 If necessary, DesignSync also creates a workspace folder for the
 module. For subsequent populates, you do not have to specify the
 server URL for the module; you can populate the module by specifying
 just the module name or the module instance name if your current
 directory is within the workspace root (see the setroot command
 help), or using the full workspace address which is "<module base

Primary Revision Control

248

 directory>/<module instance name>".

 If a top-level module (a module that is not hierarchically
 subordinate to another module populated in the workspace) is
 populated with the -version option, the persistent selector for the
 workspace is changed to the version specified.

 Overlapping of modules is supported. You use the -modulecontext
 option to indicate which module to populate if more than one module
 exists in the current directory (or that specified with the -path
 option). If no -modulecontext option is specified, all appropriate
 module objects from the candidate modules are populated.

 If a file is a member of both overlapping modules, a populate clash
 occurs. In this case, the first module to populate the file 'wins'.
 A subsequent attempt by an overlapping module to populate the same
 file fails.

 Two different versions of the same module cannot share the same base
 directory. However, you can populate two versions of the same module
 side by side.

 Notes:
 o Mirrors are not supported with module objects; you get an error
 if you use the -mirror option.
 o If a module member is checked out with a lock, the locker keyword
 is not expanded with the locker name.
 o You can use the -mcachemode, -mcachepaths, or -noreplace options
 only when populating a directory that is part of a module or a
 legacy module.
 o After the upgrade command has been used to convert legacy modules
 to a module, fetch each new module to an empty work area. The
 upgrade command does not upgrade existing work areas.

Setting up Your Workspace

 Before you can use populate to maintain your workspace, you must set
 up your workspace.

 Note: The Workspace Wizard from the DesignSync graphical user
 interface simplifies the task of setting up a work area by taking you
 through a step-by-step process.

 The typical steps when you set up a new work area are:

 1. Create the folder for your workspace, if it does not already
 exist.

 2. Populate the work area with the specified design objects from
 the vault. Populate determines the set of versions from the
 persistent selector list or from the -version option, if
 applicable. Apply the -recursive option to create a local
 hierarchy that matches the vault's hierarchy. Without
 -recursive, populate only fetches the specified objects.

ENOVIA Synchronicity Command Reference - Module

249

How Populate Handles Module Snapshots

 A module snapshot is a set of meaningful tagged module objects. The
 content and structure of a module snapshot is frozen to preserve
 important configurations. After the module snapshot has been created
 using the tag command, you can populate the snapshot into a local
 workspace for viewing, testing, or integrating into other work.

 When you populate a module snapshot as a fixed workspace for viewing
 or testing, you use the snapshot tag as a selector. This can be
 either the full snapshot branch and version name or the simple tag
 name. When you populate a snapshot module, you can update tags on
 module members or hrefs within your workspace, but cannot checkin any
 content or other structural changes to the module members or the
 module.

 When you populate a module snapshot to integrate with other work, you
 populate using a comma separated list of selectors ending with a
 "main" selector. This populates from the main selector first and
 replaces any matching objects with the member objects from the
 selectors in the selector list.

 This results in a workspace that uses the main selector as the base
 and the destination for any checkins, but some or all of the module
 member objects from the snapshot workspaces. For example, specifying
 the following version to populate:
 Beta,Alpha,Trunk:Latest

 The populate command creates a module manifest from the main
 selector, Trunk:Latest, and overlays that with the contents of the
 Alpha version, and then the Beta version. The final manifest is then
 sent to the client. The server uses the natural path of the objects
 and the uuid to determine which module members to replace.

 When hierarchical references are populated as part of the operation,
 the hierarchical reference versions come from the main selector list,
 not from the specified module snapshots.

 When the hierarchical references are populated recursively during the
 initial populate using a selector list, the module members within
 the populated submodules are also populated with the selector list. If
 hierarchical references are not populated recursively during the
 initial populate using a selector list, they will not overlay
 member items from the selector list on subsequent populates.

 Notes:
 o If the "main" selector list is a snapshot branch, or a static
 selector of any type, you will not be able to check in any
 changes from the workspace.

 o When populating a selector list, the module member objects in
 the specified snapshot are populated instead of the objects in the
 main selector. Populate will never attempt to merge the members.

Primary Revision Control

250

 If you want to merge data from a module snapshot into your
 workspace, you will not use a selector list, but populate
 your snapshot with the -merge and -overlay options into a
 workspace that has the default selector defined as the desired
 destination for checkin.

 o Any hierarchical references that are defined as a static module
 version indicated by the selector on the href will not inherit any
 the selector list, even if the initial populate specifies using the
 selector list recursively.

How Populate Handles Module Views

 A module view is a defined subset of module members and hierarchical
 references that have significance as a unit. The module view
 definition is stored on the server with a unique module view
 name. During populate, you can specify the view name to restrict the
 populate operation to only those members in the view. You can
 populate using more than one view.

 Note: During initial populate, if you specify a view, the view
 specified persists in the workspace.

 The populate operation builds the list of module members and
 hierarchical references (if run recursively) to populate
 by first looking at the specified view(s) on the specified module and
 selector. After building this aggregate set of data, DesignSync
 applies the filtering rules from the -filter, -hreffilter and
 -exclude options to determine what objects to populate into the
 workspace.

 On an initial populate, the module view name or names list provided
 is propagated through the hierarchy and applied to all fetched
 modules. The module view name or names list is also saved, or
 persisted in the workspace metadata so that all subsequent populates
 use the same view. The documentation refers to a view saved in the
 metadata as a "persistent module view" because, like a persistent
 selector, it persists through subsequent populates rather than
 needing to be specified with each command.

 If a persistent module view has been set on a module instance in a
 workspace any sub-modules subsequently populated use the persistent
 module view already defined by default.

 Note: You can set or clear a persistent selector by using the setview
 command.

Resolving Module Conflicts with Populate

 DesignSync provides the ability to define an overriding hierarchical
 reference to be used in cases where submodule references point to
 different versions of the same object. This can be used in both a

ENOVIA Synchronicity Command Reference - Module

251

 peer-to-peer or hierarchical cone structure. In a peer-to-peer
 structure, it can be used to resolve conflicts and determine which
 version of the sub-module to populate into workspace.

 For example, a module called TOP with hrefs to sub-modules:
 ROM@1.23 -relpath ../ROM
 COM@1.15 -relpath ../COM

 where ROM and COM both contain an href to a common libraries
 directory, but to different versions:
 ROM -> LIB@1.3 -relpath ../LIB
 COM -> LIB@1.5 -relpath ../LIB

 Working in a peer-based structure, where your modules are
 populated in a flat directory setting, your workspace may look
 something like this:
 /home/workspace/TOP
 /home/workspace/ROM
 /home/workspace/COM
 /home/workspace/LIB

 DesignSync may experience a conflict determining what version of LIB
 (1.3 or 1.5, as referenced in the hierarchy)to populate in the peer
 directory /home/workspace/LIB.

 If an href is placed higher in the peer structure, however; it will
 become the overriding href. So, for example, if you add an href for
 TOP to LIB, as shown:
 TOP -> ROM@1.23 -relpath ../ROM
 -> COM@1.15 -relpath ../COM
 -> LIB@1.5 -relpath ../LIB

 When you populate the TOP workspace recursively into
 /home/workspace/TOP, DesignSync populates the LIB directory with the
 1.5 version, eliminating the guesswork.

 In a cone structure, it can be used to substitute a submodule version
 without modifying the hierarchy or branching the sub-module to update
 an href version. For example:

 Chip v1.10
 |
 |-----------------|
 ALU v1.5 ROM v1.7
 | |
 |---------| |----------|
 LIB v1.4 BIN v1.4 LIB v1.6 SRC v1.10

 If rather than branching ALU and updating the hierarchical reference
 to LIB, you add an href to the desired version of LIB at a higher
 level, for example, Chip, then that version of LIB will replace the
 lower level version with the same relpath when populated.

 Chip v1.10 ---HREF TO ./ALU/LIB v1.8
 |
 |-----------------|
 ALU v1.5 ROM v1.7

Primary Revision Control

252

 | |
 |---------| |----------|
 LIB v1.8 BIN v1.4 LIB v1.6 SRC v1.10

 Notes:

 o The relpath of the hierarchical reference is what's used to
 determine which sub-module is replaced.

 o In order for the overriding href to be used by the system, you must
 populate recursively from the highest level module containing the
 override href. For example, if you were to populate either of the
 above examples at the ROM level, the ROM href is the one that is
 used to determine what submodule is populated; not the higher-level
 module.

Module Cache

 A module cache (mcache) can be thought of as a shared workspace. The
 populate command works with both module and legacy module mcaches.
 A module mcache contain modules while a legacy mcache contains only
 legacy releases.

 To create a module cache, team leaders should create a workspace and
 populate it with modules and or legacy modules using the -share
 option. This becomes the mcache directory. Usually a team leader
 creates the mcache for team members to access over the LAN. The
 mcache should be writable only by the team leader. Team members
 should need permission to read the data, link to and copy the module
 or legacy module in the mcache.

 Note: The module cache must be the workspace root directory.

 An mcache is manually administrated. Modules and legacy modules can
 be fetched as needed. You can have multiple modules in the mcache.

 o You can have full copies of all the modules in an mcache.
 o If you use -share option to populate an mcache, it allows you to
 keep full copies of the DIFFERENCES between versions by populating
 the mcache from the DesignSync cache which stores the files.

 Note: Only statically fetched modules can be fetched from an mcache
 during populate.
 Only released configurations can be fetched from an mcache
 during populate.

 Since multiple modules can have the same base directory or have the
 same directory at various levels, it can cause confusion for mcache
 links and can even cause circular or inconsistent links. To keep the
 contents of a mcache consistent, an mcache link to an mcached
 directory containing modules are created for only one module version.

 An mcache can either be for modules or legacy modules, not both. A
 module can have hierarchical references to legacy modules, resulting

ENOVIA Synchronicity Command Reference - Module

253

 in the legacy modules being populated to the module mcache. These
 legacy modules are ignored when creating mcache links or copies.

 The -mcachemode copy option is ignored for modules. You can, however,
 get the contents of a module from the LAN if your team lead fetches
 the modules from the server into the mcache using the -share
 option. This forces the module contents to get fetched into the
 DesignSync cache (different from an mcache). Symlinks are created in
 the mcache to point to these files in the DesignSync cache.

 If you specify -mcachemode copy to get full copies of a module's
 contents from the mcache, the populate operation automatically
 switches the command to use the default '-from local' mode to fetch
 the files.

 To use a module mcache the root directory of the mcache must be
 provided in the -mcachepaths option or the mcache paths registry
 setting. This root directory contains the metadata identifying the
 base directories of all module cache. See the section on -mcachepaths
 for more information.

 Note: If a module, module category, the Module area or server is
 designated uncachable, it cannot be stored in an mcache. If a module
 has already been populated into a cache and is then designated as
 uncachable, the module cache is not automatically removed.

External Module Support

 DesignSync supports populating an external module, an object or set
 of objects managed by a different change management system, within a
 module hierarchy. Using an external module in a DesignSync hierarchy
 allows you to manage code dependencies between module objects in
 DesignSync and files checked in to other change management systems.

 Within a parent module, you add an href that refers to an external
 module. The external module reference contains the name of an
 external module interface. The external module interface, provided by
 an administrator, defines a procedure to populate the sub-module
 using an external change management system.

 After creating the href to the external module, you populate it
 exactly as you would any other href, by specifying either the href
 name or the module instance name as the populate argument, or
 by populating the parent module with the -recursive option.

 The external module must be part of a module hierarchy. You cannot
 create an external module as a top-level module. Once in the
 workspace, the module itself, or any subfolders, or objects within
 the module may be individually populated according to the external
 module interface definition.

 Notes:
 o The external module's directory structure cannot overlap with
 any other module data.

Primary Revision Control

254

 o If an external module populate fails and the populate command was
 run with the -report brief option specified, you may not have
 enough information to determine where the failure occurred. If you
 rerun the populate with the -report brief mode, you can locate the
 referenced object within the module hierarchy.

Populating Modules Recursively

 You can use populate to fetch entire modules or their members as
 follows:

 o To fetch a single module without fetching its submodules, specify
 the workspace or server module and apply the populate command
 without the -recursive option.
 The command populates the module members without following
 hierarchical references (hrefs).

 o To fetch all objects in an entire module hierarchy, specify the
 workspace or server module and use the populate command with the
 -recursive option.
 The command traverses the hierarchy in a module-centric fashion,
 populating all the objects in the module and following its hrefs
 to populate its referenced submodules.

 o To fetch all objects in a folder, specify a folder name
 and apply the populate command without the -recursive option.
 The command fetches the objects in the folder, without following
 hrefs.

 o To fetch all objects in a folder and its subfolders, specify a
 folder name and apply the populate command with the -recursive
 option.
 The command traverses the folders in a folder-centric fashion,
 populating the modified objects in the folder and its subfolders,
 but without following hrefs. To follow hrefs, you must specify a
 workspace or server module instead of a folder.

 o To fetch all objects in a module or module hierarchy but restrict
 the fetch to a particular folder hierarchy, use the -modulecontext
 option to specify the module and provide the folder name.
 - Specify the -recursive option if the module hierarchy needs be
 traversed to fetch items from the sub-modules into that folder.
 - Specify -norecursive option to fetch only the items from the
 given module. Note that this operation is "module centric" and
 "folder recursive", in that all items in the module are fetched
 which belong to the given module or its sub-folders.
 - To restrict the operation to both a module and a single folder,
 use the -filter option to filter out items from sub folder.

 Note: You cannot specify the -recursive option, if you are performing
 a cross-branch merge (with pop -merge -overlay) on a module.

 When you fetch a module recursively, you update the module hierarchy.

ENOVIA Synchronicity Command Reference - Module

255

 How that module hierarchy populates depends on the href mode
 specified, and the selector(s) specified within the href, the
 hreffilter string and possibly the populate selector for the selected
 module. For more information on how the module hierarchy is
 populated, see the "Module Hierarchy" topic in the ENOVIA
 Synchronicity DesignSync Data Manager User's Guide.

 Note: If the "HrefModeChangeWithTopStaticSelector" registry key is
 enabled, and the selected module is a static version, the static
 version is saved as the persistent selector in populate. For more
 information about setting the "HrefModeChangeWithTopStaticSelector"
 registry key, see the ENOVIA Synchronicity DesignSync Data Manager
 Administrator's Guide.

Module Version Updating

 The populate command updates the module version upon successfully
 fetching all members of the module. If the populate command is
 not completely successful, the fetched version number is not
 updated, as in the following scenarios:

 o A module member cannot be fetched if the member is locally
 modified (and -force is not applied). In this case, the module
 is not fully populated, and the module version is not updated.

 o A module member is not fetched if a -filter, -exclude, or
 -nonew option excludes it. In this case, the module is not
 fully populated, and the version number is not updated.

 If you do not have the Latest complete module version due to
 one of these cases, you can still check in a module; the ci
 command auto-merges members so that the module is fully
 updated upon checkin. See the ci command for details.

 You can use the showstatus command to detect whether a module has
 been fully populated. The showstatus command lists the module as
 'Needs Update' if the Latest version has not been successfully
 fetched.

 Unlike the cases where the module version is not updated,
 the module version is updated if a populate successfully
 updates the entire module, but fails to remove files that
 are no longer members of the module. If a member has been
 removed from the new module version, but the populate command
 cannot remove it from the workspace (because it is locally
 modified and -force was not applied), the workspace does
 contain the entire contents of the new module version, so
 the module version is updated.

Incremental Versus Full Populate

 By default, the populate command attempts to perform an incremental

Primary Revision Control

256

 populate which updates only those local objects whose corresponding
 vaults have changed. For modules, DesignSync tracks the members
 changed on the server and in the workspace and performs an
 incremental populate. Avoiding a full populate improves the speed of
 the populate; however, some circumstances make a full populate
 necessary. In the following cases, DesignSync automatically performs
 a full populate:

 o If you are populating with a different configuration to
 that of the work area (having used setselector, setvault,
 'populate -version', or 'co -version' to change a selector),
 DesignSync performs a full populate. For example, if your last
 full populate specified the VendorA_Mem configuration, but
 you now want VendorB_Mem files, then DesignSync automatically
 performs a full (nonincremental) populate. If the selector
 you specify resolves to the same exact selector as that of the
 work area, DesignSync does perform the incremental populate.
 In this case, the selectors must be an exact match; for example,
 a selector which resolves to 'Main' does not match 'Main:Latest'.
 If you are populating with a new configuration, consider
 using the -force option to remove objects of the previous
 configuration from your work area.

 o If you have removed module data from the workspace
 with rmfile or rmfolder, DesignSync performs a full populate,
 refetching the removed files.

 o If you use the -lock option, DesignSync performs a full
 populate.

 o If you use the -unifystate option, DesignSync performs
 a full populate.

 o If you perform a nonrecursive populate on a subfolder, all
 of the folders above the subfolder are invalidated for
 subsequent incremental populate operations. Incremental
 populate works by exploiting the fact that if a folder
 is up-to-date, all of its subfolders are also up-to-date,
 making it unnecessary to recurse into them. Because
 a recursive populate was not performed for the subfolder,
 DesignSync cannot ensure that its subfolders are up-to-date;
 thus, all incremental populates are invalidated up the
 hierarchy.

 o If you perform a nonrecursive populate on a folder,
 DesignSync essentially runs a full populate rather than
 the default incremental populate. Your next populate
 is incremental from the last recursive populate. If
 you have not previously run a recursive populate, the
 subsequent populate is a full populate.

 Note: If you are using a mirror (by specifying -mirror or
 having a default fetch state of Links to mirror), an incremental
 populate does not necessarily fetch new objects checked in, nor
 remove links to objects deleted by team members until after the
 mirror has been updated.

ENOVIA Synchronicity Command Reference - Module

257

 For the following cases, you should perform a full populate instead
 of an incremental populate:

 o If you have excluded a folder by using the -exclude, -filter,
 or -noemptydirs option with the populate command, a
 subsequent incremental populate will not necessarily process
 the folder of the previously excluded object. DesignSync does
 not automatically perform a full populate in this case. To
 guarantee that previously excluded objects are fetched,
 specify the -full option for the subsequent populate operation.

 o Specify a full populate to force data that has been manually
 removed, removed locally, or renamed locally to be fetched again
 from the server. If the file was renamed, you may have to specify
 the -force option as well.

 Also, specify a full populate if you have an unchanged,
 but out-of-date or out-of-sync version in your workspace to force
 DesignSync to fetch the up-to-date version of the object.

 o If the system clock on the SyncServer machine where your vault
 is located is turned back (for example, to correct clock skew
 between machines), you must perform a full (nonincremental)
 populate to synchronize the client and server metadata.

 o If you interrupt a populate operation (using Control-c, for
 example), you should use populate -full on your next populate
 of that folder.

 The default populate mode is -incremental; however, your project
 leader can set this default using SyncAdmin.

 If you are updating mirrors, use the -incremental option. If you
 specify the -full option, mirror updates can take a long time
 to complete.

 Note: If you remove objects from the work area by using operating
 system commands rather than DesignSync commands, an incremental
 populate cannot fetch these objects. Perform a full populate
 (-full) or use the -unifystate option to fetch them.

How Populate Handles Moved and Removed Module Members

 When you populate a module, DesignSync does not populate
 any module member that has been removed on the server.
 Existing module members in your local workspace that have been
 removed on the server are removed during a populate.

 Module members that have been removed or moved locally, but those
 changes were not committed to server are preserved in the workspace
 unless populate is run with the -full and -force options which remove
 the local modifications (including the structural changes) and
 replace the workspace version with the server version.

Primary Revision Control

258

 Merging module members that have been removed or renamed is discussed
 in Merging Across Branches

Merging Across Branches

 In multi-branch environments, you use the populate command to
 merge branches. In many cases, a new branch that is created is
 eventually merged back into the main development branch.

 The branch being merged is populated into a workspace containing the
 destination branch using the populate command with the -merge and
 -overlay options. This type of merge is called "cross-branch merge."

 As with all populate operations, cross-branch merging uses the filter
 and exclude filter lists set on the workspace, in the command
 defaults system,on the command line.

 Note: Filtering on module workspaces is applied to the natural path
 of the module members. If a module member's natural path has
 changed, creating a situation where either the new location or the
 old location, but not both is excluded, the module member is
 included in the merge.

 Important: When working with modules, you should lock your workspace
 branch before beginning a cross-branch merge. This reduces the risk
 of changes being committed by another user while you are merging the
 versions. After the merge has been completed, the changes have been
 reviewed and accepted, and the new module version created, unlock the
 branch to make it available for general use.

 Merging includes two basic types of merging: file contents, and
 structural changes.

 o File content merging:
 File content merging is applicable to all DesignSync objects
 including module members. DesignSync merges the contents of files
 with the same natural path to the best of its ability. If the
 files are binary files which cannot be merged, populate returns an
 error message.

 o Structural change merging for Modules:
 Structural changes for modules are either committed when the module
 is checked in or can be individually committed. Structural changes
 for Modules include:

 - Removed objects - If an object is present in the local workspace,
 but has been removed on the merge version, it is marked with a
 metadata property to indicate that it was removed from the
 branch. If you want to remove it from the merged module version,
 you must manually remove the file from the workspace before
 creating the new module.

 If the object has been removed on the workspace, but:
 * is present on the server at the same member version removed

ENOVIA Synchronicity Command Reference - Module

259

 from the workspace, the object remains in the same state, and
 is removed from the server during the next checkin.

 * is present on the server at a newer version or has been moved,
 or is on the overlay version, the new version is not merged
 into the workspace, and an error is returned stating there is
 new version. The version in the workspace remains in the
 removed state, but you will not able to check in the change
 until you resolve the merge conflict.

 - Added objects - If an object is present in the merge version,
 but not in local workspace, it is added to the module and is
 checked into the module when the next checkin operation on the
 module or the module member is performed.

 - Moved or Renamed objects - A moved (or renamed) object has a
 different natural path. Objects that have been moved on either
 the server or checked in from the workspace have been moved on
 the server. Objects that have been moved in the workspace, but
 have not been checked in are considered moved locally.

 If an object has been moved on the server, but not locally, the
 module member in the workspace retains the same name or location
 in the workspace, and a metadata property is added to the object
 to indicate the new path name. To determine what files have been
 moved, review the populate status information, log file, or run
 the ls command with the -merge rename option.

 If an object has been moved locally, and:

 * has been moved on the server to the same location, the merge
 operation is performed on the merged local version. Subsequent
 checkin checks in the merged file to the new location. If the
 content has changed, DesignSync will perform a content merge as
 well.

 * has been removed on the server, the new version is not merged
 into the workspace, and an error is returned by populate.
 new version. The version in the workspace remains in the moved
 state, but you will not able to check in the change until you
 resolve the merge conflict.

 * has been updated on the server, content changes are merged into
 the moved file, and subsequent checkin of the member moves the
 file on the server and updates the content.

 * has been moved on the server to a different location and
 updated, the content is merged, the workspace version remains
 in the same location in the workspace, and an error is logged
 in populate to alert you that the file has been moved on the
 server. In order to checkin, you must resolve the merge name
 conflict or checkin with the -skip option to move the file to
 name of the file in your local workspace.

 * and exists on the overlay version, the overlay version is not
 copied into the workspace, but a metadata property is placed on
 the local version to indicate that natural path of the object

Primary Revision Control

260

 is different. You can see a list of these differences by using
 ls -merged.

 Note: If a file marked as renamed is subsequently renamed again,
 or removed from the module, the metadata property indicating that
 the file was renamed by merge may persist. To clear the
 property, perform the mvmember or remove command on the workspace
 object, or manually clear the property using the url rmprop
 command.

 - Added or Removed hierarchical references - Hierarchical reference
 changes cannot be merged. You must manually adjust your
 hierarchical references.

 After a cross-branch merge has been performed, you can view the
 status of the affected files using the ls command with the -merged
 <state> -report D options. The -merged option allows you to restrict
 the list to a particular type of merge operation (add, remove,
 rename, all) and the -report D option shows you the current state of
 the object in your workspace. For more information, see the ls
 command help.

 When a merge is performed on a DesignSync object, a merge edge is
 created automatically to maintain a list of the changes incorporated
 by the merge. This identifies a closer-common ancestor to provide
 for quicker subsequent merges. When performing a cross-branch merge
 on a module, however, you need to manually create the merge edge
 after committing the selected changes. For more information on
 creating a merge edge, see the mkedge command.

 For more information about merging, see the -merge and -overlay
 options, and the DesignSync Data Manager User's Guide topic: "What Is
 Merging?"

 Notes:
 o Auto-branching is not supported for modules; you cannot specify
 the auto-branching construct, auto(), for modules.

Understanding the Output

 The populate command provides the option to specify the level of
 information the command outputs during processing. The -report option
 allows you to specify what type of information is displayed:

 If you run the command with the -report brief option, the populate
 command outputs a small amount of status information including, but
 not limited to:
 o Failure messages.
 o Warning messages.
 o Version of each module processed as a result of a recursive
 populate.
 o Removal message for any hierarchical reference. removed as part of
 a recursive module populate.
 o Informational messages concerning the status of the populate

ENOVIA Synchronicity Command Reference - Module

261

 o Success/failure/skip status

 If you do not specify a value, or the command with the -normal
 option, the populate command outputs all the information presented
 with -report brief and the following additional information:
 o Informational messages for objects that are updated by the
 populate operation.
 o Messages for objects excluded from the operation (due to exclusion
 filters or explicit exclusions).
 o For module data, also outputs information about all objects that
 are fetched.

 If you run the command with the -report verbose option, the populate
 command outputs all the information presented with -report normal and
 the following additional information:
 o Informational message for every object examined but not updated.
 o For module data, also outputs information about all objects that
 are filtered.
 o For module versions that have been swapped, output indicates when
 the selector of a swapped sub-module is being used.

 If you run the command with the -report error option, the populate
 command outputs the following information:
 o Failure messages.
 o Warning messages.
 o Success/failure/skip status messages.

 Note: References to DesignSync Vault, IPGear Deliverables, or
 External modules do not have a module instance name to add to the
 object path. When running with the error report mode, if an object
 within a referenced DesignSync Vault, IPGear Deliverable, or External
 module fails, you may need to rerun the operation with the report
 -brief option to locate the referenced object within the module
 hierarchy.

Forcing, Replacing, and Non-Replacing Modes

 You can use these three modes to specify how the populate command
 updates your work area:

 o Forcing mode (specified with the -force option) synchronizes
 your work area with the incoming data, including locally
 modified objects. In this mode, the populate command updates
 the managed objects in your work area. It replaces or removes
 managed objects regardless of whether the objects have been
 locally modified and whether they are members of the module
 being fetched. Thus, forcing modifies your work area
 to match the set of module members being fetched. Note: The
 default -noforce option operates as if -replace has been
 specified.

 o Replacing mode (specified with the -replace option) also
 synchronizes your work area with the incoming data, but without
 affecting locally modified objects (the default behavior).

Primary Revision Control

262

 For modules, the populate command updates managed members
 of the module that have not been locally modified. It also
 removes any unmodified managed objects that are not members
 of the module being fetched.

 Replacing mode, unlike forcing mode, leaves intact managed
 objects that have been locally modified.

 o Non-replacing mode (specified with the -noreplace option) is
 the least disruptive mode; this mode might require you to clean
 up the resulting work area data.

 In this mode, the populate command takes the incoming data and
 overlays it on top of the existing work area's data. It leaves
 intact both managed objects with local modifications and
 managed objects that are not members of the module being
 fetched. Thus, the work area essentially becomes a union of the
 data from the previous version and that of the module being
 fetched.

 Non-replacing mode, unlike forcing mode, leaves intact any
 objects that have been locally modified, and, unlike the
 replacing mode, leaves unmodified managed objects intact.
 See the -[no]replace option below for more details.

 Notes:
 o Unmanaged objects in your work area are not affected by any of
 these modes.
 o The following are illegal combinations of options:
 -replace and -noforce, as well as inverse options, such
 as -replace and -noreplace.

SYNOPSIS

 populate [-[no]connectinstances] [-[no]emptydirs]
 [-exclude <object>[,<object>...]] [-filter <string>]
 [-[no]force] [-full | -incremental] [-hreffilter <string>]
 [-hrefmode {static | dynamic | normal}]
 [[-lock [-keys <mode> | -from {local | vault}]] |
 [-get [-keys <mode> | -from {local | vault}]]
 [-share] | [-reference] [-lock -reference]]
 [-log <filename>] [-mcachemode <mcache_mode>]
 [-mcachepaths <path_list>] [-[no]merge]
 [-modulecontext <context>] [-[no]new]]
 [[-overlay <selector>[,<selector>...]]|
 [-version <selector>[,<selector>...]]] [-path <path>]
 [-[no]recursive] [-[no]replace]
 [-report {error|brief|normal|verbose}] [-[no]retain]
 [-savelocal <value>] [-trigarg <arg>] [-[no]unifystate]
 [-view view1[,view2,...]] [-xtras <list>] [--]
 [<argument> [<argument>...]]

ARGUMENTS

ENOVIA Synchronicity Command Reference - Module

263

• Server Module URL
• Workspace Module
• Module Folder
• Module Member
• Hierarchical Reference
• External Module

 The populate command accepts multiple arguments. If you want
 to populate the current folder, you need not specify an
 argument. Otherwise, specify one or more of the following
 arguments:

Server Module URL

 <server module> Fetches the specified module from its vault.
 For an initial populate of a module, you must
 specify the module's server URL in the format:
 sync://<machine>:<port>/Modules/<category>/
 <module_name>[;<selector>].

 The populate fetches all objects within the
 module, but does not follow hierarchical
 references (hrefs) by default; specify the
 -recursive option to follow hrefs and thus
 fetch the module's submodules.

Workspace Module

 <workspace module> Fetches the specified module from its vault,
 or updates the module to the appropriate
 module version specified by the selector in use.

 The populate fetches all objects within the
 module, but does not follow hierarchical
 references (hrefs) by default; specify the
 -recursive option to follow hrefs and thus
 fetch the module's submodules.

Module Folder

 <module folder> Populates objects in the specified folder
 regardless of which module the files belong
 to. Specify the -recursive option to recurse
 within the specified folder. Populate in
 this case, does not follow hierarchical
 references (hrefs).

Primary Revision Control

264

 Note: To populate a module folder, the folder
 must already exist in the workspace.

 If you specify the -modulecontext option, the
 populate command updates the items belonging to
 the specified module in the specified folder and
 all the sub-folders. If you use the -recursive
 option in addition to the -modulecontext option,
 populate fetches any items from relevant
 sub-modules that fall within the folder specified
 (or its sub-folders.)

 Specify the module folder as an absolute
 path or a relative path. If you specify a
 relative path, it is assumed to be relative
 to the current directory or that specified
 by the -path option.

 Note: In previous releases, if the directory that
 was being populated was part of a legacy
 module, the entire module and not just the
 module members in the directory got
 populated.

Module Member

 <module member> Fetches the module member.
 You can specify the -modulecontext option if
 more than one module exists in the workspace.

 Note: The -modulecontext option is not normally
 needed, as the system knows what module
 each member belongs to. When there are
 multiple overlapping modules and you are
 fetching an object that is not currently in
 the workspace (for example, to fetch
 something that was originally filtered, or
 was removed with rmfile), the
 -modulecontext option can be used to
 identify the module from which the object
 should be fetched.

 You can also provide the version-extended name if
 necessary. A version-extended name is a filename
 followed by a semicolon and a version number or
 tag name (for example, top.v;1.2 or top.v;rel13).
 In this case, DesignSync fetches the specific
 version of the member vault instead of fetching
 the version of this object that belongs with the
 module version.
 Note: If you specify the version-extended name,
 populate ignores the -version option.

ENOVIA Synchronicity Command Reference - Module

265

Hierarchical Reference

 <href> Fetches the referenced target (submodule)
 identified by the hierarchical reference
 (href). You can use -hreffilter to exclude
 submodules. To include submodules, enter the href
 as the argument of the populate command. To
 indicate the module context of the href, use the
 -modulecontext option.

 Note: You can only specify hrefs directly
 within the specified module. For example, if
 a module Chip has an href to module CPU, and
 module CPU has an href to module ALU, you
 cannot reference the ALU. Thus, the
 following command invocations are invalid:
 'populate -modulecontext Chip ALU' and
 'populate -modulecontext Chip CPU/ALU'.

External Module

 <external module> Specifies the module instance of the external
 module in the workspace or the URL of the
 external module version to which you wish to
 create the connection. An external module is an
 object or set of objects managed by a different
 code management system but available for viewing
 and integration through DesignSync.
 Specify the external module in the workspace as a
 module instance name.
 Specify the external module Server URL as follows:
 sync[s]:///ExternalModule/<external-type>/<external-data>
 where ExternalModule is a constant that identifies
 this URL as an external module URL,
 <external-type> is the name of the external module
 procedure, and <external-data> contains the
 parameters and options to pass to the
 procedure. These parameters and options can be
 passed from the procedure to the external code
 management system or to DesignSync.

 Note: In order to specify an external module, you
 must have previously populated the module in the
 workspace. You may also specify the external
 module by href name only.

OPTIONS

• -[no]connectinstances
• -[no]emptydirs

Primary Revision Control

266

• -exclude
• -filter
• -[no]force
• -from
• -full
• -get
• -hreffilter
• -hrefmode
• -incremental
• -keys
• -lock
• -lock -reference
• -log
• -mcachemode
• -mcachepaths
• -[no]merge
• -modulecontext
• -[no]new
• -overlay
• -path
• -[no]recursive
• -reference
• -[no]replace
• -report
• -[no]retain
• -savelocal
• -share
• -trigarg
• -[no]unifystate
• -version
• -view
• -xtras

-[no]connectinstances

 -[no]connectinstances This option determines how to handle updating
 hierarchical reference within a top-level
 module.

 If your workspace is set up
 in a peer structure, containing your
 top-level module and modules which are
 referenced submodules, but have been
 populated independently, then when
 your workspace is populated non-recursively,
 DesignSync does not recognize the connection
 between the modules. When populated
 recursively, DesignSync may change the

ENOVIA Synchronicity Command Reference - Module

267

 selector of the submodules to match the
 hierarchical reference definition. The
 -connectinstances option allows you to
 populate the top-level module, recognizes
 that the peer modules are, in fact,
 referenced submodules, and creates the
 relationship accordingly, but does not update
 the selector to match the hierarchical
 reference definition.

 This option is mutually
 exclusive with -recursive which updates the
 href to the referenced peer module.

 The -noconnectinstances option does not
 establish or identify a hierarchical
 relationship with referenced peer
 modules. (Default)

 Notes:
 * You can use the -connectinstances option
 with the -hreffilter option to identify
 specific submodules instead of updating the
 relationships for the entire module hierarchy.

 * The submodule must match the target module
 and relative path specified in the
 hierarchical reference in order to the
 update the href.

-[no]emptydirs

 -[no]emptydirs Determines whether empty directories are
 removed or retained when populating a
 directory. Specify -noemptydirs to remove
 empty directories or -emptydirs to retain
 them. The default for the populate operation
 is -noemptydirs.

 For example, if you are creating a directory
 structure to use as a template at the start of
 a project, you may want your team to populate
 the empty directories to retain the directory
 structure. In this case, you would specify
 'populate -rec -emptydirs'.

 If a populate operation using -noemptydirs
 empties a directory of its objects and if that
 directory is part of a managed data structure
 (its objects are under revision control), then
 the populate operation removes the empty
 directory. If the empty directory is not part
 of a managed data structure, then the

Primary Revision Control

268

 operation does not remove the directory or its
 subdirectories. (A directory is considered part
 of the managed data structure if it has a
 corresponding folder in the DesignSync vault
 or if it contains a .SYNC client metadata
 directory.)

 Notes:
 o When used with 'populate -force
 -recursive', the -noemptydirs option removes
 empty directories that have never been
 managed.
 o When used with the -mirror option, the
 -noemptydirs option does not remove empty
 directories (unless -force -recursive is
 used) and does not populate directories that
 are empty in the mirror.
 o When the -noemptydirs option is used with
 '-report verbose', the command might output
 messages that additional directories are
 being deleted. Those are directories created
 by the populate, to mimic the directory
 structure in the vault. If no data is
 fetched into those directories (because
 no file versions match the selector),
 then those empty directories are deleted.

 If you do not specify -emptydirs or
 -noemptydirs, the populate command follows
 the DesignSync registry setting for "Populate
 empty directories". By default, this setting
 is not enabled; therefore, the populate
 operation removes empty directories. To change
 the default setting, your Synchronicity
 administrator can use the SyncAdmin tool. For
 information, see SyncAdmin help. You typically
 want consistent behavior for all users, so
 adding the setting to the site registry is
 recommended.

-exclude

 -exclude <objects> Specifies a comma-separated list of objects
 (files, collections, folders, or module objects)
 to be excluded from the operation. Wildcards are
 allowed.

 Note: Use the -filter option to filter module
 objects. You can use the -exclude option, but
 the -filter option lets you include and exclude
 module objects. If you use both the -filter and
 -exclude options, the strings specified using
 -exclude take precedence.

ENOVIA Synchronicity Command Reference - Module

269

 If you exclude objects during a populate, a
 subsequent incremental populate will not
 necessarily process the folders of the
 previously excluded objects. DesignSync does
 not automatically perform a full populate in
 this case. To guarantee that previously
 excluded objects are fetched, specify the
 -full option for the subsequent populate
 operation.

 The '-exclude' option is ignored if it is
 included in a 'populate -mirror' operation.

 Do not specify paths in your arguments to
 -exclude. Before operating on each object (such
 as during a recursive populate), DesignSync
 compares the object's leaf name (with the path
 stripped off) to the exclude list to see if there
 is a match. Because the object's path is removed,
 the object will not match any object in the
 exclude list specified with a path. For example,
 if you specify '-exclude bin/*.exe', you will not
 successfully exclude bin/foo.exe or any other
 *.exe file. You need to instead specify '-exclude
 *.exe', or '-exclude foo.exe' if you want to
 exclude only 'foo.exe'. The result is that you
 cannot exclude a specific instance of an object
 -- you exclude all matching objects.

 In addition to objects you specify using the
 -exclude option, the field, "These objects are
 always excluded", from the Tools->Options->
 General->Exclude Lists dialog box in
 DesignSync lists objects that are always
 excluded from revision-control operations.

 Note: Do not exclude members when you are
 fetching a module into the module cache; users
 cannot link to or copy from a filtered module in
 a module cache.

-filter

 -filter <string> Specify one or more extended glob-style
 expressions to identify an exact subset of module
 objects on which to operate. Use the -exclude
 option to filter out DesignSync objects that are
 not module objects.

 The -filter option takes a list of expressions
 separated by commas, for example:
 -filter +top*/.../*.v,-.../a*

 Prepend a '-' character to a glob-style expression

Primary Revision Control

270

 to identify objects to be excluded (the default).
 Prepend a '+' character to a glob-style expression
 to identify objects to be included. Note that if
 the list of expressions begins with an include
 character ('+'), the filter excludes all objects
 except those that match the include string.

 Specify the paths in your glob-style expressions
 relative to the current directory, because
 DesignSync matches your expressions relative to
 that directory. For submodules followed through
 hrefs, DesignSync matches your expressions against
 the objects' natural paths -- their full relative
 paths. For example, if a module, Chip, references
 a submodule, CPU, and CPU contains a file,
 '/libs/cpu/cdsinfo.tag', DesignSync matches
 against '/libs/cpu/cdsinfo.tag', rather than
 matching directly within the 'cpu' directory.

 If your design contains symbolic links that are
 under revision control, DesignSync matches
 against the source path of the link rather than
 the dereferenced path. For example, if a
 symbolic link exists from 'tmp.txt' to
 'tmp2.txt', DesignSync matches against 'tmp.txt'.
 Similarly for hierarchical operations, DesignSync
 matches against the unresolved path. If, for
 example, a symbolic link exists from dirA to dirB
 and dirB contains 'tmp.txt', DesignSync matches
 against 'dirA/tmp.txt'.

 The extended glob-style expressions you use to
 filter the objects are standard glob-style
 expressions, but they are extended so that you
 can use the "..." syntax to indicate that the
 expression matches any number of directory
 levels. For example, the expression,
 "top/.../lib/*.v" matches *.v files in a
 directory path that begins with "top", followed
 by zero or more levels, with one of those levels
 containing a lib directory. The command traverses
 the directory structure. If a directory name
 matches an exclude clause of the filter, then the
 entire directory and all its contents are
 filtered (the command stops descending at that
 point), otherwise the command continues
 traversing the directory structure searching for
 matching objects.

 If this is the first time a module is being
 populated, the filter becomes a persistent filter
 for the module, just as if you had invoked
 the setfilter command. For subsequent operations
 on the module, DesignSync applies persistent
 filters first, followed by those set using
 the -filter, -hreffilter, and -exclude options.

ENOVIA Synchronicity Command Reference - Module

271

 Note: If a populate specifies a -filter value
 to filter out objects that were previously
 populated, the populate is not considered
 complete. In this case, the workspace module
 does not match the module in the vault; thus,
 the module version is not updated. Also, a
 subsequent incremental populate will not
 necessarily process the folders of the
 previously excluded objects. DesignSync does
 not automatically perform a full populate in
 this case. To guarantee that previously
 excluded objects are fetched, specify the
 -full option for the subsequent populate
 operation.

 Although the -filter option takes precedence over
 persistent filters, it does not override the
 exclude list set using SyncAdmin's
 General=>Exclude Lists tab; the items in the
 exclude list are combined with the filter
 expression. For example, an exclude list of
 "*%,*.reg" combined with '-filter .../*.doc' is
 equivalent to:
 '-filter .../*.doc,.../*%,.../*.reg'.

 Note: Do not filter a module that you are fetching
 into the module cache; users cannot link to or
 copy from a filtered module in a module cache.

-[no]force

 -[no]force Specifies whether to overwrite locally modified
 objects in order to match the workspace to the
 data being requested. To do so, the populate
 operation deletes locally managed objects that
 are not part of the populate command line,
 deleting objects that have been filtered out.
 'populate -force' only removes managed data,
 not unmanaged data. For module objects, the
 -force option removes objects from modules
 if they have been added by the add command, but
 have never been checked in. Again, although
 DesignSync removes these objects from the module
 manifest, it does not remove the unmanaged data.
 Also, if you specify -force while populating
 a module that overlaps with another module,
 the -force option does not remove data from
 the other module.

 Use this option with caution, because you might
 not be able to retrieve lost changes.

 By default (-noforce):
 o Locally modified objects are not overwritten

Primary Revision Control

272

 by the populate operation. Specify -force if
 you want to overwrite locally modified
 objects. If the object is locked, the object
 is unaffected by the populate operation
 whether -force is specified or not.
 o Objects that are not part of the specified
 module remain in your work area. If you
 want to delete objects that are not part of
 the configuration, specify -force. Unmanaged
 objects are never deleted.

 Using -force with -unifystate changes the state
 of all objects including locally modified
 objects, in which case, local modifications are
 overwritten and objects are fetched according to
 the specified state or the default fetch state.

 Using -force with -noemptydirs for populate
 removes all existing empty directories from the
 workspace unless the directories themselves are
 members of the module.

 The -force option is mutually exclusive with
 both the -overlay and -noreplace options.

-from

 -from <where> Specifies whether the object is fetched from
 the vault ('-from vault') or from the cache or
 mirror ('-from local'). By default,
 DesignSync fetches from the cache or
 mirror ('-from local'), a performance
 optimization specific to the 'co -lock',
 'co -get', 'populate -lock', and
 'populate -get' commands. For details, see the
 Performance Optimization Overview in the
 DesignSync Data Manager Administrator's
 Guide. Note that this option is silently ignored
 when the optimization is not possible, including
 when the -keys option is specified.

 The -from option can only be used with the -lock
 or -get fetch modes. It cannot be used with the
 -share, -mirror, -reference, or the -lock
 -reference combination fetch modes. If the -keys
 option is specified with the -from option, the
 -from option is silently ignored.

-full

 -full Performs a non-incremental populate by processing
 all objects and folders.

ENOVIA Synchronicity Command Reference - Module

273

 Note: DesignSync performs an incremental
 populate by default. It automatically
 reverts to a full populate when necessary.
 For more information, see the "Incremental
 Versus Full Populate" section in the
 description.

 To change the default populate mode, your
 Synchronicity administrator can use the
 SyncAdmin tool.

 Note: Do not use the -full option to change the
 states of objects in your work area (for
 example, changing from locked to unlocked
 objects or unlocked objects to links to
 the cache). DesignSync changes the states
 of only those objects that need an
 update. Use the -unifystate option to
 change the state of objects in your work
 area.

-get

 -get Fetch unlocked copies.

 You can change whether the local object is
 read-only (typical when using the locking
 model) or read/write (typical when using the
 merging model) by default by using the
 "Check out read only when not locking" option
 from the Tools->Options->General dialog box in
 the DesignSync graphical interface. Your project
 leader can also set this option site-wide
 using SyncAdmin.

 This option is the default object-state option
 unless a default fetch preference has been
 defined. See the "fetch preference" help topic
 for more information.

 Using -force with -noemptydirs for
 'populate -get' removes all existing empty
 directories. Using -force with -emptydirs,
 however, creates empty directories for
 corresponding empty vault folders. Note that
 the populate command ignores the
 -noemptydirs option when operating on
 modules, because folders are members of
 their corresponding modules and therefore
 cannot be removed.

 The -get option is mutually exclusive with the
 other fetch modes: -lock, -share, -mirror, and
 -reference.

Primary Revision Control

274

 Note: To replace mcache links with physical
 copies of module members, use the -mcachemode
 server option,

-hreffilter

 -hreffilter Excludes href values during recursive operations
 <string> on module hierarchies. Because hrefs
 link to submodules, you use -hreffilter
 to exclude particular submodules. Note that
 unlike the -filter option which lets you include
 and exclude items, the -hreffilter option only
 excludes hrefs and, thus, their corresponding
 submodules.

 Note: When populating a workspace with symbolic
 links to a module cache, the -hreffilter option
 does not apply and is silently ignored.

 Specify the -hreffilter string as a glob-style
 expression. The href filter can be specified
 either as a simple href filter or as a
 hierarchical href filter.

 A simple href filter is a simple leaf module
 name; you cannot specify a path. DesignSync
 matches the specified href filter against hrefs
 anywhere in the hierarchy. Thus, DesignSync
 excludes all hrefs of this leaf name; you cannot
 exclude a unique instance of the href.

 A hierarchical href filter specifies a path and a
 leaf submodule, for example JRE/BIN excludes the
 BIN submodule only if it is directly beneath JRE
 in the hierarchy.

 When creating a hierarchical href filter, you do
 not specify the top-level module of the
 hierarchy. If you want to filter using the
 top-level module, you begin the hreffilter with
 /, for example, "/JRE," would filter any JRE href
 referenced by the top-level module.

 Note: You can use wildcards with both types of
 hreffilter, however, if a wildcard is used as the
 lone character in hierarchical href, it only
 matches a single level, for example: "JRE/*/BIN"
 would match a hierarchy like "JRE/SUB/BIN" but
 would not match "JRE/BIN" or "JRE/SUB/SUB2/BIN".

 You can prepend the '-' exclude character to your
 string, but it is not required. Because the
 -hreffilter option only supports excluding hrefs,

ENOVIA Synchronicity Command Reference - Module

275

 a '+' character is interpreted as part of the glob
 expression.

 If this is the first time a module is being
 populated, the filter becomes a persistent filter
 for the module, just as if you had invoked
 the setfilter command. For subsequent operations
 on the module, DesignSync applies persistent
 filters first, followed by those set using
 the -filter, -hreffilter, and -exclude options.

 Note: Hierarchical hreffilters can only be
 specified during an initial populate. To add,
 change, or remove a hierarchical hreffilter after
 the initial populate, you must use the setfilter
 command.

 Whereas the -filter option can prevent a populate
 from being complete, thus preventing the version
 from being updated, the -hreffilter option
 does not prevent the version from being
 updated. The -hreffilter option prevents
 particular submodules from being fetched,
 but the failure to fetch a submodule does
 not affect the updating to a new version.

 Note: Do not filter a module that you are fetching
 into the module cache; users cannot link to or
 copy from a filtered module in a module cache.

-hrefmode

 -hrefmode For a recursive populate, determines whether
 to populate statically-specified submodules or
 dynamically-evaluated submodules.

 Valid values are:
 o dynamic - Expands hrefs at the time of the
 populate operation to identify the version
 of the submodules to be populated.
 o static - Populates with the submodules
 versions referenced by the hrefs when the
 module version was initially created.
 o normal - Expands the hrefs at the time of the
 populate operation until it reaches a static
 selector. If the reference uses a static
 version, the hrefmode is set to 'static' for the
 next level of submodules to be populated;
 otherwise, the hrefmode remains 'normal' for the
 next level. (Default). This behavior can be
 changed using the
 "HrefModeChangeWithTopStaticSelector" registry
 key to determine how hrefs are followed.

Primary Revision Control

276

 Notes:
 o If the -hrefmode option is used, it is stored
 for subsequent populates; You do not have to
 specify the href mode again unless a different
 mode is required.

 o Use of the -hrefmode option is mutually
 exclusive with use of the -lock option.
 o If an href is created with a mutable version
 tag, and that version tag has moved, you must
 use dynamic mode (-hrefmode dynamic) to populate
 your workspace with the new tagged version. If
 you want the workspace to continue to point to
 the original version, you should populate with
 normal or static mode.
 o If you are fetching modules into the module
 cache, use the static mode (-herfmode static).
 You can only link to statically fetched module
 versions. See DesignSync Data Manager
 Administrator's Guide: "Setting up a Module
 Cache" for more information.

-incremental

 -incremental Performs a fast populate operation by
 updating only those folders whose
 corresponding vault folders contain
 modified objects.
 Note: DesignSync performs an incremental
 populate by default. It automatically
 reverts to a full populate when necessary.
 For more information, see the "Incremental
 Versus Full Populate" section in the
 description.

 To change the default populate mode, your
 Synchronicity administrator can use the
 SyncAdmin tool.

 Note: Do not use the -incremental option to
 change the states of objects in your work
 area (for example, changing from locked to
 unlocked objects or unlocked objects to
 links to the cache). DesignSync changes
 the states of updated objects only. For
 an incremental populate, DesignSync only
 processes folders that contain objects
 that need an update. State changes,
 therefore are not guaranteed. Use the
 -unifystate option to change the state of
 objects in your work area.

-keys

ENOVIA Synchronicity Command Reference - Module

277

 -keys <mode> Controls processing of vault
 revision-control keywords in populated
 objects. Note that keyword expansion is not
 the same as keyword update. For example, the
 $Date$ keyword is updated only during checkin;
 its value is not updated during checkout or
 populate. The -keys option only works with the
 -get and -lock options. If you use the -share
 or -mirror option, keywords are automatically
 expanded in cached or mirrored objects, as if
 the '-keys kkv' option was used.

 Available modes are:

 kkv - (keep keywords and values) The local
 object contains both revision control keywords
 and their expanded values; for example,
 $Revision: 1.4 $.

 kk - (keep keywords) The local object contains
 revision control keywords, but no values; for
 example, $Revision$. This option is useful if
 you want to ignore differences in keyword
 expansion, such as when comparing two different
 versions of an object.

 kv - (keep values) The local object contains
 expanded keyword values, but not the keywords
 themselves; for example, 1.4. This option is
 not recommended if you plan to check in your
 local objects. If you edit and then check in
 the objects, future keyword substitution is
 impossible, because the value without the
 keyword is interpreted as regular text.

 ko - (keep output) The local object contains
 the same keywords and values as were present at
 check in.

 The -keys option can only be used with the -lock
 or -get fetch modes. It cannot be used with the
 -share, -mirror, -reference, or the -lock
 -reference combination fetch modes. If the -keys
 option is specified with the -from option, the
 -from option is silently ignored.

 Note: When a module member is checked out with a
 lock, the locker keyword is not updated for the
 lock operation and remains null.

-lock

 -lock Lock the branch of the specified version for

Primary Revision Control

278

 each module member object that is
 populated. Only the user who has the lock can
 check in a newer version of the object on that
 branch.

 The -lock option does not lock not the module
 branch. In so doing, the -lock option makes
 the members writable in the workspace, and
 converts cached objects to full copies. To
 lock the module branch itself without making
 members writable, use the lock command.

 Use the -lock option with the -reference option
 to populate with locked references. For more
 information, see the -lock -reference option.
 Locked references are useful if you intend to
 generate objects and want to lock them before
 regenerating, as opposed to editing the previous
 version. Upon generation of the objects, they
 automatically become locked copies rather than
 locked references. Obtaining locked references
 for generated objects is faster because
 DesignSync does not fetch the previously
 generated objects. If the objects exist already
 in the workspace, DesignSync deletes them. If
 the objects exist and are locally modified, the
 operation fails. If you intend to overwrite the
 modifications, use -force to create the locked
 references. If the default fetch state is
 'reference' and you specify the -lock option
 without the -reference option, DesignSync leaves
 locked copies of the objects in your workspace;
 you must explicitly apply the -reference option
 with the -lock option if you want locked
 references in your workspace.

 The -lock option is mutually exclusive with the
 fetch modes: -get, -share, and -mirror and
 mutually exclusive with -recursive. The -lock
 option can be used with the -merge option.

 Notes:
 o If you specify 'populate -lock', then by
 default the populate operation also uses the
 '-from local' option. The result is that the
 populate operation locks the object in the
 vault and keeps local modifications in your
 workspace. See the -from option for
 information.
 o When a module member is checked out with a lock,
 the locker keyword is not expanded with the
 locker name.

-lock -reference

ENOVIA Synchronicity Command Reference - Module

279

-lock -reference Use the -lock option with the -reference option
 to populate with locked references. Locked
 references are useful if you intend to generate
 objects and want to lock them before
 regenerating, as opposed to editing the previous
 version. Upon generation of the objects, they
 automatically become locked copies rather than
 locked references. Obtaining locked references
 for generated objects is faster because
 DesignSync does not fetch the previously
 generated objects. If the objects exist already
 in the workspace, DesignSync deletes them.
 If the objects exist and are locally modified,
 the operation fails. If you intend to overwrite
 the modifications, use -force to create the
 locked references. If the default fetch state
 is 'reference' and you specify the -lock option
 without the -reference option, DesignSync leaves
 locked copies of the objects in your workspace;
 you must explicitly apply the -reference option
 with the -lock option if you want locked
 references in your workspace.

 The -lock -reference combination of option is
 mutually exclusive with the fetch modes: -get,
 -share, and -mirror, and with the -recursive
 option.

 Note: You should not use the -reference option
 with Cadence data collection objects. When
 the -reference option is used on Cadence
 collections, DesignSync creates a
 reference in the metadata for the
 collection object but member files are not
 processed and are not included in the
 metadata.

-log

 -log <filename> Specify the name of the populate log file. If
 the filename doesn't exist, DesignSync creates
 it. If the file does exist, DesignSync appends
 the new information to the end of the log file.

 The filename can be specified with an absolute
 or relative path. If you specify a path for the
 log file, the directory you specify must already
 exist and you must have write permissions to the
 directory in order for the log to be placed into
 it, DesignSync does not create the path.

-mcachemode

Primary Revision Control

280

 -mcachemode Specifies how the populate command fetches
 <mcache_mode> the module from the module cache.

 Note: The module cache should always be
 populated at the workspace root directory level.

 Available modes are:

 o link - For each module it finds in the module
 cache, the populate command sets up a symbolic
 link from your work area to the base directory
 of the module in the module cache. This is
 the default mode on UNIX platforms.

 Note:
 - This mode is supported on UNIX platforms
 only. If you specify link mode on a
 Windows platform, the populate operation
 fails.
 - You cannot create mcache links to
 dynamically fetched modules since there is
 no auto-refresh of mcaches.
 the populate command.

 o server - Causes the populate command to
 fetch modules as physical copies from the
 server, not the module cache. (Default for
 Windows.)

 The -mcachemode option overrides the default
 module cache mode registry setting. If
 -mcachemode is not specified, the populate
 command uses the mode specified in the registry
 setting. If no registry setting is specified,
 the command uses link mode on Unix platforms and
 server mode on Windows platforms.

 Notes on mcaches:
 o If you run a populate with the -norecursive
 option, the module must have been fetched into
 the mcache in -norecursive mode as well, or
 the command will not create links to or copies
 from the module cache.

 o If the populate command is run using a filter,
 no mcache link to or copies are made.
 Therefore a filtered module can never be used
 in an mcache even if populate is run in a
 workspace that uses the same filter.

 o The mcache administrator can fetch modules
 into a module cache to link to or copy the
 contents of the module.

 o You cannot create mcache links to mcache
 directories containing members of more than

ENOVIA Synchronicity Command Reference - Module

281

 one module version.

 If a request to link to the module cache is
 disallowed, DesignSync fetches the module from
 the server instead.

 For more information using populate with a
 module cache, see 'Module Caches' in the
 description section of the populate command.

-mcachepaths

 -mcachepaths Identifies one or more module caches to be
 searched for modules.

 Path names can be absolute or relative. You can
 specify multiple paths in a list of
 space-separated path names. To specify multiple
 paths, surround the path list with double
 quotation marks ("") and separate path names
 with a space. For example:"/dir/cacheA
 /dir2/cacheB".

 The path list can contain both module and legacy
 module mcache paths. For a module cache the
 path to the root directory of the module cache
 must be supplied.

 This option overrides the default module cache
 paths registry setting. If -mcachepaths is not
 specified, the command uses the list of paths
 specified in the registry setting. If no
 registry setting is specified, the populate
 command fetches modules from the server.

 Note:
 o To specify a path that includes spaces:
 - In stcl or stclc, surround the path
 containing the spaces with curly braces.
 For example:
 "/dir1/cache {/dir2/path name}"
 - In dss or dssc, use backslashes (\) to
 'escape' the spaces. For example:
 "/dir1/cache /dir2/path\ with\ spaces"
 o The populate command searches the mcache
 in the order specified with the -mcachepaths
 option or in the default module cache
 paths registry setting if this option
 is absent.

-[no]merge

Primary Revision Control

282

 -[no]merge Indicates whether to populate with the Latest
 versions from the branch specified by the
 persistent selector list and merge them with
 the current, locally modified versions.
 The default value is -nomerge.

 If you are not doing an overlay merge (see
 -overlay) and the current version is not
 locally modified, the -merge defaults to a
 -get and fetches the new version without
 merging. By definition, a merge expects a
 locally modified object, so the -force option
 is not required.

 The -merge option supports the merging work
 model (as opposed to the locking work model)
 where multiple team members can check out and
 edit the Latest version concurrently. The
 first team member to check in creates the next
 version. Other team members must merge the new
 Latest version into their local copy before
 they can check in their changes.

 If there are no merge conflicts, the merge
 succeeds, leaving the merged files in
 your work area. If there are conflicts,
 DesignSync issues a warning, and you must edit
 the merged file to resolve the conflicts
 before DesignSync allows you to check in the
 merged version. Conflicts are shown as
 follows:

 <<<<<<< local
 Lines from locally modified version
 =======
 Lines from selected server version
 >>>>>>> versionID

 DesignSync considers the conflicts resolved
 when the file no longer contains any of the
 conflict delimiters (exactly 7 less-than,
 greater-than, or equal signs starting in
 column 1). The status of an object, as
 displayed by ls or from the List View in the
 DesignSync graphical interface, indicates if
 conflicts exist. The url inconflict
 command also determines whether a file has
 conflicts.

 Most merges are between two versions on the
 same branch (the current branch and
 the branch specified by the persistent
 selector list are typically the same). However,
 a merge can also be performed across branches
 by setting the persistent selector list to a
 different branch. Following the merge, you are
 on the branch associated with the version

ENOVIA Synchronicity Command Reference - Module

283

 specified by the persistent selector
 list (a 'merge to' operation). If you
 want to stay on the current branch instead,
 use the -overlay option. Overlay ('merge
 from') merges are more common when merging
 branches. See the -overlay option for details.

 Note:
 o When merging modules across branches, you
 should use -merge -overlay. For details about
 merging modules across branches, see the
 "Merging Across Branches section."
 o The -merge option implies -get, but you can
 also explicitly specify -get. For general
 DesignSync objects, the -merge option
 is mutually exclusive with all other state
 options (-lock, -share, -mirror, -reference,
 and -lock -reference).
 You can use -lock with -merge for modules and
 their members.
 o The -merge and -version options are mutually
 exclusive unless you specify '-version
 Latest'.

-modulecontext

 -modulecontext Identifies the module to be populated. Use the
 -modulecontext option if your workspace has
 overlapping modules, so that you can indicate
 which module to populate.

 You can use the -modulecontext option when
 specifying a folder to populate. In this case,
 the populate operation filters the folder,
 populating only those objects that belong to the
 module specified with the -modulecontext option.
 Use -modulecontext in a recursive populate to
 fetch members of the specified module throughout
 a hierarchy.

 You can also use -modulecontext option to
 identify which module to fetch items from when
 requesting an object that is not currently in the
 module.

 Specify an existing workspace module using the
 module name (for example, Chip) or a module
 instance name (for example, Chip%0). You also
 can specify -modulecontext as a server
 module URL (sync://server1:2647/Modules/Chip).

 Notes:
 o You cannot use a -modulecontext option to
 operate on objects from more than one module;

Primary Revision Control

284

 the -modulecontext option takes only one
 argument, and you can use the -modulecontext
 option only once on a command line.

 o If you have overlapping modules, you must
 specify -modulecontext when populating a module
 that contains files not present in your
 workspace.

-[no]new

 -[no]new Specifies whether to fetch module objects that
 are not yet in the workspace.

 Apply the -new (default) to fetch all specified
 module objects (except those filtered out by
 options such as -filter and -exclude). Specify
 -nonew option to update only those objects
 already in the workspace.

 Using -new is another form of filtering. It can
 cause the subsequent populate to be a full
 rather than an incremental populate.

 Note: This option is supported for module
 objects only.

-overlay

 -overlay <selectors> Replace your local copy of the module or
 DesignSync non-module object with the versions
 specified by the selector list (typically a
 branch tag). The current-version status, as
 stored in local metadata, is unchanged. For
 example, if you have version 1.5 (the Latest
 version) of the module or DesignSync object and
 you overlay version 1.3, your current version is
 still 1.5. You could then check in this overlaid
 version. This operation is equivalent
 to checking out version 1.3, then using 'ci
 -skip' to check in that version.

 The behavior of the overlay operation depends
 on the presence of a local version and the
 version you want to overlay:

 o If both the local version and the overlay
 version exist, the local version is replaced
 by the overlay version.
 o If there is no local version but an overlay
 version exists, DesignSync creates a
 local copy of the overlay version.

ENOVIA Synchronicity Command Reference - Module

285

 o If a local version exists but there is no
 overlay version, the local version is
 unaffected by the operation.
 o If the overlay version was renamed or removed,
 the local object is not changed, but metadata
 is added to it, indicating the change. This
 information can be viewed using the ls command
 with the -merged option.

 Typically, you use -overlay with -merge to
 merge the two versions instead of overlaying
 one version onto another. The combination of
 -overlay and -merge lets you merge from one
 branch to another, the recommended method for
 merging across branches. Following the
 overlay merge, you are working on the same
 branch as before the operation.

 You specify the version you want to overlay
 as an argument to the -overlay option. The
 -overlay and -version options are mutually
 exclusive. The -version option always updates
 the 'current version' information in your work
 area, which is not correct for an overlay
 operation.

 o To use -overlay to specify a branch, specify
 both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

 When doing an overlay (with or without -merge),
 a number of combinations for the state of a
 module or DesignSync object on the two branches
 must be considered. For more information, see
 the "Merging Across Branches" section
 above. Hierarchical references in modules are
 not updated during an overlay.

 Notes:
 o The -overlay option implies -get, but
 you can also explicitly specify -get.
 o The -overlay option is mutually exclusive
 with the other state options (-mirror,
 -share, -lock, -reference) and -version.

-path

 -path <path> Specify the name of an alternate local folder
 to populate instead of the current folder. The

Primary Revision Control

286

 populate command uses the vault and persistent
 selector list associated with the specified
 folder.
 Note: Using -path is equivalent to changing
 folders, executing the populate
 command, then changing back to the
 original folder.

 If you specify a folder using the -path option
 but the folder does not exist, DesignSync
 - verifies that a corresponding vault exists
 - creates the folder
 - populates the specified folder, creating
 any interim folders necessary to replicate
 the vault hierarchy locally.

 If you specify the -target option but the
 folder does not exist, DesignSync creates
 the folder.
 Generally, however, if the vault does not
 exist, DesignSync does not create the
 folder and leaves the workspace unchanged.

 Tip: When populating a workspace with links to a
 module cache, use -path to create the directory,
 rather than specifying an existing directory.

 The -path option used to be the -dir option.
 The -dir option is still provided for backwards
 compatibility, but is not documented
 separately.

-[no]recursive

 -[no]recursive Specifies whether to perform this operation on
 the specified folder or module only (default),
 or to traverse its subfolders or submodules.

 If you invoke 'populate -recursive' and specify a
 folder, populate operates on the folder in a
 folder-centric fashion, fetching the objects in
 the folder and its subfolders.
 If the folders or subfolders contain modules
 or module members, populate fetches the objects,
 but does not follow hierarchical references
 (hrefs). To filter the set of objects on which
 to operate, use the -filter or -exclude options.

 If you invoke 'populate -recursive' and specify a
 module, populate operates on the specified module
 in a module-centric fashion, fetching all of the
 objects in the module and following its
 hierarchical references (hrefs) to fetch its
 referenced submodules. To filter the objects on

ENOVIA Synchronicity Command Reference - Module

287

 which to operate, use the -filter or -hreffilter
 options.

 Note: Because of the way module merge handles
 hierarchical reference, you cannot specify
 -recursive when doing a cross branch merge on a
 module, (pop -merge -overlay).

 If you invoke 'populate -recursive' on a subfolder
 of a module and provide a -modulecontext, populate
 recurses within the specified folder, fetching any
 object which is a member of the named module
 or one of its referenced submodules.
 Note: For modules, you cannot use the -recursive
 option with the -lock option.

 Note: The populate operation might skip
 subfolders and individual managed objects
 if their persistent selector lists differ
 from the top-level folder being populated;
 see the Description section for details.

 If you specify -norecursive when operating on
 a folder, DesignSync operates only on objects in
 the specified folder. In this case, populate
 does not traverse the vault folder hierarchy.
 Likewise, if you specify -norecursive when
 operating on a module, DesignSync operates
 only on the module objects and does not follow
 hrefs.

-reference

 -reference Populate with DesignSync references to objects
 in the vault. A reference does not have a
 corresponding file on the file system but does
 have local metadata that makes the reference
 visible to Synchronicity programs. Populate
 with references when you want your work area to
 reflect the contents of the vault but you do
 not need physical copies. Use the -reference
 option with the -lock option to populate with
 locked references. Locked references are
 useful if you intend to generate objects
 and want to lock them before regenerating,
 as opposed to editing the previous versions.

 Note: You should not use the -reference option
 with Cadence data collection objects. When
 the -reference option is used on Cadence
 collections, DesignSync creates a
 reference in the metadata for the
 collection object but member files are not
 processed and are not included in the

Primary Revision Control

288

 metadata.

-[no]replace

 -[no]replace This option determines how to handle locally
 modified objects when synchronizing your work
 area.

 The -replace option specifies that the populate
 operation updates locally unmodified workspace
 objects. This option leaves intact all managed
 objects that are not members of the module (if
 applicable) and all unmanaged objects. If an
 object has been removed from the version being
 fetched as a result of a remove operation or
 retired on the server, -replace removes the
 member from the workspace if it has not been
 locally modified. (Default)

 The -noreplace option specifies that the
 populate operation updates managed objects that
 have not been locally modified. The -noreplace
 option leaves intact all unmanaged objects. If
 an object has been removed from the version
 being fetched as a result of a remove, mvmember,
 rmhref or any other similar operation,
 -noreplace does not remove the corresponding
 file in the workspace.

 During a recursive populate, -noreplace leaves
 intact managed objects belonging to a
 referenced submodule even when the href has
 been removed. If the href has been changed to
 reference a different submodule, -noreplace:
 o Leaves intact managed objects that belong to
 the previous submodule but not to the
 new submodule
 o Replaces managed members that belong to both
 modules with the version belonging to
 the new module

 Notes:
 o See "Forcing, Replacing, and Non-Replacing
 Modes" above to see how the -force option
 interacts with the -[no]replace option.
 o If you use populate -version to populate
 a directory containing a module, DesignSync
 uses the -noreplace option unless -replace is
 explicitly specified.
 o If you apply the -filter or -hreffilter
 options, populate applies the -[no]replace
 option on the filtered data.
 o With a recursive operation, populate applies
 -replace and -noreplace behaviors to the

ENOVIA Synchronicity Command Reference - Module

289

 top-level module and then to each
 referenced submodule.

-report

 -report error| Specifies the amount and type of information
 brief|normal| displayed by the command. The information each
 verbose option returns is discussed in detail in the
 "Understanding the Output" section above.

 error - lists failures, warnings, and success
 failure count.

 brief - lists failures, warnings, module
 create/remove messages, some informational
 messages, and success/failure count.

 normal - includes all information from brief, and
 lists all the updated objects, and messages about
 objects excluded by filters from the
 operation. (Default)

 verbose - provides full status for each
 object processed, even if the object is not
 updated by the operation.

-[no]retain

 -[no]retain Indicates whether to retain the 'last modified'
 timestamp of the fetched objects as recorded
 when each object was checked into the vault. If
 the workspace is set to use a mirror, or the
 populate is run using -share, this will also
 apply to the object placed in the mirror or LAN
 cache if the object doesn't already exist in the
 mirror or cache. The links in your work area to
 the cache or mirror have timestamps of when the
 links were created.

 If you specify the -reference option, no object
 is created in your work area, so there is no
 timestamp information at all.

 If an object is checked into the vault and the
 setting of the -retain option is the only
 difference between the version in the vault and
 your local copy, DesignSync does not include the
 object in populate operations.

 If you do not specify '-retain' or -noretain',
 the populate command follows the DesignSync
 registry setting for Retain last-modification

Primary Revision Control

290

 timestamps. By default, this setting is not
 enabled; therefore, the timestamp of the local
 object is the time of the populate
 operation. To change the default setting, your
 Synchronicity administrator can use the
 SyncAdmin tool. For information, see SyncAdmin
 Help.

 The mirror system, by default,fetches objects
 into the mirror with the -retain option. The
 mirror administrator, however, can define
 mirrors to use the -noretain option. The default
 setting should agree with the Retain
 last-modification timestamp registry setting to
 maintain consistency. See the "Mirror
 Administration Server Registry Settings" topic
 for setting of the co or populate options for
 mirrors.

 Note: When fetching from the cache or mirror (by
 specifying the '-from local' option), the last
 modified timestamp comes from the file in the
 cache or mirror, not from the version that was
 checked into the vault. If the file was fetched
 into the cache or mirror with the -retain
 option, these two timestamps are the same. But
 if the file was fetched into the cache or mirror
 with the -noretain option and then fetched into
 the workspace with both the '-from local' and
 '-retain' options, the 'last modified' timestamp
 used is the time the object was fetched into the
 cache or mirror.

-savelocal

 -savelocal <value> This option affects collections that have local
 versions.

 When it fetches an object, the populate
 operation first removes from your workspace
 any local version that is unmodified. (To
 remove a local version containing modified
 data, specify 'pop -force'.) Then the populate
 operation fetches the object you are checking
 out (with the local version number it had at
 the time of checkin).

 The -savelocal option specifies the action
 that the populate operation takes with
 modified local versions in your workspace
 (other than the current, or highest numbered,
 local version). (DesignSync considers a local
 version to be modified if it contains modified
 members or if it is not the local version

ENOVIA Synchronicity Command Reference - Module

291

 originally fetched from the vault when the
 collection object was checked out or populated
 to your workspace.)

 Specify the -savelocal option with one of the
 following values:

 save - If your workspace contains a local
 version other than the local version being
 fetched, the populate operation saves the
 local version for later retrieval. See the
 'localversion restore' command for information
 on retrieving local versions that were saved.

 fail - If your workspace contains an object
 with a local version number equal to or higher
 than the local version being fetched, the
 populate operation fails. This is the default
 action.

 Note: If your workspace contains an object
 with local version numbers lower than the
 local version being fetched and if these local
 versions are not in the DesignSync vault, the
 populate operation saves them. This behavior
 occurs even when you specify '-savelocal fail'

 delete - If your workspace contains a local
 version other than the local version being
 fetched, the populate operation deletes the
 local version from your workspace.

 If you do not specify the -savelocal option,
 the populate operation follows the DesignSync
 registry setting for SaveLocal. By default,
 this setting is "Fail if local versions exist"
 ('-savelocal fail'). To change the default
 setting, a Synchronicity administrator can use
 the Command Defaults options pane of the
 SyncAdmin tool. For information, see SyncAdmin
 Help.

 Note:
 o You may need to use the -force option with
 the -savelocal option to allow the object
 being fetched to overwrite a locally
 modified copy of the object. For an example
 scenario, see EXAMPLES.
 o The -savelocal option affects only objects of
 a collection defined by the Custom Type
 Package (CTP). This option does not affect
 objects that are not part of a collection or
 collections that do not have local versions.

-share

Primary Revision Control

292

 -share Fetch shared copies. Shared objects are stored
 in the file cache directory and links to the
 cached objects are created in the work area.

 Notes:
 This option is not supported on Windows
 platforms.

 The -share option is mutually exclusive with the
 other fetch modes: -lock, -get, -mirror, and
 -reference. The -share option is also mutually
 exclusive with the -keys and -from options.

-trigarg

 -trigarg <arg> Specifies an argument to be passed from the
 command line to the triggers set on the
 populate operation. If the argument contains
 whitespace, enclose the argument within
 double quotation marks ("") if using the dss
 command shell or braces ({}) if using the stcl
 command shell.

-[no]unifystate

 -[no]unifystate Indicates whether to set the state of all objects
 processed, even up-to-date objects, to the
 specified state (-get, -lock, -share, -mirror, or
 -reference) or to the default fetch state if no
 state option is specified. See the
 "fetch preference" help topic for more
 information.

 By default, populate changes the state of only
 those objects that are not up-to-date
 (-nounifystate). If the -unifystate option is
 specified, DesignSync changes the state of the
 up-to-date objects, as well, and thus performs
 a full populate.

 The -unifystate option does not change the state
 of locally modified objects; use -force with
 -unifystate to force a state change, thus
 overwriting local modifications. The -unifystate
 option does not change the state of objects not
 in the configuration; use -force with
 -unifystate to remove objects not in the
 configuration.
 The -unifystate option does not cancel locks;
 you can check in the locked files, use the
 'cancel' command to cancel locks you have

ENOVIA Synchronicity Command Reference - Module

293

 acquired, or use the 'unlock' command to cancel
 team members' locks.

 Note: The -unifystate option is ignored when
 you lock design objects. If you populate with
 locked copies or locked references, DesignSync
 leaves all processed objects in the requested
 state.

-version

 -version <selector> Specifies the versions of the objects to
 populate. The selector list you specify
 (typically a version or branch tag) overrides
 the persistent selector lists of the objects you
 are populating. If you populate the top-level
 module in a hierarchy with the -version tag, you
 replace the persistent selector of the workspace
 with the version specified by this option. If
 you specify the -recursive option, the specified
 selector list is used to populate all subfolders
 during populates.

 If you specify a date selector (Latest or
 Date(<date>)), DesignSync augments the
 selector with the persistent selector list
 to determine the versions to populate. For
 example, if the persistent selector list
 is 'Gold:,Trunk', and you specify
 'populate -version Latest', then the selector
 list used for the populate operation is
 'Gold:Latest,Trunk:Latest'.

 For details on selectors and selector lists
 see the topic describing selectors.

 Note:
 o Using the -version option with the populate
 command changes the workspace selector if the
 populate was performed on a top-level
 module instance. If you are working in a
 module hierachy, you should use the swap
 replace command to change the sub-module
 version populated. If you populate individual
 module members or folders, the persistent
 selector is not updated.
 o If you use -version to populate a module
 member, populate fetches the version that is
 appropriate to the module version as
 identified by the version value.
 o If you use the -version option with the
 -incremental option, and the selector you
 specify does not exactly match the workspace
 selector, the incremental populate does not

Primary Revision Control

294

 occur. DesignSync performs a full populate
 instead. See "Incremental Versus Full
 Populate" in the description section for more
 information.
 o When using -version to specify a branch,
 specify both the branch and version as
 follows: <branchtag>:<versiontag>, for
 example, Rel2:Latest. You can also use the
 shortcut, <branchtag>:, for example Rel2:.
 If you do not explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.
 o When you specify a version-extended name that
 reflects the object's version, for example,
 "file.txt;1.3", populate ignores the
 -version option.
 o Specify '-version <branchtag>:Latest' only if
 necessary. In some cases, DesignSync augments
 the selector to be <branchtag>:Latest.
 When you append ':Latest', it may not match
 the work area selector. This mismatch
 invalidates your next incremental populate
 resulting in a slower, full populate.
 o The -version option is mutually exclusive
 with -merge unless you specify '-version
 Latest', the default.
 o The -version and -overlay options are
 mutually exclusive.

-view

 -view view1 Module view name or comma-delimited list of
 [,view2[,view...] module view names, applied to a module or module
 hierarchy when it is fetched.

 Note: This option is only valid for server
 module objects. If it is used with an argument
 type other than a server module url, the option
 is silently ignored.

 There is no default value for this option. You
 cannot set a default value in the command
 defaults system.

 On an initial populate, the module view name or
 names list provided is propagated through the
 hierarchy and applied to all fetched
 modules. The module view name or names list is
 also saved, or persisted in the workspace
 metadata for each module so that all subsequent
 populates use the same view. The documentation
 refers to a view saved in the metadata as a
 "persistent module view" because it persists
 through subsequent populates rather than

ENOVIA Synchronicity Command Reference - Module

295

 needed to be specified with each command.

 If a persistent module view has been set on a
 workspace module, any sub-modules subsequently
 populated use the persistent module view already
 defined for parent module.

 Tip: Since populate calls the Checkout Access
 Control, you can write an Access Control filter
 to cause populate to fail if no module view is
 specified or tie users to specific module
 views.

 Notes:
 o If none of the specified module views exist on
 the server, DesignSync issues a warning and
 the populate command runs as if no view were
 specified. If, in a list of module views, one
 or more views exists, and one or more views
 does not exist, the populate command silently
 ignores the non-existent view(s).

 o When the persistent module view set on the
 workspace is changed, the subsequent populate
 is a full populate. For more information on
 changing or clearing the persistent view, see
 the setview command.

-xtras

 -xtras <list> List of command line options to pass to the
 external module change management system. Any
 options specified with the -xtras option are
 sent verbatim, with no processing by the
 populate command, to the Tcl script that defines
 the external module change management system.

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.

 Notes:
 - "successfully processed" may not mean "successfully populated".
 For example, a populate of an object that you already have in
 your work area is considered a success even though no checkout
 occurs.
 - Scripts should only test for non-empty lists to determine

Primary Revision Control

296

 success or failure. The actual content of the non-empty
 lists might change in subsequent releases.
 - If all objects fail, an exception occurs (the return value is
 thrown, not returned).
 - Objects reported as "excluded by filter," may have been excluded
 either with the -filter option (for modules) or with the -exclude
 option (for any DesignSync objects.)

SEE ALSO

 caching, ci, command defaults, localversion, remove, selectors,
 setselector, setvault, setview, swap, url contents

EXAMPLES

• Example of Populating a Module
• Example of Populating a Specific Module Member
• Example of Populating a Module with a Static Selector
• Example of Populating a Module Using Version-Extended Naming
• Example of Creating a Module Cache
• Example of Populating an Mcache Link
• Example of Populating a Module View
• Example of Specifying a Hierarchical Hreffilter
• Example of Merge Across Branches

Example of Populating a Module

 The following example shows how to populate module Chip in the
 workspace directory ~/chip.
 For an initial populate, provide the server URL of the module:

 stcl> pop sync://guaraldi:30077/Modules/Chip

 This creates the Chip module with the current directory
 as the base directory:

 Beginning populate operation...

 Making Module with
 Base Dir = /home/karen/chip
 Name = Chip
 URL = sync://guaraldi:30077/Modules/Chip
 Selector = Trunk:Latest

 Created Module with instname Chip%1

 Populating objects in Module Chip%1 with Base Dir /home/karen/chip...

 /chip/makefile: Success - Checked Out version: 1.1
 /DOC/Chip.doc: Success - Checked Out version: 1.1

ENOVIA Synchronicity Command Reference - Module

297

 /chip/verilog/chip.v: Success - Checked Out version: 1.1

 Chip%1: Version of module in workspace updated to 1.2

 Finished populate of Module Chip%1 with Base Dir /home/karen/chip

 Finished populate operation...

 {Objects succeeded (3)} {}

 When you next update your work area using the populate command,
 you can supply the workspace module name or the workspace folder
 name. In the following example the workspace folder name is
 supplied, and there have been no changes since the last populate:

 stcl> pop -recursive ~/chip
 Beginning populate operation at Thu Apr 19 02:16:31 PM EDT 2007...

 Populating objects in Module Chip%1
 Base Directory /home/karen/chip
 Without href recursion

 Chip%1 : Version of module in workspace retained as 1.2

 Finished populate of Module Chip%1 with base directory
 /home/karen/chip

 Finished populate operation.

 {} {}

Example of Populating a Specific Module Member

 The following is an example of fetching a specific version of a
 module member:

 stcl> pop -version 1.4 File1.txt

 Populating objects in Module JitaMod1%0
 Base Directory /home/tachatterjee/JitaMOD
 Without href recursion

 Fetching contents from selector '1.4', module version '1.4'

 Total data to transfer: 0 Kbytes, 1 files, 0 collections
 Progress: 0 Kbytes, 1 files, 0 collections, 100.0% complete
 /File1.txt: Success - Checked Out version: 1.3

 Finished populate operation...

Primary Revision Control

298

 This fetches the version of the file File1.txt contained in
 version 1.4 of the module.

Example of Populating a Module with a Static Selector

 The following example shows the messages you receive when you
 populate a static selector into a workspace.

 dss> populate -recursive -version Gold Chip-R419%0
 Beginning populate operation at Fri Oct 28 12:41:08 Eastern Daylight
 Time 2016...

 Setting Selector [Gold] on workspace module
 c:\workspaces\ChipDev419\chip\Chip-R419%0
 WARNING: Chip-R419%0: Changing the selector to a static value (Gold).
 You will not be able to check in module or member modifications.

 Selector on module c:\workspaces\ChipDev419\chip\Chip-R419%0 was
 modified.

 Populating objects in Module Chip-R419%0
 Base Directory c:\workspaces\ChipDev419\chip
 With href recursion

 Fetching contents from selector 'Gold', module version '1.5.1.1'
...
 Finished populate operation.

 ##### WARNINGS and FAILURES LISTING #####
 #
 # WARNING: Chip-R419%0: Changing the selector to a static value
 #(Gold).
 # You will not be able to check in module or member modifications.
 #
 ###

 {Objects succeeded (6)} {Objects failed (0)}

Example of Populating a Module Using Version-Extended Naming

 The following example shows how to fetch a specific version of a
 module using a version-extended name.

 In this example, the latest version of the file is 1.5. You can
 do a vhistory to determine which version of the file you want to
 fetch.

 To fetch version 1.2 of the file:

 stcl> pop "File1.txt;1.2"

ENOVIA Synchronicity Command Reference - Module

299

 Beginning Check out operation...

 Checking out: File1.txt : Success - Fetched version: 1.2

 Checkout operation finished.

 Finished populate operation...

Example of Creating a Module Cache

 The following example shows how to populate a module cache using the
 -share option to create a copy of the module in a centralized
 location.

 Note: The module cache directory must be writable by the
 creator/owner of the module cache, but not by the users of the module
 cache.

 stcl> populate -share -

Example of Populating an Mcache Link

 The following example shows how to populate module Chip
 using the -mcachepaths option to fetch contents from the module
 cache named 'designs' located in the mcacheDir directory.

 stcl> populate -get -recursive -hrefmode static
 -path /home/rsmith/MyModules/designs -mcachemode link -mcachepaths
 /home/mcacheDir/ sync://srv2.ABCo.com:2647/Modules/Chip/

 Beginning populate operation at Mon Jun 23 10:36:43 AM EDT 2008...

 sync://srv2.ABCo.com:2647/Modules/Chip/: : Created mcache
 symlink /home/rsmith/MyModules/designs.

 Creating Module Instance 'Chip%1' with base directory
 '/home/rsmith/MyModules/designs'

 Finished populate operation.

 {Objects succeeded (1)} {}

 Note: Any existing workspace content will not be replaced with
 module cache links. To replace workspace content you must first
 remove from the workspace those configurations to be replaced. Use
 the 'rmfolder -recursive' command on the configuration base
 directory, or specify a non-existent directory for the -path option
 to create a new directory for the module cache links.

Primary Revision Control

300

Example of Populating a Module View

 This example shows populating a workspace with a module view list;
 specifically the the RTL and DOC Module Views.

 stcl> populate -get -view RTL,DOC -path ./Chip sync://
 srv2.ABCo.com:2647/Modules/Chip

 Beginning populate operation at Fri May 06 02:04:38 PM EDT 2011...

 Populating module instance with

 Base Directory = /users/larry/MyModules/Chip
 Name = Chip
 URL = sync:// srv2.ABCo.com:2647/Modules/Chip
 Selector = Trunk:
 Instance Name = Chip%2
 Metadata Root = / users/larry/MyModules
 View(s) = RTL,DOC

 Recursive Mode = Without href recursion

 Fetching contents from selector 'Trunk:', module version '1.9'
 Total data to transfer: 1 Kbytes (estimate), 5 file(s), 0 collection(s)

 Progress - from local cache: 0 Kbytes, 0 file(s), 0 collection(s)
 Progress - from server: 1 Kbytes, 5 file(s), 0 collection(s), 100.0%
complete

 Chip%2/makefile : Success - Checked out version: 1.2
 Chip%2/README : Success - Checked out version: 1.3
 Chip%2/doc/chip.html : Success - Checked out version: 1.2
 Chip%2/doc/chip.doc : Success - Checked out version: 1.2
 Chip%2/verilog/chip.v : Success - Checked out version: 1.5
 Chip%2/verilog/chip_inc.v : Success - Checked out version: 1.3

 Chip%2 : Version of module in workspace updated to 1.9

 Finished populate of Module Chip%2 with base directory
 /users/larry/MyModules/Chip

 Time spent: 0.2 seconds, transferred 1 Kbytes, copied from local
 cache 0 Kbytes, average data rate 4.9 Kb/sec

 Finished populate operation.

 {Objects succeeded (5)} {}

Example of Specifying a Hierarchical Hreffilter

 This example shows an initial populate using a hierarchical href
 filter to exclude the /BIN module from the workspace when it appears
 beneath the /JRE module. In this example, the module hierarchy is set

ENOVIA Synchronicity Command Reference - Module

301

 up like this:
 NZ214 <- ROM <- JRE <- BIN
 With NZ214 being the top-level Chip design module.

 Note: Whenever you use the -hreffilter option, you must populate
 recursively.

 dss> populate -recursive -retain -full -hreffilter JRE/BIN
 sync://serv1.ABCo.com:2647/Modules/Chip/NZ214

 Beginning populate operation at Wed Dec 11 13:24:31 Eastern Standard
 Time 2013...

 Populating module instance with
 Base Directory = c:\workspaces\V6R2014x\chipDesign
 Name = NZ214
 URL = sync://serv1.ABCo.com:2647/Modules/Chip/NZ214
 Selector = Trunk:
 Instance Name = NZ214%1
 Metadata Root = c:\workspaces\V6R2014x
 Recursive Mode = With href recursion

 Fetching contents from selector 'Trunk:', module version '1.3'

 Total data to transfer: 0 Kbytes (estimate), 6 file(s), 0 collection(s)
 Progress - from local cache: 0 Kbytes, 0 file(s), 0 collection(s)
 Progress - from local cache: 0 Kbytes, 0 file(s), 0 collection(s)

 Progress - from server: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress - from server: 1 Kbytes, 6 file(s), 0 collection(s), 100.0%
complete

 NZ214%1\chip.ver : Success - Checked out version: 1.1
 ...
 Creating sub module instance 'ROM%1' with base directory
 'c:\workspaces\V6R2014x\chipDesign\ROM'

 Finished populate of Module NZ214%1 with base directory
 c:\workspaces\V6R2014x\chipDesign

 Time spent: 0.3 seconds, transferred 1 Kbytes, copied from local cache 0
Kbytes, average data rate 3.4 Kb/sec

 ===

 Populating sub module instance with
 Base Directory = c:\workspaces\V6R2014x\chipDesign\ROM
 Name = ROM
 ...
 Creating sub module instance 'JRE%0' with base directory
 'c:\workspaces\V6R2014x\chipDesign\ROM\JRE'

 Finished populate of Module ROM%1 with base directory
 c:\workspaces\V6R2014x\chipDesign\ROM

 Time spent: 0.0 seconds, transferred 0 Kbytes, copied from local

Primary Revision Control

302

 cache 0 Kbytes, average data rate 0.0 Kb/sec

 ===

 Populating sub module instance with
 Base Directory = c:\workspaces\V6R2014x\chipDesign\ROM\JRE
 ...
 JRE%0 : Version of module in workspace updated to 1.2

 BIN : Sub Module Excluded by Hierarchical Filter
 Finished populate of Module JRE%0 with base directory
 c:\workspaces\V6R2014x\chipDesign\ROM\JRE

 Time spent: 0.0 seconds, transferred 0 Kbytes, copied from local
 cache 0 Kbytes, average data rate 0.0 Kb/sec

 Finished populate operation.

 {Objects succeeded (8)} {}

Example of Merge Across Branches

 This example shows a simple module merge across branches. After you
 perform the merge, you must check in your changes to apply the merge
 changes to the modules.

 dss> pop -merge -overlay Branch: ROM%1
 Beginning populate operation at Tue Apr 10 01:55:24 PM EDT 2007...

 Populating objects in Module ROM%1
 Base Directory /home/rsmith/MyModules/rom
 Without href recursion

 Fetching contents from selector 'Branch:', module version '1.3.1.3'

 Merging with Version: 1.3.1.3
 Common Ancestor is Version: 1.3

 ==
 Step 1: Identifying items to be merged and conflict situations
 ==

 /romMain.c : member will be fetched from merged version and
 added to workspace version on checkin.
 Use 'ls -merged added' to identify members added by merge.
 /rom.v : conflict - different member in merge version found at same natural
 path in workspace version. Cannot fetch member or merge contents
 with member from merge version; it will be skipped. If member from
 merge version is desired, remove or move member on workspace
 branch and then re-populate with overlay from merge version.

ENOVIA Synchronicity Command Reference - Module

303

 /rom.v : Natural path different on merge version and workspace version.
 Contents will be merged, if required.
 /rom.doc : No merge required.
 /doc/rom.doc : No merge required.

 ==
 Step 2: Transferring data for any items to be fetched into the
 workspace
 ==

 Total data to transfer: 0 Kbytes (estimate), 1 file(s), 0 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 1 Kbytes, 1 file(s), 0 collection(s), 100.0% complete

 ===
 Step 3: Merging file contents as required into the workspace
 ===

 Beginning Check out operation...

 Checking out: rom.v : Success - Version
 1.1.1.1 has replaced version 1.1.
 Checking out: rom.c : Success - Version
 1.1.1.1 has replaced version 1.1.

 Checkout operation finished.

 ==
 Step 4: Updating files fetched into the workspace
 ==

 /romMain.c : Success - Version 1.1 fetched

 ROM%1 : Version of module in workspace not updated (Due to overlay
 operation).

 ==
 Step 5: Comparing hrefs for the workspace version and merge version:
 ==
 No hrefs present in workspace version
 No hrefs present in merge version

 Finished populate of Module ROM%1 with base directory
 /home/rsmith/MyModules/rom

 Time spent: 0.2 seconds, transferred 1 Kbytes, average data rate 4.3 Kb/sec

 Finished populate operation.

 {Objects succeeded (3)} {}

 After the populate has completed, run ci to create the new module

Primary Revision Control

304

 version with the merge changes.

 dss> ci -comment "Incorporating changes on Branch:" ROM%1
 Beginning Check in operation...

 Checking in objects in module ROM%1

 Total data to transfer: 1 Kbytes (estimate), 3 file(s), 0 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 2 Kbytes, 3 file(s), 0 collection(s), 100.0% complete

 Checking in: /rom.c Success - New version: 1.2
 Checking in: /rom.v Success - New version: 1.2
 Checking in: /romMain.c Success - New version: 1.1.1.1

 ROM%1: Version of module in workspace updated to 1.5

 Finished checkin of Module ROM%1, Created Version 1.5

 Time spent: 0.7 seconds, transferred 2 Kbytes, average data rate 2.8 Kb/sec
 Checking in: /doc/rom.doc : Success - No new
 version created. Lock Removed.

 Checkin operation finished.

 {Objects succeeded (4)} {}

 After the checkin has created the new module version, you can create
 a merge edge to store a record of the changes.

 dss> mkedge ROM%1
 Edge from 1.3.1.3 to 1.5 for module
 sync://srv2.ABCo.com:2647/Modules/ROM created successfully.

showmods

showmods Command

NAME

 showmods - Displays the modules available on a server or
 workspace

DESCRIPTION

• Understanding the Output

 This command lists the available modules and external modules within

ENOVIA Synchronicity Command Reference - Module

305

 a workspace or on a specified server, and legacy modules on a
 specified server.

 If the command is run within a module directory structure, the
 showmods command includes the containing modules.

 Note: Legacy modules in a workspace do not display with showmods.

 The showmods command identifies mcache links to modules within the
 workspace.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Understanding the Output

 The output of the command depends on whether you specify a module on
 the server or a folder in your workspace.

 The output can be formatted for easy viewing (-format text) or
 optimized for Tcl processing (-format list). Both viewing formats
 show the same information, but may have different names. In the table
 below, the Column Titles column shows the text output column header
 and the Property Names column shows list output key value.

 By default, or if you run the showmods command with the '-report
 normal' option, the following information is output according to the
 type of argument being processed:

 When the argument is a server module, showmods displays the following
 information:
 Column Property
 Titles Names Description
 ------ ----- ------------
 Name name Name of the module.
 Note: Modules are displayed
 alphabetically by name.
 Owner owner User name of the person who created the
 module.
 Path path The vault directory containing the
 contents of the module.

 When the argument is a workspace folder, showmods displays the
 following information:
 Column Property
 Titles Names Description
 ------ ----- ------------
 Name name Name of the module.
 Note: Modules are displayed
 alphabetically by name.

 Instance modinstname Unique instance name of the module in

Primary Revision Control

306

 the workspace.

 Base Workspace directory containing the
 Directory basedir contents of the module.

 Url url Location of the module on the server.
 Note: For external modules, the URL is
 sync:///ExternalModule/<external-type>/<external-data>

 Selector selector Selector used to determine which version
 to fetch into a workspace. For more
 information, see the selectors help
 topic.

 Mcache Path mcachelink Location of the module cache directory
 containing the module.
 Note: If you run the showmods commands
 with -format text (default) when there
 are mcaches present in the workspace, the
 mcache link information: name, instance
 name and mcache path, display in a
 separate section below the module
 information.

 If you run the showmods command with '-report brief', it displays the
 following information.

 o For server modules - module path on the server,
 sorted by path. The column title is Module Path. The property name
 is path.
 o For workspace modules - full directory path for the workspace
 folder, sorted by path. The column title is Unique Address. The
 property name is address.

 If you run the showmods command with '-report verbose', it displays
 the information shown with the -normal option and the following
 additional information:

 For a server module:
 Column Property
 Titles Names Description
 ------ ----- ------------
 Comment comment Comment used when creating a module.

 Url url Full sync URL of the module.
 Note: For external modules, the URL is
 sync:///ExternalModule/<external-type>/<external-data>

 Type type The type of module being viewed.
 o standard - a regular module.
 o legacy module - a legacy module.
 o external - an external module
 containing files managed by a different
 change management system.

 For a workspace module:
 Column Property

ENOVIA Synchronicity Command Reference - Module

307

 Titles Names Description
 ------ ----- ------------
 Unique
 Address address Full module address on the client side.
 Version version The version information for the module
 version in the workspace.

 Top toplevel Denotes whether the module is a top-level
 module (meaning it has no other modules
 in the workspace containing an href to
 the reported module). A value of "yes"
 (or "1") means the module is a
 top-level. A value of "no" (or "0")
 means it is not a top-level module.

 If you run the showmods command with '-report script', it displays
 the same properties as the verbose report in '-format list' mode.

 Note: The '-report script' mode is only applicable for workspace arguments.

SYNOPSIS

 showmods [-[no]all] [-format [{text | list}] [-filter <string>]
 [-report {brief | normal | verbose | script}] [-[no]top]
 [<argument>]

ARGUMENTS

• Server Path
• Workspace Folder

Server Path

 <server path> A server path. You can use wildcard
 characters in the path for any piece of the
 address except the servername and port
 number. If the path isn't specified, the
 command will return information for all
 modules, including legacy modules, on the
 server.

Workspace Folder

 <workspace folder> A workspace folder. Specifying a workspace
 folder displays all modules with a base
 directory at or below the specified
 folder. In addition, if the folder is a member
 of a module whose base directory is above the

Primary Revision Control

308

 folder, then that module is also reported.
 You can use wildcard characters for any part
 of the workspace folder name.

 Note: This will never display any legacy
 modules, since they do not have metadata in
 the root directory.

 Note: If no argument is specified, showmods command uses the current
 directory.

OPTIONS

• -[no]all
• -format
• -filter
• -report
• -[no]top

-[no]all

-[no]all
 Determines whether to report on the specified
 workspace folder or on all modules in the
 workspace using the workspace root directory of
 the specified workspace folder.

 -noall reports on the specified workspace
 folder. (Default)

 -all begins at the workspace root directory of the
 workspace and reports all the modules found in
 the workspace. Given that the workspace root is
 usually defined in a directory path one or
 more levels higher than the argument given to
 the showmods command, the -all option may list
 modules that are outside of the directory cone
 below the argument's path.

 This option is only valid when working with workspace
 folder arguments.

-format

 -format <mode> Determines the format of the output. For
 information about the information displayed,
 and the output sort order, see the
 "Understanding the Output" section.
 Valid values are:
 o list - Displays a list with the following

ENOVIA Synchronicity Command Reference - Module

309

 format:
 {
 name <name>

 }

 Note: This option replaces the deprecated
 -report script option.

 o text - Display a text table with headers and
 columns. (Default)

-filter

 -filter <string> Specify one or more extended glob-style
 expressions to identify an exact subset of
 module objects on which to operate.

 The -filter option takes a list of expressions
 separated by commas, for example: -filter
 +.../ProjectA/../*,-.../RAM*

 Prepend a '-' character to a glob-style
 expression to identify objects to be excluded
 (the default). Prepend a '+' character to a
 glob-style expression to identify objects to
 be included. Note that if the list of
 expressions begins with an include
 character ('+'), the filter excludes all
 objects except those that match the include
 string.

 For this command, the expressions are matched
 against the full module URL for each module
 (sync://host:1234/Modules/MyMod)

 The extended glob-style expressions you use to
 filter the objects are standard glob-style
 expressions, but they are extended so that you
 can use the "..." syntax to indicate that the
 expression matches any number of directory
 levels. For example, the expression, "...
 /ProjectA/.../Rom*" matches Rom* modules in a
 URL that contains "ProjectA", followed by zero
 or more levels. The command traverses the
 directory structure. If a directory name
 matches an exclude clause of the filter, then
 the entire directory and all its contents are
 filtered (the command stops descending at that
 point), otherwise the command continues
 traversing the directory structure searching
 for matching objects.

Primary Revision Control

310

-report

 -report <mode> Determines what the output of the command is.
 For more information on the output of the
 -report option, see the "Understanding the
 Output" section.

 Valid values are:

 o brief - Displays path or workspace location
 for the specified server or workspace module.

 o normal - Displays basic module information
 for the specified server or workspace
 module. (Default)

 o verbose - Displays extended module
 information for the specified server or
 workspace module.

 o script - Displays the extended module
 information for the specified workpace
 module in a TCL list.

 Note: When -script mode is used, The format
 mode is automatically set to -list.

-[no]top

-[no]top Determines whether to display output for all
 modules or only the top-level modules, modules
 with no other modules in the workspace
 containing an href to the reported module.

 -notop Does not filter the command output and
 displays all module information. (Defaut)

 -top Filters the command output to only list
 top-level modules.

 This option is only valid when working with
 workspace folder arguments.

RETURN VALUE

 If you run the showmods command with the '-format list' option, it
 returns a Tcl list. For a description of the output, see the
 "Understanding the Output" section. If the command fails, it returns
 a Tcl error.

ENOVIA Synchronicity Command Reference - Module

311

SEE ALSO

 swap show, mkmod, command defaults
,

EXAMPLES

• Example of Showing the Modules on the Server in Text Format
• Example of Showing the Modules on the Server in List Format
• Example Showing the Server Modules Using Verbose Report Mode
• Example Showing a TCL List of Server Modules Using Verbose Report Mode

 These examples list the modules available on the DesignSync server
 sync://srvr1.ABCo.com:2647. The examples show the showmods command
 running with the two report modes (normal and verbose) and both
 format options (text and list) to show the different output.

Example of Showing the Modules on the Server in Text Format

 The following two examples display to the screen in a user-friendly
 format the modules available on the DesignSync server
 sync://srvr1.ABCo.com:2647. The first example specifies a server
 module. The second example specifies a workspace folder. The
 workspace folder contains referenced modules, ROM and CPU and mcache
 module Tools.

 dss> showmods sync://srvr1.ABCo.com:2647/Modules/Chip

 Beginning showmods operation ...
 Name Owner Path

 Chip rsmith Modules/Chip

 Finished showmods operation.

 dss> showmods ~/MyModules
 Beginning showmods operation ...

 Name Instance Base Directory
 Url Selector

 ALU ALU%0 /home/rsmith/MyModules/alu
 sync://srvr1.ABCo.com:2647/Modules/ALU Trunk:
 Chip Chip%0 /home/rsmith/MyModules/chip
 sync://srvr1.ABCo.com:2647/Modules/Chip Trunk:
 Chip Chip%1 /home/rsmith/MyModules/chipGold
 sync://srvr1.ABCo.com:2647/Modules/Chip Gold:
 CPU CPU%1 /home/rsmith/MyModules/chip/CPU
 sync://srvr1.ABCo.com:2647/Modules/CPU Gold
 ROM ROM%1 /home/rsmith/MyModules/chip/CPU/ROM

Primary Revision Control

312

 sync://srvr1.ABCo.com:2647/Modules/ROM Gold:
 SPC SPC%0 /home/rsmith/MyModules/spc
 sync://srvr1.ABCo.com:2647/Modules/SPC Trunk:
 300MM 300MM%0 /home/rsmith/MyModules/300mm
 sync://srv1.ABCo.com:2647/Modules/300MM Trunk:

 MCACHE LINKS

 Name Instance Mcache Path

 300MM Chip300MM%0 /home/mcacheDir/300mm/300MM%0

 Finished showmods operation.

Example of Showing the Modules on the Server in List Format

 The following two examples display to the screen in Tcl format the
 modules available on the DesignSync server
 sync://srvr1.ABCo.com:2647. The first example specifies a server
 module. The second example specifies a workspace folder. The
 workspace folder contains referenced modules, ROM and CPU.

 dss> showmods -format list sync://srvr1.ABCo.com:2647/Modules/Chip
 {name Chip owner rsmith path Modules/Chip}

 dss> showmods -format list ~/MyModules
 {name ALU modinstname ALU%0 basedir /home/rsmith/MyModules/alu url
 sync://srvr1.ABCo.com:2647/Modules/ALU selector Trunk:} {name Chip
 modinstname Chip%0 basedir /home/rsmith/MyModules/chip url
 sync://srvr1.ABCo.com:2647/Modules/Chip selector Trunk:} {name Chip
 modinstname Chip%1 basedir /home/rsmith/MyModules/chipGold url
 sync://srvr1.ABCo.com:2647/Modules/Chip selector Gold:} {name CPU
 modinstname CPU%1 basedir /home/rsmith/MyModules/chip/CPU url
 sync://srvr1.ABCo.com:2647/Modules/CPU selector Gold} {name ROM
 modinstname ROM%1 basedir /home/rsmith/MyModules/chip/CPU/ROM url
 sync://srvr1.ABCo.com:2647/Modules/ROM selector Gold:} {name SPC
 modinstname SPC%0 basedir /home/rsmith/MyModules/spc url
 sync://srvr1.ABCo.com:2647/Modules/SPC selector Trunk:}
 {name 300MM modinstname Chip300MM%0 basedir
 /home/rsmith/MyModules/300mm url
 sync://srv1.ABCo.com:2647/Modules/300MM selector Trunk: mcachelink
 /home/mcacheDir/300mm/300MM%0}

Example Showing the Server Modules Using Verbose Report Mode

 The following two examples display to the screen in a user-friendly
 format the modules available on the DesignSync server
 sync://srvr1.ABCo.com:2647. The first example specifies a server
 module. The second example specifies a workspace folder. The
 workspace folder contains referenced modules, ROM and CPU.

ENOVIA Synchronicity Command Reference - Module

313

 dss> showmods -report verbose sync://srvr1.ABCo.com:2647/Modules/Chip
 Beginning showmods operation ...

 Name Type Owner Path
 URL Comment
 --
 Chip standard rsmith Modules/Chip
 sync://srvr1.ABCo.com:2647/Modules/Chip Chip design module

 Finished showmods operation.

 dss> showmods -report verbose ~/MyModules
 Beginning showmods operation ...

 Name Instance Base Directory
 Unique Address
 Url Version Selector

 ALU ALU%0 /home/rsmith/MyModules/alu
 /home/rsmith/MyModules/alu/ALU%0
 sync://srvr1.ABCo.com:2647/Modules/ALU 1.4 Trunk:
 Chip Chip%0 /home/rsmith/MyModules/chip
 /home/rsmith/MyModules/chip/Chip%0
 sync://srvr1.ABCo.com:2647/Modules/Chip 1.5 Trunk:
 Chip Chip%1 /home/rsmith/MyModules/chipGold
 /home/rsmith/MyModules/chipGold/Chip%1
 sync://srvr1.ABCo.com:2647/Modules/Chip 1.2.1.1 Gold:
 CPU CPU%1 /home/rsmith/MyModules/chip/CPU
 /home/rsmith/MyModules/chip/CPU/CPU%1
 sync://srvr1.ABCo.com:2647/Modules/CPU 1.3 Gold
 ROM ROM%1 /home/rsmith/MyModules/chip/CPU/ROM
 /home/rsmith/MyModules/chip/CPU/ROM/ROM%1
 sync://srvr1.ABCo.com:2647/Modules/ROM 1.4 Gold:
 SPC SPC%0 /home/rsmith/MyModules/spc
 /home/rsmith/MyModules/spc/SPC%0
 sync://srvr1.ABCo.com:2647/Modules/SPC 1.4 Trunk:
 300MM 300MM%0 /home/rsmith/MyModules/300mm
 /home/rsmith/MyModules/300mm/300MM%0
 sync://srv1.ABCo.com:2647/Modules/300MM Trunk:

 MCACHE LINKS

 Name Instance Mcache Path

 300MM Chip300MM%0 /home/mcacheDir/300mm/300MM%0

 Finished showmods operation.

Example Showing a TCL List of Server Modules Using Verbose Report Mode

 The following two examples display to the screen in Tcl format the
 modules available on the DesignSync server
 sync://srvr1.ABCo.com:2647. The first example specifies a server

Primary Revision Control

314

 module. The second example specifies a workspace folder. The
 workspace folder contains referenced modules, ROM and CPU.

 Note: The results of the second command are identical to specifying
 'showmods -report script.'

 dss> showmods -format list -report verbose \
 sync://srvr1.ABCo.com:2647/Modules/Chip
 {name Chip type standard owner rsmith path Modules/Chip url
 sync://srvr1.ABCo.com:2647/Modules/Chip comment {}}

 dss> showmods -report verbose -format list ~/MyModules
 {name ALU modinstname ALU%0 basedir /home/rsmith/MyModules/alu
 address /home/rsmith/MyModules/alu/ALU%0 url
 sync://srvr1.ABCo.com:2647/Modules/ALU version 1.4 selector Trunk:}
 {name Chip modinstname Chip%0 basedir /home/rsmith/MyModules/chip
 address /home/rsmith/MyModules/chip/Chip%0 url
 sync://srvr1.ABCo.com:2647/Modules/Chip version 1.5 selector
 Trunk:} {name Chip modinstname Chip%1 basedir
 /home/rsmith/MyModules/chipGold address
 /home/rsmith/MyModules/chipGold/Chip%1 url
 sync://srvr1.ABCo.com:2647/Modules/Chip version 1.2.1.1 selector
 Gold:} {name CPU modinstname CPU%1 basedir
 /home/rsmith/MyModules/chip/CPU address
 /home/rsmith/MyModules/chip/CPU/CPU%1 url
 sync://srvr1.ABCo.com:2647/Modules/CPU version 1.3 selector Gold}
 {name ROM modinstname ROM%1 basedir
 /home/rsmith/MyModules/chip/CPU/ROM address
 /home/rsmith/MyModules/chip/CPU/ROM/ROM%1 url
 sync://srvr1.ABCo.com:2647/Modules/ROM version 1.4 selector Gold:}
 {name SPC modinstname SPC%0 basedir /home/rsmith/MyModules/spc
 address /home/rsmith/MyModules/spc/SPC%0 url
 sync://srvr1.ABCo.com:2647/Modules/SPC version 1.4 selector Trunk:}
 {name 300MM modinstname Chip300MM%0 basedir
 /home/rsmith/MyModules/300mm address
 /home/rsmith/MyModules/300mm/Chip300MM%0 url
 sync://srv1.ABCo.com:2647/Modules/300MM version 1.3 selector Trunk:
 mcachelink /home/mcacheDir/300mm/300MM%0}

showstatus

showstatus Command

NAME

 showstatus - Displays the status of a module in your
 workspace

DESCRIPTION

ENOVIA Synchronicity Command Reference - Module

315

• Understanding the Output
• Text Formatted Output
• List Formatted Output
• External Module Support
• Legacy Module Output

 This command lists the status of the hierarchical references of a
 module in your local work area as compared to that
 module on the server. The main status changes shown by this command
 include:
 o Selector changes
 o Added or removed hierarchical references
 o Hierarchical reference conflicts
 o Added, moved, or removed module members
 o Swapped module

 Using this command, you can verify that your workspace is up-to-date.
 By default the showstatus command does not show the status of module
 members. In order to show object status, you must specify the
 -objects option.

 Notes:
 * When the persistent hrefmode of the workspace is normal,
 showstatus uses the setting of the "Change traversal mode with
 static selector on top level module" option in SyncAdmin (registry
 key "HrefModeChangeWithTopStaticSelector") to determine how the
 module hierarchy should be understood by the command. If the
 setting is enabled and the top-level module is populated with a
 static selector, then the modules populated in the workspace must
 match the expected static versions in order to be considered
 up-to-date.

 * If a module in the workpace is swapped, the showstatus commands
 reports the status of the swapped module as "up-to-date," and
 indicates that the module has been swapped.

 * If a hierarchical reference to a submodule version has been
 overridden by a higher-level href, the hierarchical reference
 within the parent module is NOT considered modified.

 * When working with mcache links in older clients, showstatus may
 report the module as out of date.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Understanding the Output

 The output can be restricted using the -report option. The -report
 brief and -report summary options provide summary information on the

Primary Revision Control

316

 workspace status, while the -report normal option provides more
 detail. The -report verbose mode provides additional information
 about whether the hierarchical references need updating.

 Note: You can set the -report normal mode to report on the "needs
 update" status of hierarchical references with the
 ShowHrefsNeedCheckinStatus registry key. For more information on
 setting the registry key, see the DesignSync Administrator's Guide.

 The output can be formatted for easy viewing (-format text) or
 optimized for Tcl processing (-format list). Both formats show
 similar information, but the forms are very different. The following
 sections, "Text Formatted Output" and "List Formatted Output,"
 provide specific information about the information returned by the
 showstatus command.

 The module status can change depending on the options specified with
 the command. For more information, see the output sections below or
 the options definitions.

 Note: For information on legacy module output, see the "Legacy
 Modules output" section.

Text Formatted Output

 The showstatus output is formatted into different sections for ease
 of use:
 o The module information section provides the sync URL of the server
 modules and the base directory of the workspace module. This
 section does not appear when -report summary or brief modes are
 specified.

 o The version status section displays the version information for
 both the workspace and server modules and the unique identifiers
 (UID) for the modules, if they are different. The -report summary
 mode displays a single line indicating whether the versions are the
 same or different. The -report brief mode displays a single line if
 the version are the same, or the version information if the
 versions are different.

 o The hierarchical reference section compares the hrefs in the local
 metadata with the appropriate server-side module designated by the
 selector found in the workspace. The -report summary mode displays
 a single line notice indicating whether the hrefs are the same or
 different. The -report brief mode displays a single line if the
 hrefs are the same, or the list of differences if they are
 different. This section does not appear at all if the -nohrefs
 option is specified.

 o The href conflicts section compares the expected hrefs (those
 stored with the parent module) with the actual contents of the
 workspace. If the URL, selector, or static version doesn't match,
 the parent module shows a status of "Needs Checkin." For any
 swapped modules, a line appears for the referenced module

ENOVIA Synchronicity Command Reference - Module

317

 providing information about the swapped module version. This
 section does not appear in -report brief or summary modes or if the
 -nohrefs option is specified.

 o The hrefs missing section highlights any referenced objects which
 are not present in the workspace. This section does not appear
 in -report brief or summary modes or if the -nohrefs option is
 specified.

 o The contents section displays the results of comparing the objects
 in the workspace to the objects in the server. This section does
 not appear in -report summary mode or if the -noobjects option is
 specified. If -report brief mode is specified, the command uses the
 -report brief form of compare.

 Note: When you run showstatus on a DesignSync vault, this is the
 only section displayed.

 o The hierarchical status section recursively reports the status for
 all hierarchical references in the workspace. This section does
 not appear if the -norecursive option is specified.

 At the end of the showstatus output, the command displays an overall
 status of the workspace and a recommended action, if an action is
 needed.

 Status Description
 ------ -----------
 Up-to-date The workspace and the server versions are identical.

 Out-of-date There is at least one discrepancy between the version
 present in the workspace and the version on the server.

 Unknown The status could not be determined. This may happen
 if a server is unreachable.

 Recommended
 Action Solution
 ------------ ---------
 Needs update The workspace version needs to be repopulated to
 synchronize it with the server.

 Needs checkin The workspace contains information that has not been
 captured in a version on the server. Check in your
 changes, to update the server version.

List Formatted Output

 When showstatus is used with the -format list option, the output is
 returned in the form of a tcl list describing the objects and their
 status. The properties returned for each object depend on the type
 of object being examined and the options specified on the command
 line.

Primary Revision Control

318

 Note: If the object doesn't exist (exist is 0) then most of the
 values return a null ("") value.

 Note: This table lists the properties in alphabetical order, not
 necessarily the output order of the command.

 Property
 Names Description
 ------- ------------
 actual Property list for the object in a workspace. The
 property list consists of the following properties:
 o url
 o selector
 o version
 o uid

 basedir Absolute path of the base directory of the
 object.

 conflicts List of differences between the list of expected
 hrefs in the workspace and the actual workspace
 content.

 content Results of running a compare command on the contents
 of the workspace and the server. This report only
 appears when the -objects option is specified.

 content_status Status of the objects in the module or DesignSync
 vault.
 o Up-to-date - Objects contained in the workspace and
 server versions are synchronized.
 o Out-of-date - There are differences in the objects
 listed in the workspace and server versions. These
 differences include different object versions and
 added or removed objects.

 exists Indicates whether the object exists in the
 workspace. Possible values include:
 o 1 - object exists in the workspace.
 o 0 - object does not exist in the workspace.

 fullname Full, unique workspace address.

 hier_status Overall status of the referenced objects.
 o Up-to-date - Workspace and server versions are
 synchronized.
 o Out-of-date - Workspace and server versions are
 different.

 hierarchy An array of the referenced objects present in the
 workspace, indexed by href name.
 o name - Href name.
 o type - type of object referenced. Possible values
 include Module, Branch, Selector, External,
 Release, Alias, Deliverable, or Vault.
 o url - Server-side vault of the referenced object.
 o selector - selector for the referenced object.

ENOVIA Synchronicity Command Reference - Module

319

 o version - if the reference object is a module, the
 numeric version ID. For any other object, a null
 ("") value.
 o relpath - relative path of the referenced object.
 o status - the status of the referenced object.
 Possible values include:
 - Up-to-date where the workspace and server
 metadata for the href instance match.
 - Out-of-data where a difference exists among one
 or more of the values in the hierarchy array.
 The notes section in the array explains the
 difference.
 - Local-only where an href with the href instance
 name is present only in the workspace metadata.
 - Server-only where an href with the href instance
 name is present only in the server metadata.
 o notes - List of strings describing the
 discrepancies mentioned in the status
 value. Possible values include:
 - "Relative path changed on server to <relpath>"
 - "Url changed on server to <URL>"
 - "Selector changed on server to <selector>"
 - "Version changed on server to <version>"

 Note: In -report brief mode, this property only lists
 out-of-data hrefs. This property does not appear in
 -report summary mode or when the -norecursive option
 is specified.

 hrefs Combined array of hrefs found on the workspace and on
 the server. This property does not appear in -report
 summary mode or when the -nohrefs option is
 specified. The array contains the following fields:
 o name - Href name.
 o type - type of object referenced. Possible values
 include Module, Branch, Selector, Release, Alias,
 Deliverable, or Vault.
 o url - Server-side vault of the referenced object.
 o selector - selector for the referenced object.
 o version - if the reference object is a module, the
 numeric version ID. For any other object, a null
 ("") value.
 o relpath - relative path of the referenced object.
 o status - the status of the referenced object.
 Possible values include:
 - Up-to-date where the workspace and server
 metadata for the href instance match.
 - Out-of-data where a difference exists among one
 or more of the values in the hierarchy array.
 The notes section in the array explains the
 difference.
 - Local-only where an href with the href instance
 name is present only in the workspace metadata.
 - Server-only where an href with the href instance
 name is present only in the server metadata.
 o notes - List of strings describing the
 discrepancies mentioned in the status

Primary Revision Control

320

 value. Possible values include:
 - "Relative path changed on server to <relpath>"
 - "Url changed on server to <URL>"
 - "Selector changed on server to <selector>"
 - "Version changed on server to <version>"

 href_status Status of the hierarchical reference metadata in the
 workspace.
 o Up-to-date - Workspace and server versions are
 synchronized.
 o Out-of-date - Workspace and server versions are
 different.

 legacy_status Legacy show status for legacy configurations. For
 more information, see the "Legacy module output"
 section.

 missing Names of the hrefs expected in the workspace that
 are not present in the workspace. This property does
 not appear in -report brief or summary modes.

 Note: Missing hrefs do not automatically mean the
 workspace and server are out of sync. An href may
 have been filtered out during the workspace populate,
 or removed from the workspace manually.

 modinstname Workspace module instance name.

 needs_checkin Status of the object in the workspace:
 0 Indicates that the object is up-to-date and does
 not require a checkin.
 1 Indicates the object is locally modified and does
 require a checkin.

 needs_update Status of the object in the workspace:
 0 Indicates that the object is up-to-date and does not
 need to updated by the server.

 1 Indicates that the object is out-of-date and does
 need to be updated by the server.

 server Property list for the object on a server which which
 the workspace object is being compared. These are
 the properties of the module or DesignSync vault to
 which the workspace selector resolves.
 o url
 o selector
 o version
 o uid

 status Status of the workspace object.
 o Up-to-date where the workspace and server versions
 are synchronized.
 o Out-of-date where the workspace and server versions
 are different.
 o Unknown where the status of the object could not be
 determined. This might occur if a server is

ENOVIA Synchronicity Command Reference - Module

321

 unavailable.

 swap_conflict Shows the properties of the swapped modules, including
 the href name, selector and version for each swapped
 module version.

 swapped Indicates whether the href is swapped.
 o 1 - object is swapped.
 o 0 - object is not swapped.

 type Workspace object type. Possible values include:
 o standard - module
 o legacy module
 o external - external module
 Note: External modules are always considered
 "up-to-date."
 o DS vault
 o deliverable - IP Gear deliverable.

 uid UID of the module in the workspace.

 unknown Status of the object hierarchy in the external module.
 0 Indicates that the external module hierarchy status
 is known.
 1 Indicates that the external module hierarchy status
 is not known.

 version_status Status of the workspace version.
 o Up-to-date - Workspace version and server version
 associated with the workspace by the designated
 select are synchronized.
 o Out-of-date - Workspace version and server version
 associated with the workspace by the designated
 selector are different.

External Module Support

 DesignSync supports showing the status of an external module to
 determine whether the objects are current or out of date. After an
 external module has been populated, the showstatus command can be
 available to query the status of the external module members and
 return the results.

 For information on populating an external module, see the populate
 command. For information on configuring showstatus for external
 modules, see the DesignSync Administrator's Guide.

Legacy Module Output

 The legacy module output is unchanged from previous versions.

Primary Revision Control

322

 The showstatus command, by default, displays the following
 information:
 o Configuration: Identifies the configuration for which the status
 is shown. This value is a Synchronicity URL.

 o Base Directory: Identifies the local file system directory in which
 the configuration resides. Each module in a
 hierarchy has its own base directory.

 o Information about each hierarchical reference:
 - STATUS The status of the hierarchical reference of the
 configuration in the work area as compared to
 the server. Possible values are:
 Local Only Indicates the hierarchical reference exists
 only in the local work area.
 Out-of-date Indicates that the hierarchical reference in
 the local work area does not match the
 hierarchical reference on the server; for
 example, an alias on the server may have
 changed to refer to a new release or the
 relative path of the hierarchical reference on
 the server may have changed.
 Displays a table of conflicts if conflicts exist
 between the submodule configuration that a
 parent module expects to find in the workspace
 and the submodule configuration that actually
 exists there. Such conflicts can be caused by:
 a relative path that contains a configuration
 different from the one that the parent
 configuration expects; a relative path that
 contains no configuration; or a relative path
 that doesn't exist.
 Server Only Indicates the hierarchical reference was added
 on the server.
 Unknown Indicates that status of the hierarchical
 reference cannot be determined. This status is
 displayed only if you specify a recursive
 showstatus operation. For example, if you
 specify 'showstatus -recursive' and the server on
 which a referenced configuration resides is
 unavailable, the showstatus operation lists the
 status for that configuration as Unknown.
 Up-to-date Indicates that the hierarchical reference in the
 local work area matches the hierarchical
 reference on the server.
 - HREF Identifies the submodule to which the
 configuration of the upper-level module is
 connected. This value is a Synchronicity URL.
 - RELATIVE PATH Identifies the path from the upper-level module
 to the submodule.

 o Configuration status
 Indicates the status of the configuration.
 (Displayed only when you specify the -recursive
 option.)

 o Summary Indicates the overall status of the

ENOVIA Synchronicity Command Reference - Module

323

 configuration. By default (or if you specify the
 '-report normal' option), this value is a
 summary of the status of the configuration's
 hierarchical references. Note: If you specify
 the -objects option, this value represents the
 status of the objects contained in the
 configuration in combination with the status of
 its hierarchical references.
 Possible values are:
 - Local Only Indicates the configuration exists only in
 the local work area.
 - Out-of-date Indicates that the configuration in
 the local work area does not match the
 configuration on the server.
 - Server Only Indicates the configuration was added
 on the server.
 - Unknown Indicates that status of the configuration
 cannot be determined. This status is
 displayed, for example, if the server on which
 the configuration resides is unavailable.
 - Up-to-date Indicates that the configuration in
 the local work area matches the hierarchical
 reference on the server.

 To show the status of the objects contained in your work area
 configuration (as compared to objects in the configuration on the
 server), you can use the showstatus command with the -objects
 option. Output from the command first shows the status of the
 configuration's hierarchical references (as described above) and then
 shows the status of its objects. When '-objects' is specified, the
 value for configuration status reflects the status of its objects in
 combination with the status of its hierarchical references.

 Information for each object includes:

 o Workspace Version Identifies the version of the object in
 the work area configuration. "Unmanaged"
 indicates the object is not managed by
 DesignSync; "Unknown" indicates that the
 status cannot be determined. (For
 example, the command might display
 "Unknown" for an object if the server is
 not available.) If no information is
 displayed, it indicates that the version
 is absent from the work area.

 o Configuration Version Identifies the version of the object in the
 configuration on the SyncServer.

 o Object Name Identifies the name of the object for
 which status information is given.

 If you use the showstatus command with '-format list' option, it
 returns a Tcl list in the following form:

 target <module_URL>
 relpath <relative_path>

Primary Revision Control

324

 [notes {
 "Old aliased release: <release_name>" |
 "New aliased release: <release_name>" |
 "Relative path changed to '<path>'" |
 "Cannot determine current value of alias on server." |
 <miscellaneous other information>
 }
]
 status <Local Only | Out-of-date | Server Only | Unknown | Up-to-date>
 hierstatus <Local Only | Out-of-date | Server Only | Unknown | Up-to-date>
 [hrefs {{<submodule_status>} {...}}] ...

 The returned information includes the following:

 o target The URL of the module configuration.
 o relpath The relative path from the base directory of the
 upper-level module configuration (Parent) to the
 submodule configuration (Target). This path is used
 when you fetch (populate) the module into your
 work area.

 o status The status of the configuration in your work
 area (as compared to the configuration on the
 server). Note: This status reflects the status
 of the configuration's hierarchical
 references. If the -objects option is specified,
 status reflects the status of configuration's
 hierarchical references and objects.

 Possible values are:
 - Local Only Indicates the hierarchical reference exists
 only in the local work area.
 - Out-of-date Indicates that the hierarchical reference in
 the local work area does not match the
 hierarchical reference on the server; for
 example, an alias on the server could have
 changed to refer to a new release or the
 relative path of the hierarchical reference
 on the server could have changed.
 - Server Only Indicates the hierarchical reference was added
 on the server.
 - Unknown Indicates that status of the hierarchical
 reference cannot be determined. This status is
 displayed, for example, if the server on which
 the configuration resides is unavailable.
 - Up-to-date Indicates that the hierarchical reference in
 the local work area matches the hierarchical
 reference on the server.
 o hierstatus Indicates the overall status of the
 configuration. By default (or if you specify the
 '-report normal' option), this value is a summary
 of the status of the configuration's
 hierarchical references. If you specify
 the -objects option, this value represents the
 status of the objects contained in the
 configuration as well as the status of its
 hierarchical references. If you specify the

ENOVIA Synchronicity Command Reference - Module

325

 -recursive option, the value indicates the
 status of the entire configuration hierarchy.
 Possible values are:
 - Out-of-date Indicates that the configuration in
 the local work area does not match the
 configuration on the server.
 - Unknown Indicates that status of the configuration
 cannot be determined. This status is
 displayed, for example, if the server on which
 the configuration resides is unavailable.
 - Up-to-date Indicates that the configuration in
 the local work area matches the hierarchical
 reference on the server.
 o hrefs A list of property lists, one for each of the
 configuration's hierarchical references.
 (Displayed only if the configuration has
 hierarchical references.)

 Note:
 o Your output will include 'notes' if an alias in your work area is
 out of date with respect to the server. For example, if DRAM@Silver
 initially references the DRAM@R1 configuration and the alias is
 changed such that DRAM@Silver now references the DRAM@R2
 configuration, your output would include the following notes:

 notes {{Old aliased release: R1} {New aliased release: R2}}

 o When you run the showstatus command recursively, your output will
 include 'hrefs' status for each submodule containing hierarchical
 references. The <submodule_status> is a Tcl list of the module
 status information.

 To show the status of the objects contained in your work area
 configuration, use the showstatus command with the -objects and the
 '-format list' options. Output from the command lists the status of
 the configuration and its hierarchical references (as described
 above). In addition, the output includes a Tcl list (content) that
 describes the status of each of the objects contained in the
 configuration.

 target <module_URL>
 relpath <relative_path>
 [notes {{Old aliased release: <release_name>}
 {New aliased release: <release_name>}}]
 status <Local Only | Server Only | Up-to-date | Unknown | Out-of-date>
 content
 {
 path1 <path>
 path2 <URL>
 type <folder | file>
 objects
 {
 {
 name <object_name>
 type <file | folder>
 objects {object_list}
 name <file_name> type file

Primary Revision Control

326

 props1
 {
 state <absent | modified | present | reference
 | unknown | unmanaged>
 version <version_number>
 }
 props2
 {
 state <absent | modified | present | reference
 | unknown | unmanaged>
 version <version_number>
 }
 }
 }
 }

 hierstatus <Up-to-date | Out-of-date | Unknown>
 [hrefs {{<submodule_status>} {...}}] ...

 o content Lists the objects in the configuration
 and reports the status of each. (Displayed
 only if you specify the -objects option with
 the showstatus command.)
 o path1 The path to the work area directory containing
 the configuration.
 o path2 The URL of the configuration on the server.
 o type The type of object contained in the work area
 path (folder or file).
 o objects A list of objects and their properties.
 (Displayed only when type is
 folder.) For each object, the following
 information is provided:
 - name The name of the object
 - type The object's type (folder or file)
 - props1 {...} props2 {...}
 Properties of the objects in the configuration.
 (Displayed only when object type is file.)
 Properties are:
 o version - The version number of the object.
 (In certain cases, this property may not be shown.)
 o state - The status of the object in the path
 (your work area or configuration on the server.)
 Possible values are:
 - absent - Indicates that the object is not
 present on this path (work area or
 configuration on the server).
 - modified - Indicates that the object has been
 locally modified.
 - present - Indicates that the object is
 present on this path. (The version that is
 present is reported in the version property.)
 - reference - Indicates that the object is a
 referenced object.
 - unknown - Indicates that the object exists
 in the work area but the fetched version
 is unknown. This state is most commonly
 reported when an object has been removed from

ENOVIA Synchronicity Command Reference - Module

327

 the workspace (with the rmfile command)
 and then recreated.

SYNOPSIS

 showstatus [-format <type>] [-[no]hrefs] [-[no]objects]
 [-[no]recursive] [-releases]
 [-report {brief | normal | verbose | summary | script}]
 [-xtras <xtras>] <argument>

ARGUMENTS

• Workspace Module
• Legacy Module Base Directory
• External Module Instance

Workspace Module

 <workspace module> Specifies the workspace module. You may
 specify a module instance name or a full
 module address. It is compared against the
 corresponding server module.

Legacy Module Base Directory

 <legacy module base Specifies the workspace legacy module base
 directory> directory. It is compared against the
 corresponding server folder.

 Note: You cannot run the showstatus command
 against a module sub-folder. The command must
 be run against the top level module directory.

External Module Instance

 <external_mod> Specifies the external module instance. The
 external module must be populated into the
 workspace.

OPTIONS

• -format
• -[no]hrefs

Primary Revision Control

328

• -[no]objects
• -[no]recursive
• -releases
• -report
• -xtras

-format

-format <type> Determines the format of the output.
 Valid values are:
 o list - Displays a list with the following
 format:
 {
 name <name>

 }

 For a list of properties displayed, see the
 "Understanding the Output" section above.

 o text - Display a text table with headers and
 columns. (Default) Objects are shown in
 alphabetical order.

-[no]hrefs

-[no]hrefs Determines whether to follow the hierarchical
 references to determine if their status is
 current.
 -nohrefs does not trace the hierarchical
 references. This eliminates the time and
 server load that might be required to
 follow the hierarchical trail. (Default)
 -hrefs traces the hierarchical references to
 determine if the reported status is current.

-[no]objects

 -[no]objects Indicates whether command should run the
 compare command to compare the status of each
 object in the workspace with the corresponding
 object version on the server.

 -noobjects skips the object
 comparison. (Default)

 -objects checks the status of the workspace
 objects.

ENOVIA Synchronicity Command Reference - Module

329

-[no]recursive

 -[no]recursive Indicates whether the command should return
 the status for the specified module, or the
 specified module and all referenced modules.

 -norecursive displays the status for the
 specified module only. (Default)

 -recursive displays the status for the
 specified modules and all referenced modules
 and identifies why particular hierarchical
 references are not recursed.

 Notes: If you run the showstatus command with
 the '-format list' option, the showstatus
 command captures all errors encountered in the
 hierarchy and displays a message containing
 all the error messages.

-releases

 -releases Indicates that the showstatus command should run
 recursively against a legacy module
 releases. (Legacy modules only.)

 Note: If this option is not supplied, the
 status of hierarchical references to releases
 is always listed as up-to-date.

-report

 -report <mode> Specifies the type of status information to
 be displayed.

 Valid values are:
 o brief - Displays a summary for all data and
 detailed data for any items that are out of
 sync. For a description of the status
 information, see "Understanding the Output".

 o normal - Displays the status of the
 hierarchical references (and optionally,
 file status) for the module. (Default) Also
 displays a table of conflicts if conflicts
 exist between the expected submodule and the
 actual submodule. For a description of the
 status information, see "Understanding the
 Output".
 Note: You can set the -report normal mode to

Primary Revision Control

330

 report on the "needs Â update" status of
 hierarchical references with the
 ShowHrefsNeedCheckinStatus registry
 key. For more information on setting the
 registry key, see the DesignSync
 Administrator's Guide.

 o verbose - Displays the status of the
 hierarchical references and additional
 information about whether the hierarchical
 references need updating (and optionally,
 file status) for the module. Displays a
 table of conflicts if conflicts exist
 between the expected submodule and the
 actual submodule, and additional
 information. For a description of the status
 information, see "Understanding the Output".

 o summary - Displays the target and base
 directory of the module, the status of each
 module, and the overall status of the module
 in the workspace. Also displays a table of
 conflicts if conflicts exist between the
 expected submodule and the actual
 submodule. For a description of the status
 information, see "Understanding the Output".

 o script - Returns a Tcl list of
 config_name/property_list pairs. This is
 identical to using running showstatus with
 -report verbose -format list.

-xtras

 -xtras <xtras> List of command line options to pass to the
 external module change management system. Any
 options specified with the -xtras option are
 sent verbatim, with no processing by the
 populate command, to the Tcl script that
 defines the external module change management
 system.

RETURN VALUE

 If you run the showstatus command with the '-format list' option, it
 returns a Tcl list. For a complete description of the output, see the
 "Understanding the Output" section.

SEE ALSO

ENOVIA Synchronicity Command Reference - Module

331

 addhref, rmhref, compare, ls, swap show, edithrefs, command defaults
,

EXAMPLES

• Module Hierarchy for Module Examples
• Example Showing Module Href Status Where Hrefs are Current
• Example Showing Module Href Status Where Hrefs are Outdated
• Example Showing Outdated Module Href Status in List Format
• Example Showing Legacy showstatus Command Formats
• Example of using showstatus on a legacy module

Module Hierarchy for Module Examples

 All of the modules example assume the following hierarchy in your
 work area.
 Top stored in ~/MyModules/Chip
 CPU;Trunk:Gold stored in ~/MyModules/Chip/CPU
 ALU stored in ~/MyModules/Chip/CPU/ALU

Example Showing Module Href Status Where Hrefs are Current

 This example lists the status of the hierarchical references in your
 local work area as compared to the server.

 dss> showstatus -recursive Chip%0
 Beginning showstatus operation ...

 Status of module Chip%0 ...

 Chip%0: url - sync://srv2.ABCo.com:2647/Modules/Chip;Trunk:
 Chip%0: base directory - /home/rsmith/MyModules/chip

 Chip%0: Workspace version 1.7
 Chip%0: Server version 1.7
 Chip%0: Version is Up-to-date

 Href Name Status Url Selector \
 Version Relative Path

 CPU Up-to-date sync://srv2.ABCo.com:2647/Modules/CPU Trunk:Gold
 1.3 CPU
 ROM Up-to-date sync://srv2.ABCo.com:2647/Modules/ROM Trunk:
 1.2 /ROM

 Chip%0: No hierarchical reference conflicts found.

 Chip%0: Hrefs are Up-to-date

 Status of module CPU%1 ...

Primary Revision Control

332

 CPU%1: url - sync://A/Modules/CPU;Trunk:Gold
 CPU%1: base directory - /home/rsmith/MyModules/chip/CPU

 CPU%1: Workspace version 1.3
 CPU%1: Server version 1.3
 CPU%1: Version is Up-to-date

 Href Name Status Url Selector
 Version Relative Path

 ALU Up-to-date sync://srv2.ABCo.com:2647/Modules/ALU Trunk:
 1.2 ALU

 CPU%1: No hierarchical reference conflicts found.

 CPU%1: Hrefs are Up-to-date

 Status of module ALU%2 ...

 ALU%2: url - sync://srv2.ABCo.com:2647/Modules/ALU;1.2
 ALU%2: base directory - /home/rsmith/MyModules/chip/CPU/ALU

 ALU%2: Workspace version 1.2
 ALU%2: Server version 1.2
 ALU%2: Version is Up-to-date

 ALU%2: No hierarchical references.

 ALU%2: Module hierarchy is Up-to-date.

 ALU%2: Module is Up-to-date.

 CPU%1: Module hierarchy is Up-to-date.

 CPU%1: Module is Up-to-date.

 Chip%0: Module hierarchy is Up-to-date.

 Chip%0: Module is Up-to-date.

 Finished showstatus operation.

Example Showing Module Href Status Where Hrefs are Outdated

 This example shows output of an showstatus operation where a
 hierarchical references in the module is out of date.

 stcl> showstatus -objects Chip%0

 Beginning showstatus operation ...

 Status of module Chip%0 ...

ENOVIA Synchronicity Command Reference - Module

333

 Chip%0: url - sync://srv2.ABCo.com:2647/Modules/Chip;Trunk:
 Chip%0: base directory - /home/rsmith/MyModules/chip

 Chip%0: Workspace version 1.5
 Chip%0: Server version 1.6
 Chip%0: Version is Out-of-date

 Href Name Status Url
 Selector Version Relative Path

 CPU Up-to-date sync://srv2.ABCo.com:2647/Modules/CPU
 Trunk:Gold 1.3 CPU
 ROM Server Only sync://srv2.ABCo.com:2647/Modules/ROM
 Trunk: 1.2 /ROM

 Chip%0: No hierarchical reference conflicts found.

 Chip%0: Hrefs are Out-of-date

 Workspace Configuration Status Object
 Version Version Name
 --------- ------------- ------ ------
 1.1 1.1 Identical chip.c
 1.1 1.1 Identical chip.doc
 1.1 1.1 Identical chip.h

 Chip%0: Module is Out-of-date.
 Chip%0: Needs update.

 Finished showstatus operation.

Example Showing Outdated Module Href Status in List Format

 This example shows the same data as in the previous example, an out
 of data hierarchical reference, but the output is presented in list
 format.

 stcl> showstatus -format list -objects Chip%0
 href_status Out-of-date exists 1 basedir /home/rsmith/MyModules/chip
 type standard needs_checkin 0 content {path1
 /home/rsmith/MyModules/chip/Chip%0 path2
 sync://srv2.ABCo.com:2647/Modules/Chip@Trunk: type folder props1
 {type module url sync://srv2.ABCo.com:2647/Modules/Chip version 1.5
 relpath {} basedir /home/rsmith/MyModules/chip} props2 {type module
 url sync://srv2.ABCo.com:2647/Modules/Chip version 1.6 relpath {}
 modulepath {}} objects {{name chip.doc type file state identical
 props1 {state present version 1.1} props2 {state present version
 1.1}} {name chip.c type file state identical props1 {state present
 version 1.1} props2 {state present version 1.1}} {name chip.h type
 file state identical props1 {state present version 1.1} props2

Primary Revision Control

334

 {state present version 1.1}}}} conflicts {} content_status
 Up-to-date hierarchy {} server {selector Trunk: uid
 1ba413d31cfbd405591dba00f2ef564a version 1.6 url
 sync://srv2.ABCo.com:2647/Modules/Chip} hrefs {{status Up-to-date
 relpath CPU selector Trunk:Gold name CPU version 1.3 type Module
 basedir /home/rsmith/MyModules/chip/CPU url
 sync://srv2.ABCo.com:2647/Modules/CPU modinstname CPU%1} {status
 {Server Only} relpath /ROM selector Trunk: name ROM version 1.2 url
 sync://srv2.ABCo.com:2647/Modules/ROM}} needs_update 1
 version_status Out-of-date missing {} actual {version_ci {} selector
 Trunk: uid 1ba413d31cfbd405591dba00f2ef564a version 1.5 url
 sync://srv2.ABCo.com:2647/Modules/Chip} hier_status Up-to-date
 fullname /home/rsmith/MyModules/chip/Chip%0 status Out-of-date
 modinstname Chip%0 #

Example Showing Legacy showstatus Command Formats

 o Show the status of hierarchical references of a module
 configuration hierarchy in the work area as compared to the
 server:

 dssc> showstatus -recursive <ModInstance>

 For example:
 dssc> showstatus -recursive Chip%0

 o Show the status of hierarchical references and objects contained in
 a module configuration hierarchy in the work area as compared to
 the server:

 dssc> showstatus -recursive -objects <ModInstance>

 o Show the status of each configuration in the module configuration
 hierarchy, followed by a summary of the overall status of the
 hierarchy. (Note: Because '-files' is specified, each configuration's
 status represents the status of the configuration's hierarchical
 references and its objects.)

 dssc> showstatus -recursive -objects -report summary \
 <ModInstance>

Example of using showstatus on a legacy module

 This example lists the status of the hierarchical references in your
 local work area as compared to the server. It assumes the following
 data hierarchy in your work area.
 Top kept in directory Designs/Top
 IO@TEST kept in directory Designs/Top/IO
 Mem@DEV kept in directory Designs/Top/Mem

 dss> showstatus -recursive Chip%0

ENOVIA Synchronicity Command Reference - Module

335

 This command displays the following output:

 Target: sync://srvr1.ABCo.com:2647/Projects/Top
 Base Directory: /home/jsmith/Designs/Top

 STATUS HREF RELATIVE PATH
 --
 Up-to-date sync://srvr1.ABCo.com:2647/Projects/IO@TEST IO
 Up-to-date sync://srvr1.ABCo.com:2647/Projects/Mem@DEV Mem

 Configuration status: Up-to-date

 ===

 Target: sync://srvr1.ABCo.com:2647/Projects/IO@TEST
 Parent: sync://srvr1.ABCo.com:2647/Projects/Top
 Base Directory: /home/jsmith/Designs/Top/IO

 No local or remote hierarchical references found for configuration.

 Configuration status: Up-to-date

 ===

 Target: sync://srvr1.ABCo.com:2647/Projects/Mem@DEV
 Parent: sync://srvr1.ABCo.com:2647/Projects/Top
 Base Directory: /home/jsmith/Designs/Top/Mem

 No local or remote hierarchical references found for configuration.

 Configuration status: Up-to-date

 ==

 Status of all visited configurations.
 STATUS TARGET PATH
 --
 Up-to-date sync://srvr1.ABCo.com:2647/Projects/Mem@DEV
 /home/jsmith/Designs/Top/Mem
 Up-to-date sync://srvr1.ABCo.com:2647/Projects/IO@TEST
 /home/jsmith/Designs/Top/IO
 Up-to-date sync://srvr1.ABCo.com:2647/Projects/Top
 /home/jsmith/Designs/Top

 Summary: Up-to-date

tag

tag Command

NAME

 tag - Assigns a tag to a version or a branch

Primary Revision Control

336

DESCRIPTION

• Working with Tags
• Branch Tags Versus Version Tags
• Tagging Modules
• Module Snapshots
• Tag Name Syntax
• Determining the Objects to be Tagged
• Using Tags on Module Versions

 This command assigns a symbolic name, called a tag, to a version
 (version tag) or branch (branch tag). You also use this command to
 move (-replace) or remove (-delete) existing tags.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports Enterprise Design Synchronization. For more
 information on Enterprise Design Synchronization, see the Enterprise
 Design Administration User's Guide.

 This command supports the command defaults system.

Working with Tags

 Tagging a set of versions creates a group of objects, sometimes
 called a configuration, that is a representation of your design files
 that correspond to a known state, such as a development or release
 milestone. For example, you might tag the current versions of your
 design files 'Alpha' when you have reached the Alpha milestone.

 Once you have tagged your set of versions, the tag can be used as a
 selector to identify what objects commands operate on. For example,
 you might specify 'populate -version Gold' to populate all versions
 that are tagged 'Gold' (the 'Gold' configuration). See the
 "selectors" help topic for more information on selectors.

 Versions and branches can have more than one tag assigned to
 them. For example, an object that did not change between releases
 might have both 'rel2.1' and 'rel2.2' applied to the same version.

 Note: If you tag a version with a tag that already exists on that
 version, the system will respond with a 'success' message.

Branch Tags Versus Version Tags

ENOVIA Synchronicity Command Reference - Module

337

 Branch tags and version tags share the same name space. To
 distinguish version selectors from branch selectors, you
 append ':<versiontag>' to the branch name; for example,
 'Gold:Latest' is a valid branch selector. You can leave off the
 'Latest' keyword as shorthand; for example, 'Gold:' is equivalent
 to 'Gold:Latest'. The selector 'Trunk' is also a valid branch
 selector; 'Trunk' is a shorthand selector for 'Trunk:Latest'.

 You cannot assign the same tag name to both a version and a branch
 of the same object. For example, a file called 'top.v' cannot have
 both a version tagged 'Gold' and a branch tagged 'Gold'. However,
 'top.v' can have a version tagged 'Gold' while another file, 'alu.v',
 can have a branch tagged 'Gold'.

 Consider adopting a consistent naming convention for branch
 and version tags to reduce confusion. For example, you might have a
 policy that branch tags always begin with an initial uppercase
 letter ('Rel2.1', for example) whereas version tags do not ('gold',
 for example).

 If the selector identifies a version, DesignSync resolves the
 selector to both the object's version number and branch number.
 For example, if version 1.2.1.3 is tagged 'gold', DesignSync
 resolves 'gold' as both version 1.2.1.3 and branch 1.2.1.
 A version selector only resolves if the object has a version
 tag of the same name; it does not resolve if the tag is a branch
 tag. For example, if branch 1.2.1 is tagged 'RelA', and the
 latest version on that branch is 1.2.1.3, then DesignSync
 resolves 'RelA:Latest' as version 1.2.1.3; however, DesignSync
 does not resolve selector 'RelA' at all, because there is no
 version tag of that name.

Tagging Modules

 The tag operation for modules tags versions or branches of the module
 in the vault, not the local copies of objects in your work
 area.

Module Snapshots

 Module snapshots are a collection of versionable module members that
 are tagged from a workspace. When you tag a set of member versions in
 a workspace, you create a new "snapshot" branch on the server. Using
 a branch allows you to maintain a snapshot as a versionable object,
 updating tags and hierarchical references as needed.

 Module snapshots allow you to capture a subset of a module workspace
 at any given moment in time, and recreate it. This can be useful to
 preserve a specific set of files for testing or releasing that set of
 files without interrupting the normal development workflow.

Primary Revision Control

338

 When you create a module snapshot, DesignSync creates a special
 snapshot branch for the module. When you create the snapshot, you
 provide a tag name; the module branch is created with the name
 SNAPSHOT_<tag_name>. The specific snapshot version is <tag_name>.

 Operations on tagged module snapshots are always workspace-centric.
 This means the operations occur on the objects loaded in the
 workspace. If a folder is specified with recursion, the operation
 traverses the folder.

 The module snapshot is restricted to a single module, however you can
 update multiple module snapshots in a single tag operation. You can
 restrict a tag operation to a single module by using the
 -modulecontext switch to select the desired module.

 The module snapshot operations are atomic with respect to the server.
 In order to execute the tag operation, all objects within a module
 must be processed successfully. If any object fails the entire
 operation fails for that module. For example, if you tag module
 members in your workspace belonging to different modules and you do
 not have tag access for one of the modules or module members, the tag
 fails for that module only. The other modules, assuming no other
 errors within them, are updated successfully.

 The module snapshot operations are not atomic with respect to the
 workspace. For example, if you have a moved, removed, or added a
 file that has not been checked in, it does not cause the entire tag
 operation to fail. You receive an error message for any individual
 workspace object that failed, and the operation itself succeeds.

 Hierarchical references within module snapshots must be manually added
 or removed. DesignSync does not automatically include hierarchical
 references already in the workspace in a new module snapshot, nor
 does it update hierarchical references in the snapshot when the
 snapshot is versioned by adding or removing tags. After the snapshot
 has been created, you can add the desired hierarchical references to
 the snapshot, and update, remove, or add new hierarchical references
 as needed.

 Operations that can create a module version with structural or
 content changes, such as add, remove, checkin, mvmember, rollback, and
 populate with the -lock option, are not allowed with module
 snapshots. These snapshots are intended to be used as is, with
 content frozen. The only operations allowed are addhref, rmhref,
 edithrefs, and tag operations (adding, removing, or moving tag names
 from module members). This allows you to create the perfect,
 immutable, test or release version.

Tag Name Syntax

 The first argument to the 'tag' command is the tag name.

ENOVIA Synchronicity Command Reference - Module

339

 Tag names:
 - Can contain letters, numbers, underscores (_), periods (.),
 hyphens (-), and forward slashes (/). All other characters,
 including whitespace, are prohibited.
 - Cannot start with a number and consist solely of numbers
 and embedded periods (for example, 5, 1.5, or 44.33.22),
 because there would be ambiguity between the tag name and
 version/branch dot-numeric identifiers.
 - Cannot be any of the following reserved, case-insensitive keywords:
 Latest, LatestFetchable, VaultLatest, VaultDate, After,
 VaultAfter, Current, Date, Auto, Base, Next, Prev, Previous,
 Noon, Orig, Original, Upcoming, SyncBud, SyncBranch, SyncDeleted.
 Also, avoid using tag names starting with 'Sync' (case-insensitive),
 because Synchronicity may define new keywords in the future
 using that naming convention.

 Note: The Connected Software and Connected Semiconductor apps do
 not support the use of forward slash (/) in Tag names.

 The 'Latest' reserved keyword is of particular importance. 'Latest'
 is always associated with the most recent (highest numbered)
 version of a design object on a given branch. Although not actually a
 tag, you can generally specify 'Latest' as you would a user-defined
 version tag. Note that the default command behavior in many cases
 is to operate on the latest version on the current or specified
 branch, so you typically do not need to specify 'Latest'. See the
 "selectors" help topic for more details on selectors, including the
 use of 'Latest'.

 The 'Trunk' tag, although not a reserved keyword, has special
 significance for DesignSync. By default, DesignSync tags branch 1
 as 'Trunk' when you initially check in a design object. Because
 'Trunk' is a tag (shorthand for 'Trunk:Latest'), you can move
 or delete it, although doing so is not recommended. Due to this
 special significance, the 'Trunk' tag is always expected to be a
 branch tag, and you cannot add this as a version tag. For example,
 you can specify 'tag -branch 1 Trunk myfile', but you cannot
 specify 'tag -version 1.1 Trunk myfile'.

Determining the Objects to be Tagged

 Each object argument to the 'tag' command can be:

 o A module, specified explicitly as a server module URL, in this format:
 sync://<machine>:<port>/Modules/<category>/<module_name>;<selector>

 o A module, specified as a workspace module instance. This behaves
 identically to specifying the module explicitly as a server module
 URL. It does not tag the local versions in the workspace, nor
 does it create a module snapshot.

 Note: When used on workspace module instance, the -modified option
 is ignored, since the tagged object is the last server module

Primary Revision Control

340

 version populated into the workspace, not the locally modified
 files.

 o Module members and module member folders can be tagged explicitly
 as part of a module snapshot. The module snapshot is a tagged
 configuration presented as a side branch that allows for
 hierarchical reference and tag updates within the snapshot, but
 does not allow content changes to the module members or structural
 changes to the module.

 Note: There is a limitation when -modulecontext is used to
 restrict the tag to members of a particular module and wildcarding
 is used to specify members to tag. If a module member within the
 directory cone matches the tag, but is not part of the specified
 module, and you cannot tag that member the operation fails. If
 you can tag the member, the operation succeeds, but the member is
 not part of the tagged module snapshot. It is excluded because it
 is not part of the specified module.

 o A branch object. The latest version on the specified branch is
 tagged unless you specify the -branch option, in which case a
 branch tag is applied to the branch object you specified -- the
 argument to the -branch option is ignored.

 Note: Tag supports both filter and exclude which can affect which
 objects available for tagging.

Using Tags on Module Versions

 To manage the development of modules, you can use tags to indicate
 that a module is ready to be released to team members. You use
 the -immutable option to apply a tag that cannot be moved. Your
 team can implement a methodology by which a release engineer applies
 an immutable, or fixed, tag to a design module when the module has
 reached a particular quality threshold. Your Synchronicity
 administrator can enforce the methodology by setting access controls
 to control the addition or removal of immutable tags. See Access
 Control Guide: "Access Controls for Tagging" for details. See also
 the -[im]mutable option description below to learn how to add, move,
 or delete immutable and mutable tags.

 You can also use a module snapshot to manage an immutable release
 version. For more information on module snapshots, see the Module
 Snapshots section.

 When you tag a module hierarchy, using the -recursive tag, you are
 tagging the selected module and the referenced submodule in static
 mode using the specified module version on the server, preserving the
 exact versions of all the files you were working with, regardless of
 whether the module was specified as a server module URL, or a
 workspace module.

 Note: If a module contains hierarchical references to different
 versions of the same module, only the first version found is tagged

ENOVIA Synchronicity Command Reference - Module

341

 and DesignSync will return an error explaining the situation. If
 multiple module arguments are specified, each hierarchy of all
 specified modules is expanded prior to processing, and any duplicate
 modules with different versions fail with an error.

SYNOPSIS

 tag [-branch <branch> | -branch auto(<branch>) | -[no]delete |
 -[no]replace | -version <selector>] [-[no]comment <text>]
 [-exclude <object>[,<object>,...]] [-filter <object>[,<object>]]
 [-modulecontext <context>] [-[im]mutable] [-[no]recursive]
 [-report <mode>] [-[no]selected] [-trigarg <arg>] [-warn <mode>]
 [-xtras <xtras>] [--] <tagname> [<argument> [<argument> ...]]

ARGUMENTS

• Server Module
• Module Folder
• Module Member
• Workspace Module
• External Module

 The tag command accepts a <tagname> followed by multiple arguments
 on which to apply the tag. See "Tag Name Syntax" above for the
 allowable values for the tagname.

 Specify one or more of the following arguments:

Server Module

 <server module> Tags the specified module in its vault.
 Specify the module's server URL in the format:

 sync://<machine>:<port>/Modules/<category>/
 <module_name>;<selector>

 If the specified server module is a legacy
 module, the operation does not create new
 configuration maps for DesignSync REFERENCES or
 follow hierarchical references.

Module Folder

 <module folder> When a module folder is selected, the operation
 creates or updates the appropriate snapshot

Primary Revision Control

342

 branch. Module folders are only valid arguments
 when using module snapshots. You must specify the
 module folder as a workspace objects, for
 example:
 ./<folder_name>
 <Module_Instance_Name>/<folder_name>

Module Member

 <module member> When a module member is selected the operation
 creates or updates the appropriate snapshot
 branch. Module members are only a valid arguments
 when using module snapshots. You must specify the
 module member as a workspace objects, for
 example:
 ./[<folder_name>]/<module_member>
 <Module_Instance_Name>/[<folder_name>]/<module_member>

Workspace Module

 <workspace module> When a workspace module instance is specfied,
 the operation tags the specified module version
 in the vault.

 Note: When -recursive is used with a workspace
 module, the tag operation is still server-based
 and will follow the hierarchy for the selected
 module version on the server, not the one in the
 workspace, if they are different.

External Module

 <external module> Specifies the module instance of the external
 module in the workspace or the URL of the
 external module version to which you wish to
 create the connection. An external module is an
 object or set of objects managed by a different
 code management system but available for viewing
 and integration through DesignSync.
 Specify the external module in the workspace as a
 module instance name.
 Specify the external module Server URL as follows:
 sync[s]:///ExternalModule/<external-type>/<external-data>
 where ExternalModule is a constant that identifies
 this URL as an external module URL,
 <external-type> is the name of the external module
 procedure, and <external-data> contains the
 parameters and options to pass to the
 procedure. These parameters and options can be

ENOVIA Synchronicity Command Reference - Module

343

 passed from the procedure to the external code
 management system or to DesignSync.

 Note: In order to specify an external module, you
 must have previously populated the module in the
 workspace. You may also specify the external
 module by href name only.

OPTIONS

• -branch
• -[no]comment
• -[no]delete
• -exclude
• -filter
• -modulecontext
• -[im]mutable
• -[no]recursive
• -[no]replace
• -report
• -[no]selected
• -trigarg
• -version
• -warn
• -xtras
• --

-branch

 -branch <branch> Tags the branch specified by the branch or
 | -branch version tag, auto-branch selector, or branch
 auto(<branch>) numeric. This option overrides the object's
 persistent selector list. If <branch> resolves
 to a version, the branch of that version is
 tagged. The -version and -branch options are
 mutually exclusive. The -branch option is not
 applicable to operations on a module snapshot.

 For a tag using an auto-branch selector, for
 example Auto(Golden), if 'Golden' exists as a
 branch, the 'Golden:Latest' version is tagged. If
 no branch named 'Golden' exists for the object,
 the tag operation fails.

 Note: The -branch option accepts a single branch
 tag, a single version tag, a single auto-branch
 selector tag, or a branch numeric. It does not
 accept a selector or selector list.

Primary Revision Control

344

-[no]comment

 -[no]comment Specifies whether to tag the specified
 "<text>" objects with a description attached. By
 default (-comment), tag requires a comment.

 Comments that exceed 1024 characters are
 truncated to the first 1024 characters. Enclose
 the description in double quotes if it contains
 whitespace. When you tag the objects,
 DesignSync appends tag comments, if there
 are any, to existing comments to create a
 "version log".

 The ampersand (&) and equal (=) characters are
 replaced by the underscore (_) character in
 revision control notes.

 Note: If -comment is specified with -replace, the
 comment replaces the existing tag comment. If
 -nocomment is specified, the existing tag comment
 is removed.

-[no]delete

 -[no]delete Indicates whether to delete the specified
 version or branch tag. When specified with module
 members in a module snapshots, it removes
 the members from the snapshot.

 Note: Because a tag can apply to either a
 branch or a version (not both), DesignSync
 determines which kind of tag is specified and
 deletes it. You can define access controls to
 selectively control the deletion of branch and
 version tags.

 The -delete option is mutually exclusive with
 the -branch, -replace, and -version options.
 You cannot specify a specific version or branch
 because only one version or branch of an object
 can have a given tag, so just specifying the
 object itself is sufficient.

-exclude

 -exclude <objects> Specifies a comma-separated list of objects to
 exclude from the operation. Wildcards are allowed.

 Do not specify paths in your arguments to

ENOVIA Synchronicity Command Reference - Module

345

 -exclude. Before operating on each object (such
 as during a recursive tag operation),
 DesignSync compares the object's leaf name
 (path stripped off) to the exclude list to see
 if there is a match. Because the object's path
 is removed, the object will not match any
 object in the exclude list specified with a
 path. For example, if you specify '-exclude
 bin/*.exe', you will not successfully exclude
 bin/foo.exe or any other *.exe file. You need
 to instead specify '-exclude *.exe', or
 '-exclude foo.exe' if you want to exclude only
 'foo.exe'. The result is that you cannot
 exclude a specific instance of an object -- you
 exclude all matching objects.

 In addition to objects you specify using the
 -exclude option, the "These objects are always
 excluded" field from the Tools->Options->
 General->Exclude Lists dialog box in the
 DesignSync graphical user interface lists
 objects that are always excluded from
 revision-control operations.

 Note: The -exclude option only applies to
 snapshot module tagging. It does not apply to
 module objects tagging because you tag entire
 modules. For module objects, tag silently ignores
 the -exclude option.

-filter

 -filter <objects> Specify one or more extended glob-style
 expressions to identify an exact subset of
 objects on which to operate.

 The -filter option takes a list of expressions
 separated by commas, for example:
 -filter +top*/.../*.v,-.../a*

 Prepend a '-' character to a glob-style
 expression to identify objects to be excluded
 (the default). Prepend a '+' character to a
 glob-style expression to identify objects to
 be included. Note that if the list of
 expressions begins with an include character
 ('+'), the filter excludes all objects except
 those that match the include string.

 Specify the paths in your glob-style
 expressions relative to the current directory,
 because DesignSync matches your expressions
 relative to that directory. For submodules
 followed through hrefs, DesignSync matches

Primary Revision Control

346

 your expressions against the objects' natural
 paths, their full relative paths. For
 example, if a module Chip references a
 submodule, CPU, and CPU contains a file,
 '/libs/cpu/cdsinfo.tag', DesignSync matches
 against '/libs/cpu/cdsinfo.tag', rather than
 matching directly within the 'cpu' directory.

 Note: Workspace module members are only tagged
 individually when working with snapshot
 branches.

 If your design contains symbolic links that are
 under revision control, DesignSync matches
 against the source path of the link rather than
 the dereferenced path. For example, if a
 symbolic link exists from 'tmp.txt' to
 'tmp2.txt', DesignSync matches against
 'tmp.txt'. Similarly for hierarchical
 operations, DesignSync matches against the
 unresolved path. If, for example, a symbolic
 link exists from dirA to dirB, and dirB
 contains 'tmp.txt', DesignSync matches
 against 'dirA/tmp.txt'.

 The extended glob-style expressions you use to
 filter the objects are standard glob-style
 expressions, but they are extended so that you
 can use the "..." syntax to indicate that the
 expression matches any number of directory
 levels. For example, the expression,
 "top/.../lib/*.v" matches *.v files in a
 directory path that begin with "top", followed
 by zero or more levels, with one of those
 levels containing a lib directory. The command
 traverses the directory structure. If a
 directory name matches an exclude clause of
 the filter, then the entire directory and all
 its contents are filtered (the command stops
 descending at that point), otherwise the
 command continues traversing the directory
 structure searching for matching objects.

 The -filter option does not override the
 exclude list set using either the -exclude
 option or SyncAdmin's General=>Exclude Lists
 tab; the items in the exclude list are
 combined with the filter expression. For
 example, an exclude list of "*%,*.reg"
 combined with '-filter .../*.doc' is
 equivalent to: '-filter
 .../*.doc,.../*%,.../*.reg'.

-modulecontext

ENOVIA Synchronicity Command Reference - Module

347

 -modulecontext Specifies the workspace module context to include
 <context> in a module snapshot. This allows you to restrict
 the tag operation to a specified module.

 This option is only applicable to module
 snapshots.

-[im]mutable

 -[im]mutable Indicates whether a module's generated tag is
 to be immutable (fixed) or mutable. Use an
 immutable tag if the state of the module you
 are tagging is to be retained indefinitely. Use
 a mutable tag (default) if you want to reapply
 the tag to a newer snapshot of the module.

 The -mutable and -immutable tags apply only
 to modules. The options are ignored for other
 objects being tagged including module snapshots.

 By default, you cannot move or delete an
 immutable tag; however, you can override this
 behavior by applying the -immutable tag with
 the -replace or -delete option. You can move
 or delete a mutable tag using the -replace or
 -delete option without having to specify a
 mutability option. To convert an immutable
 tag to a mutable tag, first delete the
 immutable tag (using tag with the -immutable
 and -delete options). Then, create a mutable
 tag.

 As a team leader, you might want to prevent
 members from moving or deleting immutable tags
 even if they apply the -immutable option. To
 do so, see ENOVIA Synchronicity Access Control
 Guide: "Access Controls for Tagging".

-[no]recursive

 -[no]recursive Specifies whether to perform this operation on
 the specified folder or module, or to traverse
 its subfolders and hierarchy. The -recursive
 option, when used on a module, traverses the
 hierarchical references in static mode on the
 server. For more information on tagging modules
 recursively, see Using Tags on Module
 Versions. The default value is -norecursive.

 If you specify a local folder (a folder in your
 work area), the tag operation uses the local

Primary Revision Control

348

 folder hierarchy to determine which objects to
 tag in the vault.

 By default, the tag operation is nonrecursive;
 it tags the specified module, or members in the
 current directory only.

-[no]replace

 -[no]replace Indicates whether to move the tag to the target
 version or branch, even if the specified tag is
 already in use on another version or branch. By
 default (-noreplace), a tag operation fails if
 the tag is already in use, because a tag can be
 attached to only one version or branch of an
 object at a time. Note that you can move a tag
 from a branch to a version or a version to a
 branch. DesignSync provides a warning message
 when you do so.

 Notes:
 o When -replace is used on a module snapshot, it
 replaces the tag on the specified module
 members in the snapshot.

 o If you specify a comment, the tag operation
 replaces the comment with the new comment. If
 you do not specify a comment, the operation
 removes the previous comment associated with
 tag.

-report

 -report <mode> Specifies the contents of a report on the tag
 operation.

 Available modes are:
 o brief - This mode lists:
 - Objects that were not tagged.
 - Objects skipped by the tag operation
 because it created a new configuration
 map.
 - A count of successes and failures for the
 tag operation. Note: This count is output
 only if you are using the stcl/stclc
 command shell.

 If the -report option is not specified, the
 default mode is '-report brief'.

 o normal - This mode provides the same output
 as the brief mode but in addition lists

ENOVIA Synchronicity Command Reference - Module

349

 objects that were successfully tagged. (Default)

 o verbose - Displays the same information as
 'normal' and a skip notice for any objects
 excluded by the -filter or -exclude options.

-[no]selected

 -[no]selected Indicates if the command should use the select
 list (see the 'select' command) or only the
 arguments specified on the command line.

 -noselected indicates that the command should
 not use the select list. (Default) If
 -noselected is specified, but there are no
 arguments selected, the tag command fails,
 even if there are valid arguments in the select
 list.

 -selected indicates that the command should use
 the select list and any objects specified on the
 command line. If -selected is not specified,
 and there are no objects specified on the
 command line, the tag command uses the
 select list for the command.

-trigarg

 -trigarg <arg> Specifies an argument to be passed from the
 command line to the triggers set on the tag
 operation. If the argument contains
 whitespace, enclose the argument within double
 quotation marks ("") if using the dss command
 shell or braces ({}) if using the stcl command
 shell.

-version

 -version <selector> Specifies the version to tag. If the selector
 resolves to a branch, the Latest version on
 that branch is tagged. By default (-version not
 specified), the current version in your work
 area is tagged. The -version and -branch
 options are mutually exclusive. The -version
 option is not applicable to operations on a
 module snapshot.

 If you specify a date selector (Latest or
 Date(<date>)), DesignSync augments the

Primary Revision Control

350

 selector with the persistent selector list
 to determine the version to be tagged. For
 example, if the persistent selector list
 is 'Gold:,Trunk' and you specify
 'tag -version Latest <tag>', then the
 selector list used for the tagging
 operation is 'Gold:Latest,Trunk:Latest'.

 Note:

 To use -version to specify a branch, specify
 both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

-warn

 -warn <mode> Provides additional checks depending on the
 <mode>. The -warn option supports the
 'exists' mode, which makes sure the named
 object still exists before allowing the tag.
 This is rarely needed and only applicable in
 those cases where someone else has removed the
 vault file since you checked it out. This
 could happen if:

 o A UNIX 'rm' command was used. (Note: 'rm'
 is not recommended; use 'rmvault' instead.)
 o The 'rmvault -nokeepvid' command was used,
 then the object was checked in again with
 'ci -new'. (Note: The '-nokeepvid' option
 is not recommended; use the default option,
 '-keepvid'.

-xtras

 -xtras <list> List of command line options to pass to the
 external module change management system. Any
 options specified with the -xtras option are
 sent verbatim, with no processing by the
 populate command, to the Tcl script that defines
 the external module change management
 system.

--

ENOVIA Synchronicity Command Reference - Module

351

 -- Indicates that the command should stop
 looking for command options. Use this option
 when an argument to the command begins with a
 hyphen (-).

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode, two lists are returned. The first list is a
 count of objects successfully processed; the second list is a count
 of objects that failed to be processed. The first list is non-empty
 if at least one object was successfully processed. The second
 list is non-empty if at least one object failed.

 Notes:
 - Scripts should only test for non-empty lists to
 determine success or failure. The actual content of a non-empty
 list currently takes the form "Objects succeeded (n)" and
 "Objects failed (n)", where 'n' is the number of objects that
 succeeded or failed. However, these return values are subject to
 change in a future release.
 - If all objects fail, an exception is thrown.

SEE ALSO

 ci, command defaults, mkbranch, populate, select, setselector,
 url tags, url resolvetag, vhistory

EXAMPLES

• Example of Tagging a Module with an Immutable Tag

Example of Tagging a Module with an Immutable Tag

 This example tags the Latest version of a module with an -immutable
 (fixed) tag. To tag modules, you specify the server URL of the
 module:

 stcl> tag -immutable GOLD sync://guaraldi:30089/Modules/Chip

353

Advanced Revision Control

duplicatews

duplicatews Command

NAME

duplicatews - creates or updates a copy of a workspace.

DESCRIPTION

• Creating a Duplicated Workspace
• Updating a Duplicated Workspace
• Replacing an Existing Duplicated Workspace

 The duplicatews command creates, modifies or updates a workspace
 copy (or duplication) from another workspace. By creating an exact
 copy of the source workspace in the target directory, including
 metadata files, the command reduces the initial populate time of the
 new workspace and simplifies the process of creating the workspace,
 since the user only needs to know where the workspace being
 duplicated is located, not the information about the data in the
 workspace.

 Note: This command cannot be executed if cache reference count is
 enabled. If the workspace being duplicated has reference counting
 enabled, you must change the options to disable cache reference
 counting. For more information on enabled and disabling cache
 reference, see the DesignSync Administrator's Guide.

 Important: The duplicatews command can only be run on a linux system
 and the source and target directories must also be on a linux
 system.

 This command supports the access control system.

Creating a Duplicated Workspace

 In order to duplicate a workspace, designate the source workspace as
 a workspace that be duplicated.

 To designate the workspace as a duplicable workspace, create a file,
 ".clone" in the .SYNC directory for the workspace. The .clone
 file can be empty; the contents are not used by the system. The

Advanced Revision Control

354

 workspace .SYNC folder must be writable by the users or group members
 to perform the clone operations.

 Use the duplicatews command to create a workspace copy using the
 source workspace.

 When creating an initial duplicated workspace, these are the relevant
 command options:
 duplicatews [-dir <target>] [-dryrun] -refws <source>
 [-[no]validaterefws]

 See the Options section for descriptions of the options.

 Note: If the -dir <target> isn't specified, the command uses the
 current directory (.).

Updating a Duplicated Workspace

 Once the workspace has been created, it can be updated using the
 -update option, which acts as an incremental populate, updating the
 workspace with any changes from the source workspace. Since an update
 always uses the original source workspace, you do not specify a
 reference (source) workspace. The duplicated workspace much be on the
 same branch as the source workspace and use the same selector.

 Note: Any objects, including referenced submodules that are present
 in the duplicated workspace, but are not in the source workspace are
 removed and any new objects in the source workspace are added to the
 duplicated workspace.

 When updating a workspace, these are the relevant command options:
 duplicatews [-dir <target>] [-dryrun] -update [-[no]validaterefws]

 See the Options section for descriptions of the options.

 Note: If the -dir <target> isn't specified, the command uses the
 current directory (.).

Replacing an Existing Duplicated Workspace

 Running duplicatews -replace replaces the existing workspace with
 a new one, which can be a different module configuration, or
 module. The operation replaces all objects in the target workspace with
 the source workspace objects.

 When replacing a workspace, these are the relevant command options:
 duplicatews [-dir <target>] [-dryrun] [-refws <source>]
 [-[no]validaterefws] [-replace]

 See the Options section for descriptions of the options.

 Note: If the -dir <target> isn't specified, the command uses the

ENOVIA Synchronicity Command Reference - Module

355

 current directory (.). If the -refws <source> option isn't specified,
 the command uses the source stored in the metadata from the last
 duplicatews operation.

SYNOPSIS

 duplicatews [-dir <target>] [-dryrun] [-refws <source>] [-replace]
 [-status] [-update] [-[no]validaterefws]

OPTIONS

• -dir
• -dryrun
• -refws
• -report
• -status
• -update
• -validate

-dir

 [-dir <target>] Valid path to the target workspace. The path can be
 specified as an absolute or relative path. If no
 -dir option is specified, the default is the current
 directory (.).

-dryrun

 -dryrun Performs a test of the command with the options
 specified to verify that the operation will succeed
 before performing the operation. This option can be
 run with any of the report modes.

-refws

 -refws Valid path to the source workspace to clone. The path can
be
 specified as an absolute or relative path. The path
 must be the workspace root. The workspace root must
 contain .clone file in the root level .SYNC directory for

Advanced Revision Control

356

 the workspace.

 This option is required when creating an initial
 duplicate workspace. This option is not allowed when
 updating a duplicate workspace.

-report

 -report error| Controls the amount and type of information
 brief|normal| displayed by command. The information each
 verbose option returns is discussed in detail in the
 "Understanding the Output" section above.

 error - lists failures, warnings, and success
 failure count.

 brief - lists failures, warnings, some
 informational messages, and success/failure
 count.

 normal - includes all information from brief and
 lists all the objects created, modified or
 removed from the new workspace. (Default)

 verbose - provides full status for each
 object processed, even if the object is not
 updated by the operation.

-status

 -status Returns target and source workspace information. The
 information returned depends on selected the report
 mode.

 When used with -report normal (default) or report
 brief, this option reports the status of the target
 workspace.

 When used with -report error, this option includes
 additional information about any blocking conditions,
 such as locked or modified files in the workspace.

 When used with -report verbose, this option includes
 all the information from -report normal and error
 and includes status and blocking conditions present
 in the source workspace.

-update

ENOVIA Synchronicity Command Reference - Module

357

 -update Updates an existing duplicated workspace from the
 original source workspace. For more information, see
 Updating a Duplicated Workspace.

 This option is mutually exclusive with the -refws
 option.

-validate

 -[no]validaterefws Determines whether to perform a pre-operation
 check for locked files, locally modified objects
 and swapped modules in the workspace.

 -validaterefws performs the precheck and does not
 start the operation if there are locked files,
 locally modified objects, or swapped modules in
 the workspace. This adds some preprocessing time,
 but insures the integrity of the resulting
 workspace.

 -novalidaterefws does not validate whether objects
 in the workspace are locked, swapped, or
 modified. This can affect the integrity of the new
 workspace, but the operation may complete more
 quickly without the precheck. For update or
 replace operation run with the -novalidaterefws,
 any workspace locks are removed and any modified
 objects in the target workspace are overrwitten by
 the source workspace.

 This value overrides the value of the workspace
 registry key, ValidateReferenceWorkspace. By
 default, ValidateReferenceWorkspace is enabled,
 meaning that if nothing is changed in the system,
 -validaterefws is enabled.

RETURN VALUE

 The command does not have a TCL return value. If the command succeeds
 it creates a new workspace in the target directory. If the command
 fails, it returns an appropriate error message.

SEE ALSO

 access, eda createrefws, mkmod, sda mk

EXAMPLES

Advanced Revision Control

358

• Example showing the status of a workspace in report verbose mode

Example showing the status of a workspace in report verbose mode

 stcl> duplicatews -status -report verbose -novalidate

 Duplicate workspace

 path: /home/rsmith/MyModules/
 Module name: CPU
 base directory: /home/rsmith/MyModules/cpu
 url: sync://srv2.ABCo.com:2647/Modules/CPU
 selector: Trunk:
 version: 1.3
 last duplicatews operation: Mon Jun 10 12:25:02 EDT 2019
 Workspace /home/rsmith/MyModules has locked files

 Reference workspace

 path: /home/syncadmin/CommonModules
 Module name: CPU
 base directory: /home/syncadmin/CommonModules/cpu
 url: sync://srv2.ABCo.com:2647/Modules/CPU
 selector: Trunk:
 version: 1.3
 stcl>

exportmod

exportmod Command

NAME

 exportmod - Export module from a specified URL

DESCRIPTION

 This command compresses the specified module into a tar file so it
 can be moved to a different location, a different
 category, or a different server. The command tars the entire module
 contents including the module history, the module members, the
 original host, port, and module URL, and references to and from the
 module.

 Note: Any notes, access controls, subscriptions, or mirrors
 associated with the module are not exported along with the module.

 The tar file that is created is stored on the server in the following

ENOVIA Synchronicity Command Reference - Module

359

 unique location:
 <server-data-directory>/Export.sync/<category-path>/<module-name>.tar

 Note: By providing a single, unique location for the archive file,
 DesignSync avoids the possibility of overwriting the archive with a
 different module of the same name. It also ensures that only one
 tarred version of the of the module can exist on the server at any
 given time.

 The <server-data-directory> is:
 <sync_data_directory_defined_at_install_time>/<host>/<port>/server_vault

 Tip: When the export is created, the output of the export command
 provides the full path location to the export file. Save this
 information for use with the import command.

 Part of the moving process (export and import together) focuses on
 updating the hierarchical references to and from the module. This
 information is used when determining where the module is used (visible
 with the DesignSync whereused command). When the module is exported,
 the whereused information still identifies the original module
 location. When the module is imported to the new location, the
 hierarchical references are recreated and this new module is added to
 the whereused information of the referenced submodules. DesignSync
 does not remove, on import, the references to the old module since
 you are not required to delete the module.

 Important: By default, the command freezes the module before
 beginning the exportmod and does not remove the freeze when the
 operation completes.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 exportmod [-[no]force] [-[no]freeze] <ServerURL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the module. Specify the URL as
 follows:
 sync://<host>[:<port>]/Modules/[<category...>/]<module>
 or
 syncs://<host>[:<port>]/Modules/[<category...>/]<module>

Advanced Revision Control

360

 where 'sync://' or 'syncs://'
 is required, <host> is the machine on which the
 SyncServer is installed, <port> is the SyncServer
 port number (defaults to 2647/2679), [<category...>}
 is the optional category (and/or sub-category)
 containing the module, and <module> is the name of
 the module.
 For example:
 sync://serv1.abco.com:1024/Modules/ChipDesigns/Chip

OPTIONS

• -[no]force
• -[no]freeze

-[no]force

 -[no]force Overwrites the previous version of the exported
 module, if a previous version exists.

 -noforce does not remove the previous
 version. (Default)

 -force removes the previous version.

 Note: Because the name and location of the
 exported module is fixed based on the
 module and category name, only one version of
 the transportable module can exist at a
 time. For information on locating the
 exported module, see the Description section.

-[no]freeze

 -[no]freeze Freezes all the module branches on the server,
 so that no changes can be made, preserving the
 integrity of the information being exported.

 -nofreeze does not freeze module. This means
 changes can be made both during and after the
 exportmod operation.

 -freeze freezes the module so no changes can be
 made. This mode persists after the exportmod
 operation completes to support moving the
 module to a new location. (Default)

 Note: You can remove the module freeze using
 the unfreeze command.

ENOVIA Synchronicity Command Reference - Module

361

RETURN VALUE

 There is no return value. DesignSync provides status messages while
 the command runs. If the command fails, DesignSync returns an error
 explaining the failure.

SEE ALSO

 importmod, freezemod, unfreezemod, mvmod

EXAMPLES

• Exporting a module

Exporting a module

 This example creates a transportable module from an existing, in
 production module to move to a new location.

 dss> exportmod sync://serv1.ABCo.com:2647/Modules/Chips/chip-nx1
 Beginning module export ...
 sync://serv1.ABCo.com:2647/Modules/Chips/chip-nx1 : Module is frozen.
 Module successfully exported.
 /V6R2014Server/syncdata/serv1/2647/server_vault/Export.sync/Modules/
 Chips/chip-nx1.tar

freezemod

freezemod Command

NAME

 freezemod - Sets access controls on a module to prevent changes

DESCRIPTION

 This command modifies the access controls for the specified module so
 that no changes can be made to the module. This reduces the need for
 a merge when performing complex module operations, such as modifying
 hierarchical references in a batch mode or moving the module to a different
 server.

 Note: It is not necessary to freeze a module when performing a backup

Advanced Revision Control

362

 operation.

 When the changes are complete, unfreezemod releases the module for
 modifications.

 Note: If you have moved the module to a different server, you may
 wish to either delete the old module or retain it in a frozen state
 to prevent users from making modifications in the wrong location.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 freezemod <ServerURL>

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the module. Specify the URL as
 follows:
 sync://<host>[:<port>]/Modules/[<category...>/]<module>
 or
 syncs://<host>[:<port>]/Modules/[<category...>/]<module>
 where 'sync://' or 'syncs://'
 is required, <host> is the machine on which the
 SyncServer is installed, <port> is the SyncServer
 port number (defaults to 2647/2679), [<category...>}
 is the optional category (and/or sub-category)
 containing the module, and <module> is the name of
 the module.
 For example:
 sync://serv1.abco.com:1024/Modules/ChipDesigns/Chip

RETURN VALUE

 Does not return any TCL values.

SEE ALSO

 unfreezemod, mvmod, importmod, exportmod, edithrefs

EXAMPLES

ENOVIA Synchronicity Command Reference - Module

363

• Freezing a module

Freezing a module

 This example shows freezing a module.
 dss> freezemod sync://serv.ABCo.com:2647/Modules/Chips/chip-nx1
 sync://qelwsun14:30126/Modules/Chips/chip-nx1 : Module is frozen.

import

import Command

NAME

 import - Fetches an object, leaving it unmanaged

DESCRIPTION

 This command fetches local copies of the specified objects from the
 specified vault to your current workspace. Unlike fetching with the
 "co" command, imported files do not retain their association with the
 vault (are no longer managed).

 The "import" command can be used to switch an object's vault
 association. Perform the import on the object and then run the ci
 command on the new, unmanaged, object to check it into the new
 vault.

 Note: The selector list can be used to select what versions to fetch.
 If the select list is used, it is inherited from parent folder (the
 folder into which the objects are imported). If the selector is not
 appropriate for the vault from which you are importing use the
 -version option to specify the version. For DesignSync objects, the
 selector list will pick up tagged versions or version numbers. For
 modules, the selector list can only specify version numbers.

SYNOPSIS

 import [-force] [-version <selector>] [--]
 <argument> <object> [<object>...]

ARGUMENTS

• Module URL

Advanced Revision Control

364

Module URL

 <module URL> Specifies the DesignSync URL of the module for the
 object being imported. Specify the URL (for
 example:
 sync://srvr2.ABCo.com/Modules/Chip/chip.c;)
 when the object being imported is a member of a
 module.

OBJECTS

• Module Member

Module Member

 <module member> Specifies the module member to import. You cannot
 import folders.

OPTIONS

• -force
• -version
• --

-force

 -force Overwrites a local object if the object has the
 same name as an object being imported. When
 -force is not specified, the default behavior is
 to not overwrite local objects and return an
 error message explaining why the objects were not
 imported.

-version

 -version <selector> Specifies the version of the objects being
 imported.

 If no version is specified, the default version
 imported is the latest object version in the
 module version specified by the module URL
 argument.

 Note: To use -version to specify a branch,
 specify both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,

ENOVIA Synchronicity Command Reference - Module

365

 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 none

SEE ALSO

 populate, selectors

EXAMPLES

• Example of Importing a Specific Module Version
• Example of Importing a Module Member

Example of Importing a Specific Module Version

 This example fetches a specific version of a module object by its
 natural path.

 dss> import sync://cassini:2647/Modules/Chip;1.5 /libs/df2test/cdsinfo.tag

Example of Importing a Module Member

 This example shows fetching a specific module member vault version
 using the -version option to specify the version number.

 dss> import -version 1.3 sync://h:p/Modules/Chip;1.5\
 /libs/df2test/cdsinfo.tag

importmod

Advanced Revision Control

366

importmod Command

NAME

 importmod - Import exported module to new server location

DESCRIPTION

 This command uncompresses an exported module from the tar file to the
 specified location. The new module contains the full module history
 of the old module, the module members, the original host, port, and
 module URL information. It also contains the hierarchical reference
 information. In an additional step, you can recreate the hierarchical
 references using the reconnectmod command.

 Before you perform the import, you must copy the exported file to the
 specific location that corresponds to the desired location on the
 server. Copy the file to the following location:

 <server-data-directory>/Import.sync/Modules/<category_path>/ \
 <modulename>.tar

 Where:
 <server-data-directory> is:
 <path_to_syncdata>/<host>/<port>/

 If you are also changing the name of the module, as well as the
 location, rename the tar file to <newModuleName>.tar.

 Note: The specified module location must be empty in order to import
 the module. If there is already a module in that location, you must
 remove it before performing the import.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 importmod[-[no]freeze] [-[no]keep] <ServerURL>

ARGUMENTS

• Server URL

Server URL

ENOVIA Synchronicity Command Reference - Module

367

 <ServerURL> Specifies the URL of the module. Specify the URL as
 follows:
 sync://<host>[:<port>]/Modules/[<category...>/]<module>
 or
 syncs://<host>[:<port>]/Modules/[<category...>/]<module>
 where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, <port> is the SyncServer
 port number (defaults to 2647/2679), [<category...>}
 is the optional category (and/or sub-category)
 containing the module, and <module> is the name of
 the module.
 For example:
 sync://serv1.abco.com:1024/Modules/ChipDesigns/Chip

OPTIONS

• -[no]freeze
• -[no]keep

-[no]freeze

 -[no]freeze Freezes all the module branches on the server after
 the import completes so any additional changes can be
 made before the module is released for normal usage.

 -nofreeze immediately releases the freeze on the
 module after the import has completed. This means
 changes immediately upon completion of the importmod
 operation.

 -freeze leaves the module in a frozen state after the
 import so no changes can be made. (Default)

 Note: You can remove the module freeze using the
 unfreeze command.

-[no]keep

 -[no]keep Indicates whether DesignSync should keep or delete
 the module export file after the import is complete.

 -nokeep removes the module export file after
 completing the import. If the import is not
 successful, the export file is not removed,
 regardless of how this is set. (Default)

 -keep saves the module export file after completing
 the import.

Advanced Revision Control

368

RETURN VALUE

 There is no return value. DesignSync provides status messages while
 the command runs. If the command fails, DesignSync returns an error
 explaining the failure.

SEE ALSO

 exportmod, mvmod

EXAMPLES

• Example of Importing a module

Example of Importing a module

 This example copies a transportable module, created with the
 exportmod command, changes the name of the module, and imports the
 module to the new server location.

 syncmgr@serv1> cp

/usr/syncmgr/syncdata/serv1/2647/server_vault/Export.sync/Modules/Chips/Chip-
nx1.tar

/usr/syncgmr/syncdata/serv2/2647/server_vault/Import.sync/Modules/ChipDesign/
Chip-NX2.tar
 syncmgr@serv1> dssc
 dss> importmod sync://serv2.ABCo.com:2647/Modules/ChipDesign/Chip-NX2
 Beginning module import ...
 sync://serv2.ABCo.com:2647/Modules/ChipDesign/Chip-NX2 : Module is frozen.
 Module successfully imported.

lock

lock Command

NAME

 lock - Creates a server-side lock on a module branch

DESCRIPTION

ENOVIA Synchronicity Command Reference - Module

369

 This command locks a module branch. Locking the branch is useful when
 creating new branches; creating, moving, or deleting tags; or adding
 or removing hierarchical references. By locking the module version,
 you insure that no one else can alter the data while you make your
 changes.

 If any module objects are already locked on the requested branch, the
 lock command fails, unless all the object locks are owned by the same
 user placing the module lock.

 To remove a lock on a module branch, use the unlock command. This
 will release the lock on the module version.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 lock [-[no]comment [<string>] [--] argument

ARGUMENTS

• Module Branch

Module Branch

 <module branch> A module branch or version in the form of a
 server URL.

OPTIONS

• -[no]comment

-[no]comment

 -[no]comment <string> Indicates whether to leave a comment with
 the lock. The lock comment is not saved when
 the module is unlocked. The comment provides
 a way for the locker to communicate the
 purpose of the lock.

 Note: To view the lock comment on a module
 branch, run the vhistory command on the locked

Advanced Revision Control

370

 module branch.

 -nocomment stores no comment to explain the
 purpose of the lock.(Default)

 -comment <string> stores the value of <string>
 as the lock comment. Use the vhistory command
 to view the comment.

SEE ALSO

 command defaults, ci, populate

RETURN VALUE

 The command returns a status message indicating whether the lock
 succeeded or failed. If the lock failed, the message provides a
 reason for the failure.

EXAMPLES

 This example shows locking branch 1.2.1 on the Chip module to apply a
 tag. After the lock has been applied, the example shows the lock
 comment using the vhistory command.

 stcl>lock -comment "Adding a tag to the module branch" \
 sync://srv2.ABCo.com:2647/Modules/Chip;1.2.1

 Beginning Lock operation...

 Locking: sync://srv2.ABCo.com:2647/Modules/Chip;1.2.1 : Locked

 Lock operation finished.

 {Objects succeeded (1)} {}

 vhistory sync://srv2.ABCo.com:2647/Modules/Chip;1.2.1
 Object: sync://srv2.ABCo.com:2647/Modules/Chip;1.2.1

 Branch: 1.2.1
 Branch tags: Gold
 Locked by: rsmith; 1.2.1.1
 Comment: Adding a tag to the module branch

 Version: 1.2.1.1
 Version tags: Latest
 Derived from: 1.2
 Date: Mon Oct 30 04:24:58 PM EST 2006

ENOVIA Synchronicity Command Reference - Module

371

 Author: rsmith

 ===

migratetag

migratetag Command

NAME

 migratetag - Migrates old DesignSync tags to modules

DESCRIPTION

 The migratetag command provides a method for associating private tags
 or selectors used with legacy modules or DesignSync vaults that are
 not converted to the new module during the upgrading to modules.

 The process of upgrading a legacy module or DesignSync vault, using
 the upgrade command, only migrates the configurations defined in the
 associated sync_project.txt files. There can be additional tags on
 versions and branches of the member vaults that are not defined in
 the sync_project.txt files, such as a private tags used to define a
 local configuration. The upgrade process preserves this tag
 information so private tags or selector lists using these tags can be
 migrated seamlessly to the new module. This command can only be run
 on a module upgraded with the upgrade command.

 The migratetag command creates a new module branch containing the
 member versions that resolve to the supplied selector in the legacy
 module or DesignSync vault. This branch is tagged with a
 user-specified mutable tag name or the version tag supplied as the
 selector if the -branchname option is not specified.

 The migratetag command can also be used to generate a list of the
 tags available to be migrated to the new module or module members
 with their version numbers that would be added to the new branch with
 the specified selector.

 This command is subject to access controls on the server. See the
 ENVOIA Synchronicity Access Control Guide for details.

SYNOPSIS

 migratetag [-branchname <branchtag>] [-list] <argument>
 [<selector>[,<selector>...]]

Advanced Revision Control

372

ARGUMENTS

• Server Module URL
• Selector(s)

Server Module URL

 <server module> Specify the URL as follows
 sync[s]://<host>[:<port>]/<vaultPath> where
 <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 and <vaultPath> identifies the module.

Selector(s)

 <selector> The selector used to identify the module
 member versions being migrated. This selector
 comes from the individual vault objects of the
 legacy module or DesignSync vault prior to the
 object being upgraded. The possible selector
 values include:

 o version tag selectors, such as Gold.
 o branch selectors, such as "Gold:" or
 Gold:Latest.
 o selector list.
 o version number selectors, such as 1.4.
 Note: The migratetag operation adds each
 member at the specified version number to
 the module version's manifest, and does not
 check to see if the member version exists.

 Note: Date selectors, auto-branch selectors
 and configurations defined in the
 sync_project.txt files do not identify any
 members to migrate.

 For more information on selectors, see the
 selectors help topic.

OPTIONS

• -branchname
• -list

-branchname

 -branchname The mutable branch tag to assign to the branch

ENOVIA Synchronicity Command Reference - Module

373

 <branchtag> being created. If this option is not specified
 and the selector argument provided is a
 version tag, migratetag uses the provided
 version tag as the branchname.

 Tip: Tag names must be unique within a module.
 Using the -branchname option allows you to
 migrate a version tag, even if another tag
 already exists with that name, by allowing you
 to specify a new, unique, branch tag name.

-list

 -list Specifies that the command should return
 either a list of the tags that can be migrated
 using the migratetag command or the list of
 members and their version numbers that would
 be added to the new branch during the
 migration of the specified selector.

RETURN VALUE

 When migrating tags (not using the -list option), if the versions
 containing the tag-name are successfully migrated, the command
 returns a Tcl list containing the new branch name and the new branch
 number. If the migratetag command fails, it returns an error.

 When using the list option without a tag-name specified, the command
 returns a Tcl list all the tags available to be migrated,
 sorted alphabetically and the tag type, version or branch.

 When using the list option with a selector specified, the command
 returns a Tcl list of the module member versions identified by the
 selector, sorted by natural path. A member version is returned with
 the natural path of the member created during the upgrade and the
 version number (for example: <path>;<Version.Number>).

 If any of the following conditions are met, the migratetag command
 fails and returns an appropriate error:

 o The branch tag being applied already exists.
 o No members resolve to the specified selector.
 o The module doesn't exist.
 o A selector was not specified when not using the list option.

SEE ALSO

 command defaults, selectors, upgrade

Advanced Revision Control

374

EXAMPLES

• Example Showing the Available Tags for Migration
• Example Showing Migrating a Tag To a Module

Example Showing the Available Tags for Migration

 This example provides a list of the tags available for migration on
 the Doc module.

 stcl> migratetag -list sync://serv1:2647/Modules/Doc

 {bronze Branch} {gold Branch} {platinum Branch} {silver Branch}\
 {Trunk Branch} {VTAG Version}

 This example shows a list of the files associated with a specified
 selector, in this case, gold:Latest.

 stcl> migratetag -list sync://serv1:2647/Modules/Doc gold:Latest

 {/install.doc;1.1} {/readme.txt;1.1} {/getstart.txt;1.1}

Example Showing Migrating a Tag To a Module

 This example shows migrating the Beta version tag selector to the new
 Doc module. In this example, the -branchname is used to specify a
 new tag name, DocBeta, because the "Beta" tag is already in use in
 the module.

 stcl> migratetag -branchname DocBeta sync://serv1:2647/Modules/Doc \
 Beta

 DocBeta 1.1.3

mkbranch

mkbranch Command

NAME

 mkbranch - Creates a new branch

DESCRIPTION

• Branching Modules

ENOVIA Synchronicity Command Reference - Module

375

 This command creates a new branch for the specified objects. The new
 branch is tagged with the specified branch name (sometimes called a
 branch name "tag". For more information, see the tag help
 topic). The branch-point version -- the version off which the branch
 is created -- depends on the object type:

 The 'mkbranch' command does not set the local workspace to use the
 new branch (your local metadata is not modified). If you want future
 operations to take place on the new branch, change your persistent
 selector to point to the appropriate branch. For example:
 dss> mkbranch Dev top.v
 dss> setselector Dev:Latest top.v

 In addition to the manual creation of branches with 'mkbranch',
 which supports the "project branching" design methodology,
 DesignSync supports the "auto-branching" design methodology.
 See the "selectors" help topic for more information.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Branching Modules

 For a module, the branch point is the module version specified in the
 command.
 Notes:
 * The branch point version is created as the first module version
 on the new branch.

 * To verify the mkbranch on the module, you can use the contents
 commands to see the module manifest. If you use the vhistory
 command with the -report +Q option, you see the module objects
 in an added state, but you do not see the hierarchical
 references.

SYNOPSIS

 mkbranch [-[no]comment <text>] [-exclude <string>,[<string>...]]
 [-[no]selected] [-version <selector>] [--]
 <branchname> [<argument> [<argument> ...]]

ARGUMENTS

• Branch Name
• Server Module Version

Advanced Revision Control

376

Branch Name

 <branchname> Specifies the name to use for the new branch.

 Note: DesignSync vaults and legacy module branch
 names cannot end in --R.

Server Module Version

 <Server Module Specifies the server module version to branch.
 version> To reduce the possibility of inadvertently
 branching the wrong module version, you must
 specify the version number either with this
 argument or by using the -version option.
 Note: You always branch on the server, not in
 the workspace

OPTIONS

• -[no]comment
• -exclude
• -[no]selected
• -version
• --

-[no]comment

 -[no]comment <text> Specifies the comment to include with the newly
 created module branch.

 -nocomment stores no comment to explain the
 purpose of the branch.(Default)
 -comment <text> stores the value of <string>
 as the branch comment. To specify a multi-word
 comment, enclose the text string in quotation
 marks (""). The comment is attached to the
 branch itself and to the branch tag.

 Note: If there is a minimum comment length
 defined with SyncAdmin for the client, you must
 specify a comment for mkbranch. This option
 does not check the Access Control comment length
 for the checkin command.

-exclude

ENOVIA Synchronicity Command Reference - Module

377

 -exclude <objects> Specifies a comma-separated list of objects
 to be excluded from the operation. (Legacy
 modules only) Wildcards are allowed.

 Do not specify paths in your arguments to
 -exclude. Before operating on each object
 (such as during a recursive 'mkbranch'),
 DesignSync compares the object's leaf name
 (path stripped off) to the exclude list to see
 if there is a match. Because the object's path
 is removed, the object will not match any
 object in the exclude list specified with a
 path. For example, if you specify '-exclude
 bin/*.exe', you will not successfully exclude
 bin/foo.exe or any other *.exe file. You need
 to instead specify '-exclude *.exe', or
 '-exclude foo.exe' if you want to exclude only
 'foo.exe'. The result is that you
 cannot exclude a specific instance of an
 object -- you exclude all matching objects.

 In addition to objects you specify using the
 -exclude option, the "These objects are always
 excluded" field from the Tools->Options->
 General->Exclude Lists dialog box in
 DesignSync lists objects that are always
 excluded from revision-control operations.

-[no]selected

 -[no]selected Indicates if the command should use the select
 list (see the 'select' command) or only the
 arguments specified on the command line.

 -noselected indicates that the command should
 not use the select list. (Default) If
 -noselected is specified, but there are no
 arguments selected, the mkbranch command fails,
 even if there are valid arguments in the select
 list.

 -selected indicates that the command should use
 the select list and any objects specified on the
 command line. If -selected is not specified,
 and there are no objects specified on the
 command line, the mkbranch command uses the
 select list for the command.

-version

 -version <selector> Specifies the version off of which the branch
 is created. This option is required unless the

Advanced Revision Control

378

 argument contains a version specifier.

 Notes:
 o You can specify a dynamic selector as the
 argument to the -version option, for example,
 '-version Rel2:Latest'; however, doing so is
 not recommended because you are attempting
 to freeze dynamically changing objects.
 Instead, specify a fixed version selector,
 for example, '-version rel2_revision1'.
 o If you do choose to specify a branch using
 the -version option, specify both the branch
 and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.

 Notes:
 - Scripts should only test for non-empty lists to
 determine success or failure. The actual content of a non-empty
 list currently takes the form "Objects succeeded (n)" and
 "Objects failed (n)", where "n" is the number of objects that
 succeeded or failed. However, these return values are subject to
 change in a future release.
 - If all objects fail, an exception occurs (the return value is
 thrown, not returned).

SEE ALSO

 selectors, setselector, select, tag, command defaults

ENOVIA Synchronicity Command Reference - Module

379

EXAMPLES

• Example Showing Module Branching

 Note: The following examples demonstrate the syntax and behavior of
 mkbranch, but do not necessarily show a recommended use model.

Example Showing Module Branching

 In the following example, a new "Dev" branch is created off the
 current version of the SPC module. Note that the persistent
 selector has not changed after you run the mkbranch command. In
 order to work on the new branch, you should manually change the
 persistent select list.

 dss> mkbranch Dev sync://srvr2.ABCo.com/Modules/SPC;1.4

 Beginning MkBranch operation...

 Branching: sync://srvr2.ABCo.com:2647/Modules/SPC;1.4 : Success -
 Created branch 1.4.1, tagged Dev
 MkBranch operation finished.

 {Objects succeeded (1)} {}

mkedge

mkedge Command

NAME

 mkedge - Creates merge edges between specified
 versions

DESCRIPTION

 Merge edges are created for individual objects or entire modules
 after a merge to simplify subsequent merges. For individual
 objects, and module merging within a single branch, a merge edge is
 created automatically at the checkin of the merged items after the
 merge. For cross-branch module merging, which contain a series of
 changes committed in different commit actions, DesignSync can not
 automatically determine what changes belong to the merge.

 After the merge has been performed and all the desired changes have

Advanced Revision Control

380

 been checked in, you can manually create a merge edge to create a
 link between the version on the branch being merged with and the
 post-merge module version created.

 This command is subject to access controls.

SYNOPSIS

 mkedge [-modulecontext <module>] -- <argument>

ARGUMENTS

• Workspace Module
• Module Version

Workspace Module

 <Workspace module> Specify the local workspace module. The command
 identifies the version merged into the workspace
 from a local record and, using the currently
 populated version, creates a merge edge between
 the two versions.

Module Version

 <Module The numeric version number of the version being
 Version> merged from. When you specify a module version,
 you must also specify the module context field to
 provide the server URL for the module being merged
 to.

OPTIONS

• -modulecontext
• --

-modulecontext

 -modulecontext Identifies the URL for the module being
 <context> merged from the server, for example:
 sync://server1:2647/Modules/Chip.

 Note: When you specify the numeric module version
 of the server module being merged from, you must

ENOVIA Synchronicity Command Reference - Module

381

 use the -modulecontext option to specify the
 server module URL.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when
 arguments to the command begin with a hyphen (-).

RETURN VALUE

 This command returns a TCL value of null ("").
 If the command succeeds, it reports that the merge edge was created
 from the merge from version to the merge to version.
 If the command fails, it returns an error message explaining the
 failure.

SEE ALSO

 populate, ls, add, remove, addhref, edithrefs, rmhref, rmedge

EXAMPLES

 This example shows a simple cross-branch module merge and the mkedge
 command that creates the merge edge between the two versions.

 The first step in the cross-branch module merge is the populate with
 -merge and -overlay selected.

 dss> pop -merge -overlay Branch: ROM%1
 Beginning populate operation at Tue Apr 10 01:55:24 PM EDT 2007...

 Populating objects in Module ROM%1
 Base Directory /home/rsmith/MyModules/rom
 Without href recursion

 Fetching contents from selector 'Branch:', module version '1.3.1.3'

 Merging with Version: 1.3.1.3
 Common Ancestor is Version: 1.3

 ==
 Step 1: Identifying items to be merged and conflict situations

Advanced Revision Control

382

 ==

 /romMain.c : member will be fetched from merged version and
 added to workspace version on checkin.
 Use 'ls -merged added' to identify members added by merge.
 /rom.v : conflict - different member in merge version found at same natural
 path in workspace version. Cannot fetch member or merge contents
 with member from merge version; it will be skipped. If member from
 merge version is desired, remove or move member on workspace
 branch and then re-populate with overlay from merge version.
 /rom.v : Natural path different on merge version and workspace version.
 Contents will be merged, if required.
 /rom.doc : No merge required.
 /doc/rom.doc : No merge required.

 ==
 Step 2: Transferring data for any items to be fetched into the
 workspace
 ==

 Total data to transfer: 0 Kbytes (estimate), 1 file(s), 0 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 1 Kbytes, 1 file(s), 0 collection(s), 100.0% complete

 ===
 Step 3: Merging file contents as required into the workspace
 ===

 Beginning Check out operation...

 Checking out: rom.v : Success - Version
 1.1.1.1 has replaced version 1.1.
 Checking out: rom.c : Success - Version
 1.1.1.1 has replaced version 1.1.

 Checkout operation finished.

 ==
 Step 4: Updating files fetched into the workspace
 ==

 /romMain.c : Success - Version 1.1 fetched

 ROM%1 : Version of module in workspace not updated (Due to overlay
 operation).

 ==
 Step 5: Comparing hrefs for the workspace version and merge version:
 ==
 No hrefs present in workspace version
 No hrefs present in merge version

ENOVIA Synchronicity Command Reference - Module

383

 Finished populate of Module ROM%1 with base directory
 /home/rsmith/MyModules/rom

 Time spent: 0.2 seconds, transferred 1 Kbytes, average data rate 4.3 Kb/sec

 Finished populate operation.

 {Objects succeeded (3)} {}

 After the populate has completed, run ci to create the new module
 version with the merge changes.

 dss> ci -comment "Incorporating changes on Branch:" ROM%1
 Beginning Check in operation...

 Checking in objects in module ROM%1

 Total data to transfer: 1 Kbytes (estimate), 3 file(s), 0 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 2 Kbytes, 3 file(s), 0 collection(s), 100.0% complete

 Checking in: /rom.c Success - New version: 1.2
 Checking in: /rom.v Success - New version: 1.2
 Checking in: /romMain.c Success - New version: 1.1.1.1

 ROM%1: Version of module in workspace updated to 1.5

 Finished checkin of Module ROM%1, Created Version 1.5

 Time spent: 0.7 seconds, transferred 2 Kbytes, average data rate 2.8 Kb/sec
 Checking in: /doc/rom.doc : Success - No new
 version created. Lock Removed.

 Checkin operation finished.

 {Objects succeeded (4)} {}

 After the checkin has created the new module version, create the
 merge edge.

 dss> mkedge ROM%1
 Edge from 1.3.1.3 to 1.5 for module
 sync://srv2.ABCo.com:2647/Modules/ROM created successfully.

mkfolder

mkfolder Command

NAME

 mkfolder - Creates a folder (directory)

Advanced Revision Control

384

DESCRIPTION

 This command creates one or more folders (directories), either on
 the local file system or on the server.

 o You can specify the folder as a relative path, an absolute path,
 a "file:" URL, or a "sync:" URL.
 o The permissions of the new folder are inherited from the parent
 folder.
 o When creating local folders (not specifying the "sync:" protocol),
 you must have write privileges for the parent directory.
 o When specifying a folder name that contains whitespace, use
 double quotes.
 o DesignSync creates whatever folders are needed to create
 the specified path (similar to UNIX's 'mkdir -p' command).
 o The ability to create server-side folders ("sync:" protocol) can
 be accessed controlled using the MakeFolder action.
 o When creating folders, you must use a legal name. If characters
 are restricted, you cannot use them in folder names. For more
 information on restricted characters, see Exclude Lists in the
 DesignSync Data Manager Administrator's Guide.
 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mkfolder [--] <foldername> [<foldername>...]

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

SEE ALSO

 rmfolder

EXAMPLES

 The following examples show variations of creating folders:

ENOVIA Synchronicity Command Reference - Module

385

 dss> mkfolder asic # relative path
 dss> mkfolder ../asic # relative path
 dss> mkfolder /home/goss/Projects/asic # absolute path
 dss> mkfolder file:////home/goss/Projects/asic # file: protocol
 dss> mkfolder sync://holzt:2647/Projects/asic # sync: protocol
 dss> mkfolder asic1 ../asic2 # create two folders
 dss> mkfolder "asic 1" # foldername has whitespace
 dss> mkfolder asic/decoder/synth # creates asic and decoder
 # folders if necessary

mvmember

mvmember Command

NAME

 mvmember - Changes the natural path of a module member

DESCRIPTION

• Moving Folders

 This command is used to rename a module object. Renaming the object
 can include changing the name of the object, moving the object to a
 different location, or both. Moving an object in the workspace
 updates the object on the server. Moving a specified server object
 directly does not affect any workspaces containing the moved object
 until the workspace is updated.

 Tip: Performing the mvmember command on the workspace object removes
 any properties set on the object by a cross-branch module merge.

 The mvmember command moves a module member by performing the
 following actions:
 - In the workspace, the module member is renamed or moved to a
 specified new location.
 Note: If the specified member is a folder, the folder itself is
 not moved, only the folder contents.
 - On the server, a new version of the module is created with
 a changed natural path for the specified object (-immediate)
 or the workspace metadata is updated to indicate that the
 module member will be moved during the next module
 checkin (-noimmediate).

 When moving a workspace member, you must be working with the Latest
 version of the member present in the workspace. You can modify your
 copy of the object and move the object before checking the object
 back in. The mvmember command does not check in the modified object,
 it will only change the path or object name of the specified name.
 When you perform the next checkin operation, the modifications are

Advanced Revision Control

386

 checked in. The natural path of the object is checked to ensure that
 no characters that have been deliberately restricted are used. For
 more information on excluded characters, see Exclude Lists in the
 DesignSync Data Manager Administrator's Guide.

 Note: If you are using -immediate, the module version created with
 the mvmember command does not have the local modifications. If you
 are using -noimmediate, the module version created with the checkin
 operation has both the name change and the updated content.

 You cannot move an object that another user has locked. If you move an
 object you have locked, you retain the lock after the move has
 completed.

 When mvmember is performed on objects that have been added to the
 workspace but not checked in, the workspace member is renamed and
 remains in the added state to be processed on checkin.

 Notes:
 o Objects in share or reference mode cannot be moved with the
 -noimmediate flag.
 o Collections can be moved to a different location, but cannot be
 renamed with the mvmember command.

 IMPORTANT: When using mvmember with the -noimmediate option, you
 cannot rename files to use the same name as another file being moved
 within the change set. For example: Using file a.txt and b.txt, you
 could not rename a.txt to c.txt; then b.txt to a.txt. You could
 rename a.txt to c.txt, perform a checkin and then rename b.txt to
 a.txt.

 Note: This command cannot be run on module members in a module
 snapshots. Module snapshots cannot be content modified after
 creation.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Moving Folders

 The mvmember command can be used to move folders on the server. When
 a folder is renamed or moved on the server, the contents of the
 folder, including subfolders, move with it.

 Note: If any module members in the folder are locked by another user,
 the folder does not move.

 After the contents of a folder are moved, the folder is
 removed from the server, and if the module is populated with the
 -force option, removed from the workspace.

 When the mvmember command is run on a workspace folder, it moves the

ENOVIA Synchronicity Command Reference - Module

387

 contents within the folder (files or collection objects) to the
 specified location, and removes the folder on the workspace, but does
 not move the folder or any subfolders on the server, which means that
 those folders may still remain as empty directories within the module
 manifest. To recursively move folders in the module, use the mvmember
 command on the server folder, and then update your workspace with the
 populate command.

 Tip: The best way to move a module folder is to move the folder on
 the server. This guarantees that all module members move with the
 folder. If you move the workspace folder, you only move the module
 members present in the workspace.

SYNOPSIS

 mvmember [-[no]comment] [-[no]immediate] [-modulecontext <context>]
 [-[no]selected] [--] [<fromargument>...] <toargument>

FROMARGUMENTS

• Server Module Folder
• Workspace Module Folder
• Module Member
• Select List

Server Module Folder

 <server module Selecting a server module folder as a fromargument
 folder> moves the entire folder and its contents to the
 folder specified as the toargument.
 The toargument must be the path to a module folder
 if the fromarguments are module folders.
 Note: When a server -modulecontext is specified,
 then both the fromargument(s) and toargument must
 use the full directory path, in UNIX form,
 beginning after the workspace root. For more
 information, see the Examples section.

Workspace Module Folder

 <workspace module Selecting a workspace module folder as a
 folder> fromargument moves the contents of the folder to
 the folder specified as the toargument. It does
 not move the folder or subfolders on the server,
 which can result in empty folders in the module
 manifest.
 The toargument must be the path to a module folder

Advanced Revision Control

388

 if the fromarguments are module folders.

Module Member

 <module member> Selecting a module member as the fromargument
 moves the file to the location or name specified
 by the toargument.

 If only one fromargument is supplied, and the
 toargument does not exist already, the
 fromargument object is renamed to the name
 specified in the toargument.

 If more than one fromargument is supplied, and the
 toargment does not exist already, a directory
 named toargument is created and the fromargument
 objects moved into it.
 Note: When a server -modulecontext is specified,
 then both the fromargument(s) and toargument must
 use the full directory path, in UNIX form,
 beginning after the workspace root. For more
 information, see the Examples section.

Select List

 <select list> Using a select list to provide the list of objects
 to move allows you to easily specify a set of
 objects to move. When using a select list, you do
 not have to provide a fromargument. Use the
 -selected option to specify that the command use
 the select list. For more information on select
 lists, see the "select" command. You may use the
 select list in conjunction with other
 fromarguments.

TOARGUMENTS

• Module Folder
• Module Member

Module Folder

 <module folder> Specifying a module folder as the toargument moves
 all appropriate objects into the specified folder.
 If no folder exists by the name specified as the
 toargument, and there is more than one
 fromargument, the system creates the folder on
 the workspace and the server.

ENOVIA Synchronicity Command Reference - Module

389

 Note: When a server -modulecontext is specified,
 then both the fromargument(s) and toargument must
 use the full directory path, in UNIX form,
 beginning after the workspace root. For more
 information, see the Examples section.

Module Member

 <module member> Specifying an object as the toargument renames the
 fromargument to the toargument.
 Note: When a server -modulecontext is specified,
 then both the fromargument(s) and toargument must
 use the full directory path, in UNIX form,
 beginning after the workspace root. For more
 information, see the Examples section.

OPTIONS

• -[no]comment
• -[no]immediate
• -modulecontext
• -[no]selected
• --

-[no]comment

 -[no]comment Specifies whether to remove the specified
 "<text>" object with or without a description of changes.
 If you specify -comment, enclose the description
 in double quotes if it contains spaces. The
 ampersand (&) and equal (=) characters are
 replaced by the underscore (_) character in
 revision control notes.

 -comment specifies a reason for the object
 removal which is included in the module history.

 -nocomment does not specify a reason for the
 object removal.

-[no]immediate

 -[no]immediate Determines whether to immediately perform the
 mvmember operation or mark the objects for moving
 during the next module checkin.

 -noimmediate renames object in the workspace, but

Advanced Revision Control

390

 does not create a new module version on the
 server. When the next module version is checked
 in, the name changes are checked in to the
 server version. (Default) Objects populated in
 -share or -reference mode cannot be moved with
 -noimmediate.

 -immediate removes the object and creates a new
 module version immediately. Note that any
 modifications to the content of the file are not
 checked in to this module version. You must
 perform a check in to update the file contents.

 Note: Objects in the Add state are always
 immediately renamed. No new module version is
 created.

 The -immediate option is ignored when mvmember is
 performed on server objects.

-modulecontext

 -modulecontext Identifies the workspace module or server module
 <context> version in which the objects are being moved. If
 no module context is selected, DesignSync attempts
 to identify the desired module. If there is an
 obvious module target, for example, only a single
 module in the workspace, DesignSync automatically
 selects the module. If DesignSync cannot identify
 the module, the command returns an error stating
 that the module can not be identified an
 recommending the use of the -modulecontext option.

 Note that you cannot use a -modulecontext option
 to operate on objects from more than one module;
 the -modulecontext option takes only one
 argument, and you can use the -modulecontext
 option only once on a command line.

-[no]selected

 -[no]selected Specifies whether to perform this operation on
 objects in the select list (see the "select"
 command), as well as the objects specified on the
 command line.

--

 -- Indicates that the command should stop looking

ENOVIA Synchronicity Command Reference - Module

391

 for command options. Use this option when
 arguments to the command begin with a hyphen (-).

SEE ALSO

 command defaults, select

EXAMPLES

• Example of Moving a Folder
• Example of Renaming a File
• Example of Renaming a File and Immediately Creating a New Version

Example of Moving a Folder

 This example shows moving a folder, doc on a server. Note that
 the operation is recursive automatically, even though there is no
 -recursive option for the command. The contents command is used to
 show that all the contents of the /doc directory moved.

 stcl> contents -nodefaults -recursive -report normal -hrefmode normal
 sync://serv1/Modules/Chip

 Gathering data from vault sync://serv1/Modules/Chip@Trunk:Latest

 Module: sync://serv1:2647/Modules/Chip@1.6
 ...
 Contents of folder: /doc
 Object Name

 cpu.doc

 stcl> mvmember -immediate -modulecontext sync://serv1/Modules/Chip
 /doc /cpu
 Beginning mvmember operation...

 Moving objects in module sync://serv1:2647/Modules/Chip...
 /doc : Moved object to /cpu/doc
 Finished mvmember for module sync://serv1:2647/Modules/Chip :
 Created new version 1.7

 Finished mvmember operation.

 {Objects succeeded (1)} {}

 stcl> contents -nodefaults -recursive -report normal -hrefmode normal
 sync://serv1/Modules/Chip

 Gathering data from vault sync://serv1/Modules/Chip@Trunk:Latest

Advanced Revision Control

392

 Module: sync://serv1:2647/Modules/Chip@1.7
 ...
 Contents of folder: /cpu/doc

 Object Name

 cpu.doc

Example of Renaming a File

 This example shows moving a file, libcreate.c, populated to the
 "chip" workspace, to a different file name, libcreateclass.c.

 stcl> mvmember -modulecontext Chip%1 libcreate.c libcreateclass.c

 Beginning mvmember operation...

 Moving objects in module Chip%1...
 /libcreate.c : Moved object in workspace to /libcreateclass.c

 Finished mvmember operation.

 {Objects succeeded (1)} {}

 stcl> ci -comment "moved libcreate to libcreateclass and add files"
 Chip%1

 Beginning Check in operation...

 Checking in objects in module Chip%1

 Total data to transfer: 0 Kbytes (estimate), 10 file(s), 0 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 3 Kbytes, 10 file(s), 0 collection(s), 100.0% complete
 Progress: 3 Kbytes, 10 file(s), 0 collection(s), 100.0% complete

 Checking in: /chip.libcreateclass.c Success - Renamed from
 /libcreate.c
 Checking in: /doc/chip.doc Success - New version:
 1.1
 ...
 Chip%1: Version of module in workspace updated to 1.8

 Finished checkin of Module Chip%1, Created Version 1.8

 Time spent: 1.2 seconds, transferred 3 Kbytes, average data rate 2.5
 Kb/sec

 Checkin operation finished.

 {Objects succeeded (11)} {}

ENOVIA Synchronicity Command Reference - Module

393

Example of Renaming a File and Immediately Creating a New Version

 This example shows moving a file, libcreate.c, populated to
 the "chip" workspace, to a different file name, libcreateclass.c
 using the -immediate option.

 stcl> mvmember -immediate -modulecontext Chip%0 libcreate.c
 libcreateclass.c

 Beginning mvmember operation...

 Moving objects in module Chip%0...
 /libcreate.c : Moved object to /libcreateclass.c
 Chip%0 : Created new module version 1.9
 Chip%0 : Auto-merge operation - workspace version of module not updated.

 Finished mvmember operation.

 {Objects succeeded (1)} {}

 Note: This is an auto-merge operation, meaning that the object was
 moved in the workspace and the new module version, but because there
 is a later module version in the vault, the fetched version in the
 workspace was not updated. To update the module version in the
 workspace, and fetch other pending changes, perform a populate.

mvmod

mvmod Command

NAME

 mvmod - moves a module to another location on the server

DESCRIPTION

 This command moves your module from the current location to another
 location on the server. This allows you to re-categorize modules, if
 needed.

 Note: This does not allow you to move the module to a different
 server. To move a module to a different server, use the exportmod and
 importmod commands.

 The module move process moves all the module members and hierarchical
 references and preserves the module history.

 BEST PRACTICES TIP: Before performing a module move, verify that you

Advanced Revision Control

394

 have a current backup of the server containing the module.

 Note: The process does not update notes, access controls,
 subscriptions or mirrors.

 When you run the module move, the DesignSync server performs the
 following operations:

 o by default, freezes module in the old location so no changes can be
 made while the module is being moved.
 o bundles the module into a compressed format containing the history,
 hierarchical reference information, and module contents.
 o imports the module to the new location and recreates the
 hierarchical references.
 o updates the hierarchical references that point to the old module to
 the new module location.

SYNOPSIS

 mvmod [-[no]freeze] <OldServerURL> <NewServerURL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Both the oldServerURL and the NewServerURL use the same
 format to specify the old and new URL for the
 module. Specify the URL as follows:
 sync://<host>[:<port>]/Modules/[<category...>/]<module>
 or
 syncs://<host>[:<port>]/Modules/[<category...>/]<module>
 where 'sync://' or 'syncs://' are required, <host> is the
 machine on which the SyncServer is installed, <port> is
 the SyncServer port number (defaults to 2647/2679),
 [<category...>} is the optional category (and/or
 sub-category) containing the module, and <module> is the
 name of the module. For example:
 sync://serv1.abco.com:1024/Modules/ChipDesigns/Chip

OPTIONS

• -[no]freeze

-[no]freeze

ENOVIA Synchronicity Command Reference - Module

395

 -[no]freeze Specifies whether to freeze all branches for both the
 original and new module so no additional changes can be
 made before the module is released for normal usage.

 -nofreeze immediately releases the freeze on the new
 module after the import has completed. This means the
 module is immediately available for changes upon
 completion of the mvmod operation.

 -freeze leaves the new module in a frozen state after the
 move so no changes can be made, allowing the module
 mover to perform any additional structural changes
 required. (Default)

 Note: You can remove the module freeze for either module
 using the unfreeze command.

RETURN VALUE

SEE ALSO

 exportmod, importmod, freezemod, unfreezemod, reconnectmod

EXAMPLES

 This example shows moving a module to a new location on the server.
 dss> mvmod sync://serv1.ABCo.com:2647/Modules/Components/ROM
 sync://serv1.ABCo.com:2647/Modules/ChipComponents/ROM
 Beginning module move ...
 Updating back references of referenced objects ...
 sync://serv1.ABCo.com:2647/Modules/Components/ROM : Module is frozen.
 Reconnecting parent modules ...
 Beginning module reconnect ...

 The following hierarchical reconnection will be made to each parent module:
 From: sync://serv1.ABCo.com:2647/Modules/Components/ROM
 To: sync://serv1.ABCo.com:2647/Modules/ChipComponents/ROM

 sync://serv1.ABCo.com:2647/Modules/Components/ROM : Updating
 hierarchical references ...
 sync://serv1.ABCo.com:2647/Modules/Components/ROM : Updating
 reconnect history ...
 sync://serv1.ABCo.com:2647/Modules/ChipComponents/ROM : Adding back
 references ...
Module successfully moved.

purge

Advanced Revision Control

396

purge Command

NAME

 purge - Purges specified branches or versions of
 objects from the vault

DESCRIPTION

• Restrictions
• Triggers and Revision Control Notes and 'purge'
• Error Handling
• Using Purge with Modules

 This command deletes specified branches or versions of
 an object on a single branch in the vault. You can use this command
 to clean up the vault by deleting old versions of objects. You also
 can remove an entire branch: all branch tags, all version data, and
 all version tags on the deleted branch.

 Your server must be at release DS 4.2, or higher, to use this command
 to delete branches. Your server must be at release V6R2012 to use
 this command to purge module branches or versions.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Restrictions

 o The purge command does not follow DesignSync REFERENCEs or
 hierarchical references and operate on referenced data. If you
 use 'purge -recursive' on a directory hierarchy, the purge
 operation skips hierarchical elements based on REFERENCEs or
 hierarchical references.

 o The purpose of the purge command is to purge old versions on a
 single branch in the vault. The command does not support
 selectors with multiple entries. If you specify a purge of a
 vault object, you specify the branch to purge and the purge
 operation deletes versions from that branch only. If you specify
 a purge of a workspace object but you do not specify the -branch
 option, the purge operation uses the current branchid of the
 object and purges only that branch. The operation ignores a
 selector.

 o You can specify a purge of objects in a workspace or directly

ENOVIA Synchronicity Command Reference - Module

397

 defined by their vault URLs. If you specify a purge of a
 workspace directory, the purge operation traverses the workspace
 hierarchy to find all the objects for the purge operation. Then
 the operation deletes corresponding vault objects that have the
 appropriate branchid. If you use the purge command on workspace
 objects, it is possible that the purge operation will remove a
 version in the vault that is currently located in your
 workspace. This action is deliberate, since 'purge' is intended
 to clean up the vault independent of existing workspaces.

 Note: The purge command deletes versions from the vault; the
 command never affects data in your workspace.

 o The 'purge -recursive' command fails if you specify a directory
 for which you have not set the vault, even if that directory
 contains a subdirectory for which the vault is set. For example,
 suppose you have the following directory hierarchy in your
 workspace:
 Directory A (vault not set)
 Directory B (vault not set)
 Directory C (vault is set)

 If you use 'purge -recursive' and specify Directory A or
 Directory B, the purge operation fails and never finds Directory
 C. In this example, to purge files in Directory C, you must specify
 that directory with the 'purge -recursive' command.

 o To remove a branch with side branches, you must first remove the
 side branches.

 o Locked branches cannot be removed. You must first unlock the branch
 before deleting it.

 o The branch numbers of deleted branches cannot be reused.

Triggers and Revision Control Notes and 'purge'

 The purge command generates the same triggers and creates the same
 revision control notes as the rmversion command. Administrators
 should carefully consider which pre- and post-command triggers and
 revision control notes to enable. For example, the purge command
 causes triggers for 'rmversion'.

Error Handling

 If an error occurs, the purge command reports the error but does
 not throw an exception. The command proceeds with all other objects
 still left in the list of objects to purge.

 The purge operation reports an error only when:
 - There is an error in the command option
 - Objects specified do not exist

Advanced Revision Control

398

 - None of the versions selected for the purge can be deleted

 Failure to delete a version or a failure to access an object is
 reported in the overall failure count for the operation, not as an
 error.

Using Purge with Modules

 Module versions and module members can be purged.

 Module members are not purged explicitly, but are purged when all
 module versions referencing the module member version are purged.

 Module instances cannot be specified with a wildcard, such as '*'.
 Branch tags must be specified by the branch name or numeric.

 You cannot delete:
 - Branchpoint versions (for example, if 1.2.1 is a branch, you
 cannot delete version 1.2)
 - Version 1.1
 - The only version on a branch if it is not a .1 version
 - The Latest version of a locked branch
 - Tagged versions (unless the -force switch is used).
 - Version .1 when:
 o Another version on the branch could not be deleted.
 o Additional branch tags exist on the branch specified with
 the -branch switch and you do not specify '-force.'
 o Additional branch tags exist on the branch, the -branch switch
 is used with a branch numeric, and you do not specify '-force.'
 o The object is a module. The initial module version on any
 branch can not be purged, even when specified with the
 '-force' option, unless the entire branch is purged.
 - Module member versions which are not explicitly purged.

SYNOPSIS

 purge [-branch <branchname>] [-[no]dryrun]
 [-[no]force] [-keepsince <date>] [-keepversions <n>]
 [-report <mode>] [--] <argument> [<argument>...]

ARGUMENTS

• Module URL
• Module Workspace

 Specify one or more of the following arguments:

ENOVIA Synchronicity Command Reference - Module

399

Module URL

 <module URL> URL of the module containing the versions being
 purged. Specify the URL as follows:
 sync[s]://<host>[:<port>]/Modules/[<Category>...]
 /<module>;
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer
 port number, <Category> identifies the
 optional category path, and <module> is the name
 of the module.

 Note: If you specify a module URL as the argument,
 you must specify the branch with the -branch
 option.

Module Workspace

 <workspace Specifies the module instance name or path of the
 module> module containing the versions being purged. By
 default, this will purge from the branch
 specified by the persistent selector on the
 workspace.

 Note: The purge command accepts version-extended
 workspace folder and file paths. It does not
 accept version-extended module instance names.
 Also module instance names cannot be specified by
 using wildcard characters.

OPTIONS

• -branch
• -dryrun
• -[no]force
• -keepsince
• -keepversions
• -report
• --

-branch

 -branch Specifies the branch identifier of the objects you
 <branchname> want to purge. You can specify only one branch
 with this option.

 For the <branchname>, specify a branch tag (for
 example, rel40) or branch numeric (for

Advanced Revision Control

400

 example, 1.4.2) only. Do not specify a colon
 (:) with the branchname.

 If you do not specify the -branch option, the
 purge command uses the current branch
 identifier of the object.

 Note: If you use a server URL to specify an object
 for purging, you must also specify the -branch
 option.

-dryrun

 -[no]dryrun Determines whether this command performs a purge, or
 creates a report showing what files will be purged when
 the command is run.
 The -nodryrun option performs the purge.(Default)
 The -dryrun option generates the list of what will be
 purged when the purge command is run.
 This option can be used with any of the report modes.

-[no]force

 -[no]force Determines whether this command purges a tagged
 version or branch.
 -noforce ignores versions or branches that are
 tagged. (Default)
 -force purges the tagged versions and branches along
 with the rest of the specified versions. On vault
 objects, when used with -keepversions 0,' -force
 removes the branch (and the .1 version) even when the
 branch includes tags.

 Note: The branch point version cannot be removed until
 all branches rooted to it are removed and the
 first and latest versions on a branch cannot be
 removed until the entire branch is removed.

-keepsince

 -keepsince <date>
 Keeps all versions created after the specified
 date and deletes the other versions of an
 object on a single branch in the vault. For
 example, purge -keepsince "10 September 2003"
 keeps all versions of the object that were
 created after 10 September 2003 and deletes all
 other versions on the branch.

ENOVIA Synchronicity Command Reference - Module

401

 For <date>, specify a date or a
 relative time, enclosed in double quotation
 marks (" "). For example:
 stcl> purge -keepsince "10 days ago" top.v

 Note: If you use the -keepversions option in
 combination with the -keepsince option, the
 purge operation keeps those versions specified
 by each option. For example, if you specify:

 purge -keepversions 3 -keepsince "Jan 1 2004"

 the purge operation deletes all versions of the
 object from the vault except for the last 3
 versions or any versions created after the Jan
 1, 2004.

 If you use the -keepsince option with
 -keepversions 0 and -keepsince specifies that some
 versions cannot be deleted, the branch is not
 removed. The -keepsince option takes precedence
 over -keepversions 0.

-keepversions

 -keepversions <n> Keeps the last <n> versions of an object (on a
 single branch in the vault) and deletes the
 other versions. The default is 1.

 For example, 'purge -keepversions 3' keeps only
 the last 3 versions of the object and deletes
 all other versions from the vault.

 To delete all versions, use '-keepversions 0'.

 To delete a branch completely, identify the
 branch with the -branch switch and specify
 '-keepversions 0'. If you do not specify a branch,
 the current branch is picked up from the metadata
 when the command is issued on a workspace file.

 Note: The initial version, 1.1 is always
 preserved, even if -keepversions 0 is applied to
 the Trunk branch of a module.

-report

 -report <mode> Specifies the amount of output generated
 by the purge operation.

 Available modes are:
 o brief - Displays:

Advanced Revision Control

402

 - The name and version of each object
 successfully deleted.
 - A message if no versions are selected for
 deletion.
 - Error messages.

 o normal (the default mode) - Displays:
 - A statement that the command is gathering
 versions to be deleted.
 - A statement reporting the number of
 versions being deleted.
 - Versions successfully deleted, each with
 its full vault URL.
 - A message if no versions are selected for
 deletion.
 - Error messages.

 o verbose - Displays:
 - A statement that the command is gathering
 versions to be deleted.
 - Information on the progress of the command
 as it gathers versions for deletion,
 including:
 - Each directory traversed
 - Each object found
 - The number of versions on the branch to
 be deleted
 - A list of versions deleted and versions
 kept (with the reason why the version was kept)
 - Summary information about versions gathered
 for deletion.
 - A statement reporting the number of
 versions being deleted.
 - Each item being skipped (with the reason it
 is skipped)
 - Versions successfully deleted, each with
 its full vault URL.
 - A message if no versions are selected for
 deletion.
 - Error messages.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when
 arguments to the command begin with a
 hyphen (-).

RETURN VALUE

 The return value from the purge command is a string in the form:
 {Objects succeeded (n)} {Objects failed (n)}

ENOVIA Synchronicity Command Reference - Module

403

 The Objects succeeded count is the number of versions that were
 successfully deleted.

 The Objects failed count includes objects for which the version
 deletion failed, objects not under revision control, and objects
 for which version information for the object could not be fetched
 from the vault.

SEE ALSO

 rmversion, command defaults

EXAMPLES

• Example of Purging All but a 4 Versions of a Collection Object
• Example of Using Keep Since to Maintain 30 Days of Versions
• Example of Using both the -keepsince and -keepversions Options
• Example of Purging Versions from the Server
• Example of Making then Purging a Branch
• Example Showing Module Purge on the Trunk Branch

Example of Purging All but a 4 Versions of a Collection Object

 This example deletes from the vault all versions of the top_design
 Milkyway collection object in the current workspace except for the
 last 4 versions.

 stcl> purge -keepversions 4 top_design.sync.mw

Example of Using Keep Since to Maintain 30 Days of Versions

 This example deletes from the vault all versions of each object in
 the current workspace directory except for versions created in the
 last 30 days. The purge operation works recursively through all of
 the data in your workspace.

 stcl> purge -keepsince "30 days ago" -rec .

Example of Using both the -keepsince and -keepversions Options

 This example deletes from the vault all versions of each object in
 Ted's ALU workspace except for the last 5 versions of the object OR
 versions that were created in the last 30 days. The purge operation
 works recursively through all of the data in Ted's ALU workspace.

Advanced Revision Control

404

 stcl> purge -keepversions 5 \
 -keepsince "30 days ago" -rec /home/ted/ProjectWork/ALU

Example of Purging Versions from the Server

 This example deletes all versions of each object in the asic folder
 on the Trunk branch in the vault, except for the last 4 versions. The
 purge operation deletes these objects from the vault whether they are
 in the user's workspace or not.

 stcl> purge -keepver 4 sync://S1.ABC.com:2647/Projects/asic -branch
 Trunk

Example of Making then Purging a Branch

 This example shows the user creating a "V11" branch of the "runit"
 file, then immediately removing that branch via 'purge'. The
 'vhistory' output preceding the 'purge' shows the branch and version
 information, from the user's perspective. The verbose output from
 'purge' uses the internal representation of that same data.

 stcl> mkbranch V11 runit

 Beginning MkBranch operation...

 Branching: runit : Success - Created branch
 1.1.2, tagged V11

 MkBranch operation finished.

 {Objects succeeded (1)} {}

 stcl> vhistory -all runit
 Object: file:///c|/barbg/work dir/Sportster/test/runit
 Vault URL: sync://srv2.ABCo.com:2647/Projects/Sportster/test/runit;
 Current version: Refers to: 1.1
 Current state: Reference

 Branch: 1
 Branch tags: Trunk

 Version: 1.1
 Version tags: Latest
 Date: Fri Oct 28 16:13:52 2005; Author: tbarbg2

 Branch: 1.1.2
 Branch tags: V11
 This branch does not yet have any versions.

ENOVIA Synchronicity Command Reference - Module

405

 ==

 stcl> purge -report verbose -branch V11 -keepversions 0 runit
 Gathering versions for deletion...
 Object c:\barbg\work dir\Sportster\test\runit :
 0 existing version on branch "V11" (branchid "1.1.2") :
 This is a stub branch
 deleting version 1.1.2.1
 Purge version gathering summary:
 Objects processed: 1
 Versions selected for removal: 1
 Versions retained: 0
 Deleting 1 version...
 sync://srv2.ABCo.com:2647/Projects/Sportster/test/runit;1.1.2.1: \
 Success Deleted
 {Objects succeeded (1)} {}
 stcl>

Example Showing Module Purge on the Trunk Branch

 This example shows a purge on a module branch, Trunk. Note that
 both the initial version and the Latest version are not purged.

 stcl> purge -branch Trunk -report verbose -keepversions 1 Chip%0
 Gathering versions for deletion...
 Object c:\Workspaces\Chip%0 :
 6 existing versions on branch "Trunk" (branchid "1") :
 keeping version 1.1 (required, "1.1" version)
 keeping version 1.2 (tag exists on module version)
 deleting version 1.3
 deleting version 1.4
 deleting version 1.5
 keeping version 1.6 (keepversions criteria)
 Purge version gathering summary:
 Objects processed: 1
 Versions selected for removal: 3
 Versions retained: 3
 Deleting 3 versions...

 sync://srv2.ABCo.com:2647/Modules/Chip: Removing module versions ...

 sync://srv2.ABCo.com:2647/Modules/Chip;1.3: Success deleted
 sync://srv2.ABCo.com:2647/Modules/Chip;1.4: Success deleted
 sync://srv2.ABCo.com:2647/Modules/Chip;1.5: Success deleted

 sync://srv2.ABCo.com:2647/Modules/Chip: Identifying member versions
 to remove ...

 .
 sync://srv2.ABCo.com:2647/Modules/Chip: Found 3 candidate member
 version to remove.

 sync://srv2.ABCo.com:2647/Modules/Chip: Removing member versions ...

Advanced Revision Control

406

 .
 sync://srv2.ABCo.com:2647/Modules/Chip: Removed 1 member versions.
 {Objects succeeded (1)} {Objects failed (1)}

reconnectmod

reconnectmod Command

NAME

 reconnectmod - Updates the hrefs from a module to a new module

DESCRIPTION

 After you have moved a module (with the exportmod/importmod
 commands), you can update hierarchical references pointing to the old
 module to the new module. This operation does not create a new module
 version of the referencing modules, it modifies the reference within
 the module version to point at the new location. This maintains the
 integrity of both static and dynamic hierarchical references after a
 module has changed location.

 You can update the references all modules or a single module, or a
 list of modules.

 Note: When doing a move module with the mvmod command, the reconnect
 command is called automatically as part of that operation.

 This command supports the command defaults system.

 This command is subject to access controls on the server.

SYNOPSIS

 reconnectmod [-[no]force] [(-from <oldServerURL>) |
 (-parents <TCLlist>)] <ServerURL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the new module. Specify the URL as
 follows:

ENOVIA Synchronicity Command Reference - Module

407

 sync://<host>[:<port>]/Modules/[<category...>/]<module>
 or
 syncs://<host>[:<port>]/Modules/[<category...>/]<module>
 where 'sync://' or 'syncs://'
 is required, <host> is the machine on which the
 SyncServer is installed, <port> is the SyncServer
 port number (defaults to 2647/2679), [<category...>}
 is the optional category (and/or sub-category)
 containing the module, and <module> is the name of
 the module.
 For example:
 sync://serv1.abco.com:1024/Modules/ChipDesigns/Chip

OPTIONS

• -force
• -from
• -parents

-force

 -[no]force Determines whether to force the modulereconnect
 to module specified with the -from option, even
 if url/uid for the modules doesn't match the
 information contained in the imported
 transportable module.

 -noforce does not recreate the href is the
 url and uid information does not match the
 expected module information. (Default)

 -force recreates the href even if the url and
 uid information contained in the imported
 transportable module does not match the information
 for the target module specified with the -from
 option.

-from

 -from <OldServerURL> Specifies the URL of the old module. Specify the URL
as
 follows:

sync://<host>[:<port>]/Modules/[<category...>/]<module>
 or

syncs://<host>[:<port>]/Modules/[<category...>/]<module>
 where 'sync://' or 'syncs://'
 is required, <host> is the machine on which the
 SyncServer is installed, <port> is the SyncServer

Advanced Revision Control

408

 port number (defaults to 2647/2679), [<category...>}
 is the optional category (and/or sub-category)
 containing the module, and <module> is the name of
 the module.
 For example:
 sync://serv1.abco.com:1024/Modules/ChipDesigns/Chip

 Note: This option is mutually exclusive with -parents.

-parents

 -parents <TCLlist> Specify the list of urls identifying parent
 modules to update. By default, the list of
 parents is retrieved from the whereused
 information included with the module when the
 module is imported.

 Note: This option is mutually exclusive with
 -from.

RETURN VALUE

SEE ALSO

 mvmod, addbackref, addhref, rmhref, edithrefs

EXAMPLES

 This example shows how to use reconnectmod after moving a module.
 dss> reconnectmod sync://serv2.ABCo.com:2647/Modules/ChipDesign/Chip-NX2
 Beginning module reconnect ...

 The following hierarchical reconnection will be made to each parent
 module:
 From: sync://serv1.ABCo.com:2647/Modules/Chips/chip-nx1
 To: sync://serv2.ABCo.com:2647/Modules/ChipDesign/Chip-NX2

 sync://serv1.ABCo.com:2647/Modules/Components/ROM : Updating
 hierarchical references ...
 sync://serv1.ABCo.com:2647/Modules/Components/ROM : Updating
 reconnect history ...
 sync://serv3.ABCo.com:2647/Modules/Components/CPU : Updating
 hierarchical references ...
 sync://serv3.ABCo.com:2647/Modules/Components/CPU : Updating
 reconnect history ...

 sync://serv2.ABCo.com:2647/Modules/ChipDesign/Chip-NX2 : Adding back
 references ...

ENOVIA Synchronicity Command Reference - Module

409

 sync://serv1.ABCo.com:2647/Modules/Chips/chip-nx1 : Removing back
 references ...
 {Objects succeeded (4)} {}

remove

remove Command

NAME

 remove - Removes a module member from a module

DESCRIPTION

• Removing a folder from a module

 This command removes the selected module members from a module and
 creates a new module version without the selected module
 members. Unlike add, which creates a new module version only after
 the new module members have been checked in, the remove command can
 either immediately create a new module version without the removed
 module member or queue a series of changes for the next module
 checkin.

 Note: The object being removed is removed only from the new version
 of the module and subsequent modules. It is not removed from the
 vault and remains in previous module versions.

 Important: This command is not used to remove modules. To remove
 modules, see the rmmod command. This command is not used to remove
 hierarchical references. To remove hrefs, use the rmhref command.

 Module members can be removed from either a populated workspace or
 directly on the server. Module members include files, folders,
 and symbolic links.

 Tip: Performing the remove command on the workspace object will
 remove any properties set on the object by a cross-branch module
 merge.

 Note: How a module folder remove is handled depends on whether the
 remove is done on the workspace or on the server. For more
 information see "Removing a folder from a module" section.

 If an object was added to a module, but never checked in, and it is
 removed, the object is deleted. To retain the object, but revert it
 to an unmanaged state, specify the remove with the -keep
 option. Note: When removing an object that has never been checked in,
 you must use the -force option. If you do not use -force, the remove

Advanced Revision Control

410

 fails.

 Unmanaged items or module members from legacy modules are not part of
 a module, and cannot be removed from a module.

 This command never removes objects locked by another user. If the
 user who owns the lock performs the remove, the lock is removed first
 and then the object is removed from the module.

 Note: This command is not applicable to module snapshots which cannot
 be content modified after creation.

Removing a folder from a module

 You can use the remove command to remove a folder from the workspace
 or from the server. You can also use the remove command to remove a
 folder that was added to a module, but not checked in.

 Important: Performing a remove on a workspace folder never
 affects the server version of the folder. It only removes the
 workspace folder from the workspace.

 If you perform a remove on a workspace folder without the -recursive
 option, it will remove the contents of the folder, but not the folder
 itself. If you specify -noimmediate, it does not remove the folder
 immediately, but marks it for removal and removes it during the next
 module checkin.

 If you perform a remove on workspace folder recursively and do not
 specify the -keep option, DesignSync removes the specified folder, if
 it becomes empty and all subfolders that become empty as a result of
 removing their contents. The empty folders remain on the server, but
 are no longer part of your workspace.

 Notes: If you want to recreate the folders so your workspace reflects
 the server module structure, you must perform a full populate.

 If the folders contain non-module data, that data is not
 removed with the remove command. Folders that contain the
 non-module data are not empty and are not removed.

 If you remove a workspace folder recursively and specify the -keep
 option, the empty folders remain in the workspace and on the server.

 If you remove a server folder recursively, you remove the specified
 folder and all folders on the server. In order to update the
 individual workspaces with the server changes, repopulate the
 workspaces with the -force option selected.

 If a folder was explicitly added with the add command but has not
 been checked in, you can remove it from list of objects to be added
 to the module by using remove without specifying the recursive
 option. Any added objects within the folder are still added to the
 module when checked in, but the directory is implicitly added to the

ENOVIA Synchronicity Command Reference - Module

411

 module, rather than explicitly added, which means it will be removed
 automatically if it becomes empty.

 If you specify the -recursive option with the remove command, the
 folder and any objects within the folder are not added to the module.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 remove [-[no]comment "<text>"] [-filter <string>] [-[no]force]
 [-[no]immediate] [-[no]keep] [-modulecontext <context>]
 [-[no]recursive] [--] <argument>

ARGUMENTS

• Module Folder
• Module Member

Module Folder

<module folder> Removes module objects in the folder from a
 module. Specify the -modulecontext option if
 more than one module exists in the workspace or
 if you want to remove items directly from the
 module on the server; the remove fails if
 DesignSync cannot determine from which module to
 remove the folder. If the folder exists in
 multiple modules, it is removed from all the
 modules, unless a specific module context is
 specified.

 Workspace - You must use -recursive to remove a
 folder from a workspace. If a folder is
 specified, the workspace folder is removed after
 all the files have been removed from the
 module. The empty module folder on the server
 will not be removed unless it is explicitly
 removed.

 Server - In order to remove files or folders that
 are not populated into the workspace, you must
 specify the -modulecontext option and provide the
 natural path of the server folder. You may use
 wildcard characters in the natural path.

 Tip: When removing a folder, you should specify a

Advanced Revision Control

412

 server module. This assures that you remove
 the entire folder and its contents from the
 module. If you perform the remove on the
 workspace folder, you can only remove the
 elements that were populated in the
 workspace.

 For more information on how remove works on
 folders, see the "Removing a folder from a
 module" section above.

Module Member

 <module member> Removes the module member. If the member has not
 been checked in, but it has been added to the
 module using the add command, the file
 reverts to being unmanaged and the module version
 is never updated to include the file. Specify the
 -modulecontext option if more than one module
 exists in the workspace; the remove fails if
 DesignSync cannot determine from which module to
 remove the objects. If the object being removed
 is not populated to the workspace, you must
 specify both the -modulecontext option and
 provide the natural path of the server folder.
 Wildcards may be used in the natural path

OPTIONS

• -[no]comment
• -filter
• -[no]force
• -[no]immediate
• -[no]keep
• -modulecontext
• -recursive
• --

-[no]comment

 -[no]comment Specifies whether to remove the specified
 "<text>" object with or without a description of changes.
 If you specify -comment, enclose the description
 in double quotes if it contains spaces. The
 ampersand (&) and equal (=) characters are
 replaced by the underscore (_) character in
 revision control notes.

 -comment specifies a reason for the object

ENOVIA Synchronicity Command Reference - Module

413

 removal which is included in the module history.

 -nocomment does not specify a reason for the
 object removal.

-filter

 -filter <string> Specify one or more extended glob-style
 expressions to identify an exact subset of
 module objects on which to operate. Use the
 -exclude option to filter out DesignSync
 objects that are not module objects.

 The -filter option takes a list of expressions
 separated by commas, for example: -filter
 +top*/.../*.v,-.../a*

 Prepend a '-' character to a glob-style
 expression to identify objects to be excluded
 (the default). Prepend a '+' character to a
 glob-style expression to identify objects to be
 included. Note that if the list of expressions
 begins with an include character ('+'), the
 filter excludes all objects except those that
 match the include string.

 Specify the paths in your glob-style expressions
 relative to the current directory, because
 DesignSync matches your expressions relative to
 that directory. For submodules followed through
 hrefs, DesignSync matches your expressions
 against the objects' natural paths, their full
 relative paths. For example, if a module, Chip,
 references a submodule, CPU, and CPU contains a
 file, '/libs/cpu/cdsinfo.tag', DesignSync matches
 against '/libs/cpu/cdsinfo.tag', rather than
 matching directly within the 'cpu' directory.

 If your design contains symbolic links that are
 under revision control, DesignSync matches
 against the source path of the link rather than
 the dereferenced path. For example, if a
 symbolic link exists from 'tmp.txt' to
 'tmp2.txt', DesignSync matches against
 'tmp.txt'. Similarly for hierarchical operations,
 DesignSync matches against the unresolved path.
 If, for example, a symbolic link exists from dirA
 to dirB, and dirB contains 'tmp.txt', DesignSync
 matches against 'dirA/tmp.txt'.

 The extended glob-style expressions you use to
 filter the objects are standard glob-style
 expressions, but they are extended so that you
 can use the "..." syntax to indicate that the

Advanced Revision Control

414

 expression matches any number of directory
 levels. For example, the expression,
 "top/.../lib/*.v" matches *.v files in a
 directory path that begin with "top", followed by
 zero or more levels, with one of those levels
 containing a lib directory. The command traverses
 the directory structure. If a directory name
 matches an exclude clause of the filter, then the
 entire directory and all its contents are
 filtered (the command stops descending at that
 point), otherwise the command continues
 traversing the directory structure searching for
 matching objects.

 The -filter option does not override the exclude
 list set using SyncAdmin's General=>Exclude Lists
 tab; the items in the exclude list are combined
 with the filter expression. For example, an
 exclude list of "*%,*.reg" combined with '-filter
 .../*.doc' is equivalent to: '-filter
 .../*.doc,.../*%,.../*.reg'.

-[no]force

 -[no]force Specifies whether modified objects should be
 removed from the workspace.
 -noforce does not remove the specified object if
 it has been modified. (Default)
 -force removes the specified object even if it
 has been locally modified.

 Note: If you are removing objects that were added
 to a module, but never checked in with ci, you
 must use -force to remove the objects, since they
 are considered locally modified.

-[no]immediate

 -[no]immediate Determines whether to immediately perform the
 remove operation or mark the objects for removal
 during the next module checkin.

 -noimmediate removes the object from the
 workspace immediately, unless the -keep option is
 also specified, but does not immediately create
 a new module version. When the next module
 version is checked in, the objects specified are
 removed from the server module version.(Default)

 -immediate removes the object and creates a new
 module version immediately.

ENOVIA Synchronicity Command Reference - Module

415

 Note: Objects in the Add state are always
 immediately removed from the Add state. No new
 module version is created.

-[no]keep

 -[no]keep Specifies whether to delete local copies of objects
 after the object has been removed from the
 module. This option is ignored if the remove is
 done directly on a server object.

 -nokeep removes local copies of the removed
 object and empty subfolders from the
 workspace. (Default)
 -keep leaves local copies of the removed
 objects and empty subfolders in the
 workspace. Retained objects become unmanaged
 objects in the workspace.

-modulecontext

 -modulecontext Identifies the module version from which the
 <context> objects are being removed. Use the
 -modulecontext option to restrict the remove to
 only a particular module if your workspace has
 overlapping modules so that you can indicate
 which module you want the objects removed from.

 Specify the desired module using the module name
 (for example, Chip), or a module instance name
 (for example, Chip%0), or server module URL
 (sync://server1:2647/Modules/Chip). If you use
 module context to remove a server object, you
 must specify the latest version.

 Note that you cannot use a -modulecontext option
 to operate on objects from more than one module;
 the -modulecontext option takes only one
 argument, and you can use the -modulecontext
 option only once on a command line.

-recursive

 -[no]recursive Determines whether only the specified folder
 should be removed, or whether all objects in the
 folder and any subfolders should be removed as
 well. This option is ignored if the argument is
 not a module folder.

Advanced Revision Control

416

 -norecursive removes only the specified folder if
 it is empty, or, removes the folder from the list
 of objects to be added to a module. (Default). If
 the folder is already a module member (not in the
 added state), and is not empty, the command
 returns an error.

 -recursive removes the specified folder and all
 module objects in the folder and all
 subfolders. The -recursive option is required to
 remove any non-empty folder. A folder can only be
 removed if there are no objects remaining in the
 folder. If a folder contains objects from
 different modules only objects from the
 module specified with -modulecontext are
 removed. The other objects remain and the folder
 remains a member of the non-specified modules.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when
 arguments to the command begin with a hyphen
 (-).

RETURN VALUE

 The return value from the remove command is a count of how many
 objects were successfully and unsuccessfully removed from the module.

SEE ALSO

 command defaults, add, mkmod, rmmod, rmfile, rmfolder, ci

EXAMPLES

• Example of Removing Added Files
• Example of Removing a Folder
• Example Showing Removing Using Wildcards for Pattern Match

Example of Removing Added Files

 This example shows removing files from two directories that were
 added to a module, but never checked in. Note: -force is required to

ENOVIA Synchronicity Command Reference - Module

417

 remove these objects.

 stcl> remove -recursive -force doc verilog

 Beginning remove operation...

 /MyModules/Chip/doc/Chip.doc : Removed object that had never
 been checked in
 /MyModules/Chip/verilog/chip.v : Removed object that had never
 been checked in
 /MyModules/Chip/doc : Folder no longer has module members, removed
 from workspace and workspace module Chip%0
 /MyModules/Chip/verilog : Folder no longer has module members,
 removed from workspace module Chip%0

 Finished remove operation.

 {Objects succeeded (4)} {}

 Note: Because the doc folder contained no other members and no other
 files, it was removed from both the workspace module and physically
 removed from the workspace. The verilog folder, on the other hand,
 still contained an object (unmanaged)and was removed from the
 workspace module but the directory left in the workspace. The Chip
 folder itself still contained module members and was not removed from
 the module.

Example of Removing a Folder

 This example shows removing a folder called Doc from the server
 module. The folder is not empty, so it requires -recursive.

 stcl> remove -recursive -immediate \
 -modulecontext sync://myserver:2647/Modules/Chip;1.3 /Doc

 Beginning remove operation...

 Removing objects from module sync://myserver:2647/Modules/Chip;1.3...
 /Doc : Removed object
 Finished remove for module sync://myserver:2647/Modules/Chip;1.3 :
 Created new version 1.4

 Finished remove operation.

 {Objects succeeded (1)} {}

Example Showing Removing Using Wildcards for Pattern Match

 This example shows removing all the of the html and pdf files from
 the Doc directory and then updating the module with the changes.

 stcl> remove -recursive -noimmediate -modulecontext Chip%1 doc/*.html

Advanced Revision Control

418

 Beginning remove operation...

 Deleting objects from workspace module Chip%1...
 /doc/index.html : Removed object in workspace
 /doc/interface.html : Removed object in workspace
 /doc/commands.html : Removed object in workspace

 Finished remove operation.

 {Objects succeeded (3)} {}

 stcl> remove -recursive -modulecontext Chip%1 doc/*.pdf

 Beginning remove operation...

 Deleting objects from workspace module Chip%1...
 /doc/manual.pdf : Removed object in workspace

 Finished remove operation.

 {Objects succeeded (1)} {}

 stcl> ci -comment "Removed obsolete documentation" Chip%1

 Beginning Check in operation...

 Checking in objects in module Chip%1

 Total data to transfer: 0 Kbytes (estimate), 0 file(s), 0 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 2 Kbytes, 0 file(s), 0 collection(s), 100.0% complete

 Checking in: /doc/commands.html Success - Removed
 Checking in: /doc/index.html Success - Removed
 Checking in: /doc/interface.html Success - Removed
 Checking in: /doc/manual.pdf Success - Removed

 Chip%1: Version of module in workspace updated to 1.9

 Finished checkin of Module Chip%1, Created Version 1.9

 Time spent: 0.3 seconds, transferred 2 Kbytes, average data rate 5.9 Kb/sec

 Checkin operation finished.

 {Objects succeeded (4)} {}

rmedge

rmedge Command

NAME

ENOVIA Synchronicity Command Reference - Module

419

 rmedge - Removes previously set merge edges

DESCRIPTION

 Merge edges are created for individual objects or entire modules
 after a merge to simplify subsequent merges. If a merge edge is no
 longer needed, you can remove it.

 This command is subject to access controls.

SYNOPSIS

 rmedge -modulecontext <moduleURL> -- <argument>

ARGUMENTS

• Module Version

Module Version

 <Module The numeric version number of the module version
 Version> on which the merge edge was created.

OPTIONS

• -modulecontext
• --

-modulecontext

 -modulecontext Identifies the URL for the module the merge edge
 <context> was created on, for example:
 sync://server1:2647/Modules/Chip.

 Note: The modulecontext option is required.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when
 arguments to the command begin with a hyphen (-).

Advanced Revision Control

420

RETURN VALUE

 This command returns a TCL value of null ("").

 If the command succeeds, it reports that the specified merge edge was
 removed.

 If no merge edge exists on the specified version, the command
 notes that no merge edge exists.

 If the command fails, it returns an error message explaining the
 failure.

SEE ALSO

 populate, ls, mkedge

EXAMPLES

 In the example for mkedge, a merge edge was created between two
 versions of the ROM module.

 dss> mkedge ROM%1
 Edge from 1.3.1.1 to 1.4 for module
 sync://srv2.ABCo.com:2647/Modules/ROM created successfully.

 This example shows the removal of that merge edge.

 dss> rmedge -modulecontext sync://srv2.ABCo.com:2647/Modules/ROM;1.4 \
 1.3.1.1
 Edge from 1.3.1.1 to 1.4 for module sync://serv2.ABCo.com:2647/Modules/ROM
 removed successfully.

rmfile

rmfile Command

NAME

 rmfile - Deletes the specified object

DESCRIPTION

ENOVIA Synchronicity Command Reference - Module

421

• Notes for Module Objects

 This command deletes the specified object from the local file
 system. The object can be a file or a collection object. You can
 specify a relative or absolute path to the object. You cannot
 delete an object on the server ('sync:' protocol). Deleting an
 object does not affect the vault or module for that object.

 Notes:
 o You cannot delete a member of a DesignSync collection
 object.

 o If you use rmfile to delete a collection object that has obsolete
 local versions, the command deletes all of the files making up
 those obsolete local versions.

 This command supports the command defaults system.

Notes for Module Objects

 If you use rmfile to delete an object that is a member of a module,
 the object is removed from the workspace but remains a member of the
 module version on the server. To permanently remove items from a
 module, use the remove command. If module members are removed from
 the workspace, DesignSync places a marker in the workspace metadata
 that forces a full populate the next time the workspace is
 populated. For more information on full and incremental populate, see
 the populate command help.

 You cannot remove mcache links with rmfile. To remove a mcache link
 use rmmod or rmfolder.

SYNOPSIS

 rmfile [-trigarg <arg>] [--] <object> [<object> [...]]

ARGUMENTS

• Object

Object

 object The object that you want to delete. The object
 can be a local file or collection object. You
 can specify an absolute or relative path.

Advanced Revision Control

422

OPTIONS

• -trigarg
• --

-trigarg

 -trigarg <arg> Specifies an argument to be passed from the
 command line to the triggers set on the
 delete file operation. If the argument contains
 whitespace, enclose the argument within
 double quotation marks ("") if using the dss
 command shell or braces ({}) if using the stcl
 command shell.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when
 arguments to the command begin with a
 hyphen (-).

RETURN VALUE

 none

SEE ALSO

 command defaults, remove, rmfolder, rmversion

EXAMPLES

• Example of Removing a Specific File in the Current Working Directory
• Example of Removing Two Files
• Example of Removing a File with a Leading "-"
• Example of Removing a Member of a Collection

Example of Removing a Specific File in the Current Working Directory

 Delete top.v, which is in the current working directory:
 dss> rmfile top.v
 top.v: Success Deleted

ENOVIA Synchronicity Command Reference - Module

423

Example of Removing Two Files

 Delete two files: one absolute, one relative:
 dss> rmfile /home/Projects/ASIC/top.v ../decoder.v
 top.v: Success Deleted
 decoder.v: Success Deleted

Example of Removing a File with a Leading "-"

 Delete a file called '-myfile':
 dss> rmfile -- -myfile
 -myfile: Success Deleted

Example of Removing a Member of a Collection

 Deleting a file that is a member of a collection object fails. You
 must delete the collection object itself. The following example
 shows deletion of a Cadence cell view collection:
 dss> scd /home/Projects/smallLib/and2/verilog
 dss> rmfile pc.db
 pc.db: Deletion of this object is not supported
 Operation failed.
 dss> scd ..
 dss> rmfile verilog.sync.cds
 verilog.sync.cds: Success Deleted

rmfolder

rmfolder Command

NAME

 rmfolder - Deletes the specified folder

DESCRIPTION

• Notes for Modules

 This command deletes the specified folder from the local or server
 file system. You can specify a relative or absolute path for a local
 folder. Use the 'sync:' protocol to specify a server-side folder.

 When this command is used with the -norecursive option, you cannot
 delete a folder unless it is empty:

Advanced Revision Control

424

 - For local (client) folders, the folder cannot contain files,
 links, or folders. A folder containing a Synchronicity .SYNC
 metadata folder (for example, the folder you are deleting
 contains DesignSync references) can be deleted.
 - For server folders, the folder cannot contain vaults or other
 folders. A folder containing a sync_project.txt file can be
 deleted.

 If your vault is associated with a mirror, any folder removed from
 the vault is also removed from the mirror.

 You cannot delete your current folder or any parent folder to your
 current folder.

 You cannot delete any folder or file if you do not have UNIX
 permissions.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Notes for Modules

 If the folders are module objects, mcache links, module cache
 folders, or, if rmfolder is used with the -recursive option, contain
 module objects, the folder is removed from the workspace but remains
 a member of the module version on the server. To permanently remove
 items from a module, use the remove command. If you remove mcache
 link using rmfolder, the source mcache directory remains.

 If module members are removed from the workspace, DesignSync places a
 marker in the workspace metadata that forces a full populate the next
 time the workspace is populated. For more information on full and
 incremental populate, see the populate command help.

SYNOPSIS

 rmfolder [-[no]keepvid] <folder> [-[no]recursive] [-trigarg <arg>]
 [<folder> [...]]

ARGUMENTS

• Folder

Folder

 folder The local or server-side folder that you

ENOVIA Synchronicity Command Reference - Module

425

 want to delete. You can specify an absolute
 or relative path.

OPTIONS

• -[no]keepvid
• -[no]recursive
• -trigarg

-[no]keepvid

 -[no]keepvid Determines whether the version number of the
 Latest version in a deleted vault (due to
 'rmfolder -recursive' on a server-side folder) is
 remembered. This behavior is important if a
 vault of the same name is later created.

 -nokeepvid does not store the version
 number. (Default)

 -keepvid stores the version number.

 See the rmvault command for more details.

-[no]recursive

 -[no]recursive Determines whether to remove the specified folder and all
 subfolders in the hierarchy beneath it.

 The -norecursive option deletes the folder only if
 it's empty. This command is similar to the UNIX
 -rmdir command.

 The -recursive option deletes the contents of the
 folders and all subfolders. For local (client)
 folders, deletes as many folders and files as UNIX
 permissions allow.

 If an object was checked out "-lock" in the workspace
 being recursively removed, the lock is silently
 canceled prior to the object's removal.

 For server folders, access-control permissions
 are checked recursively for all vaults contained
 in the folders to be deleted. If all the access
 control checks pass, then the command deletes as
 many folders and files as UNIX permissions
 allow. If any access-control permission fails,
 the entire deletion operation is canceled.

Advanced Revision Control

426

 CAUTION: 'rmfolder -recursive', when used on a
 server folder, will delete vaults contained in
 the folder hierarchy even if a vault is locked
 or has one or more tagged versions. This
 behavior is in contrast to 'rmvault', which
 requires the -force option to delete a vault
 that is locked or has tagged versions.

 The default is -norecursive.

-trigarg

 -trigarg <arg> Specifies an argument to be passed from the
 command line to the triggers set on the
 delete folder operation. If the argument contains
 whitespace, enclose the argument within
 double quotation marks ("") if using the dss
 command shell or braces ({}) if using the stcl
 command shell.

RETURN VALUE

 none

SEE ALSO

 mkfolder, rmfile, rmversion, remove, command defaults

EXAMPLES

• Example of Removing Folder without Recursive
• Example of Removing Folders Recursively
• Example of Removing a Folder on the Server
• Example of Removing a Folder Containing References

Example of Removing Folder without Recursive

 The following example demonstrates the use of rmfolder without the
 -recursive option. The folder 'alu' contains one file, alu.v, which
 must be deleted before the alu folder can be deleted.
 dss> rmfolder alu
 alu: som: Error 54: Folder Not Empty.
 dss> rmfile alu/alu.v
 alu.v: Success Deleted
 dss> rmfolder alu
 alu: Success Deleted

ENOVIA Synchronicity Command Reference - Module

427

Example of Removing Folders Recursively

 The following example demonstrates the use of rmfolder with the
 -recursive option. The folder 'alu' contains one file, alu.v, which
 must be deleted before the alu folder can be deleted.
 dss> rmfolder -recursive alu
 alu: Success Deleted

Example of Removing a Folder on the Server

 This example deletes an empty folder on a server:
 dss> rmfolder sync://holzt:2647/Projects/Sportster/Temp
 Temp: Success Deleted

Example of Removing a Folder Containing References

 This example shows that you can delete a folder containing
 references:
 dss> ls -report O

 Directory of: file:///home/ tgoss/Projects/Sportster/top/alu

 Object Type Name
 ----------- ----
 Referenced File alu.gv
 Referenced File alu.v
 Referenced File mult8.gv
 Referenced File mult8.v
 dss> scd ..
 dss> rmfolder alu
 alu: Success Deleted

rmmod

rmmod Command

NAME

 rmmod - Removes a module from a server or workspace

DESCRIPTION

• Removing a Workspace Module Recursively

Advanced Revision Control

428

• Removing an External Module
• Removing a legacy module from a server

 This command removes a module (data that represents a level of
 the design hierarchy), module cache link, and, for
 legacy modules, its module configurations, from a server or
 workspace.

 For information on deleting legacy modules, see the "Removing a
 legacy module from a server" section.

 For information on removing a module (a data replication instance)
 from data replication, see the replicate rmdata command.

 This command also detaches any ProjectSync notes that may have been
 attached to the module, module branches, or module versions. These
 notes can be retained in the ProjectSync system for future reference,
 or removed using the -notes option.

 This command can also be used to detach an external module workspace
 from the server so you can delete the external module objects. Using
 rmmod, you remove the linkage between the server and the workspace,
 turning the objects in the external module into unmanaged objects
 which can then be removed by the file system delete commands. To
 remove the external module reference from the parent module, use the
 rmhref command.

 The rmmod operation generates a RevisionControl note for the deleted
 module. The generated RevisionControl note is detached and, if the
 -notes option is specified, deleted along with the module.

 If the rmmod command removes all the contents of the base
 directory of a module, DesignSync automatically removes the base
 directory as well. If the base directory contains information from
 other modules or unmanaged objects, DesignSync does not remove the
 base directory.

 When the rmmod operation completes, it displays a success/failure
 count. This count only includes modules and, when run recursively in
 the workspace, hierarchical linked objects. It does not include
 module members or individual objects within in hierarchically
 referenced set of objects.

 Notes:
 - The rmmod command supports removing a module hierarchy recurisively
 within a workspace. It can not be run recursively against a server
 module. To remove an entire module hierarchy on the server, you must
 remove each module separately.

 - When rmmod is used to remove a workspace module, external module,
 or a link to an mcache, it does not affect the module on the server
 or in the mcache. To remove a server module, you must explicitly
 use rmmod on the server module. To remove a module from the
 mcache, you must use rmmod on mcache module instance.

ENOVIA Synchronicity Command Reference - Module

429

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Removing a Workspace Module Recursively

 DesignSync allows you to remove a workspace module hierarchy in a
 single operation. Starting from a (modern) module, you may remove a
 module hierarchy that can include modern modules, legacy modules,
 DesignSync vaults, deliverables, external modules, and mcache links
 to modern and legacy modules.

 When removing a workspace module hierarchy, if DesignSync encounters
 an error removing objects within the hierarchy, it does not remove
 the module or reference that generated the error, but does continue
 attempting to remove the remaining hierarchy.

 Note: If there are locked or modified objects in the workspace, the
 rmmod operation fails for that module unless the -force option is
 specified. If -force is used, the member locks held in the workspace
 are canceled on the server and locally modified members are removed..

 Any folders that become empty as a result of the rmmod operation are
 removed. If a referenced submodule is also referenced by a different
 module in the workspace, the referenced submodule is not removed.

 When the -unmanaged option is specified, any unmanaged data is
 removed if the folder containing the unmanaged data does not contain
 other managed data, for example from a overlapping modules, populated
 vault data, legacy modules, etc.

 If the unmanaged option is not used and unmanaged data remains in
 the workspace, the data can be removed later by using the rmfolder
 -recursive option, or by deleting the objects using the operating system
 commands.

 Note: If the module remove fails, no unmanaged data in that module
 directory structure is removed.

 After the module data has been removed, the workspace module metadata
 is removed.

Removing an External Module

 Removing an external module is largely governed by the external CM
 system. Running rmmod on an external module, or removing an external
 module as part of running rmmod recursively over the workspace module
 hierarchy uses the -xtras option to send the appropriate argument to
 the external CM system.

Advanced Revision Control

430

 As with all external module operations, DesignSync must have an
 external module procedure and the -xtras option is used to pass any
 additional parameters and options to the procedure. If there is no
 definition for rmmod within the external module procedure, DesignSync
 considers this a failure to remove the external module; however
 DesignSync will remove the module metadata, effectively disconnecting
 the external module from DesignSync. The data then is considered
 unmanaged data in the workspace and is handled according to the value
 selected for the -[no]unmanaged option.

Removing a legacy module from a server

 Important: The information in this section only applies to legacy
 modules.

 Removing a module with the rmmod command automatically removes
 the vault associated with the module. When removing legacy modules,
 you can leave the vault data data intact by specifying the -vaultdata
 option to the rmmod command. For more information, see the
 -vaultdata option description.

 If you remove a legacy module without removing the vault folder
 (running the rmmod command without the -vaultdata option), the
 showconfs command continues to display the configurations for the
 deleted module. Additionally, if the module resides in the /Projects
 folder, the module and its configurations appear in ProjectSync as a
 ProjectSync project.

 Removing a module detaches any ProjectSync notes that may have been
 attached to the module configurations. These notes can be retained in
 the ProjectSync system for future reference, or removed using the
 -notes option.

 Removing a module generates a RevisionControl note for the deleted
 module. The generated RevisionControl note is attached to the module
 and includes the URLs (shown as paths relative to the server vault)
 of the module and the module's configurations. This note remains
 attached to the module. When a ProjectSync note query is run on that
 folder the note is retrieved, showing that the folder once contained
 the data of a deleted module. If you specify -notes this revision
 control note is deleted along with the rest of ProjectSync notes
 associated with the module. For more information, refer to the -notes
 option description.

 WARNING: Using this command, you can delete legacy module
 releases. By default, the use of this command is
 restricted. It is recommended that administrators remove
 this restriction temporarily, if needed, and with extreme
 care.

 When the rmmod command is run on legacy modules, it only affects
 only the server; it does not affect your work area. If you fetched a
 configuration of the module into local work area, that configuration
 still exists in your local work area.

ENOVIA Synchronicity Command Reference - Module

431

 This command is not recursive, it does not follow the hierarchical
 references of the module configurations and delete the referenced
 modules on the server. To remove an entire module hierarchy, you
 must remove each module separately.

SYNOPSIS

 rmmod [-[no]force] [-[no]keep] [-[no]notes] [-[no]recursive]
 [-report error|brief|normal|verbose][-[no]unmanaged]
 [-[no]vaultdata] [-xtras <string>] <argument>

ARGUMENTS

• Server Module
• Workspace Module
• Mcache Link
• Mcache Module
• External Module

Server Module

 <server module> URL of the module being removed.
 Specify the URL as follows:
 sync[s]://<host>[:<port>]/<vaultPath>
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer
 port number, and <vaultPath> identifies the
 module to remove.

Workspace Module

 <workspace module> Name of the module being removed from the
 workspace. Specifying a workspace module
 removes the module and its contents from the
 workspace. It does not remove the module from
 the server.
 Note: Legacy modules can only be removed on
 the server. You cannot specify a legacy
 workspace module.

Mcache Link

 <mcache link> Module instance name for the mcache link
 module being removed from the

Advanced Revision Control

432

 workspace. Specifying an mcache link module
 removes mcache link from the workspace. It does
 not remove the module from the cache or the
 server.

Mcache Module

 <mcache module> Module instance name for a module in a module
 cache. Specifying a mcache module does not
 remove the module from the server. It does
 break any existing links in workspaces linking
 to the mcached module.

External Module

 <external module> Module instance name for an external
 module. Specifying an external module removes
 the workspace metadata that tells DesignSync
 that the objects within the workspace are
 under revision control. It does not remove
 the objects from the workspace and it does not
 remove the hierarchical reference from the
 parent module to the external module.

OPTIONS

• -[no]force
• -[no]keep
• -[no]notes
• -[no]recursive
• -report
• -[no]unmanaged
• -vaultdata
• -xtras

-[no]force

 -[no]force Specifies whether the locked and modified
 module members in the workspace should be
 removed.

 -noforce does not remove any locked or
 modified module members in the workspace. If
 any module members are not removed, the module
 itself is not removed.(Default)

 Important: Any unmodified and unlocked items

ENOVIA Synchronicity Command Reference - Module

433

 in the module are removed even though the
 module is not removed.

 -force removes the module and all module
 contents, including any locked or locally
 modified objects.

 If the -force option is used with a server
 object, it is silently ignored.

-[no]keep

 -[no]keep Specifies whether to keep the module member
 data in the workspace after the module has
 been removed. This option is only applicable
 when rmmod is run on a workspace module.

 -nokeep removes all module data; module
 members and DesignSync metadata from the
 workspace. (Default)

 -keep removes only the module metadata, it
 does not remove the module members. If the
 module members are links from a cache
 (populated in -share mode), the server copies
 the files locally and removes the links.

 Note: If modules members are references
 (populated in -reference mode), rmmod always
 uses -nokeep, removing the references and any
 additional metadata.

 The -keep option is silently ignored when used
 with a workspace option. The -keep option is
 mutually exclusive with the -unmanaged option.

-[no]notes

 -[no]notes Indicates whether to delete the orphaned
 notes or preserve them.

 -nonotes retains all the ProjectSync notes
 associated with the deleted module. (Default)

 -notes deletes all the notes, including the
 RevisionControl note generated by the module
 deletion, attached to the deleted module if
 the notes have no ties to any other live
 projects or modules.

 Note: Legacy modules may still retain the
 RevisionControl note indicating that the

Advanced Revision Control

434

 module was deleted unless the default
 RmVaultKeepVid behavior has been
 overridden and version information
 for the removed objects is not retained.

 This option is silently ignored when used with
 a workspace argument.

-[no]recursive

 -[no]recursive Specifies whether the operation should run in
 recursive or non-recursive mode. This option
 is only applicable when rmmod is run on a
 workspace module

 -norecursive remove only the selected module
 from the workspace. (Default)

 -recursive removes the selected module from
 the workspace and all the referenced
 sub-modules. Submodules can be modern
 modules, legacy modules, DesignSync vaults,
 deliverables, external modules, and mcache
 links to modern and legacy modules

-report

 -report error|brief| Determines what information is returned in
 normal|verbose the output of the rmmod command.

 Valid values are:
 o error|brief - lists any errors encountered
 during the rmmod operation.

 o normal - lists errors and a single line for
 each module removed. (Default)

 o verbose - lists errors and provides full
 status for each object processed.

-[no]unmanaged

 -[no]unmanaged Specifies whether the operation should remove
 or retain any unmanaged files within the
 workspace module directory structure.

 -nounmanaged does not attempt to remove any
 unmanaged data and any folders containing
 unmanaged data remain after the operation

ENOVIA Synchronicity Command Reference - Module

435

 completes. (Default)

 -unmanaged removes any unmanaged data within
 the module directory structure after the
 module is removed.

 IMPORTANT: The rmmod command does not list
 the removed unmanaged objects nor does it
 include them in the success/failure
 count. The success/failure count only includes
 totals for modules.

 This option is only valid for workspace
 module arguments. It is ignored for all
 other arguments. This option is mutually
 exclusive with the -keep option.

-vaultdata

 -[no]vaultdata Specifies whether the vault folder in which
 the legacy module contents reside should be
 removed. (Legacy modules only)

 -novaultdata leaves the vault folder
 containing the legacy module contents on the
 server. (Default)

 -vaultdata deletes all objects, including
 directories and locked files, within the
 vault.

 Notes:
 - The vaultdata option only applies to legacy
 modules, in the current module schema, the
 vault is an integrated part of the module
 and is always removed with the module.
 - If -vaultdata is specified, the rmmod operation
 calls the rmfolder operation to delete the vault
 data. The rmfolder command obeys the
 RmVaultKeepVid client-side registry key to
 determine if version information for the deleted
 files is retained. For more information, see
 the "Advanced Registry Settings" topic in the
 DesignSync Data Manager User's Guide.
 - If you chose not to remove the vault folder,
 the following occurs:
 o showconfs continues to display the
 configurations for the deleted legacy
 module.
 o if the module resides in the /Projects
 folder, the legacy module and its
 configurations appear in ProjectSync as a
 ProjectSync project.

Advanced Revision Control

436

 If this option is used incorrectly, it is
 silently ignored.

-xtras

 -xtras <string> List of command line options to pass to the
 external module change management system. Any
 options specified with the -xtras option are
 sent verbaGtim, with no processing by the
 rmmod command, to the Tcl script that defines
 the external module change management system.

RETURN VALUE

 If the rmmod command is successful, DesignSync returns an empty
 string (""). If the command fails, DesignSync returns an error
 explaining the failure.

SEE ALSO

 mkmod, rmfolder, command defaults

EXAMPLES

• Example of Removing a Module from a Server
• Example of Removing a Module Hierarchy from a Workspace
• Example of Removing a Module from a Workspace
• Example of Removing a Legacy Module from a Server
• Example of Removing a Module Cache Link from a Workspace

 The following examples show removing modules from DesignSync.

Example of Removing a Module from a Server

 This example removes the RAM module from the DesignSync server,
 sync://srvr2.ABCo.com.

 dss> rmmod -report verbose sync://srv2.ABCo.com:2647/Modules/RAM

 Beginning rmmod operation ...

 sync://srvr2.ABCo.com/Modules/RAM: Removing module from server ...

ENOVIA Synchronicity Command Reference - Module

437

 sync://srvr2.ABCo.com/Modules/RAM: Removed database entry.
 sync://srvr2.ABCo.com/Modules/RAM: Deleted module folder.
 sync://srvr2.ABCo.com/Modules/RAM: Detached all notes.

 Finished rmmod operation.

Example of Removing a Module Hierarchy from a Workspace

 This example shows removing a module hierarchy in report normal
 (default) mode from the workspace.

 dss> rmmod -recursive Chip%4
 c:/Workspaces/DesignSync/Chip/CPU/ROM/ROM%3: Removed module from workspace.
 c:/Workspaces/DesignSync/Chip/CPU/CPU%0: Removed module from workspace.
 c:/Workspaces/DesignSync/Chip/Chip%4: Removed module from workspace.
 {Objects succeeded (3)} {}

Example of Removing a Module from a Workspace

 This example removes the RAM module from the DesignSync workspace
 using report verbose..

 dss> rmmod -report verbose RAM%0

 Beginning rmmod operation ...

 /home/rsmith/MyModules/ram/RAM%0: Current working directory is
 within the base directory of the module being removed.
 Changing directory to /home/rsmith/MyModules ...
 /home/rsmith/MyModules/ram/RAM%0: Removing workspace module content ...
 /home/rsmith/MyModules/ram : Folder deleted from workspace and
 workspace module.
 /home/rsmith/MyModules/ram/RAM%0: Removing workspace module metadata ...
 /home/rsmith/MyModules/ram/RAM%0: Workspace module removed.

 Finished rmmod operation.

Example of Removing a Legacy Module from a Server

 This example removes the BIST module from the DesignSync
 server, sync://srvr2.ABCo.com.

 dss> rmmod -vaultdata sync://srvr2.ABCo.com:2647/Projects/BIST

 In this example, the rmmod command:
 o Deletes all configurations of the module.
 o Deletes vault data associated with module.
 o Detaches all of the ProjectSync notes attached to the module and
 any of its configurations.

Advanced Revision Control

438

 o Retains the latest version ID of all removed vaults (depending
 on the value of the DesignSync RmVaultKeepVid client-side
 registry setting).

Example of Removing a Module Cache Link from a Workspace

 This example removes the 300MM module cache link from a workspace.
 It uses the instance name of the mcache link.
 Note: It does not remove the module from the server or from the
 mcache directory.

 stcl> rmmod -report verbose 300MM%0

 Beginning rmmod operation ...

 /home/rsmith/MyModules/300mm/300MM%0: Removing workspace module metadata
...
 /home/rsmith/MyModules/300mm: Removing mcache symlink ...
 /home/rsmith/MyModules/300mm: Mcache symlink removed.
 300mm: Success deleted

 Finished rmmod operation.

rmversion

rmversion Command

NAME

 rmversion - Deletes versions from the vault

DESCRIPTION

• Notes for Modules
• Removing Orphaned Module Members

 This command deletes the specified version from the vault. You delete
 versions from a vault, a process known as pruning, to free up disk
 space. Use this command with caution; you cannot recover a deleted
 version. This command does not affect files in your local work area.

 You cannot delete:
 - Tagged versions (unless you use the -force option).
 - Version 1.1.
 - Version .1 when other versions exist on the branch
 - Version .1 when the version is upcoming. (For example, suppose you
 have a branch 1.4.1 that has no versions, but the branch is

ENOVIA Synchronicity Command Reference - Module

439

 locked. In this case the upcoming version is 1.4.1.1, which
 cannot be deleted.)
 - Branch-point versions (for example, if 1.2.1 is a branch, you
 cannot delete version 1.2).
 - The Latest version on a locked branch (for example, if
 someone checks out version 1.3 with a lock, you
 cannot delete version 1.3 from the vault until the lock is
 released).

 Use version-extended names to specify a version. A
 version-extended name consists of a filename followed
 by a semicolon and a version number or tag name (for example,
 top.v;1.2 or top.v;rel13).
 Notes:
 - You cannot use wildcards (such as '*') when using
 version-extended names.
 - When in stcl/stclc mode, you must surround version-extended
 names (or any URL with a semicolon) with double quotes.
 - DesignSync does not reuse version numbers once they have
 been deleted from the vault. For example, assume the vault
 contains top.v;1.1, top.v;1.2, and top.v;1.3, and you
 use rmversion to delete top.v;1.2 and top.v;1.3. If you or
 another user later creates a new version of top.v
 (ci -new top.v), DesignSync names the new version top.v;1.4.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Notes for Modules

 You cannot remove the latest version of a module branch, even with the
 -force option, unless the entire branch is deleted.

 You cannot use wildcards (such as '*') when using module instance
 names as your argument.

 You cannot specify module instance names in a version extended
 format.

Removing Orphaned Module Members

 Module member versions are automatically removed when they are no
 longer referenced by a module version. However, because module
 members are stored as vaults, the rules governing vault version
 removal also apply to member versions. Consequently, it is possible
 that a module member version no longer referenced by any module
 version cannot be removed until other module member versions are also
 removed (for example, it could be a branch-point version). Such
 member versions are known as orphans.

Advanced Revision Control

440

 Later purge and rmversion operations may eliminate
 these barriers making it possible to remove these orphans. However,
 under normal rmversion operation, orphans will never be identified as
 candidates for removal because only member versions referenced by
 module versions being deleted are identified as candidates for
 removal.

 Using the -scrub option to the rmversion command, you can remove all
 orphaned module member versions from the module. The -scrub option to
 rmversion searches through the entire module history and removes any
 orphaned module member versions.

SYNOPSIS

 rmversion [-[no]force] [-report <mode>] [-scrub] [-trigarg <arg>]
 [--] <version> [<version> [...]]

ARGUMENTS

• DesignSync Object
• Server Module URL
• Workspace Module

 Specify one or more of the following arguments:

DesignSync Object

 <DesignSync object> Removes the specified DesignSync object from the
 server. This object can be a version-extended
 vault URL, or an object in your workspace.

Server Module URL

 <module URL> URL of the module containing the versions being
 removed. Specify the URL as follows:
 sync[s]://<host>[:<port>]/Modules/[<Category>...]
 /<module>;<version>
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer
 port number, <Category> identifies the
 optional category path, <module> is the name
 of the module, and <version> is the version
 extension.

 Note: You must specify the module URL as a version
 extended object.

ENOVIA Synchronicity Command Reference - Module

441

Workspace Module

 <workspace Specifies the module instance name or path of the
 module> module containing the version being removed. By
 default, this will remove from the branch
 currently populated in the workspace.

 Note: The rmversion command accepts
 version-extended workspace folder and file
 paths. It does not accept version-extended module
 instance names. Also module instance names
 cannot be specified by using wildcard characters.

OPTIONS

• -force
• -report
• -[no]scrub
• -trigarg
• --

-force

 -[no]force Determines whether you can delete tagged versions from
 the vault.

 -noforce does not delete tagged versions.(Default)

 -force deletes tagged versions. Use this option with
 caution because deleting a tagged version changes
 (possibly damaging) a configuration.

 Note: The Latest version of a module branch will never
 be removed unless the entire module branch is removed.
 Also the initial (1.1) version of a module cannot be
 removed.

-report

 -report <mode>
 Specifies the amount of output generated by the
 rmversion operation.

 Available modes are:
 o brief - Displays error messages. (Note: This mode
 does not display versions successfully deleted.)

Advanced Revision Control

442

 o normal - (the default mode) Displays:
 - The name and version number of each version
 deleted.
 - Error messages.
 o verbose - Displays:
 - For vault objects, the full vault URL path of each
 version being deleted.
 - The name and version number of each version
 deleted.
 - Error messages.
 Note: For module objects, data about individual module
 member versions is not displayed. The command summary
 at the end of the command output indicates how many
 module member versions were removed.

-[no]scrub

 -[no]scrub Specifies whether to remove any module member versions
 no longer referenced for any module versions; orphaned
 module members.
 -noscrub does not search for or remove any orphaned
 module members. (Default)
 -scrub expands the scope of the rmversion command to
 search for any orphaned module versions.

-trigarg

 -trigarg <arg> Specifies an argument to be passed from the
 command line to the triggers set on the
 delete version operation. If the argument contains
 whitespace, enclose the argument within
 double quotation marks ("") if using the dss
 command shell or braces ({}) if using the stcl
 command shell.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 none

ENOVIA Synchronicity Command Reference - Module

443

SEE ALSO

 remove, rmfile, rmfolder, tag, command defaults

EXAMPLES

• Example of Removing a File Version
• Example of Removing a File Specified with a Path
• Example of Removing Multiple Files with Associated Tags

Example of Removing a File Version

 Delete version 1.2 of top.v, where top.v is in my current work area.
 The double quotes are required in stcl/stclc mode.
 stcl> rmversion "top.v;1.2"

Example of Removing a File Specified with a Path

 Delete version top.v;1.2 specifying an absolute path to the
 file in the local work area. In dss/dssc mode, the quotes are optional.
 dss> rmversion "/home/Projects/ASIC/top.v;1.2"

Example of Removing Multiple Files with Associated Tags

 Delete two versions of top.v, both of which have tags associated
 with them.
 dss> rmversion -force top.v;1.2 top.v;rel13

rollback

rollback Command

NAME

 rollback - Reverts a module back to a previous version,
 rolling back any structural changes

DESCRIPTION

 The rollback command provides a mechanism for making an earlier
 module version the "Latest" module version, "rolling back" any

Advanced Revision Control

444

 changes to the previous state. All module versions between the
 rollback versions remain in the vault.

 The rollback command creates a new module version using the next
 available module version number to store the rollback version which
 is now tagged "Latest".

 Because the rollback command exactly reinstates the module as it
 was, any structural changes to the module, such as added or removed
 files or hrefs between the rollback versions are removed. If files
 were added between the versions, those files are removed. If files
 were removed, those files are added back. Any new hrefs are removed.
 Any removed hrefs are reinstated.

 Notes:
 o The href is reinstated even if the target no longer exists. You
 should verify the consistency of the hrefs after the rollback
 operation has completed.

 o If a renamed or removed file contains characters in the name or
 the object, or the object natural path, that were previously
 legal, but are now restricted characters which can not be used by
 the system, the rollback of the object(s) succeeds. After the
 rollback operation completes, the user should fix the object name
 or natural natural path to remove characters that have been
 disallowed. For more information on restricted characters, see
 Exclude Lists in the DesignSync Data Manager Administrator's Guide.

 Rollback is only available for modules. To revert to any single
 module member, or DesignSync object to an earlier version, populate a
 workspace with the desired version of the object, and check in the
 object using the -skip option. To add a removed module member back
 to the module without rolling back all the changes made since the
 remove, or populating an earlier module member version, use the
 unremove command.

 Note: The rollback command is not applicable to module snapshots.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 rollback [-[no]comment ["text"]] [-version <selector>]
 [--] <argument>

ARGUMENTS

• Server Module Version

Server Module Version

ENOVIA Synchronicity Command Reference - Module

445

 <server module Specify the URL as follows:
 version> sync[s]://<host>[:<port>]/<vaultPath>[;<selector>]
 where <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 <vaultPath> identifies the module, and <selector>
 is the branch and version information. You may
 use this format to specify a module, module
 branch or module version. The default branch is
 "Trunk." The default version is "Latest".

 Note: If you use the -version option, you do not
 need to specify the version as part of the URL.

OPTIONS

• -[no]comment
• -version

-[no]comment

 -[no]comment Specifies whether a text description of the
 ["<text>"] reason for the module rollback is stored with
 the module.
 -nocomment performs the rollback with no
 comment.(Default)
 -comment <text> stores the value of <text> as
 the module comment. To specify a multi-word
 comment, use quotation marks ("") around the
 comment text.

 If -comment is specified without text, or set as
 the default, DesignSync prompts you to enter a
 check-in comment either on the command line or
 by spawning the defined file editor. For more
 information on defining a file editor, see the
 DesignSync Data Manager Administrator's Guide,
 "General Options."

-version

 -version <selector> Specifies the version of the module being rolled
 back.

 If no version is specified here or in the
 argument, the default version is "Latest" on the
 "Trunk" branch.

 Note: To use -version to specify a branch,
 specify both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,

Advanced Revision Control

446

 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

RETURN VALUE

 If the rollback command is successful, DesignSync returns an
 empty string (""). If the command fails, DesignSync returns an error
 explaining the failure.

SEE ALSO

 ci, populate, vhistory, unremove, setselector

EXAMPLES

 This example shows how rollback can be used to undo mistakes made to
 a module. In this example the project leader thought an error was
 introduced in version 1.3 and then later realized that 1.3 was
 correct.

 dss> rollback -comment "Reverting to last good version" \
 -version 1.2 sync://srv2.ABCo.com:2647/Modules/ROM
 New version 1.5 was created by rollback sync:///Modules/ROM;1 to the
 version 1.2

 The next version created is version 1.6. This example shows checking
 in a modification to one of the files and updating the module to
 version 1.6.
 dss> ci rom.doc

 Beginning Check in operation...

 Checking in objects in module ROM%0

 Total data to transfer: 1 Kbytes (estimate), 1 file(s), 0 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 1 Kbytes, 1 file(s), 0 collection(s), 100.0% complete
 Progress: 1 Kbytes, 1 file(s), 0 collection(s), 100.0% complete

 Checking in: /rom.doc Success - New version: 1.3

 ROM%0: Version of module in workspace not updated due to auto merge

 Finished checkin of Module ROM%0, Created Version 1.6

 Time spent: 0.4 seconds, transferred 1 Kbytes, average data rate 2.6 Kb/sec

ENOVIA Synchronicity Command Reference - Module

447

 Checkin operation finished.

 {Objects succeeded (1)} {}

 Note: Because rollback preserves all changes, you could rollback
 your module version to one of the versions that was removed from the
 active code stream by a previous rollback. For example, you could
 roll back to version 1.3 or 1.4 to pick up those changes. It removes
 the 1.6 changes from the module.

 dss> rollback -comment "These changes should not have been removed" \
 -version 1.3 sync://srv2.ABCo.com:2647/Modules/ROM
 New version 1.7 was created by rollback sync:///Modules/ROM;1 to the
 version 1.3

select

select Command

NAME

 select - Identifies specific objects to be processed

DESCRIPTION

 This command builds a list of objects on which commands can
 operate. You might use a select list when you are going
 to perform multiple operations on the same set of objects.
 Many commands that accept objects as command arguments
 support the '-selected' option. When you specify '-selected',
 the command operates on this pre-built select list in addition to
 any objects you specify as arguments.

 You can specify wildcards when selecting objects. Use the
 'unselect' command to remove objects from the select list.

 Commands that operate on a select list can also operate on
 objects you select from the DesignSync graphical interface.
 Select one or more objects from the List View, then enter a
 command from the command bar.
 Notes:
 o The "Synchronize graphical and command-line interfaces "
 option from Tools->Options->GUI Options must be selected.
 o Selecting objects graphically clears your current select list.

SYNOPSIS

Advanced Revision Control

448

 select [--] {-show | <argument> [<argument>...]}

ARGUMENTS

• Server Module
• Workspace Module
• Module Member

Server Module

 <server module> Server modules can be selected using URL of the
 module.
 sync[s]://<host>[:<port>]/<vaultPath> where
 <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 and <vaultPath> identifies the module to select.

Workspace Module

 <workspace module> Workspace modules can be selected.

Module Member

 <workspace module Workspace module members can be selected.
 member>

 Note: Server module members, member versions,
 branches, and hrefs do not have a specific server
 address and therefore cannot be specified in a
 selector list.

OPTIONS

• -show
• --

-show

 -show Lists the objects in your select list.

--

ENOVIA Synchronicity Command Reference - Module

449

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode, there is no return value except when you specify
 -show, in which case the return value is a Tcl list of the
 objects in your select list.

SEE ALSO

 unselect, cancel, ci, ls, populate, tag, vhistory

EXAMPLES

• Example of Using Select on the Command Line to Select Files
• Example of Using Select within a Script

Example of Using Select on the Command Line to Select Files

 This example selects all files that begin with 'samp' or have a
 '.mem' extension, then checks out the selected files and 'top.v'.
 Note that 'samp.mem' matches both the arguments to the select
 command but is stored only once in the select list.
 dss> select samp* *.mem
 Already Selected: c:\Projects\Sportster\code\samp.mem
 dss> select -show
 file:///c|/Projects/Sportster/code/samp.asm
 file:///c|/Projects/Sportster/code/samp.lst
 file:///c|/Projects/Sportster/code/samp.mem
 file:///c|/Projects/Sportster/code/samp.s19
 file:///c|/Projects/Sportster/code/sample1.asm
 file:///c|/Projects/Sportster/code/test.mem
 dss> co -selected -lock -nocomment top.v

Example of Using Select within a Script

 This example runs an stcl script called select.tcl, which
 displays a message for each object in a directory with a '.v'
 extension.
 # -- script start --

Advanced Revision Control

450

 select *.v
 foreach obj [select -show] {
 puts "$obj is selected."
 }
 # -- script end --

 stcl> run ./select.tcl
 file:///c|/Projects/Sportster/top/alu/alu.v is selected.
 file:///c|/Projects/Sportster/top/alu/mult8.v is selected.

 stcl>

setfilter

setfilter Command

NAME

 setfilter - Sets the persistent filter or hreffilter list

DESCRIPTION

 This command sets the persistent filter or hreffilter for a
 module. This filter is applied each time the module is populated.
 The persistent filters defined here are applied to the appropriate
 commands before any filters or hreffilters specified on the command
 line are applied.

 If a module is initially populated using a -filter or -hreffilter on
 the command line, a persistent filter matching those settings is set
 automatically for that module.

 After a filter has been changed using the setfilter command, the next
 populate of the module is a full populate, since the filter has
 changed. Performing a setfilter replaces any previous filters set,
 including the filters set automatically with a filtered populate,
 with the new filter.

SYNOPSIS

 setfilter [-filter | -hreffilter] [-[no]recursive][--]
 <workspace module> <filter>|<hreffilter>

ARGUMENTS

ENOVIA Synchronicity Command Reference - Module

451

• Workspace Module
• Filter
• Hreffilter

Workspace Module

 <workspace module> Specify the module identifier for the module
 receiving the persistent filter. The module must
 have already been populated in the workspace.

Filter

 <filter> Specify one or more extended glob-style
 expressions to identify an exact subset of module
 objects on which to operate. The expressions
 should be separated by commas, for example:
 +top*/.../*.v,-.../a*

 If you specify a null character ("") as the
 filter argument, all filter values are removed
 from the persistent filter list including the
 filters created during a filtered populate. The
 next time the directory is populated, DesignSync
 performs a full populate.

 Prepend a '-' character to a glob-style
 expression to identify objects to be
 excluded.(Default) Prepend a '+' character to a
 glob-style expression to identify objects to be
 included. Note that if the list of expressions
 begins with an include character ('+'), the
 filter excludes all objects except those that
 match the include string.

 Specify the paths in your glob-style expressions
 relative to the current directory, because
 DesignSync matches your expressions relative to
 that directory. For submodules followed through
 hrefs, DesignSync matches your expressions against
 the objects' natural paths, their full relative
 paths. For example, if a module Chip references
 a submodule, CPU, and CPU contains a file,
 '/libs/cpu/cdsinfo.tag', DesignSync matches
 against '/libs/cpu/cdsinfo.tag', rather than
 matching directly within the 'cpu' directory.

 If your design contains symbolic links that are
 under revision control, DesignSync matches
 against the source path of the link rather than
 the dereferenced path. For example, if a
 symbolic link exists from 'tmp.txt' to
 'tmp2.txt', DesignSync matches against 'tmp.txt'.

Advanced Revision Control

452

 Similarly for hierarchical operations, DesignSync
 matches against the unresolved path. If, for
 example, a symbolic link exists from dirA to dirB
 and dirB contains 'tmp.txt', DesignSync matches
 against 'dirA/tmp.txt'.

 The extended glob-style expressions you use to
 filter the objects are standard glob-style
 expressions, but they are extended so that you
 can use the "..." syntax to indicate that the
 expression matches any number of directory
 levels. For example, the expression,
 "top/.../lib/*.v" matches *.v files in a
 directory path that begins with "top", followed
 by zero or more levels, with one of those levels
 containing a lib directory. The command traverses
 the directory structure. If a directory name
 matches an exclude clause of the filter, then the
 entire directory and all its contents are
 filtered (the command stops descending at that
 point), otherwise the command continues
 traversing the directory structure searching for
 matching objects.

 The exclude list set using SyncAdmin's
 General=>Exclude Lists tab take precedence
 over those set by -filter; the items in the
 exclude list are combined with the filter
 expression. For example, an exclude list of
 "*%,*.reg" combined with '-filter .../*.doc' is
 equivalent to
 '-filter .../*.doc,.../*%,.../*.reg'.

Hreffilter

 <hreffilter> Excludes href values during recursive populate of
 module hierarchies, excluding particular
 submodules from the populate. Note that
 unlike the -filter option which lets you include
 and exclude items, the -hreffilter option only
 excludes hrefs.

 Specify the -hreffilter string as a glob-style
 expression. The href filter can be specified
 either as a simple href filter or as a
 hierarchical href filter.

 Note: You can set both types of hreffilters,
 simple and hierarchical, for your workspace, but
 they must set in different operations.

 A simple href filter is a simple leaf module name
 or the href name (specified when you added the
 href). You cannot specify a path. DesignSync

ENOVIA Synchronicity Command Reference - Module

453

 matches the specified href filter against hrefs
 anywhere in the hierarchy. Thus, DesignSync
 excludes all hrefs of this leaf name; you cannot
 exclude a unique instance of the href. When you
 specify a simple href, you must run the setfilter
 command in -norecursive mode (Default).

 A hierarchical href filter specifies a path and a
 leaf submodule, for example JRE/BIN excludes the
 BIN submodule only if it is directly beneath JRE
 in the hierarchy. When you specify a hierarchical
 href filter, you must run the setfilter command
 in -recursive mode.

 When creating a hierarchical href filter, you do
 not specify the top-level module of the
 hierarchy. If you want to filter using the
 top-level module, you begin the hreffilter with
 /, for example, "/JRE," would filter any JRE href
 referenced by the top-level module.

 Note: You can use wildcards with both types of
 hreffilter, however, if a wildcard is used as the
 lone character in hierarchical href, it only
 matches a single level, for example: "JRE/*/BIN"
 would match a hierarchy like "JRE/SUB/BIN" but
 would not match "JRE/BIN" or "JRE/SUB/SUB2/BIN".

 You can prepend the '-' exclude character to your
 string, but it is not required. Because the
 -hreffilter option only supports excluding hrefs,
 a '+' character is interpreted as part of the glob
 expression.

OPTIONS

• -filter
• -hreffilter
• -recursive
• --

-filter

 -filter Specifies that the persistent filter being set is
 a filter argument, not an href filter. Filter
 arguments can both exclude or include elements.

-hreffilter

 -hreffilter Specifies that the persistent filter being set is

Advanced Revision Control

454

 an hreffilter argument which prevents the
 updating of the specified hrefs during a populate
 operation.

-recursive

 -[no]recursive Specifies whether the persistent filter is applied
 recursively through the module hierarchy.

 -norecursive does not apply the persistent
 filter recursively (Default). This is the
 standard operating mode for filters and simple
 href filters.

 -recursive applies the persistent filter
 recursively through the module hierarchy. This
 is the required mode when using hierarchical href
 filters.

 Note: When setting or removing hreffilters, only
 one type of hreffilter, simple or hierarchical,
 may be set at a time because they require
 different -recursive/-norecursive options.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when
 arguments to the command begin with a hyphen
 (-).

RETURN VALUE

 If the set filter command is successful, DesignSync returns an empty
 string (""). If the module does not exist in the workspace or the
 filter cannot be set, the setfilter commands returns an error.

SEE ALSO

 populate, url filter

EXAMPLES

• Example of setting a filter

ENOVIA Synchronicity Command Reference - Module

455

• Example of setting an href filter
• Example of setting a hierarchical href filter
• Example of clearing an href filter
• Example of clearing a hierarchical href filter

Example of setting a filter

 This example shows setting a filter on your module, Chip, to filter
 out documentation files. After setting the filter, you may want to
 populate to bring the changes into your workspace.

 dss> setfilter -filter Chip%0 -.../doc/.../*
 Set Filter operation successfully completed.

Example of setting an href filter

 This filters out any submodule named BIN from your Chip module
 hierarchy. After setting the hreffilter, you may want to populate to
 bring the changes into your workspace.

 dss> setfilter -norecursive -hreffilter Chip%0 BIN
 Set Filter operation successfully completed.

Example of setting a hierarchical href filter

 This filters out the JRE/BIN submodule hierarchy within
 the Chip hierarchy. This operation is recursive through the module.
 After setting the hierarchical hreffilter, you may want to populate
 to bring the changes into your workspace.

 dss> setfilter -recursive -hreffilter Chip%0 JRE/BIN
 <Chip%0> Persistent hierarchical href filters set to <JRE/BIN>.
 Set Filter operation successfully completed.

Example of clearing an href filter

 This example removes all (simple) href filters set on the Chip module.

 dss> setfilter -norecursive -hreffilter Chip%0 ""
 <Chip%0> Persistent href filter cleared. It will no longer be used.
 Set Filter operation successfully completed.

Example of clearing a hierarchical href filter

Advanced Revision Control

456

 This example removes all hierarchical href filters set on the Chip
 module.
 dss> setfilter -recursive -hreffilter Chip%0 ""
 <Chip%0> Persistent hierarchical href filter cleared. It will no
 longer be used.
 Set Filter operation successfully completed.

setowner

setowner Command

NAME

 setowner - Sets the owner on the object specified

DESCRIPTION

 This command sets the ownership of an object to the name specified.
 The object can be project, project configuration, DesignSync vault
 branch or module branch.

 The owner of a branch is the creator of the initial version of the
 branch unless a different owner is specified with the
 setowner command. For example, the default owner of the main branch
 (branch 1) is the creator of version 1.1 . The owner of an object's
 main branch is also, by definition, the owner of the object's vault.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 setowner [--] <argument> <owner>

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

ENOVIA Synchronicity Command Reference - Module

457

RETURN VALUE

 none

SEE ALSO

 url owner, switchlocker

EXAMPLES

• Example of Setting the Ownership for a Project
• Example of Setting the Owner of a Branch

Example of Setting the Ownership for a Project

 This example sets the ownership for the project
 ASIC to 'johndoe':
 dss> setowner sync://myserver:myport/Projects/ASIC johndoe

Example of Setting the Owner of a Branch

 This example sets the owner of the main branch of reg5.v to barbg:
 dss> setowner "sync://holzt:2647/Projects/Sportster/decoder/reg5.v;1"
barbg

switchlocker

switchlocker Command

NAME

 switchlocker - Changes the current owner of a lock

DESCRIPTION

 This command changes the lock owner of a branch. This command is
 particularly useful when two or more people are working on the same
 branch.

 The following design scenario highlights the function of switchlocker.

Advanced Revision Control

458

 UserA and UserB share the same work area and will be editing
 the same design object. UserA checks out the object for
 editing, thereby locking the branch. The object is modified by
 UserA or UserB, or both (assuming the proper permissions have
 been set on the object). UserB then needs to check in the
 changes (maybe UserA is unavailable to perform the
 checkin). UserB can use the switchlocker command to take lock
 ownership and then perform the checkin.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 switchlocker [-modulecontext <context>] [--] <locker> <argument>

ARGUMENTS

• Username of New Locker
• Server Module Branch
• Module Member Argument

Username of New Locker

 <locker> Username of the new locker of the file.

Server Module Branch

 <server module branch> Specifies the locked module branch being
 switched.

 Note: Any locked objects in the branch must be
 held by the same user who holds the branch
 lock. If there are locked objects in the
 branch held by a different user, you must use
 the unlock command to unlock those objects.

Module Member Argument

 <module member> Specifies the locked module member to switch.
 When you specify an individual module member,
 you must use the -modulecontext option to

ENOVIA Synchronicity Command Reference - Module

459

 specify the module context appropriate for
 the module member.

OPTIONS

• -modulecontext
• --

-modulecontext

 -modulecontext Identifies the module version of the objects
 <context> being switched to a different locker. Specify
 the module context with the sync URL of the
 desired module. For example:
 sync://server1:2647/Modules/Chip;RelA

 Note that you cannot use a -modulecontext
 option to operate on objects from more than
 one module; the -modulecontext option takes
 only one argument, and you can use the
 -modulecontext option only once on a command
 line. When the modulecontext option is used,
 the argument must specify the natural path of
 the object being switched.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when the
 object you specify begins with a hyphen (-).

RETURN VALUE

 none

SEE ALSO

 cancel, unlock, setowner, url properties, command defaults

EXAMPLES

• Example of Switching the Locker for a Module Member

Advanced Revision Control

460

 The following examples shows how two users with a shared
 work area might use switchlocker. User 'goss' must take over the
 lock from 'barbg' before 'goss' can check in the file.

Example of Switching the Locker for a Module Member

 This example shows using switchlocker on a module object, chip.c.
 Note that the module object being specified is proceeded by a leading
 slash (/). This means that the objects is in the module base
 directory (Chip/.)

 dss> showlocks Chip%0
 Module Chip, branch 1 (Trunk) has content locks:

 User Date Name Where
 ---- ---- ---- -----
 barbg 11/13/2006 15:59 /chip.c /home/barbg/chip/chip.c
 ...

 dss> switchlocker -modulecontext \
 sync://srvr2.ABCo.com:2647/Modules/Chip;1.7 goss /chip.c

 sync://srvr2.ABCo.com:2647/Modules/Chip;1
 /chip.c : Success

 dss> showlocks sync://srvr2.ABCo.com:2647/Modules/Chip

 Module Chip, branch 1 (Trunk) has content locks:

 User Date Name Where
 ---- ---- ---- -----
 goss 11/13/2006 15:59 /chip.c Unknown
 ...

 Note: The Where value is unknown because the lock is no longer
 associated with the original workspace.

unlock

unlock Command

NAME

 unlock - Releases the lock on the specified object(s)

DESCRIPTION

ENOVIA Synchronicity Command Reference - Module

461

• Notes on Modules

 This command releases the lock on a specified object(s). This command
 is used primarily to release object locks on the server. To release a
 lock on an object you have checked out in your work area, use the
 'cancel' command instead of 'unlock'. Use the 'unlock' command to
 remove a lock held by someone else, or if you no longer have the
 object that you checked out in your work area.

 Only one user can have a lock on a given branch of an object at a
 time. Having a lock prohibits other users from checking in changes to
 that branch; however, other users (or the same user in different work
 areas) can independently lock, unlock, and check in changes to other
 branches.

 To remove a lock and change states, use the 'cancel' command.
 Also, if you have a lock taken away from you by another user (with the
 'unlock' command), you should cancel your checkout (with the
 'cancel' command) to return your local object to a consistent state.

 Unlock is equivalent to performing 'cancel -keep' on an object
 because unlock does not affect the local copy of the file in the
 work area. The unlock action replaces locked references in the
 workspace with copies.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Notes on Modules

 You lock a module branch by using the -lock command.

 Filter and exclude lists are used to include or exclude objects to be
 unlocked. Filter lists are used to include or exclude module
 objects or to include DesignSync objects. Exclude lists are used to
 exclude DesignSync objects.

 Note: Regardless of whether -filter or -exclude is used to exclude an
 object, the command output message indicates that the object was
 "excluded by filter."

 The natural path argument for a module, as shown in the
 example, always begins with a "/" character.

 Note: For module members, the locker keyword is always a null value,
 so unlock does not update the keyword in module members when the lock
 is released.

SYNOPSIS

Advanced Revision Control

462

 unlock [-branch <branch>] [-exclude <object>[,<object>...]]
 [-modulecontext <context>] [-[no]recursive]
 [-[no]selected] [-trigarg <arg>] [--]
 [<argument> [<argument> ...]]

ARGUMENTS

• Module Branch/Module Version
• Module Member
• Module Folder

Module Branch/Module Version

 <module branch| Specify a server module branch or version
 module version> to remove from the lock from the server
 version, or or a workspace module to remove
 the lock from the associated branch of that
 module, in the workspace and on the server.

 The natural path to a server module must
 begins with "/"

Module Member

 <module member> Specify a module member to remove the lock
 in the server and the workspace. The server
 can be specified with the -modulecontext
 option. If the -modulecontext option is not
 used, the command derives the module context
 from the persistent selector of the workspace.

Module Folder

 <module folder> Specify a module folder to remove the locks
 from all objects in the folder. If the
 -modulecontext option is not used, the command
 derives the module context from the persistent
 selector of the workspace. If you unlock a
 server module folder, you must specify the
 natural path beginning with the "/"
 character.

OPTIONS

• -branch

ENOVIA Synchronicity Command Reference - Module

463

• -exclude
• -modulecontext
• -[no]recursive
• -[no]selected
• -trigarg
• --

-branch

 -branch <branch> Unlocks the branch specified by the branch or
 version tag, or branch numeric. By default
 (without -branch), the current branch of each
 specified object is unlocked. This option
 overrides the object's persistent selector
 list. If <branch> resolves to a version, the
 branch of that version is unlocked.

 Note: The -branch option accepts a single
 branch tag, a single version tag, or a branch
 numeric. It does not accept a selector or
 selector list.

 Note: The -branch option is ignored when the
 module branch information is specified by the
 server URL argument.

-exclude

 -exclude <objects> Specifies a comma-separated list of objects to
 exclude from the operation. Wildcards are
 allowed.

 Do not specify paths in your arguments to
 -exclude. Before operating on each object
 (such as during a recursive unlock operation),
 DesignSync compares the object's leaf name
 (path stripped off) to the exclude list to see
 if there is a match. Because the object's path
 is removed, the object will not match any
 object in the exclude list specified with a
 path. For example, if you specify '-exclude
 bin/*.exe', you will not successfully exclude
 bin/foo.exe or any other *.exe file. You need
 to instead specify '-exclude *.exe', or
 '-exclude foo.exe' if you want to exclude only
 'foo.exe'. This means, however, that you
 cannot exclude a specific instance of an
 object -- you exclude all matching objects.

Advanced Revision Control

464

 In addition to objects you specify using the
 -exclude option, the "These objects are always
 excluded" field from the Tools->Options->
 General->Exclude Lists dialog box in the
 DesignSync graphical user interface lists
 objects that are always excluded from
 revision-control operations.

-modulecontext

 -modulecontext Specifies the server module branch in which
 <context> the objects are being unlocked.

 You can specify a server module URL and the
 branch or version Id,
 (sync://server1:2647/Modules/Chip;RelA) or
 specify the module as a module instance.

 Note: You cannot use a -modulecontext
 option to operate on objects from more than
 one module; the -modulecontext option takes
 only one argument, and you can use the
 -modulecontext option only once on a command
 line.

-[no]recursive

 -[no]recursive Determines whether to unlock the objects in
 the specified folder or all objects in the
 folder and all objects in the subfolders. This
 option is ignored if the argument is not a
 module.

 -norecursive removes locks only from objects
 in the specified folder. (Default)

 -recursive removes the locks from the objects
 in the specified folder and all subfolders.
 Note: On GUI clients, -recursive is the
 initial default.

-[no]selected

 -[no]selected Determines whether the operation is performed
 just on the objects specified at the command
 line or on objects specified at the command
 line and objects in the select list (see the
 'select' command)

ENOVIA Synchronicity Command Reference - Module

465

 -noselected unlocks only objects specified on the
 command line. (Default)
 -selected unlocks objects specified on the
 command and in the select list.

 Note: If no objects are specified on the
 command line, the -selected option is implied.

-trigarg

 -trigarg <arg> Specifies an argument to be passed from the
 command line to the triggers set on the
 unlock operation. If the argument contains
 whitespace, enclose the argument within
 double quotation marks ("") if using the dss
 command shell or braces ({}) if using the stcl
 command shell.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when
 arguments to the command begin with a hyphen
 (-).

RETURN VALUE

 The command has no Tcl return value.

 The command does provide a list of the objects processed by the
 command and information about whether the command succeeded, failed,
 or was skipped.

 Note: If an object was "excluded by filter," it may have been
 excluded either with the -filter option (for modules) or with the
 -exclude option (for DesignSync objects.)

SEE ALSO

 cancel, ci, lock, populate, select, selectors, switchlocker,
 command defaults

EXAMPLES

• Example of Unlocking a Module Member in the Workspace

Advanced Revision Control

466

• Example of Unlocking a Module Member Using -modulecontext

Example of Unlocking a Module Member in the Workspace

 This example unlocks the "Chip.doc" module member on the Trunk branch
 of the Chip module, as defined by the persistent selector in the
 workspace. The "Chip.doc" file is located in a doc subdirectory
 within the module.

 dss> unlock /Doc/Chip.doc
 Beginning Unlock operation...

 Unlocking objects in module Chip%0 with base dir
 c:\workspaces\chip\ ...

 /Doc/Chip.doc: Unlocked

Example of Unlocking a Module Member Using -modulecontext

 This example unlocks the "Chip.doc" module member on the Trunk branch
 of the Chip module. The "Chip.doc" file is located in a doc
 subdirectory within the module.

 Note: When you specify a module or module member to unlock, you must
 specify the natural path to the specified argument.

 dss> unlock -modulecontext sync://host:2647/Modules/Chip;Trunk \
 /Doc/Chip.doc
 Beginning Unlock operation...

 Unlocking: sync://serv1.ABCo.com:2647/Modules/Chip;1 :
 /doc/Chip.doc: Unlocked

 Unlock operation finished.

 {Objects succeeded (1)} {}

unfreezemod

unfreezemod Command

NAME

 unfreezemod - Releases access controls on a frozen module

DESCRIPTION

ENOVIA Synchronicity Command Reference - Module

467

 This command releases the access controls on a frozen module so
 that changes can be made to the module, freeing it up for normal use.

 This command supports the command default system.

 This command is subject to access controls on the server.

SYNOPSIS

 unfreezemod <ServerURL>

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the module. Specify the URL as
 follows:
 sync://<host>[:<port>]/Modules/[<category...>/]<module>
 or
 syncs://<host>[:<port>]/Modules/[<category...>/]<module>
 where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, <port> is the SyncServer
 port number (defaults to 2647/2679), [<category...>}
 is the optional category (and/or sub-category)
 containing the module, and <module> is the name of
 the module.
 For example:
 sync://serv1.abco.com:1024/Modules/ChipDesigns/Chip

RETURN VALUE

 If the command is successful, DesignSync returns an empty string
 (""). If the command cannot run, DesignSync throws an error message
 explaining the failure.

SEE ALSO

 freezemod, mvmod, importmod, exportmod, edithrefs

EXAMPLES

Advanced Revision Control

468

• Example of Unfreezing a module

Example of Unfreezing a module

 This example shows unfreezing a module.

 dss> unfreezemod sync://serv.ABCo.com:2647/Modules/Chips/chip-nx1
 sync://qelwsun14:30126/Modules/Chips/chip-nx1 : Module is unfrozen.

unremove

unremove Command

NAME

 unremove - Restores removed files to a module

DESCRIPTION

• Understanding the Output

 The unremove command provides a way to locate and recreate an object
 that has been removed from a module. The object is restored into your
 local workspace and automatically Added to the module, to be checked
 in with the next module creation operation.

 Use the unremove command when you do not know which module version
 contains the object being re-added to the module. The command has the
 ability to locate member objects in module version that do not share
 a common ancestor with the current workspace version. This allows
 you to unremove a member that was never created on the workspace
 module branch.

 This command is used for a single object.

 The object must be restored to its original natural path. After the
 object has been checked in, it may be moved or renamed.

Understanding the Output

 The unremove command provides the option to specify the level of
 information the command outputs during processing. The -report option
 allows you to specify what type of information is displayed:

 If you run the command with the '-report brief' option, the unremove
 command alerts the user to any unusual events, such as failures or

ENOVIA Synchronicity Command Reference - Module

469

 warnings, and the Success/failure/skip status.

 By default, or if you run the unremove command with the '-report normal'
 option, the command displays all the information contained in -report
 brief, and standard report information, such as the list of objects
 added back to the module.

 If you run the unremove command with the '-report verbose' option, it
 displays all the information contained in -report normal and any
 operation steps taken or decisions made.

 If you run the unremove command with the -report error option, it displays
 the following information:
 o Failure messages.
 o Warning messages.
 o Success/failure/skip status.

 Note: If an object is explicitly specified and is already part of a
 module, you will see an error stating that the object was skipped.
 If an object is included in a recursive operation and is already
 part of a module, you will not see the error, it will be silently
 skipped.

 This command supports the command defaults system.

 This command is subject to access controls.

SYNOPSIS

 unremove [-modulecontext <context>]
 [-report error|brief|normal|verbose] [-version <selector>]
 <member-path>[;<member-version>]

ARGUMENTS

• Member Path

Member Path

 <member path> Specify the path of the removed object. You may
 [;<member-version>] optionally, specify the specific member version
 of the removed object. If no version is
 selected, the version that was Latest at the time
 of the remove being undone is used.

 You can specify a modulecontext for the argument,
 or, if no modulecontext is specified, DesignSync
 uses the local metadata in the workspace to
 determine which module to operate on.

Advanced Revision Control

470

OPTIONS

• -modulecontext
• -report
• -version

-modulecontext

 -modulecontext Identifies the module on which the unremove
 <context> operates. Specify the desired module using the
 module instance name (for example, Chip%0 or
 /home/Modules/Chip%0).

 Note that you cannot use a -modulecontext option
 to operate on objects from more than one module;
 the -modulecontext option takes only one
 argument, and you can use the -modulecontext
 option only once on a command line.

-report

 -report error|brief Determines what information is returned in
 normal|verbose the output of the unremove command. The information
 each option returns is discussed in detail in the
 "Understanding the Output" section above.

 Valid values are:
 o error - provides error and warning messages
 only.

 o brief - lists all the objects unremoved (added
 back) for the workspace module.

 o normal - indicates when the command begins
 and ends processing and lists all the objects
 unremoved for the workspace module. (Default)

 o verbose - provides full status for each
 object processed.

-version

 -version Specifies the version of a module to begin
 <selector> searching for the module member to unremove. If
 no version is specified, DesignSync uses the
 version loaded in the workspace. (Default)

 You may specify any valid single selector. Note:
 You may specify a branch or version that is not

ENOVIA Synchronicity Command Reference - Module

471

 among the ancestors of the branch loaded into the
 workspace, meaning you can unremove an objects to
 check into the local workspace branch that was
 previously not present on the branch.

RETURN VALUE

 By default, this command returns a count showing how many objects
 succeeded and failed.

SEE ALSO

 remove, add, ci

EXAMPLES

 This example shows unremoving a module member from a workspace.
 dss> unremove -modulecontext Chip%5 chip.doc

 Determining the module version from which to restore the member ...

 Populating member from module version 1.2 ...

 Beginning populate operation at Fri Sep 17 03:52:08 PM EDT 2010...

 Populating objects in Module Chip%5
 Base Directory /home/rsmith/workspaces/chip
 Without href recursion

 Fetching contents from selector '1.2', module version '1.2'

 Total data to transfer: 0 Kbytes (estimate), 1 file(s), 0 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 1 Kbytes, 1 file(s), 0 collection(s), 100.0% complete

 Chip%5/chip.doc : Success - Checked out version: 1.1
 Chip%5 : Version of module in workspace not updated (Due to not
 operating on entire module contents).

 Finished populate of Module Chip%5 with base directory
 /home/rsmith/chip

 Time spent: 0.2 seconds, transferred 1 Kbytes, average data rate 5.7
 Kb/sec

 Finished populate operation.

 {Objects succeeded (1)} {}

 Add chip.doc to module Chip%5 ...

Advanced Revision Control

472

 Beginning add operation...

 /chip.doc: Adding object back to module

 Finished add operation.

 {Objects succeeded (1)} {}

unselect

unselect Command

NAME

 unselect - Removes files from the 'selected' list

DESCRIPTION

 This command removes specified files from the list of selected
 objects. Many commands that accept filenames also support the
 -selected option, which feeds this pre-built list of files to the
 command for processing. As with most commands that accept
 filenames, wildcard file specifications are also supported.

SYNOPSIS

 unselect [-quiet] [-all | [--] <argument> [<argument>...]]

ARGUMENTS

• Server Module
• Workspace Module
• Workspace Module Member

Server Module

 <server module> Server modules can be selected using the URL of
 the module.
 sync[s]://<host>[:<port>]/<vaultPath> where
 <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 and <vaultPath> identifies the module to select.

ENOVIA Synchronicity Command Reference - Module

473

Workspace Module

 <workspace module> Workspace modules can be selected.

Workspace Module Member

 <workspace module Workspace module members can be selected.
 member>

 Note: Server module members, member versions,
 branches, and hrefs do not have a specific server
 address and therefore cannot be specified in a
 selector list.

OPTIONS

• -all
• -quiet
• --

-all

 -all Remove all objects from the select list.

 This option is mutually exclusive with specifying an
 argument to this command.

-quiet

 -quiet Do not report the names of objects being deselected.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 none

Advanced Revision Control

474

SEE ALSO

 select, cancel, ci, ls, tag, populate

EXAMPLES

• Example of Removing Specified Objects from the Select List
• Example of Removing All Objects from the Select List

Example of Removing Specified Objects from the Select List

 This example removes foo1.v and all files that match bar*.v from
 the select list:
 dss> unselect foo1.v bar*.v

Example of Removing All Objects from the Select List

 This example removes all objects from the select list:
 dss> unselect -all

upgrade

upgrade Command

NAME

 upgrade - Upgrades a DesignSync vault folder or a legacy
 module to the current module structure

DESCRIPTION

• The Upgrade Process
• Module Name
• Module Branches
• Module Versions
• Migrating Module Tags
• Hierarchical References
• Hierarchical Reference Names
• Hierarchical Reference Types
• Hierarchical Reference Static Versions
• ProjectSync Module Notes and Subscriptions
• Access Controls

ENOVIA Synchronicity Command Reference - Module

475

• The ModuleUpgrade Directory
• Post-Upgrade Tasks
• Understanding the Output

 This command upgrades a DesignSync vault folder or a legacy module
 to the current module structure.

 Note: For ease of use, the documentation for upgrade refers to data
 from either a DesignSync vault or a legacy module as legacy data or a
 legacy object unless the information applies specifically to a
 DesignSync vault or legacy module.

 Important: Before you upgrade legacy data, you must check in any
 modifications and release any locks.

 During sync_setup, while configuring the server, DesignSync
 verifies that the "Modules" directory is configured for the current
 module structure. If the directory is not configured for the current
 module structure, DesignSync sets a registry flag to indicate that
 the upgrade command cannot upgrade legacy data to the new module
 format. When upgrade is run on the server, the command fails with a
 note explaining that there is legacy data in the Modules directory.
 For information on removing the legacy data, see the ENOVIA
 Synchronicity DesignSync Installation available from the Program
 Directory along with the release information. The registry flag also
 controls the ability to create modules with mkmod.

 Notes:
 o The legacy object is only upgraded on the server and is placed in
 a new location in the Modules vault directory on the server. All
 existing workspaces continue to point to the legacy data even
 after the upgrade occurs. To use the new module, the users need to
 populate a new workspace with the new module data.

 o Previous versions of DesignSync recommended that the following
 special characters, which are prohibited in module names, also not
 be used in the natural path of module members (for module member or
 folder names):
 ~ ! @ # $ % ^ & * () , ; : | ` ' " = [] / \ < >
 The site or server administrator can now restrict any or all of
 these characters from being used, however, the upgrade process does
 not modify folder or module members names during processing. After
 processing, if your folder or module members contain these special
 characters, you will need to manually modify the names to remove
 the prohibited characters. For a list of the characters disallowed
 on your system, view the Exclude List pane in the DesignSync
 Administrator.

 The upgrade command can be run multiple times without harming your
 legacy data. For example, if legacy data is still being updated, you
 can run the upgrade command to re-upgrade the data. The data is not
 upgraded on top of the previous upgrade. You would have to either
 remove the upgraded module (with the rmmod command) before running
 the upgrade again, or provide a different module name for the new
 upgrade.

Advanced Revision Control

476

 Note: If an object is upgraded multiple times, the last module it was
 upgraded to is used when mapping the hierarchical references.

The Upgrade Process

 The upgrade command creates a new module from the specified legacy
 object. All legacy vaults are copied to the new module location as
 SmartVaults.

 The upgrade command creates the following module elements:

 o A module with the specified name (optionally in the category
 path, if provided).
 o Module branches
 o Module versions
 o Module tags
 o Hierarchical references

 The module elements, in large part, come from the contents of
 sync_project.txt files. The upgrade process traverses the legacy
 object hierarchy, to create the branches, versions and tags based on
 the data in the sync_project.txt files. For DesignSync vaults, the
 hierarchical references derive from the REFERENCE statements in the
 sync_project.txt files. For legacy modules, the hierarchical
 references are carried over.

 Tip: After running the upgrade, you can run the migratetag command
 to port all your existing files-based version tags to your newly
 created module. For more information, see the migratetag command.

Module Name

 The first thing the upgrade creates is the new module. The name of
 the module can be specified using the -name argument. If the module
 name is not specified, the module is created using the leaf node name
 of the legacy object. The combination of module and category name
 must be unique for each module. If you use the same name for more
 than one module, the modules must have different category names.

 Module categories are virtual folders used to organize modules and
 group modules into related groups. Specific usage is dependent on
 your site setup, but categories can organize modules based on
 engineering groups, hardware or software functions, or other
 classifications. There is no limit placed by DesignSync on the
 number of categories or sub-categories a site may have. The category
 for the new module is specified with the -category option.

 Tip: Use module names beginning with an initial capital letter. This
 provides an easy method of distinguishing between a folder name,
 which is conventionally lower-case, and the module.

ENOVIA Synchronicity Command Reference - Module

477

 Module names cannot contain the following special characters:
 ~ ! @ # $ % ^ & * () , ; : | ` ' " = [] / \ < >

 Note: The following two characters, back quote (`) and slash (/) were
 allowed in legacy module names, but are no longer valid characters.
 If you upgrade a legacy module or DesignSync vault containing either
 of these two characters, you must specify a valid name with the -name
 option or the upgrade will fail.

Module Branches

 The default module branch 1 is created and is tagged with the
 immutable module branch tag named "Trunk". Since the tag is
 immutable, it can not be changed. The Trunk branch of the DesignSync
 vault or legacy module is created as branch 1 (Modulename.1) of the
 new module. This branch is automatically tagged with a "Trunk" tag.
 This tag is immutable meaning it can not be changed. Even if there
 are no objects in the legacy data with the Trunk branch tag, the
 Trunk branch is still created with version 1.1, but contains no
 module members.

 The upgrade process creates a module branch for each configuration
 present in the sync_project.txt files of the legacy object. Each
 branch stems from module version 1.1. The configuration name is added
 to the module branch as a mutable module branch tag. If the
 configuration is mapped to a branch selector such as, "Branch:" or
 "Branch:Latest," then the branch name is also added as a mutable
 module branch tag, unless the name already exists as another
 configuration.

 Branch for legacy module release configurations:

 If the legacy module has any "release" configurations, a "Releases"
 branch, branched from module version 1.1, is created. The mutable
 module branch tag "Releases" is added to this branch. The legacy
 module "releases" and "aliases" are placed on this branch.

Module Versions

 Version 1 is created on each module branch. This is the only version
 created on a branch during upgrade, with the exception of the
 "Releases" branch, where multiple module versions may be created.

 Version 1 is created on the default "Trunk" branch. This is module
 version 1.1. This version contains all modules members matching the
 Trunk:Latest selector.

 NOTE: If a "Trunk" configuration is not mapped to "Trunk:Latest", the
 upgrade command still creates module version 1.1 with member versions
 that resolve to "Trunk:Latest". If you want to migrate the Trunk
 legacy configuration you may either use the migratetag utility to
 create a different branch containing members for the legacy "Trunk"

Advanced Revision Control

478

 configuration or create a new configuration with this mapping prior
 to running upgrade. If the object being upgraded is a legacy module,
 an older client would be required to add the configuration.

 If the "Releases" branch is created, a module version is created for
 each release configuration. The module version contains each member
 version tagged with the release tag (which indicates that is part of
 that release) The release name is added as an immutable module
 version tag. If there are any alias configurations mapped to this
 release, then the alias name is added to the module version as a
 mutable module version tag.

 Version 1 is created on all other branches containing the members
 that resolve to the selector mapped to the configuration. If the
 selector is a version tag, then the module version is assigned this tag as a
 mutable module version tag, unless the name already exists as another
 configuration.

 If any branch created has no members matching the selector for the
 legacy configuration, the module branch is still created; however the
 first version on the branch contains no members.

Migrating Module Tags

 The upgrade command provides automatic migration of the tags
 associated with the configurations defined in the associated
 sync_project.txt files. There can be additional tags on versions and
 branches of the member vaults that are not defined in the
 sync_project.txt files, such as a private tags used to define a local
 configuration. The upgrade process preserves this tag information so
 private tags or selector lists using these tags can be migrated
 seamlessly to the new module.

 In order to migrate the private tags or selectors used with legacy
 modules or DesignSync vaults to the new module, you should run the
 migratetags command after the upgrade command has completed.

 If you are not sure whether you have tags that you need to migrate
 with the migratetags command, you can run the migratetag command with
 the -list option to generate a list of the tags available to be
 migrated to the new module or module members with their version
 numbers that would be added to the new branch with the specified
 selector.

Hierarchical References

 By default, all hierarchical references (hrefs) to objects that have
 been upgraded map to the upgraded module. When an object is upgraded, the
 information about the legacy configurations, including configuration
 names and their mapped module branches, versions, and static module
 versions is retained. This, along with the upgraded module property
 set on the legacy object, is what allows mapping of hierarchical

ENOVIA Synchronicity Command Reference - Module

479

 references to take place.

 Note: If you do not want to map hrefs to the upgraded modules,
 use the -nomaphrefs option to the upgrade command.

 If the object being upgraded has hrefs to modules that have not
 been upgraded, or will not be upgraded, those hrefs continue to point
 to the original legacy object locations. If you subsequently decide
 to upgrade those objects, you must manually remove the href to the
 legacy object and add the href to the upgraded module.

 The new href is added to the module branch that was created from the
 legacy configuration specified with the fromargument of the legacy
 module href.

 If the hrefs are mapped to upgraded modules, the new hrefs link to
 the branch and version of the upgraded module specified by the
 toargument of the legacy module href. If the hrefs are not
 mapped, the href will continue to point to the legacy object. The
 legacy objects can be an IPGear Deliverable, a DesignSync vault
 folder or a legacy module.

 If there is no matching module branch for the configuration
 referenced by the fromargument of the href, a new module branch,
 along with the first module version on this branch is created. The
 configuration name is used as the version tag to identify any
 members that were part of the configuration. The matching members are
 added to this new module version. If no module members are
 identified, the href is the only object added to the newly created
 module version.

 Tip: When upgrading legacy data, you should upgrade the leaf
 submodules or references first, and then work backwards through the
 hierarchy to convert the top-level module or DesignSync vault
 directory last. This will allow the upgrade of the upper-level
 objects to map legacy module hierarchical references or DesignSync
 references to their upgraded modules when appropriate. You can
 optionally choose to have the new references refer to the legacy
 data.

Hierarchical Reference Names

 The new hrefs, unlike the legacy module hrefs are identified by
 unique names. Href names are automatically assigned when the upgrade
 process creates the href. The href name is unique within the module
 version. The name defaults to the module name or the leaf name of
 the object being referenced. If the name already exists within the
 module version, a unique name is generated by concatenating the module
 name or leaf name of the referenced object with the next available
 number, beginning with one (1) in the following format:

 <moduleName>_<number>

 For example: the first reference to a module called "Chip" is "Chip."

Advanced Revision Control

480

 The next reference to a different module named "Chip," is "Chip_1".
 A reference to a third module named, "Chip," is "Chip_2" etc.

Hierarchical Reference Types

 All hrefs are assigned a type to allow for easy identification of the
 href target.

 o Module - href to an upgraded module.
 o Alias - href to a legacy module alias.
 o Branch - href to a legacy module branch configuration.
 o Release - href to a legacy module release configuration.
 o Selector - href to a legacy module selector configuration.
 o Vault - href to a DesignSync vault.
 o Deliverable - href to an IP Gear deliverable.
 o Unknown - indicates that the object type could not be determined.

Hierarchical Reference Static Versions

 When an href is mapped to an upgraded module, a static version number
 is assigned to the href. The static version of the sub-module is the
 module version created for the corresponding legacy object
 configuration.

ProjectSync Module Notes and Subscriptions

 Notes associated with legacy module or DesignSync vault being upgraded
 are associated with the new module as well.

 The following table shows how legacy object ProjectSync attachments are
 copied to the new module:

 Legacy Object location New object location
 ---------------------- -------------------
 Top-level legacy object New module
 Legacy configuration New module's branch created from
 the configuration
 Release configuration New module's version associated
 with the release
 Alias New module's version tagged with
 the upgraded tag created from the
 alias

 Note: Notes attached to sub-folders of the legacy object or to the
 vaults that lie beneath the legacy object vault folder are
 not attached to the new module.

 Email subscriptions on the legacy object are not transferred
 to the new module. Also, subscriptions to the new module need

ENOVIA Synchronicity Command Reference - Module

481

 to be added.

 After the upgrade is complete, an upgrade RevisionControl note is
 created and logged in ProjectSync against the upgraded module and
 legacy object. The note is broadcast to all users subscribed to
 notes on the legacy object, the new module, upgrade RevisionControl
 notes or all hcm RevisionControl notes. The upgrade note includes the
 Sync URL for the new module and the entire contents of the upgrade
 log file.

 An mkmod note is created for the new module.

Access Controls

 During the upgrade process, access controls on the legacy data are
 added to restrict write access so no changes can be made to legacy
 data during the upgrade process. This guarantees that the new module
 will contain all the data present in the legacy object. After the
 upgrade, the legacy object is left in read-only mode to prevent
 users from accidentally updating the legacy data instead of the new
 module. The access controls can be removed after the upgrade completes
 if further development on the legacy object is desired.

 In addition, access controls on the legacy object are not carried over
 to the new module. During the upgrade, read and write access is restricted
 for the new module until the upgrade completes. After the upgrade completes,
 the new module is left with no access controls. Access controls can be
 added for the new module before or after the upgrade is run.

The ModuleUpgrade Directory

 The upgrade command creates the ModuleUpgrade directory as an
 unmanaged directory in the new module that stores all the supporting
 information used in module creation as well as maintaining some
 information about the legacy object that is not carried over.

 The upgrade log file, upgrade_<date>_<timestamp>.log, stores the
 complete output information from the upgrade command. You can review
 this log file if you need additional information about what occurred
 during the upgrade. If upgrade fails for any reason, and you rerun
 upgrade after correcting the source of the failure, upgrade recreates
 a new module and preserves all prior log files.

 Empty directories that exist in the legacy object are not added to
 the new module. The LegacyEmptyDirs file stores the names of the empty
 directories. After the upgrade has completed, you can use this list
 to recreate the original module object directory structure. including
 empty directories. The file consists of a Tcl list containing the
 natural path to the empty directory. Only vault folders
 that are completely empty are carried over. This means that an empty
 directory that contains shell vaults removed with keepvid or only
 contains vaults active on some branches is not listed in this file.

Advanced Revision Control

482

 Note: The natural path is the path where that object is placed under
 the module base directory. For instance, in the following sync URL,
 sync://svrc2.ABCo.com/Modules/Chip/doc/chip.doc, the natural path of
 the chip.doc file is "/doc/chip.doc".

 User properties set on the top-level legacy object are carried over
 to the module, and set on the module itself. User properties that
 are not set on the top-level legacy object, but instead set on an
 object below the top-level legacy vault directory, are not applied
 to the new module. The LegacyUserProperties file stores the user
 property information that is not associated with the new module.
 After the upgrade has completed, you can use this list to recreate
 the original module member's user properties. These properties can
 be for any of the following objects: vault directory, vault file,
 vault branch or vault version. The file consists of a Tcl list
 containing the following three elements for each property found:

 o Natural path to the member object,
 o Property name
 o Property value

 The sync_project.txt files for legacy objects contain project owner
 and team member lists that are used for projects and configurations
 by ProjectSync's SyncUserList fields. New modules do not have the
 same functionality. In order to preserve owner and team member lists
 for projects and configurations, the sync_project.txt files for the
 legacy objects are saved into the LegacyProjectFiles directory. If
 the legacy object contains multiple sync_project.txt, a naming scheme
 is used in order to avoid file name clashing.

Post-Upgrade Tasks

 After you have completed the migration, you should perform the
 following tasks:

 o Run the migratetag command to port any existing files-based tags
 to the new module.

 o Check the module member and folder names to verify that the natural
 path of the module members confirms with the naming restrictions in
 place on your system. Your system or site administrator can
 restrict the character set used by DesignSync to avoid special
 characters, such as "#" or "@." You can check which characters are
 not permitted on your system by viewing the Exclude List panel in
 the DesignSync Administrator (SyncAdmin) application.

 o Set the appropriate Access Controls for the new module. By
 default, the old file-based data is left in a locked state. If you
 are still developing that module, perhaps to maintain it for minor or
 legacy releases, update the Access Controls to allow modifications.

 o Provide users with the new information to connect to the
 module.

ENOVIA Synchronicity Command Reference - Module

483

Understanding the Output

 By default, or if you run the upgrade command with the '-report
 normal' option, the command displays the following information:

 o Beginning upgrade message
 o Status message for each phase of the upgrade
 o Name of the legacy object being upgraded to the new module
 structure
 o Name of each new Module branch and version being created and
 the source of the information: for example:
 the configuration and the selector defined in the sync_projects
 file.
 o Information about the tags added to the module.
 o Information about hrefs, including if the legacy object
 references were mapped.
 o Sync URL for the newly created Module

 If you run the upgrade command with the '-report brief' option, it
 displays the following information:

 o Beginning upgrade message
 o Vault path of the legacy object being upgraded to the new
 module structure
 o Sync URL for the newly created Module

 If you run the upgrade command with the '-report verbose' option, it
 displays all the information available in normal mode, plus the
 following information:

 o The member versions that were added to each module version.
 o Information about the ProjectSync revision control notes
 generated for the upgrade and the associated mkmod used to
 create the new module.
 o The notes that were attached to the new module.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 upgrade [-category <path>] [-[no]maperror] [-[no]maphrefs]
 [-name <modulename>] [-report {brief|normal|verbose}]
 <argument>

ARGUMENTS

Advanced Revision Control

484

• Legacy Module URL
• DesignSync Vault URL

Legacy Module URL

 <Module URL> Specifies the legacy module you want to
 upgrade to the new modules structure.
 Specify the URL as follows:
 sync[s]://<host>[:<port>]/Projects/<path>
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer port
 number, Projects is the root directory, and
 and <vaultPath> identifies the specific legacy
 module to upgrade.

DesignSync Vault URL

 <DesignSyncVault URL> Specifies the URL of the DesignSync vault you
 want to upgrade to the new module structure.

 Specify the URL as follows:
 sync[s]://<host>[:<port>]/<vaultPath>
 where <host> is the SyncServer on which the
 DesignSync vault resides, <port> is the
 SyncServer port number, and <vaultPath>
 identifies the DesignSync vault you want to
 convert to a module.

OPTIONS

• -category
• -[no]maperror
• -[no]maphrefs
• -name
• -report

-category

 -category <path> Specifies a category in which to store the new
 module. A category is a virtual directory
 that allows you to group Modules by a common
 characteristic. You may specify any number of
 sub-categories.
 Using a category provides a number of
 benefits such as:
 o Allowing you to have multiple modules with
 the same name for different uses.

ENOVIA Synchronicity Command Reference - Module

485

 o Providing a logical organization structure
 for grouping modules.

-[no]maperror

 -[no]maperror This option works in conjunction with the
 maphrefs option. This option determines how the
 upgrade process responds if a mapping error
 occurs. This option is ignored if -nomaphrefs
 is specified.

 -nomaperror allows upgrade to continue
 upgrading the legacy data if href mapping
 errors occur during the upgrade. It reports
 the mapping errors as warnings and preserves
 them in the log file.

 -maperror stops the upgrade, after all hrefs
 are processed, when a mapping error
 occurs. (Default)

-[no]maphrefs

 -[no]maphrefs Determines whether existing existing DesignSync
 references or legacy module hrefs will attempt
 to be mapped to an upgraded module. The reference
 or href can only be mapped if the target object
 was upgraded. If mapping is not done, new hrefs
 are still created referencing the target object
 of the DesignSync reference or legacy module href.
 The default is -maphrefs.

 References to IP Gear deliverables remain as
 is after the module is upgraded.

 An href might not be mapped to a new module
 for the following reasons:

 o The legacy object has not been upgraded to a
 new module.
 o The referenced module was upgraded, but it
 has since been deleted, moved to a
 different server, or the server is
 inaccessible.
 o The original reference can not be accessed.
 o The reference is to an IPGear deliverable.
 No conversion is required.

 If an href is not mapped to a new module
 during the upgrade for any reason, you can
 manually update it later by removing the old
 href and adding an href to the upgraded

Advanced Revision Control

486

 module.

-name

 -name <modulename> Name of the new module. The module name
 should start with an initial capital letter.

 Module names must conform to the following
 standards:
 o Must contain only printable characters
 o May not contain spaces
 o May not contain any of the following
 characters:
 ~ ! @ # $ % ^ & * () , ; : | ` ' " = []
 / \ < >

 If no module name is specified, DesignSync
 uses the leaf folder name for module or vault
 being upgraded.

 Important: The full module name (category and
 module name together) must be unique on the
 server. For instance, if you have several
 projects using different modules which are all
 named Chip, specify a project identifier using
 the -category option and Chip using the -name
 option.
 If no name is specified, and the leaf folder
 containing the legacy module or vault contains
 illegal characters, or illegal characters are
 specified with -name, the upgrade command
 fails and the module is not upgraded.

 Note: Specifying a module name with an initial
 capital letter allows you to easily
 distinguish between a Module, which by
 convention always begins with an initial
 capital letter, and a workspace path, which by
 convention begins with a lower-case letter.

-report

 -report brief| Determines what the information is returned in
 normal|verbose the output of the upgrade command. The
 information each option returns is discussed
 in detail in the "Understanding the Output"
 section above.
 Valid values are:

 o brief - notes the time the upgrade began, and
 lists the path of the object being upgraded
 and the URL of the new module created.

ENOVIA Synchronicity Command Reference - Module

487

 o normal - provides information on each phase
 completed, information about each module
 branch and version created, and information
 about the tags and hrefs added to the
 module. (Default)

 o verbose - provides full status for each
 stage of the upgrade.

RETURN VALUE

 This command does not return Tcl values.

SEE ALSO

 access allow, access deny, addhref, mkmod, rmhref, migratetag,
 edithrefs, command defaults
,

EXAMPLES

 This example shows upgrading your Projects/Block0 legacy module. Default
 reporting (normal) is used along with mapping of hrefs, which is also
 the default.

 Note: If server customizations have been imported to a different
 server after a module upgrade, the upgrade log may not appear at the
 URL provided for monitoring the upgrade. If the URL is not found,
 you may still access the upgrade log from the ModuleUpgrade
 directory for the module.

stcl> upgrade -name Block0 -cat ASIC_TOP sync://sting:30046/Projects/Block0

[Mon Jan 15 07:01:27 PM EST 2007]
 Starting upgrade of sync://sting:30046/Projects/Block0

 You can monitor the upgrade process using the following URL in your
 browser:
 http://sting:30046/syncserver/upgrade/upgrade_ASIC_TOP_Block0.html

 [Mon Jan 15 07:01:27 PM EST 2007] Locating references on the server ...

 Mapped reference to: sync://sting:30046/Modules/Support/tf13
 Original selector: (default) is mapped to Trunk: with static version
 number: 1.1

 Mapped reference to: syncs://sting:30047/Modules/ASIC/ALU1

Advanced Revision Control

488

 Original selector: (default) is mapped to Trunk: with static version
 number: 1.1

 Mapped reference to: syncs://sting:30047/Modules/ASIC/ALU1
 Original selector: Gold is mapped to Gold: with static version
 number: 1.1.3.1

 [Mon Jan 15 07:01:29 PM EST 2007] Mapping of references ...

 Contacting server to get href mappings and href type for
 syncs://qewflx7:30047/Projects/MEM2 ...

 Mapped reference to: syncs://qewflx7:30047/Modules/ASIC/MEM2
 Original selector: Bronze is mapped to Bronze: with
 static version number: 1.1.2.1

 Done getting href mappings for syncs://qewflx7:30047/Projects/MEM2.

 Contacting server to get href type for sync://poulenc:30046/Projects/DSVF
...

 Contacting server to get href mappings and href type for
 syncs://qewflx7:30047/Projects/MEM1 ...

 Mapped reference to: syncs://qewflx7:30047/Modules/ASIC/MEM1
 Original selector: Bronze is mapped to Bronze: with
 static version number: 1.1.2.1

 Done getting href mappings for syncs://qewflx7:30047/Projects/MEM1.

 Contacting server to get href mappings and href type for
 syncs://qewflx7:30047/Projects/MEM0 ...

 Mapped reference to: syncs://qewflx7:30047/Modules/ASIC/MEM0
 Original selector: gamma-alias is mapped to gamma-alias with
 static version number: 1.1.1.3

 Done getting href mappings for syncs://qewflx7:30047/Projects/MEM0.

 Contacting server to get href type for
 sync://poulenc:30046/Projects/Block42@Gold
 sync://poulenc:30046/Projects/Block42 ...

 [Mon Jan 15 07:01:31 PM EST 2007] Creating module on the server ...

 Creating module from sync://sting:30046/Projects/Block0 ...

 Adding Upgrade ACs to restrict write access for original object.
 ACs added to
 /home/larry/sync_custom/servers/sting/30046/share/AccessControl.

ENOVIA Synchronicity Command Reference - Module

489

 Adding Upgrade ACs to restrict read access for new module.
 ACs added to
 /home/larry/sync_custom/servers/sting/30046/share/AccessControl.
 Resetting AccessControls ...

 Converting vaults ...

 Creating legacy tags database ...

 ==

 Creating the Default branch "Trunk" with selector "Trunk:" ...

 Adding href named "TF23" referencing sync:///Projects/TF/TF23
 Selector: (Default)
 Relative path: TF23
 Static version number:
 Href type: Vault

 Adding href named "MEM2" referencing
 syncs://qewflx7:30047/Modules/ASIC/MEM2
 Selector: Bronze:
 Relative path: MEM2
 Static version number: 1.1.2.1
 Href type: Module

 Adding href named "DSVF" referencing
 sync://poulenc:30046/Projects/DSVF
 Selector: (Default)
 Relative path: dsvf
 Static version number:
 Href type: Vault

 Adding href named "240" referencing
 sync://desprez:30012/Deliverable/240
 Selector: (Default)
 Relative path: ipgdeliv
 Static version number:
 Href type: Deliverable

 Adding href named "tf13" referencing sync:///Modules/Support/tf13
 Selector: Trunk:
 Relative path: TF13
 Static version number: 1.1
 Href type: Module

 Adding href named "MEM1" referencing
 syncs://qewflx7:30047/Modules/ASIC/MEM1
 Selector: Bronze:
 Relative path: MEM1
 Static version number: 1.1.2.1
 Href type: Module

 Adding href named "MEM0" referencing
 syncs://qewflx7:30047/Modules/ASIC/MEM0
 Selector: gamma-alias
 Relative path: MEM0

Advanced Revision Control

490

 Static version number: 1.1.1.3
 Href type: Module

 Adding href named "Block42" referencing
 sync://poulenc:30046/Projects/Block42
 Selector: Gold
 Relative path: block42
 Static version number:
 Href type: Branch

 Adding immutable module branch tag "Trunk"

 Default module branch "Trunk" and module version "1.1" created.
 Unique id "a33d77fbcd69141d0af3daa65c8ffffe" assigned to module.

 Locating RevisionControl notes with sync:///Projects/Block0@Trunk
 and adding sync:///Modules/ASIC_TOP/Block0;Trunk: to the existing Objects
list
 No RevisionControl notes found with original object affected.

 Locating notes attached to sync:///Projects/Block0@Trunk
 and attaching them to sync:///Modules/ASIC_TOP/Block0;Trunk:
 No notes found attached to original object.

 ==

 Creating module branches for configurations ...

 Creating module branch "NMGold" ...

 Adding href named "MEM2" referencing
 syncs://qewflx7:30047/Modules/ASIC/MEM2
 Selector: Bronze:
 Relative path: MEM2_G
 Static version number: 1.1.2.1
 Href type: Module

 Adding href named "ALU1" referencing sync:///Modules/ASIC/ALU1
 Selector: Trunk:
 Relative path: ALU1_G
 Static version number: 1.1
 Href type: Module

 Adding href named "TF23" referencing sync:///Projects/TF/TF23
 Selector: (Default)
 Relative path: TF23
 Static version number:
 Href type: Vault

 Adding href named "ALU1_1" referencing sync:///Modules/ASIC/ALU1
 Selector: Gold:
 Relative path: ALU1_G
 Static version number: 1.1.3.1
 Href type: Module

 Adding href named "Block42" referencing

ENOVIA Synchronicity Command Reference - Module

491

 sync://poulenc:30046/Projects/Block42
 Selector: (Default)
 Relative path: BL42G
 Static version number:
 Href type: Branch

 Adding mutable module branch tag "NMGold"

 Module branch "1.1.1" created.

 Locating RevisionControl notes with sync:///Projects/Block0@NMGold
 and adding sync:///Modules/ASIC_TOP/Block0;NMGold: to the existing
 Objects list
 Added objects to 6 notes.

 Locating notes attached to sync:///Projects/Block0@NMGold
 and attaching them to sync:///Modules/ASIC_TOP/Block0;NMGold:
 Attached 6 notes.

 Locating RevisionControl notes with sync:///Projects/Block0
 and adding sync:///Modules/ASIC_TOP/Block0 to the existing Objects list
 Added objects to 45 notes.

 Locating notes attached to sync:///Projects/Block0
 and attaching them to sync:///Modules/ASIC_TOP/Block0
 Attached 42 notes.

 New module completed: sync://sting:30046/Modules/ASIC_TOP/Block0

 Resetting AccessControls ...

 NOTE: ACs to restrict write access to sync:///Projects/Leg8Block0
 were left in place in the server AccessControl file.
 /home/larry/sync_custom/servers/sting/30046/share/AccessControl

upload Command

NAME

 upload - Upload/Update compressed IP stored in DesignSync

DESCRIPTION

• Understanding How a Temporary Directory is used for Upload
• Order of Precedence for Temp Directory:

 The command allows you to upload or update a tar or gzipped tar

Advanced Revision Control

492

 archive to DesignSync in an efficient manner so that, instead of
 replacing the archive with the next version, DesignSync updates
 only the elements within the archive file that have changed from the
 previous version.

 By performing a change (delta) calculation and only checking in the
 changed object set, DesignSync provides both improved speed during
 checkin and checkout and reduces the amount of disk space required
 for storing the IP.

 The user running the upload should examine the tar file to make sure
 it contains none of
 the following:
 o unnecessary or undesired parent directories
 o absolute path directories

 These should be removed before performing the upload.

Notes:
 o The executables (binaries) for tar or gtar must be on the user's
 path in order for the command to work.

 o DesignSync also provides a graphical user interface for uploading
 IP through the DesignSync Web Interface. For more information, see
 the DesignSync Administrator's Guide.

 This command is subject to Access Controls on the server.

 This command supports the command defaults system.

Understanding How a Temporary Directory is used for Upload

 The compressed archive is exploded in a temporary directory and
 compared against the last version, if applicable, on the server and
 only the changed object set is checked in.

 Tip: For optimal operation, DesignSync recommends that the upload
 directory contain at least 2.5* the size of the uncompressed
 archive file.

 By default, this operation is performed in the temporary directory
 specified by the Upload_Tmp_Dir registry setting or the SYNC_TMP_DIR
 environment variable. If neither of these is set, DesignSync uses the /tmp
 directory on the repository server. For more information on setting
 the Upload_Tmp_Dir registry setting, or the SYNC_TMP_DIR environment
 variable, see the DesignSync Administrator's Guide.

 You can optionally specify either a local directory or an alternate
 location on the server. This is especially useful for servers where
 you cannot control the server space consumption; specifying an
 alternative disk partition or performing the delta comparison locally
 allows you to make sure you have enough space to perform the
 operation. Specifying an option on the command line overrides any
 existing settings.

ENOVIA Synchronicity Command Reference - Module

493

Order of Precedence for Temp Directory:

 Note: DesignSync will use this order to determine which tmp
 directory to use for the upload operation. If there is no set value,
 DesignSync will check the next location on this. If there is a
 value set, but DesignSync is unable to use it, for example, because
 of incorrect write permissions, the command will fail.

 1. If the -vault option is used, and -servertmpdir or -localtmpdir
 is specified, the value of <tmpdir> is used. If the -workspace
 option is specified, the workspace is used as the tmp directory.

 2. If the command defaults system is used to set a value
 -servertmpdir or -localtmpdir, that value is used as the tmp
 directory.

 3. If the UploadTmpDir registry setting is specified, that value
 is used as the tmp directory.

 4. If the SYNC_TMP_DIR environment variable is set on the server
 machine, that value is used as the tmp directory.

 5. If the TMPDIR environment variable is set on the server machine,
 that value is used as the tmp directory.

 6. If no other values are set, DesignSync uses the /tmp directory on
 the server machine.

SYNOPSIS

 upload [-branch <branchname>] [-[no]collections]
 [-[no]comment <comment>] [-[no]new]
 [-report brief | normal | verbose] [-tag <tagname>]
 [-vault <vaulturl> [-servertmpdir <tmpdir>] |
 [-vault <vaulturl> [-localtmpdir <tmpdir>] |
 [-workspace <path>] <tarfile>

ARGUMENTS

• Tar file

Tar file

 <tarfile> Specify a tar or gzipped tar archive to upload or
 update on the server. The archive can be
 specified with an absolute or relative path. The
 file extension for the tar file must be either

Advanced Revision Control

494

 .tar or .tgz in order for DesignSync to
 recognize the file.

 NOTE: If the tar file contains .SYNC directories,
 they are automatically ignored and not checked in
 with the archive.

OPTIONS

• -branch
• -[no]collection
• -[no]comment
• -localtmpdir
• -[no]new
• -report
• -servertmpdir
• -tag
• -vault
• -workspace

-branch

 -branch Specifies the branch on which to place the
 <branchname> archive. You can specify only one branch with this
 option. If no branch is specified, DesignSync
 uploads to the Trunk branch. You cannot specify a
 branch tag for the initial archive upload, which
 is always checked into the Trunk branch.

 For the <branchname>, specify a branch tag (for
 example, rel40) or branch numeric (for
 example, 1.4.2) only. Do not specify a colon
 (:) with the branchname.

 If a temp directory (other than the /tmp default)
 is specified for the upload, and the -branch
 option is used, the specified branch must already
 exist on the server.

 The -branch option is mutually exclusive with the
 -new option.

-[no]collection

 -[no]collection Specifies whether the compressed package includes
 collections objects. For more information on
 collection handling, see the DesignSync
 Administrator's Guide.

ENOVIA Synchronicity Command Reference - Module

495

 -nocollection specifies that the compressed
 archive does not contain collection objects. This
 allows the upload process to use reference mode,
 improving the speed of operations. (Default)

 -collection specifies that the compressed archive
 contains collection objects. The upload process
 will not attempt to use reference mode which would
 process collections incorrectly.

-[no]comment

 -[no]comment Specifies whether a text description of the
 ["<comment>"] upload is stored with the checked in version.

 -nocomment performs the upload with no
 comment.(Default)

 -comment <text> stores the value of <text> as the
 module comment. To specify a multi-word comment,
 use quotation marks ("") around the comment text.

-localtmpdir

 -localtmpdir When -vault is used, the -localtmpdir option
 <tmpdir> is used to specify a tmp directory path on the
 local (client) machine to be used for the upload
 operation. When the upload is completed, any
 objects placed in this directory during upload are
 removed.

-[no]new

 -[no]new Performs the initial checkin of the archive. The
 initial archive checkin must be performed on the
 Trunk branch.

 -nonew is used to update the archive in revision
 control. If the archive does not exist and -nonew
 is selected, the command fails. (Default)

 -new is used to create or update the archive. If
 the archive exists and the -new option is
 specified, the archive is updated.

 The -new option is mutually exclusive with the
 -branch option.

Advanced Revision Control

496

-report

 -report brief | Controls the amount and type of information
 normal| verbose displayed by the command.

 brief mode reports the newly created module
 version, along with the generated tag.

 Normal mode additionally reports a list of the
 changes in the archive, including: added files,
 removed files and changed files.

 Verbose mode is equivalent to normal mode.

-servertmpdir

 -servertmpdir When -vault is used, the -servertmpdir option
 <tmpdir> is used to specify a tmp directory path on the
 repository server to be used for the upload
 operation. When the upload is completed, any
 objects placed in this directory during upload are
 removed.

-tag

 -tag <tag> Applies the specified tag to the data being
 imported. This tag can be used to get the data
 later, or example, when populating the archive
 into a workspace.

 If the tag already exists it moves to the new
 version.

 Note: An automatically generated tag, in the form
 Archive.<#> is also applied to the data being
 imported, where the initial value of # is 1, and
 then the number is incremented as archive is
 updated.

-vault

 -vault <vaultURL> Specify the module URL and optionally a server
 [-servertmpdir <tmpdir>] or local path to use as a temporary upload
 | [-localtmpdir <tmpdir>] directory.

 Specify the module URL in the format:

sync[s]://<host>:<port>/Modules/[<category>...]/<Module>

ENOVIA Synchronicity Command Reference - Module

497

 If the module does not exist, then it will be
 created, if the command is run with the -new
 option.

 When you specify an alternate tmp directory for
 upload, you can specify a server path on on the
 repository server or a local path on the
 client system. For more information on
 specifying a server path, see the -servertmpdir
 option. For more information on specifying a
 local path, see the -localtmpdir option.

 This option is mutually exclusive with
 -workspace. Either -workspace or -vault must be
 specified.

-workspace

 -workspace Specify an existing, unmodified workspace
 <path> as a staging area to unpack the new archive,
 determine the changes necessary and send only
 the changes to the server. If this is used for
 an initial upload, the archive is unpacked in
 the workspace and the entire contents of the
 archive is uploaded. For the initial upload,
 DesignSync uses the persistent selector to
 determine the module/vault for checkin.

 This is a performance enhancement that minimizes
 the server processing time needed to compute the
 deltas by pre-computing the deltas in the
 workspace.

 The workspace must be owned and writable by the
 person running the command.

 The -workspace option is mutually exclusive
 with -vault and -branch. The -workspace option
 is only supported for UNIX workspaces.

RETURN VALUE

 This command does not return any TCL values. DesignSync provides
 status messages while the command runs. If the command fails,
 DesignSync returns an error explaining the failure.

SEE ALSO

Advanced Revision Control

498

 defaults, access, ci

EXAMPLES

• Example of Performing an Initial Upload
• Example of Specifying a Server Temporary Directory for Module Upload
• Example of Specifying a Local Temporary Directory for Module Upload
• Example of Performing an Upload Using a Module Workspace

Example of Performing an Initial Upload

 This example shows performing an initial upload to a module.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 checked in. For brevity, those checkin lines have been removed.

 dss> upload -vault sync://qelwsun14:30126/Modules/IPWIP/FinalIP -new
 -comment "IP Finals version 1.0" FinalIP.tar

 Logging to /home/rsmith/dss_04012014_181455.log
 3DEXPERIENCE6R2022x

 Beginning Check in operation...

 Checking in objects in module FinalIP%0

 Total data to transfer: 7340 Kbytes (estimate), 626 file(s), 0
collection(s)
 Checking in:
 ...

 FinalIP%0: Version of module in workspace updated to 1.2

 Finished checkin of Module FinalIP%0, Created Version 1.2

 Time spent: 10.5 seconds, transferred 0 Kbytes, average data rate
 0.0 Kb/sec

 Checkin operation finished.

 NOTE: Workspace module argument 'FinalIP%0' supplied; will tag
 'sync://serv1.ABCo.com:2647/Modules/IPWIP/FinalIP;1.2'

 Beginning module tag operation on 'sync://qelwsun14:30126' ...

 Tagging: sync://serv1.ABCo.com:2647/Modules/IPWIP/FinalIP;1.2 :
 Added tag 'Archive.1' to version '1.2'

 Module tag operation finished on 'sync://serv1.ABCo.com:2647'.

ENOVIA Synchronicity Command Reference - Module

499

Example of Specifying a Server Temporary Directory for Module Upload

 This example updates an IP checked into a module. It uses a
 specified directory on the server as its temporary storage area
 rather than the server default which allows you to make sure that the
 space you need for the operation is available.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 populated, checked in, and tagged. For brevity, the individual
 object detail lines have been removed.

 dss> upload -vault sync://serv1.ABCo.com:2647/Modules/CustomerIP
 -servertmpdir /home/syncadmin/tmp -comment "Uploaded IP"
 ./FinalIP.tar
 Beginning Check in operation...
 Checking in: ...
 ...
 Checkin operation finished.

 Beginning Tag operation...
 ...
 Tag operation finished.
 dss>

Example of Specifying a Local Temporary Directory for Module Upload

 This example updates an IP checked into a module. It uses a
 specified directory on the client machine as its temporary storage
 area rather than the server default which allows you to make sure
 that the space you need for the operation is available and reduces
 processing time on the server.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 populated, checked in, and tagged. For brevity, the individual
 object detail lines have been removed.

 dss> upload -vault sync://serv1.ABCo.com:2647/Modules/CustomerIP
 -localtmpdir ~/tmpfiles -comment "Uploading new version" FinalIP.tar

 Beginning Check in operation...
 Checking in: ...
 ...
 Checkin operation finished.

 Beginning Tag operation...
 ...
 Tag operation finished.
 dss>

Example of Performing an Upload Using a Module Workspace

Advanced Revision Control

500

 This example updates an IP checked into a module. It uses the module
 workspace as its temporary storage area rather than the server which
 reduces the processing time needed on the server.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 populated and checked in. For brevity, the individual object detail
 lines have been removed.

upload -comment "uploading IP Finals version 1.5" -workspace
 ~rsmith/MyMods/customerIP ../FinalIP.tar

 Beginning populate operation at Wed Apr 02 10:45:54 AM EDT 2014...

 Populating objects in Module FinalIP%0
 Base Directory /home/rsmith/MyMods/customerIP
 Without href recursion

 Fetching contents from selector 'Trunk:', module version '1.2'
 ... [Fetching List of Objects in Lock Mode]

 FinalIP%0 : Version of module in workspace retained as 1.2

 Finished populate of Module FinalIP%0 with base directory
/home/rsmith/MyMods/customerIP

 Time spent: 0.0 seconds, transferred 0 Kbytes, copied from local
 cache 0 Kbytes, average data rate 0.0 Kb/sec

 Finished populate operation.

 Beginning Check in operation...

 Checking in objects in module FinalIP%0

 Total data to transfer: 7102 Kbytes (estimate), 596 file(s), 0 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 1 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 4975 Kbytes, 404 file(s), 0 collection(s), 68.1% complete
 Progress: 7259 Kbytes, 596 file(s), 0 collection(s), 100.0% complete

 ... [Checking in new files, removing locks]

 FinalIP%0: Version of module in workspace updated to 1.3

 Finished checkin of Module FinalIP%0, Created Version 1.3

 Time spent: 15.7 seconds, transferred 7259 Kbytes, average data rate 463.8
Kb/sec

 Checkin operation finished.

ENOVIA Synchronicity Command Reference - Module

501

 NOTE: Workspace module argument 'FinalIP%0' supplied; will tag
 'sync://serv1.ABCo.com/Modules/IPWIP/FinalIP;1.3'

 Beginning module tag operation on 'sync://serv1.ABCo.com:2647' ...

 Tagging: sync://serv1.ABCo.com:2647/Modules/IPWIP/FinalIP;1.3 :
 Added tag 'Archive.2' to version '1.3'

 Module tag operation finished on 'sync://serv1.ABCo.com:2647'.

upload

upload Command

NAME

 upload - Upload/Update compressed IP stored in DesignSync

DESCRIPTION

• Understanding How a Temporary Directory is used for Upload
• Order of Precedence for Temp Directory:

 The command allows you to upload or update a tar or gzipped tar
 archive to DesignSync in an efficient manner so that, instead of
 replacing the archive with the next version, DesignSync updates
 only the elements within the archive file that have changed from the
 previous version.

 By performing a change (delta) calculation and only checking in the
 changed object set, DesignSync provides both improved speed during
 checkin and checkout and reduces the amount of disk space required
 for storing the IP.

 The user running the upload should examine the tar file to make sure
 it contains none of
 the following:
 o unnecessary or undesired parent directories
 o absolute path directories

 These should be removed before performing the upload.

Notes:
 o The executables (binaries) for tar or gtar must be on the user's
 path in order for the command to work.

 o DesignSync also provides a graphical user interface for uploading
 IP through the DesignSync Web Interface. For more information, see
 the DesignSync Administrator's Guide.

Advanced Revision Control

502

 This command is subject to Access Controls on the server.

 This command supports the command defaults system.

Understanding How a Temporary Directory is used for Upload

 The compressed archive is exploded in a temporary directory and
 compared against the last version, if applicable, on the server and
 only the changed object set is checked in.

 Tip: For optimal operation, DesignSync recommends that the upload
 directory contain at least 2.5* the size of the uncompressed
 archive file.

 By default, this operation is performed in the temporary directory
 specified by the Upload_Tmp_Dir registry setting or the SYNC_TMP_DIR
 environment variable. If neither of these is set, DesignSync uses the /tmp
 directory on the repository server. For more information on setting
 the Upload_Tmp_Dir registry setting, or the SYNC_TMP_DIR environment
 variable, see the DesignSync Administrator's Guide.

 You can optionally specify either a local directory or an alternate
 location on the server. This is especially useful for servers where
 you cannot control the server space consumption; specifying an
 alternative disk partition or performing the delta comparison locally
 allows you to make sure you have enough space to perform the
 operation. Specifying an option on the command line overrides any
 existing settings.

Order of Precedence for Temp Directory:

 Note: DesignSync will use this order to determine which tmp
 directory to use for the upload operation. If there is no set value,
 DesignSync will check the next location on this. If there is a
 value set, but DesignSync is unable to use it, for example, because
 of incorrect write permissions, the command will fail.

 1. If the -vault option is used, and -servertmpdir or -localtmpdir
 is specified, the value of <tmpdir> is used. If the -workspace
 option is specified, the workspace is used as the tmp directory.

 2. If the command defaults system is used to set a value
 -servertmpdir or -localtmpdir, that value is used as the tmp
 directory.

 3. If the UploadTmpDir registry setting is specified, that value
 is used as the tmp directory.

 4. If the SYNC_TMP_DIR environment variable is set on the server
 machine, that value is used as the tmp directory.

ENOVIA Synchronicity Command Reference - Module

503

 5. If the TMPDIR environment variable is set on the server machine,
 that value is used as the tmp directory.

 6. If no other values are set, DesignSync uses the /tmp directory on
 the server machine.

SYNOPSIS

 upload [-branch <branchname>] [-[no]collections]
 [-[no]comment <comment>] [-[no]new]
 [-report brief | normal | verbose] [-tag <tagname>]
 [-vault <vaulturl> [-servertmpdir <tmpdir>] |
 [-vault <vaulturl> [-localtmpdir <tmpdir>] |
 [-workspace <path>] <tarfile>

ARGUMENTS

• Tar file

Tar file

 <tarfile> Specify a tar or gzipped tar archive to upload or
 update on the server. The archive can be
 specified with an absolute or relative path. The
 file extension for the tar file must be either
 .tar or .tgz in order for DesignSync to
 recognize the file.

 NOTE: If the tar file contains .SYNC directories,
 they are automatically ignored and not checked in
 with the archive.

OPTIONS

• -branch
• -[no]collection
• -[no]comment
• -localtmpdir
• -[no]new
• -report
• -servertmpdir
• -tag
• -vault
• -workspace

-branch

Advanced Revision Control

504

 -branch Specifies the branch on which to place the
 <branchname> archive. You can specify only one branch with this
 option. If no branch is specified, DesignSync
 uploads to the Trunk branch. You cannot specify a
 branch tag for the initial archive upload, which
 is always checked into the Trunk branch.

 For the <branchname>, specify a branch tag (for
 example, rel40) or branch numeric (for
 example, 1.4.2) only. Do not specify a colon
 (:) with the branchname.

 If a temp directory (other than the /tmp default)
 is specified for the upload, and the -branch
 option is used, the specified branch must already
 exist on the server.

 The -branch option is mutually exclusive with the
 -new option.

-[no]collection

 -[no]collection Specifies whether the compressed package includes
 collections objects. For more information on
 collection handling, see the DesignSync
 Administrator's Guide.

 -nocollection specifies that the compressed
 archive does not contain collection objects. This
 allows the upload process to use reference mode,
 improving the speed of operations. (Default)

 -collection specifies that the compressed archive
 contains collection objects. The upload process
 will not attempt to use reference mode which would
 process collections incorrectly.

-[no]comment

 -[no]comment Specifies whether a text description of the
 ["<comment>"] upload is stored with the checked in version.

 -nocomment performs the upload with no
 comment.(Default)

 -comment <text> stores the value of <text> as the
 module comment. To specify a multi-word comment,
 use quotation marks ("") around the comment text.

ENOVIA Synchronicity Command Reference - Module

505

-localtmpdir

 -localtmpdir When -vault is used, the -localtmpdir option
 <tmpdir> is used to specify a tmp directory path on the
 local (client) machine to be used for the upload
 operation. When the upload is completed, any
 objects placed in this directory during upload are
 removed.

-[no]new

 -[no]new Performs the initial checkin of the archive. The
 initial archive checkin must be performed on the
 Trunk branch.

 -nonew is used to update the archive in revision
 control. If the archive does not exist and -nonew
 is selected, the command fails. (Default)

 -new is used to create or update the archive. If
 the archive exists and the -new option is
 specified, the archive is updated.

 The -new option is mutually exclusive with the
 -branch option.

-report

 -report brief | Controls the amount and type of information
 normal| verbose displayed by the command.

 brief mode reports the newly created module
 version, along with the generated tag.

 Normal mode additionally reports a list of the
 changes in the archive, including: added files,
 removed files and changed files.

 Verbose mode is equivalent to normal mode.

-servertmpdir

 -servertmpdir When -vault is used, the -servertmpdir option
 <tmpdir> is used to specify a tmp directory path on the
 repository server to be used for the upload
 operation. When the upload is completed, any
 objects placed in this directory during upload are
 removed.

Advanced Revision Control

506

-tag

 -tag <tag> Applies the specified tag to the data being
 imported. This tag can be used to get the data
 later, or example, when populating the archive
 into a workspace.

 If the tag already exists it moves to the new
 version.

 Note: An automatically generated tag, in the form
 Archive.<#> is also applied to the data being
 imported, where the initial value of # is 1, and
 then the number is incremented as archive is
 updated.

-vault

 -vault <vaultURL> Specify the module URL and optionally a server
 [-servertmpdir <tmpdir>] or local path to use as a temporary upload
 | [-localtmpdir <tmpdir>] directory.

 Specify the module URL in the format:

sync[s]://<host>:<port>/Modules/[<category>...]/<Module>

 If the module does not exist, then it will be
 created, if the command is run with the -new
 option.

 When you specify an alternate tmp directory for
 upload, you can specify a server path on on the
 repository server or a local path on the
 client system. For more information on
 specifying a server path, see the -servertmpdir
 option. For more information on specifying a
 local path, see the -localtmpdir option.

 This option is mutually exclusive with
 -workspace. Either -workspace or -vault must be
 specified.

-workspace

 -workspace Specify an existing, unmodified workspace
 <path> as a staging area to unpack the new archive,
 determine the changes necessary and send only
 the changes to the server. If this is used for

ENOVIA Synchronicity Command Reference - Module

507

 an initial upload, the archive is unpacked in
 the workspace and the entire contents of the
 archive is uploaded. For the initial upload,
 DesignSync uses the persistent selector to
 determine the module/vault for checkin.

 This is a performance enhancement that minimizes
 the server processing time needed to compute the
 deltas by pre-computing the deltas in the
 workspace.

 The workspace must be owned and writable by the
 person running the command.

 The -workspace option is mutually exclusive
 with -vault and -branch. The -workspace option
 is only supported for UNIX workspaces.

RETURN VALUE

 This command does not return any TCL values. DesignSync provides
 status messages while the command runs. If the command fails,
 DesignSync returns an error explaining the failure.

SEE ALSO

 defaults, access, ci

EXAMPLES

• Example of Performing an Initial Upload
• Example of Specifying a Server Temporary Directory for Module Upload
• Example of Specifying a Local Temporary Directory for Module Upload
• Example of Performing an Upload Using a Module Workspace

Example of Performing an Initial Upload

 This example shows performing an initial upload to a module.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 checked in. For brevity, those checkin lines have been removed.

 dss> upload -vault sync://qelwsun14:30126/Modules/IPWIP/FinalIP -new
 -comment "IP Finals version 1.0" FinalIP.tar

 Logging to /home/rsmith/dss_04012014_181455.log

Advanced Revision Control

508

 3DEXPERIENCE6R2022x

 Beginning Check in operation...

 Checking in objects in module FinalIP%0

 Total data to transfer: 7340 Kbytes (estimate), 626 file(s), 0
collection(s)
 Checking in:
 ...

 FinalIP%0: Version of module in workspace updated to 1.2

 Finished checkin of Module FinalIP%0, Created Version 1.2

 Time spent: 10.5 seconds, transferred 0 Kbytes, average data rate
 0.0 Kb/sec

 Checkin operation finished.

 NOTE: Workspace module argument 'FinalIP%0' supplied; will tag
 'sync://serv1.ABCo.com:2647/Modules/IPWIP/FinalIP;1.2'

 Beginning module tag operation on 'sync://qelwsun14:30126' ...

 Tagging: sync://serv1.ABCo.com:2647/Modules/IPWIP/FinalIP;1.2 :
 Added tag 'Archive.1' to version '1.2'

 Module tag operation finished on 'sync://serv1.ABCo.com:2647'.

Example of Specifying a Server Temporary Directory for Module Upload

 This example updates an IP checked into a module. It uses a
 specified directory on the server as its temporary storage area
 rather than the server default which allows you to make sure that the
 space you need for the operation is available.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 populated, checked in, and tagged. For brevity, the individual
 object detail lines have been removed.

 dss> upload -vault sync://serv1.ABCo.com:2647/Modules/CustomerIP
 -servertmpdir /home/syncadmin/tmp -comment "Uploaded IP"
 ./FinalIP.tar
 Beginning Check in operation...
 Checking in: ...
 ...
 Checkin operation finished.

 Beginning Tag operation...
 ...
 Tag operation finished.
 dss>

ENOVIA Synchronicity Command Reference - Module

509

Example of Specifying a Local Temporary Directory for Module Upload

 This example updates an IP checked into a module. It uses a
 specified directory on the client machine as its temporary storage
 area rather than the server default which allows you to make sure
 that the space you need for the operation is available and reduces
 processing time on the server.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 populated, checked in, and tagged. For brevity, the individual
 object detail lines have been removed.

 dss> upload -vault sync://serv1.ABCo.com:2647/Modules/CustomerIP
 -localtmpdir ~/tmpfiles -comment "Uploading new version" FinalIP.tar

 Beginning Check in operation...
 Checking in: ...
 ...
 Checkin operation finished.

 Beginning Tag operation...
 ...
 Tag operation finished.
 dss>

Example of Performing an Upload Using a Module Workspace

 This example updates an IP checked into a module. It uses the module
 workspace as its temporary storage area rather than the server which
 reduces the processing time needed on the server.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 populated and checked in. For brevity, the individual object detail
 lines have been removed.

upload -comment "uploading IP Finals version 1.5" -workspace
 ~rsmith/MyMods/customerIP ../FinalIP.tar

 Beginning populate operation at Wed Apr 02 10:45:54 AM EDT 2014...

 Populating objects in Module FinalIP%0
 Base Directory /home/rsmith/MyMods/customerIP
 Without href recursion

 Fetching contents from selector 'Trunk:', module version '1.2'
 ... [Fetching List of Objects in Lock Mode]

Advanced Revision Control

510

 FinalIP%0 : Version of module in workspace retained as 1.2

 Finished populate of Module FinalIP%0 with base directory
/home/rsmith/MyMods/customerIP

 Time spent: 0.0 seconds, transferred 0 Kbytes, copied from local
 cache 0 Kbytes, average data rate 0.0 Kb/sec

 Finished populate operation.

 Beginning Check in operation...

 Checking in objects in module FinalIP%0

 Total data to transfer: 7102 Kbytes (estimate), 596 file(s), 0 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 1 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 4975 Kbytes, 404 file(s), 0 collection(s), 68.1% complete
 Progress: 7259 Kbytes, 596 file(s), 0 collection(s), 100.0% complete

 ... [Checking in new files, removing locks]

 FinalIP%0: Version of module in workspace updated to 1.3

 Finished checkin of Module FinalIP%0, Created Version 1.3

 Time spent: 15.7 seconds, transferred 7259 Kbytes, average data rate 463.8
Kb/sec

 Checkin operation finished.

 NOTE: Workspace module argument 'FinalIP%0' supplied; will tag
 'sync://serv1.ABCo.com/Modules/IPWIP/FinalIP;1.3'

 Beginning module tag operation on 'sync://serv1.ABCo.com:2647' ...

 Tagging: sync://serv1.ABCo.com:2647/Modules/IPWIP/FinalIP;1.3 :
 Added tag 'Archive.2' to version '1.3'

 Module tag operation finished on 'sync://serv1.ABCo.com:2647'.

511

Navigational

cd

cd Command

NAME

 cd - Changes your current directory

DESCRIPTION

 This command is the standard Tcl 'cd' command. It lets you change
 your current directory as viewed by the operating system. You can
 specify a relative or absolute path. Specifying 'cd' without an
 argument puts you in your home directory (as defined by $HOME on
 UNIX or your user profile, which is managed by the User Manager
 tool, on Windows).

 In general, use 'scd' (Synchronicity 'cd') instead of 'cd' when using
 DesignSync. See the help for 'scd' for a full comparison of these
 commands.

SYNOPSIS

 See a Tcl language reference manual.

SEE ALSO

 pwd

pwd

pwd Command

NAME

 pwd - Displays the path of the current directory

Navigational

512

DESCRIPTION

 This command is the standard Tcl 'pwd' command. It displays the path
 of the current working directory as viewed by the operating system.

 In general, use the 'spwd' (Synchronicity 'pwd') command instead of
 'pwd' when using DesignSync. See the help for 'spwd' for a full
 comparison of these commands. In most cases, however, the 'spwd'
 and 'pwd' commands differ only in that 'pwd' returns a
 path whereas 'spwd' returns a URL.

 Refer to a Tcl language reference manual for a full description
 of the standard 'pwd' command.

SYNOPSIS

 See a Tcl language reference manual.

SEE ALSO

 cd

513

Module Hierarchy Management

Module Swapping

swap

swap Command

NAME

 swap - Commands enabling edit-in-place of sub-module

DESCRIPTION

• populate of a swapped sub-module
• ci of a swapped sub-module

 The swap commands allow a module version that has been populated by an
 href to be manually replaced by another. This is analogous to allowing
 a brick to be removed from a wall and replaced (in the same location)
 with a different version of the same brick. A primary use of this
 edit-in-place methodology is to replace a statically fetched
 sub-module within a baseline (i.e. static) module hierarchy with the
 latest version on a branch so that the sub-module can be developed
 within a baseline framework.

 The swap capabilities:
 o Change the selector of a sub-module already present in the workspace
 and re-populate it recursively using the new selector. This swaps
 the entire sub-module hierarchy.
 o Avoid reverting the sub-module via a recursive populate of a parent
 module.

 This results in a workspace in which a sub-module can be replaced with
 a different version of the same module and developed/tested within the
 surrounding framework of other modules that define a released
 hierarchy.

 "swap replace" replaces the version of a module in the workspace with
 a different version of the same module. The replace operation updates
 the selector and href mode, and calls populate recursively to replace
 one version of a workspace module with another version of the same
 module. The populate operation uses all persistent populate controls
 (such as filters).

 "swap show" shows the currently swapped module versions in the
 workspace. This information is useful when an end user needs to know
 what modules have been updated for development and test.

Module Hierarchy Management

514

 "swap restore" restores a previously swapped module to the version
 defined by a parent module in the workspace. The restore operation
 calls populate recursively using all persistent populate controls
 (such as filters).

populate of a swapped sub-module

 The "swap replace" and "swap restore" commands always perform a full
 recursive populate, applying the full mode to the entire hierarchy of
 the swapped module. The populate operation uses the selector and
 hrefmode specified to the "swap replace" command, rather than using
 the selector and hrefmode determined by the parent. The edit-in-place
 methodology changes the selector and href mode as necessary to ensure
 that the desired sub-module versions are replaced in the workspace.
 Persistent settings (such as filters) associated with the original
 module version will be applied to the new swapped module version.

 If all of these conditions are met:
 - the module being swapped is an mcache link
 - the default mcache mode is to link to modules in the module cache
 - the specified selector is static
 - the modified selector resolves to a module version found in a
 module cache
 Then the populate operation will replace the existing mcache link with
 a new link pointing to the new version of the module.

 The populate command does not replace fetched module instances with
 mcache links. If the selector of a fetched module instance is modified
 the populate command will not replace the existing module instance
 with an mcache link even if all other conditions for mcache linking
 are met. Instead, the populate command will refetch the module
 instance using the modified selector.

 When populate is run in verbose mode, its output indicates when the
 selector of a swapped sub-module is being used.

ci of a swapped sub-module

 The ci command will not checkin a module with a static selector. For a
 recursive operation, the ci command will continue following the module
 hierarchy in the workspace looking for modules that can be checked in
 (e.g. swapped modules with dynamic selectors).

 During a recursive checkin, the href from a current parent module
 version to a swapped module is carried over to the new parent module
 version without change. I.e., The href to a swapped module is not
 updated. The purpose of swapping a module is to develop and test it
 within a module framework, not capture new versions of the parent
 module that reflect a static hierarchy containing the swapped module
 versions. Whoever is responsible for integration will capture new
 versions of the parent module.

ENOVIA Synchronicity Command Reference - Module

515

 The output from ci indicates when modules are not checked in because
 they have static selectors. The output also indicates when hrefs are
 not updated because their selectors do not match the actual selector
 of the sub-module in the workspace.

SYNOPSIS

 swap <swap_command> [<swap_command_options>]

 Usage: swap [replace|restore|show]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 ci, populate, swap replace, swap restore, swap show

swap replace

swap replace Command

NAME

 swap replace - Replaces the version of a workspace module

DESCRIPTION

• Replacing mcache Links
• Understanding the Output

 This command replaces the version of a module in the workspace with a
 different version of the same module.

 The replace operation:

Module Hierarchy Management

516

 o Updates the selector
 The persistent selector of a module instance is changed to the
 selector specified on the command line.

 Note: This overrides any previous swap or overriding hierarchical
 reference.

 o Updates the href mode
 The persistent href mode is set to the value specified by the user
 on the command line. If no value was specified by the user, the
 persistent href mode is changed to normal if the persistent href
 mode is static, and the specified selector is dynamic. In all other
 cases the persistent href mode will not be modified.

 Note: When using href mode "normal," the href mode behavior
 respects the traversal method identified by the
 "HrefModeChangeWithTopStaticSelector" registry key. For more
 information, see the "Module Hierarchy" topic in the ENOVIA
 Synchronicity DesignSync Data Manager User's Guide.

 o Runs the populate command on the module instance
 The populate replaces one version of workspace module with another
 version of the same module.

 The swap replace command always populates recursively. Replacing the
 entire hierarchy of a module that is being swapped ensures that all
 portions of the new module version are present in the workspace.

 Persistent filters set on the original module version are applied to
 the swapped module version. This is so the same module content is
 populated when replacing one module version with another.

 The default fetch state is always used, to fetch the replacement
 module in the same state that the rest of the workspace likely is in.
 The user can re-populate any portion of the replaced module hierarchy
 as necessary to change the fetch state for individual objects.

 The swap replace command fails if the module hierarchy being replaced
 contains any local modifications (locally modified, added, moved, or
 removed objects), unless the -force option is used. The command also
 cancels locks on locally locked, unmodified objects, failing if it
 could not successfully remove all locks.

 Running the swap replace command on a module that has already been
 replaced will replace the module again using the specified selector
 and hrefmode.

 This command is subject to the same access controls on the server as
 the populate command. See the ENOVIA Synchronicity Access Control
 Guide for details.

 This command supports the command defaults system.

Replacing mcache Links

ENOVIA Synchronicity Command Reference - Module

517

 DesignSync can update an mcache link in the hierarchy with mcache links or
 replace the module in the hierarchy with mcache links.

 You can replace a module with mcache links when the following
 conditions are met:

 o The module is being fetched statically.
 o The module being fetched is available in an mcache; meaning it is
 contained in a known mcache directory and is linkable by the
 client.
 o The base directory of the existing module is not shared with a
 different, overlapping module.
 o The base directory of the existing module version hierarchy could
 be successfully removed with the rmmod command.

 Important: When replacing a module that is not already populated with
 mcache links, you must specify the -force option.

Understanding the Output

 The swap replace command provides the option to specify the level of
 information the command outputs during processing. The report mode is
 passed along to the underlying populate command. Most of the output
 detail below is from the populate command documentation, and is
 included here for easy reference. The only output specific to the
 swap replace command pertain to workspace checks prior to calling the
 populate command.

 The -report option allows you to specify what type of information is
 displayed:

 If you run the command with the -report brief option, the swap replace
 command outputs the following information:
 o Failure messages
 o Warning messages
 o Version of each module processed as a result of a recursive
 populate
 o Creation message for any new hierarchical reference populated as a
 result of a recursive module populate
 o Removal message for any hierarchical reference removed as part of
 a recursive module populate
 o Informational messages concerning the status of the populate
 o Success/failure/skip status

 If you do not specify a value, or specify the default -report normal
 option, the swap replace command outputs all the information presented
 with -report brief and the following additional information:
 o Informational messages for objects that are updated by the
 populate operation
 o Messages for objects excluded from the operation (due to exclusion
 filters or explicit exclusions)
 o Information about all objects that are fetched

Module Hierarchy Management

518

 If you run the command with the -report verbose option, the swap
 replace command outputs all the information presented with -report
 normal and the following additional information:
 o Status messages for workspace checks prior to calling the populate
 command
 o Informational message for every object examined but not updated
 o Information about all objects that are filtered

 If you run the command with the -report error option, the swap replace
 command outputs the following information:
 o Failure messages
 o Warning messages
 o Success/failure/skip status messages

SYNOPSIS

 swap replace [-force] [-hrefmode {static|normal|dynamic}]
 [-mcachemode {link|server}] [-mcachepaths <path>[<path>...]]
 [-trigarg <arg>] [-report {error|brief|normal|verbose}]
 [-xtras <>] [--] <selector> <argument>

SELECTOR

• Selector

Selector

 <selector> A <selector> is required, to identify the module version
 to fetch into the workspace. This value, which can be a
 selector list, will be preserved as the persistent
 selector of the replaced module for use in future
 populate operations. For more information on selectors
 and selector lists, see the selectors topic.

ARGUMENTS

• Module Instance

Module Instance

 <modinst> A <modinst> is required, to identify the workspace module
 instance to replace. Note that the instance name remains
 the same for the new module version.

 The edit-in-place work flow is intended to operate on
 sub-modules. The swap restore command cannot "unreplace"
 a top-level module because there is no parent from which
 to restore. Consequently, top-level module instance

ENOVIA Synchronicity Command Reference - Module

519

 arguments will be rejected and the swap replace command
 will throw an error if a top-level module instance is
 specified.

OPTIONS

• -force
• -hrefmode
• -mcachemode
• -mcachepaths
• -report
• -trigarg
• -xtras
• --

-force

 -force Specifies whether to force a replace that
 removes the old module hierarchy from the
 workspace if a new one can be created.

 -noforce does not remove the old module
 hierarchy if there are modified files in the
 workspace or if the users is replacing file
 copies in the workspace with mcache
 links. (Default)

 -force calls rmmod to remove the previous module
 so it can be replaced with the specified
 version. This option is required if the user
 wants to replace local copies of module files
 with an mcache link, or if local changes in the
 workspace are being overwritten with the
 restored module.

-hrefmode

 -hrefmode Specifies the href mode to use when populating the
 new module version.

 Valid values are:
 o dynamic - Expands the href at the time of the
 populate operation to identify the version of
 the submodule to be populated.
 o static - Populates the submodule version
 referenced by the href when the module version
 was initially created.
 o normal - Expands the hrefs at the time of the
 operation until it reaches a static
 selector. If the reference uses a static

Module Hierarchy Management

520

 version, the hrefmode is set to 'static' for the
 next level of submodules to be populated;
 otherwise, the hrefmode remains 'normal' for the
 next level. (Default). This behavior can be
 changed using the
 "HrefModeChangeWithTopStaticSelector" registry
 key to determine how hrefs are followed.

 If no value is specified, the persistent href mode
 does not change unless the persistent href mode
 is static and the specified selector is dynamic,
 in which case the persistent href mode is set to
 dynamic to match the selector.

 The default value is consistent with what the
 user of an edit-in-place methodology wants to
 accomplish. If a non-static selector is specified
 the user is most likely swapping in a new version
 for development. If a static version is specified
 the user is probably replacing another static
 version with the intent of testing the second
 version within a module framework. They therefore
 want the new version fetched in the same manner as
 the original module version.

-mcachemode

 -mcachemode link| Specifies how the populate fetches the module
 server from the module cache.
 o link - For each module it finds in the module
 cache, the populate command sets up a symbolic
 link from your work area to the base directory
 of the module in the module cache. This is
 the default mode on UNIX platforms. (Default)

 Note: You cannot create mcache links to
 dynamically fetched modules.

 o server - Causes the populate command to
 fetch modules as physical copies from the
 server, not the module cache.

 Note: The -mcachemode option overrides the
 default module cache mode registry setting. If
 -mcachemode is not specified, the swap replace
 command uses the mode specified in the registry
 setting. If no registry setting is specified,
 the command uses the default value.

-mcachepaths

 -mcachepaths Identifies one or more module caches to be

ENOVIA Synchronicity Command Reference - Module

521

 <path[path...]> searched for replacing swapped modules from the
 module cache.

 Path names can be absolute or relative. You can
 specify multiple paths in a list of
 space-separated path names. To specify multiple
 paths, surround the path list with double
 quotation marks ("") and separate path names
 with a space. For example:"/dir/cacheA
 /dir2/cacheB".

 The path list can contain both module and legacy
 module mcache paths. For a module cache the
 path to the root directory of the module cache
 must be supplied.

 This option overrides the default module cache
 paths registry setting. If -mcachepaths is not
 specified, the command uses the list of paths
 specified in the registry setting. If no
 registry setting is specified, the command
 fetches modules from the server.

-report

 -report brief| Specifies the amount and type of information
 normal|verbose| displayed by the swap replace command, and by its
 error call to populate. The information each option
 returns is discussed in detail in the
 "Understanding the Output" section above.

 error - lists failures, warnings, and success/
 failure count.

 brief - lists failures, warnings, module
 create/remove messages, some informational
 messages, and success/failure count.

 normal - includes all information from brief, and
 lists all the updated objects, and messages about
 objects excluded by filters from the
 operation. (Default)

 verbose - provides full status for each object
 processed, even if the object is not updated by
 the operation. Workspace checks prior to calling
 populate are also output.

-trigarg

 -trigarg <arg> Specifies an argument to be passed from the
 command line to the triggers set on the

Module Hierarchy Management

522

 populate operation. If the argument contains
 whitespace, enclose the argument within
 double quotation marks ("") if using the dss
 command shell or braces ({}) if using the stcl
 command shell.

-xtras

 -xtras <string> List of command line options to pass to the
 external module change management system. Any
 options specified with the -xtras option are
 sent verbatim, with no processing by the
 swap replace or rmmod commands, to the Tcl
 script that defines the external module change
 management system.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the object
 you specify begins with a hyphen (-).

RETURN VALUE

 The swap replace command returns the populate result, which is
 described below. However, if any step of the swap replace operation
 fails prior to the populate call, then an error is thrown with an
 appropriate message.

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.

 Notes:
 - "successfully processed" may not mean "successfully populated".
 For example, a populate of an object that you already have in
 your work area is considered a success even though no checkout
 occurs.
 - Scripts should only test for non-empty lists to determine
 success or failure. The actual content of the non-empty
 lists might change in subsequent releases.
 - If all objects fail, an exception occurs (the return value is
 thrown, not returned).
 - Objects reported as "excluded by filter," may have been excluded
 either with the -filter option.

ENOVIA Synchronicity Command Reference - Module

523

SEE ALSO

 command defaults, ci, populate, selectors, swap, swap restore,
 swap show

EXAMPLES

 This example replaces the current sub-module version of Alu with the
 Latest version on the Trunk branch, in verbose mode.

 stcl> swap replace Trunk:Latest Alu%0 -report verbose

 /home/tbarbg7/top/design/Alu/Alu%0: Checking for modified objects in module
hierarchy ...

 /home/tbarbg7/top/design/Alu/Alu%0: Checking for locked objects in module
hierarchy ...

 Beginning populate operation at Wed Aug 03 02:28:55 PM EDT 2011...

 Populating objects in Module Alu%0
 Base Directory /home/tbarbg7/top/design/Alu
 With href recursion

 Fetching contents from selector 'Trunk:Latest', module version '1.3'

 Alu%0/mult8.v : Already Fetched and Unmodified Version 1.1
 Alu%0/mult8.gv : Already Fetched and Unmodified Version 1.1
 Alu%0/alu.gv : Already Fetched and Unmodified Version 1.1
 Total data to transfer: 6 Kbytes (estimate), 1 file(s), 0 collection(s)
 Progress - from local cache: 0 Kbytes, 0 file(s), 0 collection(s)
 Progress - from server: 6 Kbytes, 1 file(s), 0 collection(s), 100.0%
complete

 Alu%0/alu.v : Success - Checked out version: 1.2

 Alu%0 : Version of module in workspace updated to 1.3

 Finished populate of Module Alu%0 with base directory
/home/tbarbg7/top/design/Alu

 Time spent: 0.1 seconds, transferred 6 Kbytes, copied from local cache 0
Kbytes, average data rate 42.0 Kb/sec

 Finished populate operation.

 {Objects succeeded (4)} {}
 stcl>

swap restore

swap restore Command

Module Hierarchy Management

524

NAME

 swap restore - Restores a previously swapped module version

DESCRIPTION

• Restoring mcache Links
• Understanding the Output

 This command restores a previously swapped sub-module version to the
 version identified by a parent module in the workspace. The restore
 operation calls populate recursively using all persistent populate
 controls (such as filters).

 The sub-module version to restore is determined as follows:
 - If the -parent option is specified the sub-module selector to use is
 obtained from the hierarchical reference of the identified parent.
 - Otherwise, if the sub-module being restored has only one parent the
 selector to use is obtained from the hierarchical reference of the
 parent to the sub-module.
 - Otherwise, if the sub-module has multiple parents and the
 hierarchical reference of every parent has the same selector value,
 then the selector is used to identify the sub-module version to
 restore.
 - Otherwise, if there is an overriding href defined for the parent
 module, the overriding href is used to determine the appropriate
 submodule.
 - If the sub-module is a mcache link or the replace operation
 requests mcache links, the sub-module version replaces the mcache
 link or the file copies with the mcache link.

 If the sub-module version to restore cannot be determined, an
 error is reported.

 The href mode used to restore the sub-module is determined via the
 parent module exactly as if the sub-module were being fetched
 recursively via the parent:
 - If the parent href mode is normal or dynamic the sub-module
 selector to use is obtained from the selector field of the
 hierarchical reference to the sub-module.
 - If the parent module was fetched in static mode the sub-module
 selector to use is obtained from the version field of the
 hierarchical reference to the sub-module.
 - The href mode is propagated to the sub-module following the existing
 populate rules.
 This process ensures that the sub-module is restored as if it were
 recursively populated through its parent.

 Note: When using href mode "normal," the href mode behavior respects
 the traversal method identified by the
 "HrefModeChangeWithTopStaticSelector" registry key. For more
 information, see the "Module Hierarchy" topic in the ENOVIA Synchronicity

ENOVIA Synchronicity Command Reference - Module

525

 DesignSync Data Manager User's Guide.

 The swap restore command fails if the module hierarchy being restored
 contains any local modifications (locally modified, added, moved or
 removed objects) and the -force option is not specified. The command
 also cancels locks on locally locked, unmodified objects, failing if
 it could not successfully remove all locks.

 Note: This command does not provide a -dryrun option. To simulate a
 list of the objects that would be replaced, you can run "ls
 -unmanaged -recursive <basedir>' and -ls -modified -recursive
 <modinstance>. These command operates in folder recursively and does
 not show any changes that are part of the hierarchy, but outside the
 module base directory.

 This command is subject to the same access controls on the server as
 the populate command. See the ENOVIA Synchronicity Access Control
 Guide for details.

 This command supports the command defaults system.

Restoring mcache Links

 DesignSync can update a mcache link in the hierarchy with mcache links or
 replace the module in the hierarchy with mcache links.

 You can restore a module with mcache links when the following
 conditions are met:

 o The module is being fetched statically
 o The module being fetched is available in an mcache; meaning it is
 contained in a known mcache directory and is linkable by the
 client.
 o The base directory of the existing module is not shared with a
 different, overlapping module.
 o The base directory of the existing module version hierarchy is
 successfully removed.

 Important: When restoring a module that is not already populated with
 mcache links with an mcache link, you must specify the -force option.

Understanding the Output

 The swap restore command provides the option to specify the level of
 information the command outputs during processing. The report mode is
 passed along to the underlying populate command. Most of the output
 detail below is from the populate command documentation, and is
 included here for easy reference. The only output specific to the
 swap restore command pertain to workspace checks prior to calling the
 populate command.

 The -report option allows you to specify what type of information is

Module Hierarchy Management

526

 displayed:

 If you run the command with the -report brief option, the swap restore
 command outputs the following information:
 o Failure messages
 o Warning messages
 o Version of each module processed as a result of a recursive
 populate
 o Creation message for any new hierarchical reference populated as a
 result of a recursive module populate
 o Removal message for any hierarchical reference removed as part of
 a recursive module populate
 o Informational messages concerning the status of the populate
 o Success/failure/skip status

 If you do not specify a value, or specify the default -report normal
 option, the swap restore command outputs all the information presented
 with -report brief and the following additional information:
 o Informational messages for objects that are updated by the
 populate operation
 o Messages for objects excluded from the operation (due to exclusion
 filters or explicit exclusions)
 o Information about all objects that are fetched

 If you run the command with the -report verbose option, the swap
 restore command outputs all the information presented with -report
 normal and the following additional information:
 o Status messages for workspace checks prior to calling the populate
 command
 o Informational message for every object examined but not updated
 o Information about all objects that are filtered

 If you run the command with the -report error option, the swap restore
 command outputs the following information:
 o Failure messages
 o Warning messages
 o Success/failure/skip status messages

SYNOPSIS

 swap restore [-[no]force] [-mcachemode {link|server}]
 [-mcachepaths <path>[<path>...]]
 [-report {error|brief|normal|verbose}]
 [-parent <parent_module_inst>] [-trigarg <arg>]
 [-xtras <string>] [--] <argument>

ARGUMENTS

• Workspace Module

Workspace Module

ENOVIA Synchronicity Command Reference - Module

527

 <workspace A workspace module instance is required, to identify
 module> the workspace module instance to restore.

OPTIONS

• -force
• -mcachemode
• -mcachepaths
• -parent
• -report
• -trigarg
• -xtras
• --

-force

 -[no]force Specifies whether to force a restore that
 removes the old module hierarchy from the
 workspace if a new one can be created.

 -noforce does not remove the old module
 hierarchy if there are modified files in the
 workspace or if the users is replacing file
 copies in the workspace with mcache
 links. (Default)

 -force calls rmmod to remove the existing
 module in the workspace and replace it with
 the module version indicated by persistent
 populate settings on the parent module.

 This option is required if the user wants to
 replace local copies of module files with an
 mcache link, or if local changes in the
 workspace are being overwritten with the
 restored module.

-mcachemode

 -mcachemode link| Specifies how the populate called by the swap
 server restore fetches the module from the module
 cache.
 o link - For each module it finds in the module
 cache, the populate command sets up a symbolic
 link from your work area to the base directory
 of the module in the module cache. This is
 the default mode on UNIX platforms. (Default)

 Note: You cannot create mcache links to

Module Hierarchy Management

528

 dynamically fetched modules.

 o server - Causes the populate command to
 fetch modules as physical copies from the
 server, not the module cache.

 Note: The -mcachemode option overrides the default
 module cache mode registry setting. If
 -mcachemode is not specified, the swap restore
 command uses the mode specified in the registry
 setting. If no registry setting is specified,
 the command uses the default value.

-mcachepaths

 -mcachepaths Identifies one or more module caches to be
 <path[path...]> searched for restoring swapped modules from the
 module cache.

 Path names can be absolute or relative. You can
 specify multiple paths in a list of
 space-separated path names. To specify multiple
 paths, surround the path list with double
 quotation marks ("") and separate path names
 with a space. For example:"/dir/cacheA
 /dir2/cacheB".

 The path list can contain both module and legacy
 module mcache paths. For a module cache the
 path to the root directory of the module cache
 must be supplied.

 This option overrides the default module cache
 paths registry setting. If -mcachepaths is not
 specified, the command uses the list of paths
 specified in the registry setting. If no
 registry setting is specified, the command
 fetches modules from the server.

-parent

 -parent Specifies the instance name of the parent
 <parent_module_inst> module from which to determine the version of
 the module to restore. This option is only
 required if all parents do not have the same
 selector for <modinst> among their hierarchical
 references.

-report

ENOVIA Synchronicity Command Reference - Module

529

 -report error| Specifies the amount and type of information
 brief|normal| displayed by the swap restore command, and by its
 verbose call to populate. The information each option
 returns is discussed in detail in the
 "Understanding the Output" section above.

 error - lists failures, warnings, and success/
 failure count.

 brief - lists failures, warnings, module
 create/remove messages, some informational
 messages, and success/failure count.

 normal - includes all information from brief, and
 lists all the updated objects, and messages about
 objects excluded by filters from the
 operation. (Default)

 verbose - provides full status for each object
 processed, even if the object is not updated by
 the operation. Workspace checks prior to calling
 populate are also output.

-trigarg

 -trigarg <arg> Specifies an argument to be passed from the
 command line to the triggers set on the
 populate operation. If the argument contains
 whitespace, enclose the argument within
 double quotation marks ("") if using the dss
 command shell or braces ({}) if using the stcl
 command shell.

-xtras

 -xtras <string> List of command line options to pass to the
 external module change management system. Any
 options specified with the -xtras option are
 sent verbatim, with no processing by the
 swap restore or rmmod commands, to the Tcl
 script that defines the external module change
 management system.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the object
 you specify begins with a hyphen (-).

Module Hierarchy Management

530

RETURN VALUE

 The swap restore command returns the populate result, which is
 described below. However, if any step of the swap restore operation
 fails prior to the populate call, then an error is thrown with an
 appropriate message.

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.

 Notes:
 - "successfully processed" may not mean "successfully populated".
 For example, a populate of an object that you already have in
 your work area is considered a success even though no checkout
 occurs.
 - Scripts should only test for non-empty lists to determine
 success or failure. The actual content of the non-empty
 lists might change in subsequent releases.
 - If all objects fail, an exception occurs (the return value is
 thrown, not returned).
 - Objects reported as "excluded by filter," may have been excluded
 either with the -filter option.

SEE ALSO

 command defaults, ci, populate, swap, swap replace, swap show

EXAMPLES

 This example restores the Gold version of the Alu sub-module, in
 verbose mode. Alu has only one parent, so the selector to use is
 obtained from the hierarchical reference of the parent to the Alu
 sub-module.

 stcl> swap restore -report verbose Alu%0

 /home/tbarbg7/sitar/top/Alu/Alu%0: Checking for modified objects in module
hierarchy ...

 /home/tbarbg7/sitar/top/Alu/Alu%0: Checking for locked objects in module
hierarchy ...

 Beginning populate operation at Wed Aug 03 02:39:55 PM EDT 2011...

 Populating objects in Module Alu%0
 Base Directory /home/tbarbg7/top/design/Alu

ENOVIA Synchronicity Command Reference - Module

531

 With href recursion

 Fetching contents from selector 'Gold', module version '1.2'

 Alu%0/mult8.v : Already Fetched and Unmodified Version 1.1
 Alu%0/mult8.gv : Already Fetched and Unmodified Version 1.1
 Alu%0/alu.gv : Already Fetched and Unmodified Version 1.1
 Total data to transfer: 6 Kbytes (estimate), 1 file(s), 0 collection(s)
 Progress - from local cache: 0 Kbytes, 0 file(s), 0 collection(s)
 Progress - from server: 6 Kbytes, 1 file(s), 0 collection(s), 100.0%
complete

 Alu%0/alu.v : Success - Checked out version: 1.1

 Alu%0 : Version of module in workspace updated to 1.2

 Finished populate of Module Alu%0 with base directory
/home/tbarbg7/top/design/Alu

 Time spent: 0.1 seconds, transferred 6 Kbytes, copied from local cache 0
Kbytes, average data rate 40.3 Kb/sec

 Finished populate operation.

 {Objects succeeded (4)} {}
 stcl>

swap show

swap show Command

NAME

 swap show - Shows the workspace's currently swapped modules

DESCRIPTION

• Understanding the Output

 This command shows all of the modules in a workspace that have had
 their versions swapped. This information is useful to an end user who
 needs to know what modules have been updated for development and test.

 This command supports the command defaults system.

Understanding the Output

 The output can be formatted for easy viewing (-format text) or
 optimized for Tcl processing (-format list). Both viewing formats

Module Hierarchy Management

532

 show the same information, but may have different names. In the table
 below, the Column Titles column shows the text output column header
 and the Property Names column shows list output key value.

 By default, or if you run the swap show command with the '-report
 normal' option, the following information is output:

 Column Property
 Titles Names Description
 ------ ----- ------------
 Name name Name of the module.
 Note: Modules are displayed
 alphabetically by name.

 Instance modinstname Unique instance name of the module in
 the workspace.

 Base Workspace directory containing the
 Directory basedir contents of the module.

 Url url Location of the module on the server.

 Selector selector Selector used to determine which version
 to fetch into a workspace. For more
 information, see the selectors help
 topic.

 "Beginning" and "Finished" progress messages are also output in
 normal mode.

 If you run the swap show command with the '-report brief' option, it
 displays the following information:

 Column Property
 Titles Names Description
 ------ ----- ------------
 Unique Full module address for the module version
 Address address in the workspace.

 If you run the swap show command with the '-report verbose' option, it
 displays the information shown with '-report normal' option and the
 following additional information:

 Column Property
 Titles Names Description
 ------ ----- ------------
 Unique Full module address for the module version
 Address address in the workspace.

 Version version The version of the module in the
 workspace.

SYNOPSIS

ENOVIA Synchronicity Command Reference - Module

533

 swap show [-format {text|list}] [-report {brief|normal|verbose}] [--]
 [<argument>]

ARGUMENTS

• Workspace Folder

Workspace Folder

 <workspace folder> Specifies the workspace folder for which you
 want to view the swapped module versions.

OPTIONS

• -format
• -report
• --

-format

 -format text|list Determines the format of the output. For
 information about the information displayed,
 and the output sort order, see the
 "Understanding the Output" section.

 o text Display a text table with headers and
 columns. (Default) Objects are shown
 in alphabetical order.

 o list Tcl list structure, designed for
 further processing, and for easy
 conversion to a Tcl array structure.
 This means that it is a list structure
 in name-value pair format.

 The top level structure is:
 {
 property1 <value>
 property2 <value>
 ...
 }

 A list is output for each module
 reported.

-report

 -report brief| Determines what the output of the command is.

Module Hierarchy Management

534

 normal|verbose For more information on the output of the
 -report option, see the "Understanding the
 Output" section.

 Valid values are:

 o brief - Displays the full workspace path for
 each workspace module reported.

 o normal - Displays basic module information
 for each workspace module reported. Also
 outputs progress messages for the command.
 (Default)

 o verbose - Displays extended module
 information for each workspace module
 reported.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the object
 you specify begins with a hyphen (-).

RETURN VALUE

 If you run the swap show command with the '-format list' option, it
 returns a Tcl list. If you run the swap show command with the '-format
 text' option, it returns an empty string. For a description of the
 output, see the "Understanding the Output" section.

 If the command fails, it throws a Tcl error.

SEE ALSO

 command defaults, ci, populate, showmods, showstatus, swap,
 swap replace, swap restore

EXAMPLES

 This example shows the modules in the current workspace that have been
 swapped. The default "-report normal" mode is used.

 stcl> swap show

 Beginning swap show operation ...

ENOVIA Synchronicity Command Reference - Module

535

 Name Instance Base Directory Url
Selector
 --
--
 Addr_calc Addr_calc%0 /home/tbarbg7/top/design/Addr_calc
sync://qelwsun14:30148/Modules/Addr_calc Trunk:Latest
 Decoder Decoder%0 /home/tbarbg7/top/design/Decoder
sync://qelwsun14:30148/Modules/Decoder Trunk:Latest
 Instr_reg Instr_reg%0 /home/tbarbg7/top/design/Instr_reg
sync://qelwsun14:30148/Modules/Instr_reg Trunk:Latest

 Finished swap show operation.
 stcl>

Module whereused

whereused

whereused Command

NAME

 whereused - Traces the use of hierarchical references

DESCRIPTION

 This command is being deprecated in favor of 'whereused module' and
 'whereused vault'. In future releases, this command will behave as
 other superset commands do, returning a list of of the available
 subcommands. A third command, "whereused member," has been added
 to identify where a module member is used.

 Tip: Update any scripts, processes, or proceedures that use or
 recommend the whereused command to the appropriate whereused
 subcommand.

 This command identifies the module versions in which any of the
 following targets (the "toargument" for the addhref command) are
 used: sub-module version, legacy module configuration, or DesignSync
 vault, identified by a selector. This allows users to trace the usage
 of any desired target.

 When a hierarchical reference is created, DesignSync creates a back
 reference on the toargument indicating that it is referenced by the
 fromargument module. This provides the basic mechanism for the
 whereused functionality. If a back reference does not exist, for
 example, if the hierarchical reference was created before whereused
 was implemented, you can add back references independently using the
 addbackref command. The whereused command performs no validation on
 specified legacy module and vault selectors. Verify that the selector
 specified is correct before executing the command.

Module Hierarchy Management

536

 Notes:
 o When referencing legacy modules or DesignSync vaults using a
 configuration name or a selector as the specified version, the
 version must be an exact match for the selector used when the
 hierarchical reference was added.

 o When the hierarchical reference target (toargument) was specified
 with SSL protocol, the whereused command must also be specified
 with SSL.

 This command is subject to access controls on the server. The
 whereused command requires browse access to the objects in the
 module hierarchy. See the ENOVIA Synchronicity Access Control Guide
 for details.

SYNOPSIS

 whereused [-format list|text] [-[no]recursive] [-report <mode>]
 [-showtags all|none|immutable|version]
 [-versions <selector>,...] <argument>

ARGUMENTS

• DesignSync Vault
• Server Module
• Legacy Module URL

DesignSync Vault

 <DesignSync vault> URL of the referenced DesignSync vault.
 Specify the URL as follows:
 sync[s]://<host>[:<port>]<vaultpath>;[<selector>]
 where <host> is the SyncServer on which the
 object resides, <port> is the SyncServer
 port number, <vaultpath> identifies the
 DesignSync object, and <selector> is the optional
 selector.

 If a selector is not specified, the command
 uses versions specified with the -versions option
 or the default value of Trunk:Latest.

 Notes:
 o If you specify a selector in the argument, you
 cannot specify additional selectors with the
 -versions option. To locate more than one
 selector at a time, use the -versions option.

 o When the hierarchical reference target
 (toargument) was specified with SSL protocol,

ENOVIA Synchronicity Command Reference - Module

537

 the whereused command must also be specified
 with SSL.

 o The vault selector is not checked for validity
 before the command is executed. Verify that
 the vault URL and selector is typed correctly
 before executing the command.

Server Module

 <server module> URL of the referenced module.
 Specify the URL as follows:
 sync[s]://<host>[:<port>]/Modules/[<Category>...]
 /<module>[;<selector>,...]
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer
 port number, <Category> identifies the
 optional category path, <module> is the name
 of the module, and <selector> is the optional
 selector.

 If a selector is not specified, the command
 uses versions specified with the -versions option
 or the default value of Trunk:Latest.

 Notes:
 o If you specify a selector in the argument, you
 cannot specify additional selectors with the
 -versions option. To locate more than one
 selector at a time, use the -versions option.

 o When the hierarchical reference target
 (toargument) was specified with SSL protocol,
 the whereused command must also be specified
 with SSL.

Legacy Module URL

 <Legacy module URL of the referenced legacy module.
 URL> Specify the URL as follows:
 sync[s]://<host>[:<port>]/[Projects]/<vaultpath>;
 [<selector>,...]
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer
 port number, vaultpath is the path to the
 module, and <selector> is the optional selector,
 or configuration name.

 If a selector is not specified, the command
 uses versions specified with the -versions option
 or the default value of Trunk:Latest.

Module Hierarchy Management

538

 Notes:
 o If you specify a selector in the argument, you
 cannot specify additional selectors with the
 -versions option. To locate more than one
 selector at a time, use the -versions option.

 o When the hierarchical reference target
 (toargument) was specified with SSL protocol,
 the whereused command must also be specified
 with SSL.

 o The vault selector is not checked for validity
 before the command is executed. Verify that
 the vault URL and selector is typed correctly
 before executing the command.

OPTIONS

• -format
• -[no]recursive
• -report
• -showtags
• -versions

-format

 -format list|text Determines the format of the output. For
 details about the information returned
 see the -report option.
 Valid values are:

 o text - Display text output formatted to show the
 hierarchical reference tree. (Default)

 o list - Displays a list with the following
 format:
 {
 object <object>...whereused
 <hierarchical_whereused_list>
 }

-[no]recursive

 -[no]recursive Determines whether to show the locations in
 which the version is explicitly referenced, or
 show all modules in which the version is implicitly
 or explicitly referenced. An explicit reference
 exists when there is a direct reference link
 between the module and the
 target. An implicit reference exists when the
 module and target are not directly connected, but

ENOVIA Synchronicity Command Reference - Module

539

 within the module's hierarchy exists a reference
 to the target. For example: if the Chip module
 references the Gold version of the ALU module, and
 the Gold version of the ALU module references the
 Gold version of the ROM module, the Chip module
 contains an implicit reference to the ROM module
 and an explicit reference to the ALU module.

 -norecursive expands the reference and returns a
 list of modules that contain an explicit reference
 to the referenced module. (Default)

 -recursive traverses the reference and returns a
 list of all modules that explicitly and implicitly
 reference the specified version.

-report

 -report brief| Determines what the information is returned in the
 normal|verbose output of the whereused command.

 Valid values are:

 o brief - reports only the module names for the
 specified object ordered by specified version.

 When displayed in text format, the output is
 indented to show the reverse hierarchical
 reference path. When displayed in list format,
 the hierarchical reference depth is indicated
 with the depth property.

 Note: The -showtags option is ignored for this
 report mode.

 o normal - reports the version of the module
 containing the reference to the specified
 object. The text format is indented to show
 hierarchical reference depth, and the list
 format uses the depth property. The version
 property in list mode contains the version
 number.

 Note: The version property may be a selector
 rather than a version number if the target is a
 DesignSync vault or legacy module.

 o verbose - provides the information available in
 report mode -normal as well as the processing
 status of the command.

-showtags

Module Hierarchy Management

540

 -showtags all| Specifies whether tag information is displayed and
 none|immutable| optionally restricts the output to immutable tags
 version or tagged versions.

 o all - Displays all tags and all reference
 locations, including references that are not
 tagged. (Default)

 o none - Displays all references locations, but
 does not display tag information

 o immutable - Displays only reference locations
 tagged with an immutable tag and the name of the
 immutable tag.

 Note: Using the -showtags immutable option may
 not display all versions in which an immutable
 tag is used. The whereused command queries for
 all the whereused information but filters the
 display from the starting point until it reaches
 the last immutable tag in a reference tree.

 o version - Displays any reference location that
 has a version tag and the name of the tag.

 Note: The -showtags option is ignored for -report
 brief mode.

-versions

 -versions Comma separated set of versions to locate. The
 <selector> versions can be numerics or selectors, If the
 argument specified is a module, the selector
 resolves to the numeric value of the module
 version and is compared against the static href
 value.

 If the object is a DesignSync vault or legacy
 module, then the version selector (branch, version
 release, or alias selector) is validated by string
 comparison against the dynamic href value.

 Note: To specify a comma separated selector list,
 use the version extended naming format, not the
 -versions option.

RETURN VALUE

 This command does not return a Tcl value in text mode. If the command
 is unable to run, DesignSync throws an error explaining the failure.

ENOVIA Synchronicity Command Reference - Module

541

 If whereused is unable to process a reference, you will see the
 reason for failure during command processing and the command adds
 the sync URL of the failed module to the wuFail list.

 In list mode, the list of modules is returned in an array of
 name/value pairs. If a reference cannot be processed, the command
 adds an error property containing the reason for the failure and the
 module is added to the wuFail list.

SEE ALSO

 selectors, addhref, addbackref, edithrefs, rmhref, showhrefs

EXAMPLES

• Example of Using whereused to find direct references to a version
• Example of Using whereused to find all references to version
• Example of Using whereused to find immutable tagged versions
• Example of Using whereused to find tagged versions
• Example of Displaying whereused Output in Tcl list

 Many products use the common code available in LIB module. To assure
 the all the development teams are using a tested and approved version
 of the LIB module, the authorized release versions are tagged with
 immutable release tags after they are qualified. The version of LIB
 in our example is v1.2. A software defect is discovered in the LIB
 module. Product management wants to quickly locate all the products
 built with references to that version so that the new version can be
 shipped to all customers who have that version.

Example of Using whereused to find direct references to a version

 This whereused example shows all the modules that refer
 explicitly to the defective LIB version.
 Note: The (*) after a tag indicates that the tag is immutable.

 stcl> whereused -version v1.2 -showtags all
 sync://svr2.ABCo.com:2647/Modules/LIB

 Beginning whereused operation ...

 Running non-recursively...

 ===

 sync://svr2.ABCo.com:2647/Modules/LIB;1.32 - v1.2(*), Trunk:
 sync://svr2.ABCo.com:2647/Modules/Chip;1.7 - Trunk

Module Hierarchy Management

542

 ===

 Finished whereused operation.

Example of Using whereused to find all references to version

 This example shows all the modules that refer to the defective LIB
 module explicitly and implicitly.
 Note: The (*) after a tag indicates that the tag is immutable.

 dss> whereused -recursive sync://svr2.ABCo.com:2647/Modules/LIB;1.32

 Beginning whereused operation ...

 Running recursively...

 ==

 sync://svr2.ABCo.com:2647/Modules/LIB;1.32 - v1.2(*), Trunk:
 sync://svr2.ABCo.com:2647/Modules/Chip;1.7 - Trunk
 sync://svr2.ABCo.com:2647/Modules/top;1.9 - Trunk:
 ==

 Finished whereused operation.

Example of Using whereused to find immutable tagged versions

 In the scenario above, the LIB module is tagged with an immutable
 tag. This usually indicates a significant release such as a released
 product version, or, in our case, a released library reused
 throughout the code base. You can use the whereused command to
 search for all objects tagged with an immutable tag.

 Note: This may not display all the versions on which an immutable
 tag is used. Whereused queries for the information but
 displays from the starting point until it reaches the last immutable
 tag in a reference tree.

 For instance, if you have a hierarchy such this:
 top - not tagged with an immutable tag
 -> Chip tagged with an immutable tag
 -> LIB, tagged with an immutable tag,

 the output of whereused -showtags immutable includes Chip and LIB.
 If instead of Chip, top is tagged with an immutable tag, the output
 shows top, Chip, and LIB, even though Chip is not tagged with an
 immutable tag.

 To perform a query to return all the whereused information for a

ENOVIA Synchronicity Command Reference - Module

543

 specific immutable tag, you can write a filtering script around
 whereused using -showtags all and filtering for the desired immutable
 tag.

 In this example, the top module and LIB module both contain immutable
 tags.
 Note: The (*) after a tag indicates that the tag is immutable.

 dss> whereused -version v1.2 -showtags immutable -rec
 sync://svr2.ABCo.com:2647/Modules/LIB

 Beginning whereused operation ...

 Running recursively...

 ===

 sync://svr2.ABCo.com:2647/Modules/LIB - v1.2(*)
 sync://svr2.ABCo.com:2647/Modules/Chip;1.8
 sync://svr2.ABCo.com:2647/Modules/top;1.10 - v1.2(*)
 ===

 Finished whereused operation.

Example of Using whereused to find tagged versions

 This example shows all the tagged versions of modules that refer to
 the defective LIB module.
 Note: The (*) after a tag indicates that the tag is immutable.

 dss> whereused -version v1.2 -showtags version -rec
 sync://svr2.ABCo.com:2647/Modules/LIB

 Beginning whereused operation ...

 Running recursively...

 ===

 sync://svr2.ABCo.com:2647/Modules/LIB - v1.2(*)
 sync://svr2.ABCo.com:2647/Modules/Chip;1.8 - Gold, Latest
 sync://svr2.ABCo.com:2647/Modules/top;1.10 - Latest, v1.2(*)
 ===

Example of Displaying whereused Output in Tcl list

 This example shows all the modules that refer to the defective ROM
 module explicitly or implicitly in Tcl list format.

 stcl> whereused -recursive -version v1.2 -format list

Module Hierarchy Management

544

 sync://svr2.ABCo.com:2647/Modules/ROM

 {{object sync://svr2.ABCo.com:2647/Modules/LIB version 1.2 depth 0
 {v1.2(*), Trunk:} whereused {{object
 sync://svr2.ABCo.com:2647/Modules/Chip/ version 1.8 depth
 1 {Gold, Trunk:} whereused {{object
 sync://svr2.ABCo.com:2647/Modules/top version 1.10 depth 2 {v1.2(*),
 Trunk:} whereused {}}}}}}}

whereused member

whereused member Command

NAME

 whereused member - Lists module versions containing a module member

DESCRIPTION

 This command identifies where a module version is used.
 This information includes:
 o Module version(s) in which the module member version exists.
 o Tags, if any, for the module version in which the module member
 version exists.
 o Module Member Tags in which the module member version exists,
 (also called "snapshot tags")

 This allows users to trace the usage of any desired target.

 This command is subject to access controls on the server. The
 whereused command requires browse access to the objects in the
 module hierarchy. See the ENOVIA Synchronicity Access Control Guide
 for details.

SYNOPSIS

 whereused member [-format list|text] [-modulecontext <moduleVersionURL>]
 [-report brief|normal|verbose]
 [-showtags all|none|immutable|version|member]
 [-versions <selector>,...] <argument>

ARGUMENTS

• Module Member

Module Member

ENOVIA Synchronicity Command Reference - Module

545

 <module_member> Specify the module member. It can be specified as a
 workspace module member with an absolute or
 relative path, or, when using the -modulecontext
 option, a natural path.

OPTIONS

• -format
• -modulecontext
• -report
• -showtags
• -versions

-format

 -format list|text Determines the format of the output. For
 details about the information returned
 see the -report option.
 Valid values are:

 o text - Display text output. (Default)

 o list - Returns a TCL list. See the Examples
 section for examples of the TLC list
 formatting.

-modulecontext

 -modulecontext Identifies a module version for the module member
 <moduleVersionURL> argument. The value must be a module version
 URL. When the -modulecontext option is used, the
 argument must be specified as a natural path.

 Note that you cannot use a -modulecontext option
 to operate on objects from more than one module;
 the -modulecontext option takes only one argument,
 and you can use the -modulecontext option only
 once on a command line.

-report

 -report brief| Determines what the information is returned in the
 normal|verbose output of the whereused command.

 Valid values are:

 o brief - displays only information for tagged

Module Hierarchy Management

546

 module versions.

 o normal - displays information for all versions
 of the module containing the specified object.

 o verbose - provides the information available in
 report mode normal as well as the processing
 status of the command and the natural path
 of the object.

-showtags

 -showtags all| Specifies whether tag information is displayed and
 none|immutable| optionally restricts the output to immutable tags
 version|member tagged versions, or module members.

 o all - Displays module versions, module version
 tags and member tags. (Default)

 o none - Displays module versions, but does not
 display tag information.

 o immutable - Displays only module versions tagged
 with an immutable tag, and the name of the tag.

 o version - Displays any module versions that have
 a version tag, and the name of the tag.

 o member - Displays only the member tags applied
 to the member version.

-versions

 -versions Comma separated set of member versions to
 <selector> locate. The versions can be numerics or all
 selectors. By default, this option defaults to the
 version in the workspace. When using
 -modulecontext, this option defaults to the member
 version associated with the specified module
 context.

RETURN VALUE

 This command does not return a Tcl value in text mode. If the command
 is unable to run, DesignSync throws an error explaining the failure.

 In list mode, the list of module versions is returned in an array of
 name/value pairs.

ENOVIA Synchronicity Command Reference - Module

547

SEE ALSO

 selectors, whereused module

EXAMPLES

• Example Showing the whereused member Commmand
• Example Showing the whereused member Commmand in List Mode

Example Showing the whereused member Commmand

 This example shows locating where the mem.cpp module member is used.
 The output is text in normal mode.

 stcl> whereused member -versions 1.1,1.2 mem.cpp
 mem.cpp;1.1

 Module Version(s) Branch Tags

 1.2 Trunk alpha, pass1
 1.3 - 74 Trunk
 1.75 Trunk beta, pass2
 1.76 - 124 Trunk
 1.125 Trunk Bronze
 1.126 - 268 Trunk
 1.4.1.1 Dev
 1.4.1.2 Dev hack1
 1.4.1.3 - 66 Dev
 1.4.2.1 - 2 Test

 Member Version Tags

 Rel_1
 Rel_2

 =====================================

 mem.cpp;1.2

 Module Version(s) Branch Tags

 1.269 Trunk Checkpoint

 =====================================

Example Showing the whereused member Commmand in List Mode

 This example shows locating where the mem.cpp module member is used.
 The output is a list in verbose mode.

Module Hierarchy Management

548

 stcl> whereused member -format list -report verbose mem.cpp
 {name mem.cpp versions {
 {member_version 1.1
 module_versions {
 {version_range {1.2 1.2} branch Trunk version_tags {alpha
 pass1} natural_path /mem.cpp}
 {version_range {1.3 1.45} branch Trunk version_tags {}
 natural_path /subdir/mem.cpp}
 {version_range {1.46 1.74} branch Trunk version_tags {}
 natural_path /mem.cpp}
 {version_range {1.75 1.75} branch Trunk version_tags {beta
 pass2} natural_path /mem.cpp}
 {version_range {1.76 1.124} branch Trunk version_tags {}
 natural_path /mem.cpp}
 {version_range {1.126 1.268} branch Trunk version_tags {}
 natural_path /mem.cpp}
 {version_range {1.4.1.1 1.4.1.1} branch Dev version_tags {}
 natural_path /mem.cpp}
 {version_range {1.4.1.2 1.4.1.2} branch Dev version_tags hack1
 natural_path /mem.cpp}
 {version_range {1.4.1.3 1.4.1.66} branch Dev version_tags {}
 natural_path /mem.cpp}
 {version_range {1.4.2.1 1.4.2.2} branch Test version_tags {}
 natural_path /mem.cpp}
 }
 member_tags {
 {member_tag Rel_1 natural_path /mem.cpp}
 {member_tag Rel_2 natural_path /subdir/mem.cpp}
 }
 }
 {member_version 1.2
 {module_versions {
 {version_range {1.269 1.269} branch Trunk version_tags
 Checkpoint natural_path /mem.cpp}
 }
 member_tags {}
 }
 }

whereused module

whereused module Command

NAME

 whereused module - Traces the use of hierarchical references

DESCRIPTION

 This command identifies the module versions in which a sub-module

ENOVIA Synchronicity Command Reference - Module

549

 version is used, identified by a selector. This allows users to trace
 the usage of any desired target.

 When a hierarchical reference is created, DesignSync creates a back
 reference on the toargument indicating that it is referenced by the
 fromargument module. This provides the basic mechanism for the
 whereused functionality. If a back reference does not exist, for
 example, if the hierarchical reference was created before whereused
 was implemented, you can add back references independently using the
 addbackref command.

 Note: When the hierarchical reference target (toargument) was
 specified with SSL protocol, the whereused module command must also
 be specified with SSL.

 This command is subject to access controls on the server. The
 whereused module command requires browse access to the objects in the
 module hierarchy. See the ENOVIA Synchronicity Access Control Guide
 for details.

SYNOPSIS

 whereused module [-format list|text] [-[no]recursive] [-report <mode>]
 [-showtags all|none|immutable|version]
 [-versions <selector>,...] <argument>

ARGUMENTS

• Server Module

Server Module

 <server module> URL of the referenced module.
 Specify the URL as follows:
 sync[s]://<host>[:<port>]/Modules/[<Category>...]
 /<module>[;<selector>,...]
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer
 port number, <Category> identifies the
 optional category path, <module> is the name
 of the module, and <selector> is the optional
 selector.

 If a selector is not specified, the command
 uses versions specified with the -versions option
 or the default value of Trunk:Latest.

 Notes:
 o If you specify a selector in the argument, you
 cannot specify additional selectors with the
 -versions option. To locate more than one

Module Hierarchy Management

550

 selector at a time, use the -versions option.

 o When the hierarchical reference target
 (toargument) was specified with SSL protocol,
 the whereused module command must also be
 specified with SSL.

OPTIONS

• -format
• -[no]recursive
• -report
• -showtags
• -versions

-format

 -format list|text Determines the format of the output. For
 details about the information returned
 see the -report option.
 Valid values are:

 o text - Display text output formatted to show the
 hierarchical reference tree. (Default)

 o list - Displays a list with the following
 format:
 {
 object <object>...whereused
 <hierarchical_whereused_list>
 }

-[no]recursive

 -[no]recursive Determines whether to show the locations in
 which the version is explicitly referenced, or
 show all modules in which the version is implicitly
 or explicitly referenced. An explicit reference
 exists when there is a direct reference link
 between the module and the
 target. An implicit reference exists when the
 module and target are not directly connected, but
 within the module's hierarchy exists a reference
 to the target. For example: if the Chip module
 references the Gold version of the ALU module, and
 the Gold version of the ALU module references the
 Gold version of the ROM module, the Chip module
 contains an implicit reference to the ROM module
 and an explicit reference to the ALU module.

 -norecursive expands the reference and returns a

ENOVIA Synchronicity Command Reference - Module

551

 list of modules that contain an explicit reference
 to the referenced module. (Default)

 -recursive traverses the reference and returns a
 list of all modules that explicitly and implicitly
 reference the specified version.

-report

 -report brief| Determines what the information is returned in the
 normal|verbose output of the whereused module command.

 Valid values are:

 o brief - reports only the module names for the
 specified object ordered by specified version.

 When displayed in text format, the output is
 indented to show the reverse hierarchical
 reference path. When displayed in list format,
 the hierarchical reference depth is indicated
 with the depth property.

 Note: The -showtags option is ignored for this
 report mode.

 o normal - reports the version of the module
 containing the reference to the specified
 object. The text format is indented to show
 hierarchical reference depth, and the list
 format uses the depth property. The version
 property in list mode contains the version
 number.

 o verbose - provides the information available in
 report mode -normal as well as the processing
 status of the command.

-showtags

 -showtags all| Specifies whether tag information is displayed and
 none|immutable| optionally restricts the output to immutable tags
 version or tagged versions.

 o all - Displays all tags and all reference
 locations, including references that are not
 tagged. (Default)

 o none - Displays all references locations, but
 does not display tag information

 o immutable - Displays only reference locations

Module Hierarchy Management

552

 tagged with an immutable tag and the name of the
 immutable tag.

 Note: Using the -showtags immutable option may
 not display all versions in which an immutable
 tag is used. The whereused module command
 queries for all the whereused information but
 filters the display from the starting point
 until it reaches the last immutable tag in a
 reference tree.

 o version - Displays any reference location that
 has a version tag and the name of the tag.

 Note: The -showtags option is ignored for -report
 brief mode.

-versions

 -versions Comma separated set of versions to locate. The
 <selector> versions can be numerics or selectors. The
 selector resolves to the numeric value of the
 module version and is compared against the static
 href value.

 Note: To specify a comma separated selector list,
 use the version extended naming format, not the
 -versions option.

RETURN VALUE

 This command does not return a Tcl value in text mode. If the command
 is unable to run, DesignSync throws an error explaining the failure.

 If whereused module is unable to process a reference, you will see
 the reason for failure during command processing and the command adds
 the sync URL of the failed module to the wuFail list.

 In list mode, the list of modules is returned in an array of
 name/value pairs. If a reference cannot be processed, the command
 adds an error property containing the reason for the failure and the
 module is added to the wuFail list.

SEE ALSO

 selectors, addhref, addbackref, edithrefs, rmhref, showhrefs

EXAMPLES

ENOVIA Synchronicity Command Reference - Module

553

• Example of Using whereused module to find direct references to a version
• Example of Using whereused module to find all references to version
• Example of Using whereused module to find immutable tagged versions
• Example of Using whereused module to find tagged versions
• Example of Displaying whereused module Output in Tcl list

 Many products use the common code available in LIB module. To assure
 the all the development teams are using a tested and approved version
 of the LIB module, the authorized release versions are tagged with
 immutable release tags after they are qualified. The version of LIB
 in our example is v1.2. A software defect is discovered in the LIB
 module. Product management wants to quickly locate all the products
 built with references to that version so that the new version can be
 shipped to all customers who have that version.

Example of Using whereused module to find direct references to a version

 This whereused module example shows all the modules that refer
 explicitly to the defective LIB version.
 Note: The (*) after a tag indicates that the tag is immutable.

 stcl> whereused module -version v1.2 -showtags all
 sync://svr2.ABCo.com:2647/Modules/LIB

 Beginning whereused operation ...

 Running non-recursively...

 ===

 sync://svr2.ABCo.com:2647/Modules/LIB;1.32 - v1.2(*), Trunk:
 sync://svr2.ABCo.com:2647/Modules/Chip;1.7 - Trunk

 ===

 Finished whereused operation.

Example of Using whereused module to find all references to version

 This example shows all the modules that refer to the defective LIB
 module explicitly and implicitly.
 Note: The (*) after a tag indicates that the tag is immutable.

 dss> whereused module -recursive
 sync://svr2.ABCo.com:2647/Modules/LIB;1.32

 Beginning whereused operation ...

Module Hierarchy Management

554

 Running recursively...

 ==

 sync://svr2.ABCo.com:2647/Modules/LIB;1.32 - v1.2(*), Trunk:
 sync://svr2.ABCo.com:2647/Modules/Chip;1.7 - Trunk
 sync://svr2.ABCo.com:2647/Modules/top;1.9 - Trunk:
 ==

 Finished whereused operation.

Example of Using whereused module to find immutable tagged versions

 In the scenario above, the LIB module is tagged with an immutable
 tag. This usually indicates a significant release such as a released
 product version, or, in our case, a released library reused
 throughout the code base. You can use the whereused command to
 search for all objects tagged with an immutable tag.

 Note: This may not display all the versions on which an immutable
 tag is used. Whereused module queries for the information but
 displays from the starting point until it reaches the last immutable
 tag in a reference tree.

 For instance, if you have a hierarchy such this:
 top - not tagged with an immutable tag
 -> Chip tagged with an immutable tag
 -> LIB, tagged with an immutable tag,

 the output of whereused module -showtags immutable includes Chip and
 LIB. If instead of Chip, top is tagged with an immutable tag, the
 output shows top, Chip, and LIB, even though Chip is not tagged with
 an immutable tag.

 To perform a query to return all the whereused information for a
 specific immutable tag, you can write a filtering script around
 whereused using -showtags all and filtering for the desired immutable
 tag.

 In this example, the top module and LIB module both contain immutable
 tags.
 Note: The (*) after a tag indicates that the tag is immutable.

 dss> whereused module -version v1.2 -showtags immutable -rec
 sync://svr2.ABCo.com:2647/Modules/LIB

 Beginning whereused operation ...

 Running recursively...

 ===

ENOVIA Synchronicity Command Reference - Module

555

 sync://svr2.ABCo.com:2647/Modules/LIB - v1.2(*)
 sync://svr2.ABCo.com:2647/Modules/Chip;1.8
 sync://svr2.ABCo.com:2647/Modules/top;1.10 - v1.2(*)
 ===

 Finished whereused operation.

Example of Using whereused module to find tagged versions

 This example shows all the tagged versions of modules that refer to
 the defective LIB module.
 Note: The (*) after a tag indicates that the tag is immutable.

 dss> whereused module -version v1.2 -showtags version -rec
 sync://svr2.ABCo.com:2647/Modules/LIB

 Beginning whereused operation ...

 Running recursively...

 ===

 sync://svr2.ABCo.com:2647/Modules/LIB - v1.2(*)
 sync://svr2.ABCo.com:2647/Modules/Chip;1.8 - Gold, Latest
 sync://svr2.ABCo.com:2647/Modules/top;1.10 - Latest, v1.2(*)
 ===

Example of Displaying whereused module Output in Tcl list

 This example shows all the modules that refer to the defective ROM
 module explicitly or implicitly in Tcl list format.

 stcl> whereused module -recursive -version v1.2 -format list
 sync://svr2.ABCo.com:2647/Modules/ROM

 {{object sync://svr2.ABCo.com:2647/Modules/LIB version 1.2 depth 0
 {v1.2(*), Trunk:} whereused {{object
 sync://svr2.ABCo.com:2647/Modules/Chip/ version 1.8 depth
 1 {Gold, Trunk:} whereused {{object
 sync://svr2.ABCo.com:2647/Modules/top version 1.10 depth 2 {v1.2(*),
 Trunk:} whereused {}}}}}}}

whereused vault

whereused vault Command

NAME

Module Hierarchy Management

556

 whereused vault - Traces the use of hierarchical references

DESCRIPTION

 This command identifies the module versions in which either of the
 following targets (the "toargument" for the addhref command) are
 used: legacy module configuration, or DesignSync vault, identified by
 a selector. This allows users to trace the usage of any desired
 target.

 When a hierarchical reference is created, DesignSync creates a back
 reference on the toargument indicating that it is referenced by the
 fromargument module. This provides the basic mechanism for the
 whereused functionality. If a back reference does not exist, for
 example, if the hierarchical reference was created before whereused
 was implemented, you can add back references independently using the
 addbackref command. The whereused vault command performs no
 validation on specified legacy module and vault selectors. Verify
 that the selector specified is correct before executing the command.

 IMPORTANT: When referencing either legacy modules or DesignSync
 vaults using a configuration name or a selector as the specified
 version, the version must be an exact match for the selector used
 when the hierarchical reference was added.

 Note: When the hierarchical reference target (toargument) was
 specified with SSL protocol, the whereused command must also be
 specified with SSL.

 This command is subject to access controls on the server. The
 whereused vault command requires browse access to the objects in the
 module hierarchy. See the ENOVIA Synchronicity Access Control Guide
 for details.

SYNOPSIS

 whereused vault [-format list|text] [-[no]recursive] [-report <mode>]
 [-showtags all|none|immutable|version]
 [-versions <selector>,...] <argument>

ARGUMENTS

• DesignSync Vault
• Legacy Module URL

DesignSync Vault

 <DesignSync vault> URL of the referenced DesignSync vault.
 Specify the URL as follows:

ENOVIA Synchronicity Command Reference - Module

557

 sync[s]://<host>[:<port>]<vaultpath>;[<selector>]
 where <host> is the SyncServer on which the
 object resides, <port> is the SyncServer
 port number, <vaultpath> identifies the
 DesignSync object, and <selector> is the optional
 selector.

 If a selector is not specified, the command
 uses versions specified with the -versions option
 or the default value of Trunk:Latest.

 Notes:
 o If you specify a selector in the argument, you
 cannot specify additional selectors with the
 -versions option. To locate more than one
 selector at a time, use the -versions option.

 o When the hierarchical reference target
 (toargument) was specified with SSL protocol,
 the whereused vault command must also be
 specified with SSL.

 o The vault selector is not checked for validity
 before the command is executed. Verify that
 the vault URL and selector is typed correctly
 before executing the command.

Legacy Module URL

 <Legacy module URL of the referenced legacy module.
 URL> Specify the URL as follows:
 sync[s]://<host>[:<port>]/[Projects]/<vaultpath>;
 [<selector>,...]
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer
 port number, vaultpath is the path to the
 module, and <selector> is the optional selector,
 or configuration name.

 If a selector is not specified, the command
 uses versions specified with the -versions option
 or the default value of Trunk:Latest.

 Notes:
 o If you specify a selector in the argument, you
 cannot specify additional selectors with the
 -versions option. To locate more than one
 selector at a time, use the -versions option.

 o When the hierarchical reference target
 (toargument) was specified with SSL protocol,
 the whereused vault command must also be
 specified with SSL.

Module Hierarchy Management

558

 o The vault selector is not checked for validity
 before the command is executed. Verify that
 the vault URL and selector is typed correctly
 before executing the command.

OPTIONS

• -format
• -[no]recursive
• -report
• -showtags
• -versions

-format

 -format list|text Determines the format of the output. For
 details about the information returned
 see the -report option.
 Valid values are:

 o text - Display text output formatted to show the
 hierarchical reference tree. (Default)

 o list - Displays a list with the following
 format:
 {
 object <object>...whereused
 <hierarchical_whereused_list>
 }

-[no]recursive

 -[no]recursive Determines whether to show the locations in
 which the version is explicitly referenced, or
 show all modules in which the version is implicitly
 or explicitly referenced. An explicit reference
 exists when there is a direct reference link
 between the module and the
 target. An implicit reference exists when the
 module and target are not directly connected, but
 within the module's hierarchy exists a reference
 to the target. For example: if the Chip module
 references the Gold version of the ALU module, and
 the Gold version of the ALU module references the
 Gold version of the ROM module, the Chip module
 contains an implicit reference to the ROM module
 and an explicit reference to the ALU module.

 -norecursive expands the reference and returns a
 list of modules that contain an explicit reference
 to the referenced module. (Default)

ENOVIA Synchronicity Command Reference - Module

559

 -recursive traverses the reference and returns a
 list of all modules that explicitly and implicitly
 reference the specified version.

-report

 -report brief| Determines what the information is returned in the
 normal|verbose output of the whereused vault command.

 Valid values are:

 o brief - reports only the module names for the
 specified object ordered by specified version.

 When displayed in text format, the output is
 indented to show the reverse hierarchical
 reference path. When displayed in list format,
 the hierarchical reference depth is indicated
 with the depth property.

 Note: The -showtags option is ignored for this
 report mode.

 o normal - reports the version of the module
 containing the reference to the specified
 object. The text format is indented to show
 hierarchical reference depth, and the list
 format uses the depth property. The version
 property in list mode contains the version
 number.

 Note: The version property may be a selector
 rather than a version number if the target is a
 DesignSync vault or legacy module.

 o verbose - provides the information available in
 report mode -normal as well as the processing
 status of the command.

-showtags

 -showtags all| Specifies whether tag information is displayed and
 none|immutable| optionally restricts the output to immutable tags
 version or tagged versions.

 o all - Displays all tags and all reference
 locations, including references that are not
 tagged. (Default)

 o none - Displays all references locations, but
 does not display tag information

Module Hierarchy Management

560

 o immutable - Displays only reference locations
 tagged with an immutable tag and the name of the
 immutable tag.

 Note: Using the -showtags immutable option may
 not display all versions in which an immutable
 tag is used. The whereused vault command
 queries for all the whereused information but
 filters the display from the starting point
 until it reaches the last immutable tag in a
 reference tree.

 o version - Displays any reference location that
 has a version tag and the name of the tag.

 Note: The -showtags option is ignored for -report
 brief mode.

-versions

 -versions Comma separated set of versions to locate. The
 <selector> versions can be numerics or selectors. The version
 selector (branch, version release, or alias
 selector) is validated by string comparison
 against the dynamic href value.

 Note: To specify a comma separated selector list,
 use the version extended naming format, not the
 -versions option.

RETURN VALUE

 This command does not return a Tcl value in text mode. If the command
 is unable to run, DesignSync throws an error explaining the failure.

 If whereused vault is unable to process a reference, you will see the
 reason for failure during command processing and the command adds
 the sync URL of the failed module to the wuFail list.

 In list mode, the list of modules is returned in an array of
 name/value pairs. If a reference cannot be processed, the command
 adds an error property containing the reason for the failure and the
 module is added to the wuFail list.

SEE ALSO

 selectors, addhref, addbackref, edithrefs, rmhref, showhrefs

ENOVIA Synchronicity Command Reference - Module

561

EXAMPLES

addbackref

addbackref Command

NAME

 addbackref - Adds whereused support to targets of
 hierarchical references

DESCRIPTION

 This command traverses the hierarchical references from a module to
 any of the following targets (toargument): sub-module version; legacy
 module configuration; or DesignSync vault, identified by a selector;
 and creates a back reference. The addbackref command follows the
 hierarchy forward. This is complementary functionality to the
 whereused command which follows this hierarchy backwards to provide
 the functionality for locating where a module is used.

 When hierarchical references are added, back references are
 automatically created to support the whereused command which
 displays a list of references to a particular target.

 You can manually create back references in cases where the references
 were not created automatically, for example:
 o The reference was created before whereused was implemented.
 o The user creating the reference did not have permission to modify
 the referenced module.
 o The referenced module was unreachable when the reference was
 created.

 When you create back references, the server creates a property that
 stores the name of the referencing module on the target. When
 whereused is run, those references are resolved to specific module
 versions.

 Back references are always explicit references created between a
 module and a target. An explicit reference exists when there is a
 direct reference link between the module and the target. An implicit
 reference exists when the module and target are not directly
 connected, but a reference exists within the module's hierarchy.

 When -recursive is used with a module version or branch
 argument, all references from the module version, even references
 within sub-modules, are traversed until any of the following targets

Module Hierarchy Management

562

 are reached:

 o legacy modules
 o DesignSync vaults
 o modules located on pre-V6R2009 SyncServer

 When one of these targets is reached, the back reference is created
 on the target, but any references within the target are not
 traversed.

 If a back reference cannot be created, the command displays the
 failure reason and continues processing.

 Important: The addbackref command can only be run on modules that
 exist on V6R2009 or later SyncServers.

 This command is subject to access controls on the server. The
 addbackref command requires browse access to the objects in the
 module hierarchy. See the ENOVIA Synchronicity Access Control Guide
 for details.

SYNOPSIS

 addbackref [-[no]recursive] <argument>

ARGUMENTS

• Branch/Version URL
• Category URL
• Module URL

Branch/Version URL

 <branch/ URL of the module branch or version on which to
 version URL> create the back references.
 Specify the URL as follows:
 sync[s]://<host>[:<port>]/Modules/[<Category>...]
 /<module>;[<branch>:][<version>]
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer
 port number, <Category> identifies the
 optional category path, <module> is the name
 of the module, <branch> identifies the optional
 branch, <version> identifies the optional
 version selector.

 Note: You may select a branch, version
 selector or both within the URL. If you
 specify a branch selector, it resolved to a module
 version.

ENOVIA Synchronicity Command Reference - Module

563

Category URL

 <category URL> URL of the category containing the modules to
 process. Back references are created for all
 modules within the specified category.
 Specify the URL as follows:
 sync[s]://<host>[:<port>]/Modules/[<Category>...]
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer
 port number, and <Category> identifies the
 category path.

 Notes:
 o If sync[s]://<host>[:<port>]/Modules/ is
 specified with the -recursive option, it is
 equivalent to selecting all the categories on
 the server as well as any uncategorized modules.

 o When the -recursive option is specified with a
 category argument, the addbackref command
 recursively traverses the categories, but does
 not recursively traverse the modules.

Module URL

 <module URL> URL of the module on which to create the
 back references. Specify the URL as follows:
 sync[s]://<host>[:<port>]/Modules/[<Category>...]
 /<module>;
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer
 port number, <Category> identifies the
 optional category path, and <module> is the name
 of the module.

OPTIONS

• -[no]recursive

-[no]recursive

 -[no]recursive Determines whether the back references are created
 for explicit references or both explicit and
 implicit references. This option is ignored for
 <Module URL> arguments.

 -norecursive processes a single reference layer.

Module Hierarchy Management

564

 This means that only explicit references are
 resolved, implicit or nested references are not
 resolved. (Default)
 o Category URL - All explicit references within
 the modules of the category are processed, but
 modules within sub-categories are not.

 o Module URL - All explicit references for all
 versions of all branches of the module are
 processed and back references are created.

 o Branch or version URL - All explicit references
 are processed and back references are created.

 -recursive processes all explicit and implicit
 references, depending on the specified argument.
 o Category URL - All explicit references of the
 modules in the category and any sub-categories
 are processed and back references are created.
 Sub-modules of the processed modules are not
 processed. Implicit references within modules
 are not processed.

 o Module URL - The -recursive option is not
 valid for a Module URL with no branch or
 version qualifier.

 o Branch or version URL - All explicit and
 implicit references are processed and back
 references are created.

RETURN VALUE

 If the addbackref command is successful, DesignSync returns an
 empty string (""). If the command cannot run, DesignSync throws an
 error message explaining the failure.

 If a back reference cannot be created, the command displays the
 failure reason and continues processing.

SEE ALSO

 whereused, addhref, edithrefs, showhrefs

EXAMPLES

• Adding Back References to a Specific Module
• Adding Back References to All Modules Within a Category

ENOVIA Synchronicity Command Reference - Module

565

Adding Back References to a Specific Module

 This example shows creating a back reference on a specific module
 branch.

 dss> addbackref sync://srv2.ABCo.com:2647/Modules/Chip;Alpha:

 Beginning addbackref operation ...

 Resolved sync://srv2.ABCo.com:2647/Modules/Chip;Alpha: to module
 version 1.5.1.3

 Processing modules on server "sync://srv2.ABCo.com:2647"...

 Processing module "sync://srv2.ABCo.com:2647/Modules/Chip" at
 version(s) 1.5.1.3...

 ADDED: back reference module sync:///Modules/Chip added to
 sync://srv2.ABCo.com:2647/Modules/top

 Finished addbackref operation.

Adding Back References to All Modules Within a Category

 This example shows adding back references to all the modules within a
 category.

 dss> addbackref sync://srv2.ABCo.com:2647/Modules/Cadence

 Beginning addbackref operation ...

 Processing modules on server "sync://srv2.ABCo.com:2647"...

 Processing modules in category
 "sync://srv2.ABCo.com:2647/Modules/Cadence"...

 Processing module
 "sync://srv2.ABCo.com:2647/Modules/Cadence/DSDIIModtest" at all
 versions...

 ADDED: back reference module sync:///Modules/Cadence/DSDIIModtest
 added to sync://srv2.ABCo.com:2647/Modules/Cadence/Groups/LibGroup1

 ADDED: back reference module sync:///Modules/Cadence/DSDIIModtest
 added to sync://srv3.ABCo.com:2647/Modules/Cadence/Modtest

 Processing module "sync://srv2.ABCo.com:2647/Modules/Cadence/LibSec"
 at all versions...

 Processing module "sync://srv2.ABCo.com:2647/Modules/Cadence/LibInit"

Module Hierarchy Management

566

 at all versions...

 ADDED: back reference module sync:///Modules/Cadence/LibInit added
 to sync://srv2.ABCo.com:2647/Modules/Cadence/LibSec

 Finished addbackref operation.

addhref

addhref Command

NAME

 addhref - Creates a hierarchical reference between
 modules

DESCRIPTION

• Adding Multiple Hrefs Within a Single Operation
• Adding Overriding Hrefs

 This command creates a new module version containing the new
 hierarchical references, or connections, from an upper-level module
 (fromargument) to any of the following (toargument): submodule branch
 or version, external module, legacy submodule configuration,
 DesignSync vault, or IP Gear deliverable. DesignSync stores the
 hierarchical reference on the server on which the upper-level module
 resides.

 An href can only be created when the following conditions are met:
 o The items you want to connect must already exist.
 o The fromargument must be a current module version populated with a
 dynamic selector.
 o The fromargument module must be the latest version on the module
 branch or the auto-merge must be enabled.
 o The fromargument module branch cannot be locked by another user.
 o The servers that hosts the modules being connected must be
 available.
 o If the toargument is an external module, legacy module, IP Gear
 deliverable, or DesignSync vault, the relative path must be unique
 within the scope of the upper-level module and cannot be nested
 within another hierarchically referenced external module, legacy
 module, IP Gear deliverable, or DesignSync vault. They cannot be
 contained within another relative path of the same module.
 o The toargument must use asingle selector. It cannot use a selector
 list.

 Notes:
 o The addhref command does not update individual workspaces. It

ENOVIA Synchronicity Command Reference - Module

567

 only updates the module on the server. For example, if you fetch
 a module into your work area and later a hierarchical reference is
 added to the module, the newly added hierarchical reference is not
 added to the local definition. To identify hierarchical
 references added on the server, run the showstatus command. To
 synchronize your local work area with the server, run 'populate' on
 your workspace.

 o When specifying Synchronicity URLs, you should enter host names
 consistently; always use the same host/domain name for a particular
 host, regardless of whether the name is the actual machine name or a
 DNS alias. For access outside of the origin server's LAN, you
 should use fully qualified domain names.

 o You can add or modify existing hrefs in a module snapshot using the
 addhref command. This creates a new module version on the snapshot
 branch.

 o If the hierarchical reference toargument is a static selector,
 modifications to the submodule cannot be checked in for workspaces
 that use the populated href.

 o For external modules, the sync URL does not include the host/port
 information. Instead it includes the external module type. The
 type is an administrator-defined string that DesignSync operations
 use to locate the external module interface provided by the
 administrator. The module interface defines the operation performed
 on the external module to which the hierarchical reference refers.

 o When specifying external modules, you must supply the -name
 value. When creating other references, if the -name value is not
 supplied the addhref command uses the tail of the path portion of
 the module URL. External module URLs do not provide such
 information. Instead, the contents of the URL string contains data
 meaningful to the external module interface that defines operations
 using a different configuration management system. As such the
 addhref command cannot derive a meaningful default name.

 o To take advantage of a performance enhancement for references on the
 same server, specify the same domain name for the fromargument and
 toargument. (A domain name is needed when the referenced
 submodule is on the same server so that the reference can be followed
 by users outside the server's LAN.) If you specify a different domain
 name for fromargument and toargument, the addhref operation succeeds,
 but the connection isn't optimized for the local server
 connection.

 o Adding hrefs can affect mirrors containing the upper-level module.
 For more information on mirrors, see the mirror commands.

 o To perform a collection of hierarchical reference changes,
 including adding hrefs, removing hrefs and modifying hrefs, see
 the edithrefs command.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

Module Hierarchy Management

568

 This command supports Enterprise Design Synchronization. For more
 information on Enterprise Design Synchronization, see the Enterprise
 Project Administration User's Guide.

 This command supports the command defaults system.

Adding Multiple Hrefs Within a Single Operation

 The add href command can be used to add multiple hrefs in a single
 operation to a module. You can add multiple hrefs in one of three
 different ways.

 Important: When adding multiple hrefs, the toarguments must be either
 modules or external modules.

 o Populate the modules to reference in your workspace and specify the
 toarguments as module instances.
 o Create a file containing a list of toarguments.
 o Specify the list of toarguments as a Tcl list.

 When you specify the toarguments as module instances, you can specify
 the module instance by the full path to the module instance, the
 module instance itself, or, if the module name is unique in the
 workspace, the module name. When hrefs are created this way, all the
 reference information comes from the workspace. This includes vault
 URLs, selectors, relative path information, and static version
 numbers. This allows you to model the module hierarchy in your
 workspace and translate that concept to the server.

 When you specify the toarguments as a file or as Tcl list, you
 specify each entry in the following format:
 url <toargument> [name <name>] [relpath<rel_path>]
 [selector<selector>]

 Where:
 url is a valid toargument as described in the toarguments section.
 name is optionally specified using the same guidelines as the -name
 option.
 relpath is optionally specified using the same guidelines as the
 -relpath option.
 selector is a valid selector.

Adding Overriding Hrefs

 DesignSync provides the ability to define an overriding hierarchical
 reference to be used in cases where submodule references point to
 different versions of the same object. This can be used in both a
 peer-to-peer or hierarchical cone structure.

 To add an overriding hierarchical reference, you add the reference to
 a parent module within the module hierarchy.

ENOVIA Synchronicity Command Reference - Module

569

 Notes:

 o The relpath of the hierarchical reference is used to
 determine which sub-module to replace.

 o In order for the overriding href to be used by the system, you must
 populate recursively from the module containing the override
 href or higher within the module hierarchy.

SYNOPSIS

 addhref <fromargument> <toargument> [-name <name>]
 [-relpath <rel_path>] [-selector] [-rootpath <path>]

 addhref <fromargument> [-file <filename> |-tcllist
 <toargument_specification_list>] [-relpath <rel_path>] [-rootpath <path>]

 addhref [-selector] [--] <fromargument> <toargument> [<toargument>...]

ARGUMENTS

• From Arguments
• From Argument: Server Module Version
• From Argument: Workspace Module
• To Arguments
• To Argument: DesignSync Vault
• To Argument: External Module
• To Argument: IP Gear Deliverable
• To Argument: Legacy Module Configuration
• To Argument: Server Module Version
• To Argument: Workspace Module(s)

 This command has two type of arguments: "fromarguments" and
 "toarguments."

From Arguments

 The fromargument specifies the URL of the upper-level module version
 from which you want to create the connection. You may specify one of
 the following arguments:

From Argument: Server Module Version

 <server module Specify the URL as follows:

Module Hierarchy Management

570

 version> sync[s]://<host>[:<port>]/<vaultPath>[;<selector>]
 where <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 <vaultPath> identifies the module, and <selector>
 is the branch and version information. You may
 use this format to specify a module, module
 branch or module version. The default branch is
 "Trunk." The default version is "Latest".

From Argument: Workspace Module

 <workspace module> Specify the workspace module. The module must
 be populated in your workspace, contain the
 latest server version, and use a dynamic
 workspace selector to add an href. If you do
 not have the latest version, you can create an
 href only if you have auto-merge selected as the
 default checkin setup with SyncAdmin. For more
 information on selecting auto-merge as the
 default checkin option, see The ENOVIA
 Synchronicity DesignSync Data Manager
 Administrator's Guide: Site Options.

 Note: When you specify a workspace module, the
 selector of the workspace is used by the
 command, therefore the -selector switch is not
 applicable.

To Arguments

 The toargument is a server module version, external module, legacy
 module configuration, IP Gear deliverable, DesignSync vault, or one
 or more module instances (workspace module) to which you want to
 create a connection.

 Important: When creating an href to a server that uses SSL
 redirection, you must use the DesignSync server SSL port (syncs://)
 in the URL of the toargument.

 Note: You must specify at least one toargument. The toargument can
 be any of the following arguments or a filename or tcllist (specified
 with -file or tcllist).

 If your toargument contains a static selector, then any changes made
 to the objects contained within a workspace containing the populated
 reference cannot be checked in with a module recursive checkin of the
 parent module.

 The toargument must be a single selector. You cannot use a selector
 list.

 You may specify one of the following arguments:

ENOVIA Synchronicity Command Reference - Module

571

To Argument: DesignSync Vault

 <DesignSync vault> Specifies the DesignSync vault. Specify the URL
 as follows:
 sync[s]://<host>[:<port>]/<vaultPath>[;<selector>]
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer port
 number, and <vaultPath> identifies the
 module. This is not valid argument for adding
 multiple toarguments within a single addhref
 command.

To Argument: External Module

 <external module> Specifies the URL of the external module version
 to which you wish to create the connection. An
 external module is an object or set of objects
 managed by a different change management system
 but available for viewing and integration through
 DesignSync. Specify the URL as follows:
 sync[s]:///ExternalModule/<external-type>/<external-data>
 where ExternalModule is a constant that
 identifies this URL as an external module URL,
 <external-type> is the name of the external
 module procedure, and <external-data> contains
 the parameters and options to pass to the
 procedure. These parameters and options can be
 passed from the procedure to the external change
 management system or to DesignSync.

 Note: When specifying an external module, you
 must specify the -name option.

To Argument: IP Gear Deliverable

 <IP Gear Specifies an IP Gear deliverable. The format
 deliverable> for specifying an IP Gear deliverable is:
 sync[s]://<host>[:<port>]/Deliverable/<ID>
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer port
 number, and <ID> is the deliverable ID number;
 for example,
 sync://publisher.ipgsrvr1.com:2647/Deliverable/142.

 This is not valid argument for adding multiple
 toarguments within a single addhref command.

To Argument: Legacy Module Configuration

Module Hierarchy Management

572

 <legacy module Specifies the URL or path of the submodule to
 configuration> which you wish to create the connection. If this
 is a workspace, the reference uses the same
 selector as the workspace. This is not valid
 argument for adding multiple toarguments within a
 single addhref command.

To Argument: Server Module Version

 <server module> Specifies the URL of the module version
 version> to which you want to create the connection.
 Specify the URL as follows:
 sync[s]://<host>[:<port>]/<vaultPath>[;<selector>]
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer port
 number, <vaultPath> identifies the module, and
 <selector> is the branch and version
 information. You may use this format to specify a
 module, module branch or module version. The
 default branch is Trunk. The default version is
 Latest.

To Argument: Workspace Module(s)

 <workspace Specifies one or more module instance names or
 module(s)> submodule paths to which you wish to create the
 connection. The reference uses the same selector
 as the workspace. The modules must be fetched in
 your workspace to add an href.

 Note: If you specify a relpath, The path can only
 be the base directory for a single module. If you
 specify more than one workspace module, you
 cannot specify a relpath.

OPTIONS

• -file|-tcllist
• -name
• -relpath
• -rootpath
• -selector

-file|-tcllist

 -file <filename> | This option allows you to specify a set of

ENOVIA Synchronicity Command Reference - Module

573

 -tcllist <list> toarguments. You can specify this set either as
 a Tcl list or a flat file containing a Tcl
 formatted list.

 When specifying a file, each line must be either
 a comment or specify the details of a single
 href to be added to the module identified in the
 fromargument.

 When specifying a TCLlist, each entry specifies
 the details of a single href to be added to the
 module identified in the fromargument.

 The format for both a file and a Tcl list is the
 same, a Tcl list of Tcl lists:
 {{url <toargument>} {name <name>}
 {relpath<rel_path>} {selector <selector>}}

 Where: url is a valid toargument as described in
 the toarguments section.
 name is optionally specified using the same
 guidelines as the -name option.
 relpath is optionally specified using the same
 guidelines as the -repath option.
 selector is a valid selector.

 You can not specify the -file option when you
 have a explicitly specified a toargument at the
 command line.

 The -selector option is mutually exclusive with
 both the -file and -tcllist options.

 Note: When specifying the -tcllist option, you
 must use the stcl or stclc command line
 interface. dss/dssc will not process the list
 correctly and return an error.

-name

 -name Specifies the href name. This is the name by
 which this href is known relative to the parent
 module. This name is required for external module
 references. For any other type of reference, if
 the 'name' option is not specified, the href name
 defaults to the name of the target module, legacy
 module configuration, IP Gear deliverable (ID
 value), or DesignSync vault.

 Note: The name value must be unique within the
 scope of the fromargument. If an href
 already exists with the name specified, this
 command returns an error.

Module Hierarchy Management

574

 Note: Hierarchical reference names may only
 contain printable characters and cannot contain a
 space or any of these restricted characters:

 ~ ! ? @ # $ % ^ & * () , ; : | ` ' " = [] / \ < >

 When multiple workspace module instances are
 specified, the name value is automatically set to
 the module instance name.

-relpath

 -relpath Indicates the path from the upper-level module
 <rel_path> to the module, legacy module configuration, IP Gear
 deliverable, or DesignSync vault. The populate
 command uses this path when recursively fetching
 items into your work area to create additional
 levels of hierarchy.

 Paths:
 o Cannot be absolute.
 o Should not contain at signs (@), number signs
 (#), back slashes (\), question marks (?),
 asterisks (*), semicolons (;), ampersands (&),
 pipes (|), or square brackets ([]).
 o Can be empty (""). Specify an empty path if you
 do not want to fetch the contents of the
 submodule into your local work area. This
 behavior may be desirable if you want to
 reference a ProjectSync project that tracks
 defects against a CAD tool.

 Legacy modules paths have these additional
 restrictions:
 o Cannot be './'.
 o Must be unique within the scope of the upper-
 level module and cannot be nested nested within
 another hierarchically referenced legacy module,
 IP Gear deliverable, or DesignSync vault. They
 cannot be contained within another relative
 path of the same configuration.

 If the relative path is not supplied, it is
 defined from the toargument and fromargument. If
 both the toargument and the fromargument are
 workspace modules, the relative path is the
 current relative path between the two modules. If
 either the toargument or the fromargument is a
 workspace module, the relpath uses the href name.

 The -relpath argument is not applicable when
 fromargument is a workspace module and the
 toargument is one or more workspace
 modules because the relpath is automatically

ENOVIA Synchronicity Command Reference - Module

575

 determined.

-rootpath

 -rootpath <path> The relative path prefix for all added
 hierarchical references.

 The rootpath when specified with a toargument,
 is the relative path for the toargument. When
 rootpath is specified without a toargument, it
 becomes the default relative path for all added
 hrefs.

 Note: You cannot specify a rootpath when adding a
 reference to an external module or when
 specifying multiple module workspace instances.

-selector

 -selector Specifies the selector, or selector list. The
 <selector> -selector should only be used with a module instance
 argument when the user needs to override the
 persistent selector of the workspace. For server
 arguments, the selector should be specified in the
 object URL. For more information about selectors, see
 the selectors topic.

 The -selectors option is mutually exclusive with the
 -file and -tcllist options.

RETURN VALUE

 If the addhref command is successful, DesignSync returns an empty
 string (""). If the command fails, DesignSync returns an error
 explaining the failure. When adding multiple hrefs, if any of the
 hrefs are not added, the entire command fails.

SEE ALSO

 rmhref, edithrefs, showhrefs, showstatus, command defaults, mirror
,

EXAMPLES

• Creating a Module Hierarchy from a Workspace

Module Hierarchy Management

576

• Creating a Module Hierarchy without Staging in the Workspace
• Using Empty Relative Paths
• Adding Multiple Hrefs from a Tcl List

Creating a Module Hierarchy from a Workspace

 This example creates this hierarchy:
 Chip <= uses the default configuration
 ALU <= uses the default configuration
 CPU <= uses the Gold branch
 ROM <= uses the Gold version

 In this example Chip has hrefs to ALU and CPU. CPU has an href to
 ROM.

 The modules are individually pre-populated in the workspace in the
 following directory structure:

 Directory Module instance
 --------- ---------------
 chip Chip0
 chip/alu ALU%0
 chip/cpu CPU%0
 chip/cpu/rom ROM%0

 Notes:
 o After you have created the hierarchy on the server with the
 addhref command, you must recursively populate Chip%0 in the
 workspace to recreate the hierarchical design.

 o Because there is only one instance of each module in the workspace
 root, you do not need to specify the %0 module instance indicator
 to the addhref command. The hierarchy is constructed from the
 bottom up.

 o The href to the ROM module is to the version tag Gold. Regardless
 of the mutability of this tag, the selector is static. Thus if you
 were to make any changes to the ROM module, they could not be
 checked in when an upper-level module was checked in recursively.

 dss> addhref CPU ROM

 Beginning addhref operation ...

 sync://srvr2.ABCo.com:2647/Modules/CPU: Added hierarchical reference(s):
 Name: ROM
 Object: sync://srv2.ABCo.com:2647/Modules/ROM
 Type: Module
 Selector: Gold
 Version: 1.2.1.1
 Relative Path: rom

 sync://qelwsun14:30125/Modules/CPU: Created new module version 1.3.

ENOVIA Synchronicity Command Reference - Module

577

 dss> addhref Chip ALU CPU

 Beginning addhref operation ...

 sync://srvr2.ABCo.com:2647/Modules/Chip: Added hierarchical reference(s):
 Name: ALU
 Object: sync://srvr2.ABCo.com:2647/Modules/ALU
 Type: Module
 Selector: Trunk:
 Version: 1.2
 Relative Path: alu

 Name: CPU
 Object: sync://srv2.ABCo.com:2647/Modules/CPU
 Type: Module
 Selector: Gold:
 Version: 1.2
 Relative Path: cpu

 sync://qelwsun14:30125/Modules/ChipDesign/Chip: Created new module
 version 1.3.

 Notice: A populate of module
 'sync://srvr2.ABCo.com:2647/Modules/Chip' is necessary to update the
 workspace with the new hrefs.

 Finished addhref operation.

Creating a Module Hierarchy without Staging in the Workspace

 This example creates this hierarchy:
 Chip <= uses the default configuration
 ALU <= uses the default configuration
 CPU <= uses the Gold branch
 ROM <= uses the Gold version

 It guides you through the creation of the connections between the
 Latest version of the Chip module and Latest version of the ALU
 module, between the Latest version of the Chip module and the Gold
 branch version of the CPU module, and the Gold version of the ROM
 module.

 Note: The latest version on the Gold branch of CPU is used, meaning
 this is a dynamic module version which can be updated in the
 workspace. The Gold version of ROM, however, is fixed. Modifications
 in the workspace for this module cannot be checked in, but if the tag
 is moved to a different version, the version will be updated to the
 new module version during the next populate operation that updates
 ROM.

 This addhref command, creating the hierarchy between Chip and ALU
 is created using the Chip%0 instance in a workspace.

Module Hierarchy Management

578

 dss> addhref -name ALU -relpath ALU Chip%0 \
 sync://srvr2.ABCo.com:2647/Modules/ALU;Trunk:Latest

 Beginning addhref operation ...

 sync://srvr2.ABCo.com:2647/Modules/Chip: Added hierarchical reference:
 Name: ALU
 Object: sync://srvr2.ABCo.com:2647/Modules/ALU
 Type: Module
 Selector: Trunk:
 Version: 1.1
 Relative Path: ALU

 sync://srvr2.ABCo.com:2647/Modules/Chip: Created new module version 1.3.

 Finished addhref operation.

 These addhref commands, creating the hierarchy between Chip and CPU
 and ROM specify the ROM module version Gold and the CPU branch
 version Gold.

 dss> addhref -name ROM -relpath ROM \
 sync://srv2.ABCo.com:2647/Modules/CPU;Gold: \
 sync://srv2.ABCo.com:2647/Modules/ROM;Gold \

 Beginning addhref operation ...

 sync://srv2.ABCo.com:2647/Modules/CPU: Added hierarchical reference:
 Name: ROM
 Object: sync://srv2.ABCo.com:2647/Modules/ROM
 Type: Module
 Selector: Gold
 Version: 1.4
 Relative Path: /ROM

 sync://srv2.ABCo.com:2647/Modules/CPU: Created new module version 1.3.

 Finished addhref operation.

 dss> addhref -name CPU -relpath CPU
 sync://srv2.ABCo.com:2647/Modules/Chip;1.3 \
 sync://srv2.ABCo.com:2647/Modules/CPU;Gold: \

 Beginning addhref operation ...

 sync://srv2.ABCo.com:2647/Modules/Chip: Added hierarchical reference:
 Name: CPU
 Object: sync://srv2.ABCo.com:2647/Modules/CPU
 Type: Module
 Selector: Gold:
 Version: 1.3
 Relative Path: CPU

 sync://srv2.ABCo.com:2647/Modules/Chip: Created new module version 1.4.

 Finished addhref operation.

ENOVIA Synchronicity Command Reference - Module

579

 This command shows the hierarchy of the modules.

 dss> showhrefs -hrefmode dynamic -recursive \
 sync://srv.2.ABCo.com/Modules/Chip;Trunk:Latest

 Beginning showhrefs operation ...

 Showing hrefs of module
 sync://srv2.ABCo.com:2647/Modules/Chip;Trunk:Latest (1.4) ...

 sync://srv2.ABCo.com:2647/Modules/Chip;1.1:Latest: Href mode is
 dynamic.

 Name Url Version Type Relative Path

 ALU sync://srv2.ABCo.com:2647/Modules/ALU Trunk: Module ALU
 CPU sync://srv2.ABCo.com:2647/Modules/CPU Gold: Module CPU

 sync://srv2.ABCo.com:2647/Modules/ALU;Trunk: Module has no
 hierarchical references.

 ==

 Showing hrefs of module sync://srv2.ABCo.com:2647/Modules/CPU;Gold
 (1.3)...

 sync://srv2.ABCo.com:2647/Modules/CPU;Gold: Href mode is dynamic.

 Name Url Version Type Relative Path

 ROM sync://srv2.ABCo.com:2647/Modules/ROM Gold Module /ROM

 sync://srv2.ABCo.com:2647/Modules/ROM;Gold:: Module has no
 hierarchical references.

 Finished showhrefs operation.

 Once you have created the hierarchical references, recursively fetch
 the updated version of the Chip module to update the references in
 your workspace.

 dss> populate -get -recursive -hrefmode dynamic Chip%0

 Beginning populate operation...

 Populating objects in Module Chip%0 with base directory
 /home/rsmith/MyModules/chip...

 Fetching contents from selector 'Trunk:', module version '1.4'
 ...
 Creating Sub Module Instance 'ALU%1' with base directory

Module Hierarchy Management

580

 '/home/rsmith/MyModules/chip/ALU'

 Creating Sub Module Instance 'CPU%1' with base directory
 '/home/rsmith/MyModules/chip/CPU'
 Finished populate of Module Chip%0 with base directory
 /home/rsmith/MyModules/chip

 ===

 Populating objects in Module ALU%1 with base directory
 /home/rsmith/MyModules/chip/ALU...

 Fetching contents from selector 'Trunk:', module version '1.4'

 ===

 Creating Sub Module Instance with
 Base Directory = /home/rsmith/MyModules/chip/ALU
 Name = ALU
 URL = sync://srv2.ABCo.com:2647/Modules/ALU
 Selector = Trunk:
 Instance Name = ALU%1
 Metadata Root = /home/rsmith/MyModules
 Parent Instance = Chip%0

 Populating objects in Module ALU%1 with base directory
 /home/rsmith/MyModules/chip/ALU...

 Fetching contents from selector 'Trunk:', module version '1.4'

 /alu.h: Success - Checked Out version: 1.1
 /alu.c: Success - Checked Out version: 1.2
 /alu.doc: Success - Checked Out version: 1.2

 ALU%1: Version of module in workspace updated to 1.4

 ===

 Creating Sub Module Instance with
 Base Directory = /home/rsmith/MyModules/chip/CPU
 Name = CPU
 URL = sync://srv2.ABCo.com:2647/Modules/CPU
 Selector = Gold:
 Instance Name = CPU%1
 Metadata Root = /home/rsmith/MyModules
 Parent Instance = Chip%0

 Populating objects in Module CPU%1 with base directory
 /home/rsmith/MyModules/chip/CPU...

 Fetching contents from selector '1.2', module version '1.2'

 /cpu.h: Success - Checked Out version: 1.1

ENOVIA Synchronicity Command Reference - Module

581

 /cpu.c: Success - Checked Out version: 1.1
 /cpu.doc: Success - Checked Out version: 1.1

 CPU%1: Version of module in workspace updated to 1.2

 Creating Sub Module Instance 'ROM%1' with base directory
 '/home/rsmith/MyModules/chip/CPU/ROM'

 Finished populate of Module CPU%1 with base directory
 /home/rsmith/MyModules/chip/CPU

 ===

 Creating Sub Module Instance with
 Base Directory = /home/rsmith/MyModules/chip/CPU/ROM
 Name = ROM
 URL = sync://srv2.ABCo.com:2647/Modules/ROM
 Selector = Gold
 Instance Name = ROM%1
 Metadata Root = /home/rsmith/MyModules
 Parent Instance = CPU%1

 Populating objects in Module ROM%1 with base directory
 /home/rsmith/MyModules/chip/CPU/ROM...

 Fetching contents from selector 'Gold', module version '1.4'

 /rom.doc: Success - Checked Out version: 1.2
 /rom.c: Success - Checked Out version: 1.2
 /rom.h: Success - Checked Out version: 1.1

 ROM%1: Version of module in workspace updated to 1.4

 Finished populate of Module ROM%1 with base directory
 /home/rsmith/MyModules/chip/CPU/ROM

 Finished populate operation...

 {Objects succeeded (12)} {}

Using Empty Relative Paths

 This example illustrates how you might track defects in your
 design tools that affect your design. The ALU team relies on some
 critical design tools, for example, DesignCompiler, that are not part
 of their project. They use ProjectSync to track defects in the current
 versions of these tools. When team members do a ProjectSync hierarchical
 query on ALU, they want all DesignCompiler defects to be reported.

 Notes:

Module Hierarchy Management

582

 - This example assumes that the ALU team has set up the DesignCompiler
 project in ProjectSync. The DesignCompiler project exists only to
 have notes attached to it; it does not have any data files checked
 into it.
 - This example uses an empty relative path. The empty relative path
 ensures that when the ALU team recursively fetches the ALU module
 with the hcm get command that it does not fetch the contents of the
 DesignCompiler module into the local work area.

 dss> addhref -name DesignCompiler -relpath "" \
 sync://srv2.ABCo.com:2647/Modules/ALU
 sync://tools.ABCo.com:2647/Tools/DesignCompiler;Trunk:Latest

 Beginning addhref operation ...

 sync://srv2.ABCo.com:2647/Modules/ALU: Added hierarchical reference:
 Name: DesignCompiler
 Object: sync://tools.ABCo.com:2647/Modules/Tools/ \
 DesignCompiler
 Type: Module
 Selector: Trunk:
 Version: 1.1
 Relative Path:

 sync://srv2.ABCo.com:2647/Modules/ALU: Created new module version
 1.3.

 Finished addhref operation.

Adding Multiple Hrefs from a Tcl List

 This example shows an operation that adds multiple hrefs within a
 single operation by using the Tcl list capability. This example
 shows entering the Tcl list on the command line with the -tcllist,
 but you could enter the same information, formatted the same way,
 into a file and specify it with the -file option.

 Note: When specifying the -tcllist option, you must use the stcl or stclc
 command shell.

 This example creates this hierarchy:
 Chip <= uses the default configuration
 ALU <= uses the default configuration
 CPU <= uses the Gold branch
 ROM <= uses the Gold version

 stcl> addhref Chip%0 -tcllist {{url
 sync://srv2.ABCo.com:2647/Modules/ALU name ALU relpath alu}
 {url sync://srv2.ABCo.com:2647/Modules/CPU name CPU relpath
 cpu selector Gold:} {url sync://srv2.ABCo.com:2647/Modules/ROM
 name ROM relpath cpu/rom selector Gold}}

Beginning addhref operation ...

ENOVIA Synchronicity Command Reference - Module

583

sync://srv2.ABCo.com:2647/Modules/Chip: Added hierarchical reference(s):
 Name: ALU
 Object: sync://srv2.ABCo.com:2647/Modules/ALU
 Type: Module
 Selector: Trunk:
 Version: 1.2
 Relative Path: alu

 Name: CPU
 Object: sync://srv2.ABCo.com:2647/Modules/CPU
 Type: Module
 Selector: Gold:
 Version: 1.2
 Relative Path: cpu

 Name: ROM
 Object: sync://srv2.ABCo.com:2647/Modules/ROM
 Type: Module
 Selector: Gold
 Version: 1.2.1.1
 Relative Path: cpu/rom

 sync://srv2.ABCo.com:2647/Modules/Chip: Created new module version 1.7.

 Finished addhref operation.

edithrefs

edithrefs Command

NAME

 edithrefs - Updates the hierachical references for a module

DESCRIPTION

• Adding a Hierarchical Reference
• Removing a Hierarchical Reference
• Changing a Hierarchical Reference
• File Format for Editing Hierarchical References
• Running in Interactive Mode
• Understanding the Output

 The command modifies; adds, removes, and changes, the hrefs
 associated with a module in a single batch operation or outputs a
 list of the current hierarchical references which can be edited to

Module Hierarchy Management

584

 fed back into the command to modify the hierarchical references for a
 module.

 There are four types of actions that can be processed within the
 file, including no action.

 o Adding a hierarchical reference (add)
 o Changing a hierarchical reference (change)
 o Removing a hierarchical reference (remove)
 o No change to this hierarchical reference (none)

 When batch editing a list of hierarchical references, you can either
 start from a blank file and add the hierarchical references to update
 or you can generate a list of hierarchical references and modify the
 hrefs to update using the edithrefs command.

 The edithrefs command can be run using a saved file containing the
 modified list of hierarchical references or interactively, which
 locks the module while you edit the references.

 When you generate a file, DesignSync provides comments within the
 file to help you modify it appropriately. The amount of help
 provided varies with the report mode specified for the command. For
 more information on report modes, see Understanding the Output.

 Interactive mode uses the default editor. The default editor can be
 specified with SyncAdmin.

 Important: When working in interactive mode, the module is locked for
 the duration of the edithref command. This may make interactive mode
 a less attractive choice for a module that is already actively being
 used.

 Tip: While edithref does not automatically lock the module when not
 run in interactive mode, DesignSync recommends the best practice of
 locking the module before making structural changes to minimize the
 risk of error. For more information on locking a module, see the lock
 command.

 The file format is discussed in detail in "File Format for Editing
 Hierarchical References."

 Note: All lines are examined. If any line is unchanged, it is
 implicitly processed by DesignSync as "None," even if the None
 action is not explicitly specified. If a new or changed line is
 discovered, even if not explicitly marked, it will still be
 processed accordingly.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports Enterprise Design Synchronization. For more
 information on Enterprise Design Synchronization, see the Enterprise
 Design Adminstration User's Guide.

 This command supports the command defaults system.

ENOVIA Synchronicity Command Reference - Module

585

Adding a Hierarchical Reference

 Specifying action "add" (a) on a hierarchical reference line in the input
 file adds the hierarchical references to the module.

 When you add a hierarchical reference, DesignSync requires you to
 specify the URL. All other fields have default values which can be
 used.

 Note: For external modules you must specify both URL and name values.

 o action - If not specified, DesignSync examines the line. If no
 href exists with the name specified, DesignSync treats the line as
 an implicit add.
 o name - If not specified, DesignSync uses the target module name,
 legacy module configuration, IP Gear deliverable, or DesignSync
 vault. For external modules, there is no default, so the name must
 be specified.
 o relpath - If not specified, DesignSync uses the default value as
 explained in the addhref command, relpath argument description.
 o selector - If not specified, this remains an empty string, for
 which DesignSync substitutes the default selector, Trunk: at
 processing time.

 Important: When adding a new hierarchical reference, you cannot use
 the name of an existing href, either implicitly, or explicitly, even
 if you are deleting the href using that name within the same input
 file.

 Adding a hierarchical reference adds the parent module to the
 whereused information of the referenced module.

Removing a Hierarchical Reference

 Specifying the action "remove" (r) on a hierarchical reference line
 in the input file removes the hierarchical reference from the
 module.

 When you remove a hierarchical reference, DesignSync requires you to
 specify two properties, the action property with the value "remove"
 and the name property.

Changing a Hierarchical Reference

 Specifying action "change" (c) on a hierarchical reference line in the input
 file changes an existing hierarchical reference.

 When you change the hierarchical reference, you must provide the
 name, even if you are changing the href name. All other properties
 can be optional.

Module Hierarchy Management

586

 o action - If not specified, DesignSync examines the line. If an
 href exists with the name specified, DesignSync treats the line as
 an implicit change.
 o relpath - When not specified, DesignSync keeps the existing
 relpath.
 o selector - When not specified, DesignSync keeps the existing
 selector unless a different selector is specified as part of the
 url property. If the url property includes a selector and the
 selector property is set, the value of the selector property
 is the one used for the changed href and the URL selector is
 ignored.
 o newname - If not specified, DesignSync keeps the existing name. If
 specified, DesignSync changes the name of the hierarchical
 reference to the name specified with the newname value. The
 newname key/value pair is only valid for changing a hierarchical
 reference.

 Note: If no properties are changed in the change line, the
 hierarchical reference is not modified.

 Changing a hierarchical reference adds the parent module to the
 whereused information of the referenced module.

File Format for Editing Hierarchical References

 The file format created by the edithrefs command as an output file
 (-output) or read and processed by the command as an input file
 (-input) contains a single line for every href being modified.
 Optionally, it can contain a single line for hrefs that remain
 unchanged. This allows the user to work from a generated list of
 hierarchical references, changing only the ones that need to be
 changed without needing to remove the unchanged lines.

 Generally, the file consists of one line per hierarchical reference
 containing the following key/value pairs:

 Key Description
 o action - The type of action allowed. The allowed values are:
 o add/a
 o remove/r
 o change/c
 o none/n
 o name - Name of the hierarchical reference. This must conform to
 DesignSync naming conventions. For more details, see the
 addhref command.
 o url - URL to the referenced object, which can be a submodule
 branch or version, external module, legacy submodule
 configuration, DesignSync vault, or IP Gear deliverable.
 o relpath - The path from the upper-level module to the referenced
 object used when recursively fetching the upper-level
 module into a workspace.
 o selector- A valid selector. For more details, see the selector
 topic. Note: If existing hrefs use a selector list, they

ENOVIA Synchronicity Command Reference - Module

587

 will continue to work, matching the first valid
 selector, but you cannot add or change an href to use a
 selector list.

 You can use the hash mark (#) in the first column of the line to
 place a comment in the file. Blank lines are not processed. If any
 value requires a space, surround the value with double quotes ("").

 This sample shows the syntax of the input file.

 #This is a sample input file structure

 #This line adds a hierarchical reference
 action a [name <name>] url <moduleURL> [selector <selector> \
 [relpath <relpath>]

 #This line removes a hierarchical reference
 action r name <name>

 #This line changes an existing hierarchical reference
 action c name <name> [url <moduleURL>] [newname <newname>]\
 [selector <selector>] [relpath <relpath>]

 #This line takes no action.
 action n [name <name>] [url <moduleURL>] [selector <selector>] \
 [relpath <relpath>]

 Tip: Store your input files in a single directory with a descriptive
 filename so you can use them to quickly look up the name, relapth, or
 selector of the created hiearachical references, or so you can modify
 them for reuse if you change the module hierarchy.

Running in Interactive Mode

 The edithrefs command provides the ability to run interactively. In
 interative mode, DesignSync generates a current list of hrefs for the
 module which the user can then edit as described in the "File Format
 for Editing Hierarchical References" section.

 Running interactively may be desirable during the initial creation
 phase, before the module is generally available or if the changes are
 quick to make. While interactive mode is in process, the module is
 locked so users can make neither structural nor content changes while
 the locker is making structural changes using the edithrefs command.

 To run in interactive mode, do not specify the -input or -output file
 options to the edithrefs command.

Understanding the Output

 The report option allows you to specify both the level of
 information the command outputs during processing and the amount of

Module Hierarchy Management

588

 commenting syntax help provided in the generated output.

 Note: Regardless of the report mode selected, if the edithrefs command
 is run in interactive mode, DesignSync will ask whether the changes
 made in the editor should be committed. For more information, see
 Example 2: Modifying Hierarchical References in Interactive Mode.

 report brief mode
 =================

 If you run the command with the -report brief option, the edithrefs
 command outputs the following information:
 o Failure messages.
 o Warning messages.
 o Success/failure/skip status.

 Additionally, if the -report brief option is used to create an output
 file with the -outfile option, that file will contain only a list of
 hrefs. It will contain no comments on how to format the line for
 processing as an input file to edithrefs.

 report normal mode
 ==================
 By default, or if you run the add command with the -report normal
 option, the command displays all the information contained in -report
 brief, and the following additional information:
 o URL of the module branch being locked
 o operation status messages

 Additionally, if the -report normal option is used to create an
 output file with the -outfile option, that file will contain a syntax
 line showing general syntax of a defined href. Additional
 lines in the file, show, in brief, the possible values for action
 property and the syntax for the newname property.

 report verbose mode
 ===================

 If you run the command with the -report verbose option, it provides
 the same command output as -report normal, but provides a longer,
 more detailed explanation for modifying the hrefs for processing. For
 an example of the verbose output, see Example 4: Generating a Verbose list
 of Hierarchical References.

SYNOPSIS

 edithrefs [-infile <file-containing-href-edits> |
 -outfile <file-to-write-hrefs-to>]
 [-report brief|normal|verbose] [--] <argument>

ARGUMENTS

ENOVIA Synchronicity Command Reference - Module

589

• Server URL
• Workspace Module

Server URL

 <serverURL> Specifies the URL of the upper-level module
 version. Specify the URL as follows:
 sync://<host>[:<port>]/Modules/[<category...>/]<module>;[<selector>]
 or
 syncs://<host>[:<port>]/Modules/[<category...>/]<module>;[<selector>]
 where 'sync://' or 'syncs://' is required, <host>
 is the machine on which the SyncServer is
 installed, <port> is the SyncServer port number
 (defaults to 2647/2679), [<category...>} is the
 optional category (and/or sub-category) containing
 the module, and <module> is the name of the
 module. For example:
 sync://serv1.abco.com:1024/Modules/ChipDesigns/Chip

 Note: When a selector is not provided, the
 default, Trunk:Latest, is used. The selector
 provided must be a dynamic selector, otherwise a
 new module version cannot be created. If a
 static selector is provided, the command exits
 with an appropriate error.

Workspace Module

 <workspace Module> Specifies the module identifier for the module.
 The module must have already been populated in
 the workspace. The workspace selector must be a
 dynamic selector. If the persistent selector for
 the workspace is a static selector, a new module
 version cannot be created and the command exits
 with an appropriate error.

OPTIONS

• -infile
• -outfile
• -report
• --

-infile

 -infile <file> Name of the file containing the list of
 hierarchical references to be modified. For
 information on the format of the infile, see

Module Hierarchy Management

590

 File Format for Editing Hierarchical References.

 This option is mutually exclusive with the
 -outfile option.

 Note: If neither -input or -output is specified,
 the command runs in interactive mode.

-outfile

 -outfile <file> Name of the file in which the command will create
 the list of hierarchical references that exist
 for the specified module version. This file can
 be modified and used by this command (with the
 -infile option) to edit the hierarchical
 references.

 This option is mutually exclusive with the
 -infile option.

 Note: If neither -input or -output is specified,
 the command runs in interactive mode.

-report

 -report brief | Controls the level of additional information
 normal | verbose reported as the command progresses. For more
 information, see Understanding the Output.

 Note: When used with the -outfile option, the
 report option also controls the verbiage of the
 help available within the outfile.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when
 arguments to the command begin with a hyphen
 (-).

RETURN VALUE

 If the command runs succesfully, Two lists are returned, where the
 first list is non-empty if at least one object was successfully
 processed, and the second list is non-empty if at least one object
 failed. If the command fails, DesignSync returns an error explaining
 the failure.

ENOVIA Synchronicity Command Reference - Module

591

 Note: The Command failure is not the same as a failure to modify an href.
 If there is a value in the second list, you should review the log to
 determine why the href failed to update.

SEE ALSO

 addhref, rmhref, showhrefs

EXAMPLES

• Example of Generating a list of Hierarchical References
• Example of Modifying Hierarchical References in Interactive Mode
• Example of Modifying Hierarchical References From an Href List
• Example of Generating a verbose list of Hierarchical References

Example of Generating a list of Hierarchical References

 This example shows the normal output of creating a list of
 hierarchical references to edit.

 This is the command that creates the output file.

 stcl> edithrefs -outfile hreflist.txt -report normal Chip%0

 ## Hrefs generated from: sync://serv.ABCo.com:2647/Modules/Chip;Trunk:
 ## Revision: 1.7
 ## Workspace module: Chip%0
 ## Output to: /home/rsmith/MyMods/chip
 ## NOTE: it is recommended to lock the branch prior to changing hrefs.
 ##
 {} {}

 This is the outfile file contents generated from the command above.

 Note: The comments within the file show the general syntax of the
 href lines, but do not contain the detailed information that would be
 generated by -report verbose.

 # Href properties in each row:
 # name <href-name> url <to-url> selector <to-selector> relpath
 # <href-relpath>
 # Optional user added instructions on each row:
 # action add|change|remove|none
 # newname <value>
 name ROM url sync://serv1.ABCo.com:2647/Modules/Components/ROM
 selector Gold: relpath rom
 name RAM url sync://serv1.ABCo.com:2647/Modules/Components/RAM selector {}
 relpath ram
 name ALU url sync://serv2.ABCo.com:2647/Modules/Components/ALU

Module Hierarchy Management

592

 Trunk:Beta relpath alu

Example of Modifying Hierarchical References in Interactive Mode

 This example shows using the hierarchical reference interactive mode
 using the default editor on UNIX (vi) from the output file generated
 in Example 1.

 dss> edithrefs Chip%0

 Beginning edithrefs operation ...

 ## Locked branch for: sync://serv.ABCo.com:2647/Modules/Chip;Trunk:(1.7)

 ## Hrefs generated from: sync://serv.ABCo.com:2647/Modules/Chip;Trunk:
 ## Revision: 1.7
 ## Workspace module: Chip%0

 ## Invoking the editor for making href changes. After exiting the editor,
 ## you will be able to decide if you wish to submit your changes.

 The editor opens containing a list of hierarchical references for
 version 1.7 of module Chip. For readability, a comment before each
 line will indicate what modifications have been made to the list, for
 example, if the action is a, the comment will indicate that by
 including the text "action: a."

 # Href properties in each row:
 # name <href-name> url <to-url> selector <to-selector> relpath
 # <href-relpath>
 # Optional user added instructions on each row:
 # action add|change|remove|none
 # newname <value>

 #This href is being removed. action: r
 action r name ROM url sync://serv1.ABCo.com:2647/Modules/Components/ROM\
 selector Gold: relpath rom

 #This href is being changed. action: c AND newname: RAMFinal
 action c name RAM newname RAMFinal url\
 sync://serv1.ABCo.com:2647/Modules/Components/RAM selector {}
 relpath ram

 #This href is unchanged. action: n (not required)
 action n name ALU url sync://serv2.ABCo.com:2647/Modules/Components/ALU\
 Trunk:Beta relpath alu

 #This href is being added action: a
 action a name NewROM url sync://serv2.ABCo.com:2647/Modules/Components/ROM\
 selector BuildReady: relpath rom

 When the changes are completed, save the file as normal. DesignSync
 will then prompt you to submit the changes.

ENOVIA Synchronicity Command Reference - Module

593

 Submit href changes (Y/N):
 y
 sync://serv2.ABCo.com:2647/Modules/Components/Chip: Added hierarchical
 reference(s):
 Name: NewROM
 Object: sync://serv2.ABCo.com:2647/Modules/Components/ROM
 Type: Module
 Selector: BuildReady
 Version: 1.2
 Relative Path: rom

 sync://serv2.ABCo.com:2647/Modules/Components/Chip: Changed hierarchical
 reference(s):
 Name: RAM => RAMFinal

 sync://serv2.ABCo.com:2647/Modules/Components/Chip: Removed hierarchical
 reference(s):
 Name: ROM

 sync://serv2.ABCo.com:2647/Modules/Components/Chip: Created new module
 version 1.10.

 Finished edithrefs operation.
 {Objects succeeded (3)} {}

Example of Modifying Hierarchical References From an Href List

 This example shows using the hierarchical reference list generated in
 Example 1 making the same changes described in Example 2.

 dss> edithrefs -infile hreflist.txt Chip%0
 Beginning edithrefs operation ...

 sync://serv2.ABCo.com:2647/Modules/Components/Chip: Added hierarchical
 reference(s):
 Name: NewROM
 Object: sync://serv2.ABCo.com:2647//Modules/Components/ROM
 Type: Module
 Selector: BuildReady
 Version: 1.2
 Relative Path: rom

 sync://serv2.ABCo.com:2647/Modules/Components/Chip: Changed hierarchical
 reference(s):
 Name: RAM => RAMFinal

 sync://serv2.ABCo.com:2647/Modules/Components/Chip: Removed hierarchical
 reference(s):
 Name: ROM

 sync://serv2.ABCo.com:2647/Modules/Components/Chip: Created new module
 version 1.10.

Module Hierarchy Management

594

 Finished edithrefs operation.
 {Objects succeeded (3)} {}

Example of Generating a verbose list of Hierarchical References

 This example shows the verbose output of creating a list of
 hierarchical references to edit.

 stcl> edithrefs -outfile hreflist.txt -report verbose hrefs main%0
 Beginning edithrefs operation ...

 ##
 ## Hrefs generated from:
 sync://sync://serv2.ABCo.com:2647/Modules/Chip;Trunk:
 ## Revision: 1.11
 ## Workspace module: Chip%0
 ## Output to: C:/Workspaces/chipdesign/chip/hreflist2.txt
 ## Note: To avoid conflicts, you should lock the module branch before
 ## changing hrefs.
 ##

 Finished edithrefs operation.
 {} {}

 The generated file created from our hierarchy looks something like
 this.
 #
 # Hrefs generated from: sync://serv2.ABCo.com:2647/Modules/Chip;Trunk:
 # Revision: 1.11
 # Workspace module: Chip%0
 #
 # The generated file using the -outfile option contains all the
 # latest hrefs from the provided module branch.
 # There will be one href per line with name/value pairs for the
 # existing href
 # properties that can be changed.
nnn #
 # The following properties are output:
 # name, url, selector, relpath
 #
 # The following properties can be provided but are not saved with the
 # href:
 # action, allowed values: add | change | remove | none
 # newname, used to change the href name (name property required
 # to identify existing href having name changed)
 #
 # The action property defines an explicit action.
 # - If no action is provided and an href with the provided name
 # exists, the
 # entry is considered a change action and each provided property is
 # checked
 # for a change. Any entries with changes will be reflected on the
 # server in
 # the next module version.

ENOVIA Synchronicity Command Reference - Module

595

 # - For a change entry, only the provided properties can be changed on the
 # server, except for the selector property that can be changed as part of
 # a provided url. When both the url and the selector property provide the
 # selector, the selector property is used.
 # - If the url or selector of a module is changed, a new static version
 # number is gotten and saved with href.
 # - If no action and an href with the provided name does not exist, this
 # entry is considered an add action.
 # - An add entry does not need a name provided (except external modules)
 # so an entry without the name provided is considered an add action and
 # a default name based on the target url will be used.
 # - To remove an href the remove action must be provided and any provided
 # properties are not used.
 # - Names cannot be swapped with one run of edithrefs nor can the
 #same name
 # be used for two entries even if one is removing it and the other
 # adding it.
 # - If an existing href is not provided in the file, it will not be
 # affected.
 # - Comments indicated by '#' used in first column of line.
 #

 name ROM url sync://serv1.ABCo.com:2647/Modules/Components/ROM
 selector Gold: relpath rom
 name RAM url sync://serv1.ABCo.com:2647/Modules/Components/RAM selector {}
 relpath ram
 name ALU url sync://serv2.ABCo.com:2647/Modules/Components/ALU
 Trunk:Beta relpath alu

reconnectmod

reconnectmod Command

NAME

 reconnectmod - Updates the hrefs from a module to a new module

DESCRIPTION

 After you have moved a module (with the exportmod/importmod
 commands), you can update hierarchical references pointing to the old
 module to the new module. This operation does not create a new module
 version of the referencing modules, it modifies the reference within
 the module version to point at the new location. This maintains the
 integrity of both static and dynamic hierarchical references after a
 module has changed location.

 You can update the references all modules or a single module, or a
 list of modules.

 Note: When doing a move module with the mvmod command, the reconnect

Module Hierarchy Management

596

 command is called automatically as part of that operation.

 This command supports the command defaults system.

 This command is subject to access controls on the server.

SYNOPSIS

 reconnectmod [-[no]force] [(-from <oldServerURL>) |
 (-parents <TCLlist>)] <ServerURL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the new module. Specify the URL as
 follows:
 sync://<host>[:<port>]/Modules/[<category...>/]<module>
 or
 syncs://<host>[:<port>]/Modules/[<category...>/]<module>
 where 'sync://' or 'syncs://'
 is required, <host> is the machine on which the
 SyncServer is installed, <port> is the SyncServer
 port number (defaults to 2647/2679), [<category...>}
 is the optional category (and/or sub-category)
 containing the module, and <module> is the name of
 the module.
 For example:
 sync://serv1.abco.com:1024/Modules/ChipDesigns/Chip

OPTIONS

• -force
• -from
• -parents

-force

 -[no]force Determines whether to force the modulereconnect
 to module specified with the -from option, even
 if url/uid for the modules doesn't match the
 information contained in the imported
 transportable module.

 -noforce does not recreate the href is the

ENOVIA Synchronicity Command Reference - Module

597

 url and uid information does not match the
 expected module information. (Default)

 -force recreates the href even if the url and
 uid information contained in the imported
 transportable module does not match the information
 for the target module specified with the -from
 option.

-from

 -from <OldServerURL> Specifies the URL of the old module. Specify the URL
as
 follows:

sync://<host>[:<port>]/Modules/[<category...>/]<module>
 or

syncs://<host>[:<port>]/Modules/[<category...>/]<module>
 where 'sync://' or 'syncs://'
 is required, <host> is the machine on which the
 SyncServer is installed, <port> is the SyncServer
 port number (defaults to 2647/2679), [<category...>}
 is the optional category (and/or sub-category)
 containing the module, and <module> is the name of
 the module.
 For example:
 sync://serv1.abco.com:1024/Modules/ChipDesigns/Chip

 Note: This option is mutually exclusive with -parents.

-parents

 -parents <TCLlist> Specify the list of urls identifying parent
 modules to update. By default, the list of
 parents is retrieved from the whereused
 information included with the module when the
 module is imported.

 Note: This option is mutually exclusive with
 -from.

RETURN VALUE

SEE ALSO

 mvmod, addbackref, addhref, rmhref, edithrefs

Module Hierarchy Management

598

EXAMPLES

 This example shows how to use reconnectmod after moving a module.
 dss> reconnectmod sync://serv2.ABCo.com:2647/Modules/ChipDesign/Chip-NX2
 Beginning module reconnect ...

 The following hierarchical reconnection will be made to each parent
 module:
 From: sync://serv1.ABCo.com:2647/Modules/Chips/chip-nx1
 To: sync://serv2.ABCo.com:2647/Modules/ChipDesign/Chip-NX2

 sync://serv1.ABCo.com:2647/Modules/Components/ROM : Updating
 hierarchical references ...
 sync://serv1.ABCo.com:2647/Modules/Components/ROM : Updating
 reconnect history ...
 sync://serv3.ABCo.com:2647/Modules/Components/CPU : Updating
 hierarchical references ...
 sync://serv3.ABCo.com:2647/Modules/Components/CPU : Updating
 reconnect history ...

 sync://serv2.ABCo.com:2647/Modules/ChipDesign/Chip-NX2 : Adding back
 references ...
 sync://serv1.ABCo.com:2647/Modules/Chips/chip-nx1 : Removing back
 references ...
 {Objects succeeded (4)} {}

rmhref

rmhref Command

NAME

 rmhref - Removes a hierarchical reference between modules

DESCRIPTION

 This command removes hierarchical references (connections) from an
 upper-level module to a module, external module, legacy module,
 DesignSync vault, or IP Gear Deliverable.

 The hierarchical reference is removed by creating a new module version
 that does not contain the reference(s).

 Note: You can remove existing hrefs in a module snapshot using the
 rmhref command. This creates a new module version on the
 snapshot branch.

 The rmhref command does not automatically update individual

ENOVIA Synchronicity Command Reference - Module

599

 workspaces. It only updates the module on the server. After the
 reference has been removed, all users using the module should
 repopulate their workspaces to update the module. To identify
 hierarchical references removed from the server, run the showstatus
 command.

 An href can only be removed when the following conditions are met:
 o The href being removed must already exist.
 o The fromargument must be a current module version.
 o The fromargument module must be the latest version on the module
 branch or the auto-merge must be enabled.
 o The fromargument module branch cannot be locked by another user.
 o The server(s) that hosts both the fromargument and the toargument
 must be available. Note: The availability of the toargument is not
 explicitly checked by the command.

 Note: Removing hierarchical references can affect mirrored data
 differently. For more information see the mirror commands.

 To perform a collection of hierarchical reference updates, including
 adding, removing or changing existing hrefs, see the edithrefs
 command.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports Enterprise Design Synchronization. For more
 information on Enterprise Design Synchronization, see the Enterprise
 Design Administration User's Guide.

 This command supports the command defaults system.

SYNOPSIS

 rmhref <fromargument> <toargument> [<toargument>..]

FROMARGUMENTS

• Server Module Version
• Workspace Module

 Specifies the URL of the upper-level module version from which you want to
 remove the connection.

 Note: If you are specifying the non-latest version, your system must have
 auto-merge enabled.

 Specify one of the following arguments:

Module Hierarchy Management

600

Server Module Version

 <server module Specify the URL as follows:
 version> sync[s]://<host>[:<port>]/<vaultPath> where
 <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 and <vaultPath> identifies the module. You
 may use this format to specify a module,
 module version or module branch.

 Note: If you specify a module, the remove is
 performed on the trunk branch.

Workspace Module

 <workspace module> Specify the workspace module. The module must
 be loaded in your workspace to remove an href
 and use a dynamic selector.
 If the version in the workspace is not the
 same as the current server version, you must
 have auto-merge enabled as the default checkin
 setup in order to remove the href. For more
 information on selecting auto-merge as the
 default checkin option, see The ENOVIA
 Synchronicity DesignSync Data Manager
 Administrator's Guide: Site Options.

 Note: If the workspace uses as a static
 selectors, modifications, such as removing an
 href cannot be checked in. You must update the
 workspace to use a dynamic selector or remove
 the href from the server version.

TOARGUMENTS

• Hierarchical Reference Name

Hierarchical Reference Name

 <href name> Specifies the name of the href or TCL glob
 pattern for multiple hrefs to be removed.
 Do not use a URL. Use the name
 value specified with the -name option in the
 addhref command that created the reference.
 To find the name of the href you want to
 remove, you can run the showhrefs command on
 the module.

 Note: The rmhref command accepts multiple
 toarguments to remove. The command then

ENOVIA Synchronicity Command Reference - Module

601

 creates a new module version with all of the
 specified hrefs removed.

RETURN VALUE

 If the rmhref command is successful, DesignSync returns an empty
 string (""). If the command fails, DesignSync returns an error
 explaining the failure.

SEE ALSO

 addhref, edithrefs, populate, showhrefs, showstatus, mirror,
 command defaults
,

EXAMPLES

• Example of Removing an Href from a Module Workspace
• Example of Removing a Hierarchical Reference from a Server Module Version

 The following examples use the hierarchy created in the addhref
 example to show removing a hierarchical reference.
 Note: you can only remove one href at a time. You can remove the
 hrefs in any order.

 Chip <= uses the default configuration
 ALU <= uses the default configuration
 CPU <= uses the Gold branch version
 ROM <= uses the Gold version

Example of Removing an Href from a Module Workspace

 This example removes the href between the Chip module and the ALU
 module, using the Chip%0 workspace instance to specify the top-level
 module.

 The following commands shows the module hierarchy before the href
 removal.
 dss> showhrefs Chip%0

 Beginning showhrefs operation ...

 Showing hrefs of module /home/tmarci2/MyModules/chip/Chip%0 ...

 /home/rsmith/MyModules/chip/Chip%0: Workspace version - 1.8
 /home/rsmith/MyModules/chip/Chip%0: Href mode - normal

Module Hierarchy Management

602

 Name Url Selector Version
 Type Relative Path
 --
 ALU sync://srvr2.ABCo.com:2647/Modules/ALU Trunk: 1.3
 Module ALU
 CPU sync://srvr2.ABCo.com:2647/Modules/CPU Gold: 1.3
 Module CPU

 Finished showhrefs operation.

 The following command removes the hierarchical reference from the
 workspace and the server.

 dss> rmhref Chip%0 ALU

 Beginning rmhref operation ...

 sync://srvr2.ABCo.com:2647/Modules/Chip: Created new module version 1.9.

 Finished rmhref operation.

 After populate is run to update the workspace with the new module
 version, you can run the showhrefs command to shows that the href
 was removed.

 dss> showhrefs Chip%0

 Beginning showhrefs operation ...

 Showing hrefs of module /home/rsmith/MyModules/chip/Chip%0 ...

 /home/tmarci2/MyModules/chip/Chip%0: Workspace version - 1.9
 /home/tmarci2/MyModules/chip/Chip%0: Href mode - normal

 Name Url Selector Version
 Type Relative Path
 --
 CPU sync://srvr2.ABCo.com:2647/Modules/CPU Gold: 1.3
 Module CPU

 Finished showhrefs operation.

Example of Removing a Hierarchical Reference from a Server Module Version

 This example removes the href between the Chip module and the CPU
 module, using the url to specify the top-level module.
 Note: Because no version or branch is specified, the href is removed
 from the latest version on the Trunk branch.

 dss> rmhref sync://srvr2.ABCo.com:2647/Modules/Chip CPU

 Beginning rmhref operation ...

ENOVIA Synchronicity Command Reference - Module

603

 sync://srvr2.ABCo.com:2647/Modules/Chip: Created new module version 1.6.

 Finished rmhref operation.

 An showhrefs command on the module shows that the href was
 removed and there are no hierarchical references left in the module.

 dss> showhref sync://srv2.ABCo.com:2647/Modules/Chip

 Beginning showhrefs operation ...

 sync://srv2.ABCo.com:2647/Modules/Chip: Module has no hierarchical
 references.

 Finished showhrefs operation.

showhrefs

showhrefs Command

NAME

 showhrefs - Displays the hierarchy of a module

DESCRIPTION

• External Module Support
• Understanding the Output

 This command displays the hierarchical references for a module or a
 legacy module configuration. When run recursively, this command
 also displays the hierarchical references for all modules and legacy
 module configurations in the hierarchy.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

External Module Support

 DesignSync supports showing the hierarchical reference status of an
 external module to determine state of the hierarchical
 references. After an external module has been populated, the showhref
 command can be available to query the status of the external module

Module Hierarchy Management

604

 hierarchical reference and return the results.

 Hierarchical reference conflicts are reported in the final list
 output when all of the following conditions are true;
 o conflict property is set to yes during command processing
 o conflicts option is provided
 These properties are not, however; returned in the final list output
 or included in the conflict summary.

 Over-ridden hierarchical references can also be reported in the final
 output when the -overridden option is used with the -report verbose.

 For information on populating an external module, see the populate
 command. For information on configuring showstatus for external
 modules, see the DesignSync Administrator's Guide.

Understanding the Output

 The output of the showhrefs command can be formatted for easy viewing
 (-format text) or optimized for Tcl processing (-format list). Both
 viewing formats show the same information, but may have different
 names. In the table below, the Column Titles column shows the text
 output column header and the Property Names column shows list output
 key value.

 The showhrefs command, by default, displays the following
 information:

 Column Property
 Titles Names Description
 ------ ----- ------------
 Name name The name of the href. For example, CPU.

 URL url The URL of the referenced module,
 external module, legacy module
 configuration, DesignSync vault, or IP
 Gear deliverable. The URL for all
 references except external modules,
 includes host, port, and vaultPath. The
 external modules URL identifies the
 reference as an external module href and
 contains the <external-type> and the
 <external-data> strings.

 Selector selector The selector for the href as supplied to
 the add href command. This varies
 depending on the type of href.
 o modules - the selector list used to
 identify the referenced module version.
 o legacy modules - the name of the
 referenced legacy module configuration.
 o DesignSync vaults - the selector list
 used to identify the referenced vault
 versions.

ENOVIA Synchronicity Command Reference - Module

605

 For all other object types, the selector
 field is empty.

 Version version The version of the referenced module the
 selector resolved at the time the href
 was created. If the href is not a module,
 the version field is empty.

 Type type The type of object referenced.
 o Module - href to a module.
 o Alias - href to a legacy module alias.
 o Branch - href to a legacy module
 branch configuration.
 o External - href to an external module.
 o Release - href to a legacy module
 release configuration..
 o Selector - href to a legacy module
 selector configuration.
 o Vault - href to a DesignSync vault.
 o Deliverable - href to an IP Gear
 deliverable.
 o Unknown - indicates that the object
 type could not be determined at the
 time the href was created.

 conflict When the -conflict option is specified,
 the report reports conflicting
 hierarchical references. In text mode, a
 CONFLICT identifier is appended to the
 lines showing the conflicting URLs. In
 list mode, the command uses the conflict
 key. The value of the key is "yes," if
 the href is in conflict, or "no," if the
 href is not in conflict.

 In text mode, a conflict line is written
 beneath the table for each href in
 conflict during processing and, at the
 end of the output, a summary table shows
 all the conflicting hrefs.

 When populating a workspace module, with
 a V6R2015x client or later, showhrefs
 marks the conflicts at fetch time. And
 this option displays the conflicting
 references along with information about
 which modules are fetched into the
 workspace during populate operations.

 When populating a server-side module,
 conflict detection occurs on the fly
 while processing the hierarchy on all
 associated servers. The first conflicting href
 that is processed may not be known until
 another conflicting href is found and
 therefore the first conflicting href may
 not be marked as such. All subsequent

Module Hierarchy Management

606

 conflicting hrefs will be marked with a
 line indicating the href is in-conflict
 with another href. The first conflicting
 href may not show as in conflict in the
 initial href report, but does in the
 summary table.

 Relative relpath The relative path from the base directory
 Path of the upper-level module (Parent) to the
 base directory of the submodule. This
 path is used by the populate command when
 you fetch the module into your work
 area.

 instance_name The instance identifier for the workspace
 module version. This is not applicable
 if the specified argument is a server
 module.

 basedir The workspace base directory of the
 module. This is not applicable if the
 specified argument is a server module.

 If you run the showhrefs command with '-report brief' it displays:

 Column Property
 Titles Names Description
 ------ ----- ------------
 Name name The module name of the top level module
 and the href name for all referenced
 submodules, legacy module configurations,
 IP Gear deliverables, and DesignSync
 vaults.
URL/Base url/ Path to the module. If the command is
Directory basedir performed on the server, it includes the
 full sync URL for the module, including
 selector information. If the command is
 performed on the workspace, it includes
 the full directory path. For external
 modules, it always displays the URL as:
 sync:///ExternalModule/<external-type>/<external-data>

 conflict When the -conflict option is specified,
 the report reports conflicting
 hierarchical references. In text mode, a
 CONFLICT identifier is appended to the
 lines showing the conflicting URLs. In
 list mode, the command uses the conflict
 key. The value of the key is "yes," if
 the href is in conflict, or "no," if the
 href is not in conflict. The first
 conflicting href may not show as in
 conflict. For more information, see
 the "conflict" description above in the
 report -normal output section.

ENOVIA Synchronicity Command Reference - Module

607

 Note: The -brief output indents the module name to graphically
 represent the hierarchical.

 If you run the report in -verbose mode with the -overridden option,
 it adds the following column:

 Column Property
 Titles Names Description
 ------ ----- ------------
 Overridden overridden Whether this particular href is
 overridden by a higher level href.
 yes - this URL is ignored by system
 because it is overridden by a
 higher level href.
 no - this URL is active; not overridden.

 If you specify the -overridden option, all submodules, even the
 overridden submodules, display with their own showhrefs table.

 As showhrefs recurses a hierarchy, it counts any errors and displays
 suitable error messages. At the end of the operation, showhrefs
 displays an error message which contains the number of errors that
 occurred.

 Using the -format list option formats the output into a Tcl string
 that can be processed in scripts, however the order and the property
 names differ slightly from the -format text (default) option. For
 more information, see Example 3 which shows using the -format list
 option with report -normal and Example 4 which shows report -brief.

SYNOPSIS

 showhrefs [-[no]conflicts] [-format text|list]
 [-hrefmode {dynamic | static | normal}]
 [no]overridden] [-[no]recursive]
 [-report {brief | normal | verbose | script}]
 [-[no]stopatconflict] [-xtras <xtras>] <argument>

ARGUMENTS

• Server Module
• Workspace Module
• External Module Instance
• Server Legacy Module
• Workspace Legacy Module

Server Module

 <server module> Shows hierarchical references for a module

Module Hierarchy Management

608

 version. Specify the URL as follows:
 sync[s]://<host>[:<port>]/Modules/[<category>...]<module>[;<selector>]

 where <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 <category> identifies the path to the module,
 <module> is the name of the module, and <selector>
 identifies a particular branch or version. You
 may use this format to specify a module, module
 branch, or module version. The default branch is
 "Trunk." The default version is "Latest.

Workspace Module

 <workspace module> Shows hierarchical references for a workspace
 module. You can specify the workspace module by
 using the module name, if it's unique within the
 workspace (For example: Chip), or the workspace
 module instance name. (For example: Chip%0).

External Module Instance

 <external_mod> Specifies the external module instance. The
 external module must be populated into the
 workspace.

Server Legacy Module

 <server module> Shows hierarchical references for a legacy
 module. Specify the URL as follows:
 sync[s]://<host>[:<port>]/<vaultPath>[;<selector>]
 where <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 <vaultPath> identifies the module, and <selector>
 identifies a legacy module configuration. The
 default branch is "Trunk." The default version is
 "Latest.

 Note: If no selector information is provided for
 legacy modules, DesignSync uses the default
 configuration.

Workspace Legacy Module

 <workspace module> Shows hierarchical references for a workspace
 module. You can specify the legacy module using
 the path of the workspace. (Legacy Modules Only)

ENOVIA Synchronicity Command Reference - Module

609

OPTIONS

• -[no]conflict
• -format
• -hrefmode
• overridden_option
• -[no]recursive
• -report
• -[no]stopatconflict
• -xtras

-[no]conflict

 -[no]conflict Determines whether to show conflicting
 hierarchical references; multiple references
 to different versions of the same module; in
 the output.

 -[no]conflict does not show module
 conflicts for server module arguments. For
 workspace module argument, if conflicting
 hrefs are populated into the workspace, the
 conflict is reported. (Default)

 -conflicts shows, for each module with a
 conflicting hierarchical reference,
 information about which submodule version was
 or was not populated because of a
 conflict.

 Notes:
 o If the -noconflicts option is specified with the
 -stopatconflicts option, the -stopatconflicts
 option is silently ignored.

 o This option is only applicable to modern
 modules. If specified for a legacy module
 argument, the option is silently ignored.

-format

 -format <type> Determines the format of the output.
 Valid values are:
 o list - Displays a list with the following
 format:
 {
 name <name>

Module Hierarchy Management

610

 }

 o text - Display a text table with headers and
 columns. (Default)

-hrefmode

 -hrefmode Indicates how the hierarchy is traversed by
 the command.

 Note: This option is ignored for workspace
 modules which are always traversed the way
 they were loaded into the workspace.

 Valid values are:
 o dynamic - Resolves the href selector to
 determine the referenced module version to
 expand.

 o static - Expands the module version to which
 the href selector resolved when the href was
 created.

 o normal - Resolves the href selector to
 determine the referenced module version to
 expand. If, while traversing the hierarchy,
 the showhrefs command reaches a static
 selector, for example a version tag or
 numeric version ID, the hrefmode switches to
 static for the remaining sub-hierarchy of
 the referenced module.(Default) This option
 respects the traversal method identified by
 the "HrefModeChangeWithTopStaticSelector"
 registry key. For more information, see the
 "Module Hierarchy" topic in the ENOVIA
 Synchronicity DesignSync Data Manager User's
 Guide.

 -[no]overridden Determines whether to display information
 about overridden hrefs.

 -nooverridden - Ignores overridden hrefs and
 does not include them into the href
 traversal. (Default)

 -overridden - Traverses the module hierarchy,
 including displaying overridden hrefs and
 showing a table for each href.

 Note: In order to see overridden hrefs, you
 must specify BOTH -overridden AND -report
 verbose mode.

ENOVIA Synchronicity Command Reference - Module

611

-[no]recursive

 -[no]recursive Determines whether to display hierarchical
 references for the specified module, or the
 specified module and all submodules.

 -norecursive displays hierarchical references
 for the specified module. (Default)

 -recursive displays hierarchical references
 for the specified module and all submodules.

-report

 -report Specifies the information output. The
 information each option returns is discussed
 in detail in the "Understanding the Output"
 section above.

 Valid values are:

 o brief - Displays the Name of the
 hierarchical reference and the module path
 to the reference. If the -showconflicts
 option is selected, a *CONFLICT* identifier
 showing the conflicting hrefs. The brief
 mode does not provide information about
 which href would be populated.

 o normal - Displays a list of hierarchical
 references and their properties. (Default)

 o verbose - Displays the information available
 with normal.

 o script - Returns a Tcl list of
 config_name/property_list pairs.

-[no]stopatconflict

 -[no]stopatconflict Specifies whether the command should continue
 processing a hierarchy recursively after
 reaching a conflict in the hierarchy or stop.

 -nostopatconflict continues recursing through
 the directory hierarchy regardless of how
 many conflicts are revealed. (Default)

 -stopatconflict stops processing recursively
 through the directory hierarchy when the

Module Hierarchy Management

612

 first conflict within the hierarchy is
 exposed.

 Notes:
 o When processing a workspace module, the
 traversal only includes recursion through
 the fetched submodules and it always stopped
 at conflicting hrefs not in the workspace.

 o If the -noconflict option is selected,
 with the -stopatconflict option, the
 -stopatconflict option is silently
 ignored.

-xtras

 -xtras <xtras> List of command line options to pass to the
 external module change management system. Any
 options specified with the -xtras option are
 sent verbatim, with no processing by the
 populate command, to the Tcl script that
 defines the external module change management
 system.

RETURN VALUE

 If you run the showhrefs command with the '-format list' option,
 it returns a Tcl list. If the command fails, it returns a Tcl
 error. For all other options, it returns an empty string ("").

 For a description of the output, see the "Understanding the Output"
 section.

SEE ALSO

 addhref, edithrefs, populate, showmcache, showstatus, rmhref,
 command defaults
,

EXAMPLES

• Example of Displaying the Hierarchical References on the Server
• Example of Showing Hrefs on the Server Vault in List Format
• Example of Displaying the Hierarchical References in a Workspace
• Example of Showing Hrefs on the Workspace in List Format
• Example of Showing Hrefs in Brief Report mode and List Format
• Example Showing Overridden Hrefs in the Workspace in Text Format
• Example Showing Overridden Hrefs in List Format

ENOVIA Synchronicity Command Reference - Module

613

• Example Showing Conflicting Hierarchical References in the Workspace

 The following examples all use this hierarchy, which is the example
 created with the addhref command:

 Chip <= uses the default configuration
 Cpu <= uses the Gold version
 ROM <= uses the Gold version

Example of Displaying the Hierarchical References on the Server

 This example displays the hierarchical references for the Chip
 module in text mode, which is specified by the sync URL.

 dss> showhrefs -recursive sync://srvr2.ABCo.com:2647/Modules/Chip

 Beginning showhrefs operation ...

 Showing hrefs of module sync://srvr2.ABCo.com:2647/Modules/Chip (1.7) ...
 sync://srvr2.ABCo.com:2647/Modules/Chip: Href mode is normal.

 Name Url Version Type Relative Path

 CPU sync://srvr2.ABCo.com:2647/Modules/CPU Gold Module CPU

 ===

 Showing hrefs of module sync://srvr2.ABCo.com:2647/Modules/CPU;Gold (1.3)
...

 sync://srvr2.ABCo.com:2647/Modules/CPU;Gold: Href mode is static.

 Name Url Version Type Relative Path

 ROM sync://srvr2.ABCo.com:2647/Modules/ROM 1.4 Module /ROM

 sync://srvr2.ABCo.com:2647/Modules/ROM;Trunk:: Module has no
 hierarchical references.

 Finished showhrefs operation.

Example of Showing Hrefs on the Server Vault in List Format

 This example displays hierarchical references specifying a server
 module, sync://srvr2.ABCo.com/Modules/Chip, with report -normal
 output. This example uses the hierarchy described at the beginning of
 the examples section.

 dss> showhrefs -format list -recursive \

Module Hierarchy Management

614

 sync://srvr2.ABCo.com:2647/Modules/Chip

 {relpath CPU name CPU type Module version Gold url \
 sync://srvr2.ABCo.com:2647/Modules/CPU hrefs {{relpath /ROM name \
 ROM type Module version 1.4 url \
 sync://srvr2.ABCo.com:2647/Modules/ROM}}}

 Note: The hierarchy of each submodule is contained within the hrefs
 property.

Example of Displaying the Hierarchical References in a Workspace

 This example displays the hierarchical references for the Chip module
 in text mode; specified by the module workspace instance name.

 dss> showhrefs -recursive Chip%0

 Beginning showhrefs operation ...
 Showing hrefs of module /home/rsmith/Modules/chip/Chip%0 ...

 /home/rsmith/MyModules/chip/Chip%0: Workspace version - 1.7
 /home/rsmith/MyModules/chip/Chip%0: Href mode - normal

 Name Url Version Type Relative Path

 CPU sync://srvr2.ABCo.com:2647/Modules/CPU 1.2 Module CPU

 ===

 Showing hrefs of module /home/rsmith/MyModules/chip/CPU/CPU%1 ...

 Name Url Version Type Relative Path

 ROM sync://srvr2.ABCo.com:2647/Modules/ROM 1.4 Module /ROM

 /home/rsmith/MyModules/chip/ROM/ROM%1: Workspace version - 1.2
 /home/rsmith/MyModules/chip/CPU/ROM/ROM%1: Module has no hierarchical
 references.

 Finished showhrefs operation.

Example of Showing Hrefs on the Workspace in List Format

 This example displays hierarchical references specifying a workspace
 module, Chip%0, with report -normal output. This example uses the
 hierarchy described at the beginning of the examples section.

 dss> showhrefs -format list -recursive Chip%0

 {hrefs {{relpath /ROM name ROM instance_name ROM%1 version 1.4 type \
 Module basedir /home/rsmith/MyModules/chip/CPU/ROM url \
 sync://srvr2.ABCo.com:2647/Modules/ROM}} relpath CPU name CPU \

ENOVIA Synchronicity Command Reference - Module

615

 instance_name CPU%1 version 1.2 type Module basedir \
 /home/rsmith/MyModules/chip/CPU url \
 sync://srvr2.ABCo.com:2647/Modules/CPU}

Example of Showing Hrefs in Brief Report mode and List Format

 This example shows the brief version of the report on the hrefs shown
 in Example 1 formatted for Tcl processing.

 dss> showhrefs -format list -report brief -recursive Chip%0

 name Chip url sync://srvr2.ABCo.com:2647/Modules/Chip hrefs {{name \
 CPU url {sync://srvr2.ABCo.com:2647/Modules/CPU;Gold} hrefs {{name \
 ROM url {sync://srvr2.ABCo.com:2647/Modules/ROM;1.4}}}}}

Example Showing Overridden Hrefs in the Workspace in Text Format

 This example shows overridden hierarchical references in the
 workspace. It uses the following hierarchical structure:

 CHIP <= uses the default configuration
 CPU <= uses the Trunk:Latest version
 LIB <= uses the Gold version
 ROM <= uses the Trunk:Latest version
 LIB <= uses the Trunk:Latest version (static version 1.2)

 dss> showhrefs -overridden -report verbose CHIP%0

 Beginning showhrefs operation ...

 Showing hrefs of module c:/Workspaces/chip/CHIP%0 ...

 c:/Workspaces/chip/CHIP%0: Workspace version - 1.4
 c:/Workspaces/chip/CHIP%0: Href mode - normal

 Name Url Selector
 Static Version Type Relative Path Overridden

 CPU sync://serv1.ABCo.com:2647/Modules/ChipDesign/CPU Trunk: 1.2
Module ../cpu no
 LIB sync://serv1.ABCo.com:2647/Modules/ChipDesign/Tools/LIB Gold 1.2
Module ../lib no
 ROM sync://serv1.ABCo.com:2647/Modules/ChipDesign/ROM Trunk: 1.2
Module ../rom no

 ===

 Showing hrefs of module c:/Workspaces/cpu/CPU%1 ...

 c:/Workspaces/cpu/CPU%1: Workspace version - 1.3
 c:/Workspaces/cpu/CPU%1: Href mode - normal

Module Hierarchy Management

616

 Name Url Selector
 Static Version Type Relative Path Overridden

 LIB sync://serv1.ABCo.com:2647/Modules/ChipDesign/Tools/LIB Gold
 1.2 Module ../lib yes

 c:/Workspaces/lib/LIB%0: Workspace version - 1.2
 c:/Workspaces/lib/LIB%0: Module has no hierarchical references.

 ===

 Showing hrefs of module c:/Workspaces/rom/ROM%1 ...

 c:/Workspaces/rom/ROM%1: Workspace version - 1.3
 c:/Workspaces/rom/ROM%1: Href mode - normal

 Name Url Selector
 Static Version Type Relative Path Overridden

 LIB sync://serv1.ABCo.com:2647/Modules/ChipDesign/Tools/LIB Trunk:
 1.2 Module ../lib yes

 Finished showhrefs operation.

Example Showing Overridden Hrefs in List Format

 This example shows overridden hierarchical references in the
 workspace. It uses the same hierarchical structure as the previous
 example.

 dss> showhrefs -overridden -report verbose -format list CHIP%0
 {hrefs {{relpath ../LIB resolved_selector 1.2 name LIB selector Gold
 type Module overridden no version 1.2 url
 sync://serv1.ABCo.com:2647/Modules/ChipDesign/Tools/LIB}} relpath ../COM
 resolved_selector 1.3 name COM selector Trunk: type Module overridden
 no version 1.2 url sync://serv1.ABCo.com:2647/Modules/ChipDesign/COM}
 {relpath ../LIB resolved_selector 1.2 name LIB selector Gold type
 Module overridden no version 1.2 url
 sync://serv1.ABCo.com:2647/Modules/ChipDesign/Tools/LIB} {hrefs {{relpath
 ../LIB resolved_selector 1.2 name LIB selector Trunk: type Module
 overridden no version 1.2 url
 sync://serv1.ABCo.com:2647/Modules/ChipDesign/Tools/LIB}} relpath ../ROM
 resolved_selector 1.3 name ROM selector Trunk: type Module overridden
 no version 1.2 url sync://serv1.ABCo.com:2647/Modules/ChipDesign/ROM} #

Example Showing Conflicting Hierarchical References in the Workspace

 This example shows hierarchical conflicts in the workspace in normal
 reporting mode.

ENOVIA Synchronicity Command Reference - Module

617

 dss> showhrefs -conflict TOP%0

 Beginning showhrefs operation ...

 Showing hrefs of module c:/chip/top/TOP%0 ...

 c:/chip/top/TOP%0: Workspace version - 1.4 : Selector - Trunk:
 c:/chip/top/TOP%0: Href mode - normal

 Name Url Selector
 Static Version Type Relative Path

 COM sync://serv1.ABCo.com:2647/Modules/Chip-P21z/COM Trunk:
 1.2 Module ../COM
 LIB sync://serv1.ABCo.com:2647/Modules/Chip-P21z/Tools/LIB Gold
 1.2 Module ../LIB
 ROM sync://serv1.ABCo.com:2647/Modules/Chip-P21z/ROM Trunk:
 1.2 Module ../ROM

 LIB: Not present in workspace due to hierarchical conflict.
 Finished showhrefs operation.

619

Informational

annotate

annotate Command

NAME

 annotate - Shows last modification information per line

DESCRIPTION

 This command opens the selected text file object and displays last
 modification information. The last modification information tells
 you:
 o The last-modified version for the line.
 o The author credited with the changes
 o The date the modification was checked in.

 The annotate command supports the command line default system.

SYNOPSIS

 annotate [-back <number> | -from <selector>] [-output <filename>]
 [-version <selector>] [-[no]white] [--] <argument>

ARGUMENTS

• Workspace File
• Server File

Workspace File

 <workspace file> Displays the specified file version loaded in the
 workspace. You may specify the file as either an
 absolute or relative path. Because this command
 only supports a single argument, You may not use
 wildcards, even if the wildcard selection results
 in only a single file being identified.

Server File

Informational

620

 <server file> Displays the specified file version. Specify the
 object with the sync URL in the format:
 sync://<host>:<port>/<path>/<object>;<selector>

OPTIONS

• -back
• -from
• -output
• -version
• -[no]white
• --

-back

 -back <number> Specifies the number of versions to consider when
 creating the annotated document. The versions
 included in the annotation begin with the
 specified version (-version option, if selected)
 and each version is processed until the specified
 number of versions back is reached, then the
 annotated file is generated.

 If neither the -back nor the -from option is
 specified, the annotate includes the entire object
 history, beginning with the vault
 root. (Default)

 Note: -back is mutually exclusive with -from.

-from

 -from <selector> Specifies the selector of the first version to
 consider when created the annotated document. The
 versions included in the annotation begin with the
 specified version (-version) and end with the
 version that resolves to the selector specified
 with the -from option. The specified selector must
 resolve to a version on a path from the annotated
 version to the vault root.

 Note: For module member version, the selector must
 be the module member version number.

 If neither the -back nor the -from option is
 specified, the annotate includes the entire object
 history, beginning with the vault
 root. (Default)

ENOVIA Synchronicity Command Reference - Module

621

 Note: -from is mutually exclusive with -back.

-output

 -output <file> Sends the results of the annotate command to the
 named file. The contents can then be processed or
 viewed as needed.

-version

 -version Specifies the version of a file to display.
 <selector> If no version is specified, DesignSync uses the
 version loaded in the workspace. (Default)

 You may specify any valid single selector. Note:
 When you use a version number to specify a module
 member, use the module version of the module
 containing the module member version you're
 interested in.

-[no]white

 -[no]white Specifies whether to ignore leading and trailing
 whitespace changes.

 -nowhite indicates the whitespace changes are
 considered a modification. Therefore if the
 indentation level was changed, the line is
 considered modified. (Default)

 -white indicates the whitespaces changes are not
 considered a modification. For example, if a user
 changes the indent level, the line is not considered
 modified. The last textual change (or embedded
 whitespace change) made is considered the last
 modification.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments to
 the command begin with a hyphen (-).

RETURN VALUE

Informational

622

 If the annotate command is successful, DesignSync returns an
 empty string (""). If the command cannot run, DesignSync throws an
 error message explaining the failure.

SEE ALSO

 ls, vhistory, selectors

EXAMPLES

 This example shows the annotate command with a fragment of the
 collection.ctp script included in the sample directory:

 dss> annotate collection.ctp
 Beginning Annotate operation...
 ...
 1.1 (barb 9-Apr-06): # Get the base name of a file.
 1.1 (barb 9-Apr-06): proc collectionCTP::getBase
 {filename} {
 1.2.1.3 (ian 1-Mar-07): set tail [collectionCTP::tail
 $filename]
 1.2.1.2 (ian 1-Feb-07): set dot [string first
 . [collectionCTP::tail $filename]]
 1.1 (barb 9-Apr-06): if {$dot == -1} {
 1.1 (barb 9-Apr-06): return $filename
 1.1 (barb 9-Apr-06): }
 1.2.1.3 (ian 1-Mar-07): set bit [expr [string length
 $filename] - [string length $tail] + $dot - 1]
 1.2.1.3 (ian 1-Mar-07): return [string range $filename
 0 $bit]
 1.1 (barb 9-Apr-06): }

compare

compare Command

NAME

 compare - Compares two defined sets of files or objects

DESCRIPTION

• Understanding the Types of Possible Compare Operations
• Understanding the Output

ENOVIA Synchronicity Command Reference - Module

623

• Understanding Status Values in the Ouput
• Running Compare on Modules
• Understanding Columns Returned When Comparing Module Objects

 The 'compare' command allows you to compare two versions of a module,
 two legacy configurations in a vault, or to compare workspaces to
 modules, vaults, legacy configurations or other workspaces.

 Note: The compare command compares only collections and not
 collection members. The compare command doesn't compare empty
 directories.

 The compare command has a number of standard arguments, and then a
 specification of what can be compared, in the form of either 0, 1 or
 2 arguments, plus 0, 1, or 2 selectors. The arguments can be any
 directory path or module instance. For more information on arguments,
 see the ARGUMENTS section. The selectors can be any valid selector or
 selector list, except that they may NOT contain the Date() or
 VaultDate() items. For more information on selectors, see the
 selectors topic.

 Note: The compare command works from the path of the object, not from
 the UUID, this means that if an object has moved, it may be reported
 twice, one in the original location and once in the new location.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Understanding the Types of Possible Compare Operations

 The following table describes the action of the compare command
 when you specify one or more selectors and one more arguments.

 The selectors can be any valid selector or selector list, except that
 they may NOT contain the Date() or VaultDate() items. For more
 information on selectors, see the selectors topic.

 The arguments can be any directory path or module instance. For more
 information on arguments, see the ARGUMENTS section.

 Any combination not indicated is disallowed.

 Notes:
 o This command is not intended to provide a way to compare two
 different modules, so there is no way to specify two module URLs.

 o For space considerations, the values of selector1/selector2 and the
 arguments allowed are represented as sel1/sel2 and arg1/arg2.

 sel sel2 arg1 arg2 Description

Informational

624

 --- ---- ---- ----- -----------
 No No Yes No Compare the contents of the specified argument
 against the server version.

 sel1 sel2 arg1 arg2 Description
 ---- ---- ---- ---- -----------
 No No No No Compare the current workspace directory path against
 the associated server version.

 sel1 sel2 arg1 arg2 Description
 ---- ---- ---- ---- -----------
 No No Yes Yes Compare the two arguments.

 sel1 sel2 arg1 arg2 Description
 ---- ---- ---- ---- -----------
 Yes No Yes No Compare the specified argument against the
 version indicated by the specified selector.

 The selector value is always evaluated against
 the server version of the argument. If you've
 filtered data out of your workspace and do not
 use the corresponding filters on the compare
 command, you see that data listed as present on
 the server, but not in your workspace.

 sel1 sel2 arg1 arg2 Description
 ---- ---- ---- ---- -----------
 Yes No No No Compare the current workspace against the
 specified selector. This uses the server
 version that corresponds to the persistent
 selector set on the workspace, rather than the
 current workspace module version.

 The selector value is always evaluated against
 the server version of the module or DesignSync
 vault. If you've filtered data out of your
 workspace and do not use the corresponding
 filters on the compare command, you see that
 data listed as present on the server, but not
 in your workspace.

 sel1 sel2 arg1 arg2 Description
 ---- ---- ---- ---- -----------
 Yes Yes No No Compare the two specified versions. Both are
 server versions identified by selector, for
 example you might compare Rel1:Beta against
 Re1:Gold, or Rel2:Beta. Neither of these is
 required to be populated into a workspace on
 your system in order to do the comparison.

 sel1 sel2 arg1 arg2 Description
 ---- ---- ---- ---- -----------
 Yes Yes Yes No Compare the two specified selector versions
 for the argument given. If the argument is a
 workspace path, the command uses the vault
 associated with the workspace path.

ENOVIA Synchronicity Command Reference - Module

625

Understanding the Output

 The output can be formatted for easy viewing (-format text) or
 optimized for Tcl processing (-format list). Both viewing formats
 show the same information, but may have different names. In the table
 below, the Column Titles column shows the text output column header
 and the Property Names column shows list output key value.

 This information is returned by the compare command regardless of
 what report mode you specify. Different report modes add additional
 information as described in the Options section under -report.

Understanding Status Values in the Ouput

The following table describes the status values:
 Column Property
 Titles Names Description
 ------ ----- ------------
 Identical identical The objects are the same.

 Different different_versions The objects are the same but are
 versions at different versions.

 Different different_objects The objects are the same natural
 objects path and the same versions, but
 they do not have the same unique
 ID values.

 First only first_only The object is present in the
 first area only.

 Second only second_only The object is present in the
 second area only.

 Different different_states The objects are the same version,
 states but in different states, for
 example one item is modified or
 absent (in reference mode) while
 the other is not.

 modified modified The objects are the same (same
 version and same uids), but both
 are modified and therefore the
 files might be different.

 Content identical_content The objects are the same (same
 identical version, same uid, same
 checksum), but the versions are
 different.
 Note: If your workspace is
 populated in share, reference, or
 mirror mode, DesignSync does not
 retain checksum information and

Informational

626

 these workspaces will never
 register as Content identical.

Running Compare on Modules

 You can run the compare command to:

 - Show all the files that were changed, added, or removed between
 module versions. If you have a version tagged for release and want
 to compare it against the module manifest of a previous or
 follow-on versions, you can use this to determine what files have
 changed.

 - Compare two workspaces. If you are running a simulation in your
 workspace, and a coworker is running simulations in his workspace,
 but you are seeing different results, you can compare your workspaces
 to see what is different.

 - Report items that are the same and history information when different.
 Also, in order to understand what the changes are, you can see the
 checkin comment history from the different versions back to their
 common ancestor.

 - Produce output for further processing. For example, having compared your
 workspace with that of someone else, you would like to take the list of
 what is different and tag those items.

 - Report hierarchies in only one side of a comparison. If you are
 comparing two hierarchies, but only some of the sub-directories are
 present in one of the hierarchies, you can view the full contents of
 those directories, or just get a note that the directory is
 present in only one of the areas.

 Note: When compare includes a workspace that has been populated with
 a selector list, creating a blended workspace, the objects in the
 workspace are compared against both the module indicated by the main
 selector and other selectors. Therefore a member populated from the
 main selector is compared against the corresponding vault version and
 a member populated from the selected list blended into the workspace
 is compared against that module version.

 The hrefmode options respect the traversal method identified by the
 "HrefModeChangeWithTopStaticSelector" registry key. For more
 information, see the "Module Hierarchy" topic in the ENOVIA
 Synchronicity DesignSync Data Manager User's Guide.

 Note: If a workspace has been populated with overriding hrefs, the
 compare command uses the overridden submodules as part of the
 comparison operation.

Understanding Columns Returned When Comparing Module Objects

ENOVIA Synchronicity Command Reference - Module

627

 Note: The column title for the path properties may change depending
 on whether you are comparing workspaces (Workspace Version) or legacy
 modules (Configuration Version).
 Column Property
 Titles Names Description
 ------ ----- ------------
 Workspace/ path1 The path of the first argument specified by
 Configuration the command.
 Version

 Workspace/ path2 The path of the second argument specified by
 Configuration the command.
 Version

 Status state The status value shows the result of the
 comparison. The next table shows all the
 status values possible.
 Note: The list view shows the overall status
 (state) of the files, and the specific
 information about both versions being
 compared.

 Name name Name of the object being compared.

 type Type of object being compared. Type values
 include:
 o file
 o module
 o folder
 o project

 url The URL of the module. (module type only)

 version Version of the module. (module type only)

 relpath The relative path to that module from the
 top level module.

 modulepath When only a portion of a module is being
 reported, for example, a single directory is
 specified within a module, the command
 compares only the contents of the
 sub-modules that fall under that
 directory. If a sub-module has no contents
 under that directory then the sub-module is
 contained in the results but has no listed
 objects. The sub-module may also have a
 modulepath property which indicates the path
 within that module for which the data is
 included.

 Note: Module members that have been moved appear twice in the compare
 output, once in their original location and once in their new
 location with "First only" or "Second only" status values.

Informational

628

SYNOPSIS

 compare [-format list|text]
 [-exclude <string>] [-filter <string>] [-hreffilter <string>]
 [-modulecontext <context>] [-output <file> |
 -stream <stream>] [-[no]path] [-recursive | -norecursive]
 [-report silent|brief|normal|verbose] [-[no]same]
 [-selector <selector> [-hrefmode dynamic|static|normal]]
 [-selector2 <selector2> [-hrefmode2 dynamic|static|normal]]]
 [-view <viewName>[,<ViewName>[,...]]] [--] [argument [argument]]

ARGUMENTS

• Module Folder

Module Folder

 <module folder> Compares the contents of the specified module
 workspace or server directory. If the workspace
 directory contains more than one module, you can
 restrict the compare to a single module by using
 the -modulecontext option.

 If a module folder is specified, the
 -modulecontext option is required.

OPTIONS

• -exclude
• -filter
• -format
• -hreffilter
• -hrefmode
• -hrefmode2
• -modulecontext
• -output
• -[no]path
• -[no]recursive
• -report
• -[no]same
• -selector
• -selector2
• -view
• --

-exclude

ENOVIA Synchronicity Command Reference - Module

629

 -exclude <expr> Excludes items that match the given regular
 expression.

 The expression is matched against the object
 path that would be reported. If '-path' is
 specified, the command matches the expression
 against the relative path; if '-fullpath' is
 specified, the command matches the expression
 against the full path, else against the object
 leaf name.

 By default, the 'compare' command does not
 exclude the objects in the global exclude lists
 (set using Tools->Options->General->Exclude
 Lists or using SyncAdmin:General->Exclude Lists).
 To exclude these objects from a 'compare' listing,
 apply the -exclude option with a null string:
 compare -exclude ""
 The objects in the global exclude lists are
 appended to the 'compare' exclude list if
 you exclude other values:
 compare -exclude "README.txt"

-filter

 -filter <string> Specify one or more extended glob-style
 expressions to identify an exact subset of
 module objects on which to operate. Use the
 -exclude option to filter out DesignSync
 objects that are not module objects.

 The -filter option takes a list of expressions
 separated by commas, for example: -filter
 +top*/.../*.v,-.../a*

 Prepend a '-' character to a glob-style expression
 to identify objects to be excluded (the default).
 Prepend a '+' character to a glob-style expression
 to identify objects to be included. Note that if
 the list of expressions begins with an include
 character ('+'), the filter excludes all objects
 except those that match the include string.

 Specify the paths in your glob-style expressions
 relative to the current directory, because
 DesignSync matches your expressions relative to
 that directory. For submodules followed through
 hrefs, DesignSync matches your expressions against
 the objects' natural paths, their full relative
 paths. For example, if a module, Chip, references
 a submodule, CPU, and CPU contains a file,
 '/libs/cpu/cdsinfo.tag', DesignSync matches
 against '/libs/cpu/cdsinfo.tag', rather than

Informational

630

 matching directly within the 'cpu' directory.

 If your design contains symbolic links that are
 under revision control, DesignSync matches against
 the source path of the link rather than the
 dereferenced path. For example, if a symbolic
 link exists from 'tmp.txt' to 'tmp2.txt',
 DesignSync matches against 'tmp.txt'. Similarly
 for hierarchical operations, DesignSync matches
 against the unresolved path. If, for example, a
 symbolic link exists from dirA to dirB, and dirB
 contains 'tmp.txt', DesignSync matches against
 'dirA/tmp.txt'.

 The extended glob-style expressions you use to
 filter the objects are standard glob-style
 expressions, but they are extended so that you can
 use the "..." syntax to indicate that the
 expression matches any number of directory levels.
 For example, the expression, "top/.../lib/*.v"
 matches *.v files in a directory path that begin
 with "top", followed by zero or more levels, with
 one of those levels containing a lib
 directory. The command traverses the directory
 structure. If a directory name matches an exclude
 clause of the filter, then the entire directory
 and all its contents are filtered (the command
 stops descending at that point), otherwise the
 command continues traversing the directory
 structure searching for matching objects.

 The -filter option does not override the exclude
 list set using SyncAdmin's General=>Exclude Lists
 tab or with the -exclude command line option; the
 items in the exclude list are combined with the
 filter expression. For example, an exclude list
 of "*%,*.reg" combined with '-filter .../*.doc' is
 equivalent to: '-filter
 .../*.doc,.../*%,.../*.reg'.

-format

 -format list|text Determines the format of the output.
 Valid values are:
 o text Display a text table with headers and
 columns. (Default) Objects are shown in
 alphabetical order.

 o list Tcl list structure, designed for further
 processing, and for easy conversion to a
 Tcl array structure. This means that it
 is a list structure in name-value pair
 format. The top level structure is:
 {

ENOVIA Synchronicity Command Reference - Module

631

 path1 <path>
 path2 <path>
 type folder
 objects <object_list>
 }

 path1 and path2 are the areas compared,
 and may be local workspace paths, or
 configuration URLs in the form:
 sync://machine:port/path@config

 The "selector" part is the originally
 supplied selector name, rather than
 any name resulting from selector
 expansion.

 object_list is then defined as a list of
 items of the form:
 {
 name <object name>
 type1 folder | file
 type2 folder | file
 objects <object_list>
 state <status>
 props1 <prop_list>
 props2 <prop_list>
 }

 The "name" is the name of the object, and
 may contain the relative path from the
 starting point if the '-path' argument
 was specified.

 Note: When comparing a module hierarchy,
 the top level list includes a
 "modules" property whose value is a
 list of the results for each module in
 the hierarchy.

 The "type1" and "type2" properties
 indicate whether the object is a folder,
 file, or module. Note that collection
 objects have a type file, also all
 symbolic links, whether to files or
 directories, have a type of "file". The
 reason that all links are "file" is to be
 consistent with the "ls" command which
 treats links as files.

 The type may be different on the two
 sides. A folder or module have object
 lists; which a file object does not have.
 A file has props1 and props2 lists which
 folders and modules do not have.

 The state value contains the status of
 the object. For more information on

Informational

632

 status values, see the Status table in
 the "Understand the Output" section
 above.

 The props1 and props2 are lists of
 properties for the object from path1 and
 path2, in the form:
 {
 version <version>
 state <state>
 ancestor <version>
 history <history_list>
 }

 To process the results, use the
 "compare-foreach" function below.

-hreffilter

 -hreffilter Excludes href values during recursive operations
 <string> on module hierarchies. Because hrefs link to
 submodules, you use -hreffilter to exclude
 particular submodules. The hreffilter value is
 matched against both the name of the href and the
 target module name. Note that unlike the
 -filter option which lets you include and exclude
 items, the -hreffilter option only excludes hrefs
 and, thus, their corresponding submodules.

 Specify the -hreffilter string as a glob-style
 expression. The string must represent a simple
 leaf name; you cannot specify a path. DesignSync
 matches the specified href filter against hrefs
 anywhere in the hierarchy. Thus, DesignSync
 excludes all hrefs by this leaf name; you cannot
 exclude a unique instance of the href.

 You can prepend the '-' exclude character to your
 string, but it is not required. Because the
 -hreffilter option only supports excluding hrefs,
 a '+' character is interpreted as part of the glob
 expression.

-hrefmode

 -hrefmode dynamic| Specifies how the hierarchy is processed when
 static|normal -selector is specified.
 o dynamic - Expands hrefs at the time of the
 operation to identify the version
 of the submodules being compared.
 o static - Expands with the submodules
 versions referenced by the hrefs when the

ENOVIA Synchronicity Command Reference - Module

633

 module version was initially created.
 o normal - Expands the hrefs at the time of the
 compare operation until it reaches a static
 selector. If the reference uses a static
 version, the hrefmode is set to 'static' for the
 next level of submodules to be compared;
 otherwise, the hrefmode remains 'normal' for the
 next level. (Default). This behavior can be
 changed using the
 "HrefModeChangeWithTopStaticSelector" registry
 key to determine how hrefs are followed.

 Note: Specifying different -hrefmodes with the
 same value for selector and selector2 allows
 comparison of the different resulting hierarchies.

-hrefmode2

 -hrefmode2 Specifies how the hierarchy is processed when
 dynamic|static -selector2 is specified.
 normal o dynamic - Expands hrefs at the time of the
 operation to identify the version
 of the submodules being compared.
 o static - Expands with the submodules
 versions referenced by the hrefs when the
 module version was initially created.
 o normal - Expands the hrefs at the time of the
 compare operation until it reaches a static
 selector. If the reference uses a static
 version, the hrefmode is set to 'static' for the
 next level of submodules to be compared;
 otherwise, the hrefmode remains 'normal' for the
 next level. (Default). This behavior can be
 changed using the
 "HrefModeChangeWithTopStaticSelector" registry
 key to determine how hrefs are followed.

 Note: Specifying different -hrefmodes with the
 same value for selector and selector2 allows
 comparison of the different resulting hierarchies.

-modulecontext

 -modulecontext Identifies the module being compared. The
 <context> -modulecontext option restricts the compare to
 only a particular module if your workspace has
 overlapping modules so that you can indicate
 which module you want to compare.

 Specify the desired module using the module name
 (for example, Chip), or a module instance name
 (for example, Chip%0), or server module URL

Informational

634

 (sync://server1:2647/Modules/Chip). If you use
 module context to specify a server object, you
 must specify the latest version.

 Note that you cannot use a -modulecontext option
 to operate on objects from more than one module;
 the -modulecontext option takes only one
 argument, and you can use the -modulecontext
 option only once on a command line.

-output

 -output <file> | Outputs the result to the specified file or
 -stream <stream> stream.

 The output file is used to preserve the results
 for later viewing or distribution. If the
 specified file already exists, it is overwritten
 with the new information.

 The stream option passes the results to named Tcl
 stream. Depending on whether you open the stream
 using the Tcl 'open' command in write (w) or
 append (a) mode, you can overwrite or append to an
 existing file.

 Note: The -stream option is only applicable in the
 stcl and stclc Tcl shells, not in the dss and dssc
 shells.

 If neither -output nor -stream is specified, the
 command output is displayed on the screen.

-[no]path

 -[no]path Controls the format of the path that is reported
 for each object. Objects are reported on a
 per-directory basis, with each directory path
 given as a full URL. The items within the
 directory can be reported as:

 -nopath displays simple object names with no
 directory path. (Default)

 -path display a relative path to the start of the
 command.

 Notes:
 o If the -report silent option is specified,
 the -path option is automatically used.

 o The 'contents' option to report as a full url

ENOVIA Synchronicity Command Reference - Module

635

 (-fullpath) is not supported by this command,
 because each object will potentially have two
 full URLs for the two areas being compared.

-[no]recursive

 -[no]recursive Determines whether the compare command operate
 on the specified argument or all subfolders in the
 the argument's hierarchy, or all submodules in the
 argument's hierarchy.

 -recursive performs this operation on all
 subfolders in the hierarchy, or on all sub-modules
 in a module hierarchy when the arguments are
 modules or modulecontext is used.

 -norecursive performs this operation on the
 specified folder only. (Default)

 Note: To filter modules, use the -hreffilter
 option. If the folder contains multiple modules,
 you can restrict your compare to a single module
 by using the -modulecontext option.

-report

 -report Controls the level of additional information
 reported as the command progresses.

 o silent Returns only the primary return data for
 the command - the data that has been
 compared, and whether the data is the
 same.

 Note: Using format -text, the relative
 path is returned in silent mode, unless
 the -fullpath option is specified.

 o brief Includes header lines showing what was
 compared and status lines where a long
 command might be performed without any
 output, such as when gathering data from
 a remote server. Directories that contain
 only items on one side, or for which all
 items are identical on both sides are
 not expanded to show their contents.

 o normal Expands directories that would be skipped
 in brief output mode, because they are
 present in one area only, or because
 all items are identical on both
 sides. (Default)

Informational

636

 o verbose Includes information on configuration
 mappings.

 In the output from brief mode, a directory may be
 shown with the message "(Nothing / all identical on
 this side)". This message indicates either that all
 items under this folder are the same on both sides
 or that there are items to report only on this side
 of the comparison.

 Note: The version is shown as 'Unknown' if the
 version of the file in the workspace cannot be
 determined from the local metadata. If an object has
 no local metadata, its Version will be 'Unmanaged'.
 Recreated files will appear as 'Unmanaged', because
 they have no local metadata (their metadata was
 removed by a previous 'rmfile').

-[no]same

 -[no]same Determines whether the output includes only items
 that are different or items that are the same and
 items that are different.
 -nosame reports only items that are
 different. (Default)
 -same reports items that are the same, in addition
 to items that are different.

-selector

 -selector Specifies the selector to compare. When only one
 <selector> selector option is used, the object specified by the
 selector is compared to a workspace. You cannot
 use a Date() or VaultDate() selector.

 Note: When specifying a selector, you must
 distinguish between branch and version selectors.
 If you are specifying a branch and the branch is
 anything other than Trunk, specify both the branch
 and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example, 'compare -selector B1:'
 or 'compare -selector B1:gold'.

 This option can not take a selector list. You
 must specify a single selector for each selector
 option.

ENOVIA Synchronicity Command Reference - Module

637

-selector2

 -selector2 Specifies a second selector when comparing
 <selector2> two modules, legacy module configurations, or
 directories in the vault. You cannot use a Date()
 or VaultDate() selector.

 Note: When specifying a selector, you must
 distinguish between branch and version selectors.
 If you are specifying a branch and the branch is
 anything other than Trunk, specify both the branch
 and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example, 'compare -selector B1:'
 or 'compare -selector B1:gold'.

 This option can not take a selector list. You
 must specify a single selector for each selector
 option.

-view

 -view <viewName> Specifies a view name or list of view names to
 [,<viewName>[,...]] use when comparing the module. The view list is a
 comma-separated list of view names.

 If you compare a workspace module and a server
 module, the view refers to the sever module. The
 workspace contents are the objects loaded in the
 workspace.

 Note: The -view option requires a specified
 -selector option.

--

 -- The command option '--' indicates that following
 arguments should not be taken as options, but as
 paths that begin with a '-'.

RETURN VALUE

 Empty string if -format value is text.
 Tcl list if the -format value is list.
 Empty string if -output or -stream is used with -format.

 When run from a server-side script, the server-side URL used in the

Informational

638

 results is relative to the server root (meaning the host:port
 information is omitted), for example:
 "sync:///Projects/p1."

SEE ALSO

 compare-foreach, contents, contents-foreach, command defaults

EXAMPLES

• Example of Comparing Two Selectors
• Example of Comparing Two Selectors with a URL
• Example of Comparing the Current Directory Against Another Directory
• Example of how to use '-format list' option
• Example Comparing a Workspace to a Server Module Version
• Example of Compare the Current Workspace Against A Module
• Example of Current Workspace Against Server Module Version
• Example of Comparing a Module with different Hrefmodes
• Example of Comparing a Tagging Module Version Against Latest

Example of Comparing Two Selectors

 Compare the two given selectors, using the 'url vault' of the current
 working directory to identify the server to work from.

 dss> compare -selector relA -selector2 relB -recursive

Example of Comparing Two Selectors with a URL

 Compare the two given selectors, starting from the given URL.

 dss> compare -selector relA -selector2 relB \
 sync://saturn.ABCo.com:30003/Modules/df2test -recursive

Example of Comparing the Current Directory Against Another Directory

 Compare my current directory against the other one given. Compare
 only this directory and not the sub-directory contents.

 dss> compare . /home/users/fred/Modules/P1 -norecursive

 (Note: You are not required to specify the -norecursive option;
 the behavior of the compare command is nonrecursive by default.)

ENOVIA Synchronicity Command Reference - Module

639

Example of how to use '-format list' option

 To find which objects in your workspace have or do not have a
 specific tag, use 'compare' to compare the workspace with the tag
 configuration. Then report the items that do or do not match.

 Create an auto-loaded Tcl proc:

 proc has_tag {dir tag {no_tag 0}} {

 record {set cres [compare -selector $tag $dir -same -recursive \
 -format list -path -report verbose]} nolog

 compare-foreach obj1 obj2 $cres {
 if {[info exists obj1(version)]} {
 if {[info exists obj2(version)] && \
 ([string compare $obj1(version) $obj2(version)] == 0)} {
 if {!$no_tag} {
 puts $obj1(name)
 }
 } else {
 if {$no_tag} {
 puts $obj1(name)
 }
 }
 }
 }

 }

 Note that this will not include unmanaged objects. To report unmanaged
 files, modify the code to add an "else" clause to the first "if"
 statement.

 The code can be changed to return a list of the objects by changing
 the "puts" statements to commands to build a return list. See standard
 Tcl programming documentation for how to do that.

 See the ENOVIA Synchronicity stcl Programmer's Guide for details on
 auto-loading.

 To report which files in the workspace have a "baseline" tag:

 stcl> has_tag . baseline
 code/samp.s19
 code/samp.lst
 stcl>

 To report which files in the workspace do not have a "baseline" tag:

 stcl> has_tag . baseline 1
 code/samp.asm
 code/test.mem
 code/sample1.asm
 code/samp.mem

Informational

640

 code/test.asm
 top/alu/alu.v
 stcl>

Example Comparing a Workspace to a Server Module Version

 Comparing a workspace to a module.
 stcl> compare -recursive -report brief -selector Gold -modulecontext \
 CPU%0 /home/rsmith/MyModules/cpu
 Gathering data from vault sync://srv2.ABCo.com:2647/Modules/CPU@Gold
 Gathering workspace contents for module
 /home/rsmith/MyModules/cpu/CPU%0 within module path
 /home/rsmith/MyModules/cpu
 Comparison of (identical objects not reported):
 Workspace: /home/rsmith/MyModules/cpu/CPU%0
 Configuration: sync://srv2.ABCo.com:2647/Modules/CPU@Gold

 Workspace Configuration Status Object
 Version Version Name
 1.2 1.1 Different versions cpu.doc

 Comparison of (identical objects not reported):
 Workspace: /home/rsmith/MyModules/cpu/ALU/ALU%1
 Configuration: sync://srv2.ABCo.com:2647/Modules/ALU@1.2

 Note: For two workspaces, the headings will be "Workspace1: " and
 "Workspace2: " and the column titles "Workspace1 Version" and
 "Workspace2 Version". Similarly, when comparing two modules or
 legacy modules, they will be "Configuration1" and "Configuration2".

Example of Compare the Current Workspace Against A Module

 Compare the current workspace against the module identified by the
 given selector list.

 dss> compare -selector relA,relB -recursive

Example of Current Workspace Against Server Module Version

 Compare the current workspace against the specified target module,
 the latest versions on the Beta branch. Notice that you append
 ':Latest' to the selector to indicate that Beta is a branch name and
 not a version name.

 dss> compare -recursive -selector \
 sync://saturn.ABCo.com:30003/Modules/df2test@Beta:Latest

Example of Comparing a Module with different Hrefmodes

ENOVIA Synchronicity Command Reference - Module

641

 Compare a module to the same module using different hrefmodes.
 dss> compare -selector relA -selector2 relB \
 -hrefmode dynamic -hrefmode2 static -recursive

Example of Comparing a Tagging Module Version Against Latest

 Compare tagged version of a specified module against the latest
 version on the specified date.

 dss> compare -selector Gold -selector2 Trunk:Date(01/31/09)
 sync://srv2.ABCo.com:2647/Modules/ChipDesigns/Chip

 Comparison of (identical objects not reported):
 Configuration1:
 sync://srv2.ABCo.com:2647/Modules/ChipDesigns/Chip@Gold
 Configuration2:
 sync://srv2.ABCo.com:2647/Modules/ChipDesigns/Chip@Trunk:Date(01/31/09)

 Configuration1 Configuration2 Status Object
 Version Version Name
 1.3 1.2 Different versions chip.c

compare-foreach

compare-foreach Command

NAME

 compare-foreach - Function to process the results of a compare
 command

DESCRIPTION

 This routine loops over the items in a "compare" results list, and
 processes each item in turn.

SYNOPSIS

 compare-foreach <var1> <var2> <result_list> <tcl_script> [-nofolder]
 [-path]

ARGUMENTS

Informational

642

• Loop Variables
• Result List
• Tcl Script

Loop Variables

 var1, var2 These are the loop variables. They are treated as Tcl
 arrays, and on each loop around contain the set of
 properties for the next object in the result_list,
 with var1 containing the "props1" properties and var2
 the "props2" properties. In addition to the
 properties in the "props1/2" values for each object,
 the arrays will contain a "name" property and a
 "type" property, which are the name and type
 properties for the object.

Result List

 result_list This is the list of objects to be processed. It must
 be the result value of a call to the "compare"
 command with the "-format list" option.

Tcl Script

 tcl_script This is the piece of Tcl code that is executed on
 each loop.

OPTIONS

• -nofolder
• -path

-nofolder

 -nofolder If specified, then the tcl_script will not be called
 for Folder type objects in the result_list.

-path

 -path The "name" property on each loop is usually just the
 "name" property for the object. However, if this
 option is specified, and a recursive "compare" was
 performed, then the "name" property is the relative

ENOVIA Synchronicity Command Reference - Module

643

 path to each object. Normally, you would run
 "compare" with the -path option, in which case the
 "name" property contains an appropriate relative
 path. If you did not do that, then passing the
 "-path" option to compare-foreach will mean that the
 "name" property contains the relative path for each
 item, thus allowing you to differentiate between
 items with the same name in different folders.

 Note: For sub-modules, the relative path is always
 relative to the base directory of that module. To
 find the full relative path to an object from the top
 module, the path to the object needs to be prepended
 with the relative path to that module.

SEE ALSO

 compare

EXAMPLE

• Example of Using compare-foreach On a Result List From compare

Example of Using compare-foreach On a Result List From compare

 Example of using the compare-foreach to parse a compare.

 set result_list [compare -selector RelA -selector2 RelB -rec -format list]

 compare-foreach obj1 obj2 $result_list {
 puts "Object: $obj1(name), state1: $obj1(state), state2: $obj2(state)"
 }

contents

contents Command

NAME

 contents - Lists the contents of a configuration or a
 module

DESCRIPTION

Informational

644

• Using Contents on Modules
• Understanding Module Hierarchy Output
• Understanding the path option

 The 'contents' command provides a simple way to list the contents
 of a DesignSync configuration and the member items of a module.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Using Contents on Modules

 You can run the contents command to:

 - List the contents of a module. See 'Understanding Module Hierarchy
 Output' for details.

 - List the contents of a particular module version, DesignSync vault
 or legacy configuration so that you can use it for later analysis
 (compare).

 Notes:

 * If a hierarchical reference to a submodule version has been
 overridden by a higher-level href, the hierarchical reference within
 the parent module is NOT considered modified by the contents
 command.

 * You can also use the contents-foreach function to perform
 operations on the contents of the output. See the
 'contents-foreach' command for more information.

 * If filters, views, or hreffilters are specified on the command
 line, they override all persistent filters, views,
 and hreffilters applied to the workspace.

Understanding Module Hierarchy Output

 To list all modules within a hierarchy, run the contents command on
 a module with the -recursive option.

 - The contents of the top-level (starting) module are listed first,
 and then the contents of the sub-modules are listed one by one. The
 order in which the module are listed is not predetermined as the
 same module can be referenced from multiple points in the module
 hierarchy.

ENOVIA Synchronicity Command Reference - Module

645

 - The module version of each sub-module in the hierarchy and its
 relative path from the top level module is listed. For example, if
 module Chip references module ALU with a relative path of "alu"
 and ALU references RAM with a relative path of "submods/ram", then
 the relative path reported from CHIP to RAM is "alu/submods/ram".

 - In a list format output, the submodules are shown in the "modules"
 property of the top-level module. Each sub-module has a set of
 properties that includes the module URL, the module version and the
 relative path.

 To list the contents of a module or referenced subdirectories, use
 the -modulecontext option. If you specify a specific directory within
 a module, DesignSync returns only the contents of the sub-modules
 within the specified directory.

 For list format output only, each sub-module has a 'modpath' property
 indicating the path within that module. The 'modpath' property is not
 shown when the contents of the entire sub-module is listed. For
 example, if Chip references ALU as above, and you specify: "contents
 -modulecontext Chip alu/commondir", the contents operation only lists
 the portion of the ALU sub-module and a "modpath" for all sub-modules
 in that directory.

 The specific module versions reported by the contents command within
 a module hierarchy depend on the value of hrefmode mode specified. If
 static mode is specified, the contents reported for the hierarchy
 follow the static version of the object at the time the href was
 created. If dynamic mode is specified, the contents resolve the
 hierarchical references dynamically. If normal mode is specified, the
 hrefs are followed dynamically until a static selector is reached
 after which all submodules are resolved statically. The contents
 command respects the traversal method identified for normal mode by
 the "HrefModeChangeWithTopStaticSelector" registry key. For more
 information, see the "Module Hierarchy" topic in the ENOVIA
 Synchronicity DesignSync Data Manager User's Guide.

 Important: If you are comparing two server-side module URLs,
 DesignSync uses the value for "HrefModeChangeWithTopStaticSelector"
 set at the server level, not the user level.

Understanding the path option

 When you use the -path option to list the contents of a module,
 including sub-modules, the relative path reported for members of
 sub-modules is always relative to the base directory of the module
 the object is a member of rather than being relative to the base
 directory of the top level module.

 The full relative path to a member from the top module, the path to
 the member needs to be prepended with the relative path to that module.

 When the -path option is used with the -modulecontext option, the

Informational

646

 relative path reported for objects within sub-modules is either the
 path from the specified folder or, if the module base directory is
 below this starting directory, the relative path from the base of the
 module or sub-module.

 When the -fullpath option is used, the paths reported for objects are
 server addresses in the form <module URL>/<path to object>, for
 example, "sync://sting:30002/Modules/mymod/subdir/file", where the
 module URL is the address of the module/sub-module.

 Note: This is not a valid individual member address to use in other
 commands.

 The command uses one of two paths:

 - A full server URL with an optional selector.

 - An optional path (may be a work area or vault folder path) and an
 optional selector.

 Note: If you specify a module folder as an argument you must use
 the -modulecontext option.

SYNOPSIS

 contents [-exclude <object> [,<object>...]] [-filter <string>]
 [-format <text| list>] [-fullpath] [-hreffilter <string>]
 [-hrefmode <dynamic|static|normal>]
 [-modulecontext <context>] [-output <file>] [stream <stream>]
 [-[no]path] [-[no]recursive]
 [-report {silent | brief | normal | verbose}]
 [-selector <selector>] [-[no]versions]
 [-view view1[,view2,...]] [--] <argument>

ARGUMENTS

• Module
• Module Folder

 Specifies one of the following argument:

Module

 <module> Specifies the module version or a workspace module
 for which you want to list the contents.

 If the version is not specified, use the -selector
 option. Otherwise, the current selector is used
 for a workspace module and the default Trunk:Latest

ENOVIA Synchronicity Command Reference - Module

647

 is used for a server module.

 Note: The module contents are always fetched from
 the server module version. If a workspace module
 is specified, the command uses the hierarchy in
 the module workspace with the module contents on
 the server.

Module Folder

 <module folder> Specifies the folder in a module for which
 you want to list the contents.

 If the -modulecontext option is specified, listing
 the contents of a module folder is the same as
 filtering the contents results to only include that
 folder.
 If the -recursive option is specified for a module
 folder, the sub-modules within the module folder are
 also specified.

OPTIONS

• -exclude
• -filter
• -format
• -fullpath
• -hreffilter
• -hrefmode
• -modulecontext
• -output
• -path
• -recursive
• -report
• -selector
• -stream
• -version
• -view
• --

-exclude

 -exclude<string> Specifies the items to exclude from the contents
 report.

 If you specify -filter (modules only)and
 -exclude, then the exclude conditions are applied
 after filtering the contents thus taking

Informational

648

 precedence.

 Note: The global exclude list is added in if
 either a -exclude or a -filter option is
 specified, even if the value of the option
 is an empty string "".

-filter

 -filter <string> This option filters the objects that are listed as
 contents. Use this option to specify one or more
 extended glob-style expressions to identify an exact
 subset of module objects on which to operate. Use the
 -exclude option to filter out DesignSync objects that
 are not module objects.
 For more information of the -filter option, see the
 description of filters in the 'ci' command.

 If you specify the -filter option with a workspace
 module version, it overrides any persistent
 filters, views, and hreffilters set on the workspace.

-format

 -format <list Specifies the format of the output. The format can
 | text> be:
 o text -plain text (default)
 o list -Tcl list structure

 The format when "-format list" is used is a Tcl list
 that is designed for further processing, and for easy
 conversion to a Tcl array structure. This means that
 it is a list structure in name-value pair format. The
 top level structure is:
 {
 path <path>
 name <path>
 config <config>
 objects <object_list>
 type folder
 }

 "path" is the starting point path given, and may be
 local workspace paths, or a vault path.

 "name" is the vault path for which the contents were
 fetched. It will match the "path" value if a server
 path was specified.

 "config" is the configuration being listed, that is
 selector value.

ENOVIA Synchronicity Command Reference - Module

649

 object_list is then defined as a list of items of the
 form:
 {
 name <object name>
 type folder | file
 objects <object_list>
 props <prop_list>
 }

 The "name" will include the full or relative path if
 the -fullpath or -path arguments are used.
 For information on how the -path an -fullpath options
 are handled when you specify a module as an argument,
 see the section 'Understanding the path option'.

 The "type" indicates whether the object is a folder or
 file (note that collection objects have a type file).
 Only a folder has an objects list - this property may
 not always be present.

 All file objects may have a props list, which is a list
 of properties for that object, and has the form:

 {
 version <version>
 }

 A file object has the version property only if the
 -versions argument was given. So, if -versions is not
 given, then file objects will not have a props property
 -- this property may not always be present. (Although it
 may seem unnecessary overhead to have the props sub-list
 for a single property, i.e. version, this structure is
 maintained for compatibility and for future extensions.)

 Note that there is no order implied on the objects in
 the object_lists. In particular, these items may not be
 sorted. This is different to the text output, where the
 items within a directory will always be reported in
 alphanumeric order. The reason for this is that
 generally the list output will be further processed,
 and that further processing can decide whether it needs
 to sort the results.

 For legacy modules, any sub-module configuration
 references are placed immediately below the referencing
 module.

 To process the results, use the contents-foreach
 function.

-fullpath

 -fullpath Reports the path for each object within the

Informational

650

 directory as a full URL.

-hreffilter

 -hreffilter Excludes href values during recursive operations
 <string> on module hierarchies. Because hrefs link to
 submodules, use -hreffilter to exclude particular
 submodules when listing module contents.

 If you specify the -hreffilter option with a workspace
 module version, it overrides any persistent
 hreffilters, filters, and views set on the workspace.

-hrefmode

 -hrefmode For a recursive listing of the contents, indicates
 how the hierarchical reference selectors are
 followed.

 Valid values are:
 o dynamic - Expands hrefs at the time of the
 listing the contents to identify the
 submodules to be listed.
 o static - Lists the contents with the submodules
 referenced by the hrefs when they were
 initially created.
 o normal - Expands the hrefs at the time of the
 compare operation until it reaches a static
 selector. If the reference uses a static
 version, the hrefmode is set to 'static' for the
 next level of submodules to be examined;
 otherwise, the hrefmode remains 'normal' for the
 next level. (Default). This behavior can be
 changed using the
 "HrefModeChangeWithTopStaticSelector" registry
 key to determine how hrefs are followed.

 If a workspace module is specified as the argument
 with no selector value, then the hierarchy is taken
 from the workspace and the -hrefmode option is
 ignored.

-modulecontext

 -modulecontext Specifies the module context, thereby allowing a
 <context> workspace folder that is below multiple modules to
 be specified, or allowing a sub-folder of a module
 on a server to be specified.
 Note: The module context is required for module

ENOVIA Synchronicity Command Reference - Module

651

 folders.

-output

 -output <file> Output the result to the specified file, which
 is overwritten if it already exists.

 Default is to send output to the screen if the
 -format value is text or to return it as the result
 of the function if the -format value is list.

-path

 -[no]path Controls the path that is reported for each
 object. Objects are reported on a per-directory
 basis, with each directory path given as a full
 URL. The items within the directory can be
 reported as:

 - Leaf names (the default, unless '-report
 silent' is specified)

 - Relative path to the start of the command
 (-path). This is the default if '-report
 silent' is specified.

 Note: The exclude list affects what objects are
 reported at the full, relative, or leaf of
 the path as appropriate. See the -exclude
 option for details.

-recursive

 -[no]recursive Specifies whether to perform this operation i
 just the specified folder (default) or in its
 subfolders.

 If you use the -recursive option and specify a
 folder, the contents command operates in a
 folder-centric fashion. The contents in the
 folder (all module and non-module data except the
 hierarchical references) are listed.
 The contents listed can be further refined using
 the -filter, -hreffilter or -exclude options.

 If you use the -recursive option and specify a
 module, the contents command operates in a
 module-centric fashion. The contents in the
 folder and all subfolders (that is all module and

Informational

652

 non-module data along with the hierarchical
 references) are listed.
 The contents listed can be further refined using
 the -filter, -hreffilter or -exclude options.

 Notes:
 o Hierarchical references are followed only for
 modules. All hrefs to legacy modules,
 DesignSync vaults or IPGear deliverables are
 skipped.

 o The -nomodulerecursive option has been
 deprecated. To filter modules, use the
 -hreffilter option.

-report

 -report <mode> Controls level of additional information
 reported as the command progresses.

 Valid values are:

 o silent - Only the primary output is given - the
 list of objects and versions. In this case, for
 the text output, the default is to show the
 relative path name (-path).

 o brief - Displays the same information as
 'normal'.

 o normal - Include header information and progress
 lines where a long command might be
 performed, such as when scanning the
 vault. (Default)

 o verbose - Include information on configuration
 mappings.

-selector

 -selector A valid selector or selector list.
 <selector> You should distinguish between branch and
 version selectors. If you are specifying a
 branch other than Trunk, specify both the branch
 and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'.
 You can also use the shortcut, '<branchtag>:',
 for example, 'contents -selector B1:'.

ENOVIA Synchronicity Command Reference - Module

653

-stream

 -stream <stream> Output to the given stream (which should be the
 result of a Tcl 'open' function call).

 Default is to send output to the screen if the
 -format value is text or to return it as the
 result of the function if the -format value is
 list.

-version

 -[no]versions Include the version numbers for the objects
 listed.

-view

 -view view1 Species the view name or list of view names
 [,view#[,...]] used when retrieving the contents of the
 module. The view list must be specified as a
 comma-separated list.

 Note: When the -view option is used with a
 workspace module instance argument, you must also
 specify the -selector option to identify a
 server-side module version on which to operate.

 If you specify the -view option with a workspace
 module version, it overrides any persistent
 views, filters, and hreffilters on the workspace.

 Specifying the view name "none" specifies that the
 command should not apply any views to the
 contents.

--

 -- The command option '--' indicates that following
 arguments should not be taken as options, but as
 paths that begin with a '-'.

RETURN VALUE

 Empty string if -format value is text.
 Tcl list if the -format value is list.

Informational

654

 Empty string if -output or -stream is used with -format.

 When run from a server-side script, the server-side URL used in the
 results is relative to the server root. For example, sync:///@Trunk:Latest.
 The {host}:{port} is omitted. If the server-side script is run from a
 browser (via a ProjectSync URL), then the script must format the output
 for display within an HTML page.

SEE ALSO

 contents-foreach, ls, ls-foreach, compare, compare-foreach, showstatus,
 command defaults

EXAMPLES

• Example Showing Contents of Server for Current Working Directory
• Example Showing Contents Output to a Stream
• Example Showing Contents of a Module Instance
• Example Showing Contents of Server Module Version

Example Showing Contents of Server for Current Working Directory

 This example shows the contents of the server (vault or module)
 associated with the current workspace.

 dss> contents

 This example shows the same contents, but includes version numbers
 and paths in the output.

 dss> contents -config Rel1 -recursive -fullpath -versions

 Gathering configuration data from vault
 sync://svr1.ABCo.com:30002/Projects/P1@Rel1

 Contents of:
 file:///home/users/username/myprojects/P1
 Vault:
 sync://svr1.ABCo.com:30002/Projects/P1@Rel1

 Version Object Name
 1.2 sync://svr1.ABCo.com:30002/Projects/P1/file1.txt
 1.4 sync://svr1.ABCo.com:30002/Projects/P1/file2.txt
 1.1 sync://svr1.ABCo.com:30002/Projects/P1/file4.txt
 1.5 sync://svr1.ABCo.com:30002/Projects/P1/file5.txt

 sync://svr1.ABCo.com:30002/Projects/P1/subdir@Rel1

 Version Object Name
 1.5 sync://svr1.ABCo.com:30002/Projects/P1/subdir/file7.txt
 1.2 sync://svr1.ABCo.com:30002/Projects/P1/subdir/file8.txt

ENOVIA Synchronicity Command Reference - Module

655

 Note: In this example, if the -fullpath option were not specified,
 then the relative path would be used for the Object Name.

Example Showing Contents Output to a Stream

 This example shows the contents of the configuration Rel4, for the vault
 directory structure starting at the vault location given. It sends
 the output results to the specified open stream.

 dss> contents -config Rel4 sync://svr1.ABCo.com:30002/Projects/P1
 -stream $p

Example Showing Contents of a Module Instance

 This example shows the contents of a workspace instance.

 dss> contents ModuleA%2

Example Showing Contents of Server Module Version

 This example shows the contents of a server module version.

 dss> contents sync://srv2.ABCo.com:2647/Modules/Mod1
 Gathering data from vault
 sync://srv2.ABCo.com:2647/Modules/Mod1@Trunk:Latest

 Module: sync://srv2.ABCo.com:2647/Modules/Mod1@1.2
 Contents of folder: /

 Object Name

 File1.txt
 File2.txt
 File3.txt

contents-foreach

contents-foreach Command

NAME

 contents-foreach - Function to process the results of a contents
 command

Informational

656

DESCRIPTION

 This routine loops over the items in a "contents" results list, and
 processes each item in turn.

 Note: The only property types typically available for each object
 are, name, type, and version. The name and type properties are always
 present in the contents output; "versions" is only present when the
 "-versions" option was specified to the contents command.

SYNOPSIS

 contents-foreach var result_list tcl_script [-nofolder] [-path]

ARGUMENTS

• var
• results_list
• tcl_script

var

 var This is the loop variable. It is treated as a Tcl
 array, and on each loop around contains the set of
 properties for the next object in the result_list.
 In addition to the properties in the "props" value
 for each object (i.e. the version), the array will
 contain a "name" property and a "type" property,
 which are the name and type properties for the
 object.

 Note: For modules, the contents-foreach function
 returns a value of "Module" for the "type"
 property.

results_list

 result_list This is the list of objects to be processed. It must
 be the result value of a call to the "contents"
 command with the "-format list" option.

tcl_script

 tcl_script This is the piece of Tcl code that is executed on

ENOVIA Synchronicity Command Reference - Module

657

 each loop.

OPTIONS

• -nofolder
• -path

-nofolder

 -nofolder If specified, then the tcl_script will not be called
 for Folder type objects in the result_list.

-path

 -path The "name" property on each loop is usually just the
 "name" property for the object. However, if this
 option is specified, and a recursive "contents" was
 performed, then the "name" property is the relative
 path to each object. Normally, you would run
 "contents" with the -path or -fullpath option, in
 which case the "name" property contains an
 appropriate relative or full path. If you did not
 do that, then passing the "-path" option to
 contents-foreach will mean that the "name" property
 contains the relative path for each item, thus
 allowing you to differentiate between items with the
 same name in different folders.

SEE ALSO

 contents

EXAMPLE

 This example shows using processing the compare-foreach command to
 process the results from a compare command.

 set result_list [contents -selector RelA:Latest -version -rec -format list]

 contents-foreach obj $result_list -nofolder { puts "Object: $obj(name),
 version: $obj(version)" }

datasheet

Informational

658

datasheet Command

NAME

 datasheet - Displays an object's data sheet

DESCRIPTION

 This command displays the data sheet for the specified object.
 The information that is displayed depends on the object type. For
 example, the data sheet for a file in your working folder contains
 information such as lock status, modification status, version
 number, and associated tags.

 DesignSync displays the information in a browser window. On Windows
 platforms your system's default browser is used, and the data sheet
 is displayed in an existing browser window if one is available. On
 UNIX, the browser is determined by a registry setting in one of the
 DesignSync client registry files. You can override the
 installation- or site-wide default browser using the SyncAdmin
 tool. On UNIX, DesignSync invokes a new browser to display the data
 sheet even if you have a browser already running.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 datasheet <object>

OPTIONS

 None.

RETURN VALUE

 None.

EXAMPLES

 This example displays the data sheet for top.v.

ENOVIA Synchronicity Command Reference - Module

659

 dss> scd Projects/Sportster/top
 dss> datasheet top.v

 This example displays the data sheet for the top.v vault.
 stcl> datasheet "sync://holzt:2647/Projects/Sportster/top/top.v;"

 This example displays the data sheet for version 1.2 of top.v.
 stcl> datasheet [url vault top.v]1.2

diff

diff Command

NAME

 diff - Compares files and versions of files

DESCRIPTION

• Notes for Collection Objects
• Note for Modules

 The file/version comparison facility has three components:
 - The DesignSync 'diff' command, which is documented here.
 - The DesignSync GUI Tools->Compare Files commands. Performing
 comparisons from the GUI simplifies the selection of files and
 versions for comparison, and also provides shortcuts to
 perform the most common types of comparisons. The GUI commands
 ultimately invoke the DesignSync diff command. See DesignSync
 Help for details on the Compare Files commands.
 - The graphical interface. DesignSync provides the capability to
 display diff results in a graphical diff client.
 Note: The graphical interface client does not directly understand
 DesignSync versions; you must invoke it from the DesignSync
 'diff' command using the -gui option, or the DesignSync GUI
 Advanced Comparison dialog in order to compare versions.

Notes for Collection Objects

 The built-in diff command supports comparing cell views members from
 different versions of a cell view, or comparing local modification of
 a cell view to different server versions of the cell view.

 Important: When specifying collection objects as the files to
 compare, you must use the -member option to specify the relative path
 of the cell view. This provides the location on the server of the

Informational

660

 cell view within the collection and indicates to DesignSync that the
 object is a cell view within a collection. To find the relative path
 of a cell view, use the url members command with the -relative option.

Note for Modules

 Note: The diff command is for comparing files. To compare module
 contents, use the compare command.

SYNOPSIS

 diff [-ancestor <commonAncestorFile>] [-binary] [-case] [-embed]
 [-kk] [-member <cellview_path>] [-modulecontext <context>
 [-standard | -unified | -syncdiff | -annotate | -gui]
 [-output <resultFile>] [-[no]usemoduleversions] [-version <id>]
 [-white]{[-file1] <fileA>} [[-file2] <fileB>] [--]

ARGUMENTS

• File Object

File Object

 <file> You can specify one or two files as simple filenames,
 relative pathnames, absolute pathnames, URLs to
 module members, DesignSync objects, collection cell
 view versions, and legacy module members. You can
 also specify versions by appending the filename
 with a semicolon (;) and a version number or tag
 name (including Latest and Orig).

 Note: When in stcl/stclc mode, you must surround
 filenames that have spaces or version-extended
 names with double quotes, for example:
 "foo.bar;1.5"The file argument can be specified
 with or without the -file/-file2 options. You can
 use version-extended filenames (see Description
 section).

OPTIONS

• -ancestor
• -annotate
• -binary
• -case

ENOVIA Synchronicity Command Reference - Module

661

• -embed
• -file1
• -file2
• -gui
• -kk
• -member
• -modulecontext
• -output
• -standard
• -syncdiff
• -unified
• -usemoduleversions
• -version
• -white
• --

-ancestor

 -ancestor <fn> Specifies the common ancestor for a three-way
 comparison. You can use version-extended filenames
 (see Description section).

 For example, two users fetch the same version of a
 file, and each makes changes to their copy. By
 specifying the original unmodified version as the
 common ancestor, the first user's modified copy as
 fileA and the second user's modified copy as fileB,
 the diff operation can indicate who made which
 changes and whether the changes would conflict when
 merged.

 Specify an asterisk as the ancestor (-ancestor *) to
 have diff automatically calculate the closest common
 ancestor of the two file versions (using 'url
 resolveancestor'). This option is always a file
 version.

 When -usemoduleversions is specified with the
 -ancestor * option, the module version is used to
 identify file versions for the closest common
 ancestor calculation. The -ancestor option does not
 identify the closest common ancestor of the module
 versions themselves.

 Note: Only -syncdiff and -annotate output formats
 support three-way comparisons.

-annotate

Informational

662

 -annotate Uses a column format to display the entire
 comparison text. The first column displays the line
 number in fileA. The second column displays the
 line number in fileB. The third column indicates
 whether the line is changed and what has changed.
 The final column provides the text of the line
 indicated.

 This option is mutually exclusive with the -gui,
 -standard, -syncdiff, and -unified options.

-binary

 -binary Performs a fast comparison of the files, reporting
 only whether the files are identical or
 not. Because differences between binary files
 cannot be reported, a fast binary comparison is
 automatically performed if 'diff' detects that
 either of the files being compared is a binary
 file. Note that the -kk, -embed, -white, and
 -case diff options are ignored when performing a
 binary comparison.

-case

 -case Ignore character case differences.

-embed

 -embed Ignore differences in the amount of whitespace
 within a line. For example, using -embed, there
 is no difference between a sentence with one
 space between each word and the same sentence with
 three spaces between each word.

-file1

 -file1 <fileA> Specifies the first file or version to be
 compared. In most cases, this should be the older
 version of the two being compared. For more
 information about what can be specified for <fileA>,
 see the <file> argument. If you do not specify the
 fileB argument, then fileA is compared to its
 Original (;Orig) version, which is the version that
 you checked out prior to making local
 modifications.

ENOVIA Synchronicity Command Reference - Module

663

 Note: The -file1 and -file2 switches are optional;
 you can specify fileA and fileB without the
 switches. However, you must either specify both
 switches or omit both switches. The following
 syntax is invalid:
 diff -file1 a.txt b.txt

-file2

 -file2 <fileB> Specifies the second file or version to be
 compared. For more information about what can be
 specified for <fileA>, see the <file> argument. If
 omitted, fileB is assumed to be the Original (;Orig)
 version of fileA.

 FileB should generally be the version with the more
 recent changes. If fileB is older than fileA, then
 the comparison succeeds, but the results are the
 inverse of the actual modifications. For example,
 if you add a line to the newer file, but specify
 the newer file as fileA, then diff reports that
 this line was deleted from fileB rather than
 indicating that the line was added to fileA. In
 some cases, this inverse report is useful; for
 example, when backing out a set of changes.

-gui

 -gui Invokes the defined graphical Diff utility to
 display the comparison results. DesignSync provides
 a graphical utility, or, if you have a preferred
 diff tool, you may configure your system to use that
 tool.

 For information configuring DesignSync to
 recognize your graphical Diff utility, see the
 ENOVIA DesignSync Administrator's Guide.

 Note: The -kk, -embed, -white, and -case diff
 options are controlled by registry keys for the
 graphical Diff utilities. The registry key settings
 override any command line options specified. The
 -output option is ignored.

 This option is mutually exclusive with the
 -annotate, -standard, -syncdiff, and -unified
 options.

-kk

Informational

664

 -kk Stands for "keep keywords", ignores differences in
 RCE keyword values by hiding the keyword values
 (collapsing the keywords) prior to
 comparing the files. RCE keywords are tokens, such
 as $Revision$, $Author$, and Log (see Notes),
 that you can add to your files to provide
 revision information, such as revision number,
 author, and comment log.

 For example, if the first lines of fileA and fileB are:
 fileA: $Revision: 1.1 $
 fileB: $Revision: 1.3 $
 then diff reports the difference unless you specify
 -kk, in which case diff collapses each line to:
 $Revision$.

 Differences in keyword usage and placement are
 always reported. For example:
 fileA: $Revision: 1.1 $
 fileB: $Author: Goss $
 diff reports the difference irrespective of
 whether you specify -kk because the keywords
 themselves, not just the keyword values, are
 different.

 Notes:
 - Log, when expanded, permanently adds
 log information to your files. The -kk option
 does not hide these log messages prior to
 performing a comparison. Diff programs such as
 tkdiff may flag differences or conflicts
 (if log information has been edited by hand)
 if you use Log in your files.
 - The diff command honors the $KeysEnd$ keyword;
 any expanded keywords after $KeysEnd$ are compared
 fully and literally.

-member

 -member Specifies the relative path of the collection object
 <collection_path> member. This option is used to indicate to the
 system that the files specified are within a
 collection and to provide the relative path to the
 cell view.

 Note: If you have specified a cell view within a
 collection as the file argument, this option is
 required.

-modulecontext

ENOVIA Synchronicity Command Reference - Module

665

-modulecontext Specifies a module context to be used for file
 <context> arguments that are not present in the workspace.
 This allows you compare files that are not present
 in your workspace.
 Note: If the file is not present in the workspace,
 you must specify the full natural path of the module
 member.

 You can only specify one module context, so if you
 are using the -modulecontext option and specifying
 files in two different modules, at least one of the
 files must be present in your workspace.

-output

 -output <fn> Specifies an output file for the diff results. By
 default, the results are displayed in the
 shell window. The -output option is ignored if you
 specify -gui.

 Caution: Any existing file of the same
 name is overwritten without warning.

-standard

-standard Displays differences in standard Unix diff format.

 This option is mutually exclusive with the
 -annotate, -gui, -syncdiff, and -unified options.

-syncdiff

 -syncdiff Displays the changed text with margin
 annotations indicating the changes.

 This option is mutually exclusive with the
 -annotate, -guide, -standard, and -unified options.

-unified

 -unified Displays differences in unified diff format.

 This option is mutually exclusive with the
 -annotate, -gui, -standard, and -syncdiff options.

-usemoduleversions

Informational

666

 -[no]usemoduleversions
 Indicates whether the specified version applies
 to the file being compared (-nousemoduleversions) or
 the module being compared (-usemoduleversions.)

 -nousemoduleversions uses the specified version to
 refer to the file version. (Default) That file may
 not be a member of a module, or may be a member of a
 module version with a different version number. For
 example: FileA;1.4 might be a member of module
 Chip;1.20)

 -usemoduleversions uses the specified version to
 refer to module version which contains the file. For
 example, specifying FileA;1.20 with the
 usemoduleversions option identifies that module
 version 1.20 contains version 1.4 of FileA, and the
 diff runs against file version 1.4.

 Notes:
 o When -usemoduleversions is used, the output of the
 command always provides the version information
 for the specified file.

 o When -moduleversion is used with the
 -ancestor * option, which specifies the common
 ancestor of two file versions, the
 moduleversion is resolved to the file version
 before attempting to resolve the ancestor. The
 common ancestor is returned as a file version
 of the individual file, not as a module
 version.

-version

 -version Specifies another version of fileA to compare to
 <selector> to fileA. If the selector resolves to a branch, the
 Latest version on that branch is used for the
 comparison.

 When using the -version option, you only need to
 specify fileA for comparison. The system implicitly
 processes the two specified versions of fileA
 without requiring you to type one version as
 fileB.

 Note: When the -version option is used with the
 -usemoduleversions option, the file is compared
 against the file contained in the module version
 specified.

-white

ENOVIA Synchronicity Command Reference - Module

667

 -white Ignore leading and trailing whitespace. For
 example, using -white, there is no difference
 between UNIX and PC line endings, or different
 indentation levels, as long as the rest of the line
 content matches.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

SEE ALSO

 DesSync, url resolveancestor, keywords

EXAMPLES

• Examples of Comparing a File against the Original Version
• Examples of Comparing a File Against the Latest Server Version
• Example of Comparing a File Against A Specified Version
• Example of Comparing Original File Against Latest Server Version
• Example of Showing Conflicts in Your Local Version
• Examples of Comparing Collection Cell View Versions
• Example of Comparing Against the Local Cell View Version
• Example of Comparing Files Using the Module Version
• Example of Comparing Files Using the Member Version
• Example Comparing a Module Member to a Non-Local Module Member
• Example of Specifying the Module Version with the Ancestor * Option

Examples of Comparing a File against the Original Version

 Example showing compare of a working copy of a file against the
 original version to see what changes you have made. All of the
 following specifications are equivalent:

 dss> diff foo.bar
 dss> diff "foo.bar;Orig" foo.bar
 dss> diff -v Orig foo.bar

Examples of Comparing a File Against the Latest Server Version

Informational

668

 Example showing compare of a working copy against the latest version
 on the same branch, using unified diff format:

 dss> diff -unified foo.bar "foo.bar;Latest"
 dss> diff -unified -version Latest foo.bar

Example of Comparing a File Against A Specified Version

 Example showing compare of a working copy of a file on
 the Trunk branch against the latest version on the "rel30" branch:

 dss> ls -report H samp.asm
 Branch Tags Name
 ----------- ----
 Trunk samp.asm
 dss> diff -v rel30: samp.asm

Example of Comparing Original File Against Latest Server Version

 This example shows how the latest server version of the file differs
 from the original version.

 dss> diff "foo.bar;Orig" "foo.bar;Latest"

Example of Showing Conflicts in Your Local Version

 This example shows how to find conflicts between your locally
 modified copy and the latest checked-in version:

 dss> diff -ancestor "foo.bar;Orig" foo.bar "foo.bar;Latest"

 or equivalently, use the "*" notation to have "diff" calculate
 the common ancestor automatically:

 dss> diff -ancestor * foo.bar "foo.bar;Latest"

Examples of Comparing Collection Cell View Versions

 These examples show different ways of specifying the same comparison
 of member file from different versions of a cell view version.

 stcl> diff -member verilog/verilog.v [url vault verilog.sync.cds]1.2 \
 [url vault verilog.sync.cds]1.3

 stcl> diff -member verilog/verilog.v -version 1.2 \
 {verilog.sync.cds;1.3}

ENOVIA Synchronicity Command Reference - Module

669

 stcl> diff -member verilog/verilog.v {verilog.sync.cds;1.2} \
 {verilog.sync.cds;1.3}

Example of Comparing Against the Local Cell View Version

 This example shows comparing the local version of a member with a
 specified cell view version.

 stcl> diff -member verilog/verilog.v {verilog.sync.cds;1.3} \
 verilog.sync.cds

Example of Comparing Files Using the Module Version

 This example specifies using the module version 1.18. The Chip module
 version 1.18 contains version 1.1 of the test.c file.

 dss> diff -usemoduleversions -version 1.18 test.c
 NOTE: Object test.c, module version 1.18, mapped to object version 1.1
 7c7
 < printf ("Hello Big World!\n");

 > printf ("Hello World!\n");
 1 Differences detected

Example of Comparing Files Using the Member Version

 This version of the diff command uses the same command as the Example
 of Comparing Files Using the Module Version example, but doesn't
 specify -usemoduleversion (You could also specify
 -nousemoduleversion) so it uses version 1.18 of temp.c regardless of
 the module version.

 dss> diff -version 1.18 test.c
 som-E-152: No Such Version.

 Because there is no version 1.18 of the test.c file, this example,
 unlike the previous example, generates an error. Using the correct
 module member version, 1.1; however, results in comparing the 1.1
 version of test.c on the server to the modified local version in the
 workspace, just as was done in the previous example.

 dss> diff -version 1.1 test.c
 7c7
 < printf ("Hello Big World!\n");

 > printf ("Hello World!\n");
 1 Differences detected

Informational

670

Example Comparing a Module Member to a Non-Local Module Member

 This example shows comparing a module member in the workspace, with a
 module member not in the workspace:

 dss> diff -modulecontext Chip foo.bar "/oldfoo.bar;1.4"

 Note: FileA, foo.bar, is not a full natural path so the system uses
 the workspace object. FileB is specified with a full natural path,
 and is found using the module context.

Example of Specifying the Module Version with the Ancestor * Option

 This example shows the difference in resolving -ancestor * when
 -usemoduleversion is used to specify the module version.

 dss> diff -ancestor * -modulecontext \
 sync://srv2.ABCo.com:2647/Modules/Chip -usemoduleversion \
 -version 1.20 test.c
 NOTE: Object test.c, module version 1.20, mapped to object version 1.3
 Note: Three-way diffs cannot be displayed in standard mode. Using
 syncdiff mode.
 Comparing: (A => B, C)
 (Ancestor) sync://srv2.ABCo.com:2647/Modules/Chip/vault/f7/ \
 f75e11f54656d4c28bb9f37fef1b55f5;1.2
 (B) file:///home/rsmith/MyModules/chipDiff/test.c
 (C) sync://srv2.ABCo.com:2647/Modules/Chip/vault/f7/ \
 f75e11f54656d4c28bb9f37fef1b55f5;1.3
 Deleted from B & C (A6, B6, C6) printf ("Hello Big World!\n");
 Unresolved conflict (A6, B6, C6) printf ("Hello Big Giant
 World!\n");

 printf ("Hello Big Tiny World!\n");
 2 Differences detected

help

help Command

NAME

 help - Provides help on the Synchronicity command set

DESCRIPTION

ENOVIA Synchronicity Command Reference - Module

671

 This command provides a variety of help related functions,
 displaying the information in the output window. Help is available
 for:
 - All DesignSync command-line commands
 - DesignSync topics such as using wildcards or running server-side
 scripts
 - ProjectSync command-line commands

 For compound commands such as the 'url' and 'note'
 commands, surround the command with double quotes and put
 exactly one space between the two keywords of the command (see
 Example section).

 Every DesignSync command has '-help', '-?', and '-usage' options
 that you can specify to get full or brief help.

 Note:
 You can access other DesignSync and related products and
 integrations documentation from the DesignSync Documentation Main
 Menu:

 - (Windows only) Select "DesignSync Documentation" from the
 Windows Start menu, typically:

 Start->Programs->Dassault Systems DesignSync <version>->
 DesignSync Documentation

 - Enter the following URL from your Web browser:

 http://<host>:<port>/syncinc/doc/index.html

 where <host> and <port> are the SyncServer host and port. Use
 this server-based invocation when you are not on the same
 local area network (LAN) as the Synchronicity installation.

 - Enter the following URL from your Web browser:

 file:///$SYNC_DIR/share/content/doc/index.html

 where $SYNC_DIR is the location of the Synchronicity
 installation. Specify the value of SYNC_DIR, not the variable
 itself. Use this invocation when you are on the same LAN as
 the Synchronicity installation. This local invocation may be
 faster than the server-based invocation, does not tie up a
 server process, and can be used even when the SyncServer is
 unavailable.

SYNOPSIS

 help [-all] [-brief] [-output <file>] [-summary] [<topic> [...]]

OPTIONS

Informational

672

• -all
• -brief
• -output
• -summary

-all

 -all Displays help information for all available
 commands and topics. When used with the -brief
 option, displays only synopsis information. When
 used without any other options or arguments,
 displays a list of available commands (same as
 specifying the help command without any options or
 specifying the -summary option).

 Note: When you use the -all option and specify one or
 more topic names, the entire help file (full
 documentation on all commands and topics) is
 displayed. Because of the size of the help file,
 this operation may take a while to complete.

-brief

 -brief Displays the synopsis information for each specified
 topic. The synopsis for individual DesignSync
 commands is typically the command usage, while for
 other topics, it is a brief topic summary. If you do
 not specify one or more topics, brief help is
 displayed for all commands.

-output

 -output <file> This option is used to write help topics to a text
 file instead of displaying them. When used with the
 -all option, a file is created containing all the
 available topics. This can be combined with the
 -brief option to provide a full synopsis of all
 topics.

 Caution: If the file specified already exists,
 its contents will be erased.

-summary

 -summary Displays the list of available help
 topics. This option is the same as specifying
 the help command without any options or arguments.

ENOVIA Synchronicity Command Reference - Module

673

RETURN VALUE

 none

EXAMPLES

 The following example returns brief (synopsis) information for
 the 'ci' and 'co' commands:
 dss> help -brief ci co

 The following example returns help information for the 'url vault'
 command. The double quotes are required, and there must be exactly
 one space between 'url' and 'vault':
 dss> help "url vault"

 You can get the same help information by using the command's -help or -?
 option:
 dss> url vault -help
 or
 dss> url vault -?

locate

locate Command

NAME

 locate - Finds a specified object on the search paths

DESCRIPTION

 This command searches the Synchronicity paths for a specified
 object, either a file or directory. You can find either the first
 occurrence of the object (the default) or all occurrences of the
 object.

 On the server side, the following paths are searched in this order:

 <SYNC_CUSTOM_DIR>/servers/<host>/<port>
 <SYNC_CUSTOM_DIR>/site
 <SYNC_CUSTOM_DIR>/enterprise
 <SYNC_DIR>

Informational

674

 On the client side, the following paths are searched in this order:

 <SYNC_USER_CFGDIR>
 <SYNC_SITE_CUSTOM>
 <SYNC_ENT_CUSTOM>
 <SYNC_DIR>

 The environment variables match the following paths:
 Variable name: Path:
 -------------- -----
 SYNC_DIR Synchronicity installation directory
 SYNC_CUSTOM_DIR <SYNC_DIR>/custom.
 SYNC_SITE_CUSTOM <SYNC_CUSTOM_DIR>/site.
 SYNC_ENT_CUSTOM <SYNC_CUSTOM_DIR>/enterprise
 SYNC_USER_CFGDIR User-specific customization files
 (UNIX default <HOME>/.synchronicity)
 (Windows default %AppData%\Synchronicity)

 You cannot specify path names containing the ".." relative path
 notation. If you try to include this notation, the locate command
 throws an exception.

 On the client side, you must run this command in stcl/stclc mode.

SYNOPSIS

 locate [-env | -path | -url] [-first | -all] [-nothrow] [-reverse]
 [--] <ObjectName>

ARGUMENTS

• Object Name

Object Name

 ObjectName The name of the file or directory you want
 to locate.

OPTIONS

• -all
• -env
• -first
• -nothrow
• -path
• -reverse
• -url

ENOVIA Synchronicity Command Reference - Module

675

• --

-all

 -all Returns all occurrences of ObjectName in the
 search paths. The default behavior is -first.

-env

 -env Returns environment variables in place of literal
 path names. For example, instead of returning:

 /home/john/syncinc/custom/site/share/tcl/test.txt

 this command returns:

 <SYNC_CUSTOM_DIR>/site/share/tcl/test.txt

 The -env, -path, and -url options are mutually
 exclusive; -path is the default.

-first

 -first Returns the first occurrence of ObjectName in the
 search paths. This behavior is the default.

-nothrow

 -nothrow If the object is not found on the search paths,
 returns an empty string. Without this option,
 the locate file command throws an exception when
 the search object is not found.

-path

 -path Returns the full file system path of the
 object. The -env, -path, and -url options are
 mutually exclusive; -path is the default.

-reverse

 -reverse When used with the -all option, returns the path in
 reverse search order. You get an error if you try to

Informational

676

 use this option without the -all option.

-url

 -url Returns the server URL, prepended by:

 - Server area: /syncserver
 - Custom area: /syncsite
 - Enterprise area: /syncent
 - Installation area: /syncinc

 If you use the server-side -url option, specify the
 path to the search object relative to the one of the
 share/content directories:

 <SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/content
 <SYNC_CUSTOM_DIR>/site/share/content
 <SYNC_CUSTOM_DIR>/enterprise/share/content
 <SYNC_DIR>/share/content

 This option is only available when run from the
 server. The -env, -path, and -url options are
 mutually exclusive; -path is the default.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when you
 specify an object whose name begins with a
 hyphen (-).

RETURN VALUE

 When you use the -first option, returns a string indicating where
 the specified object was first located in the search path. When you
 use the -all option, returns a list of the places where the
 specified object was found in the search paths.

 The format of the path returned depends on the options you use.

EXAMPLES

• Examples of using locate
• Example of Using -nothrow with locate

Examples of using locate

ENOVIA Synchronicity Command Reference - Module

677

 The following example searches for a file called test.txt. A user
 has put copies of the file in two of the directories on the search
 path (<SYNC_CUSTOM_DIR>/site/test.txt and <SYNC_DIR>/test.txt).

 The command

 locate -env test.txt

 returns the first location found on the search path:

 $SYNC_CUSTOM_DIR/site/test.txt

 When used with the -all option, the command finds the file in two
 of the directories on the search path.

 {$SYNC_CUSTOM_DIR/site/test.txt} {$SYNC_DIR/test.txt}

 In both cases, the -env option causes the paths to be displayed using
 environment variables.

Example of Using -nothrow with locate

 The following example uses the same problem as the previous example,
 but includes the use of the -nothrow option to avoid throwing an
 exception if the file is not found. Without the -nothrow option, you
 need to write Tcl code to deal with exceptions. For example:

 #Trying to find file
 if [catch {set filename [locate share/test.txt]} msg] {
 puts "The file was not found on the search path. The result is $msg"
 }

 The -nothrow option lets you write simpler and less error-prone
 code that gets the same result:

 #Trying to find file
 set filename [locate -nothrow share/tcl/test.txt]
 if {$filename == ""} {
 puts "The file was not found on the search path.\n"
 }

ls

ls Command

NAME

Informational

678

 ls - Lists information about the specified objects

DESCRIPTION

• Notes for Module Objects and Module Snapshots
• Report Options
• Report Data Keys Table
• Status Values for Modules and Modules Members

 This command lists information about the specified objects. You
 typically specify objects such as folders, files, and
 collection objects such as Cadence cell views and CTP collections.

 Note: The ls command reports revision control information about a
 collection member as if it were the collection itself. In other
 words, if a collection is locked and has version 1.1, then that
 information appears in the ls output for all of the collection's
 members. The only exception is when the collection is modified; in
 this case the ls command shows which members are modified or new.

 With the ls command you can also specify server-side DesignSync
 objects such as vaults, branches, and versions; however, the 'ls'
 command is optimized to give you quick information about workspace
 objects. By default, 'ls' reports information accessed only from
 local metadata, although you can choose to view server information as
 well. (See "Report Options" below for details). You cannot view
 server-side module objects with ls.

 If you specify a container object -- an object that contains other
 objects, such as folders and vaults -- 'ls' returns information about
 the container object's contents.

 You can use wildcards to specify objects to be listed. If you do
 not specify an argument or the -selected option, then the default
 is to list the contents of the current folder.

 All mirror directories can be treated in the same way as your
 DesignSync work areas.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Notes for Module Objects and Module Snapshots

 The ls command does not provide a module manifest. If you
 specify a workspace module, module instance, or module directory, ls
 provides information about the module members contained in the

ENOVIA Synchronicity Command Reference - Module

679

 workspace. For example, the -merged option allows you to view the
 status of object in your workspace after a module merge has been
 performed.

 When ls includes a workspace that has been populated with
 a blend of a main selector and a module snapshot, the objects in the
 workspace are compared against both the module snapshot and the main
 selector. Therefore status of a member populated from the module
 snapshot is calculated against the module snapshot branch version,
 and the status of a member populated from the main selector is
 calculated against the corresponding vault version.

 The 'ls' command does not follow soft links such as module caches
 (Mcaches). In cases where softlinks exist, 'ls' ignores them and only
 lists only objects physically present in the directory structure.

 The -nomodulerecusive option, which allowed you to list a
 directory without including module contents, is no longer supported.
 To list a directory and omit contents, use the exclude filter.

 Use the 'compare' command to compare objects in workspaces.

Report Options

 The -report option lets you specify what information 'ls'
 returns. You can specify one of the predefined modes (silent,
 brief, normal, verbose, status), or you can specify one or more
 data keys to specify exactly the information you want. For example,
 if you want to see objects' names, fetched times, and last-modified
 times, specify '-report NFM'.
 Note that:
 - All data keys must be uppercase.
 - The object's name is always included in the listing whether or
 not you specify the 'N' key.
 - If you specify an unused key (such as 'E'or 'Q'), it is
 ignored.
 - Some keys return values on a single line, while others can span
 multiple lines. Single-line values are always displayed first,
 followed by multi-line output.

 Note: You can add or remove keys from the predefined modes using the
 + and - keys with the report data keys listed below. For example,
 report -normal specifies the MDVLN data keys. If instead of
 specifying D, workspace status, you chose to specify S, status, you
 could type 'ls -report normal-D+S' (or '-report MSVLN').

 Tip: Because report -normal is the default, 'ls -report normal-D+S'
 could also be specified as 'ls -report -D+S'; the normal option is
 implied.

The predefined modes are defined as follows:
 Mode Data Key Definition
 ------- -------------------
 brief N

Informational

680

 normal MDVLN
 status MSRUN
 verbose OMSRUNCTAX
 silent !

 The default behavior if -report is not specified is '-report normal'.
 The 'normal' data keys (MDVLN) generate a quick listing because these
 keys do not access the server vault. To view more detailed status
 including revision control status and the username of the locker,
 specify '-report status'. The 'status' report accesses the server
 vault and therefore is typically not as fast as the 'normal' report.

 Note: The '-report normal' command shows the fetched version rather
 than the upcoming version for locked or auto-branched objects. Use
 '-report status' which includes the 'R' report key to show the
 upcoming version instead.

Report Data Keys Table

 The following table lists the -report data keys. The table
 indicates whether the data key accesses the server vault or
 gathers the data locally and thus can provide a quicker
 listing. The table also provides the property name
 corresponding to each data key.

 Note: When a * appears at end of a description, it indicates that the
 data key uses the current module version on the selected branch.
 Otherwise, the command displays the information for version populated
 into the workspace.

 Data Property From # of
 Key Name Vault? Lines Description
 --- -------- ------ ------ -----------
 ! N/A N/A N/A Silent output. Use the '!' key with
 no other data keys to suppress the
 listing, although errors are still
 displayed. If the '!' key is used
 with other data keys, it is ignored.
 This key is useful with the
 -addselect option when you are only
 interested in defining your select
 list.
 A branchtags Yes Multi Branch tags. Use 'H' for single-line
 format.*
 Note: Module members cannot be
 tagged. The displayed tag applies
 to the module.
 C comments Yes Multi Original and checkout log
 comments.
 Original Log comments include:
 o author
 o creation time of the current
 version
 o check-in comments, if any.

ENOVIA Synchronicity Command Reference - Module

681

 Checkout Log comments, if any,
 include:
 o check-out comments
 o changes made from the
 Revision Log field on the
 DesignSync GUI
 (File=>Properties=>Revision
 Control).*
 D wsstatus No Single Workspace status. These options
 are explained more fully in the
 status values table. Values
 include:

 o Absent - for objects fetched but
 no longer present.
 o Added - for module members added
 to a module, but not yet checked
 in.
 o Added By Merge/Needs Checkin
 o Locally Modified - for objects
 that have been modified in the
 workspace.
 o Moved - workspace object has moved.
 o Null - for objects in the
 same state as when the directory
 was last updated.
 o Out-of-sync - when a module
 member version is incorrect for
 the module version in the
 workspace.
 o Remove for Merge
 o Removed - workspace module
 member has been marked for removal.
 o Rename for Merge
 o Unresolved Conflicts

 Workspace status is a subset of
 the 'S' revision control status
 key, displaying status information
 available from the workspace,
 however some status information is
 not reported by the 'S' report
 option, so you might need to
 specify both 'S' and 'D' for
 complete status.
 F fetchtime No Single Fetched time.
 Note: If you used 'populate
 -mirror' to fetch the object to
 your work area, then the
 fetchtime for the object is
 listed as 0.
 G tags Yes Single Version tags. Use 'T' for multi-line
 format.*
 Note: Module members cannot be
 tagged. The displayed tag applies
 to the module.
 H branchtags Yes Single Branch tags. Use 'A' for multi-line

Informational

682

 format.*
 Note: Module members cannot be
 tagged. The displayed tag applies
 to the module.
 I uid No Single Object UID.
 L fetchedstate No Single Fetched state. Options include:
 o Copy
 o Lock
 o Reference - for unlocked
 references
 o Cache
 o Checkin Excluded - unmanaged
 object, excluded by exclude
 file.
 o Null (" ")- for unmanaged or
 non-versionable objects.
 The fetched state displays with
 header "Type" in the report table.
 Note: The fetched state for Locked
 references is "Lock", not
 "Reference". Use the 'V' mode,
 which displays "Refers to" for
 references, with 'L' to determine
 whether an object is a locked
 reference.
 M mtime No Single Last-modified time. For a listing
 of vault locks, shows
 lock time. For references, this
 field is empty (" ").
 N name No Single Name and, if -path or -fullpath is
 specified, the path. Note that
 objects' names are displayed even
 when 'N' is not specified.
 O type No Single Object Type: For modules members
 and other DesignSync objects, the
 types are:
 o File,
 o Folder
 o Project
 o Absent File (a locked reference
 or deleted file)
 o Referenced File
 o Link to File
 o Link to Folder
 o Link to Mcache
 o Cached File
 o Vendor-specific object types
 such as Cadence or Synopsis
 libraries,cells, and cell views,
 or CTP collection object types.
 Note: When running the ls-foreach
 function, the property type name
 used is otype.
 P selector No Single Persistent selector list (as defined
 by the "setselector" command, or
 "Trunk" by default).
 Note: If a folder is a member of

ENOVIA Synchronicity Command Reference - Module

683

 more than one module, the selector
 displays as an empty ("") value.*
 Q csum No Single The checksum of the object. If the
 object is not in source control,
 the checksum is 0.
 R upcoming Yes Single Current version, and upcoming version
 if object is locked or auto-branched.
 For a locked reference, 'R' shows
 the current version and upcoming
 version to which it refers.
 Note: upcoming versions are not
 applicable for module members. The
 'R' option only provides the
 current version (equivalent
 to 'V').
 S status Yes Single Server status. These options are
 explained more fully in the status
 values table. Values include:
 o Up-to-date
 o Needs Merge
 o Needs Update
 o Added By Merge/Needs Checkin
 o Added
 o Absent - indicates a locked
 reference or a file deleted from
 the operating system
 o Unknown.
 See the Status Value table below
 for descriptions of these values.
 T tags Yes Multi Version tags. Use 'G' for single-line
 format.*
 Note: Module members cannot be
 tagged. The displayed tag applies
 to the module.
 U user Yes Single Username of the locker, or empty if
 the object is not locked. If the
 object is locked in this location,
 the report displays an asterisk
 (*) after the username.
 Modules members display as locked
 when the member is locked.
 V version No Single Fetched version. Display options
 include:
 o Version number
 o Unmanaged - for an object with no
 local metadata. For example,
 recreated files display as
 Unmanaged, because their metadata
 was removed by a previous rmfile.
 o Null ("") - for non-versionable
 objects.
 Note: This does not show the
 upcoming version. To show the
 upcoming version for an object,
 use the 'R' option. Module members
 do not have upcoming versions.
 W objtype No Single Web object types include:

Informational

684

 o Folder,
 o File,
 o Project,
 o Link to Folder.
 o Link to Mcache
 X owner No Single Owner of the object.
 For collections - the collection
 to which a collection member
 belongs.
 For modules - the module to which
 a module member belongs.
 For a folder - all the modules
 that own the folder.
 Note: If ls is restricted to a
 single module, using the
 -modulecontext option, the
 specified module is the only owner
 shown.
 Y memberof No Single Module instance name. If the
 object(s) is not a module member,
 this field is blank.
 Z size No Single Size of the object in bytes. For
 collection objects, this option
 displays either the total number
 of member files in the collection,
 or the size of the objects in
 bytes. For more information on
 choosing the display value for Z,
 see the SyncAdmin help file.
 error Yes Multi Error message. If ls is unable to
 fetch data for an object, the
 'error' property automatically
 displays with the error.

Status Values for Modules and Modules Members

 The following table describes the status values. Server status values are
 specified using the 'S' key or the '-report status' option.
 Workspace status values are specified using the -'D' key, or the '-report
 normal' option. For ease of use, this list is in alphabetical order.

 Status Value Description
 ------------ -----------
 Added Indicates that the object has been added to the
 module, but has not been checked in.

 Added By merge, Indicates that the file was introduced to the work
 Needs Checkin area by a merge or overlay operation and does not
 exist on the current branch. These objects do not
 show as modified by the ls command.

 Note: If a file was added by merge, but is no
 longer present in the workspace, it will display
 with a status of "Added by merge, Needs Checkin",

ENOVIA Synchronicity Command Reference - Module

685

 not a status of "Absent".

 Absent Indicates an object that is unexpectedly absent from
 the workspace. Typically an object is listed as
 "Absent" if it was deleted from the workspace using
 operating system commands, leaving behind the local
 metadata.

 Note: If a file was added by merge, but is no
 longer present in the workspace, it will display
 with a status of "Added by merge, Needs Checkin",
 not a status of "Absent".

 Locally Modified Indicates that the file has been edited since it was
 fetched and a more recent version has not been checked
 into the branch, or that an add has been
 performed on a module member that has not been
 checked into the module.

 Locally Modified, Indicates that a module member has been modified,
 Moved the location of the module member has changed, and
 the modified, moved version has not been checked
 into the branch.

 Moved Indicates that a module member with no content
 changes has been moved or renamed in the workspace,
 and the moved version has not been checked into the
 branch.

 Note: If a module member was both moved and
 removed, it is displayed only as removed.

 Needs Merge Indicates that a file has been locally modified and
 [<change>] the version is not correct for the current
 selector.
 For modules, an additional value indicating the
 type of change may appear in brackets [] after the
 Needs Merge status value:
 o <Version number> - the version of the member in
 the module version.
 o Moved - the module member has a different natural
 path than the one expected by the module version.
 o Removed - the module member is not in the module
 version.
 o <Version number>,Moved - the module member is
 both a different version and located at a
 different natural path than the module version.

 Needs Update Indicates that you have an incorrect version on the
 [<change>] given branch.
 For modules, an additional value indicating the
 type of change may appear in brackets after the
 Needs Update status value:
 o <Version number> - the version of the member in
 the module version.
 o Moved - the module member has a different natural
 path than the one expected by the module version.

Informational

686

 o Removed - the module member is not in the module
 version.
 o <Version number>,Moved - the module member is
 both a different version and located at a
 different natural path than the module version.

 Out-of-sync Indicates the version of the file in the workspace
 is out of sync with the expected module version.
 Note: This value is part of the workspace status,
 the '-D' key must be specified to determine if the
 workspace contains out of sync objects.

 Remove for Merge Indicates that an object present in the workspace
 was removedon the branch being
 merged into the workspace. To remove the file on
 the server in the current branch, remove this file
 using the remove command for module members or the
 retire command for non-module members. This is a
 workspace status value.
 Note: Objects that were removed with rmvault are no
 longer present on the DesignSync server and do not
 show up in any ls query.

 Removed Indicates that a module member has been removed
 from the workspace and has not been checked into
 the branch. The module member is not marked as
 Absent, and information about the last fetched
 version of the module member is displayed.

 Notes:
 o If a module member was renamed and subsequently
 removed before a checkin operation was performed
 to update the server version, ls reports that
 object only as Removed.

 o The type column is not maintained for removed
 items.

 Remove for Merge Indicates that an object present in the workspace
 was removed, being retired on the branch being
 merged into the workspace. To remove the file on
 the server in the current branch, remove this file
 using the retire command. This is a workspace
 status value.

 Rename for Merge Indicates that an object present in the workspace
 Merge branch was renamed to the <naturalpath> value on the branch
 path: being merged into the workspace. To incorporate
 <naturalpath> this change into the current branch, move this file
 to the naturalpath name using mvmember. This status
 is only applicable to cross-branch merge
 operations. This is a workspace status value.

 Note: If this file has any other status
 information, such as Absent or modified, the status
 column shows all the appropriate values separated
 by a comma.

ENOVIA Synchronicity Command Reference - Module

687

 Unknown Indicates that the version of the file in the workspace
 cannot be determined from the local metadata.

 Unresolved Indicates that a merge of version contents
 Conflicts resulted in conflicts. Any object marked as
 containing unresolved conflicts is considered
 locally modified.

 Up-to-date Indicates that the module member version matches
 the correct version for the module selector.

SYNOPSIS

 ls [-[no]addselect] [-[un]changed] [-exclude <string>]
 [-filter <string>] [-format list | text] [-[no]header]
 [-hreffilter <string>] [-[un]locked] [-[un]modified]
 [-modulecontext <context>] [-[no]needsmerge [-branch <branch>]]
 [-merged added|rename|remove|all|""]
 [-output <file> | -stream <stream>] [-[no]path | -fullpath]
 [-[no]recursive] [-report <mode>[+<mode>][-<mode>]]
 [-[no]selected] [-[non]versionable] [-workspace | -vault>]
 [-writableunlocked] [-xtras <xtras>] [--] [<argument>
 [<argument>...]]

ARGUMENT

• Server Folder
• Server Object
• Workspace Module
• Module Member or Folder
• External Module

Server Folder

 <server folder> Provides information about the specified object
 on the server, and if you specify the -recursive
 option, all subfolders. Specify the object with
 the sync URL in the format:
 sync://<host>:<port>/<path>/<folder>

Server Object

 <server object> Provides information about the specified object
 on the server. Specify the object with the sync
 URL in the format:

Informational

688

 sync://<host>:<port>/<path>/<object>

Workspace Module

 <workspace module> Provides information about the files in the
 specified module and the hierarchical references
 in the specified module. To view information
 about the module itself, use the "show" commands:
 hcm showconfs, showhrefs, showmcache, showmods,
 and showstatus. To view a list of locked module
 elements, use the showlocks command.

Module Member or Folder

 <module member | Provides information about the specified module
 module folder> members, and if you specify the -recursive
 option, all subfolders. The -modulecontext
 option restricts the list to objects that are
 members of the specified module.

External Module

 <external module> Specifies the module instance of the external
 module in the workspace or the URL of the
 external module version to which you wish to
 create the connection. An external module is an
 object or set of objects managed by a different
 code management system but available for viewing
 and integration through DesignSync.
 Specify the external module in the workspace as a
 module instance name.
 Specify the external module Server URL as follows:
 sync[s]:///ExternalModule/<external-type>/<external-data>
 where ExternalModule is a constant that identifies
 this URL as an external module URL,
 <external-type> is the name of the external module
 procedure, and <external-data> contains the
 parameters and options to pass to the
 procedure. These parameters and options can be
 passed from the procedure to the external code
 management system or to DesignSync.

 Note: In order to specify an external module, you
 must have previously populated the module in the
 workspace. You may also specify the external
 module by href name only.

OPTIONS

ENOVIA Synchronicity Command Reference - Module

689

• -[no]addselect
• -branch
• -[un]changed
• -exclude
• -filter
• -format
• -fullpath
• -[no]header
• -hreffilter
• -[un]locked
• -[un]managed
• -merged
• -[un]modified
• -modulecontext
• -[no]needsmerge
• -output
• -path
• -[no]recursive
• -report
• -[no]selected
• -stream
• -[non]versionable
• -workspace/-vault
• -writeableunlocked
• -xtras
• --

-[no]addselect

 -[no]addselect Indicates whether objects matching the ls
 specification should be added to the select list.

 -noaddselect does not add the objects displayed
 by ls to the select list. (Default)

 -addselect adds the objects that match your 'ls'
 specification to your select list. You can use
 this option in conjunction with '-report !' to
 suppress 'ls' output if you only want to update
 your select list.

-branch

 -branch <branch> Use the -branch option with the -needsmerge or
 -noneedsmerge option to compare objects against
 the specified branch rather than against the
 current branch.

Informational

690

 Specifying the -branch option without the
 -needsmerge or -noneedsmerge option generates an
 error. Specifying -branch with -changed or
 -unchanged generates an error, as the -changed
 option only compares objects against the current
 branch. The -branch option accepts a branch or
 version tag or a branch numeric. It does not
 accept a selector or selector list. If <branch>
 resolves to a version, the branch of that version
 is used for the comparison.

-[un]changed

 -[un]changed Determines whether to show only objects that are
 identical (up-to-date) in both the vault and in
 the workspace, or only objects with different
 versions in the vault and the workspace. Objects
 can have different version in the vault or
 workspace if local modifications are made or if
 there is a newer version on the server than the
 last version fetched.

 -unchanged shows only objects that are
 up-to-date.

 -changed shows only objects that are not
 up-to-date. An object is considered changed if it
 is locally modified, if there is a newer version
 in the vault, or if there's a structural change
 to a module, such as moved or removed module
 members. The -changed option is a combination of
 the -unmanaged and -modified options and the
 "Needs Update" state. To show objects that are
 locally modified without checking whether there
 are newer versions in the vault, use the (faster)
 -modified option. Unmanaged objects or module
 members that have been added, but not checked in
 are always considered changed.

 Specifying both -changed and -unchanged is
 equivalent to specifying neither option: 'ls'
 displays both changed and unchanged objects. If
 -changed is specified with either -modified or
 -needsmerge or -unchanged is specified with
 either -unmodified -noneedsmerge, only the
 -[un]changed option is processed, because the
 changes include both merge information and
 modified information. If -changed is specified
 with either -unmodified or -noneedsmerge, or
 -unchanged is specified with either -modified or
 -needsmerge , ls returns an error, as these
 options are mutually exclusive.

ENOVIA Synchronicity Command Reference - Module

691

 The -[un]changed options only apply to
 workspaces. They are silently ignored for 'ls'
 of vault objects.

-exclude

 -exclude <string> Specifies a glob-style expression to exclude
 matching object names from the listing. The string
 you specify must match the name of the object as
 it would have appeared in the listing. Generally,
 you can specify the leaf name of the objects. If
 you use the -fullpath option, you must specify
 a glob expression that matches the full path, for
 example, file:///home/karen/Projects/Asic/test.v.
 If you use the -path option, you must specify a
 glob expression that matches the relative path,
 for example, ../top*.

 Important: The exclude option is applied after the
 -filter option and is used to further refine the
 filter.

 By default, the 'ls' command does not exclude
 the objects in the global exclude lists
 (set using Tools->Options->General->Exclude
 Lists or using SyncAdmin:General->Exclude Lists).
 To exclude these objects from an 'ls' listing,
 apply the -exclude option with a null string:
 ls -exclude ""
 The objects in the global exclude lists are
 appended to the 'ls' exclude list if you
 exclude other values:
 ls -exclude "README.txt"

-filter

 -filter <string> Specify one or more extended glob-style
 expressions to identify an exact subset of
 module objects on which to operate. Use the
 -exclude option to filter out DesignSync
 objects that are not module objects.

 The -filter option takes a list of expressions
 separated by commas, for example: -filter
 +top*/.../*.v,-.../a*

 Prepend a '-' character to a glob-style
 expression to identify objects to be excluded
 (the default). Prepend a '+' character to a
 glob-style expression to identify objects to be
 included. Note that if the list of expressions
 begins with an include character ('+'), the

Informational

692

 filter excludes all objects except those that
 match the include string.

 Specify the paths in your glob-style expressions
 relative to the current directory, because
 DesignSync matches your expressions relative to
 that directory. For submodules followed through
 hrefs, DesignSync matches your expressions
 against the objects' natural paths, their full
 relative paths. For example, if a module, Chip,
 references a submodule, CPU, and CPU contains a
 file, '/libs/cpu/cdsinfo.tag', DesignSync matches
 against '/libs/cpu/cdsinfo.tag', rather than
 matching directly within the 'cpu' directory.

 If your design contains symbolic links that are
 under revision control, DesignSync matches
 against the source path of the link rather than
 the dereferenced path. For example, if a
 symbolic link exists from 'tmp.txt' to
 'tmp2.txt', DesignSync matches against
 'tmp.txt'. Similarly for hierarchical operations,
 DesignSync matches against the unresolved path.
 If, for example, a symbolic link exists from dirA
 to dirB, and dirB contains 'tmp.txt', DesignSync
 matches against 'dirA/tmp.txt'.

 The extended glob-style expressions you use to
 filter the objects are standard glob-style
 expressions, but they are extended so that you
 can use the "..." syntax to indicate that the
 expression matches any number of directory
 levels. For example, the expression,
 "top/.../lib/*.v" matches *.v files in a
 directory path that begin with "top", followed by
 zero or more levels, with one of those levels
 containing a lib directory. The command traverses
 the directory structure. If a directory name
 matches an exclude clause of the filter, then the
 entire directory and all its contents are
 filtered (the command stops descending at that
 point), otherwise the command continues
 traversing the directory structure searching for
 matching objects.

 The -filter option does not override the exclude
 list set using SyncAdmin's General=>Exclude Lists
 tab or with the -exclude command line option; the
 items in the exclude list are combined with the
 filter expression. For example, an exclude list
 of "*%,*.reg" combined with '-filter .../*.doc'
 is equivalent to: '-filter
 .../*.doc,.../*%,.../*.reg'.

-format

ENOVIA Synchronicity Command Reference - Module

693

 -format Specifies whether the format of the 'ls' output
 should be a Tcl list or formatted text:

 list Display a list with the following format:
 {
 name <name>
 type file | folder | version | branch
 props <prop_list>
 objects <object_list>
 }

 For a list of properties, see the
 "Report Options" table above. Container
 objects, including folders and branch-point
 versions, have an 'objects' list containing
 their subcomponents. The list is the return
 value of the 'ls' command and is echoed to
 the screen by the dss/stcl shells. If
 '-format list' is used with the '-output'
 or '-stream' option, a formatted list is
 generated in the file or stream.

 Note: The type for module objects is
 'module'. The module folder type is
 folder. If a module is listed
 recursively, an addition module property
 is added to the results for each module
 referenced in the hierarchy.

 The module type entry includes the
 following information:
 o URL of the module
 o fetched version of the module
 o module base directory
 o relative path to the module from the
 top-level module

 The ls command does not operate on
 Module branches or versions.

 To process the results, use the
 ls-foreach function.

 text Display a text table with headers and
 columns. (Default) Objects shown in
 alphabetical order. If 'format text' is
 used, 'ls' has no return value, but 'ls'
 prints the text table to the screen.

 Notes:
 o If an error occurs while accessing an object's
 vault data, the text output prints an error
 message preceding the object. For list output,
 the message precedes the list and the object's
 property list includes an 'error' property
 containing the error message. In both cases,

Informational

694

 the object's revision control status is
 'Unknown'.
 o If '-format' is used with '-report silent' or
 '-report !', the silent option overrides
 the '-format' option and the list or text
 output is suppressed.
 o For recursive listings, if multiple objects
 have the same leaf name, use the -path or
 -fullpath option to differentiate between
 these objects.

-fullpath

 -fullpath Display object names as full URLs. By default,
 only the object name is displayed.
 The -path and -fullpath options are mutually
 exclusive.

-[no]header

 -[no]header Indicates whether the command should display with
 field headers before each column in the output.

 -noheader does not display the fielder header.

 -header displays a field header at the top of the
 'ls' output.(Default)

-hreffilter

 -hreffilter Excludes href values during recursive operations
 <string> on module hierarchies. Because hrefs link to
 submodules, you use -hreffilter to exclude
 particular submodules. The hreffilter value is
 matched against both the name of the href and the
 target module name. Note that unlike the
 -filter option which lets you include and exclude
 items, the -hreffilter option only excludes hrefs
 and, thus, their corresponding submodules.

 Specify the -hreffilter string as a glob-style
 expression. The string must represent a simple
 leaf name; you cannot specify a path. DesignSync
 matches the specified href filter against hrefs
 anywhere in the hierarchy. Thus, DesignSync
 excludes all hrefs by this leaf name; you cannot
 exclude a unique instance of the href.

 You can prepend the '-' exclude character to your

ENOVIA Synchronicity Command Reference - Module

695

 string, but it is not required. Because the
 -hreffilter option only supports excluding hrefs,
 a '+' character is interpreted as part of the glob
 expression.

-[un]locked

 -[un]locked Determines whether to display only objects that
 [-workspace| are locked or objects that are not locked.
 -vault]
 Specifying the -workspace or -vault option allows
 you to further restrict the ls output to
 searching in only the local workspace or
 searching only on the server. Specifying
 -workspace provides a faster response to time
 because the 'ls' command accesses only the local
 metadata and not the server data.

 -unlocked shows only objects that are currently
 unlocked.

 -locked shows only objects that are currently
 locked by any user. You can differentiate between
 objects locked by you and others by noting the
 fetched state (shown with header "Type"). If you
 have a lock on the object, the fetched state is
 "Lock". If a module branch is locked, all module
 members returned by ls will display as locked.
 Note: Use the showlocks command to get
 information about server-side Module locks.

 Specifying both -locked and -unlocked is
 equivalent to specifying neither option: 'ls'
 displays both locked and unlocked objects.

-[un]managed

 -[un]managed Determines whether to filter the ls output to
 show either objects under revision control or
 objects not under revision control. This option
 checks the workspace metadata. If the file has
 been removed on the server, it still displays as
 managed if the workspace has not been
 updated.

 Note: All module members display as managed
 including added module members that have never
 been checked in and module members that have been
 removed and kept in the workspace, if the remove
 has not been commited to the server. This makes
 the -unmanaged option irrelevant for modules.
 When -unmanaged is specified with a module, the

Informational

696

 server returns an error. To find added or removed
 members, use ls with the -modified option.

 -unmanaged shows only objects that are not under
 revision control. This option is not relevant to
 modules as mentioned in the previous note.

 -managed show only objects that are under
 revision control.

 Specifying both -managed and -unmanaged is
 equivalent to specifying neither option: 'ls'
 displays both managed and unmanaged objects.

 This option only applies to DesignSync objects in
 workspaces. The option is silently ignored for
 'ls' of vault file-based objects.

 Note: The url registered command queries the
 server to determine if the object is managed.

-merged

 -merged added| Determines whether to display only objects that
 rename|remove have been modified as the result of a merge into
 all|"" into the workspace. You must specify a modifier
 to -merged. The modifiers behave as follows:

 o added - restricts the command output to
 only those objects added by the merge.

 o rename - restricts the command output to only
 those files that have a different
 natural path on the merged
 branch. These files need to be
 renamed in order to complete the
 merge.

 o remove - restricts the command output to only
 those objects that are not present on
 the merged branch.

 o all - includes all the objects specified by the
 added, removed and renamed modifiers.

 o "" - removes the defaults set with the command
 default system for the -merged option.

-[un]modified

 -[un]modified Determines whether to show only objects that have been
 modified in the workspace, or only objects that

ENOVIA Synchronicity Command Reference - Module

697

 have not been modified in the workspace. These
 options examine only the workspace for
 modifications. To compare the workspace against
 the server to determine whether or not the objects have
 been modified, use the -[un]changed options.

 -unmodified shows only objects that are not
 modified in the workspace.

 -modified show only objects that are modified in
 the workspace. Unmanaged objects and module
 members that have been added, removed, or moved,
 but not checked in are always considered locally
 modified.

 Note: Objects that are "Absent" in the workspace
 are considered modified.

 Specifying both -modified and -unmodified is
 equivalent to specifying neither option: 'ls'
 displays both modified and unmodified objects. If
 -changed is specified with -modified or
 -unchanged is specified with -unmodified, the
 -[un]modified option is ignored, because is a
 subset of the -[un]changed option. If -changed
 is specified with -unmodified, or -unchanged is
 specified with -modified, ls returns an error, as
 these options are mutually exclusive.

 This option only applies to workspaces. The option
 is silently ignored for 'ls' of vault objects.

-modulecontext

 -modulecontext Identifies the module version to operate on.
 <context> Use the -modulecontext option to restrict the ls
 to only a particular module if your workspace
 has overlapping modules so that you can
 indicate which module you want to run the ls
 command against.

 Specify the desired module using the module name
 (for example, Chip), or a module instance name
 (for example, Chip%0), or full path to a
 workspace.

 Note that you cannot use a -modulecontext option
 to operate on objects from more than one module;
 the -modulecontext option takes only one
 argument, and you can use the -modulecontext
 option only once on a command line.

-[no]needsmerge

Informational

698

 -[no]needsmerge Determines whether to show only objects that
 [-branch <branch>] require a merge or only objects that do not
 require a merge. By default, this command
 compares workspace files against server files in
 the same branch. To compare objects against
 another branch, specify the -branch option.

 -noneedsmerge shows only objects that do not
 require a merge.

 -needsmerge shows only objects that need
 merging.

 Note: the -needsmerge option displays objects in
 which both the server and workspace version of an
 object indicate changes. A merge may not
 actually be possible, depending on the situation.
 Specifying both -needsmerge and -noneedsmerge is
 equivalent to specifying neither option: 'ls'
 lists the objects that need to be merged and
 those that do not. If -needsmerge is specified
 with -change or -noneedsmerge is specified with
 -unchanged, the -[no]needsmerge option is
 ignored, because is a subset of the -[un]changed
 option. If -needsmerge is specified with
 -changed, or -noneedsmerge is specified with
 -unchanged, ls returns an error, as these options
 are mutually exclusive.

 This option only applies to workspaces. The option
 is silently ignored for 'ls' of vault objects.

-output

 -output <file> Prints results to named file. The named file is
 created or overwritten, but not appended to. To
 append, use the '-stream' option. The -output and
 -stream options are mutually exclusive.

-path

 -path Include relative paths in object names. By default,
 only the object name is displayed. With -path,
 the path of the object relative to the directory
 specified as an argument during an 'ls
 -recursive' operation (not necessarily relative to
 the current directory) is displayed.
 The -path and -fullpath options are mutually
 exclusive.

ENOVIA Synchronicity Command Reference - Module

699

-[no]recursive

 -[no]recursive Indicates whether the ls command should operate
 on the specified argument or all subfolders
 in the argument's hierarchy.

 -norecursive operates only on the specified
 argument. (Default)

 -recursive operates on all subfolders in the
 specified argument's hierarchy.

 If 'ls -recursive' is invoked in a Cadence
 Cell folder or above, 'ls' does not descend
 into the Cadence View folders, and so does
 not list member files, unless the following
 advanced registry key is set:
 HKEY_CURRENT_USER\Software\Synchronicity\
 General\AllowRecursion\Cadence View Folder=dword:1.
 See DesignSync Data Manager User's Guide:
 Advanced Registry Settings for details.

 If ls -recursive is invoked on a module, ls
 follows the hierarchical references, listing each
 referenced module separately.
 Note: ls does not follow hierarchical references
 to mcache directories, legacy modules, DS vaults,
 or IPGear deliverables.

 If the DesignSync site is configured for managed
 links and 'ls -recursive' is invoked in a
 directory containing soft links or module caches
 (Mcaches), 'ls' does not follow the links and
 instead lists only the objects that are
 physically present within the directory
 structure. If the site is configured to treat
 links as copies of the linked files or
 directories, 'ls -recursive' does traverse the
 directory structure. For more information on
 managed symbolic links, see the SyncAdmin help.

 Note: For recursive listings, if multiple objects
 have the same leaf name, use the -path or
 -fullpath option to differentiate between these
 objects.

-report

 -report <mode> Specifies what information about each object
 should be displayed. Available report modes are:
 o silent Displays no output (equivalent to
 '-report !').
 o brief Displays just the object name

Informational

700

 (equivalent to '-report N'). Because no vault
 information is needed, a brief listing is very
 fast.
 o normal Displays common fields that do not
 require server vault access (equivalent to
 '-report MDVLN'). This behavior is the default
 when -report is not specified.
 o verbose Displays most fields (equivalent to
 '-report OXMSRUNCTA').
 o status Displays status fields (equivalent to
 '-report MSRUN').
 o K[K...] Displays the fields corresponding to
 the data keys, where K is a data key
 listed in the Report Options table
 above.
 o +K[K...] Displays additional fields
 corresponding to the data keys specified.
 This is used to provide addition information
 when using a predefined mode such as 'brief'
 or 'normal'.
 o -K[K...] Removes from the display the fields
 corresponding to the data keys specified.
 This is used to reduce the amount of
 information returned when using a predefined
 mode such as 'brief' or 'normal'.

-[no]selected

 -[no]selected Indicates if the command should use the select
 list (see the 'select' command) or only the
 arguments specified on the command line.

 -noselected indicates that the command should not
 use the select list. (Default) If -noselected is
 specified, but there are no arguments selected,
 the ls command operates on the current
 directory.

 -selected indicates that the command should use
 the select list and any objects specified on the
 command line. If -selected is not specified, and
 there are no objects specified on the command
 line, the ls command operates on the current
 directory.

-stream

 -stream <stream> Prints results to named Tcl stream. Depending on
 whether you open the stream using the Tcl 'open'
 command in write (w) or append (a) mode, you can
 overwrite or append to an existing file.
 Note: The -stream option is only applicable in the

ENOVIA Synchronicity Command Reference - Module

701

 stcl and stclc Tcl shells, not in the dss and dssc
 shells. The -output and -stream options are
 mutually exclusive.

-[non]versionable

 -[non]versionable Determines whether to restrict the report
 returned to displaying only non-versionable and
 excluded objects or only objects that are
 versionable and included. If this option is not
 specified, all objects,
 versionable/non-versionable, excluded and
 included, are displayed. (Default) An object is
 excluded if it is unmanaged and matches a pattern
 in an applicable exclude file. Other
 non-versionable objects include objects that are
 members of a versioned collection, which cannot
 be managed separately.

 -[non]versionable displays only the
 non-versionable and excluded objects

 -versionable displays versionable objects only.

 For more information on exclude files, see the
 DesignSync Data Manager User's Guide: Working
 with Exclude Files.

-workspace/-vault

 -workspace | Determines whether to use only the workspace
 -vault metadata or query only the vault (server) for the
 objects being displayed by the ls command.

 -workspace shows only items that are locked or
 unlocked in the local workspace. (Default)

 -vault shows only items present in the local
 workspace that are locked or unlocked in the
 vault.

 Using the -workspace option provides faster
 results because it does not check the server for
 objects locked or unlocked outside of the
 specified workspace, however -vault can provide
 more complete results.

-writeableunlocked

Informational

702

 -writableunlocked Displays unlocked objects with write access in the
 workspace. Use -writableunlocked to verify
 that you have locks on all editable objects,
 so that you do not accidentally edit an object
 already locked by another user.

 Note: If a module branch is locked, all module
 members in the branch are locked.

 This option only applies to workspaces. The option
 is silently ignored for 'ls' of vault objects.

-xtras

 -xtras <list> List of command line options to pass to the
 external module change management system. Any
 options specified with the -xtras option are
 sent verbatim, with no processing by the
 populate command, to the Tcl script that defines
 the external module change management system.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 o Empty string if -format value is text.
 o Tcl list if the -format value is list.
 o Empty string if -output or -stream is used with -format.

SEE ALSO

 ls-foreach, compare, compare-foreach, contents, contents-foreach,
 addhref, edithrefs, select, unselect, vhistory, command defaults,
 showhrefs, showmcache, showmods, showstatus, showlocks

EXAMPLES

• Example Showing the Contents of the Current Folder
• Example Showing the Contents of the Specified Folder
• Example Showing Objects that Need to be Merged

ENOVIA Synchronicity Command Reference - Module

703

• Example Showing Objects that do not Need to be Merged
• Example Showing a Recursive Directory Listening
• Example Showing the ls Output in List Format
• Example Showing Locked Objects in the Workspace
• Example Showing All Locked Objects
• Example Showing All Locked Objects with Users
• Example Showing Locked Server Objects Using Status Report Mode
• Example Showing Locked Workspace Objects in Status Report Mode
• Example Showing Unmanaged Objects in Current Folder
• Example Showing Unlocked Writable Objects in the Workspace
• Example Showing Excluding Objects
• Example Showing a Variety of ls Commands To Display Object Vault
• Examples Showing Writing to an Output File or TCL stream
• Example Showing Locked References
• Example Showing Collection List
• Example Showing Module Structural Changes

Example Showing the Contents of the Current Folder

 List the contents of the current folder. By default, 'ls' reports
 data keys MDVLN -- last modified time, workspace status, fetched
 version, fetched state (shown as Type), and name. In this example,
 AddBlock is a directory. SubMod is an unlocked reference, whereas
 top.v is a locked reference.

 stcl> ls

 Directory of: file:///home/karen/Projects/Rel40

 Time Stamp WS Status Version Type Name
 ---------- -------- ------- ---- ----
 04/11/2003 10:13 AddBlock
 Refers to: 1.1 Reference SubMod
 04/11/2003 09:12 Locally 1.2.1.1 Copy test.v
 Modified
 Refers to: 1.1 Lock top.v
 04/10/2003 10:16 1.1 Copy x.v

Example Showing the Contents of the Specified Folder

 List only the specified file and the objects in the ABlk directory
 using absolute paths, and add the files to the select list:

 dss> scd /home/Projects
 dss> ls -addselect -fullpath top.v ABlk/*
 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 03/27/2003 11:12 1.1 Lock file:///home/Projects/ABlk/x.v
 03/27/2003 11:13 1.1 Copy file:///home/Projects/top.v

Informational

704

 Directory of: file:///home/Projects/ABlk/Add

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 03/27/2003 11:12 1.1 Copy file:///home/Projects/ \
 ABlk/Add/Add.v

 dss> select -show
 file:///home/Projects/ABlk/x.v
 file:///home/Projects/top.v
 file:///home/Projects/ABlk/Add/Add.v

Example Showing Objects that Need to be Merged

 List each object that needs to be merged with its version on the Dev
 branch:

 stcl> scd ~/Projects/Rel40
 stcl> ls -needsmerge -branch Dev

 Directory of: file:///home/karen/Projects/Rel40

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 03/27/2003 13:20 Locally 1.3 Copy test.v
 Modified

Example Showing Objects that do not Need to be Merged

 List each object that does not need to be merged with its version on
 the Dev branch:

 stcl> ls -noneedsmerge -branch Dev

 Directory of: file:///home/karen/Projects/Rel40

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 03/27/2003 11:13 1.1 Copy top.v

Example Showing a Recursive Directory Listening

 List the changed (not up-to-date) objects in the HTMLHelp folder and
 all subfolders, and display only the object names (brief format):

 stcl> ls -recursive -changed -report brief HTMLHelp

 Directory of: file:///home/karen/Projects/DesSync/HTMLHelp

ENOVIA Synchronicity Command Reference - Module

705

 Name

 Customizing_History.htm
 DSGetStart_GUI.htm
 Editing_and_Organizing_Bookmarks.htm
 Get_Tags_Versions.htm
 Go_Menu.htm

 Directory of: file:///home/karen/Projects/DesSync/HTMLHelp/PrintDoc

 Name

 file.bmp
 unlock.bmp

Example Showing the ls Output in List Format

 Output these changed objects in a list format. (The list output is
 formatted below but doesn't appear that way in the actual list output
 unless you list to a file or stream.)

 stcl> ls -recursive -changed -report brief -format list HTMLHelp
 {name HTMLHelp type folder objects
 {
 {name Customizing_History.htm type file}
 {name DSGetStart_GUI.htm type file}
 {name Editing_and_Organizing_Bookmarks.htm type file}
 {name Get_Tags_Versions.htm type file}
 {name Go_Menu.htm type file}
 {name PrintDoc type folder objects
 {
 {name unlock.bmp type file}
 {name file.bmp type file}
 }
 }
 }
 }

Example Showing Locked Objects in the Workspace

 List objects locked in my local workspace. This command does not
 access the SyncServer and does not indicate objects locked by other
 users:

 stcl> scd ~/Projects/DesSync/HTMLHelp
 stcl> ls -locked -workspace

 Directory of: file:///home/karen/Projects/DesSync/HTMLHelp

 Time Stamp WS Status Version Type Name

Informational

706

 ---------- --------- ------- ---- ----
 03/27/2003 15:06 1.2 Lock working_folder.htm

Example Showing All Locked Objects

 List objects locked in workspace or by others. This command accesses
 the SyncServer. The working_folder.htm file is locked in the
 workspace, whereas the ocean_arrow_sm.gif file is locked by another
 user.

 stcl> ls -locked

 Directory of: file:///home/karen/Projects/DesSync/HTMLHelp

 Time Stamp WS Status Version Type Name
 --------- --------- ------- ---- ----
 03/27/2003 15:05 1.2 Copy ocean_arrow_sm.gif
 03/27/2003 15:06 1.2 Lock working_folder.htm

Example Showing All Locked Objects with Users

 List objects locked in workspace and on server. Display using the
 'status' report mode which shows the revision control status, the
 upcoming version, and the locker of each object:

 stcl> ls -locked -report status

 Directory of: file:///home/karen/Projects/DesSync/HTMLHelp

 Time Stamp WS Status Server Status Version Locked By
 Name
 ---------- --------- ------------- ------- ---------

 03/27/2003 15:05 Up-to-date 1.2 -> 1.3 linda
 arrow_sm.gif
 03/27/2003 15:06 Up-to-date 1.2 -> 1.3 karen*
 work_folder.htm

Example Showing Locked Server Objects Using Status Report Mode

 List only objects locked on the server. Display using 'status'
 report mode which shows the revision control status, the upcoming
 version, and the locker of each object.

 This example uses -vault <vaultURL>

 dss> ls -locked -vault sync://src:2647/Projects/Help/image
 -report status

ENOVIA Synchronicity Command Reference - Module

707

 Directory of: sync://src:2647/Projects/Help/image

 Time Stamp WS Status Server Status Version Locked By
 Name
 ---------- --------- ------------- ------- ---------

 04/30/2012 14:14 - mhopkins
 delete-file.gif;1
 04/30/2012 14:14 - mhopkins
 delete_local_folder.gif;1
 04/30/2012 14:14 - mhopkins
 delete_server_folder.gif;1
 04/30/2012 14:14 - mhopkins
 delete_vault.gif;1
 04/30/2012 14:14 - mhopkins
 delete_version.gif;1
 04/30/2012 14:14 - mhopkins
 delete_workspace_mod_dialog.gif;1

Example Showing Locked Workspace Objects in Status Report Mode

 This example uses -vault <workspace name> (in this case "." for
 current workspace directory)

 dss> ls -locked -vault . -report status

 Directory of:
 file:///c|/Workspaces/Help/image

 Time Stamp WS Status Server Status Version
 Locked By Name
 ---------- --------- ------------- -------
 --------- ----
 12/13/2006 13:43 Up-to-date 1.7 -> 1.8
 mhopkins* delete-file.gif
 12/13/2006 13:43 Up-to-date 1.5 -> 1.6
 mhopkins* delete_local_folder.gif
 12/13/2006 13:43 Up-to-date 1.5 -> 1.6
 mhopkins* delete_server_folder.gif
 12/13/2006 13:43 Up-to-date 1.5 -> 1.6
 mhopkins* delete_vault.gif
 12/13/2006 13:43 Up-to-date 1.5 -> 1.6
 mhopkins* delete_version.gif
 12/13/2006 13:43 Up-to-date 1.4 -> 1.5
 mhopkins* delete_workspace_mod_dialog.gif

Example Showing Unmanaged Objects in Current Folder

 List unmanaged objects in the current folder, displaying only the
 name, last-modified time, and size of each file:

 stcl> ls -unmanaged -report MZ

Informational

708

 Directory of: file:///home/karen/Projects/DesSync/HTMLHelp

 Time Stamp Size Name
 ---------- ---- ----
 04/14/2003 14:03 50 about_ds.htm

Example Showing Unlocked Writable Objects in the Workspace

 List objects that are writeable but which I have not yet locked:

 stcl> ls -writableunlocked

 Directory of: file:///home/karen/Projects/DesSync/HTMLHelp

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 04/14/2003 14:03 Unmanaged about_ds.htm
 03/27/2003 15:06 1.3 Copy warn_excluded.htm

Example Showing Excluding Objects

 Exclude objects from a listing:

 stcl> ls -exclude x.v,top.v

 Directory of: file:///home/karen/Projects/Rel40

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 04/11/2003 10:13 AddBlock
 Refers to: 1.1 Reference SubMod
 04/14/2003 13:56 Unmanaged mult.v
 04/15/2003 12:45 Unmanaged streamfile
 04/11/2003 09:12 1.2.1.1 Copy test.v

 You can also specify the excluded objects using an absolute
 URL. The name in the glob-style expression must match the format
 listed, in this case, by using the -fullpath option:

 stcl> ls -exclude file:///home/karen/Projects/Rel40/test.v -fullpath

 Directory of: file:///home/karen/Projects/Rel40

 Time Stamp ... Name
 ---------- ... ----
 04/11/2003 10:13 ... file:///home/karen/Projects/Rel40/AddBlock
 ... file:///home/karen/Projects/Rel40/SubMod
 04/14/2003 13:56 ... file:///home/karen/Projects/Rel40/mult.v
 04/15/2003 12:45 ... file:///home/karen/Projects/Rel40/streamfile
 ... file:///home/karen/Projects/Rel40/top.v
 04/10/2003 10:16 ... file:///home/karen/Projects/Rel40/x.v

ENOVIA Synchronicity Command Reference - Module

709

Example Showing a Variety of ls Commands To Display Object Vault

 List versions of an object vault. For vault objects, the fetched
 state (shown with the "Type" header) is blank:

 stcl> scd [url vault what_is_dss.htm]
 stcl> spwd
 sync://host:2647/Projects/DS/what_is_dss.htm;
 stcl> ls

 Directory of: sync://host:2647/Projects/DS/what_is_dss.htm;1

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 12/04/2000 16:06 1.1 what_is_dss.htm;1.1
 12/26/2000 16:27 1.2 what_is_dss.htm;1.2
 01/02/2001 17:18 1.3 what_is_dss.htm;1.3
 08/10/2001 11:19 1.4 what_is_dss.htm;1.4
 02/10/2003 13:12 1.5 what_is_dss.htm;1.5

 You can instead specify a server-side URL of a vault object to list
 its contents:

 stcl> ls sync://host:2647/Projects/DS/what_is_dss.htm\;

 Or you can use the 'url vault' command to specify the vault object:

 stcl> ls [url vault what_is_dss.htm]

 You can also provide an explicit version number for the vault:

 stcl> ls [url vault what_is_dss.htm]1.3

 You can specify a tag for the vault, as well:

 stcl> ls [url vault what_is_dss.htm]Latest

 (To determine the existing tags for an object, use '-report T'.)

Examples Showing Writing to an Output File or TCL stream

 Write the list to an output file or Tcl stream.

 This example writes to an output file:

 stcl> ls -output ~/ls_Output
 stcl> cat ~/ls_Output

 Directory of: file:///home/karen/Projects/DesSync/HTMLHelp

 Time Stamp Version Type Name

Informational

710

 ---------- ------- ---- ----
 03/27/2003 15:06 1.12 Copy About_DesignSync_Log_Files.htm
 03/27/2003 15:06 1.7 Copy About_Vault_Types.htm
 ...
 ...

 The output can be in a list format instead:

 stcl> ls -format list -output ~/ls_Output
 stcl> cat ~/ls_Output

 {
 {
 name HTMLHelp
 type folder
 objects {
 {
 name http_proxy.htm
 type file
 props {
 fetchedstate Copy
 mtime {03/27/2003 15:04}
 version 1.8
 }
 }
 ...
 ...

 This example writes the output to a Tcl stream:

 stcl> set channelid [open streamfile w]
 file8
 stcl> ls -stream $channelid
 stcl> close $channelid
 stcl> cat streamfile

 Directory of: file:///home/karen/Projects/Rel40

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 04/11/2003 10:13 AddBlock
 Refers to: 1.1 Reference SubMod
 04/14/2003 13:56 Unmanaged mult.v
 ...
 ...

Example Showing Locked References

 List locked references.

 You might need to regenerate managed objects, in which
 case you can check them out as 'locked references'
 rather than actual locked copies of the objects. The
 example below creates a locked reference, top.v. The
 top.v fetched state displays as 'Lock' and the

ENOVIA Synchronicity Command Reference - Module

711

 Version displays as 'Refers to:' followed by the
 version:

 stcl> co -reference -lock -nocomment top.v

 Beginning Check out operation...

 Checking out: top.v : Locked Reference made to 1.1.

 Checkout operation finished.

 {Objects succeeded (1)} {}

 stcl> ls

 Directory of: file:///home/karen/Projects/Rel40

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 03/27/2003 11:12 AddBlock
 04/03/2003 10:46 1.3 Copy test.v
 Refers to: 1.1 Lock top.v

Example Showing Collection List

 For each member of a collection, list the object type and the
 owner (the collection to which the member belongs). This example
 uses a Custom Type Package (CTP) collection.

 stcl> ls -report OX

 Directory of: file:///home/karen/sf242data/jul16/coltest

 Object Type Name
 ----------- ----
 File README
 a Test Member a.html
 Owner: /home/karen/sf242data/jul16/coltest/a.sgc.tst

 File a.prop
 a Test collection a.sgc.tst
 a Test Member a.txt
 Owner: /home/karen/sf242data/jul16/coltest/a.sgc.tst

 File b.prop
 File b.txt
 File c.html
 d Test Member d.html
 Owner: /home/karen/sf242data/jul16/coltest/d.sgc.tst

 File d.prop
 d Test collection d.sgc.tst
 d Test Member d.txt
 Owner: /home/karen/sf242data/jul16/coltest/d.sgc.tst

Informational

712

 f Test Member f.html
 Owner: /home/karen/sf242data/jul16/coltest/f.sgc.tst

 File f.notamember
 File f.prop
 f Test collection f.sgc.tst
 f Test Member f.txt
 Owner: /home/karen/sf242data/jul16/coltest/f.sgc.tst

 g Test Member g.html
 Owner: /home/karen/sf242data/jul16/coltest/g.sgc.tst

 File g.prop
 g Test collection g.sgc.tst
 g Test Member g.txt
 Owner: /home/karen/sf242data/jul16/coltest/g.sgc.tst

 File partnerFile

Example Showing Module Structural Changes

 Lists the objects in a module containing structural changes
 consisting of an added file, documentstyles.css, a removed file,
 c.txt, and a removed file, b.txt that was retaining in the workspace
 with the -keep option, and a moved file, chipintro.doc.

 stcl> ls

 Directory of: file:///e|/workspaces/X5Mods/chip/doc

 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 11/19/2008 09:08 Removed 1.3 b.txt
 Removed Refers to: 1.2 c.txt
 11/19/2008 09:08 Moved 1.2 Copy chipintro.doc
 Original path: \doc\chip.doc
 11/19/2008 09:08 1.1 Copy commands.html
 11/20/2008 16:25 Added documentstyles.css
 11/19/2008 09:08 images
 11/19/2008 09:08 1.1 Copy index.html
 11/19/2008 09:08 1.1 Copy interface.html
 11/19/2008 09:08 1.1 Copy manual.pdf

ls-foreach

ls-foreach Command

NAME

 ls-foreach - Function to process the results of an ls

ENOVIA Synchronicity Command Reference - Module

713

 command

DESCRIPTION

 This routine loops over the items in an "ls" results list, and
 processes each item in turn.

 Note: The object type, identified by reporting on the O key in the ls
 command, is identified by the otype property name. This
 distinguishes it from the type property reported automatically. The
 type property reports whether the object is a folder, file, or
 module.

SYNOPSIS

 ls-foreach var result_list tcl_script [-nofolder] [-path]

ARGUMENTS

• Loop Variable
• List of Objects to be Processed
• TCL script

Loop Variable

 var This is the loop variable. It is treated as a Tcl
 array, and on each loop around contains the set of
 properties for the next object in the result_list.
 In addition to the properties in the "props" value
 for each object, the array will contain a "name"
 property and a "type" property, which are the name
 and type properties for the object.

List of Objects to be Processed

 result_list This is the list of objects to be processed. It must
 be the result value of a call to the "ls" command
 with the "-format list" option.

TCL script

 tcl_script This is the piece of Tcl code that is executed on
 each loop.

Informational

714

OPTIONS

• -nofolder
• -path

-nofolder

 -nofolder If specified, then the tcl_script will not be called
 for Folder type objects in the result_list.

-path

 -path The "name" property on each loop is usually just
 the "name" property for the object. However, if this
 option is specified, and a recursive "ls" was
 performed, then the "name" property is the relative
 path to each object. Normally, you would run "ls"
 with the -path or -fullpath option, in which case the
 "name" property contains an appropriate relative or
 full path. If you did not do that, then passing the
 "-path" option to ls-foreach will mean that the
 "name" property contains the relative path for each
 item, thus allowing you to differentiate between
 items with the same name in different folders.

 The set of properties available for each object is dependant on the
 "-report" option passed to the "ls" command.

SEE ALSO

 ls

EXAMPLE

 This shows a sample script that creates an array to run ls-foreach
 against and extracts the object name and otype. The output shown
 after the query are the results of running the query against a folder
 containing Cadence data collections.

 set result_list [ls -rec -format list -report normal+O]

 ls-foreach obj $result_list {
 if {[info exists obj(otype)]} {
 puts "OBJ: $obj(name), OTYPE: $obj(otype)"
 }

ENOVIA Synchronicity Command Reference - Module

715

 }

 OBJ: cdsinfo.tag, OTYPE: Cadence Info File
 OBJ: rec, OTYPE: Cadence Cell
 OBJ: schematic.sync.cds, OTYPE: Cadence View
 OBJ: schematic, OTYPE: Cadence View Folder
 OBJ: mux2, OTYPE: Cadence Cell
 OBJ: schematic.sync.cds, OTYPE: Cadence View
 OBJ: schematic, OTYPE: Cadence View Folder
 OBJ: celdom, OTYPE: Cadence Cell
 OBJ: symbol.sync.cds, OTYPE: Cadence View
 OBJ: symbol, OTYPE: Cadence View Folder
 OBJ: custinv, OTYPE: Cadence Cell
 OBJ: symbol.sync.cds, OTYPE: Cadence View
 OBJ: symbol, OTYPE: Cadence View Folder
 OBJ: .oalib, OTYPE: File
 OBJ: risk.TopCat, OTYPE: Cadence Lib Category
 ...
 OBJ: schematic_v1#2e1, OTYPE: Cadence NonView Folder

showhrefs

showhrefs Command

NAME

 showhrefs - Displays the hierarchy of a module

DESCRIPTION

• External Module Support
• Understanding the Output

 This command displays the hierarchical references for a module or a
 legacy module configuration. When run recursively, this command
 also displays the hierarchical references for all modules and legacy
 module configurations in the hierarchy.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

External Module Support

 DesignSync supports showing the hierarchical reference status of an

Informational

716

 external module to determine state of the hierarchical
 references. After an external module has been populated, the showhref
 command can be available to query the status of the external module
 hierarchical reference and return the results.

 Hierarchical reference conflicts are reported in the final list
 output when all of the following conditions are true;
 o conflict property is set to yes during command processing
 o conflicts option is provided
 These properties are not, however; returned in the final list output
 or included in the conflict summary.

 Over-ridden hierarchical references can also be reported in the final
 output when the -overridden option is used with the -report verbose.

 For information on populating an external module, see the populate
 command. For information on configuring showstatus for external
 modules, see the DesignSync Administrator's Guide.

Understanding the Output

 The output of the showhrefs command can be formatted for easy viewing
 (-format text) or optimized for Tcl processing (-format list). Both
 viewing formats show the same information, but may have different
 names. In the table below, the Column Titles column shows the text
 output column header and the Property Names column shows list output
 key value.

 The showhrefs command, by default, displays the following
 information:

 Column Property
 Titles Names Description
 ------ ----- ------------
 Name name The name of the href. For example, CPU.

 URL url The URL of the referenced module,
 external module, legacy module
 configuration, DesignSync vault, or IP
 Gear deliverable. The URL for all
 references except external modules,
 includes host, port, and vaultPath. The
 external modules URL identifies the
 reference as an external module href and
 contains the <external-type> and the
 <external-data> strings.

 Selector selector The selector for the href as supplied to
 the add href command. This varies
 depending on the type of href.
 o modules - the selector list used to
 identify the referenced module version.
 o legacy modules - the name of the
 referenced legacy module configuration.

ENOVIA Synchronicity Command Reference - Module

717

 o DesignSync vaults - the selector list
 used to identify the referenced vault
 versions.
 For all other object types, the selector
 field is empty.

 Version version The version of the referenced module the
 selector resolved at the time the href
 was created. If the href is not a module,
 the version field is empty.

 Type type The type of object referenced.
 o Module - href to a module.
 o Alias - href to a legacy module alias.
 o Branch - href to a legacy module
 branch configuration.
 o External - href to an external module.
 o Release - href to a legacy module
 release configuration..
 o Selector - href to a legacy module
 selector configuration.
 o Vault - href to a DesignSync vault.
 o Deliverable - href to an IP Gear
 deliverable.
 o Unknown - indicates that the object
 type could not be determined at the
 time the href was created.

 conflict When the -conflict option is specified,
 the report reports conflicting
 hierarchical references. In text mode, a
 CONFLICT identifier is appended to the
 lines showing the conflicting URLs. In
 list mode, the command uses the conflict
 key. The value of the key is "yes," if
 the href is in conflict, or "no," if the
 href is not in conflict.

 In text mode, a conflict line is written
 beneath the table for each href in
 conflict during processing and, at the
 end of the output, a summary table shows
 all the conflicting hrefs.

 When populating a workspace module, with
 a V6R2015x client or later, showhrefs
 marks the conflicts at fetch time. And
 this option displays the conflicting
 references along with information about
 which modules are fetched into the
 workspace during populate operations.

 When populating a server-side module,
 conflict detection occurs on the fly
 while processing the hierarchy on all
 associated servers. The first conflicting href
 that is processed may not be known until

Informational

718

 another conflicting href is found and
 therefore the first conflicting href may
 not be marked as such. All subsequent
 conflicting hrefs will be marked with a
 line indicating the href is in-conflict
 with another href. The first conflicting
 href may not show as in conflict in the
 initial href report, but does in the
 summary table.

 Relative relpath The relative path from the base directory
 Path of the upper-level module (Parent) to the
 base directory of the submodule. This
 path is used by the populate command when
 you fetch the module into your work
 area.

 instance_name The instance identifier for the workspace
 module version. This is not applicable
 if the specified argument is a server
 module.

 basedir The workspace base directory of the
 module. This is not applicable if the
 specified argument is a server module.

 If you run the showhrefs command with '-report brief' it displays:

 Column Property
 Titles Names Description
 ------ ----- ------------
 Name name The module name of the top level module
 and the href name for all referenced
 submodules, legacy module configurations,
 IP Gear deliverables, and DesignSync
 vaults.
URL/Base url/ Path to the module. If the command is
Directory basedir performed on the server, it includes the
 full sync URL for the module, including
 selector information. If the command is
 performed on the workspace, it includes
 the full directory path. For external
 modules, it always displays the URL as:
 sync:///ExternalModule/<external-type>/<external-data>

 conflict When the -conflict option is specified,
 the report reports conflicting
 hierarchical references. In text mode, a
 CONFLICT identifier is appended to the
 lines showing the conflicting URLs. In
 list mode, the command uses the conflict
 key. The value of the key is "yes," if
 the href is in conflict, or "no," if the
 href is not in conflict. The first
 conflicting href may not show as in
 conflict. For more information, see

ENOVIA Synchronicity Command Reference - Module

719

 the "conflict" description above in the
 report -normal output section.

 Note: The -brief output indents the module name to graphically
 represent the hierarchical.

 If you run the report in -verbose mode with the -overridden option,
 it adds the following column:

 Column Property
 Titles Names Description
 ------ ----- ------------
 Overridden overridden Whether this particular href is
 overridden by a higher level href.
 yes - this URL is ignored by system
 because it is overridden by a
 higher level href.
 no - this URL is active; not overridden.

 If you specify the -overridden option, all submodules, even the
 overridden submodules, display with their own showhrefs table.

 As showhrefs recurses a hierarchy, it counts any errors and displays
 suitable error messages. At the end of the operation, showhrefs
 displays an error message which contains the number of errors that
 occurred.

 Using the -format list option formats the output into a Tcl string
 that can be processed in scripts, however the order and the property
 names differ slightly from the -format text (default) option. For
 more information, see Example 3 which shows using the -format list
 option with report -normal and Example 4 which shows report -brief.

SYNOPSIS

 showhrefs [-[no]conflicts] [-format text|list]
 [-hrefmode {dynamic | static | normal}]
 [no]overridden] [-[no]recursive]
 [-report {brief | normal | verbose | script}]
 [-[no]stopatconflict] [-xtras <xtras>] <argument>

ARGUMENTS

• Server Module
• Workspace Module
• External Module Instance
• Server Legacy Module
• Workspace Legacy Module

Server Module

Informational

720

 <server module> Shows hierarchical references for a module
 version. Specify the URL as follows:
 sync[s]://<host>[:<port>]/Modules/[<category>...]<module>[;<selector>]

 where <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 <category> identifies the path to the module,
 <module> is the name of the module, and <selector>
 identifies a particular branch or version. You
 may use this format to specify a module, module
 branch, or module version. The default branch is
 "Trunk." The default version is "Latest.

Workspace Module

 <workspace module> Shows hierarchical references for a workspace
 module. You can specify the workspace module by
 using the module name, if it's unique within the
 workspace (For example: Chip), or the workspace
 module instance name. (For example: Chip%0).

External Module Instance

 <external_mod> Specifies the external module instance. The
 external module must be populated into the
 workspace.

Server Legacy Module

 <server module> Shows hierarchical references for a legacy
 module. Specify the URL as follows:
 sync[s]://<host>[:<port>]/<vaultPath>[;<selector>]
 where <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 <vaultPath> identifies the module, and <selector>
 identifies a legacy module configuration. The
 default branch is "Trunk." The default version is
 "Latest.

 Note: If no selector information is provided for
 legacy modules, DesignSync uses the default
 configuration.

Workspace Legacy Module

ENOVIA Synchronicity Command Reference - Module

721

 <workspace module> Shows hierarchical references for a workspace
 module. You can specify the legacy module using
 the path of the workspace. (Legacy Modules Only)

OPTIONS

• -[no]conflict
• -format
• -hrefmode
• overridden_option
• -[no]recursive
• -report
• -[no]stopatconflict
• -xtras

-[no]conflict

 -[no]conflict Determines whether to show conflicting
 hierarchical references; multiple references
 to different versions of the same module; in
 the output.

 -[no]conflict does not show module
 conflicts for server module arguments. For
 workspace module argument, if conflicting
 hrefs are populated into the workspace, the
 conflict is reported. (Default)

 -conflicts shows, for each module with a
 conflicting hierarchical reference,
 information about which submodule version was
 or was not populated because of a
 conflict.

 Notes:
 o If the -noconflicts option is specified with the
 -stopatconflicts option, the -stopatconflicts
 option is silently ignored.

 o This option is only applicable to modern
 modules. If specified for a legacy module
 argument, the option is silently ignored.

-format

 -format <type> Determines the format of the output.
 Valid values are:
 o list - Displays a list with the following

Informational

722

 format:
 {
 name <name>

 }

 o text - Display a text table with headers and
 columns. (Default)

-hrefmode

 -hrefmode Indicates how the hierarchy is traversed by
 the command.

 Note: This option is ignored for workspace
 modules which are always traversed the way
 they were loaded into the workspace.

 Valid values are:
 o dynamic - Resolves the href selector to
 determine the referenced module version to
 expand.

 o static - Expands the module version to which
 the href selector resolved when the href was
 created.

 o normal - Resolves the href selector to
 determine the referenced module version to
 expand. If, while traversing the hierarchy,
 the showhrefs command reaches a static
 selector, for example a version tag or
 numeric version ID, the hrefmode switches to
 static for the remaining sub-hierarchy of
 the referenced module.(Default) This option
 respects the traversal method identified by
 the "HrefModeChangeWithTopStaticSelector"
 registry key. For more information, see the
 "Module Hierarchy" topic in the ENOVIA
 Synchronicity DesignSync Data Manager User's
 Guide.

 -[no]overridden Determines whether to display information
 about overridden hrefs.

 -nooverridden - Ignores overridden hrefs and
 does not include them into the href
 traversal. (Default)

 -overridden - Traverses the module hierarchy,
 including displaying overridden hrefs and
 showing a table for each href.

ENOVIA Synchronicity Command Reference - Module

723

 Note: In order to see overridden hrefs, you
 must specify BOTH -overridden AND -report
 verbose mode.

-[no]recursive

 -[no]recursive Determines whether to display hierarchical
 references for the specified module, or the
 specified module and all submodules.

 -norecursive displays hierarchical references
 for the specified module. (Default)

 -recursive displays hierarchical references
 for the specified module and all submodules.

-report

 -report Specifies the information output. The
 information each option returns is discussed
 in detail in the "Understanding the Output"
 section above.

 Valid values are:

 o brief - Displays the Name of the
 hierarchical reference and the module path
 to the reference. If the -showconflicts
 option is selected, a *CONFLICT* identifier
 showing the conflicting hrefs. The brief
 mode does not provide information about
 which href would be populated.

 o normal - Displays a list of hierarchical
 references and their properties. (Default)

 o verbose - Displays the information available
 with normal.

 o script - Returns a Tcl list of
 config_name/property_list pairs.

-[no]stopatconflict

 -[no]stopatconflict Specifies whether the command should continue
 processing a hierarchy recursively after
 reaching a conflict in the hierarchy or stop.

 -nostopatconflict continues recursing through
 the directory hierarchy regardless of how

Informational

724

 many conflicts are revealed. (Default)

 -stopatconflict stops processing recursively
 through the directory hierarchy when the
 first conflict within the hierarchy is
 exposed.

 Notes:
 o When processing a workspace module, the
 traversal only includes recursion through
 the fetched submodules and it always stopped
 at conflicting hrefs not in the workspace.

 o If the -noconflict option is selected,
 with the -stopatconflict option, the
 -stopatconflict option is silently
 ignored.

-xtras

 -xtras <xtras> List of command line options to pass to the
 external module change management system. Any
 options specified with the -xtras option are
 sent verbatim, with no processing by the
 populate command, to the Tcl script that
 defines the external module change management
 system.

RETURN VALUE

 If you run the showhrefs command with the '-format list' option,
 it returns a Tcl list. If the command fails, it returns a Tcl
 error. For all other options, it returns an empty string ("").

 For a description of the output, see the "Understanding the Output"
 section.

SEE ALSO

 addhref, edithrefs, populate, showmcache, showstatus, rmhref,
 command defaults
,

EXAMPLES

• Example of Displaying the Hierarchical References on the Server
• Example of Showing Hrefs on the Server Vault in List Format
• Example of Displaying the Hierarchical References in a Workspace

ENOVIA Synchronicity Command Reference - Module

725

• Example of Showing Hrefs on the Workspace in List Format
• Example of Showing Hrefs in Brief Report mode and List Format
• Example Showing Overridden Hrefs in the Workspace in Text Format
• Example Showing Overridden Hrefs in List Format
• Example Showing Conflicting Hierarchical References in the Workspace

 The following examples all use this hierarchy, which is the example
 created with the addhref command:

 Chip <= uses the default configuration
 Cpu <= uses the Gold version
 ROM <= uses the Gold version

Example of Displaying the Hierarchical References on the Server

 This example displays the hierarchical references for the Chip
 module in text mode, which is specified by the sync URL.

 dss> showhrefs -recursive sync://srvr2.ABCo.com:2647/Modules/Chip

 Beginning showhrefs operation ...

 Showing hrefs of module sync://srvr2.ABCo.com:2647/Modules/Chip (1.7) ...
 sync://srvr2.ABCo.com:2647/Modules/Chip: Href mode is normal.

 Name Url Version Type Relative Path

 CPU sync://srvr2.ABCo.com:2647/Modules/CPU Gold Module CPU

 ===

 Showing hrefs of module sync://srvr2.ABCo.com:2647/Modules/CPU;Gold (1.3)
...

 sync://srvr2.ABCo.com:2647/Modules/CPU;Gold: Href mode is static.

 Name Url Version Type Relative Path

 ROM sync://srvr2.ABCo.com:2647/Modules/ROM 1.4 Module /ROM

 sync://srvr2.ABCo.com:2647/Modules/ROM;Trunk:: Module has no
 hierarchical references.

 Finished showhrefs operation.

Example of Showing Hrefs on the Server Vault in List Format

 This example displays hierarchical references specifying a server

Informational

726

 module, sync://srvr2.ABCo.com/Modules/Chip, with report -normal
 output. This example uses the hierarchy described at the beginning of
 the examples section.

 dss> showhrefs -format list -recursive \
 sync://srvr2.ABCo.com:2647/Modules/Chip

 {relpath CPU name CPU type Module version Gold url \
 sync://srvr2.ABCo.com:2647/Modules/CPU hrefs {{relpath /ROM name \
 ROM type Module version 1.4 url \
 sync://srvr2.ABCo.com:2647/Modules/ROM}}}

 Note: The hierarchy of each submodule is contained within the hrefs
 property.

Example of Displaying the Hierarchical References in a Workspace

 This example displays the hierarchical references for the Chip module
 in text mode; specified by the module workspace instance name.

 dss> showhrefs -recursive Chip%0

 Beginning showhrefs operation ...
 Showing hrefs of module /home/rsmith/Modules/chip/Chip%0 ...

 /home/rsmith/MyModules/chip/Chip%0: Workspace version - 1.7
 /home/rsmith/MyModules/chip/Chip%0: Href mode - normal

 Name Url Version Type Relative Path

 CPU sync://srvr2.ABCo.com:2647/Modules/CPU 1.2 Module CPU

 ===

 Showing hrefs of module /home/rsmith/MyModules/chip/CPU/CPU%1 ...

 Name Url Version Type Relative Path

 ROM sync://srvr2.ABCo.com:2647/Modules/ROM 1.4 Module /ROM

 /home/rsmith/MyModules/chip/ROM/ROM%1: Workspace version - 1.2
 /home/rsmith/MyModules/chip/CPU/ROM/ROM%1: Module has no hierarchical
 references.

 Finished showhrefs operation.

Example of Showing Hrefs on the Workspace in List Format

 This example displays hierarchical references specifying a workspace
 module, Chip%0, with report -normal output. This example uses the
 hierarchy described at the beginning of the examples section.

ENOVIA Synchronicity Command Reference - Module

727

 dss> showhrefs -format list -recursive Chip%0

 {hrefs {{relpath /ROM name ROM instance_name ROM%1 version 1.4 type \
 Module basedir /home/rsmith/MyModules/chip/CPU/ROM url \
 sync://srvr2.ABCo.com:2647/Modules/ROM}} relpath CPU name CPU \
 instance_name CPU%1 version 1.2 type Module basedir \
 /home/rsmith/MyModules/chip/CPU url \
 sync://srvr2.ABCo.com:2647/Modules/CPU}

Example of Showing Hrefs in Brief Report mode and List Format

 This example shows the brief version of the report on the hrefs shown
 in Example 1 formatted for Tcl processing.

 dss> showhrefs -format list -report brief -recursive Chip%0

 name Chip url sync://srvr2.ABCo.com:2647/Modules/Chip hrefs {{name \
 CPU url {sync://srvr2.ABCo.com:2647/Modules/CPU;Gold} hrefs {{name \
 ROM url {sync://srvr2.ABCo.com:2647/Modules/ROM;1.4}}}}}

Example Showing Overridden Hrefs in the Workspace in Text Format

 This example shows overridden hierarchical references in the
 workspace. It uses the following hierarchical structure:

 CHIP <= uses the default configuration
 CPU <= uses the Trunk:Latest version
 LIB <= uses the Gold version
 ROM <= uses the Trunk:Latest version
 LIB <= uses the Trunk:Latest version (static version 1.2)

 dss> showhrefs -overridden -report verbose CHIP%0

 Beginning showhrefs operation ...

 Showing hrefs of module c:/Workspaces/chip/CHIP%0 ...

 c:/Workspaces/chip/CHIP%0: Workspace version - 1.4
 c:/Workspaces/chip/CHIP%0: Href mode - normal

 Name Url Selector
 Static Version Type Relative Path Overridden

 CPU sync://serv1.ABCo.com:2647/Modules/ChipDesign/CPU Trunk: 1.2
Module ../cpu no
 LIB sync://serv1.ABCo.com:2647/Modules/ChipDesign/Tools/LIB Gold 1.2
Module ../lib no
 ROM sync://serv1.ABCo.com:2647/Modules/ChipDesign/ROM Trunk: 1.2
Module ../rom no

 ===

Informational

728

 Showing hrefs of module c:/Workspaces/cpu/CPU%1 ...

 c:/Workspaces/cpu/CPU%1: Workspace version - 1.3
 c:/Workspaces/cpu/CPU%1: Href mode - normal

 Name Url Selector
 Static Version Type Relative Path Overridden

 LIB sync://serv1.ABCo.com:2647/Modules/ChipDesign/Tools/LIB Gold
 1.2 Module ../lib yes

 c:/Workspaces/lib/LIB%0: Workspace version - 1.2
 c:/Workspaces/lib/LIB%0: Module has no hierarchical references.

 ===

 Showing hrefs of module c:/Workspaces/rom/ROM%1 ...

 c:/Workspaces/rom/ROM%1: Workspace version - 1.3
 c:/Workspaces/rom/ROM%1: Href mode - normal

 Name Url Selector
 Static Version Type Relative Path Overridden

 LIB sync://serv1.ABCo.com:2647/Modules/ChipDesign/Tools/LIB Trunk:
 1.2 Module ../lib yes

 Finished showhrefs operation.

Example Showing Overridden Hrefs in List Format

 This example shows overridden hierarchical references in the
 workspace. It uses the same hierarchical structure as the previous
 example.

 dss> showhrefs -overridden -report verbose -format list CHIP%0
 {hrefs {{relpath ../LIB resolved_selector 1.2 name LIB selector Gold
 type Module overridden no version 1.2 url
 sync://serv1.ABCo.com:2647/Modules/ChipDesign/Tools/LIB}} relpath ../COM
 resolved_selector 1.3 name COM selector Trunk: type Module overridden
 no version 1.2 url sync://serv1.ABCo.com:2647/Modules/ChipDesign/COM}
 {relpath ../LIB resolved_selector 1.2 name LIB selector Gold type
 Module overridden no version 1.2 url
 sync://serv1.ABCo.com:2647/Modules/ChipDesign/Tools/LIB} {hrefs {{relpath
 ../LIB resolved_selector 1.2 name LIB selector Trunk: type Module
 overridden no version 1.2 url
 sync://serv1.ABCo.com:2647/Modules/ChipDesign/Tools/LIB}} relpath ../ROM
 resolved_selector 1.3 name ROM selector Trunk: type Module overridden
 no version 1.2 url sync://serv1.ABCo.com:2647/Modules/ChipDesign/ROM} #

Example Showing Conflicting Hierarchical References in the Workspace

ENOVIA Synchronicity Command Reference - Module

729

 This example shows hierarchical conflicts in the workspace in normal
 reporting mode.

 dss> showhrefs -conflict TOP%0

 Beginning showhrefs operation ...

 Showing hrefs of module c:/chip/top/TOP%0 ...

 c:/chip/top/TOP%0: Workspace version - 1.4 : Selector - Trunk:
 c:/chip/top/TOP%0: Href mode - normal

 Name Url Selector
 Static Version Type Relative Path

 COM sync://serv1.ABCo.com:2647/Modules/Chip-P21z/COM Trunk:
 1.2 Module ../COM
 LIB sync://serv1.ABCo.com:2647/Modules/Chip-P21z/Tools/LIB Gold
 1.2 Module ../LIB
 ROM sync://serv1.ABCo.com:2647/Modules/Chip-P21z/ROM Trunk:
 1.2 Module ../ROM

 LIB: Not present in workspace due to hierarchical conflict.
 Finished showhrefs operation.

showmcache

showmcache Command

NAME

 showmcache - Lists the modules in one or more module caches

DESCRIPTION

• Notes for Modules
• Notes for Legacy Modules
• Understanding the Output for Modules Objects
• Understanding the Output for Legacy Modules

 This command lists the contents of one or more specified module and
 legacy module caches.

 Module caches to be listed can be specified with the -mcachepaths
 option. If the -mcachepath option is not supplied, the command
 uses the path list specified in the default module cache paths
 registry setting.

Informational

730

 The command searches the module caches in the order specified with
 the -mcachepaths option, or previously defined with SyncAdmin.

 This command supports the command defaults system.

Notes for Modules

 For module mcache, the showmcache command lists all of the modules
 found within the directory hierarchy of the mcache regardless of
 where their base directories reside.

 Note: The module cache directory must be a workspace root
 directory.

Notes for Legacy Modules

 For legacy module mcache, the showmcache command lists all of the
 releases whose base directory resides in the top-level directory
 of the mcache.

Understanding the Output for Modules Objects

 By default, or if you run the showmcache command with the '-format
 text' option, the command displays a list of module cache paths
 searched, followed by a table for modules.
 The content of the table is displayed in order of module cache paths
 searched and entries for each module cache are sorted by PATH.

 The table for modules includes the following information as columns:

 o PATH The absolute path of the module version base
 directory.

 o URL The URL of the module.

 o SELECTOR The selector used to fetch the module.

 o VERSION The version number of the module.

 o AVAILABLE Indicates whether the module is available for
 use by the populate command. Possible values are 1 and
0,
 where a value of 1 indicates the release is available
for
 use.
 A module might be unavailable if, for example,
 it is currently being fetched to the mcache.

ENOVIA Synchronicity Command Reference - Module

731

 o HIERARCHY Indicates whether the module was recursively
 populated into the module mcache. Possible values are
 'yes' and 'no', where 'yes' indicates that the
 module was recursively populated.

 o HREFMODE Indicates which href mode was used to
 fetch the module. Possible values are:
 - dynamic - Resolves hrefs to determine what
 version of the submodules were populated.
 - static - Resolves hrefs to the specific
 submodules referenced at the time the href was
 created.
 - normal - Resolves hrefs according to how the
 hrefs were created. If a static href is
 reached, the persistent mode is set to 'static'
 for that submodule and any submodules below it;
 otherwise, the persistent mode remains
 'normal'.

 Note: The populate command will not create an
 mcache link to an mcached module version that
 was not fetched statically.

 If you run the showmcache command with '-format list', it returns a
 Tcl list of modules and releases.

 Each module in the list has the following properties:

 o url The URL of the module

 o path The base directory path of the module version.

 o version The version number of the module.

 o selector The selector used to fetch the module.

 o hierarchical Indicates whether the module was recursively
 populated into the module mcache. Possible values are
 'yes' and 'no', where 'yes' indicates that the
 module was recursively populated.

 o available Indicates whether the module is available for
 use by the populate command.

 o hrefmode Indicates which href mode was used to
 fetch the module.

 Note: The populate command will not create an mcache
 link to an mcached module version that was not
 fetched statically.

Understanding the Output for Legacy Modules

Informational

732

 By default, or if you run the showmcache command with the '-format
 text' option, the command displays a list of module cache paths
 searched, followed by a table for modules, if there are any, and
 table for releases. The content of the module cache table for
 modules is discussed in the previous section. The legacy module
 release table is displayed in order of module cache paths searched and
 entries for each module cache are sorted by PATH.

 Note: The list output for module and legacy module mcache entries is
 different. If you are running an environment that contains
 both, you should the modules section as well.

 The tables for releases includes the following information as columns:

 o PATH The absolute path of the module version base
 directory.

 o TARGET The URL of the release.

 o AVAILABLE Indicates whether the legacy release is available for
 use by the populate command. Possible values are
 1 and 0, where a value of 1 indicates the release is
 available for use.
 A legacy release might be unavailable if, for example,
 it is currently being fetched to the mcache.

 o HIERARCHY Indicates whether the legacy release was recursively
 populated into the module mcache. Possible values are
 'yes' and 'no', where 'yes' indicates that the
 legacy release was recursively populated.

 If you run the showmcache command with '-format list', it returns a
 Tcl list of releases.

 Each legacy release in the list has the following properties:

 o target The URL of the release.

 o path The base directory path of the release.

 o type The type of configuration.
 Note: The type is always "Release" because the
 show mcache command only lists releases in
 legacy mcaches.

 o selector Always empty.

 o hierarchical Indicates whether the legacy release was recursively
 populated into the module mcache. Possible values are
 'yes' and 'no', where 'yes' indicates that the
 legacy release was recursively populated.

 o available Indicates whether the legacy release is available for
 use by the populate command.

ENOVIA Synchronicity Command Reference - Module

733

SYNOPSIS

 showmcache [-format (text | list)] [-mcachepaths <path_list>]

OPTIONS

• -format
• -mcachepaths

-format

 -format text|list Indicates the format in which the output
 appears.

 Valid values are:

 o text - Displays the output in a table
 format. This is the default behavior.

 o list - Returns a Tcl list of name/value
 pairs.

 For information about the values displayed,
 see the "Understanding the Output" section.

-mcachepaths

 -mcachepaths <path_list>
 Identifies one or more module caches to
 search.

 To specify multiple paths, surround the path
 list with double quotation marks ("") and
 separate path names with a space. For
 example: "/dir1/cacheA /dir2/cacheB"

 If -mcachepaths is absent, the command uses
 the list of paths defined in the registry
 setting.

 NOTES:
 - To specify a path that includes spaces:
 o In stcl or stclc, surround the path
 containing the spaces with curly braces.
 For example:
 "/dir1/cache {/dir2/path name}".
 o In dss or dssc, use backslashes (\) to
 "escape" the spaces. For example:
 "/dir1/cache /dir2/path\ with\ spaces"

Informational

734

 - The command searches the module caches in
 the order specified with the -mcachepaths
 option or in the default module cache paths
 registry setting if this option is absent.

RETURN VALUE

 If you run the showmcache command with the '-format list' option, it
 returns a Tcl list of modules. Each list element contains a list of
 name/value pairs representing data about the module. If you specify
 '-format text' or if you do not specify the -format option, the
 command does not return any Tcl values. For a description of the
 output, see the "Understanding the Output" section.

SEE ALSO

 populate, swap show, command defaults

EXAMPLES

 This example shows in table format the releases
 available in two module caches, /A5/cache and /B1/cache:

 dss> showmcache -mcachepaths "/A5/cache /B1/cache" -format text

 Mcachepaths search order:

 /A5/cache/CPU
 /B1/cache/ALU

 Modules found:

 PATH TARGET AVAILABLE HIERARCHY
 --
 /A5/cache/CPU sync://cpu.ABCo.com:2647/Projects/Cpu@Rel1 yes yes
 /A5/cache/SLIB sync://svr1.ABCo.com:2647/Projects/STDLIB@R1 yes no
 /B1/cache/ALU sync://alu.ABCo.com:2647/Projects/Alu@Rel2 yes yes

===

 This example shows a module cache and a legacy module cache available.

 stcl> showmcache -mcachepaths {/home/dana/designs/components
 /home/dana/designs/libraries}
 Mcachepaths search order:

 components
 libraries

ENOVIA Synchronicity Command Reference - Module

735

 Legacy Configurations found:

 PATH TARGET AVAILABLE HIERARCHY

 home/dana/designs sync://qewfsun8:30084/ yes yes
 /libraries/stdlib Projects/stdlib@REL1

 Modules found:

 PATH URL SELECTOR VERSION\

 HREFMOD AVAILABLE HIERARCHY

 components/CPU sync://qewfsun8:30084//Modules/CPU GOLD 1.2\

 static yes yes

showmods

showmods Command

NAME

 showmods - Displays the modules available on a server or
 workspace

DESCRIPTION

• Understanding the Output

 This command lists the available modules and external modules within
 a workspace or on a specified server, and legacy modules on a
 specified server.

 If the command is run within a module directory structure, the
 showmods command includes the containing modules.

 Note: Legacy modules in a workspace do not display with showmods.

 The showmods command identifies mcache links to modules within the
 workspace.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Informational

736

Understanding the Output

 The output of the command depends on whether you specify a module on
 the server or a folder in your workspace.

 The output can be formatted for easy viewing (-format text) or
 optimized for Tcl processing (-format list). Both viewing formats
 show the same information, but may have different names. In the table
 below, the Column Titles column shows the text output column header
 and the Property Names column shows list output key value.

 By default, or if you run the showmods command with the '-report
 normal' option, the following information is output according to the
 type of argument being processed:

 When the argument is a server module, showmods displays the following
 information:
 Column Property
 Titles Names Description
 ------ ----- ------------
 Name name Name of the module.
 Note: Modules are displayed
 alphabetically by name.
 Owner owner User name of the person who created the
 module.
 Path path The vault directory containing the
 contents of the module.

 When the argument is a workspace folder, showmods displays the
 following information:
 Column Property
 Titles Names Description
 ------ ----- ------------
 Name name Name of the module.
 Note: Modules are displayed
 alphabetically by name.

 Instance modinstname Unique instance name of the module in
 the workspace.

 Base Workspace directory containing the
 Directory basedir contents of the module.

 Url url Location of the module on the server.
 Note: For external modules, the URL is
 sync:///ExternalModule/<external-type>/<external-data>

 Selector selector Selector used to determine which version
 to fetch into a workspace. For more
 information, see the selectors help
 topic.

 Mcache Path mcachelink Location of the module cache directory

ENOVIA Synchronicity Command Reference - Module

737

 containing the module.
 Note: If you run the showmods commands
 with -format text (default) when there
 are mcaches present in the workspace, the
 mcache link information: name, instance
 name and mcache path, display in a
 separate section below the module
 information.

 If you run the showmods command with '-report brief', it displays the
 following information.

 o For server modules - module path on the server,
 sorted by path. The column title is Module Path. The property name
 is path.
 o For workspace modules - full directory path for the workspace
 folder, sorted by path. The column title is Unique Address. The
 property name is address.

 If you run the showmods command with '-report verbose', it displays
 the information shown with the -normal option and the following
 additional information:

 For a server module:
 Column Property
 Titles Names Description
 ------ ----- ------------
 Comment comment Comment used when creating a module.

 Url url Full sync URL of the module.
 Note: For external modules, the URL is
 sync:///ExternalModule/<external-type>/<external-data>

 Type type The type of module being viewed.
 o standard - a regular module.
 o legacy module - a legacy module.
 o external - an external module
 containing files managed by a different
 change management system.

 For a workspace module:
 Column Property
 Titles Names Description
 ------ ----- ------------
 Unique
 Address address Full module address on the client side.
 Version version The version information for the module
 version in the workspace.

 Top toplevel Denotes whether the module is a top-level
 module (meaning it has no other modules
 in the workspace containing an href to
 the reported module). A value of "yes"
 (or "1") means the module is a
 top-level. A value of "no" (or "0")
 means it is not a top-level module.

Informational

738

 If you run the showmods command with '-report script', it displays
 the same properties as the verbose report in '-format list' mode.

 Note: The '-report script' mode is only applicable for workspace arguments.

SYNOPSIS

 showmods [-[no]all] [-format [{text | list}] [-filter <string>]
 [-report {brief | normal | verbose | script}] [-[no]top]
 [<argument>]

ARGUMENTS

• Server Path
• Workspace Folder

Server Path

 <server path> A server path. You can use wildcard
 characters in the path for any piece of the
 address except the servername and port
 number. If the path isn't specified, the
 command will return information for all
 modules, including legacy modules, on the
 server.

Workspace Folder

 <workspace folder> A workspace folder. Specifying a workspace
 folder displays all modules with a base
 directory at or below the specified
 folder. In addition, if the folder is a member
 of a module whose base directory is above the
 folder, then that module is also reported.
 You can use wildcard characters for any part
 of the workspace folder name.

 Note: This will never display any legacy
 modules, since they do not have metadata in
 the root directory.

 Note: If no argument is specified, showmods command uses the current
 directory.

OPTIONS

ENOVIA Synchronicity Command Reference - Module

739

• -[no]all
• -format
• -filter
• -report
• -[no]top

-[no]all

-[no]all
 Determines whether to report on the specified
 workspace folder or on all modules in the
 workspace using the workspace root directory of
 the specified workspace folder.

 -noall reports on the specified workspace
 folder. (Default)

 -all begins at the workspace root directory of the
 workspace and reports all the modules found in
 the workspace. Given that the workspace root is
 usually defined in a directory path one or
 more levels higher than the argument given to
 the showmods command, the -all option may list
 modules that are outside of the directory cone
 below the argument's path.

 This option is only valid when working with workspace
 folder arguments.

-format

 -format <mode> Determines the format of the output. For
 information about the information displayed,
 and the output sort order, see the
 "Understanding the Output" section.
 Valid values are:
 o list - Displays a list with the following
 format:
 {
 name <name>

 }

 Note: This option replaces the deprecated
 -report script option.

 o text - Display a text table with headers and
 columns. (Default)

-filter

Informational

740

 -filter <string> Specify one or more extended glob-style
 expressions to identify an exact subset of
 module objects on which to operate.

 The -filter option takes a list of expressions
 separated by commas, for example: -filter
 +.../ProjectA/../*,-.../RAM*

 Prepend a '-' character to a glob-style
 expression to identify objects to be excluded
 (the default). Prepend a '+' character to a
 glob-style expression to identify objects to
 be included. Note that if the list of
 expressions begins with an include
 character ('+'), the filter excludes all
 objects except those that match the include
 string.

 For this command, the expressions are matched
 against the full module URL for each module
 (sync://host:1234/Modules/MyMod)

 The extended glob-style expressions you use to
 filter the objects are standard glob-style
 expressions, but they are extended so that you
 can use the "..." syntax to indicate that the
 expression matches any number of directory
 levels. For example, the expression, "...
 /ProjectA/.../Rom*" matches Rom* modules in a
 URL that contains "ProjectA", followed by zero
 or more levels. The command traverses the
 directory structure. If a directory name
 matches an exclude clause of the filter, then
 the entire directory and all its contents are
 filtered (the command stops descending at that
 point), otherwise the command continues
 traversing the directory structure searching
 for matching objects.

-report

 -report <mode> Determines what the output of the command is.
 For more information on the output of the
 -report option, see the "Understanding the
 Output" section.

 Valid values are:

 o brief - Displays path or workspace location
 for the specified server or workspace module.

 o normal - Displays basic module information
 for the specified server or workspace

ENOVIA Synchronicity Command Reference - Module

741

 module. (Default)

 o verbose - Displays extended module
 information for the specified server or
 workspace module.

 o script - Displays the extended module
 information for the specified workpace
 module in a TCL list.

 Note: When -script mode is used, The format
 mode is automatically set to -list.

-[no]top

-[no]top Determines whether to display output for all
 modules or only the top-level modules, modules
 with no other modules in the workspace
 containing an href to the reported module.

 -notop Does not filter the command output and
 displays all module information. (Defaut)

 -top Filters the command output to only list
 top-level modules.

 This option is only valid when working with
 workspace folder arguments.

RETURN VALUE

 If you run the showmods command with the '-format list' option, it
 returns a Tcl list. For a description of the output, see the
 "Understanding the Output" section. If the command fails, it returns
 a Tcl error.

SEE ALSO

 swap show, mkmod, command defaults
,

EXAMPLES

• Example of Showing the Modules on the Server in Text Format
• Example of Showing the Modules on the Server in List Format
• Example Showing the Server Modules Using Verbose Report Mode
• Example Showing a TCL List of Server Modules Using Verbose Report Mode

Informational

742

 These examples list the modules available on the DesignSync server
 sync://srvr1.ABCo.com:2647. The examples show the showmods command
 running with the two report modes (normal and verbose) and both
 format options (text and list) to show the different output.

Example of Showing the Modules on the Server in Text Format

 The following two examples display to the screen in a user-friendly
 format the modules available on the DesignSync server
 sync://srvr1.ABCo.com:2647. The first example specifies a server
 module. The second example specifies a workspace folder. The
 workspace folder contains referenced modules, ROM and CPU and mcache
 module Tools.

 dss> showmods sync://srvr1.ABCo.com:2647/Modules/Chip

 Beginning showmods operation ...
 Name Owner Path

 Chip rsmith Modules/Chip

 Finished showmods operation.

 dss> showmods ~/MyModules
 Beginning showmods operation ...

 Name Instance Base Directory
 Url Selector

 ALU ALU%0 /home/rsmith/MyModules/alu
 sync://srvr1.ABCo.com:2647/Modules/ALU Trunk:
 Chip Chip%0 /home/rsmith/MyModules/chip
 sync://srvr1.ABCo.com:2647/Modules/Chip Trunk:
 Chip Chip%1 /home/rsmith/MyModules/chipGold
 sync://srvr1.ABCo.com:2647/Modules/Chip Gold:
 CPU CPU%1 /home/rsmith/MyModules/chip/CPU
 sync://srvr1.ABCo.com:2647/Modules/CPU Gold
 ROM ROM%1 /home/rsmith/MyModules/chip/CPU/ROM
 sync://srvr1.ABCo.com:2647/Modules/ROM Gold:
 SPC SPC%0 /home/rsmith/MyModules/spc
 sync://srvr1.ABCo.com:2647/Modules/SPC Trunk:
 300MM 300MM%0 /home/rsmith/MyModules/300mm
 sync://srv1.ABCo.com:2647/Modules/300MM Trunk:

 MCACHE LINKS

 Name Instance Mcache Path

 300MM Chip300MM%0 /home/mcacheDir/300mm/300MM%0

 Finished showmods operation.

ENOVIA Synchronicity Command Reference - Module

743

Example of Showing the Modules on the Server in List Format

 The following two examples display to the screen in Tcl format the
 modules available on the DesignSync server
 sync://srvr1.ABCo.com:2647. The first example specifies a server
 module. The second example specifies a workspace folder. The
 workspace folder contains referenced modules, ROM and CPU.

 dss> showmods -format list sync://srvr1.ABCo.com:2647/Modules/Chip
 {name Chip owner rsmith path Modules/Chip}

 dss> showmods -format list ~/MyModules
 {name ALU modinstname ALU%0 basedir /home/rsmith/MyModules/alu url
 sync://srvr1.ABCo.com:2647/Modules/ALU selector Trunk:} {name Chip
 modinstname Chip%0 basedir /home/rsmith/MyModules/chip url
 sync://srvr1.ABCo.com:2647/Modules/Chip selector Trunk:} {name Chip
 modinstname Chip%1 basedir /home/rsmith/MyModules/chipGold url
 sync://srvr1.ABCo.com:2647/Modules/Chip selector Gold:} {name CPU
 modinstname CPU%1 basedir /home/rsmith/MyModules/chip/CPU url
 sync://srvr1.ABCo.com:2647/Modules/CPU selector Gold} {name ROM
 modinstname ROM%1 basedir /home/rsmith/MyModules/chip/CPU/ROM url
 sync://srvr1.ABCo.com:2647/Modules/ROM selector Gold:} {name SPC
 modinstname SPC%0 basedir /home/rsmith/MyModules/spc url
 sync://srvr1.ABCo.com:2647/Modules/SPC selector Trunk:}
 {name 300MM modinstname Chip300MM%0 basedir
 /home/rsmith/MyModules/300mm url
 sync://srv1.ABCo.com:2647/Modules/300MM selector Trunk: mcachelink
 /home/mcacheDir/300mm/300MM%0}

Example Showing the Server Modules Using Verbose Report Mode

 The following two examples display to the screen in a user-friendly
 format the modules available on the DesignSync server
 sync://srvr1.ABCo.com:2647. The first example specifies a server
 module. The second example specifies a workspace folder. The
 workspace folder contains referenced modules, ROM and CPU.

 dss> showmods -report verbose sync://srvr1.ABCo.com:2647/Modules/Chip
 Beginning showmods operation ...

 Name Type Owner Path
 URL Comment
 --
 Chip standard rsmith Modules/Chip
 sync://srvr1.ABCo.com:2647/Modules/Chip Chip design module

 Finished showmods operation.

 dss> showmods -report verbose ~/MyModules
 Beginning showmods operation ...

 Name Instance Base Directory
 Unique Address

Informational

744

 Url Version Selector

 ALU ALU%0 /home/rsmith/MyModules/alu
 /home/rsmith/MyModules/alu/ALU%0
 sync://srvr1.ABCo.com:2647/Modules/ALU 1.4 Trunk:
 Chip Chip%0 /home/rsmith/MyModules/chip
 /home/rsmith/MyModules/chip/Chip%0
 sync://srvr1.ABCo.com:2647/Modules/Chip 1.5 Trunk:
 Chip Chip%1 /home/rsmith/MyModules/chipGold
 /home/rsmith/MyModules/chipGold/Chip%1
 sync://srvr1.ABCo.com:2647/Modules/Chip 1.2.1.1 Gold:
 CPU CPU%1 /home/rsmith/MyModules/chip/CPU
 /home/rsmith/MyModules/chip/CPU/CPU%1
 sync://srvr1.ABCo.com:2647/Modules/CPU 1.3 Gold
 ROM ROM%1 /home/rsmith/MyModules/chip/CPU/ROM
 /home/rsmith/MyModules/chip/CPU/ROM/ROM%1
 sync://srvr1.ABCo.com:2647/Modules/ROM 1.4 Gold:
 SPC SPC%0 /home/rsmith/MyModules/spc
 /home/rsmith/MyModules/spc/SPC%0
 sync://srvr1.ABCo.com:2647/Modules/SPC 1.4 Trunk:
 300MM 300MM%0 /home/rsmith/MyModules/300mm
 /home/rsmith/MyModules/300mm/300MM%0
 sync://srv1.ABCo.com:2647/Modules/300MM Trunk:

 MCACHE LINKS

 Name Instance Mcache Path

 300MM Chip300MM%0 /home/mcacheDir/300mm/300MM%0

 Finished showmods operation.

Example Showing a TCL List of Server Modules Using Verbose Report Mode

 The following two examples display to the screen in Tcl format the
 modules available on the DesignSync server
 sync://srvr1.ABCo.com:2647. The first example specifies a server
 module. The second example specifies a workspace folder. The
 workspace folder contains referenced modules, ROM and CPU.

 Note: The results of the second command are identical to specifying
 'showmods -report script.'

 dss> showmods -format list -report verbose \
 sync://srvr1.ABCo.com:2647/Modules/Chip
 {name Chip type standard owner rsmith path Modules/Chip url
 sync://srvr1.ABCo.com:2647/Modules/Chip comment {}}

 dss> showmods -report verbose -format list ~/MyModules
 {name ALU modinstname ALU%0 basedir /home/rsmith/MyModules/alu
 address /home/rsmith/MyModules/alu/ALU%0 url
 sync://srvr1.ABCo.com:2647/Modules/ALU version 1.4 selector Trunk:}

ENOVIA Synchronicity Command Reference - Module

745

 {name Chip modinstname Chip%0 basedir /home/rsmith/MyModules/chip
 address /home/rsmith/MyModules/chip/Chip%0 url
 sync://srvr1.ABCo.com:2647/Modules/Chip version 1.5 selector
 Trunk:} {name Chip modinstname Chip%1 basedir
 /home/rsmith/MyModules/chipGold address
 /home/rsmith/MyModules/chipGold/Chip%1 url
 sync://srvr1.ABCo.com:2647/Modules/Chip version 1.2.1.1 selector
 Gold:} {name CPU modinstname CPU%1 basedir
 /home/rsmith/MyModules/chip/CPU address
 /home/rsmith/MyModules/chip/CPU/CPU%1 url
 sync://srvr1.ABCo.com:2647/Modules/CPU version 1.3 selector Gold}
 {name ROM modinstname ROM%1 basedir
 /home/rsmith/MyModules/chip/CPU/ROM address
 /home/rsmith/MyModules/chip/CPU/ROM/ROM%1 url
 sync://srvr1.ABCo.com:2647/Modules/ROM version 1.4 selector Gold:}
 {name SPC modinstname SPC%0 basedir /home/rsmith/MyModules/spc
 address /home/rsmith/MyModules/spc/SPC%0 url
 sync://srvr1.ABCo.com:2647/Modules/SPC version 1.4 selector Trunk:}
 {name 300MM modinstname Chip300MM%0 basedir
 /home/rsmith/MyModules/300mm address
 /home/rsmith/MyModules/300mm/Chip300MM%0 url
 sync://srv1.ABCo.com:2647/Modules/300MM version 1.3 selector Trunk:
 mcachelink /home/mcacheDir/300mm/300MM%0}

showproduct

showproduct Command

NAME

 showproduct - shows the associated enterprise server Product
 revisions

DESCRIPTION

 This command shows the object revisions on an Enterprise
 server associated with a DesignSync module object using the default
 web browser.

 For a module version or branch that has been synchronized with an
 Enterprise object, this command shows the Property page for that
 object in the Enterprise system.

 For a workspace module instance, or a module version or branch that
 has not been synchronized, this command attempt to find Enterprise
 objects associated with that module version, branch, or selector and
 display the results in a table.

 The ENOVIA server information is stored in SyncAdmin in the Site
 settings, "Enterprise Servers" tab. For more informtaion on

Informational

746

 defining the ENOVIA server ,see the DesignSync Data Manager
 Administrator's Guide.

 The Product in ENOVIA must have a defined DSFA connection to the
 module object in DesignSync.

SYNOPSIS

 showproduct <object> [-branch <selector>] [-version <selector>]

ARGUMENTS

• Module instance
• Server URL

Module instance

 <Workspace Module> The workspace module instance name; for example:
 Chip%0.

Server URL

 <Server URL> The Server module URL in the format:
 sync[s]://<host>[:<port>]/Module/[<category>...]/<ModuleName>
 where <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 <category> identifies path to the module, and
 <ModuleName> is the module associated with the
 Enterprise Design object.

OPTIONS

• -branch
• -version

-branch

 -branch <selector> Specifies the branch by the branch or
 version tag, or branch numeric.

 For a workspace module, if no -branch or
 -version option is specified, a combination of
 the fetched version and selector are used to

ENOVIA Synchronicity Command Reference - Module

747

 find matching objects in the Enterprise
 system.

 For a Server URL, either a -branch or a
 -version option must be specified.

 Note: The -branch option accepts a single
 branch tag, a single version tag, or a branch
 numeric. It does not accept a selector or
 selector list.

-version

 -version Specifies the version of a module associated with
 <selector> the Enterprise Design objects.

 For a workspace module, if no -version option is
 selected, DesignSync uses the version fetched in
 the workspace and the module selector to identify
 the matching objects in the Enterprise system.

 For a server URL, you must specify either the
 -version or -branch options.

 You may specify any valid single selector. Note:
 You may specify a branch or version that is not
 among the ancestors of the branch loaded into the
 workspace, meaning you can unremove an objects to
 check into the local workspace branch that was
 previously not present on the branch.

RETURN VALUE

 This command has no return value. The command launches the default
 the default web browser to display the information returned.

SEE ALSO

 entobj show, entobj synchronize, populate

showstatus

showstatus Command

NAME

Informational

748

 showstatus - Displays the status of a module in your
 workspace

DESCRIPTION

• Understanding the Output
• Text Formatted Output
• List Formatted Output
• External Module Support
• Legacy Module Output

 This command lists the status of the hierarchical references of a
 module in your local work area as compared to that
 module on the server. The main status changes shown by this command
 include:
 o Selector changes
 o Added or removed hierarchical references
 o Hierarchical reference conflicts
 o Added, moved, or removed module members
 o Swapped module

 Using this command, you can verify that your workspace is up-to-date.
 By default the showstatus command does not show the status of module
 members. In order to show object status, you must specify the
 -objects option.

 Notes:
 * When the persistent hrefmode of the workspace is normal,
 showstatus uses the setting of the "Change traversal mode with
 static selector on top level module" option in SyncAdmin (registry
 key "HrefModeChangeWithTopStaticSelector") to determine how the
 module hierarchy should be understood by the command. If the
 setting is enabled and the top-level module is populated with a
 static selector, then the modules populated in the workspace must
 match the expected static versions in order to be considered
 up-to-date.

 * If a module in the workpace is swapped, the showstatus commands
 reports the status of the swapped module as "up-to-date," and
 indicates that the module has been swapped.

 * If a hierarchical reference to a submodule version has been
 overridden by a higher-level href, the hierarchical reference
 within the parent module is NOT considered modified.

 * When working with mcache links in older clients, showstatus may
 report the module as out of date.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

ENOVIA Synchronicity Command Reference - Module

749

Understanding the Output

 The output can be restricted using the -report option. The -report
 brief and -report summary options provide summary information on the
 workspace status, while the -report normal option provides more
 detail. The -report verbose mode provides additional information
 about whether the hierarchical references need updating.

 Note: You can set the -report normal mode to report on the "needs
 update" status of hierarchical references with the
 ShowHrefsNeedCheckinStatus registry key. For more information on
 setting the registry key, see the DesignSync Administrator's Guide.

 The output can be formatted for easy viewing (-format text) or
 optimized for Tcl processing (-format list). Both formats show
 similar information, but the forms are very different. The following
 sections, "Text Formatted Output" and "List Formatted Output,"
 provide specific information about the information returned by the
 showstatus command.

 The module status can change depending on the options specified with
 the command. For more information, see the output sections below or
 the options definitions.

 Note: For information on legacy module output, see the "Legacy
 Modules output" section.

Text Formatted Output

 The showstatus output is formatted into different sections for ease
 of use:
 o The module information section provides the sync URL of the server
 modules and the base directory of the workspace module. This
 section does not appear when -report summary or brief modes are
 specified.

 o The version status section displays the version information for
 both the workspace and server modules and the unique identifiers
 (UID) for the modules, if they are different. The -report summary
 mode displays a single line indicating whether the versions are the
 same or different. The -report brief mode displays a single line if
 the version are the same, or the version information if the
 versions are different.

 o The hierarchical reference section compares the hrefs in the local
 metadata with the appropriate server-side module designated by the
 selector found in the workspace. The -report summary mode displays
 a single line notice indicating whether the hrefs are the same or
 different. The -report brief mode displays a single line if the
 hrefs are the same, or the list of differences if they are
 different. This section does not appear at all if the -nohrefs

Informational

750

 option is specified.

 o The href conflicts section compares the expected hrefs (those
 stored with the parent module) with the actual contents of the
 workspace. If the URL, selector, or static version doesn't match,
 the parent module shows a status of "Needs Checkin." For any
 swapped modules, a line appears for the referenced module
 providing information about the swapped module version. This
 section does not appear in -report brief or summary modes or if the
 -nohrefs option is specified.

 o The hrefs missing section highlights any referenced objects which
 are not present in the workspace. This section does not appear
 in -report brief or summary modes or if the -nohrefs option is
 specified.

 o The contents section displays the results of comparing the objects
 in the workspace to the objects in the server. This section does
 not appear in -report summary mode or if the -noobjects option is
 specified. If -report brief mode is specified, the command uses the
 -report brief form of compare.

 Note: When you run showstatus on a DesignSync vault, this is the
 only section displayed.

 o The hierarchical status section recursively reports the status for
 all hierarchical references in the workspace. This section does
 not appear if the -norecursive option is specified.

 At the end of the showstatus output, the command displays an overall
 status of the workspace and a recommended action, if an action is
 needed.

 Status Description
 ------ -----------
 Up-to-date The workspace and the server versions are identical.

 Out-of-date There is at least one discrepancy between the version
 present in the workspace and the version on the server.

 Unknown The status could not be determined. This may happen
 if a server is unreachable.

 Recommended
 Action Solution
 ------------ ---------
 Needs update The workspace version needs to be repopulated to
 synchronize it with the server.

 Needs checkin The workspace contains information that has not been
 captured in a version on the server. Check in your
 changes, to update the server version.

List Formatted Output

ENOVIA Synchronicity Command Reference - Module

751

 When showstatus is used with the -format list option, the output is
 returned in the form of a tcl list describing the objects and their
 status. The properties returned for each object depend on the type
 of object being examined and the options specified on the command
 line.

 Note: If the object doesn't exist (exist is 0) then most of the
 values return a null ("") value.

 Note: This table lists the properties in alphabetical order, not
 necessarily the output order of the command.

 Property
 Names Description
 ------- ------------
 actual Property list for the object in a workspace. The
 property list consists of the following properties:
 o url
 o selector
 o version
 o uid

 basedir Absolute path of the base directory of the
 object.

 conflicts List of differences between the list of expected
 hrefs in the workspace and the actual workspace
 content.

 content Results of running a compare command on the contents
 of the workspace and the server. This report only
 appears when the -objects option is specified.

 content_status Status of the objects in the module or DesignSync
 vault.
 o Up-to-date - Objects contained in the workspace and
 server versions are synchronized.
 o Out-of-date - There are differences in the objects
 listed in the workspace and server versions. These
 differences include different object versions and
 added or removed objects.

 exists Indicates whether the object exists in the
 workspace. Possible values include:
 o 1 - object exists in the workspace.
 o 0 - object does not exist in the workspace.

 fullname Full, unique workspace address.

 hier_status Overall status of the referenced objects.
 o Up-to-date - Workspace and server versions are
 synchronized.
 o Out-of-date - Workspace and server versions are
 different.

 hierarchy An array of the referenced objects present in the

Informational

752

 workspace, indexed by href name.
 o name - Href name.
 o type - type of object referenced. Possible values
 include Module, Branch, Selector, External,
 Release, Alias, Deliverable, or Vault.
 o url - Server-side vault of the referenced object.
 o selector - selector for the referenced object.
 o version - if the reference object is a module, the
 numeric version ID. For any other object, a null
 ("") value.
 o relpath - relative path of the referenced object.
 o status - the status of the referenced object.
 Possible values include:
 - Up-to-date where the workspace and server
 metadata for the href instance match.
 - Out-of-data where a difference exists among one
 or more of the values in the hierarchy array.
 The notes section in the array explains the
 difference.
 - Local-only where an href with the href instance
 name is present only in the workspace metadata.
 - Server-only where an href with the href instance
 name is present only in the server metadata.
 o notes - List of strings describing the
 discrepancies mentioned in the status
 value. Possible values include:
 - "Relative path changed on server to <relpath>"
 - "Url changed on server to <URL>"
 - "Selector changed on server to <selector>"
 - "Version changed on server to <version>"

 Note: In -report brief mode, this property only lists
 out-of-data hrefs. This property does not appear in
 -report summary mode or when the -norecursive option
 is specified.

 hrefs Combined array of hrefs found on the workspace and on
 the server. This property does not appear in -report
 summary mode or when the -nohrefs option is
 specified. The array contains the following fields:
 o name - Href name.
 o type - type of object referenced. Possible values
 include Module, Branch, Selector, Release, Alias,
 Deliverable, or Vault.
 o url - Server-side vault of the referenced object.
 o selector - selector for the referenced object.
 o version - if the reference object is a module, the
 numeric version ID. For any other object, a null
 ("") value.
 o relpath - relative path of the referenced object.
 o status - the status of the referenced object.
 Possible values include:
 - Up-to-date where the workspace and server
 metadata for the href instance match.
 - Out-of-data where a difference exists among one
 or more of the values in the hierarchy array.
 The notes section in the array explains the

ENOVIA Synchronicity Command Reference - Module

753

 difference.
 - Local-only where an href with the href instance
 name is present only in the workspace metadata.
 - Server-only where an href with the href instance
 name is present only in the server metadata.
 o notes - List of strings describing the
 discrepancies mentioned in the status
 value. Possible values include:
 - "Relative path changed on server to <relpath>"
 - "Url changed on server to <URL>"
 - "Selector changed on server to <selector>"
 - "Version changed on server to <version>"

 href_status Status of the hierarchical reference metadata in the
 workspace.
 o Up-to-date - Workspace and server versions are
 synchronized.
 o Out-of-date - Workspace and server versions are
 different.

 legacy_status Legacy show status for legacy configurations. For
 more information, see the "Legacy module output"
 section.

 missing Names of the hrefs expected in the workspace that
 are not present in the workspace. This property does
 not appear in -report brief or summary modes.

 Note: Missing hrefs do not automatically mean the
 workspace and server are out of sync. An href may
 have been filtered out during the workspace populate,
 or removed from the workspace manually.

 modinstname Workspace module instance name.

 needs_checkin Status of the object in the workspace:
 0 Indicates that the object is up-to-date and does
 not require a checkin.
 1 Indicates the object is locally modified and does
 require a checkin.

 needs_update Status of the object in the workspace:
 0 Indicates that the object is up-to-date and does not
 need to updated by the server.

 1 Indicates that the object is out-of-date and does
 need to be updated by the server.

 server Property list for the object on a server which which
 the workspace object is being compared. These are
 the properties of the module or DesignSync vault to
 which the workspace selector resolves.
 o url
 o selector
 o version
 o uid

Informational

754

 status Status of the workspace object.
 o Up-to-date where the workspace and server versions
 are synchronized.
 o Out-of-date where the workspace and server versions
 are different.
 o Unknown where the status of the object could not be
 determined. This might occur if a server is
 unavailable.

 swap_conflict Shows the properties of the swapped modules, including
 the href name, selector and version for each swapped
 module version.

 swapped Indicates whether the href is swapped.
 o 1 - object is swapped.
 o 0 - object is not swapped.

 type Workspace object type. Possible values include:
 o standard - module
 o legacy module
 o external - external module
 Note: External modules are always considered
 "up-to-date."
 o DS vault
 o deliverable - IP Gear deliverable.

 uid UID of the module in the workspace.

 unknown Status of the object hierarchy in the external module.
 0 Indicates that the external module hierarchy status
 is known.
 1 Indicates that the external module hierarchy status
 is not known.

 version_status Status of the workspace version.
 o Up-to-date - Workspace version and server version
 associated with the workspace by the designated
 select are synchronized.
 o Out-of-date - Workspace version and server version
 associated with the workspace by the designated
 selector are different.

External Module Support

 DesignSync supports showing the status of an external module to
 determine whether the objects are current or out of date. After an
 external module has been populated, the showstatus command can be
 available to query the status of the external module members and
 return the results.

 For information on populating an external module, see the populate
 command. For information on configuring showstatus for external
 modules, see the DesignSync Administrator's Guide.

ENOVIA Synchronicity Command Reference - Module

755

Legacy Module Output

 The legacy module output is unchanged from previous versions.

 The showstatus command, by default, displays the following
 information:
 o Configuration: Identifies the configuration for which the status
 is shown. This value is a Synchronicity URL.

 o Base Directory: Identifies the local file system directory in which
 the configuration resides. Each module in a
 hierarchy has its own base directory.

 o Information about each hierarchical reference:
 - STATUS The status of the hierarchical reference of the
 configuration in the work area as compared to
 the server. Possible values are:
 Local Only Indicates the hierarchical reference exists
 only in the local work area.
 Out-of-date Indicates that the hierarchical reference in
 the local work area does not match the
 hierarchical reference on the server; for
 example, an alias on the server may have
 changed to refer to a new release or the
 relative path of the hierarchical reference on
 the server may have changed.
 Displays a table of conflicts if conflicts exist
 between the submodule configuration that a
 parent module expects to find in the workspace
 and the submodule configuration that actually
 exists there. Such conflicts can be caused by:
 a relative path that contains a configuration
 different from the one that the parent
 configuration expects; a relative path that
 contains no configuration; or a relative path
 that doesn't exist.
 Server Only Indicates the hierarchical reference was added
 on the server.
 Unknown Indicates that status of the hierarchical
 reference cannot be determined. This status is
 displayed only if you specify a recursive
 showstatus operation. For example, if you
 specify 'showstatus -recursive' and the server on
 which a referenced configuration resides is
 unavailable, the showstatus operation lists the
 status for that configuration as Unknown.
 Up-to-date Indicates that the hierarchical reference in the
 local work area matches the hierarchical
 reference on the server.
 - HREF Identifies the submodule to which the
 configuration of the upper-level module is
 connected. This value is a Synchronicity URL.
 - RELATIVE PATH Identifies the path from the upper-level module

Informational

756

 to the submodule.

 o Configuration status
 Indicates the status of the configuration.
 (Displayed only when you specify the -recursive
 option.)

 o Summary Indicates the overall status of the
 configuration. By default (or if you specify the
 '-report normal' option), this value is a
 summary of the status of the configuration's
 hierarchical references. Note: If you specify
 the -objects option, this value represents the
 status of the objects contained in the
 configuration in combination with the status of
 its hierarchical references.
 Possible values are:
 - Local Only Indicates the configuration exists only in
 the local work area.
 - Out-of-date Indicates that the configuration in
 the local work area does not match the
 configuration on the server.
 - Server Only Indicates the configuration was added
 on the server.
 - Unknown Indicates that status of the configuration
 cannot be determined. This status is
 displayed, for example, if the server on which
 the configuration resides is unavailable.
 - Up-to-date Indicates that the configuration in
 the local work area matches the hierarchical
 reference on the server.

 To show the status of the objects contained in your work area
 configuration (as compared to objects in the configuration on the
 server), you can use the showstatus command with the -objects
 option. Output from the command first shows the status of the
 configuration's hierarchical references (as described above) and then
 shows the status of its objects. When '-objects' is specified, the
 value for configuration status reflects the status of its objects in
 combination with the status of its hierarchical references.

 Information for each object includes:

 o Workspace Version Identifies the version of the object in
 the work area configuration. "Unmanaged"
 indicates the object is not managed by
 DesignSync; "Unknown" indicates that the
 status cannot be determined. (For
 example, the command might display
 "Unknown" for an object if the server is
 not available.) If no information is
 displayed, it indicates that the version
 is absent from the work area.

 o Configuration Version Identifies the version of the object in the
 configuration on the SyncServer.

ENOVIA Synchronicity Command Reference - Module

757

 o Object Name Identifies the name of the object for
 which status information is given.

 If you use the showstatus command with '-format list' option, it
 returns a Tcl list in the following form:

 target <module_URL>
 relpath <relative_path>
 [notes {
 "Old aliased release: <release_name>" |
 "New aliased release: <release_name>" |
 "Relative path changed to '<path>'" |
 "Cannot determine current value of alias on server." |
 <miscellaneous other information>
 }
]
 status <Local Only | Out-of-date | Server Only | Unknown | Up-to-date>
 hierstatus <Local Only | Out-of-date | Server Only | Unknown | Up-to-date>
 [hrefs {{<submodule_status>} {...}}] ...

 The returned information includes the following:

 o target The URL of the module configuration.
 o relpath The relative path from the base directory of the
 upper-level module configuration (Parent) to the
 submodule configuration (Target). This path is used
 when you fetch (populate) the module into your
 work area.

 o status The status of the configuration in your work
 area (as compared to the configuration on the
 server). Note: This status reflects the status
 of the configuration's hierarchical
 references. If the -objects option is specified,
 status reflects the status of configuration's
 hierarchical references and objects.

 Possible values are:
 - Local Only Indicates the hierarchical reference exists
 only in the local work area.
 - Out-of-date Indicates that the hierarchical reference in
 the local work area does not match the
 hierarchical reference on the server; for
 example, an alias on the server could have
 changed to refer to a new release or the
 relative path of the hierarchical reference
 on the server could have changed.
 - Server Only Indicates the hierarchical reference was added
 on the server.
 - Unknown Indicates that status of the hierarchical
 reference cannot be determined. This status is
 displayed, for example, if the server on which
 the configuration resides is unavailable.
 - Up-to-date Indicates that the hierarchical reference in
 the local work area matches the hierarchical
 reference on the server.
 o hierstatus Indicates the overall status of the

Informational

758

 configuration. By default (or if you specify the
 '-report normal' option), this value is a summary
 of the status of the configuration's
 hierarchical references. If you specify
 the -objects option, this value represents the
 status of the objects contained in the
 configuration as well as the status of its
 hierarchical references. If you specify the
 -recursive option, the value indicates the
 status of the entire configuration hierarchy.
 Possible values are:
 - Out-of-date Indicates that the configuration in
 the local work area does not match the
 configuration on the server.
 - Unknown Indicates that status of the configuration
 cannot be determined. This status is
 displayed, for example, if the server on which
 the configuration resides is unavailable.
 - Up-to-date Indicates that the configuration in
 the local work area matches the hierarchical
 reference on the server.
 o hrefs A list of property lists, one for each of the
 configuration's hierarchical references.
 (Displayed only if the configuration has
 hierarchical references.)

 Note:
 o Your output will include 'notes' if an alias in your work area is
 out of date with respect to the server. For example, if DRAM@Silver
 initially references the DRAM@R1 configuration and the alias is
 changed such that DRAM@Silver now references the DRAM@R2
 configuration, your output would include the following notes:

 notes {{Old aliased release: R1} {New aliased release: R2}}

 o When you run the showstatus command recursively, your output will
 include 'hrefs' status for each submodule containing hierarchical
 references. The <submodule_status> is a Tcl list of the module
 status information.

 To show the status of the objects contained in your work area
 configuration, use the showstatus command with the -objects and the
 '-format list' options. Output from the command lists the status of
 the configuration and its hierarchical references (as described
 above). In addition, the output includes a Tcl list (content) that
 describes the status of each of the objects contained in the
 configuration.

 target <module_URL>
 relpath <relative_path>
 [notes {{Old aliased release: <release_name>}
 {New aliased release: <release_name>}}]
 status <Local Only | Server Only | Up-to-date | Unknown | Out-of-date>
 content
 {
 path1 <path>
 path2 <URL>

ENOVIA Synchronicity Command Reference - Module

759

 type <folder | file>
 objects
 {
 {
 name <object_name>
 type <file | folder>
 objects {object_list}
 name <file_name> type file
 props1
 {
 state <absent | modified | present | reference
 | unknown | unmanaged>
 version <version_number>
 }
 props2
 {
 state <absent | modified | present | reference
 | unknown | unmanaged>
 version <version_number>
 }
 }
 }
 }

 hierstatus <Up-to-date | Out-of-date | Unknown>
 [hrefs {{<submodule_status>} {...}}] ...

 o content Lists the objects in the configuration
 and reports the status of each. (Displayed
 only if you specify the -objects option with
 the showstatus command.)
 o path1 The path to the work area directory containing
 the configuration.
 o path2 The URL of the configuration on the server.
 o type The type of object contained in the work area
 path (folder or file).
 o objects A list of objects and their properties.
 (Displayed only when type is
 folder.) For each object, the following
 information is provided:
 - name The name of the object
 - type The object's type (folder or file)
 - props1 {...} props2 {...}
 Properties of the objects in the configuration.
 (Displayed only when object type is file.)
 Properties are:
 o version - The version number of the object.
 (In certain cases, this property may not be shown.)
 o state - The status of the object in the path
 (your work area or configuration on the server.)
 Possible values are:
 - absent - Indicates that the object is not
 present on this path (work area or
 configuration on the server).
 - modified - Indicates that the object has been
 locally modified.
 - present - Indicates that the object is

Informational

760

 present on this path. (The version that is
 present is reported in the version property.)
 - reference - Indicates that the object is a
 referenced object.
 - unknown - Indicates that the object exists
 in the work area but the fetched version
 is unknown. This state is most commonly
 reported when an object has been removed from
 the workspace (with the rmfile command)
 and then recreated.

SYNOPSIS

 showstatus [-format <type>] [-[no]hrefs] [-[no]objects]
 [-[no]recursive] [-releases]
 [-report {brief | normal | verbose | summary | script}]
 [-xtras <xtras>] <argument>

ARGUMENTS

• Workspace Module
• Legacy Module Base Directory
• External Module Instance

Workspace Module

 <workspace module> Specifies the workspace module. You may
 specify a module instance name or a full
 module address. It is compared against the
 corresponding server module.

Legacy Module Base Directory

 <legacy module base Specifies the workspace legacy module base
 directory> directory. It is compared against the
 corresponding server folder.

 Note: You cannot run the showstatus command
 against a module sub-folder. The command must
 be run against the top level module directory.

External Module Instance

 <external_mod> Specifies the external module instance. The
 external module must be populated into the

ENOVIA Synchronicity Command Reference - Module

761

 workspace.

OPTIONS

• -format
• -[no]hrefs
• -[no]objects
• -[no]recursive
• -releases
• -report
• -xtras

-format

-format <type> Determines the format of the output.
 Valid values are:
 o list - Displays a list with the following
 format:
 {
 name <name>

 }

 For a list of properties displayed, see the
 "Understanding the Output" section above.

 o text - Display a text table with headers and
 columns. (Default) Objects are shown in
 alphabetical order.

-[no]hrefs

-[no]hrefs Determines whether to follow the hierarchical
 references to determine if their status is
 current.
 -nohrefs does not trace the hierarchical
 references. This eliminates the time and
 server load that might be required to
 follow the hierarchical trail. (Default)
 -hrefs traces the hierarchical references to
 determine if the reported status is current.

-[no]objects

 -[no]objects Indicates whether command should run the
 compare command to compare the status of each
 object in the workspace with the corresponding
 object version on the server.

Informational

762

 -noobjects skips the object
 comparison. (Default)

 -objects checks the status of the workspace
 objects.

-[no]recursive

 -[no]recursive Indicates whether the command should return
 the status for the specified module, or the
 specified module and all referenced modules.

 -norecursive displays the status for the
 specified module only. (Default)

 -recursive displays the status for the
 specified modules and all referenced modules
 and identifies why particular hierarchical
 references are not recursed.

 Notes: If you run the showstatus command with
 the '-format list' option, the showstatus
 command captures all errors encountered in the
 hierarchy and displays a message containing
 all the error messages.

-releases

 -releases Indicates that the showstatus command should run
 recursively against a legacy module
 releases. (Legacy modules only.)

 Note: If this option is not supplied, the
 status of hierarchical references to releases
 is always listed as up-to-date.

-report

 -report <mode> Specifies the type of status information to
 be displayed.

 Valid values are:
 o brief - Displays a summary for all data and
 detailed data for any items that are out of
 sync. For a description of the status
 information, see "Understanding the Output".

 o normal - Displays the status of the

ENOVIA Synchronicity Command Reference - Module

763

 hierarchical references (and optionally,
 file status) for the module. (Default) Also
 displays a table of conflicts if conflicts
 exist between the expected submodule and the
 actual submodule. For a description of the
 status information, see "Understanding the
 Output".
 Note: You can set the -report normal mode to
 report on the "needs Â update" status of
 hierarchical references with the
 ShowHrefsNeedCheckinStatus registry
 key. For more information on setting the
 registry key, see the DesignSync
 Administrator's Guide.

 o verbose - Displays the status of the
 hierarchical references and additional
 information about whether the hierarchical
 references need updating (and optionally,
 file status) for the module. Displays a
 table of conflicts if conflicts exist
 between the expected submodule and the
 actual submodule, and additional
 information. For a description of the status
 information, see "Understanding the Output".

 o summary - Displays the target and base
 directory of the module, the status of each
 module, and the overall status of the module
 in the workspace. Also displays a table of
 conflicts if conflicts exist between the
 expected submodule and the actual
 submodule. For a description of the status
 information, see "Understanding the Output".

 o script - Returns a Tcl list of
 config_name/property_list pairs. This is
 identical to using running showstatus with
 -report verbose -format list.

-xtras

 -xtras <xtras> List of command line options to pass to the
 external module change management system. Any
 options specified with the -xtras option are
 sent verbatim, with no processing by the
 populate command, to the Tcl script that
 defines the external module change management
 system.

RETURN VALUE

 If you run the showstatus command with the '-format list' option, it

Informational

764

 returns a Tcl list. For a complete description of the output, see the
 "Understanding the Output" section.

SEE ALSO

 addhref, rmhref, compare, ls, swap show, edithrefs, command defaults
,

EXAMPLES

• Module Hierarchy for Module Examples
• Example Showing Module Href Status Where Hrefs are Current
• Example Showing Module Href Status Where Hrefs are Outdated
• Example Showing Outdated Module Href Status in List Format
• Example Showing Legacy showstatus Command Formats
• Example of using showstatus on a legacy module

Module Hierarchy for Module Examples

 All of the modules example assume the following hierarchy in your
 work area.
 Top stored in ~/MyModules/Chip
 CPU;Trunk:Gold stored in ~/MyModules/Chip/CPU
 ALU stored in ~/MyModules/Chip/CPU/ALU

Example Showing Module Href Status Where Hrefs are Current

 This example lists the status of the hierarchical references in your
 local work area as compared to the server.

 dss> showstatus -recursive Chip%0
 Beginning showstatus operation ...

 Status of module Chip%0 ...

 Chip%0: url - sync://srv2.ABCo.com:2647/Modules/Chip;Trunk:
 Chip%0: base directory - /home/rsmith/MyModules/chip

 Chip%0: Workspace version 1.7
 Chip%0: Server version 1.7
 Chip%0: Version is Up-to-date

 Href Name Status Url Selector \
 Version Relative Path

 CPU Up-to-date sync://srv2.ABCo.com:2647/Modules/CPU Trunk:Gold
 1.3 CPU
 ROM Up-to-date sync://srv2.ABCo.com:2647/Modules/ROM Trunk:

ENOVIA Synchronicity Command Reference - Module

765

 1.2 /ROM

 Chip%0: No hierarchical reference conflicts found.

 Chip%0: Hrefs are Up-to-date

 Status of module CPU%1 ...

 CPU%1: url - sync://A/Modules/CPU;Trunk:Gold
 CPU%1: base directory - /home/rsmith/MyModules/chip/CPU

 CPU%1: Workspace version 1.3
 CPU%1: Server version 1.3
 CPU%1: Version is Up-to-date

 Href Name Status Url Selector
 Version Relative Path

 ALU Up-to-date sync://srv2.ABCo.com:2647/Modules/ALU Trunk:
 1.2 ALU

 CPU%1: No hierarchical reference conflicts found.

 CPU%1: Hrefs are Up-to-date

 Status of module ALU%2 ...

 ALU%2: url - sync://srv2.ABCo.com:2647/Modules/ALU;1.2
 ALU%2: base directory - /home/rsmith/MyModules/chip/CPU/ALU

 ALU%2: Workspace version 1.2
 ALU%2: Server version 1.2
 ALU%2: Version is Up-to-date

 ALU%2: No hierarchical references.

 ALU%2: Module hierarchy is Up-to-date.

 ALU%2: Module is Up-to-date.

 CPU%1: Module hierarchy is Up-to-date.

 CPU%1: Module is Up-to-date.

 Chip%0: Module hierarchy is Up-to-date.

 Chip%0: Module is Up-to-date.

 Finished showstatus operation.

Example Showing Module Href Status Where Hrefs are Outdated

 This example shows output of an showstatus operation where a

Informational

766

 hierarchical references in the module is out of date.

 stcl> showstatus -objects Chip%0

 Beginning showstatus operation ...

 Status of module Chip%0 ...

 Chip%0: url - sync://srv2.ABCo.com:2647/Modules/Chip;Trunk:
 Chip%0: base directory - /home/rsmith/MyModules/chip

 Chip%0: Workspace version 1.5
 Chip%0: Server version 1.6
 Chip%0: Version is Out-of-date

 Href Name Status Url
 Selector Version Relative Path

 CPU Up-to-date sync://srv2.ABCo.com:2647/Modules/CPU
 Trunk:Gold 1.3 CPU
 ROM Server Only sync://srv2.ABCo.com:2647/Modules/ROM
 Trunk: 1.2 /ROM

 Chip%0: No hierarchical reference conflicts found.

 Chip%0: Hrefs are Out-of-date

 Workspace Configuration Status Object
 Version Version Name
 --------- ------------- ------ ------
 1.1 1.1 Identical chip.c
 1.1 1.1 Identical chip.doc
 1.1 1.1 Identical chip.h

 Chip%0: Module is Out-of-date.
 Chip%0: Needs update.

 Finished showstatus operation.

Example Showing Outdated Module Href Status in List Format

 This example shows the same data as in the previous example, an out
 of data hierarchical reference, but the output is presented in list
 format.

 stcl> showstatus -format list -objects Chip%0
 href_status Out-of-date exists 1 basedir /home/rsmith/MyModules/chip
 type standard needs_checkin 0 content {path1
 /home/rsmith/MyModules/chip/Chip%0 path2
 sync://srv2.ABCo.com:2647/Modules/Chip@Trunk: type folder props1

ENOVIA Synchronicity Command Reference - Module

767

 {type module url sync://srv2.ABCo.com:2647/Modules/Chip version 1.5
 relpath {} basedir /home/rsmith/MyModules/chip} props2 {type module
 url sync://srv2.ABCo.com:2647/Modules/Chip version 1.6 relpath {}
 modulepath {}} objects {{name chip.doc type file state identical
 props1 {state present version 1.1} props2 {state present version
 1.1}} {name chip.c type file state identical props1 {state present
 version 1.1} props2 {state present version 1.1}} {name chip.h type
 file state identical props1 {state present version 1.1} props2
 {state present version 1.1}}}} conflicts {} content_status
 Up-to-date hierarchy {} server {selector Trunk: uid
 1ba413d31cfbd405591dba00f2ef564a version 1.6 url
 sync://srv2.ABCo.com:2647/Modules/Chip} hrefs {{status Up-to-date
 relpath CPU selector Trunk:Gold name CPU version 1.3 type Module
 basedir /home/rsmith/MyModules/chip/CPU url
 sync://srv2.ABCo.com:2647/Modules/CPU modinstname CPU%1} {status
 {Server Only} relpath /ROM selector Trunk: name ROM version 1.2 url
 sync://srv2.ABCo.com:2647/Modules/ROM}} needs_update 1
 version_status Out-of-date missing {} actual {version_ci {} selector
 Trunk: uid 1ba413d31cfbd405591dba00f2ef564a version 1.5 url
 sync://srv2.ABCo.com:2647/Modules/Chip} hier_status Up-to-date
 fullname /home/rsmith/MyModules/chip/Chip%0 status Out-of-date
 modinstname Chip%0 #

Example Showing Legacy showstatus Command Formats

 o Show the status of hierarchical references of a module
 configuration hierarchy in the work area as compared to the
 server:

 dssc> showstatus -recursive <ModInstance>

 For example:
 dssc> showstatus -recursive Chip%0

 o Show the status of hierarchical references and objects contained in
 a module configuration hierarchy in the work area as compared to
 the server:

 dssc> showstatus -recursive -objects <ModInstance>

 o Show the status of each configuration in the module configuration
 hierarchy, followed by a summary of the overall status of the
 hierarchy. (Note: Because '-files' is specified, each configuration's
 status represents the status of the configuration's hierarchical
 references and its objects.)

 dssc> showstatus -recursive -objects -report summary \
 <ModInstance>

Example of using showstatus on a legacy module

 This example lists the status of the hierarchical references in your

Informational

768

 local work area as compared to the server. It assumes the following
 data hierarchy in your work area.
 Top kept in directory Designs/Top
 IO@TEST kept in directory Designs/Top/IO
 Mem@DEV kept in directory Designs/Top/Mem

 dss> showstatus -recursive Chip%0

 This command displays the following output:

 Target: sync://srvr1.ABCo.com:2647/Projects/Top
 Base Directory: /home/jsmith/Designs/Top

 STATUS HREF RELATIVE PATH
 --
 Up-to-date sync://srvr1.ABCo.com:2647/Projects/IO@TEST IO
 Up-to-date sync://srvr1.ABCo.com:2647/Projects/Mem@DEV Mem

 Configuration status: Up-to-date

 ===

 Target: sync://srvr1.ABCo.com:2647/Projects/IO@TEST
 Parent: sync://srvr1.ABCo.com:2647/Projects/Top
 Base Directory: /home/jsmith/Designs/Top/IO

 No local or remote hierarchical references found for configuration.

 Configuration status: Up-to-date

 ===

 Target: sync://srvr1.ABCo.com:2647/Projects/Mem@DEV
 Parent: sync://srvr1.ABCo.com:2647/Projects/Top
 Base Directory: /home/jsmith/Designs/Top/Mem

 No local or remote hierarchical references found for configuration.

 Configuration status: Up-to-date

 ==

 Status of all visited configurations.
 STATUS TARGET PATH
 --
 Up-to-date sync://srvr1.ABCo.com:2647/Projects/Mem@DEV
 /home/jsmith/Designs/Top/Mem
 Up-to-date sync://srvr1.ABCo.com:2647/Projects/IO@TEST
 /home/jsmith/Designs/Top/IO
 Up-to-date sync://srvr1.ABCo.com:2647/Projects/Top
 /home/jsmith/Designs/Top

 Summary: Up-to-date

showlocks

ENOVIA Synchronicity Command Reference - Module

769

showlocks Command

NAME

 showlocks - Shows all locked items in the vault

DESCRIPTION

• Understanding the Output

 This command provides a list of all items locked on the server.

 Note: To show locked items in the workspace, use the ls command with
 the '-locked -workspace' options.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Understanding the Output

 By default the command reports the branch and version information of
 the folder or module being queried, and a table or Tcl list,
 containing a list of items locked on the server. The information is
 presented in order of objects searched and entries for each object
 are sorted by relative path.

 The showlocks command returns the following information:

 Column Property
 Titles Names Description
 --
 User user Displays the username of the user who
 owns the object lock.
 Date date Displays the date and time the object was
 locked.
 Name name Displays the name of the locked object.
 Where where Displays the full path location of the
 workspace where the object is locked,
 including the machine name where the
 workspace is located.
 log Displays the lock comment. Note: Only
 module branches contain lock comments.
 uid Displays the unique identifier for the
 object.

Informational

770

SYNOPSIS

 showlocks [-alloverriden] [-format text|list] [-modulecontext <context>]
 [-[no]overridden] [-[no]recursive] <argument>

ARGUMENTS

• Server URL
• Workspace

Server URL

 <serverURL> Specifying the server URL provides a list of locked
 objects on the server. If you specify a branch, only
 objects locked on that branch of the module are
 displayed. Specify the module's server URL in the
 format:
 sync://<machine>:<port>/Modules/<category>/
 <module_name>[.branchid][;<selector>].

Workspace

 <workspace module> Specifying the workspace argument provides a list
 <workspace folder> of locked objects at the corresponding server
 location.
 For a list of all the locked items in a
 workspace, use the ls command with the -locked
 option.

OPTIONS

• -alloverridden
• -format
• -modulecontext
• -[no]overriden
• -[no]recursive

-alloverridden

 -alloverridden

-format

ENOVIA Synchronicity Command Reference - Module

771

 -format text| Determines the format of the output. For
 list information about the information displayed
 see the "Understanding the Output" section.
 Valid values are:
 o text - Display a text table with headers and
 columns. (Default) Objects are shown in
 alphabetical order.
 o list - Displays a list with the following
 format:
 {
 name <name>
 }

-modulecontext

 -modulecontext Identifies the module version to operate on.
 <context> Specify the module context with the sync URL of
 the desired module. For example:
 sync://server1:2647/Modules/Chip;RelA

 Note that you cannot use a -modulecontext option
 to operate on objects from more than one module;
 the -modulecontext option takes only one
 argument, and you can use the -modulecontext
 option only once on a command line. When the
 modulecontext option is used, the argument must
 specify the natural path of the object being
 switched.

-[no]overriden

 -[no]overriden

-[no]recursive

 -[no]recursive Indicates whether the command should return
 the status for the specified argument, or the
 specified argument and all subfolders.

 -norecursive displays the status for the
 specified argument only. (Default)

 -recursive displays the status for the specified
 argument and all subfolders.
 Note: -recursive does not traverse module
 hierarchies.

SEE ALSO

Informational

772

 command defaults, ci, lock, populate, url locktime

EXAMPLES

• Example Showing the Locks on Module Members
• Example Showing a Module Branch Lock

Example Showing the Locks on Module Members

 This example shows the showlocks command running on a module with the
 -format text option.
 dss> showlocks Chip
 Module Chip/Chip, branch 1 (Trunk) has content locks:

 User Date Name Where
 ---- ---- ---- -----
 bobt 09/07/2006 15:09 /source.c /home/rsmith/Chip/source.c

 This example shows the showlocks command running on a module with the
 -format list option.

 dss> showlocks -format list Chip
 {branch 1 tags Trunk contents {{user bobt date {09/07/2006 \
 15:09} name /source.c where /home/rsmith/Chip/source.c log {}}}}

Example Showing a Module Branch Lock

 This example shows the showlocks command running on a locked module
 branch.
 dss> showlocks ROM%1

 Module ROMDesign/ROM, branch 1.7.2 (Alpha) locked by user janh
 on 04/05/2010 07:38 'Alpha released finalized.'

syncinfo

syncinfo Command

NAME

 syncinfo - Returns Synchronicity environment information

DESCRIPTION

ENOVIA Synchronicity Command Reference - Module

773

 This command returns information about the Synchronicity
 software environment, such as version number, location of
 registry files, and default editor and HTML browser. The command
 can be run from the client to return client information, or from
 the server to return server information.

 By default (with no arguments specified), all available information
 is returned. You can request specific information by specifying
 one or more command arguments.

 If a given value has not been set or is not available, then
 'syncinfo' returns an empty string. For example, if you ask for
 portRegistryFile from the client, the return value is empty because
 portRegistryFile is only available from the server.

SYNOPSIS

 syncinfo [<arg> [<arg>...]]

ARGUMENTS

• General Information
• isServer
• syncDir
• version
• Registry Information
• clientRegistryFiles
• enterpriseRegistryFile
• portRegistryFile
• projectRegistryFile
• serverRegistryFiles
• siteRegistryFile
• syncRegistryFile
• userRegistryFile
• usingSyncRegistry
• Customization Information
• customDir
• customSiteDir
• customEntDir
• siteConfigDir
• usrConfigDir
• userConfigFile
• Client Information
• connectTimeout
• commAttempts
• defaultCache

Informational

774

• fileEditor
• htmlBrowser
• proxyNamePort
• somTimeout
• Server Information
• berkdbIsShmEnabled
• berkdbShmKey
• isTestMode
• serverMetadataDir
• serverDataDir
• serverMachine
• serverName
• serverPort
• User Information
• home
• userName

General Information

isServer

 isServer Returns a Tcl boolean value (0 or 1) indicating
 whether the software executing the syncinfo
 command is acting as a server (1) or client (0).

syncDir

 syncDir Returns the root directory of the Synchronicity
 software installation. On UNIX, this value
 corresponds to the SYNC_DIR environment
 variable (on Windows, SYNC_DIR is not required).

version

 version Returns the version of the Synchronicity software
 as a string.

Registry Information

clientRegistryFiles

 clientRegistryFiles Returns a comma-separated list of registry
 files used by the Synchronicity clients
 (DesSync, stcl, dss, stclc, dssc).

ENOVIA Synchronicity Command Reference - Module

775

enterpriseRegistryFile

 enterpriseRegistryFile Returns the enterprise-wide registry file.

portRegistryFile

 portRegistryFile Returns the port-specific registry file.

projectRegistryFile

 projectRegistryFile Returns the project-specific registry file.

serverRegistryFiles

 serverRegistryFiles Returns a comma-separated list of registry
 files used by a Synchronicity server.

siteRegistryFile

 siteRegistryFile Returns the site-wide registry file.

syncRegistryFile

 syncRegistryFile Returns the Synchronicity-supplied standard
 registry file.

userRegistryFile

 userRegistryFile Returns the user-specific registry file.

usingSyncRegistry

 usingSyncRegistry Returns a Tcl boolean value (0 or 1)
 indicating whether the Synchronicity
 software is using the text-based registry (1)
 or the native Windows registry (0).

Informational

776

Customization Information

customDir

 customDir Returns the root directory of the 'custom' branch
 of the Synchronicity installation hierarchy,
 which contains all site- and server-specific
 customization files. The default value,
 <SYNC_DIR>/custom, can be overridden by the
 SYNC_CUSTOM_DIR environment variable.

customSiteDir

 customSiteDir Returns the directory that contains site-specific
 customization files. The default value,
 <SYNC_CUSTOM_DIR>/site (which defaults to
 <SYNC_DIR>/custom/site), can be overridden by
 the SYNC_SITE_CUSTOM environment variable.

customEntDir

 customEntDir Returns the directory that contains enterprise-specific
 configuration files. The default value,
 <SYNC_ENT_CUSTOM> (which defaults
 to <SYNC_CUSTOM_DIR>/enterprise),
 can be overridden by the SYNC_ENT_CUSTOM
 environment variable.

siteConfigDir

 siteConfigDir Returns the directory that contains site-specific
 configuration files. The default value,
 <SYNC_SITE_CUSTOM>/config (which defaults
 to <SYNC_CUSTOM_DIR>/site/config, which
 defaults to <SYNC_DIR>/custom/site/config),
 can be overridden by the SYNC_SITE_CNFG_DIR
 environment variable.

usrConfigDir

 userConfigDir Returns the directory that contains user
 configuration files. The default value,
 <HOME>/.synchronicity, can be overridden

ENOVIA Synchronicity Command Reference - Module

777

 by the SYNC_USER_CFGDIR environment variable.

userConfigFile

 userConfigFile Returns the user configuration file. The default
 value, <HOME>/.synchronicity/user.cfg, can be
 overridden by the SYNC_USER_CONFIG
 environment variable.

Client Information

connectTimeout

 connectTimeout Returns the number of seconds the client will
 wait per communication attempt with the server.

commAttempts

 commAttempts Returns the number of times client/server
 communication is attempted before failing.
 Using multiple attempts protects against
 transient network problems. 'Connect Failure'
 failures do not trigger multiple connection
 attempts, because transient network problems
 rarely cause this error.

 Note: When the number of communication attempts
 is the default value of 3, 'syncinfo commAttempts'
 returns no value instead of returning 3.

defaultCache

 defaultCache Returns the default cache directory for the
 client as specified during installation or
 using SyncAdmin.

fileEditor

 fileEditor Returns the default file editor as specified
 during installation or using SyncAdmin.

htmlBrowser

Informational

778

 htmlBrowser (UNIX only) Returns the default HTML browser
 as specified during installation or using SyncAdmin.

proxyNamePort

 proxyNamePort Returns the <name>:<port> of a proxy, if
 one is defined in a client registry file or
 using the ProxyNamePort environment variable.

somTimeout

 somTimeout Returns the number of milliseconds after an
 unsuccessful server connection attempt during
 which the client does not try to connect again.
 This timeout protects against an operation
 on many objects (such as 'ls' on a large
 directory) taking an excessively long time
 to complete when there is a connection failure
 (such as when the server is down). Instead of
 waiting the connectTimeout period for each
 object, the operation fails for all objects
 after the first connection failure.

Server Information

berkdbIsShmEnabled

 berkdbIsShmEnabled For Synchronicity internal use only.

berkdbShmKey

 berkdbShmKey For Synchronicity internal use only.

isTestMode

 isTestMode For Synchronicity internal use only.
 Returns a Tcl boolean value (0 or 1) indicating
 whether the software executing the syncinfo
 command is running in test mode (1) or not (0).
 This feature is useful for regression
 testing of servers.

ENOVIA Synchronicity Command Reference - Module

779

serverMetadataDir

 serverMetadataDir Returns the directory that contains the
 server metadata (such as relational
 database) files.

serverDataDir

 serverDataDir Returns the directory that contains vault
 (repository) data that is stored by a server.

serverMachine

 serverMachine Returns the name of the server as returned by
 gethostname(). This value is returned only
 when 'syncinfo' is run from a server-side script.

serverName

 serverName Returns the name of the server as it was
 specified in the URL used to contact the
 server. This value is returned only when
 'syncinfo' is run from a server-side script.

serverPort

 serverPort Returns the port number used by the server to
 respond to the syncinfo request. This value is
 returned only when 'syncinfo' is run from a
 server-side script.

User Information

home

 home Returns the home directory of the user
 running syncinfo (HOME on UNIX, or as
 defined in your user profile on Windows platforms).

userName

Informational

780

 userName Returns the account name of the user
 running syncinfo.

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode:
 - If no argument is specified, the return value is a
 name/value list (Tcl 'array get' format) containing
 all available information.
 - If a single argument is specified, the return value is
 the requested value (not a list).
 - If more than one argument is specified, the return value
 is a name/value list containing the requested information.
 - If any argument is not known, an exception is thrown.

SEE ALSO

 server-side

EXAMPLES

• Example Showing the SyncInfo Version on Client Startup
• Example of Extracting SyncInfo Information to an Array
• Example Showing Extracting the Information from an Array
• Example of extracting Name/Value Pairs for Specific Arguments

Example Showing the SyncInfo Version on Client Startup

 When you start any Synchronicity client, 'syncinfo version'
 executes, which displays (and writes to your log file
 if logging is enabled) the Synchronicity version. In this
 example, the software is version 3.0.
 % stclc
 Logging to c:\goss\dss_01192000_092559.log
 V3.0

 stcl>

Example of Extracting SyncInfo Information to an Array

 The following stcl script fragment shows how to get all known

ENOVIA Synchronicity Command Reference - Module

781

 information as a Tcl array variable. The 'version' string is
 then printed.
 array set info [syncinfo]
 puts "Version: $info(version)"

Example Showing Extracting the Information from an Array

 This example uses the single-argument form of syncinfo to print the
 same version information provided by the previous example:

 puts "Version: [syncinfo version]"

Example of extracting Name/Value Pairs for Specific Arguments

 The following example uses command arguments to return a list
 of the 'syncDir' and 'userName' values. This example
 also shows how to enumerate the name/value list returned by
 syncinfo without storing it in an array variable.
 foreach {name value} [syncinfo syncDir userName] {
 puts "$name: $value"
 }

version

hcm version Command

NAME

 hcm version - Displays the DesignSync installation version

DESCRIPTION

 This command displays the version of the DesignSync product
 installation.

SYNOPSIS

 hcm version

OPTIONS

Informational

782

RETURN VALUE

 This command does not return Tcl values.

SEE ALSO

 syncinfo
,

EXAMPLES

 The following example displays the DesignSync version information.

 dss> hcm version
 V6R2012

vhistory

vhistory Command

NAME

 vhistory - Displays an object's version history

DESCRIPTION

• Reporting on Modules
• Report options
• Understanding the output

 The vhistory command reports version history for managed objects. If
 the command is run from a workspace, local status is also reported.

 This command supports the command defaults system.

Reporting on Modules

 Running vhistory on a module reports the history of that module.

ENOVIA Synchronicity Command Reference - Module

783

 Note: To list the module versions that contain a module member, use
 the whereused member command.

 Attempting to run vhistory on a module folder will report an error,
 instructing you to run the command on a module instead.

 Module members are managed within the context of their parent module.
 When you run vhistory on a module member object, it shows the only
 the module versions in which the specified module member has been
 directly affected by actions performed on the module, such as content
 change, tag, rename, remove, etc. This is noted in the Report Options
 table below, for the Module Manifest.

 The vhistory command does not recurse through module hierarchy. If a
 module is being reported on, and the -recursive option was specified,
 the vhistory command will output a warning.

 When vhistory is run with the -module option, and two or more module
 members are specified, a single vhistory report is produced that
 contains all the module version in which any of the module members
 specified have been modified.

 Note: If you have specified two or more module members and the
 lastversions options, you may only see one of the module members
 reported if the other does not have any versions in the specified
 timeline.

Report options

 The -report option lets you specify what information vhistory
 reports. You can specify:

 o One of the predefined modes (silent, brief, normal, verbose).

 o One or more data keys, to define exactly the information you want.

 o A combination of data keys to add to, or remove from, a
 predefined report.

 The predefined report modes, and how to modify them for a single
 vhistory invocation, are described in the "-report" option
 description.

 The following table lists the -report data keys, including the
 corresponding property names used in "-format list" output. Note
 that all data keys must be uppercase.

 Text Data Property
 Label Key Name Description
 ----- ---- -------- -----------
 Object: N name The workspace path to the object, or
 to the vault URL.

Informational

784

 ===== H N/A Show horizontal separators between
 ----- items and versions.

 Vault URL S url Show the vault URL (server address)
 associated with a workspace object.

 Current W version Show the version currently in the
 version workspace.

 Current L state Show the fetched state in the workspace.
 This is not reported for module data.

 B N/A Show entries for the branch objects.
 Note:

 R N/A Show entries for the version objects.

 I N/A Do not show (ignore) entries that have
 no tags.

 Branch T tags Show the branch and version tags.
 tags/Version Immutable tags are shown with
 tags "(immutable)" appended only if Y is
 specified as well..

 Tag Y tag_properties Show all properties associated with the
 comments version and branch tags including the
 tag dates, tag comments, and an
 "(immutable)" notation if the tag is
 immutable.

 In "-format list" output, the property
 value is a list of five values. Each
 set of values consists of a tag name, 0
 or 1 indicating whether the tag is
 immutable, the tag comments, the tag
 date, and the user who created the tag.

 Version V version, Show the version numbers for versions,
 bud and the branch number for branches.

 Also, for branches, the property "bud"
 will be included. A branch is a "bud"
 branch if it does not yet have any
 versions. A value of "1" indicates the
 branch is a bud branch, else "0".

 Date D date Show the creation date for a version.

 Derived F derived_from Show the numerical parent version. This
 from maintains the continuity between
 versions for merge and rollback
 operations.

 Note: If a merge, skip,rollback or
 overlay operation occurs to create this
 version, the referenced version is

ENOVIA Synchronicity Command Reference - Module

785

 shown as "Merged from" version.

 Author A author Show the author of a version.

 Size K size Show the size of the object version in
 KB.
 Note: Collections and module versions,
 both of which contain more than one
 object, display with a size of zero.

 Merged E merged_from Show the version used to create the
 from current version when the current
 version was created as the result of a
 rollback, merge, skip, or overlay
 operation requiring an alternate
 parent version.

 Comment C comment Show the checkin comments for a
 version, and any checkout comments. For
 DesignSync objects, checkout comments
 are only visible from the workspace in
 which the checkout occurred. For module
 objects, the branch lock comment is
 visible to all users.

 Locked by U locker, Show the lock owner of a locked branch.
 upcoming The text and list formats both show the
 latest version and leaves the upcoming
 version blank.

 Version G N/A Show a graphical representation of the
 graph version history, as a text graph.

 Reverse Z N/A Show the versions/branches in reverse
 order numeric order.

 Module Q manifest Show the manifest of Manifest changes
 in each version. For a module member,
 show only the changes to that member.

 Note: When a module rollback has been
 performed, the changes between versions
 are the changes that were "rolled
 back."

 In "-format list" output, the property
 value is a list of property lists, with
 one entry for each change recorded in
 the module version.

 Tagged M N/A Include Module version that have tags,
 Module even if a module member being queried
 Version has not been changed in that module
 version.

 N/A P deleted Includes deleted module versions with
 the information that the module has

Informational

786

 been deleted.
 Note: Appears in the text layout as
 "This version has been deleted."

 N/A objects In "-format list" output, the property
 value is a list of the branch and
 version items reported for that object.
 Each entry in the objects value is
 itself a property list.

 N/A type In "-format list" output, the property
 value is either "branch" (for branch
 entries) or "version" (for version
 entries). The value is used in the
 "objects" property value lists.

 N/A + N/A Add codes to a predefined report.

 N/A - N/A Remove codes from a predefined report.

Understanding the output

 The vhistory output is divided into sections. The first section
 provides the information about the selected module. The second
 section contains branch information for the currently selected
 branch, followed by the version information of all versions on that
 branch. If you have requested information about more than one
 branch, the branch section, ordered by branch number, is displayed,
 followed by the versions on that branch; followed by the next branch
 sequentially, etc. until all specified branches and versions have
 been enumerated. The sequence is based on depth of the branch and
 version numbers, for example the branch number 1.2.4.1 appears after
 branch 1.2.3, but before 1.3. The final section is the history
 graph.

 Notes: The sections and fields that appear in your report depend on
 the report formats you select. For more information on any of
 the displayed fields, see the Report options section.

 Object information can include the following fields:

 o Object - Workspace path to the object..
 o Vault URL - Vault URL associated with the object.
 o Current Version - Version number of the workspace version.

 Branch information includes the following fields:

 Note: You must include report option B to get information on
 branches. Additional options determine what branch information you
 display.

 o Branch - Branch number.
 o Branch tags - Branch tag names.
 o Branch tag properties - Immediately following the appropriate

ENOVIA Synchronicity Command Reference - Module

787

 branch tag, the following information is also displayed:
 - "immutable" when the tag is immutable.
 - tag application date
 - username of the operator who applied the tag
 - tag comment, if applicable, on the following line.
 o Locked by - username of the branch locker.
 o Comment - Comment applied to the branch during creation. For the
 Trunk branch, this is the comment entered when the module was
 created.

 Version information includes the following fields:

 Note: You must include the report option R to get information on
 versions. Additional options determine what version information you
 display.

 o Version - Version number.
 o Version tags - Version tag names.
 o Version tag properties - Immediately following the appropriate
 version tag, the following information is also displayed:
 - "immutable" when the tag is immutable.
 - tag application date
 - username of the operator who applied the tag
 - tag comment, if applicable, on the following line.
 Note: If the tag was applied with a checkin, the tag
 properties information is identical to Date, Author, Comment
 fields.
 o Derived From - numeric parent version.
 o Merged From - version used to create the current version.
 o Date - version creation date.
 o Author - version author.
 o Comment - version comment.
 o Module Manifest - list of files and hierarchical references changed
 in the version.

 History graph information includes the following:
 A graphical representation of the object's history.

SYNOPSIS

 vhistory [-branch <branchname> -descendants <n> |
 -lastversions <n> -lastbranches <n> | -all]
 [-exclude <string>] [-format list | text] [-maxtags <n>]
 [-modulecontext <context>]
 [-output <filename> | -stream <port>] [-report <mode>]
 [-[no]selected] [-xtras <list>] [--] <argument>
 [<argument>...]

ARGUMENTS

• Module Member
• Workspace Module

Informational

788

• Server Module

 Specify one or more of the following arguments:

Module Member

 <module member> Specifies the module member.

Workspace Module

 <workspace module> Specifies the workspace module. You may
 specify a module instance name or a full
 module address. It is compared against the
 corresponding server module.

Server Module

 <server module> Server modules can be selected using the URL of
 the module.
 sync[s]://<host>[:<port>]/<vaultPath> where
 <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 and <vaultPath> identifies the module to select.

OPTIONS

• -all
• -branch
• -descendants
• -exclude
• -format
• -lastbranches
• -lastversions
• -maxtags
• -modulecontext
• -output
• -report
• -[no]selected
• -stream
• -xtras
• --

ENOVIA Synchronicity Command Reference - Module

789

-all

 -all Report branch "1" and all descendants, thereby
 reporting the entire history of an object.

 The "-all" option is mutually exclusive with the
 "-descendants" option, the "-lastversions" option, the
 "-lastbranches" option, and with the "-branch" option.

-branch

 -branch <branchname>
 Start the report at the specified branch name. The
 <branchname> may be a branch tag or a branch numeric.

 By default, the current branch for workspace objects
 is the starting branch. For vault objects, branch 1 is
 the default starting branch.

 To override a default value that was saved with the
 command default system, specify a value of "". That
 will use the aforementioned default behavior.

-descendants

 -descendants <n>
 The number of levels of descendant branches to report,
 from the starting branch. By default, the report is
 limited to the starting branch (an <n> value of 0).

 You may specify any positive number as the <n> value.

 For example, if branch 1.2.1 is being reported on,
 and the descendants value is 1, then branch 1.2.1.3.1
 will be reported, but branch 1.2.1.3.1.4.1 will not be.

 Specifying a value of "all" will report all levels.

 The -descendants option is mutually exclusive with the
 -lastversions option and with the -lastbranches option.

-exclude

 -exclude <string>
 Specifies a glob-style expression to exclude matching
 object names from the report. The string you specify
 must match the name of the object as it would have
 appeared in the listing.

Informational

790

 By default, the vhistory command does not exclude the
 objects in the global exclude lists (set using
 Tools->Options->General->Exclude Lists or using
 SyncAdmin's General->Exclude Lists). To exclude these
 objects from a vhistory report, apply the -exclude
 option with a null string:
 dss> vhistory -exclude ""
 The objects in the global exclude lists are appended
 to the vhistory exclude list if you exclude other
 values:
 dss> vhistory -exclude "README.txt"

-format

 -format
 Specifies whether the "vhistory" command generates a
 formatted report, or returns a Tcl property list.

 list Returns a list, with each result entry
 containing the properties reported for each
 object, and an "objects" property. The objects
 property contains a sublist of property lists,
 with one entry for each branch and version
 object that is reported for the parent object.

 For example, consider the following command:

 stcl> vhistory -report LNRVT file1.txt \
 file2.txt -lastversions 2 -format list

 The above command requests a report of the
 last two versions on the current branch of the
 two specified objects. The report will contain
 the object name, the state of the objects in
 the workspace, and the versions of the object.
 For each version, the version number and any
 tags are reported.

 The result might be:

 {
 name file:///home/tbarbg10/Test/file1.txt
 state Copy
 objects {
 {type version version 1.4 tags {t1 t2}}
 {type version version 1.5 tags {t3 Latest}}
 }
 }

 {
 name file:///home/tbarbg10/Test/file2.txt
 state Lock
 objects {

ENOVIA Synchronicity Command Reference - Module

791

 {type version version 1.3.1.5 tags {}}
 {type version version 1.3.1.6 tags Latest}
 }
 }

 As shown above, the result is a list containing
 one entry for each object for which the history
 was requested.

 To process the results, use the
 vhistory-foreach and vhistory-foreach-obj
 functions.

 If the history was requested for a single
 object, you must start processing the result
 list by taking the "head" of the list, with a
 call such as "[index $result 0]".

 The property lists will always contain a
 property even if the value is "", for easier
 processing of the results.

 For a list of properties, see the Report Options
 table above.

 text Display a textual result. (Default)

-lastbranches

 -lastbranches <n>
 How many branches back to report. By default, only
 versions on the specified branch are reported (an
 <n> value of 0).

 You may specify any positive number as the <n> value.
 <n> parent branches back will be reported on. This
 option is used to show more of an object's history.

 For example, let's say the branch to be reported on is
 1.4.1.3.1, with a Latest version of 1.4.1.3.1.2. By
 default, the vhistory command would only report on
 versions 1.4.1.3.1.1 and 1.4.1.3.1.2. If "1" was
 specified as the -lastbranches value, then the
 vhistory command would also run on one parent branch
 back, reporting versions 1.4.1.3, 1.4.1.2 and 1.4.1.1.

 An <n> value of "all" will run the report on all
 parent branches, back to branch 1.

 The -lastbranches option is mutually exclusive with
 the -descendants option. That is because specifying a
 -lastbranches value implies a -descendants value of 0.

 The -lastbranches and -lastversions options can be

Informational

792

 used together. The report will start at the Latest
 version on the initial branch, and work backwards.

-lastversions

 -lastversions <n>
 How many versions back to report. By default, all
 versions on the requested branch are reported (an
 <n> value of "all").

 You may specify any positive number as the <n> value.

 The -lastversions option is mutually exclusive with
 the -descendants option. That is because specifying a
 -lastversions value implies a -descendants value of 0.

 If a specific version object URL is specified as the
 argument (or -modulecontext), instead of a -branch,
 then the report will start at the version specified.
 (Instead of starting at the Latest version on the
 branch.) This allows the report to be run on a range
 of versions.

 The -lastversions and -lastbranches options can be
 used together. The report will start at the Latest
 version on the initial branch, and work backwards.

-maxtags

 -maxtags <n>
 The maximum number of tags shown for any object. By
 default, all tags are shown (an <n> value of "all").

-modulecontext

 -modulecontext <context>
 Specifies the module context. Use this option to
 identify a module member that is not in the workspace
 or to restrict the report to module versions that
 affect any of the members specified on the command line.

-output

 -output <filename>
 Prints results to the specified file. The named file is
 created or overwritten, but not appended to. To append,
 use the "-stream" option.

ENOVIA Synchronicity Command Reference - Module

793

 The -output and -stream options are mutually exclusive.

-report

 -report <mode>
 Specifies what information about each object should
 be reported. Available report modes are:

 brief Report tagged versions/branches with their
 tags and numerics. This is equivalent to
 "-report NBRIVT".

 normal Report all available information, except for
 the module manifest. This is equivalent to
 "-report" with all codes listed in the
 Report Options table above, except for GZQI.

 This behavior is the default when "-report"
 is not specified.

 verbose Report all available information. This is
 equivalent to "-report" with all codes listed
 in the Report Options table above, except for
 GZI.

 K[K...] Display the fields corresponding to the data
 keys, where K is a data key listed in the
 Report Options table above.

 You may also use "+" and "-" operators to add and
 remove codes from the standard reports.

 For example, to report the "normal" output, but only
 for version objects and not branch objects:

 stcl> vhistory -report normal-B

 The data keys and predefined report modes may be
 combined in any order. However, the predefined report
 mode names may not be immediately preceded or followed
 by another data key or predefined report name.

 For example, the following is valid:

 stcl> vhistory -report Z+normal-B

 The above command will report the "normal" output, but
 without branches, and with the versions in reverse
 order.

 The following syntax is not valid:

 stcl> vhistory -report Znormal-B

Informational

794

 If the "-report" value begins with a "+" or "-", the
 default "normal" predefined report is automatically
 prepended.

 For example:

 stcl> vhistory -report -B

 is equivalent to:

 stcl> vhistory -report normal-B

-[no]selected

 -[no]selected
 Whether to operate on the items in the select list in
 addition to any arguments on the command line. If no
 arguments are given on the command line, then the
 select list is automatically used.

-stream

 -stream <port>
 Prints results to the specified named Tcl port.
 Depending on whether you open the stream using the Tcl
 "open" command in write (w) or append (a) mode, you can
 overwrite or append to an existing file.

 Note: The -stream option is only applicable in the stcl
 and stclc shells, not in the dss and dssc shells.

 The -stream and -output options are mutually exclusive.

-xtras

 -xtras <list> List of command line options to pass to the
 external module change management system. Any
 options specified with the -xtras option are
 sent verbatim, with no processing by the
 populate command, to the Tcl script that defines
 the external module change management system.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments

ENOVIA Synchronicity Command Reference - Module

795

 to the command begin with a hyphen (-).

RETURN VALUE

 If "-format list" was specified, and neither the "-output" option nor
 the "-stream" option were specified, then the result list is returned.
 Otherwise, a value of "" is returned.

SEE ALSO

 command defaults, datasheet, ls, select, whereused member,
 vhistory-foreach, vhistory-foreach-obj

EXAMPLES

• Example of Version History of a Module Branch
• Example of Version History Showing Module Rollback Operation

Example of Version History of a Module Branch

 The example below shows the default "-report normal" output, for a
 module branch:

 stcl> vhistory -branch Silver sync://faure:30044/Modules/multiple/M1
 Object: sync://faure:30044/Modules/multiple/M1

 Branch: 1.5.1
 Branch tags: Silver
 Tag comments:
 Silver : Branching version 1.5
 Comment: Branching version 1.5

 Version: 1.5.1.1
 Derived from: 1.5
 Date: Thu Oct 12 16:35:23 EDT 2006
 Author: mark
 Comment: Branching version 1.5

 Version: 1.5.1.2
 Version tags: Latest
 Derived from: 1.5.1.1
 Date: Thu Oct 12 16:36:41 EDT 2006
 Author: mark
 Comment: Versioning new silver branch

 ===
 stcl>

Informational

796

 The example below shows "-report verbose" output, for a module branch:

 stcl> vhistory -branch Golden sync://faure:30044/Modules/multiple/M1 \
 -report verbose
 Object: sync://faure:30044/Modules/multiple/M1

 Branch: 1.9.1
 Branch tags: Golden

 Version: 1.9.1.1
 Derived from: 1.9
 Date: Thu Oct 12 16:28:43 EDT 2006
 Author: debra
 Manifest:
 Added : /m1/c.txt, 1.1
 Added : /unixfilesfolder/unixfile1.txt, 1.2
 Added : /1.txt, 1.2
 Added : /m1/d.txt, 1.1
 Added : /m1/a.txt, 1.3
 Added : /m1/b.txt, 1.1

 Version: 1.9.1.2
 Version tags: Latest
 Derived from: 1.9.1.1
 Date: Thu Oct 12 16:31:13 EDT 2006
 Author: debra
 Comment: Testing some changes.
 Manifest:
 Added : /unixfilesfolder,
 Added : /file2, 1.1
 Changed : /1.txt, 1.2 -> 1.2.1.1
 Added : /file1, 1.1
 Added : /file3, 1.1
 Added : /m1,
 Renamed : /m1/c.txt -> /m1/x.txt, 1.1
 Deleted: /1.txt
 Renamed,Changed : /m1/a.txt -> /m1/ab.txt, 1.3 -> 1.4
 ==
 stcl>

Example of Version History Showing Module Rollback Operation

 This example shows a Module rollback operation in which version 1.5
 of the MBOM module was created by rolling back to version 1.2,
 removing the changes introduced in version in version 1.3 and 1.4.
 The example vhistory output includes a graphical representation
 (-report G).

 Note: The rollback comment is displayed as the checkin comment for
 the module version created from the rollback.

ENOVIA Synchronicity Command Reference - Module

797

 dss> vhistory -norecursive -report NSWLTYDFAECXUHVBRG MBOM%0
 Object: /home/rsmith/MyModules/mbom/MBOM%0
 Vault URL: sync://srv2.ABCo.com:2647/Modules/MBOM
 Current version: 1.4

 Branch: 1
 Branch tags:
 Trunk, Wed Sep 05 08:20:54 AM EDT 2007, rsmith

 Version: 1.1
 Date: Wed Sep 05 08:20:55 AM EDT 2007
 Author: rsmith
 Comment: First Version

 Version: 1.2
 Derived from: 1.1
 Date: Wed Sep 05 08:24:34 AM EDT 2007
 Author: rsmith
 Comment: Initial checkin

 Version: 1.3
 Derived from: 1.2
 Date: Wed Sep 05 08:26:21 AM EDT 2007
 Author: rsmith
 Comment: Updates to documentation and base code.

 Version: 1.4
 Derived from: 1.3
 Date: Wed Sep 05 08:26:44 AM EDT 2007
 Author: rsmith
 Comment: added header file

 Version: 1.5
 Version tags: Latest
 Derived from: 1.4
 Merged from: 1.2
 Date: Wed Sep 05 08:35:00 AM EDT 2007
 Author: rsmith
 Comment: introduced incompatable changes

 History Graph:

 1 (Trunk)
 1.1
 1.2 => 1.5
 1.3
 1.4
 1.5 [Latest] <= 1.2
 ==

Informational

798

vhistory-foreach

vhistory-foreach Command

NAME

 vhistory-foreach - Function to process the results of a vhistory
 command

DESCRIPTION

 This function is called on the result list returned from
 "vhistory -format list". Use the vhistory-foreach function in
 conjunction with the vhistory-foreach-obj function, to process the
 list result from vhistory.

SYNOPSIS

 vhistory-foreach obj result_list <tcl_script>

ARGUMENTS

• Object Loop Variable
• Results List
• Tcl Script

Object Loop Variable

 obj This is the loop variable. It is treated as a Tcl
 array. The "obj" Tcl array is set to each object
 in the result list, in turn.

 The Tcl array contains the properties for the
 object, and an "objects" property containing the
 version and branch entries that were reported for
 the object.

 The set of properties is determined by the
 "-report" option that was specified to the
 "vhistory" command. If a "-report" value is not
 specified, the default "normal" report keys are
 used.

ENOVIA Synchronicity Command Reference - Module

799

Results List

 result_list The result list to be processed. This is the
 result value from a call to the "vhistory"
 command with the "-format list" option.

Tcl Script

 tcl_script The Tcl code to execute on each element in the
 "obj" Tcl array.

SEE ALSO

 vhistory, vhistory-foreach-obj

EXAMPLE

 As an example, let's use the vhistory report from the "-format list"
 option description in the "vhistory" command documentation:

 stcl> vhistory -report LNRVT file1.txt file2.txt -last 2 -format list

 We'll capture the result in a variable, then use the vhistory-foreach
 functions to process the result:

 set result [vhistory file1.txt file2.txt -lastversions 2 -format list]

 vhistory-foreach obj $result {
 puts "Object name: $obj(name)"

 vhistory-foreach-obj vb obj {
 if { $vb(type) == "version" } {
 puts "Version: $vb(version)"
 } else {
 puts "Branch: $vb(version)"
 }
 }
 }

 The above code would report:

 Object name: file1.txt
 Version: 1.4
 Version 1.5
 Object name: file2.txt
 Version: 1.3.1.5
 Version 1.3.1.6

Informational

800

vhistory-foreach-obj

vhistory-foreach-obj Command

NAME

 vhistory-foreach-obj- Function to process the results of a vhistory
 command

DESCRIPTION

 This function is called with the property array that was set by the
 vhistory-foreach function. The two vhistory "foreach" functions are
 used to process the list result from vhistory.

SYNOPSIS

 vhistory-foreach-obj vb obj <tcl_script>

ARGUMENTS

• Version/Branch Loop Variable
• Object Tcl Array
• Tcl Code

Version/Branch Loop Variable

 vb The version/branch entry. This is the loop
 variable. The "vb" Tcl array is set to each
 version or branch entry for the object, in turn.

Object Tcl Array

 obj This is the "obj" Tcl array that was set by the
 "vhistory-foreach" function.

Tcl Code

ENOVIA Synchronicity Command Reference - Module

801

 tcl_script The Tcl code to execute on each element in the
 "vb" Tcl array.

SEE ALSO

 vhistory, vhistory-foreach

EXAMPLE

 As an example, let's use the vhistory report from the "-format list"
 option description in the "vhistory" command documentation:

 stcl> vhistory -report LNRVT file1.txt file2.txt -last 2 -format list

 We'll capture the result in a variable, then use the vhistory-foreach
 functions to process the result:

 set result [vhistory file1.txt file2.txt -lastversions 2 -format list]

 vhistory-foreach obj $result {
 puts "Object name: $obj(name)"

 vhistory-foreach-obj vb obj {
 if { $vb(type) == "version" } {
 puts "Version: $vb(version)"
 } else {
 puts "Branch: $vb(version)"
 }
 }
 }

 The above code would report:

 Object name: file1.txt
 Version: 1.4
 Version 1.5
 Object name: file2.txt
 Version: 1.3.1.5
 Version 1.3.1.6

webhelp

webhelp Command

NAME

 webhelp - Launches Graphical Web Browser to view help

Informational

802

DESCRIPTION

 This command provides a variety of help related functions, displaying
 the information in the default web browser. The default web browser
 is set during DesignSync client installation. You can change or set
 the web browser at any time using SyncAdmin. For more information on
 setting the web browser, see the ENOVIA Synchronicity DesignSync Data
 Manager Administrator's Guide.

Help is available for:
 - All DesignSync command-line commands
 - DesignSync topics such as using wildcards or running server-side
 scripts
 - ProjectSync command-line commands

 For compound commands such as the 'url' and 'note'
 commands, surround the command with double quotes and put
 exactly one space between the two keywords of the command (see
 Example section).

 The web browser opens the specified help topic within the ENOVIA
 Synchronicity Command Reference for the selected help mode you are
 working in. For information about setting a help mode, see the
 ENOVIA Synchronicity DesignSync Data Manager Administrator's Guide.
 By default, the help mode is "all," which includes the DesignSync
 documentation for all working modes, including modules, files-based,
 and legacy modules modes. You can also specify a help mode using the
 -mode option.

 From the ENOVIA Synchronicity Command Reference, you can navigate to
 the documentation index to access any other DesignSync documentation.

SYNOPSIS

 webhelp [-mode module|file|all] [<topic> [...]]

ARGUMENT

• Topic

Topic

 <topic>[...] DesignSync command name(s) or topic(s).
 If the topic or command specified doesn't exist,
 the webhelp command launches the web browser and
 displays the overview topic.

 If you specify more than one topic, each topic will
 open in a separate tab in the web browser.

ENOVIA Synchronicity Command Reference - Module

803

 Note: When looking up a two word topic, such as
 "defaults show" enclose the command in quotes,
 otherwise it will be processed as two separate
 topics. In this example, entering the command
 "webhelp defaults show" would result in two tabs
 being opened, one to the "defaults" topic and one to
 the overview page, since there is no corresponding
 "show" command.

OPTIONS

• -mode

-mode

 -mode module| Determines which version of the help to open.
 file | all If you specify the -mode option, the setting you
 choose overrides the default mode.

 If no mode is specified, DesignSync uses the default
 mode defined with the registry key or SyncAdmin. For
 more information on defining the help mode, see the
 ENOVIA Synchronicity DesignSync Data Manager
 Administrator's Guide. If no mode is set, the help
 page displays in the "all" mode.

 Note: Once the book is open, you can navigate to the
 documentation index and from there open a different
 version of the ENOVIA Synchronicity Command Reference.

RETURN VALUE

 If the command succeeds, it returns an empty string (""). If the
 command fails, it returns an appropriate error to explain the cause
 of failure.

EXAMPLES

• Example of Opening a Single Tab in the Default Mode
• Example of Opening Multiple Tab Help for a Specified Mode

Example of Opening a Single Tab in the Default Mode

 The following example opens one tab to the "default show" command.

 dss> webhelp "defaults show"

Informational

804

 Note: The quotes are required because the command is more than a
 single word.

Example of Opening Multiple Tab Help for a Specified Mode

 The following example opens two tabs in the specified user mode
 "module." Using a help mode ensure that all the information provided
 is specific to the data management methodology you are using.

 dss> webhelp -mode module addhref edithrefs

whereused

whereused Command

NAME

 whereused - Traces the use of hierarchical references

DESCRIPTION

 This command is being deprecated in favor of 'whereused module' and
 'whereused vault'. In future releases, this command will behave as
 other superset commands do, returning a list of of the available
 subcommands. A third command, "whereused member," has been added
 to identify where a module member is used.

 Tip: Update any scripts, processes, or proceedures that use or
 recommend the whereused command to the appropriate whereused
 subcommand.

 This command identifies the module versions in which any of the
 following targets (the "toargument" for the addhref command) are
 used: sub-module version, legacy module configuration, or DesignSync
 vault, identified by a selector. This allows users to trace the usage
 of any desired target.

 When a hierarchical reference is created, DesignSync creates a back
 reference on the toargument indicating that it is referenced by the
 fromargument module. This provides the basic mechanism for the
 whereused functionality. If a back reference does not exist, for
 example, if the hierarchical reference was created before whereused
 was implemented, you can add back references independently using the
 addbackref command. The whereused command performs no validation on
 specified legacy module and vault selectors. Verify that the selector
 specified is correct before executing the command.

ENOVIA Synchronicity Command Reference - Module

805

 Notes:
 o When referencing legacy modules or DesignSync vaults using a
 configuration name or a selector as the specified version, the
 version must be an exact match for the selector used when the
 hierarchical reference was added.

 o When the hierarchical reference target (toargument) was specified
 with SSL protocol, the whereused command must also be specified
 with SSL.

 This command is subject to access controls on the server. The
 whereused command requires browse access to the objects in the
 module hierarchy. See the ENOVIA Synchronicity Access Control Guide
 for details.

SYNOPSIS

 whereused [-format list|text] [-[no]recursive] [-report <mode>]
 [-showtags all|none|immutable|version]
 [-versions <selector>,...] <argument>

ARGUMENTS

• DesignSync Vault
• Server Module
• Legacy Module URL

DesignSync Vault

 <DesignSync vault> URL of the referenced DesignSync vault.
 Specify the URL as follows:
 sync[s]://<host>[:<port>]<vaultpath>;[<selector>]
 where <host> is the SyncServer on which the
 object resides, <port> is the SyncServer
 port number, <vaultpath> identifies the
 DesignSync object, and <selector> is the optional
 selector.

 If a selector is not specified, the command
 uses versions specified with the -versions option
 or the default value of Trunk:Latest.

 Notes:
 o If you specify a selector in the argument, you
 cannot specify additional selectors with the
 -versions option. To locate more than one
 selector at a time, use the -versions option.

 o When the hierarchical reference target

Informational

806

 (toargument) was specified with SSL protocol,
 the whereused command must also be specified
 with SSL.

 o The vault selector is not checked for validity
 before the command is executed. Verify that
 the vault URL and selector is typed correctly
 before executing the command.

Server Module

 <server module> URL of the referenced module.
 Specify the URL as follows:
 sync[s]://<host>[:<port>]/Modules/[<Category>...]
 /<module>[;<selector>,...]
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer
 port number, <Category> identifies the
 optional category path, <module> is the name
 of the module, and <selector> is the optional
 selector.

 If a selector is not specified, the command
 uses versions specified with the -versions option
 or the default value of Trunk:Latest.

 Notes:
 o If you specify a selector in the argument, you
 cannot specify additional selectors with the
 -versions option. To locate more than one
 selector at a time, use the -versions option.

 o When the hierarchical reference target
 (toargument) was specified with SSL protocol,
 the whereused command must also be specified
 with SSL.

Legacy Module URL

 <Legacy module URL of the referenced legacy module.
 URL> Specify the URL as follows:
 sync[s]://<host>[:<port>]/[Projects]/<vaultpath>;
 [<selector>,...]
 where <host> is the SyncServer on which the
 module resides, <port> is the SyncServer
 port number, vaultpath is the path to the
 module, and <selector> is the optional selector,
 or configuration name.

 If a selector is not specified, the command
 uses versions specified with the -versions option
 or the default value of Trunk:Latest.

ENOVIA Synchronicity Command Reference - Module

807

 Notes:
 o If you specify a selector in the argument, you
 cannot specify additional selectors with the
 -versions option. To locate more than one
 selector at a time, use the -versions option.

 o When the hierarchical reference target
 (toargument) was specified with SSL protocol,
 the whereused command must also be specified
 with SSL.

 o The vault selector is not checked for validity
 before the command is executed. Verify that
 the vault URL and selector is typed correctly
 before executing the command.

OPTIONS

• -format
• -[no]recursive
• -report
• -showtags
• -versions

-format

 -format list|text Determines the format of the output. For
 details about the information returned
 see the -report option.
 Valid values are:

 o text - Display text output formatted to show the
 hierarchical reference tree. (Default)

 o list - Displays a list with the following
 format:
 {
 object <object>...whereused
 <hierarchical_whereused_list>
 }

-[no]recursive

 -[no]recursive Determines whether to show the locations in
 which the version is explicitly referenced, or
 show all modules in which the version is implicitly
 or explicitly referenced. An explicit reference
 exists when there is a direct reference link
 between the module and the

Informational

808

 target. An implicit reference exists when the
 module and target are not directly connected, but
 within the module's hierarchy exists a reference
 to the target. For example: if the Chip module
 references the Gold version of the ALU module, and
 the Gold version of the ALU module references the
 Gold version of the ROM module, the Chip module
 contains an implicit reference to the ROM module
 and an explicit reference to the ALU module.

 -norecursive expands the reference and returns a
 list of modules that contain an explicit reference
 to the referenced module. (Default)

 -recursive traverses the reference and returns a
 list of all modules that explicitly and implicitly
 reference the specified version.

-report

 -report brief| Determines what the information is returned in the
 normal|verbose output of the whereused command.

 Valid values are:

 o brief - reports only the module names for the
 specified object ordered by specified version.

 When displayed in text format, the output is
 indented to show the reverse hierarchical
 reference path. When displayed in list format,
 the hierarchical reference depth is indicated
 with the depth property.

 Note: The -showtags option is ignored for this
 report mode.

 o normal - reports the version of the module
 containing the reference to the specified
 object. The text format is indented to show
 hierarchical reference depth, and the list
 format uses the depth property. The version
 property in list mode contains the version
 number.

 Note: The version property may be a selector
 rather than a version number if the target is a
 DesignSync vault or legacy module.

 o verbose - provides the information available in
 report mode -normal as well as the processing
 status of the command.

ENOVIA Synchronicity Command Reference - Module

809

-showtags

 -showtags all| Specifies whether tag information is displayed and
 none|immutable| optionally restricts the output to immutable tags
 version or tagged versions.

 o all - Displays all tags and all reference
 locations, including references that are not
 tagged. (Default)

 o none - Displays all references locations, but
 does not display tag information

 o immutable - Displays only reference locations
 tagged with an immutable tag and the name of the
 immutable tag.

 Note: Using the -showtags immutable option may
 not display all versions in which an immutable
 tag is used. The whereused command queries for
 all the whereused information but filters the
 display from the starting point until it reaches
 the last immutable tag in a reference tree.

 o version - Displays any reference location that
 has a version tag and the name of the tag.

 Note: The -showtags option is ignored for -report
 brief mode.

-versions

 -versions Comma separated set of versions to locate. The
 <selector> versions can be numerics or selectors, If the
 argument specified is a module, the selector
 resolves to the numeric value of the module
 version and is compared against the static href
 value.

 If the object is a DesignSync vault or legacy
 module, then the version selector (branch, version
 release, or alias selector) is validated by string
 comparison against the dynamic href value.

 Note: To specify a comma separated selector list,
 use the version extended naming format, not the
 -versions option.

RETURN VALUE

Informational

810

 This command does not return a Tcl value in text mode. If the command
 is unable to run, DesignSync throws an error explaining the failure.

 If whereused is unable to process a reference, you will see the
 reason for failure during command processing and the command adds
 the sync URL of the failed module to the wuFail list.

 In list mode, the list of modules is returned in an array of
 name/value pairs. If a reference cannot be processed, the command
 adds an error property containing the reason for the failure and the
 module is added to the wuFail list.

SEE ALSO

 selectors, addhref, addbackref, edithrefs, rmhref, showhrefs

EXAMPLES

• Example of Using whereused to find direct references to a version
• Example of Using whereused to find all references to version
• Example of Using whereused to find immutable tagged versions
• Example of Using whereused to find tagged versions
• Example of Displaying whereused Output in Tcl list

 Many products use the common code available in LIB module. To assure
 the all the development teams are using a tested and approved version
 of the LIB module, the authorized release versions are tagged with
 immutable release tags after they are qualified. The version of LIB
 in our example is v1.2. A software defect is discovered in the LIB
 module. Product management wants to quickly locate all the products
 built with references to that version so that the new version can be
 shipped to all customers who have that version.

Example of Using whereused to find direct references to a version

 This whereused example shows all the modules that refer
 explicitly to the defective LIB version.
 Note: The (*) after a tag indicates that the tag is immutable.

 stcl> whereused -version v1.2 -showtags all
 sync://svr2.ABCo.com:2647/Modules/LIB

 Beginning whereused operation ...

 Running non-recursively...

 ===

ENOVIA Synchronicity Command Reference - Module

811

 sync://svr2.ABCo.com:2647/Modules/LIB;1.32 - v1.2(*), Trunk:
 sync://svr2.ABCo.com:2647/Modules/Chip;1.7 - Trunk

 ===

 Finished whereused operation.

Example of Using whereused to find all references to version

 This example shows all the modules that refer to the defective LIB
 module explicitly and implicitly.
 Note: The (*) after a tag indicates that the tag is immutable.

 dss> whereused -recursive sync://svr2.ABCo.com:2647/Modules/LIB;1.32

 Beginning whereused operation ...

 Running recursively...

 ==

 sync://svr2.ABCo.com:2647/Modules/LIB;1.32 - v1.2(*), Trunk:
 sync://svr2.ABCo.com:2647/Modules/Chip;1.7 - Trunk
 sync://svr2.ABCo.com:2647/Modules/top;1.9 - Trunk:
 ==

 Finished whereused operation.

Example of Using whereused to find immutable tagged versions

 In the scenario above, the LIB module is tagged with an immutable
 tag. This usually indicates a significant release such as a released
 product version, or, in our case, a released library reused
 throughout the code base. You can use the whereused command to
 search for all objects tagged with an immutable tag.

 Note: This may not display all the versions on which an immutable
 tag is used. Whereused queries for the information but
 displays from the starting point until it reaches the last immutable
 tag in a reference tree.

 For instance, if you have a hierarchy such this:
 top - not tagged with an immutable tag
 -> Chip tagged with an immutable tag
 -> LIB, tagged with an immutable tag,

 the output of whereused -showtags immutable includes Chip and LIB.
 If instead of Chip, top is tagged with an immutable tag, the output
 shows top, Chip, and LIB, even though Chip is not tagged with an

Informational

812

 immutable tag.

 To perform a query to return all the whereused information for a
 specific immutable tag, you can write a filtering script around
 whereused using -showtags all and filtering for the desired immutable
 tag.

 In this example, the top module and LIB module both contain immutable
 tags.
 Note: The (*) after a tag indicates that the tag is immutable.

 dss> whereused -version v1.2 -showtags immutable -rec
 sync://svr2.ABCo.com:2647/Modules/LIB

 Beginning whereused operation ...

 Running recursively...

 ===

 sync://svr2.ABCo.com:2647/Modules/LIB - v1.2(*)
 sync://svr2.ABCo.com:2647/Modules/Chip;1.8
 sync://svr2.ABCo.com:2647/Modules/top;1.10 - v1.2(*)
 ===

 Finished whereused operation.

Example of Using whereused to find tagged versions

 This example shows all the tagged versions of modules that refer to
 the defective LIB module.
 Note: The (*) after a tag indicates that the tag is immutable.

 dss> whereused -version v1.2 -showtags version -rec
 sync://svr2.ABCo.com:2647/Modules/LIB

 Beginning whereused operation ...

 Running recursively...

 ===

 sync://svr2.ABCo.com:2647/Modules/LIB - v1.2(*)
 sync://svr2.ABCo.com:2647/Modules/Chip;1.8 - Gold, Latest
 sync://svr2.ABCo.com:2647/Modules/top;1.10 - Latest, v1.2(*)
 ===

Example of Displaying whereused Output in Tcl list

 This example shows all the modules that refer to the defective ROM

ENOVIA Synchronicity Command Reference - Module

813

 module explicitly or implicitly in Tcl list format.

 stcl> whereused -recursive -version v1.2 -format list
 sync://svr2.ABCo.com:2647/Modules/ROM

 {{object sync://svr2.ABCo.com:2647/Modules/LIB version 1.2 depth 0
 {v1.2(*), Trunk:} whereused {{object
 sync://svr2.ABCo.com:2647/Modules/Chip/ version 1.8 depth
 1 {Gold, Trunk:} whereused {{object
 sync://svr2.ABCo.com:2647/Modules/top version 1.10 depth 2 {v1.2(*),
 Trunk:} whereused {}}}}}}}

815

Workflows

SITaR

sitr Command

NAME

 sitr - SITaR commands

DESCRIPTION

 These commands provide access to the SITaR (Submit, Integrate, Test,
 and Release) environment. SITaR provides a simplified work-flow to
 establish and distribute a baseline set of functionality to
 development teams. This SITaR commands implement this work-flow in a
 module-based environment.

 Notes:
 * You must be using modules to take advantage of the SITaR
 environment. If you have legacy modules or DesignSync vaults that
 you want to use with the SITaR work-flow, you must upgrade them to
 modules using the upgrade command.

 * DesignSync does not support an overlapping module structure in an
 environment where module caching is enabled.

 To display a list of available 'sitr' commands, do the following:

 dss> sitr <Tab>

 Note: The 'sitr' commands are available from all DesignSync client
 shells.

 SITaR commands do not support the command defaults environment. To
 minimize potential conflicts, you should disable command defaults in
 your client session before using SITaR commands by running the
 command "defaults off" in your client session.

SYNOPSIS

 sitr <command> [<command_options>]

 Usage: sitr [env|integrate|lookup|mkbranch|mkmod|populate|release|
 select|status|submit|update]

Workflows

816

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 dss, dssc, help, stcl, stclc

EXAMPLES

 See specific sitr commands.

sitr

sitr Command

NAME

 sitr - SITaR commands

DESCRIPTION

 These commands provide access to the SITaR (Submit, Integrate, Test,
 and Release) environment. SITaR provides a simplified work-flow to
 establish and distribute a baseline set of functionality to
 development teams. This SITaR commands implement this work-flow in a
 module-based environment.

 Notes:
 * You must be using modules to take advantage of the SITaR
 environment. If you have legacy modules or DesignSync vaults that
 you want to use with the SITaR work-flow, you must upgrade them to
 modules using the upgrade command.

 * DesignSync does not support an overlapping module structure in an
 environment where module caching is enabled.

ENOVIA Synchronicity Command Reference - Module

817

 To display a list of available 'sitr' commands, do the following:

 dss> sitr <Tab>

 Note: The 'sitr' commands are available from all DesignSync client
 shells.

 SITaR commands do not support the command defaults environment. To
 minimize potential conflicts, you should disable command defaults in
 your client session before using SITaR commands by running the
 command "defaults off" in your client session.

SYNOPSIS

 sitr <command> [<command_options>]

 Usage: sitr [env|integrate|lookup|mkbranch|mkmod|populate|release|
 select|status|submit|update]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 dss, dssc, help, stcl, stclc

EXAMPLES

 See specific sitr commands.

sitr context

sitr context Command

NAME

Workflows

818

 sitr context - View the context for a submitted module

DESCRIPTION

• Understanding the Output

 This command displays the context information for one or more
 releases. The context URL returned by the command can then be used
 by the integrator to populate a sitr workspace that is identical to
 the developer workspace at the time the release was submitted.

 By populating the context module to recreate the development
 environment, the integrator can locate any discrepancies between
 their workspaces. If integrator-performed tests are failing, a look
 at the difference between the workspaces can help pinpoint the
 appropriate fix or determine if a subsequent release within the module
 hierarchy has caused the problem.

 In order to use the module context, you must have enabled saving the
 module context with the sitr environment variable
 sitr_context_required and have defined a module to store the context
 information with the sitr environment variable sitr_context_module.

 Note: The module context does not include information about any
 persistent views or filters applied to the developer's workspace.

Understanding the Output

 The sitr context command returns a TCL list containing the following
 information:
 o release tag for the SITaR release associated with the module
 context
 o Sync URL of the module version of the submission context.
 o list of first level modules with dynamic selectors with local
 modifications at the time the module was submitted.

SYNOPSIS

 sitr context -allconfigs | -release <release> <argument>

ARGUMENTS

• Module Name
• Module URL

Module Name

ENOVIA Synchronicity Command Reference - Module

819

 <moduleName> Specify the desired module using the relative module
 path:
 [<category>...]/<ModuleName>]
 For example:
 ChipDesigns/Chip

 Notes:
 If you do not specify the fully qualified module
 URL, the sitr lookup command searches for the module
 on the known servers first by checking the container
 server defined in the sitr_server variable, and then
 by checking the servers defined in the
 sync_servers.txt file. For more information on the
 sync_servers.txt file, see the url servers command.

 You must provide the full relative path to the
 module. If the module is in a category (or a
 category path), you must provide the category(s)
 along with the module, for example:
 ChipDesigns/300mm/Chip

Module URL

 <ModuleURL> Specify the desired module using the fully qualified
 module URL:

 sync://<host>[:<port>]/Modules/[<category...>/]<module>
 or
 syncs://<host>[:<port>]/Modules/[<category...>/]<module>
 where 'sync://' or 'syncs://'
 is required, <host> is the machine on which the
 SyncServer is installed, <port> is the SyncServer
 port number (defaults to 2647/2679), [<category...>}
 is the optional category (and/or sub-category)
 containing the module, and <module> is the name of
 the module.
 For example:
 sync://serv1.abco.com:1024/Modules/ChipDesigns/Chip

OPTIONS

• -allconfigs
• -release

-allconfigs

 -allconfigs Returns a list of module context version URLs for all
 releases of the module whose workspace context was
 saved.

Workflows

820

 The -allconfigs is mutually exclusive with the
 -release option. Either the -allconfigs or the
 -release option must be specified.

-release

 -release Returns the module context version URL for the
 <release> specified module release. Specify the release as the
 release tag applied to the release desired.

 The -release is mutually exclusive with the
 -allconfigs option. Either the -allconfigs or the
 -release option must be specified.

RETURN VALUE

 This command returns a tcl list, indexed by release name. If the
 module context was not saved with the release, there is no return
 value.

SEE ALSO

 sitr env, sitr release, sitr submit

EXAMPLES

sitr env

sitr env Command

NAME

 sitr env - Displays SITaR environment variables

DESCRIPTION

 This command displays the status of the environment variables and
 settings required by SITaR.

 The following table lists the environment variables referenced by

ENOVIA Synchronicity Command Reference - Module

821

 SITaR:

 Note: The container module referred to is the top-level module in the
 SITaR module hierarchy.

 Variable name Description
 ------------- -----------
 sitr_role Defines the role of the user in their current SITaR
 workspace. There are two possible values:

 Integrate - when the user performs integration
 tasks such as reviewing, testing, and integrating
 submitted sub-module changes into a new baseline
 release.

 Design - when the user performs designer tasks,
 such as modifying a sub-module and submitting the
 changes to an integrator.

 sitr_server Defines the URL of the server hosting the container
 module. (sync://host:port)

 sitr_container Defines the name of the container module, for
 example "Top".

 sitr_alias Defines the tag used by SITaR to identify the last
 qualified release of the container module, for
 example, "golden".

 sitr_workdir Defines the workspace directory of the container
 module, for example, "~/Workspaces/top".

 sitr_relpath Defines the relationships between the top module
 and the sub-modules. There are two possible values:

 Peer - indicates a flat structure, where all
 modules are at the same level in the workspace.

 Cone - sets up a hierarchical structure, where
 modules are defined as sub-directories of the
 top-level module in the workspace.

 Note: This only affects the structure of the
 resulting workspace.

 sitr_automcache Determines whether automatic mcaching is on or off.
 By default, automcaching is on. To disable
 automcache, set the value to 0. If the scripted
 mirror functionality is used to maintain the
 mcache, turning off sitr_automcache can provide a
 performance enhancement to sitr populate.

 sitr_branch Defines the default branch of the container
 module. This default is used by the sitr integrator
 for the sitr integrate and sitr release
 commands. If the variable is not defined, "Trunk:"
 is used as the default branch.

Workflows

822

 Note: Instead of specifying sitr_branch, users with
 the Design role use the sitr_alias environment
 variable to identify the container module
 version defined by the integrator as the last
 qualified module.

 sitr_integrator_update Indicates whether the integrator is allowed
 to run the "sitr update" command. Ordinarily
 the user must have a Design role, to be
 allowed to run the "sitr update" command.

 There are two possible values:

 0 (zero) - Indicates that the integrator is
 not allowed to run the "sitr update" command.
 (Default)

 1 (one) - Indicates that the integrator is
 allowed to run the "sitr update" command.

 sitr_min_comment Indicates whether a minimum comment is required
 by any sitr command that has a -comment option.

 0 (zero) or no variable - indicates that no minimum
 comment is required.

 1 (one) or greater - indicates the minimum comment
 length required.

 sitr_context_required Indicates whether the module context
 information is captured during a submit type
 action.
 There are two possible values:

 0 (zero) - Indicates that the module context
 information is not gathered during submit
 and release operations. This means that you
 may not be able to recreate the workspace
 conditions exactly, for example, if, during
 test failure, you want to recreate the test
 in the workspace to see why it worked before
 integration. (Default)

 1 (one) - Indicates that the module context
 information is preserved when the workspace
 is submitted. This means that should there
 be a need, for example, during a test
 failure, the integrator could exactly
 reproduce the development workspace that
 submitted the change.

 sitr_context_module If the sitr_context_required variable is
 enabled (sitr_context_required=1), this
 variable must be set to a valid
 module to store the context for submit and

ENOVIA Synchronicity Command Reference - Module

823

 release actions within sitr.

 Note: Do not specify a selector for the
 module. To specify a branch selector,
 use the sitr_context_branch variable.

 sitr_context_branch If the sitr_context_required variable is
 enabled, this variable can be set to specify
 the branch of the submission context for the
 module. The branch name, in
 conjunction with the sitr_context_module
 defines the module and branch information
 for the module used to store submittal
 context information. If no branch is
 specified, sitr uses the default, "Trunk"
 branch.

 The "sitr env" command also indicates whether module caches (Mcaches)
 are enabled and whether auto-creation of module caches is enabled.
 If auto-creation of module caches in enabled, this command displays
 the top level mcache directory.

SYNOPSIS

 sitr env

OPTIONS

 This command has no options.

RETURN VALUE

 If the sitr env command is successful, DesignSync returns an empty
 string (""). If the command fails, DesignSync returns an error
 explaining the failure.

SEE ALSO

 sitr populate, sitr update, sitr submit, sitr integrate,
 sitr release, sitr mkmod

EXAMPLES

 This example shows setting the SITaR environment variable settings

Workflows

824

 for a SITaR Design role in Bourne shell (sh).Call this file with the
 user's login script.

 Notes:
 o There is no sitr_branch environment variable defined for the
 Design role. The designer users automatically use the baseline
 defined for them by the integrator user, specified with
 sitr_alias.

 o There is no sitr_integrator_update variable defined for the Design
 role. The designer automatically has access to the upgrade
 operation.

 o The sitr_automcache variable is not set. If mcaching were enabled
 in the environment, this would mean that sitr populate would be
 updating the mcache automatically.

 #!/bin/sh
 #SITaR Environment Variables file (.sitr_env)
 sitr_role=Design
 sitr_container=ProjxContainer
 sitr_alias=baseline
 sitr_server=sync://srv2.ABCo.com:2647
 sitr_workdir=~/Workspaces/projxContainer
 sitr_relpath=Cone
 sitr_min_comment=10
 sitr_context_required=1
 sitr_context_module=sync://srv1.ABCo.com:2647/Modules/Context/ProjxContext
 sitr_context_branch=Trunk

 export sitr_role
 export sitr_container
 export sitr_alias
 export sitr_server
 export sitr_workdir
 export sitr_relpath
 export sitr_min_comment
 export context_required
 export_context_module
 export_context_branch

 $. .sitr_env
 $ set
 ...
 sitr_alias=baseline
 sitr_container=ProjxContainer
 sitr_relpath=Cone
 sitr_role=Design
 sitr_server=sync://srv2.ABCo.com:2647
 sitr_workdir=~/Workspaces/projxContainer
 sitr_min_comment=10
 sitr_context_required=1
 sitr_context_module=sync://srv1.ABCo.com:2647/Modules/Context/ProjxContext
 sitr_context_branch=Trunk

 $ stcl
 ...

ENOVIA Synchronicity Command Reference - Module

825

 stcl> sitr env
 SITaR environment variable settings:

 sitr_role = Design
 sitr_server = sync://srvr2.ABCo.com:2647
 sitr_container = ProjxContainer
 sitr_alias = final
 sitr_workdir = /home/rsmith/Workspaces/projxContainer
 sitr_relpath = Cone
 sitr_min_comment = 10
 sitr_automcache = (NOT SET)
 sitr_branch = Trunk:
 sitr_integrator_update = 0
 sit_min_comment = 10
 sitr_context_required= 1
 sitr_context_module = sync://srv1.ABCo.com:2647/Modules/Context\
 /ProjxContext
 sitr_context_branch = Trunk

 Container Workspace = /home/rsmith/Workspaces/projxContainer
 Container Module = sync://srvr2.ABCo.com:2647/Modules/ProjxContainer
 Container Baseline = sync://srvr2.ABCo.com:264/Modules\
 /ProjxContainer@final

Auto-creation of module caches is NOT enabled.
 (No module cache directory is defined in the 'module cache paths' list)

sitr integrate

sitr integrate Command

NAME

 sitr integrate - Integrates selected changes into the project
 integration workspace

DESCRIPTION

• SITaR Integration interactive mode

 This command is used by SITaR integrators to integrate selected
 changes to the integration configuration of the container
 (top level) module specified by the sitr_branch environment variable.
 If the sitr_branch environment variable is not set, the integration
 branch is Trunk: by default.

 Note: DesignSync does not support using overlapping modules in a
 configuration in which you have module caching enabled.

 The sitr integrate command is usually used as part of the SITaR

Workflows

826

 integrate process which involves:

 1) Locating newly submitted candidate releases using the sitr lookup
 command.

 2) Selecting the changes using the sitr select command.

 3) Integrating the changes to make them available for integration
 testing using the sitr integrate command.

 4) Testing the changes.

 5) Releasing approved changes using the sitr release command.

 The "sitr integrate" command integrates the selected changes and
 populates the integration workspace with the appropriate container
 module and sub-modules in preparation for testing.

 The "sitr integrate" command provides both an interactive mode, which
 allows you to review the items selected for integration prior to
 confirming the changes, and a force mode which accepts and implements
 all changes immediately.

SITaR Integration interactive mode

 The SITaR interactive mode for integration provides a selection table
 The selection table contains these columns:

 Column Name Definition
 ----------- ----------
 A/D Indicates whether a module configuration is to be:
 A - added to the default configuration
 D - removed from the default configuration.

 Note: This column is blank for configurations
 that have no changes to be integrated.

 Module Config Displays the name of the module configuration in
 the following format:
 <moduleName>@<configName>

 Note: If '-report verbose' is specified, this
 column displays the full URL of the module
 configuration in the following format:
 sync://<host>:<port>/Modules/<moduleName>@<configName>

 Owner Displays the login name of the person that
 submitted the configuration/release.

 Release Date Displays the creation date for the tagged version
 of the module.

 Description Displays the description text associated with the
 configuration. If the description is long, it is

ENOVIA Synchronicity Command Reference - Module

827

 truncated to 25 characters followed by an ellipsis.
 (...).

 Relative Path Displays the directory path to the sub-module
 configuration, relative to the container module
 directory.

SYNOPSIS

 sitr integrate [-force] [-nopopulate] [-noprompt]
 [-report {brief | normal | verbose}] [-[no]truncate]

OPTIONS

• -force
• -nopopulate
• -noprompt
• -report
• -[no]truncate

-force

 -force Bypasses the integrate interactive mode, and
 integrates all specified changes without prompting
 for confirmation. You still see a listing of the
 changes made after the command completes.

 Note: If this is specified with -report verbose,
 -force is ignored.

-nopopulate

 -nopopulate Disables the automatic populate of the integration
 workspace after the integration option completes.
 This means that your integration workspace does
 not accurately reflect the updated configuration.

-noprompt

 -noprompt Specifies accepting the default of all interactive
 dialogs, for example, when you specify -force,
 sitr integrate prompts you to confirm the action
 or review the affected objects. Specifying
 -noprompt bypasses that query.

Workflows

828

-report

 -report [brief| Specifies the format of the command output. This
 normal|verbose] information is discussed in more detail in the
 "SITaR Integration interactive mode" Possible
 values are:

 brief - Displays the same information as 'normal'.

 normal - Displays the selection table and prompts
 for confirmation of the individual integration
 operations. (Default) This mode is ignored when
 -force is selected.

 verbose - Displays the selection table with the
 full module configuration URL. When this mode is
 specified with -force, -force is ignored.

-[no]truncate

 -[no]truncate Specifies whether to display a full long comment or
 truncate the comment to a single line.

 -notruncate displays the full length of the comment.
 Comments can be up to 1MB in length.

 -truncate displays only the first 25 characters of
 the comment, followed by an ellipsis (...) to show
 that the comment is longer. (Default)

RETURN VALUE

 If the command is successful, DesignSync returns an empty
 string (""). If the command fails, DesignSync returns an error
 explaining the failure.

SEE ALSO

 sitr lookup, sitr select, sitr submit, sitr release, addhref, rmhref,
 edithrefs

EXAMPLES

• Example Showing Integrating in SITR in Interactive Mode
• Example Showing Integrating in SITR

Example Showing Integrating in SITR in Interactive Mode

ENOVIA Synchronicity Command Reference - Module

829

 This example shows integrating the first version of the Chip module
 into the SITaR container module using the interactive mode of the
 sitr integrate command.

 dss> sitr integrate

 A/D Name Module Config Relative Path Owner Release Date Description

 Add Chip Chip@v1.1 Chip rsmith 2007-03-07
 Initial SITaR Module Release
 Do you want to integrate the above changes? <No>
 yes

 Beginning addhref operation ...

 sync://srv2.ABCo.com:2647/Modules/top: Added hierarchical reference:
 Name: Chip
 Object: sync://srv2.ABCo.com:2647/Modules/Chip
 Type: Module
 Selector: v1.1
 Version: 1.1
 Relative Path: Chip

 sync://srv2.ABCo.com:2647/Modules/top: Created new module version
 1.2.

 Finished addhref operation.
 Creating/Updating Workspace for Integration Use....

 top%0: Version of module in workspace updated to 1.2

 Creating Sub Module Instance 'Chip%0' with base directory
 '/home/rsmith/sitr_workspaces/integrate/Chip'
 ===

 Creating Sub Module Instance with
 Base Directory = /home/rsmith/sitr_workspaces/integrate/Chip
 Name = Chip
 URL = sync://srv2.ABCo.com:2647/Modules/Chip
 Selector = v1.1
 Instance Name = Chip%0
 Metadata Root = /home/rsmith/sitr_workspaces
 Parent Instance = top%0

 Chip%0: Version of module in workspace updated to 1.1

 Beginning showhrefs operation ...

 Showing hrefs of module /home/rsmith/sitr_workspaces/integrate/top%0 ...

 /home/rsmith/sitr_workspaces/integrate/top%0: Workspace version - 1.2
 /home/rsmith/sitr_workspaces/integrate/top%0: Href mode - normal

 Name Url Selector Static Version
 Type Relative Path

Workflows

830

 Chip sync://srv2.ABCo.com:2647/Modules/Chip v1.1 1.1
 Module Chip

 Finished showhrefs operation.

Example Showing Integrating in SITR

 This example shows the integration of a module version in without
 interactive prompts. The module configuration being integrated is
 Chip v1.4. As part of the integration activity, the previous module
 version, Chip v1.1 is being removed from the integration workspace.

 dss> sitr integrate -force

 Beginning rmhref operation ...

 sync://srv2.ABCo.com:2647/Modules/top: Created new module version 1.4.

 Finished rmhref operation.

 Beginning addhref operation ...

 sync://srv2.ABCo.com:2647/Modules/top: Added hierarchical reference:
 Name: Chip
 Object: sync://srv2.ABCo.com:2647/Modules/Chip
 Type: Module
 Selector: v1.4
 Version: 1.5
 Relative Path: Chip

 sync://srv2.ABCo.com:2647/Modules/top: Created new module version 1.5.

 Finished addhref operation.
 Creating/Updating Workspace for Integration Use....

 top%0 : Version of module in workspace updated to 1.5

 ===

 Total data to transfer: 1 Kbytes (estimate), 3 file(s), 0 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 1 Kbytes, 0 file(s), 0 collection(s), 100.0% complete
 Progress: 1 Kbytes, 3 file(s), 0 collection(s), 100.0% complete

 Chip%0 : Version of module in workspace updated to 1.5

sitr lookup

sitr lookup Command

NAME

ENOVIA Synchronicity Command Reference - Module

831

 sitr lookup - Displays a list of modules matching the
 specified criteria

DESCRIPTION

• Understanding the Output

 This command can be used to look up information about all the
 submodules associated with the SITaR container module, or information
 about a specified module, module branch, or module configuration. A
 module configuration is a tagged module version.

 SITaR integrators use this command to find module versions that have
 been earmarked for integration into the SITaR container module. SITaR
 designers and integrators use this command to lookup module
 information across a number of servers.

Understanding the Output

 The output of the sitr lookup command can be formatted for easy
 viewing (-report brief, normal,and verbose options) or optimized for Tcl
 processing (-report script). Both viewing formats show the same
 information, but may have different names. In the table below, the
 Column Titles column shows the column heading used with -report and
 -report verbose and the Property Names column shows list output key
 value.

 The sitr lookup command displays the following information:

 Column Property
 Titles Names Description
 ------ ----- ------------
 Module Config (key) Name of the module version in
 <moduleName>@<ConfigName> format. If
 '-report verbose' or '-report script'
 is specified, the command displays the
 full module configuration URL.

 Note: When -since is used, or no module
 argument is specified, an asterisk (*)
 is prepended to the module
 configuration name to indicate module
 versions posted after the specified
 -since value. For more information see
 the -since option.

 Owner author Login name of the user who created the
 configuration/release.
 Release Date date Date that the release was created.
 Note: Date is displayed in seconds. You
 can change the format with the tcl

Workflows

832

 "clock format" command.

 Description comment The description text associated with
 the configuration. If the text is
 longer than a single line, it will be
 truncated and an ellipsis (...) will be
 used to show that the text has been
 truncated. The full comment is
 displayed if the -notruncate option is
 specified when the command is run.

 tagName The SITaR version tag.
 tags A list of all the tags associated with
 the module configuration.

SYNOPSIS

 sitr lookup [-allconfigs] [-report {brief | normal | verbose | script}]
 [-since <timestamp> | <rel_config>] [-[no]truncate]
 [<argument> ...]

ARGUMENTS

• Module Name
• Server URL

 When no argument is specified, the sitr lookup command returns
 information about all modules in the container module for the
 referenced branch.

 Notes:
 o When a module or module version is selected, the sitr lookup
 command displays the first matching module.

 o When -since <timestamp> is specified with a module argument, the
 sitr lookup command returns only the list of module versions
 created after the specified timestamp. For more information, see
 the -since option.

Module Name

 <moduleName> Specify the desired module using the relative module
 path:
 [<category>...]/<ModuleName>][@<selector>]
 For example:
 ChipDesigns/Chip@Trunk:Gold

 Notes:

ENOVIA Synchronicity Command Reference - Module

833

 If you do not specify the fully qualified
 module URL, the sitr lookup command searches for the
 module on the known servers first by checking the
 container server defined in the sitr_server
 variable, and then by checking the servers defined
 in the sync_servers.txt file. For more information
 on the sync_servers.txt file, see the url servers
 command.

 You must provide the full relative path to the
 module. If the module is in a category (or a
 category path), you must provide the category(s)
 along with the module, for example:
 ChipDesigns/300mm/Chip

Server URL

 <ServerURL> Specify the desired module using the fully qualified
 module URL:

 sync://<host>[:<port>]/Modules/[<category...>/]<module>[<@selector>]
 or
 syncs://<host>[:<port>]/Modules/[<category...>/]<module>[<@selector>]
 where 'sync://' or 'syncs://'
 is required, <host> is the machine on which the
 SyncServer is installed, <port> is the SyncServer
 port number (defaults to 2647/2679), [<category...>}
 is the optional category (and/or sub-category)
 containing the module, <module> is the name of
 the module, and <selector> is the optional selector
 that identifies the specific module version.
 For example:
 sync://serv1.abco.com:1024/Modules/ChipDesigns/Chip

OPTIONS

• -allconfig
• -report
• -since
• -[no]truncate

-allconfig

 -allconfigs Specifies all versions of the module, including those
 on other branches or versions dated before the -since
 value, for inclusion in the output. Versions after
 the -since value are differentiated by an asterisk
 (*) prepended to the module config name.

 Note: When a module argument is specified, -allconfig
 is automatically set as the default unless -since is

Workflows

834

 explicitly specified.

-report

 -report Specifies the format of the output. For information
 normal|verbose on the values displayed in the report, see the
 |script "Understanding the Output" section. Possible values
 are:

 o brief - Displays the same information as 'normal'.

 o normal - Displays the output in a user-friendly
 table format.(Default)

 o verbose - Displays the full module configuration URL.
 (sync://host:port/Modules/...) for the Module
 config field.
 Note: When the sitr_verbose_lookup environment
 variable is set to 1, this is the default behavior.

 o script - Returns a Tcl array in list format, keyed
 by the full URL of each module configuration.

-since

 -since Defines a filter to restrict the command output.
 <timestamp> | You can specify a timestamp or a module configuration
 <rel_config> to use as a filter.

 Normally when -since is not specified, the sitr
 lookup command displays information about all of the
 releases of all of the container submodules that have
 been created 'since' the most recent 'baseline'
 release was created.

 Note: When you specify a module argument to the sitr
 lookup command, the command does not use -since
 <baseline> as the default. It displays all versions
 of the specified module.

 -since <timestamp> Specify a timestamp value. Any
 configurations created after the specified value are
 displayed in the output. DesignSync uses the same
 public-domain date parser as the GNU family of tools.
 The parser supports a wide range of date and time
 specifications. This section lists a few of the date
 formats, but for a larger list, see the Date Format
 section of selectors help topic, or visit a GNU
 website for the complete specification.

 Possible date and time formats include:
 o Specifying the date as a numeric ([MM/DD/[YY]YY]

ENOVIA Synchronicity Command Reference - Module

835

 [hh:mm:ss]), for example: 07/23/2007 10:40:00.
 o Specifying the date by keyword such as the day of
 the week or a logical day of the week, for example:
 Yesterday.
 o Specifying the time as a logical time, for example:
 10:40am.

 -since <ModuleVersion> Specify a release
 configuration or tagged version. DesignSync automatically
 converts the configuration into a timestamp using the
 release time and displays all configurations created
 since that time.

 Note: If you do not specify a full configuration
 name, sitr lookup applies the version to the
 container module. It does not use the argument to
 determine the configuration. For more information
 see Example 3.

-[no]truncate

 -[no]truncate Specifies whether to display a full long comment or
 truncate the comment to a single line.

 -notruncate displays the full length of the comment.
 Comments can be up to 1MB in length.

 -truncate displays only the first 25 characters of
 the comment, followed by an ellipsis (...) to show
 that the comment is longer. (Default)

RETURN VALUE

 When you run 'sitr lookup' with the '-report script' option, it returns
 a Tcl array in list format. For information on the information
 contained in array, see the Understanding the Output section. For a
 sample Tcl file that processes the output of the -report script file,
 see Example 2.

 If you run 'sitr lookup' with any other -report option, it returns an
 empty string (""). If the command fails, DesignSync returns an error
 explaining the failure.

SEE ALSO

 url servers

EXAMPLES

Workflows

836

• Example of Looking Up Configurations in SITaR
• Example of Sample Tcl procedure using Lookup Output
• Example of Using the -since Option
• Example of Looking up all module configurations for all modules

Example of Looking Up Configurations in SITaR

 This example shows a lookup of the configurations of the Chip
 module. The first example uses the -report normal format. The
 second example uses the -report script format.

 dss> sitr lookup Chip

 Module Config Owner Release Date Description
 --
 Chip@v1.1 rsmith 2007-02-28 Initial SITaR Module Release
 Chip@v1.2 rsmith 2007-02-28 Initial Chip release

 dss> sitr lookup -report script Chip
 sync://srv2.ABCo.com:2647/Modules/Chip@v1.1{immutable 1 \
 tag_properties {{v1.1 1 {Initial SITaR Module Release}}} tagName \
 v1.1 date 1172679543 version 1.1 comment {Initial SITaR Module \
 Release} tags v1.1 author rsmith} \
 sync://srv2.ABCo.com:2647/Modules/Chip@v1.2 {immutable 1 \
 tag_properties {{v1.2 1 {Initial Chip release}} {Latest 0 {}}} \
 tagName v1.2 date 1172689484 version 1.2 comment \
 {Initial Chip release} tags {v1.2 Latest} author rsmith}

Example of Sample Tcl procedure using Lookup Output

 This example shows a sample Tcl procedure that uses the output of
 -report script.

 proc moduleInfo {moduleName} {
 array set moduleConfigArray [sitr lookup -report script $moduleName]
 foreach moduleConfig [lsort [array names moduleConfigArray]] {
 array unset configInfoArray
 array set configInfoArray $moduleConfigArray($moduleConfig)
 puts "moduleConfig = $moduleConfig"
 puts "configInfo:"
 parray configInfoArray
 }
 }

Example of Using the -since Option

 This example shows some of the formats you can specify for the -since
 option.

 When you specify a version without a module configuration name, the

ENOVIA Synchronicity Command Reference - Module

837

 command uses the container module version. This example shows the
 -since option when used with and without a specified module
 configuration.

 This example lists all module configurations since the v1.1 version
 of the Chip module was created.

 dss> sitr lookup -since v1.1
 Looking for releases (submittals) of the sub-modules of the 'top'
 container

 Module Config Owner Release Date Description
 --
 * Chip@v1.3 rsmith 2007-09-04 Incorporated QA comments

 '*' flags that the configuration was created since
 the date of the 'top@v1.1' release (2007-09-04 17:54:57)

 dss> sitr lookup -since Chip@v1.1
 Looking for releases (submittals) of the sub-modules of the 'top' container

 Module Config Owner Release Date Description
 --
 * Alu@v1.1 rsmith 2007-09-04 Initial SITaR Module Release

 Chip@v1.1 rsmith 2007-09-04 Initial SITaR Module Release
 * Chip@v1.2 rsmith 2007-09-04 initial QA version
 * Chip@v1.3 rsmith 2007-09-04 Incorporated QA comments

 '*' flags that the configuration was created since
 the date of the 'Chip@v1.1' release (2007-09-04 14:33:08)

Example of Looking up all module configurations for all modules

 This example shows a lookup of all submitted module configurations
 for all available modules.

 dss> sitr lookup -allconfigs
 Looking for releases (submittals) of the sub-modules of the 'top' container

 Module Config Owner Release Date Description
 --
 ALU@v1.1 rsmith 2007-04-16 Initial SITaR Module Release

 Chip@v1.1 rsmith 2007-03-16 Initial SITaR Module Release
 Chip@v1.2 rsmith 2007-03-16 Added files to Chip
 * Chip@v1.3 rsmith 2007-04-16 update to chip.doc

 '*' flags that the configuration was created since
 the latest 'final' release of 'top' (2007-04-16 10:21:00)

Workflows

838

sitr mkbranch

sitr mkbranch Command

NAME

 sitr mkbranch - Creates a module branch of a SITaR module

DESCRIPTION

 This command creates a new branch from the specified module
 version. You can branch the container module and any submodules. The
 SITaR module branch permits SITaR projects to support parallel
 development.

 The sitr mkbranch command performs the following actions:
 o Determines the appropriate module to branch.
 o Tags the new branch with the specified branch name.

 Optionally, the sitr mkbranch command performs the following
 additional actions:
 o Populates the local workspace with the new branch version and
 changes the selector of the workspace to point to new branch.
 o Integrates new sub-module branches into the container module.

SYNOPSIS

 sitr mkbranch [-[no]comment <text> | -description <description>]
 [-[no]integrate] [-[no]populate]
 <branchname> [<argument> ...]

ARGUMENTS

• Server Module Version
• Workspace Module
• Workspace Module Base Directory

Server Module Version

 <server module Fully qualified URL for the sitr module version in
 version> the format sync://<host>:<port>/Modules/[<category>]/
 <module_name>@v<sitr_version_number>
 where <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,

ENOVIA Synchronicity Command Reference - Module

839

 <category> is the optional category classification,
 <module_name> is the name of the module, and
 <sitr_version_number> is the SITaR release version
 number.

Workspace Module

 <workspace Workspace module instance name.
 module>

Workspace Module Base Directory

 <workspace Workspace directory containing the module. If you
 module base specify a directory, it may contain only one
 directory> module. If the workspace directory contains more
 than one module, use the workspace module instance
 name to uniquely specify the module to branch.

 Note: If no arguments are specified, the behavior of the sitr
 mkbranch command depends on the user's role. If the user's role is
 Integrate, the container module in the workspace is branched. If the
 user's role is Design, and there is only one the sub-module in the
 workspace, the sub-module is branched. If there is no container
 module in the workspace, or there is more than one sub-module, the
 command fails.

OPTIONS

• -comment
• -description
• -[no]integrate
• -[no]populate
• Branch Name

-comment

 -comment Specifies whether to submit the release with or
 <text> without a description of changes.
 -comment <string> stores the value of <string> as
 the lock comment. This description is used in all SITaR
 reports and provides the integrator with information
 about the version being submitted. If the comment
 includes spaces, enclose the description in double
 quotes. DesignSync accepts a comment of any
 length up to 1MB. Long comments may be truncated in
 the output of the commands that show sitr
 comments. If your comment includes ampersand (&) or
 equal (=) characters, they are replaced by the

Workflows

840

 underscore (_) character in revision control notes.

 This command respects the minimum comment length
 defined in the SiTaR environment variables, if the
 sitr_min_comment variable has been set.

 Note: The -comment option is mutually exclusive with
 -description. If you do not specify either of these
 options, DesignSync prompts you to enter a check-in
 comment.

-description

 -description Specify a description of the release being
 <text> submitted. This description is used in all SITaR
 reports and provides the integrator with information
 about the version being submitted.

 This command respects the minimum comment length
 defined in the SiTaR environment variables, if the
 sitr_min_comment variable has been set.

 Note: The -description option is being deprecated in
 favor of -comment. The -comment and -descriptions
 options are mutually exclusive.

-[no]integrate

 -[no]integrate Specifies the behavior of the new branch within the
 container module. This option is only available for
 users with the "Integrate" role.

 The -integrate option integrates the branched module
 into the container module. If the container module
 already contains one release of a sub-module, that
 reference is updated to point to the newly branched
 sub-module. If the container module is linked to
 multiple versions of the sub-module being branched,
 the module is not integrated.

 Note: Because the container module cannot be
 integrated into itself, you cannot specify the
 -integrate option when branching the container
 module.

 The -nointegrate option does not attempt to integrate
 the branched module into the container
 module. (Default)

-[no]populate

ENOVIA Synchronicity Command Reference - Module

841

 -[no]populate Specifies the behavior of the new branch in the
 workspace.

 The -populate option updates the workspace with the
 files in the new branch and changes the selector for
 the workspace to point to the branch so all future
 updates to the workspace point to new branch.

 The -nopopulate option does not update the workspace
 or workspace selector to use the new branch. (Default)

 If both the -populate and -integrate options are
 used, the container module is populated into the
 workspace with the appropriate branched sub-modules.
 Only users with the Integrate role can specify the
 -integrate option.

Branch Name

 <branchname> Specifies the name to use for the new branch. For
 information on allowed branch names, see the "Tag
 Name Syntax" section for the tag command.

RETURN VALUE

 If the command is successful, DesignSync returns an empty string
 (""). If the command fails, DesignSync returns an error explaining
 the failure.

SEE ALSO

 mkbranch, tag, sitr populate, sitr integrate

EXAMPLES

• Example of Branching the Container Module
• Example of Branching a Submodule
• Example of Creating a New Release From a Submodule Branch

Example of Branching the Container Module

 This example shows performing a sitr mkbranch operation on only a
 container module. The branch maintains the links to any existing submodules.

 stcl> sitr mkbranch NXV-LA

Workflows

842

 No arguments supplied so defaulting to
 'sync://srv2.ABCo.com:2647/Modules/top;Trunk:' ...

 Branching modules ...

 Beginning MkBranch operation...

 Branching: sync://srv2.ABCo.com:2647/Modules/top;1.5 : Success -
 Created branch 1.5.1, tagged NXV-LA

 MkBranch operation finished.

 Tagging first module version on new module branches ...
 Beginning module tag operation on 'sync://srv2.ABCo.com:2647' ...

 Tagging: sync://srv2.ABCo.com:2647/Modules/top;NXV-LA: :
 Added tag 'NXV-LA_v1.1' to version '1.5.1.1'

 Module tag operation finished on 'sync://srv2.ABCo.com:2647'.

Example of Branching a Submodule

 This example shows performing a sitr mkbranch operation on only the
 ALU submodule. The sub-module belongs to the "NXV" category. Note
 that because the -populate option is used, the selector of the
 workspace is changed to the new branch.

 stcl> showmods

 Beginning showmods operation ...

 Name Instance Base Directory
 Url Selector

 ALU ALU%0 /home/rsmith/NXV/alu
 sync://srv2.ABCo.com:2647/Modules/SITR/ALU Trunk:Latest

 Finished showmods operation.

 stcl> sitr mkbranch -populate -comment "Creating limited
 availability release" NXV-LA ALU%0

 Branching modules ...

 Beginning MkBranch operation...

 Branching: sync://srv2.ABCo.com:2647/Modules/NXV/ALU;1.2 :
 Success - Created branch 1.2.1, tagged NXV-LA

 MkBranch operation finished.

ENOVIA Synchronicity Command Reference - Module

843

 Tagging first module version on new module branches ...
 Beginning module tag operation on 'sync://srv2.ABCo.com:2647' ...

 Tagging: sync://srv2.ABCo.com:2647/Modules/NXV/ALU;NXV-LA: :
 Added tag 'NXV-LA_v1.1' to version '1.2.1.1'

 Module tag operation finished on 'sync://srv2.ABCo.com:2647'.

 Updating modules in workspace ...

 Chip%0 : Version of module in workspace updated to 1.2.1.1

 top%0 : Version of module in workspace not updated (Due to not
 operating on entire module contents).

 stcl> stcl> showmods

 Beginning showmods operation ...

 Name Instance Base Directory
 Url Selector

 ALU ALU%0 /home/rsmith/NXV/alu
 sync://srv2.ABCo.com:2647/Modules/NXV/ALU NXV-LA:Latest

 Finished showmods operation.

Example of Creating a New Release From a Submodule Branch

 This example shows creating a new release, NXV-LA, from newly
 branched sub-module, RAM. Note that the previous integration link
 from the TOP module to the RAM module is updated with a link to the
 new branch.

 stcl> sitr mkbranch -integrate -populate NXV-LA RAM%0

 Checking workspace status of container 'top%0' ...

 Branching modules ...

 Beginning MkBranch operation...

 Branching: sync://srv2.ABCo.com:2647/Modules/NXV/RAM;1.2 : Success
 - Created branch 1.2.2, tagged NXV-LA

 MkBranch operation finished.

 Tagging first module version on new module branches ...
 Beginning module tag operation on 'sync://srv2.ABCo.com:2647' ...

Workflows

844

 Tagging: sync://srv2.ABCo.com:2647/Modules/NXV/RAM;NXV-LA: :
 Added tag 'NXV-LA_v1.1' to version '1.2.2.1'

 Module tag operation finished on 'sync://srv2.ABCo.com:2647'.

 Selecting modules for integration ...
 Selecting sync://srv2.ABCo.com:2647/Modules/NXV/RAM@v1.2 (href name
 = 'RAM', relpath = 'RAM') for Deletion
 Selecting sync://srv2.ABCo.com:2647/Modules/NXV/RAM@NXV-LA_v1.1
 (href name = 'RAM', relpath = 'RAM') for Addition

 Integrating modules ...

 Beginning rmhref operation ...

 sync://srv2.ABCo.com:2647/Modules/top: Created new module version 1.6.

 Finished rmhref operation.

 Beginning addhref operation ...

 sync://srv2.ABCo.com:2647/Modules/top: Added hierarchical reference:
 Name: RAM
 Object: sync://srv2.ABCo.com:2647/Modules/NXV/RAM
 Type: Module
 Selector: NXV-LA_v1.1
 Version: 1.2.2.1
 Relative Path: RAM

 sync://srv2.ABCo.com:2647/Modules/top: Created new module version 1.7.

 Finished addhref operation.
 Creating/Updating Workspace for Integration Use....

 top%0 : Version of module in workspace updated to 1.7

 ===

 RAM%0 : Version of module in workspace updated to 1.2.2.1

sitr mkmod

sitr mkmod Command

NAME

 sitr mkmod - Creates and releases the initial version of
 the module

ENOVIA Synchronicity Command Reference - Module

845

DESCRIPTION

 This command creates and releases the initial version of a SITaR module.

 All modules that are part of the SITaR work-flow should have at least
 one compatible release name before being integrated into the
 container module. The sitr mkmod command allows you to create a new
 module or configure an existing module for use with the SITaR
 work-flow.

 The sitr mkmod command performs the following actions:
 o Creates the module using the mkmod command, if needed.
 o Releases the module with the immutable tag, v1.1.

 Optionally, you can use the sitr mkmod command to create the initial
 container module that stores the integrated releases of the
 sub-modules. The name of the container module is defined by the
 sitr_container environment variable and is created with the -top
 option.

SYNOPSIS

 sitr mkmod -top
 sitr mkmod -context
 sitr mkmod -name [category/]<name> | -vaultpath <url>
 [-comment <text> | description <text>] [-nomcache]]

OPTIONS

• -comment
• -context
• -description
• -name
• -nomcache
• -top
• -vaultpath

-comment

 -comment Specifies whether to submit the release with or
 <text> without a description of changes.

 -comment <string> stores the value of <string> as the
 description of the module. This description is used in
 all SITaR reports and provides the integrator with
 information about module. The module version can also
 have a comment associated with it. The initial module
 version created by the sitr mkmod command always has
 the initial comment, "Initial Module Release."

Workflows

846

 If the comment includes spaces, enclose the description
 in double quotes. DesignSync accepts a comment of any
 length up to 1MB. Long comments may be truncated in
 the output of the commands that show sitr comments. If
 your comment includes ampersand (&) or equal (=)
 characters, they are replaced by the underscore (_)
 character in revision control notes.

 If you do not enter a description, SITaR automatically
 enters the default description, "SITaR module."

 This command respects the minimum comment length
 defined in the SiTaR environment variables, if the
 sitr_min_comment variable has been set.

 Note: The -comment option is mutually exclusive with
 -description.

-context

 -context Specifies creation of the context module defined by
 the sitr_context_module environment variable. The
 sitr_context_module environment variable must already
 exist.

 The context module is used to store the developer
 context for each development submittal. For more
 information, see the stir submit command or the sitr
 env command.

-description

 -description Provide a text description of the module.
 "<text>" A multi-word description must be enclosed within double
 quotation marks (""). If no description is entered,
 DesignSync assigns the default description "SITaR
 module."

 The module description is for the module itself and
 remains with the module throughout its history. Each
 release of the module can also have a description. The
 description for the initial module release generated by
 this command is always "Initial Module Release."

 This command respects the minimum comment length
 defined in the SiTaR environment variables, if the
 sitr_min_comment variable has been set.

 Note: This command has been deprecated in favor of
 -comment. The -comment option is mutually exclusive
 with -description.

ENOVIA Synchronicity Command Reference - Module

847

-name

 -name Specify the category (optional) and name of the module
 being created and released on the DesignSync server
 associated with the $sitr_server environment variable.
 This option should only be used for new modules.

 The location of the module is defined as
 $sitr_server/Modules/<name>. The module name must be
 unique for its location and must conform to the
 DesignSync module requirements:
 - Must contain only printable characters
 - May not contain spaces
 - May not contain any of the following characters:
 ~ ! @ # $ % ^ & * () , ; : | ` ' " = [] / \ < >

 The -name option is mutually exclusive with the -top
 option and the -vaultpath option.

-nomcache

 -nomcache Specify whether automated module caching should be
 disabled for this module. By default, automated
 module caching is enabled.

 You can change the module cache status of an existing
 module with the url setprop command using the following
 form:
 url setprop sync://<host>:</port>/Modules/<modulename> \
 sitrNoMcache 1

 For more information on module caching with SITaR, see
 "Using Module Caches" in the Description section of the
 sitr populate command.

-top

 -top Specifies creating the container module. When you
 create the container module, DesignSync automatically
 sets the container module to the module named in the
 $sitr_container environment variable.

 When the first release is created, the immutable v1.1
 tag is automatically applied to the container
 module.

 This option should only be used once, as part of the
 initial SITaR environment setup. This option is

Workflows

848

 mutually exclusive with the other sitr mkmod options.

-vaultpath

 -vaultpath Specify the location of a module vault to incorporate
 into the SITaR work-flow. The vaultpath allows you
 to specify modules on remote servers or specify an
 existing module for use with SITaR.

 If you are creating a new module, you do not need to
 specify a vaultpath if the module is located on the
 server specified by the $sitr_server environment
 variable.

 If you are adding an existing module to the SITaR
 workflow, use sitr mkmod with the -vaultpath option.

 Note: If you're adding an existing DesignSync vault or
 legacy module to the SITaR work-flow, you must upgrade
 the data using upgrade first, then use sitr mkmod with
 the -vaultpath option to add the module to the SITaR
 work-flow.

 The -vaultpath option is mutually exclusive with the
 -name option and the -top option.

RETURN VALUE

 If the command is successful, DesignSync returns an empty string
 (""). If the command fails, DesignSync returns an error explaining
 the failure.

SEE ALSO

 sitr env, sitr update, sitr submit, sitr integrate, sitr release,
 url setprop, mkmod, sitr populate

EXAMPLES

• Example of Creating a Top-Level Module Container
• Example of Creating Module in SITR

Example of Creating a Top-Level Module Container

 This is an example of running the sitr mkmod command to create the
 top-level module container.

ENOVIA Synchronicity Command Reference - Module

849

 dss> sitr mkmod -top
 Making module sync://srvr2.ABCo.com:2647/Modules/BigChip
 Creating module BigChip on the server...
 Module successfully created on the server.
 Module creation completed.

Example of Creating Module in SITR

 This is an example of creating a module with the sitr mkmod
 command. During the module creation, the module is automatically
 tagged with an immutable configuration tag.

 dss> sitr mkmod -name CPU -comment "CPU module"
 Creating module CPU on the server...
 Module successfully created on the server.
 Module creation completed.
 Beginning module tag operation on 'sync://srvr2.ABCo.com:2647' ...

 Tagging: sync://srvr2.ABCo.com:2647/Modules/CPU;Trunk: \
 : Added tag 'v1.1' to version '1.1'

 Module tag operation finished on 'sync://srvr2.ABCo.com:2647'.

 {Objects succeeded (1)} {}

sitr populate

sitr populate Command

NAME

 sitr populate - Updates the workspace with the specified module
 version

DESCRIPTION

• Using module caches

 This command is used to populate workspaces with the appropriate
 objects for both Design and Integrate work in the SITaR work-flow. It
 is also often used by Designers to update their workspaces to accept
 the changes introduced by a new baseline release (as generated as a result
of
 the integrator executing the sitr release command). You can use the
 sitr populate command to fetch either the baseline configuration or a
 specific configuration.

Workflows

850

 By default, the sitr populate command fetches the baseline
 configuration of the container module appropriate for your role and
 the container module's dependencies. Your role is defined by the
 $sitr_role environment variable.

 o If $sitr_role is set to "Design", meaning that your role is as a
 Designer, the sitr populate command populates the baseline
 configuration as defined by the sitr_alias environment
 variable. This should be the "latest qualified" release of the
 container module. By default, sitr populate does not overwrite
 any locked, unmanaged, or modified objects already in your
 workspace. If you do not wish to preserve locked or modified
 objects, specify the -force option.

 o If $sitr_role is set to "Integrate", meaning that your role is as
 an integrator, the sitr populate command populates the default
 configuration of the container module. The integrator can then
 use the sitr integrate command to update this workspace with any
 desired changes and use it to evaluate and test the submitted
 changes for compatibility prior to the creation of a new baseline
 release.

 The sitr populate command provides a mechanism to overwrite locked or
 modified objects, or to view a list of locked or modified objects in your
 modules. For more information, see the -force option.

 Notes:
 The sitr populate commands respects the href mode "normal" behavior
 defined for populate with the "HrefModeChangeWithTopStaticSelector"
 registry key. For more information, see the "Module Hierarchy"
 topic in the ENOVIA Synchronicity DesignSync Data Manager User's
 Guide.

 FOR INTEGRATORS: If you want to populate a sitr module with the
 stored context information, create a new workspace, and run the
 DesignSync populate command using the context module's version
 SyncURL. If you do not know the context module's version url, use
 the sitr context command to locate it. For more information, see
 the sitr context command.

Using module caches

 DesignSync features a module cache capability for UNIX systems that
 allows end users to populate their workspaces with symbolic links to
 immutably tagged versions of modules residing within a module
 cache. This reduces disk usage and enhances performance.

 Note: SiTaR automcache respects the cachability of an object. If an
 object is designed uncachable by either the caching for the object
 being disabled (caching disable) or sitr automcaching for the object
 being disabled (property sitrNoMcache set to 1 on the module URL),
 the object will not be included the sitr mcache.

 SITaR can be configured to automatically create a module cache entry,

ENOVIA Synchronicity Command Reference - Module

851

 for each submodule version that it populates. This can be managed one
 of two ways:
 o scripted mirrors with sitr automcache disabled
 o sitr automcache enabled

 Scripted mirrors with sitr automcache disabled:
 When scripted mirrors are used, the module caches are maintained by
 the scripted mirror system. The environment variable
 should be disabled (sitr_automcache set to 0). Since sitr populate
 does not need to update the automcache, it does not perform checks
 on the mcache to determine if it is up-to-date, thus improving sitr
 populate performance. Since sitr_populate does not update the
 mcache, the mcache directory does not need to be writable by user
 executing the sitr_populate command.

 sitr populate with module caching enabled:
 When the sitr environment variable sitr_automcache is enabled,
 the sitr_populate command is responsible for maintaining the
 mcache. When you use sitr_populate, it checks to determine if the
 module cache is up-to-date and, if it is not, it updates it.

 Administrators enable module caches by designating a group-writable
 directory as a module cache directory using SyncAdmin. This module
 cache directory stores the module cache entries as sub-directories
 within the specified module cache directory. The module cache
 directory must also be a workspace root directory.

 Important: If there is more than one module cache directory
 specified within SyncAdmin, SITaR uses the first directory on the
 list. When you add module cache directories, verify that the SITaR
 module cache directory is always listed first.

 Note: You can disable module caching for a particular module when
 you create the module by using the -nomcache option to the sitr
 mkmod command or by using the url setprop command on the module
 vault url to set the sitrNoMcache property to 1.

 To determine if module caching (both manual and automatic) has been
 enabled for your SITaR installation, use the sitr env command.

 When auto-creation of module caches is enabled, the initial sitr
 populate command automatically populates the module cache with the
 baseline version of each submodule, prior to creating the symbolic
 links.

 Subsequent sitr populate commands populate new baseline versions of
 the submodules in to the module cache, as needed.

 When module caching is enabled, and you run the sitr populate command
 with the -force option, SITaR prompts you to confirm the action when
 the workspace contains unmanaged files. Confirming the action removes
 the unmanaged objects prior to replacing the module directory with a
 symbolic link. You can continue, cancel the sitr populate operation,
 or display a listing of the affected objects.

 When SITaR creates a module cache entry for a released submodule, it
 disables write permissions for all objects and sub-directories in the

Workflows

852

 module cache. If either Designer or Integrator users attempt to
 modify these objects directly, they receive the following error
 message:

 No write permission, or
 Failed:som: Error 79: No rights to access working file

 The module cache must be writeable by all users who access it. The
 users must also have their umask value set to 002.

 Note: When the 'sitr update' command is used on a sub-module, the
 symbolic link is replaced with a physical directory containing
 the Trunk:Latest versions of the objects. The sitr populate
 command with the -force option can be used to replace all of
 the directories previously populated with the sitr update
 command with symbolic links to the baseline configurations of
 all the submodules.

SYNOPSIS

 sitr populate [-config <tagname>] [-force] [-noprompt]
 [-report {error | brief | normal | verbose}]
 [-xtras <list>]

OPTIONS

• -config
• -force
• -noprompt
• -report
• -xtras

-config

 -config Specifies an explicit released configuration of the
 <tagname> container module to populate into the workspace. The
 released configuration must be an existing configuration
 of the container module.

 If you are populating a workspace with a different
 configuration than the one already present in the
 workspace, you must use the -force option.

 Note: If you are using the sitr populate command to
 change your workspace from a specified configuration
 (populated with the -config option), to the baseline
 configuration, use the sitr populate command with no
 arguments.

ENOVIA Synchronicity Command Reference - Module

853

-force

 -force Forces a populate of all modules and objects in the
 workspace to the specified configuration. The
 configuration is either the appropriate baseline
 configuration for your role or the configuration
 specified with the -config option.

 Using the -force option, the sitr populate command
 overwrites locally modified objects with the specified
 versions of the modules and objects. If module caching is
 enabled, it replaces all module cache enabled sub-module
 workspaces with symbolic links to the appropriate module
 cache directory, removing any modified or unmanaged
 objects from the workspace.

 The sitr populate command evaluates whether objects in the
 workspace will be removed when the command is run with
 the -force option. When there are objects that will be
 removed, the sitr populate command provides a prompt
 asking you to confirm the action, cancel the action, or
 optionally, provides a list of the affected objects. You
 can then review this list and decide whether to continue
 the populate command.

-noprompt

 -noprompt Specifies accepting the default of all interactive
 dialogs, for example, when you specify -force, SITaR
 asks you to confirm the action or review the affected
 objects. Specifying -noprompt bypasses that query.

-report

 -report error| Specifies the amount and type of information
 brief|normal| displayed by populate command.
 verbose
 error - lists failures, warnings, and success/
 failure count.

 brief - lists failures, warnings, module
 create/remove messages, some informational
 messages, and success/failure count. (Default)

 normal - includes all information from brief, and
 lists all the updated objects.

 verbose - provides full status for each
 object processed, even if the object is not
 updated by the operation.

Workflows

854

-xtras

 -xtras <list> List of command line options to pass to the
 external module change management system. Any
 options specified with the -xtras option are
 sent verbatim, with no processing by the
 populate command, to the Tcl script that defines
 the external module change management system.

RETURN VALUE

 If the command is successful, DesignSync returns an empty string
 (""). If the command fails, DesignSync returns an error explaining
 the failure.

SEE ALSO

 caching, sitr env, sitr update, sitr submit, sitr integrate,
 sitr release, url setprop, command defaults

EXAMPLES

 This shows an example of using sitr populate to update a developer
 workspace. Note: The sitr populate command calls the populate command
 with the -brief option.

 dss> sitr populate -force
 Creating/Updating Workspace for Design Use....

 top%1 : Version of module in workspace updated to 1.7

 ===
 /chip.c : Already Fetched and Unmodified Version 1.1
 /chip.doc : Already Fetched and Unmodified Version 1.3
 Total data to transfer: 1 Kbytes (estimate), 1 file(s), 0 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 1 Kbytes, 0 file(s), 0 collection(s), 100.0% complete
 Progress: 1 Kbytes, 1 file(s), 0 collection(s), 100.0% complete

 Chip%1 : Version of module in workspace updated to 1.6

sitr release

sitr release Command

NAME

ENOVIA Synchronicity Command Reference - Module

855

 sitr release - Creates a new module release and updates the
 baseline alias

DESCRIPTION

 This command is used by the sitr integrator to create a new release
 of the container module and update the baseline tag to point to the
 new release. When a new release has been generated, designers can
 update their workspaces to use it by running the sitr populate
 command.

 Each release is tagged with an automatically incrementing version tag
 with the prefix v. When the initial release configuration is created
 with the sitr mkmod command, it is automatically tagged v1.1,
 indicating that it is the initial version. The subsequent
 configurations are automatically tagged v1.2, v1.2, v1.3 etc.

 When you want to increment the major version number, use the -release
 option to the sitr release command to specify the new version number.

 Notes:

 o The baseline tag is identified by the sitr_alias environment
 variable. The sitr integrator is identified by the sitr_role
 environment variable. The container module branch updated by the
 release command is identified by the sitr_branch environment
 variables. If the sitr_branch environment variable is not set, the
 default branch, Trunk: is updated.

 o SITaR uses the highest value version tag as the baseline for the
 auto-increment number. If for instance, after v1.15 the major
 version number is incremented to v2.0, and after that, a developer
 specifies v1.16 with the -release option, the next available
 version number is 2.1. SITaR does not revert to a lower version
 number.

 o Tags cannot be reused.

SYNOPSIS

 sitr release [-[no]comment <text> | -cfile <filename> |
 -description "<text>"] [-noprompt]
 [-noupdate] [-release <sitr_branch><NUM.NUM>]

OPTIONS

• -comment
• -cfile
• -description

Workflows

856

• -noprompt
• -noupdate
• -release

-comment

 -comment Specifies whether to submit the new release with or
 <text> without a description of changes.

 -comment <string> stores the value of <string> as
 the release comment. This description is used in all
 SITaR reports and provides the Integrator with
 information about the version being submitted. If
 the comment includes spaces, enclose the description
 in double quotes. DesignSync accepts a comment of
 any length up to 1MB. Long comments may be
 truncated in the output of the commands that show
 sitr comments. If your comment includes ampersand
 (&) or equal (=) characters, they are replaced by
 the underscore (_) character in revision control
 notes.

 If you do not enter a description, SITaR
 automatically enters the default description, "SITaR
 Release."

 This command respects the minimum comment length
 defined in the SiTaR environment variables, if the
 sitr_min_comment variable has been set.

 Note: The -comment option is mutually exclusive with
 -description and -cfile. If you do not specify any
 of these options, DesignSync prompts you to enter a
 check-in comment either on the command line or by
 spawning the defined file editor. For more
 information on defining a file editor, see the
 DesignSync Data Manager Administrator's Guide,
 "General Options."

-cfile

 -cfile Specifies a file containing a text comment to use as
 <file> the description of the new release. DesignSync
 accepts a comment of any length up to 1MB. Long
 comments may be truncated in the output of commands
 that show sitr comments. If your comment includes
 ampersand (&) or equal (=) characters, they are
 replaced by the underscore (_) character in revision
 control notes.

 This command respects the minimum comment length
 defined in the SiTaR environment variables, if the
 sitr_min_comment variable has been set.

ENOVIA Synchronicity Command Reference - Module

857

 Note: The -cfile option is mutually exclusive with
 -comment and -description. If you do not specify any
 of these options, DesignSync prompts you to enter a
 check-in comment either on the command line or by
 spawning the defined file editor. For more
 information on defining a file editor, see the
 DesignSync Data Manager Administrator's Guide,
 "General Options."

-description

 -description Specifies a description of the new release. If you do
 <text> not specify a description on the command line, the
 sitr release command prompts for one before executing
 the release. If you do not enter a description after
 being prompted, or when using the -noprompt option,
 SITaR uses "SITaR Release" as the default description.

 The description provides a method to identify changes
 to releases. The description information is used in
 SITaR lookups and reports.

 This command respects the minimum comment length
 defined in the SiTaR environment variables, if the
 sitr_min_comment variable has been set.

 Note: This option has been deprecated by the
 -comment option. The -description option is
 mutually exclusive with -comment and -cfile. If you
 do not specify any of these options, DesignSync
 prompts you to enter a check-in comment either on the
 command line or by spawning the defined file
 editor. For more information on defining a file
 editor, see the DesignSync Data Manager
 Administrator's Guide, "General Options."

-noprompt

 -noprompt Specifies accepting the default of all interactive
 dialogs, for example, if you do not enter a
 description, specifying -noprompt sends the release
 with the default description.

-noupdate

 -noupdate Specify this option when you do not want to update
 the baseline configuration to match the configuration
 being released. This allows developers and
 integrators to explicitly select the release for

Workflows

858

 testing or development, but does not create a new
 baseline for the designer's workspaces.

 If this option is not specified, the sitr release
 command updates the baseline with the new
 release, making it generally available to integrators
 and designers by allowing it to be fetched as part
 of the standard sitr populate operation.

-release

 -release Specify the release tag for the configuration
 <sitr_branch> being released. Generally this option is used only to
 <NUM>.<NUM> update the major version number, for example, from
 version 1.x to version 2.0.

 For releases on the Trunk: branch, The release tag
 should be in the format v<NUM>.<NUM>. For releases on
 other branches, the format should be
 <sitr_branch_name><NUM>.<NUM>. Generally, when you
 specify a release configuration tag, you do so only
 to update the major version number, but you can also
 update both numbers, for example, to align the
 release numbers of different modules in preparation
 for larger release.

 If you do not use the standard format for the -release
 option, SITaR displays a prompt telling you
 that it is not recommended to use a release name that
 does not match the <sitr_branch><NUM>.<NUM> standard
 and asking you to confirm the action.

 Tip: When you apply a non-standard tag to save the
 current state of the integration of the container
 module, use the -noupdate option, which applies the
 non-standard tag to the container, but does not move
 the baseline tag.

RETURN VALUE

 If the command is successful, DesignSync returns an empty string
 (""). If the command fails, DesignSync returns an error explaining
 the failure.

SEE ALSO

 sitr populate, sitr update, sitr integrate

ENOVIA Synchronicity Command Reference - Module

859

EXAMPLES

 This example shows the integrator role releasing a tested
 configuration of the Chip module for general use.

 dss> sitr release
 Having a description associated with every release is useful
 for future reference. Please enter a description for this
 release:
 Incorporating Fixes: 32021, 34553, and 32342
 Verifying the container module 'top%0' is up to date. Please wait ...
 Beginning module tag operation on 'sync://srv2.ABCo.com:2647' ...

 Tagging: sync://srv2.ABCo.com:2647/Modules/top;1.5 : Added tag
 'v1.3' to version '1.5'

 Module tag operation finished on 'sync://srv2.ABCo.com:2647'.

 Beginning module tag operation on 'sync://srv2.ABCo.com:2647' ...

 Tagging: sync://srv2.ABCo.com:2647/Modules/top;1.5 : Added tag
 'final' to version '1.5'

 Module tag operation finished on 'srv2.ABCo.com:2647'.

sitr select

sitr select Command

NAME

 sitr select - Identifies module configurations to process

DESCRIPTION

• Viewing the sitr select Command Buffer
• Working with Multiple Module Versions

 This command is used by SITaR integrators to select module
 configurations to be added to, or deleted from, the
 "integration/<Default>" configuration of the container module.

 Generally this command is used to select the latest submitted module
 version for inclusion into the baseline module, or to revert a
 baseline configuration back to the last "good" version.

 The sitr select command is an integral part of the SITaR integrate
 process which involves locating the newly submitted candidate
 releases using the sitr lookup command, selecting the desired
 releases using the sitr select command, and integrating the releases

Workflows

860

 into the integration workspace.

 The sitr select command allows you to perform one operation on
 multiple module configurations. To run multiple operations within a
 single integrate command, you may need to run the sitr select command
 more than once to select all of the desired changes. Once all the
 changes have been selected, run the sitr integrate command to
 implement the selections. The work-flow continues with testing and
 culminates with the release of the updated configuration as the new
 baseline.

 Note: The sitr select command accumulates selections until the sitr
 integrate command is run, the -clear option to the sitr select
 command is used, or the client executing the select commands closes.

Viewing the sitr select Command Buffer

 You can view the selections in the sitr select command buffer by
 running the sitr select command with no options or by specifying the
 -report verbose option. This provides a table documenting the
 submodules versions in the current default/integration configuration
 of the container module, and a list of selected integration changes
 in the following format:

 Column Name Description
 ----------- -----------
 A/D Indicates whether a module configuration is to be:
 A - added to the default configuration
 D - removed from the default configuration.

 Note: This field is blank for module
 configurations that are not selected for change

 Name Displays the unique hierarchical reference name
 for the container module link to the sub-module.

 Module Config Displays the name of the module configuration in
 the following format:
 <moduleName>@<configName>

 Note: If '-report verbose' is specified, this
 column displays the full URL of the module
 configuration in the following format:
 sync://<host>:<port>/<Modulepath>/<moduleName>@<configName>

 Relative Path Displays the directory path to the sub-module
 configuration, relative to the container module
 directory.

 Owner Displays the login name of the person that
 submitted the configuration/release.

 Release Date Displays the date the release was created.

ENOVIA Synchronicity Command Reference - Module

861

 Description Displays the description text associated with the
 configuration. If the comment is long, the first
 25 characters are displayed followed by an ellipsis
 (...). The full comment is displayed if the
 -notruncate option is specified when the command is
 run.

Working with Multiple Module Versions

 All module selections are associated with a relative path (relpath)
 and hierarchical reference name in the workspace of the container
 module. The sitr select command tracks all selected changes based on
 the 'relpath' location of each container submodule and the
 hierarchical reference name. This allows for overlapping modules to
 share the same relative path.

 When you update a module release to the relpath of a selected
 sub-module already in the container module, SITaR targets the
 old version for removal and replaces it with the new version when
 the integrate command is run.

 If the neither the -relpath option nor the -name option is explicitly
 specified, SITaR uses the the default relpath location and the
 default href name. If the default href name is already in use, or if
 more than one href exists to the specified module, SITaR returns
 an error indicating that a unique relpath or href name must be
 specified. If an href exists for that module in the container, the
 old version is targeted for removal and replaced with the version
 when the sitr integrate command is run.

 Note: The default location for sitr_relpath is based on the
 hierarchical setup defined for your SITaR installation. For
 more information on determining how the default relpath is
 calculated, see the -relpath option section.

 If a -relpath option is specified, but the -name option is not
 specified, SiTaR uses the default relpath location and the specified
 href name. If the default href name is already in use, SITaR returns
 an error indicating that a unique href is required. If an href
 exists for that module in the container, the old version is targeted
 for removal and replaced with the new version when the sitr integrate
 command is run.

 For example, if the 'top' container module currently contains a
 reference to the ALU@v1.2 release of the ALU submodule with a default
 (Cone) relpath of 'ALU' and you run the following sitr select command:

 sitr select ALU@v1.3

 The ALU@v1.2 configuration in the relpath location 'ALU' is selected
 for deletion from the container, and the ALU@v1.3 configuration is
 selected for addition at the same relpath.

Workflows

862

 Using the -relpath option, however, you can place modules in
 non-default relpath locations. This allows you to place versions of
 the same module into a container multiple times.

 If, for instance, using the previous example, you want to retain
 ALV@v1.3 and add the new module release ALUv1.4, use the sitr select
 command:

 sitr select -relpath ALU.4 ALU@v1.4

 When you perform the sitr integrate command, SITaR makes both versions
 of the ALU module available within the container module.

 If you subsequently realize that you do not want the ALU@v1.3 version,
 you can specify it with the sitr select -delete option, and it is
 removed from the container module after the next sitr integrate
 command.

SYNOPSIS

 sitr select [-clear] [-delete] [-name <href name>]
 [-relpath <relpath>] [-report {brief | normal | verbose}]
 [-[no]truncate] [<argument>...]

ARGUMENTS

• Module Name
• Server URL

Module Name

 <moduleName> Specify the desired module using the relative module
 path:
 [<category>...]/<ModuleName>@<selector>
 For example:
 ChipDesigns/Chip@Trunk:Gold

 Notes:
 If you do not specify the fully qualified
 module URL, the sitr lookup command searches for the
 module on the known servers first by checking the
 container server defined in the sitr_server
 variable, and then by checking the servers defined
 in the sync_servers.txt file. For more information
 on the sync_servers.txt file, see the url servers
 command.

 You must provide the full relative path to the
 module. If the module is in a category (or a
 category path), you must provide the category(s)
 along with the module, for example:

ENOVIA Synchronicity Command Reference - Module

863

 ChipDesigns/300mm/Chip

Server URL

 <ServerURL> Specify the desired module using the fully qualified
 module URL:

 sync://<host>[:<port>]/Modules/[<category...>/]<module>@<selector>
 or
 syncs://<host>[:<port>]/Modules/[<category...>/]<module>@<selector>
 where 'sync://' or 'syncs://'
 is required, <host> is the machine on which the
 SyncServer is installed, <port> is the SyncServer
 port number (defaults to 2647/2679), [<category...>}
 is the optional category (and/or sub-category)
 containing the module, and <module> is the name of
 the module.
 For example:
 sync://serv1.abco.com:1024/Modules/ChipDesigns/Chip

OPTIONS

• -clear
• -delete
• -name
• -relpath
• -report
• -[no]truncate

-clear

 -clear Removes any existing selections from the sitr select
 command buffer.

 Note: Closing the client session containing the sitr
 select command buffer also clears the command buffer.

-delete

 -delete Marks the specified module configuration for removal
 from the container module.

 If -delete is not specified, the specified
 module configurations will be selected for addition
 to the container module.

-name

Workflows

864

 -name Specifies the href name the container module uses to
 <hrefname> refer to the submodule. When integrate is run, an
 href is created between the container module and the
 specified submodule using this name. If you do not
 specify the -name option, SITaR uses the module
 name, if it can. If there are multiple valid
 modules, you must specify the specific module
 desired.

 Note: The name value must be unique within the scope
 of the container module. If an href already exists
 with the name specified, the sitr select command
 fails.

-relpath

 -relpath Specifies the directory path, relative to the
 <relpath> directory of the container module, to place the
 specified module configuration.

 If -relpath is not specified, SITaR uses the
 sitr_relpath environment variable to determine what
 relpath to use.

 sitr_relpath relpath
 ------------ -----------
 Cone ./<moduleName>
 Peer ../<moduleName>

 Note: The -relpath option can only take a single module
 configuration argument.

-report

 -report Specifies the format of the output. Possible values
 are:

 o brief - Displays command output including any
 warning or error messages.

 o normal - Displays the selection table with the
 Name, Module Config (as a module instance
 name and version), and Relative Path
 columns when no module configurations are
 specified. Displays status, warning and
 error messages when a module
 configuration is specified.

 o verbose - Displays the selection table with the
 columns included in the "normal" display
 and Owner, Release, and Description. For

ENOVIA Synchronicity Command Reference - Module

865

 Module config, verbose uses the full
 module configuration URL, instead of the
 module instance name and version.

-[no]truncate

 -[no]truncate Specifies whether to display a full long comment or
 truncate the comment to a single line.

 -notruncate displays the full length of the comment.
 Comments can be up to 1MB in length.

 -truncate displays only the first 25 characters of
 the comment, followed by an ellipsis (...) to show
 that the comment is longer. (Default)

RETURN VALUE

 If the command is successful, DesignSync returns an empty string
 (""). If the command fails, DesignSync returns an error explaining
 the failure.

SEE ALSO

 sitr lookup, sitr submit, sitr integrate, sitr release, addhref,
 rmhref, edithrefs

EXAMPLES

• Example of Selecting a Submitted Module
• Example of Replacing a Selection with an Updated Module
• Example of Showing the Selected Modules

Example of Selecting a Submitted Module

 This example shows the initial selection of a submitted module, Chip,
 for integration.

 dss> sitr select Chip@v1.1
 Selecting sync://srv2.ABCo.com:2647/Modules/Chip@v1.1 (href name =
 'Chip', relpath = 'Chip') for Addition

Example of Replacing a Selection with an Updated Module

Workflows

866

 This example shows a subsequent selection of a submitted module,
 Chip, for integration. Notice that in addition to adding the
 selected configuration of Chip, it also removes the active configuration
 from the integration workspace.

 dss> sitr select Chip@v1.4
 Selecting sync://srv2.ABCco.com:2647/Modules/Chip@v1.1 (href name =
 'Chip', relpath = 'Chip') for Deletion
 Selecting sync://srv2.ABCo.com:2647/Modules/Chip@v1.4 (href name =
 'Chip', relpath = 'Chip') for Addition

Example of Showing the Selected Modules

 This example shows a list of the modules that have been selected.
 When you run the sitr integrate command, these module configurations
 will be processed as indicated (added or deleted from the integration
 workspace.)

 dss> sitr select
 A/D Name Module Config Relative Path Owner Release Date
 Description
 --
 Del Chip Chip@v1.1 Chip rsmith 2007-03-16
 Initial SITaR Module Release

 Add Chip Chip@v1.4 Chip rsmith 2007-06-06
 Fixes 32021, 34553, and 32342

sitr status

sitr status Command

NAME

 sitr status - Compares the local workspace to the specified
 configuration

DESCRIPTION

• Understanding the Output

 This command displays the status of your workspace and compares it to
 the expected workspace configuration. If your role is Design, the
 expected configuration is the current baseline configuration as
 defined by the sitr_alias environment variable. If your role is
 Integrate, the expected configuration is the 'Default' configuration.

 The specific module version expected in the hierarchy by the sitr
 status command depends on the value of hrefmode mode specified as a

ENOVIA Synchronicity Command Reference - Module

867

 persistent href mode on the workspace. If static mode is specified,
 the status reported for the hierarchy follows the static version of
 the object at the time the href was created. If dynamic mode is
 specified, the status evaluates the selectors dynamically. If normal
 mode is specified, contents follows the traversal method identified
 by the "HrefModeChangeWithTopStaticSelector" registry key. For more
 information, see the "Module Hierarchy" topic in the ENOVIA
 Synchronicity DesignSync Data Manager User's Guide.

Understanding the Output

 The sitr status command displays the following information:

 Column
 Titles Description
 ------ ------------
 Module Instance The unique "instance name" of each module in the
 workspace or the directory name for the module cache
 directory.

 Workspace The SITaR release name associated with each module
 in the workspace.

 <TaggedVersion> The SITaR release name associated with server module
 being compared against the workspace. Generally
 this is the baseline or default version, depending
 on your defined role, but you can use the -versus
 option to explicitly specify any release version.

 Relpath The relative path from the container module to the
 base directory for each submodule.

 Status The status of the workspace module with respect to
 the server module it is being compared to. If the
 workspace contains a symbolic link to a module
 cached SITaR module version, the status contains
 the prefix "(Mcache)". Possible status values
 include:

 o In-sync - The compared urls, selectors, and
 relpaths of the workspace and server-side
 configuration are identical.

 o Changed [selector,relpath,url] - The
 selector, relative path, or URL of the workspace
 module is different than the server module.

 Note: The status message displays only the
 appropriate values for your module instance, for
 example, if the selector has changed, but the URL
 and relative path are the same, the status message
 reads: "Changed selector".

 Selectors change when the version of the module in

Workflows

868

 the baseline changes. This happens when the
 baseline is updated or regressed to a different
 version.

 Relative paths change when a different relative
 path is specified for a module by an integrator
 during the sitr select/integrate/test/release
 process.

 URL paths change when a module changes server.

 o Empty relpath - The sub-module is referenced on
 the server, but is not populated in the workspace.
 This can happen when the href is created with an
 empty relpath. The "Empty relpath" label implies
 that the workspace should not have the files
 associated with the module.

 o Server Only - The sub-module href exists on the
 server but is not in the workspace. This usually
 happens when a new module has been added to the
 baseline version of the container module since the
 last populate.

 o Local Only - The sub-module exists in the
 workspace but is not referenced on the
 server. This usually happens when the sub-module
 has been removed from the baseline version of the
 container module.

 o Update Mode - The sub-module selector for the
 workspace is Trunk: instead of the tagged baseline
 configuration. This usually happens when the user
 ran 'sitr update' on the sub-module because it's
 a module the user is actively changing.

SYNOPSIS

 sitr status -versus <tagname> [-xtras <list>]

OPTIONS

• -versus
• -xtras

-versus

 -versus Specify an explicit tagged configuration of the
 <tagname> container module to compare against the local
 workspace. The tagged configuration must be an
 existing configuration of the container module.

ENOVIA Synchronicity Command Reference - Module

869

-xtras

 -xtras List of command line options to pass to the
 <list> external module change management system. Any options
 specified with the -xtras option are sent verbatim, with
 no processing by the populate command, to the Tcl script
 that defines the external module change management
 system.

RETURN VALUE

 If the command is successful, DesignSync returns an empty string
 (""). If the command fails, DesignSync returns an error explaining
 the failure.

SEE ALSO

 sitr populate, sitr env, showstatus

EXAMPLES

 This example shows the status for an up-to-date module, Chip, and a
 module in update mode, ALU.

 dss> sitr status

 Workspace Directory: /home/rsmith/sitr_workspaces/develop

 Comparing the submodule versions in the workspace with the versions
 of the submodules in the current baseline (final = v1.4)
 configuration of top

 Module Instance Workspace final Relpath Status

 top%1 v1.4 v1.4
 ALU%0 Trunk: v1.1 ALU Update mode
 Chip%1 v1.5 v1.5 Chip In-sync

sitr submit

sitr submit Command

NAME

Workflows

870

 sitr submit - Submits a module version for integration

DESCRIPTION

• Storing the Module Context

 This command creates new releases of modules for integration
 into the container module. When a developer has completed
 development and is prepared to release a module to incorporate into
 the baseline, the developer submits the release.

 During the development process, you may release "check-point"
 releases, or interim releases that require integration testing,
 but should not be part of the baseline configuration. You can
 indicate these releases in any or all of three ways:

 1. Use the -release option to provide a non standard release name for
 the release.
 2. Use the -comment option to manually insert text into the
 description that indicates to the integrator that this release
 should not be integrated into the baseline.
 3. Use the -nointegrate option to append the text "(do not
 integrate.)" to the end of the description. This allows you to
 use the description text to describe the release configuration
 itself.

 The sitr submit command prompts for confirmation of the submit action
 for any of the following situations:
 o You specify a non-standard release tag.
 o You have a selector list specified as the workspace selector.
 o Your workspace selector and your expected release tag do not match,
 for example, if your workspace uses a branch selector, but the
 expected release version is vNum.Num.

 When submitting a directory hierarchy containing overlapping modules,
 you should select the module instances individually in the submit
 command.

 Notes:

 o SITaR uses the highest value version tag as the baseline for the
 auto-increment number. If for instance, after v1.15 the major
 version number is incremented to v2.0, and after that, a developer
 specifies v1.16 with the -release option, the next available
 version number is 2.1. It does not revert to a lower version
 number.

 o Tags cannot be reused.

 o When a release is submitted and the sitr_context_required
 environment variable is set to 1 (meaning context is required), the
 sitr submit action captures the entire hierarchy of the designerâ€™s
 workspace root directory when the module is submitted. The

ENOVIA Synchronicity Command Reference - Module

871

 hierarchy is stored as a version of a submission context module
 indicated by the sitr_context_module environment variable. This
 variable must be set to a valid module if the sitr_context_required
 variable is set, or the submit will fail.

Storing the Module Context

 When you submit a release, you can preserve the module context; the
 local modifications to any of the other modules linked within the
 workspace. This allows the integrator to recreate the developer's
 workspace, in case the integrator's test results differ from the
 developers results or expectations.

 To preserve the module context, both the developer and the integrator
 set the sitr environment variables for sitr_context_required and
 sitr_context_module. The sitr_context_required variable is used to
 enable preserving the context, and the stir_context_module variable
 stores the data.

 Important: When the sitr integrator populates the context module,
 they will use the DesignSync populate command, not the sitr populate
 command.

SYNOPSIS

 sitr submit [-comment <comment> | -cfile <filename> |
 -description <description>] [-force] [-nointegrate]
 [-[no]modified] [-noprompt]
 [-release [<branch_>]v<NUM>[.<NUM>]] [<argument> [...]]

ARGUMENTS

• Workspace Module Base Directory
• Workspace Module

Workspace Module Base Directory

 <Workspace Specify the desired workspace directory, for example:
 module base /home/user/rsmith/mymods/Chip, or ../mymods/Chip.
 directory> Workspace directories submitted for integration must
 meet the following criteria:
 o The workspace directory contains a valid module.
 o All objects within the workspace are in-sync
 with the server module version. There can be no
 locally modified objects or objects that need to be
 updated to match the server version in the
 workspace.
 Notes:
 * If you do not specify a workspace directory, SITaR

Workflows

872

 uses the current directory.
 * If you have multiple modules (overlapping
 modules) in the specified module base
 directory, the command will fail. You must
 specify a specific module using the module
 instance name.

Workspace Module

 <workspace Workspace module instance name, for example
 module> Chip%1. When your module base directory contains
 overlapping modules, you must specify the module
 instance name.

OPTIONS

• -comment
• -cfile
• -description
• -force
• -nointegrate
• -[no]modified
• -noprompt
• -release

-comment

 -comment Specifies the comment to include with the submission.
 <text> This description is used in all SITaR reports and
 provides the Integrator with information about the
 version being submitted. If the comment includes
 spaces, enclose the description in double
 quotes. DesignSync accepts a comment of any length up to
 1MB. Long comments may be truncated in the output of
 the commands that show sitr comments. If your comment
 includes ampersand (&) or equal (=) characters, they are
 replaced by the underscore (_) character in revision
 control notes.

 If you do not enter a description using -comment,
 -description, or -cfile, SITaR automatically
 enters the default description, "SITaR Submittal."

 This command respects the minimum comment length defined
 in the SiTaR environment variables, if the
 sitr_min_comment variable has been set.

 Note: The -comment option is mutually exclusive with
 -description and -cfile. If you do not specify any of
 these options, DesignSync prompts you to enter a

ENOVIA Synchronicity Command Reference - Module

873

 check-in comment either on the command line or by
 spawning the defined file editor. For more information
 on defining a file editor, see the DesignSync Data
 Manager Administrator's Guide, "General Options."

-cfile

 -cfile Specifies a file containing a text comment to use as
 <file> the description of the submittal. DesignSync
 accepts a comment of any length up to 1MB. Long
 comments may be truncated in the output of commands
 that show sitr comments. If your comment includes
 ampersand (&) or equal (=) characters, they are
 replaced by the underscore (_) character in revision
 control notes.

 This command respects the minimum comment length
 defined in the SiTaR environment variables, if the
 sitr_min_comment variable has been set.

 Note: The -cfile option is mutually exclusive with
 -comment and -description. If you do not specify any
 of these options, DesignSync prompts you to enter a
 check-in commenteither on the command line or by
 spawning the defined file editor. For more
 information on defining a file editor, see the
 DesignSync Data Manager Administrator's Guide,
 "General Options."

-description

 -description Specify a description of the release being
 <text> submitted. This description is used in all SITaR
 reports and provides the Integrator with information
 about the version being submitted.

 If you do not enter a description, SITaR
 automatically enters the default description, "SITaR
 Submittal." DesignSync accepts a comment of any
 length up to 1MB. Long comments may be truncated in
 the output of the commands that show sitr comments.

 This command respects the minimum comment length
 defined in the SiTaR environment variables, if the
 sitr_min_comment variable has been set.

 Note: This option has been deprecated by the
 -comment option. The -description option is
 mutually exclusive with -comment and -cfile. If you
 do not specify any of these options, DesignSync
 prompts you to enter a check-in comment.

Workflows

874

-force

 -force Specify this option if the work being submitted is
 not the version in Trunk:Latest. By default SITaR
 expects submittals to come from workspaces
 containing the Trunk:Latest version of the
 module. If, for example, you want to submit a
 previously submitted release or a branched version,
 use the -force option.

-nointegrate

 -nointegrate Specify this option when you are working with an
 interim module release that you do not want to
 integrate in the baseline configuration. Specifying
 this option appends the text "(do not integrate)" to
 the description field as a note to integrators.

-[no]modified

 -[no]modified Specifies what to do if a first level module with a
 dynamic selector contains locally modified files.

 -nomodified indicates that the submission should
 fail if there are modified objects in a first level
 module with a dynamic selector, or within its
 hierarchy. (default)

 -modified indicates that the submittal allows
 locally modified objects.

 Important: A submittal always fails if the module
 being submitted contains locally modified files. If
 there are any first level modules with dynamic
 selectors containing locally modified files, that
 information is be preserved on the server with the
 submitted module configuration.

-noprompt

 -noprompt Specifies accepting the default of all interactive
 dialogs, for example, when you specify -force, SITaR
 asks you to confirm the action or review the
 affected objects. Specifying -noprompt bypasses that
 query.

-release

ENOVIA Synchronicity Command Reference - Module

875

 -release Specify the release name for the submodule.
 [<branch_>] Generally you will only specify this for major
 v<NUM>[.<NUM>] release number changes. If you do not specify the
 release tag, it is automatically calculated by
 incrementing the minor number from the last
 submitted release. For example, if the previously
 submitted release was tagged v1.9, the next release
 is tagged v1.10).

 Note: The release number is incremented to the next
 available number, even if the previously released
 configuration was not integrated into the baseline.

 When the module is located on the Trunk branch, the
 release name uses the format vNUM.NUM. When the
 module is located on the any other branch, the
 release name format is Branch_vNUM.NUM, where Branch
 is the branchname specified when the branch was
 created.

 In order to use the SITaR auto-numbering release
 feature, the release tag must be specified in the
 following format:
 BranchName_v<MajorReleaseNumber>.<MinorReleaseNumber>

 Note: If the module is on the Trunk branch, you do
 not need to specify the branch name.

 You can use -release to specify a non-standard SITaR
 release tag. For example, if you want to create a
 release to test in the integration environment, but
 not included in the baseline, you can create a
 release called "test" with the -release option.
 This does not affect the numbering of subsequent
 releases which continue to auto-increment from the
 last release tag. For example, if the release
 before "test" was 1.3, the release after test,
 assuming the -release option is not specified, is
 1.4.

 Note: When you specify a non-standard SITaR release
 tag, the system issues a warning and prompts you to
 confirm the action.

 Tip: Do not use the -release option to decrement the
 version number.

RETURN VALUE

 If the command is successful, DesignSync returns an empty string
 (""). If the command fails, DesignSync returns an error explaining
 the failure.

Workflows

876

SEE ALSO

 sitr populate, sitr update, sitr lookup, sitr integrate,
 sitr release, sitr mkmod

EXAMPLES

 This shows an example of a developer submitting changes to a module,
 Chip, for the integrator to integrate into his workspace for review
 and test.

 dss> sitr submit
 Having a description associated with every submittal is useful
 for future reference. Please enter a description for this
 submittal:
 Fixes to issues: 32021, 34553, and 32342
 Beginning module tag operation on 'srv2.ABCo.com:2647' ...

 Tagging: sync://srv2.ABCo.com:2647/Modules/Chip;1.6 : Added tag
 'v1.5' to version '1.6'

 Module tag operation finished on 'srv2.ABCo.com:2647'.

sitr update

sitr update Command

NAME

 sitr update - Updates a submodule workspace with the
 specified module version

DESCRIPTION

 This command sets the workspace selector to the specified module
 version, usually the "Latest" version for the branch in the workspace,
 and populates the workspace. When the selector is set for the latest
 version of the workspace branch, the workspace is in "update"
 mode. When the designer has completed their development, they use the
 "sitr submit" command to submit the submodule for integration. The
 workspace remains in update mode. To set the workspace to the
 released version of the module, the developer can use the "sitr
 populate" command with the -force option.

 Note: If there are multiple branch tags associated with the workspace
 branch and DesignSync is unable to determine the proper selector to
 use to update the workspace, you must use the -config option to
 supply a selector.

ENOVIA Synchronicity Command Reference - Module

877

 The "sitr populate" command, by default, does not modify a
 workspace submodule in update mode. Other submodules in the
 workspace, whose workspace selectors are that of the baseline
 configuration, are updated with respect to the baseline
 configuration.

 When updating a directory hierarchy containing overlapping modules,
 you should select the module instances individually in the update
 command.

 The update command operates in a hierarchically recursive manner by
 removing the outdated module versions and replacing them with the new
 module versions.

 The sitr update command allows you to:

 1) Switch submodule workspace directories from read-only mode,
 populated with the baseline configuration, to update mode,
 populated with the "Latest" version of the specified
 module branch.

 2) Update the contents of submodule workspace directories already
 in update mode with the Latest versions of the submodule
 files. This allows the developer or integrator to pick up changes
 introduced since the last sitr update command was run on the
 workspace, for example, changes made by other users.

 3) Populate a submodule workspace with a specified configuration
 of the module. This allows you to overwrite the current submodule
 configuration in the workspace.

 Notes
 o If the default "read only fetch" preference is set (for the "lock"
 model), designers must use the UNIX "chmod" command to adjust the
 write permissions to make the objects editable.

 o The sitr update command should be run on all submodule workspace
 directories prior to performing any edit tasks, such as
 modifying, adding or removing any objects in the submodule.

 o You cannot run sitr update on a directory that already contains
 writable objects that have been modified, unless you specify how to
 handle modified objects in the workspace.

 To update all unmodified objects, use the -nooverwrite option.
 This preserves all modifications, and updates the other objects.

 To overwrite all objects with the specified configuration version,
 use the -force option. This replaces all modifications with the
 specified version.

 o When you update module cache enabled sub-module workspaces
 with symbolic links to the module cache entries, you must use
 the -force option if the directory contains modified or unmanaged
 files.

Workflows

878

 o These files are considered editable by the SITaR system, but may
 be read-only within your workspace depending on your default
 populate settings.

 o Update mode is not restricted to a single developer use model.

 o The sitr update command uses the persistent hrefmode specified on
 the workspace to determine which referenced module version to
 populate. If static mode is specified, the hierarchy follows the
 static version of the object at the time the href was created. If
 dynamic mode is specified, hierarchy follows the dynamic
 selector. If normal mode is specified, the hierarchy follows the
 traversal method identified by the
 "HrefModeChangeWithTopStaticSelector" registry key. For more
 information, see the "Module Hierarchy" topic in the ENOVIA
 Synchronicity DesignSync Data Manager User's Guide.

SYNOPSIS

 sitr update [-config <tag>] [-force] [-nooverwrite]
 [-noprompt] [-xtras <list>. [<argument>[...]]

ARGUMENTS

• Workspace Module Base Directory
• Workspace Module

Workspace Module Base Directory

 <Workspace Specify the desired workspace directory, for example:
 module base /home/user/rsmith/mymods/Chip, or ../mymods/Chip.
 directory>
 Notes:
 * If you do not specify a workspace directory, SITaR
 uses the current directory.
 * If you have multiple modules (overlapping
 modules) in the specified module base
 directory, the command will fail. You must
 specify a specific module using the module
 instance name.

Workspace Module

 <workspace Workspace module instance name, for example
 module> Chip%1. When your module base directory contains
 overlapping modules, you must specify the module
 instance name.

ENOVIA Synchronicity Command Reference - Module

879

OPTIONS

• -config
• -force
• -nooverwrite
• -noprompt
• -xtras

-config

 -config Specify an explicit released configuration of the module
 <tag> to populate into the workspace. The configuration must
 be an existing configuration of the module being updated.
 If the -config option is not specified, the workspace is
 updated with the "Latest" version of the specified
 module for the branch specified by the workspace
 selector.

 If you are updating a workspace with a different
 configuration than the one already present in the
 workspace, you must use the -force option.

-force

 -force Force update of the specified modules and objects in the
 workspace to the specified configuration. The
 configuration is either the appropriate baseline
 configuration for your role or the configuration
 specified with the -config option.

 Using the -force option, the sitr update command
 overwrites locally modified objects with the specified
 versions of the modules and objects.

 Important: If module caching is enabled, and the
 configuration being populated is not 'Trunk:Latest,' it
 replaces all module cache enabled sub-module workspaces
 with symbolic links to the appropriate module cache
 entries. This removes any modified or unmanaged
 objects from the workspace. If the workspace contains
 modified or unmanaged objects, the sitr update command
 prompts you to confirm the action, cancel the action, or
 optionally, provides a list of the affected objects.
 You can then review this list and decide whether to
 continue the update command.

 The -force and -nooverwrite options are mutually
 exclusive. If you specify both options, the command
 exits without updating any files. If neither the -force
 nor -nooverwrite options are specified, and the existing
 submodule workspace contains modified files, the sitr
 update command exits without updating any of the files

Workflows

880

 and provides an error message explaining why.

-nooverwrite

 -nooverwrite Specify this option to update any unmodified files to
 the specified configuration while leaving any modified
 files in their current state.

 Note: If the -nooverwrite option is used with the
 -config option, the resulting workspace may contain
 a mixture of modified files from the previously
 populated configuration, and files from the '-config'
 specified configuration.

-noprompt

 -noprompt Specifies accepting the default of all interactive
 dialogs, for example, when you specify -force, SITaR
 asks you to confirm the action or review the affected
 objects. Specifying -noprompt bypasses that query.

-xtras

 -xtras List of command line options to pass to the
 <list> external module change management system. Any options
 specified with the -xtras option are sent verbatim, with
 no processing by the populate command, to the Tcl script
 that defines the external module change management
 system.

RETURN VALUE

 If the command is successful, DesignSync returns an empty string
 (""). If the command fails, DesignSync returns an error explaining
 the failure.

SEE ALSO

 sitr populate, sitr submit, sitr release

EXAMPLES

 This example shows a workspace, Chip, containing an earlier released

ENOVIA Synchronicity Command Reference - Module

881

 version being updated for edit. Note: The sitr update command calls
 the populate command with the -brief option.

 dss> sitr update Chip
 /chip.c : Already Fetched and Unmodified Version 1.1
 /chip.doc : Already Fetched and Unmodified Version 1.3
 Total data to transfer: 1 Kbytes (estimate), 1 file(s), 0 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 1 Kbytes, 0 file(s), 0 collection(s), 100.0% complete
 Progress: 1 Kbytes, 1 file(s), 0 collection(s), 100.0% complete

 Chip%1 : Version of module in workspace updated to 1.6

883

Enterprise Design Development

Development Areas

sda cd

sda cd Command

NAME

 sda cd - Change development area and launch a tool command

DESCRIPTION

 This command allows the user to launch a tool from a development area they
 have created via "sda mk" or joined via "sda join". The tool runs using the
 development setting defined for the area.

 The sda cd command performs the following sequence of actions:
 1. If the -update option is selected, updates the development
 instance directory associated with an external development area.

 2. Sets up the environment by setting the following environment
 variables:
 o SYNC_DEVAREA_DIR - set to the requested development area
 directory.
 o SYNC_DEVAREA_TOP - set to the leaf name of the top module or
 directory in the development area.
 o SYNC_DEV_ASSIGNMENT - set to the assignment associated with
 the development area.
 o SYNC_DEVELOPMENT_DIR - set to the top of the development instance
 directory.
 o SYNC_PROJECT_CFGDIR - set to the directory holding the
 development setting for the assignment associated with the
 development area.
 o SYNC_WS_DEVAREA_TOP - set to the leaf name of the top module
 or directory in the development area. This variable can then
 be used for the starting directory in any commands you
 construct within the specified tool.

 3. Runs all of the set up scripts defined for the tools associated
 with the development area. Running all the scripts is required to
 support inter-tool dependencies and shell tools.
 Note: When a shell is defined as a tool, it should be defined to
 ignore the startup script for the shell. Any aliases, etc. defined
 in the startup script will not be available; however when a tool
 suite is defined, the admin can specify a script with the desired
 environment settings.

 4. Sets the current directory for the tool to the starting directory.

Enterprise Design Development

884

 The starting directory is the directory defined in the tool's
 definition. If no starting directory is specified, then the
 directory defined in the tool suite is used. If no starting
 directory is specified in the tool suite either, the development
 area is used.
 The starting directories can be specified with environment
 variables and may be relative to the development area.

 5. Starts the requested tool. If the tool is graphical, the tool is
 spawned (detached) from sda. If the tool is non-graphical, on
 UNIX, the tool runs in the same shell as sda.

 Note: When a non-graphical tool is started, the sda process ends.

 If you run the command without specifying a development area or a
 tool, or the user specified an ambiguous argument, the command starts
 in interactive mode. In interactive mode, the user is prompted for
 the command arguments and options needed. Any arguments specified
 with the -gui command option are passed to the GUI and the
 appropriate fields are selected on the "Change Area" tab.

SYNOPSIS

 sda cd [<area_name>] [<tool>] [-development <name>] [-gui]
 [-suite <suite_name>] [-[no]update] [-version <version>]

ARGUMENTS

• Development Area Name
• Tool

Development Area Name

 area_name The development area name of the DesignSync
 Development. This argument is required and the
 development area must already exist.

Tool

 tool The tool name specified must be a tool that is
 defined for use with the specified development
 area. The list of available tools can be viewed from
 the development instance for the assignment
 associated with the area.

 Note: When a shell is defined as a tool, it should
 be defined to ignore the startup script for the
 shell. Any aliases, etc. defined in the startup
 script will not be available.

ENOVIA Synchronicity Command Reference - Module

885

OPTIONS

• -development
• -gui
• -suite
• -[no]update
• -version

-development

 -development Specify the name of the development if the area name is
 <name> not unique for the user. Area names are unique
 within a development for a given user, but are not
 required to be unique across all developments.

-gui

 gui Starts the sda graphical user interface mode
 with the "Change Area" tab selected.

 If this option is used with the tool argument, the
 tool argument is silently ignored.

-suite

 -suite <suite> Specify the suite name for the tool suite, if the
 tool name is not unique across all tool suites for
 the development assignment.

-[no]update

 -[no]update Specifies whether the development instance
 definition should be updated, if it is an external
 area.

 -noupdate does not update the external development
 instance from the server before setting the
 environment variables for the area and starting the
 tool. (Default when the development setting
 is 'Mirror=False')

 -update performs the update of the external area
 before performing any other actions. (Default when
 'Mirror=True')

Enterprise Design Development

886

 If the area is not an external area and this option
 is specified, the tool exits without launching the
 tool.

 Note: If -update is explicitly specified, and no
 tool is specified, DesignSync assumes the
 desired action is the update and does not
 prompt for tool in interactive mode.

-version

 -version Specify the version number of the tool suite if the
 <version> tool suite name is not unique within the
 development assignment. This option must be
 specified if there are multiple tools with the same
 name in multiple tool suites with the same name.

RETURN VALUE

 There is no TCL return value for this command.

SEE ALSO

 sda gui, sda join, sda ls, sda mk, sda rm

EXAMPLES

• Running sda cd in Interactive Mode
• Running sda cd in non-interactive mode

Running sda cd in Interactive Mode

 This example runs sda cd in interative mode, supplying no
 arguments. It is run from a Windows client and launches the
 DesignSync GUI which is configured as a tool for this development
 area.
 Note that the list of areas is prefixed with the development name for
 ease of idenfitication.

 C:\workspaces\chipNZ214> sda cd
 Logging to C:\Users\fyl\dss_11042013_100431.log
 V6R2014x

 Which development area would you like to work with?
 [1] (Chip-NZ214) documenter-1_rmsith
 [2] (Chip-QR2) verifier-1_thopkins

ENOVIA Synchronicity Command Reference - Module

887

 [3] (Chip-NZ214) developer-1_rsmith
 [E] <EXIT sda>
 Select the number preceding the development area name or 'E' to exit
 [1-3,E]: 1

 Synchronizing the local development with the server ...
 Contacting host: serv1.ABCo.com:2164 ...
 Synchronization complete

 Which tool would you like to launch?
 [1] Authoring Tool
 [2] DesSync
 [E] <EXIT sda>
 Select the number preceding the tool name or 'E' to exit (1-2,E): 2

 c:\workspaces\chipNZ214>

Running sda cd in non-interactive mode

 This example specifies the area and tool and the -noupdate option.
 Note that it does not enter interactive mode, nor does it attempt to
 synchronize the development area. This example automatically
 launches the GUI tool, without requiring the -GUI option because of
 the way the tool is defined.

 C:\workspaces\chipNZ214> sda cd Chip-NZ214 DesSync -noupdate
 Logging to C:\Users\fyl\dss_11042013_103110.log
 V6R2014x
 [The DesignSync Development Area Manager launches in separate window]
 c:\workspaces\chipNZ214>

Enterprise Object Viewing and Synchronization

entobj

entobj Command

NAME

 entobj - Commands to work with Enterprise Design Objects

DESCRIPTION

 These commands provide a link between the Enterprise Design Objects
 and associated DesignSync objects. These commands are available from
 the DesignSync client and the server.

Enterprise Design Development

888

 For information about the specific entobj commands including
 arguments, options, and examples to support Enterprise Design
 objects in DesignSync, see the individual command descriptions.

SYNOPSIS

 entobj <entobj_command> [entobj_command options>]

 Usage: entobj [id | isplatformmanaged | policy | setpolicy | settype
 | show | synchronize | type]

entobj id

entobj id Command

NAME

 entobj id - Returns the platform identifier

DESCRIPTION

 Returns the platform identifier for the object. The platform
 identifier is the unique string for the object on the Enterprise
 system that is associated with the DesignSync object.

 This command is subject to access controls on the server.

SYNOPSIS

 entobj id <argument>

ARGUMENTS

• Server URL

Server URL

 <serverURL> Specifies the URL of the module, module version,
 or module branch version.

 Note: To get the ID associated with a module
 branch, you must specify the branch numeric value.

 Specify the URL as
 follows:

ENOVIA Synchronicity Command Reference - Module

889

 sync://<host>[:<port>]/Modules/[<category...>/]<module>;[<selector>]
 or
 syncs://<host>[:<port>]/Modules/[<category...>/]<module>;[<selector>]
 where 'sync://' or 'syncs://' is required, <host>
 is the machine on which the SyncServer is
 installed, <port> is the SyncServer port number
 (defaults to 2647/2679), [<category...>} is the
 optional category (and/or sub-category) containing
 the module, and <module> is the name of the
 module. For example:
 sync://serv1.abco.com:1024/Modules/ChipDesigns/Chip

 Note: When a selector is not provided, the
 default, Trunk:Latest, is used.

 To get the ID associated with a module branch, you
 must specify the branch numeric value.

RETURN VALUE

 Returns the unique identifier for the object. If an argument is
 specified that doesn't have an ID or is not a module, returns an empty
 value ("").

SEE ALSO

 entobj isplatformmanaged, entobj show

EXAMPLES

• Example of a request for the id

Example of a request for the id

 This example shows the ID for the Enterprise Design managed
 DesignSync object.

 dss> entobj id sync://serv1.ABCo.com:2647/Modules/CPU
 2341B75697660000EBA9F35673620700

entobj isplatformmanaged

entobj isplatformmanaged Command

NAME

Enterprise Design Development

890

 entobj isplatformmanaged - Retuns whether the object is managed by
 the enterprise system.

DESCRIPTION

 This command tells you if the DesignSync object is managed by the
 Enterprise Design system; meaning that the object was created as a
 result of pushing a definition down from the Enterprise Design
 system, rather than being reflected from DesignSync to the system.

 This command is subject to access controls on the server.

SYNOPSIS

 entobj isplatformmanaged <argument>

ARGUMENTS

• Server URL

Server URL

 <serverURL> Specifies the URL of the module, module version,
 or module branch version.

 Specify the URL as follows:
 sync://<host>[:<port>]/Modules/[<category...>/]<module>;[<selector>]
 or
 syncs://<host>[:<port>]/Modules/[<category...>/]<module>;[<selector>]
 where 'sync://' or 'syncs://' is required, <host>
 is the machine on which the SyncServer is
 installed, <port> is the SyncServer port number
 (defaults to 2647/2679), [<category...>} is the
 optional category (and/or sub-category) containing
 the module, and <module> is the name of the
 module. For example:
 sync://serv1.abco.com:1024/Modules/ChipDesigns/Chip

 Note: When a selector is not provided, the
 default, Trunk:Latest, is used.

RETURN VALUE

 Command returns "1" if the object is managed from the platform or "0"
 if the object is not managed from the platform. Command returns an
 empty string (""), if an illegal argument was provided to the command.

ENOVIA Synchronicity Command Reference - Module

891

SEE ALSO

 entobj id, entobj show

EXAMPLES

• Example Showing That an Object is Managed from the Enterprise System
• Example Showing That an Object is Not Managed by the Enterprise System

Example Showing That an Object is Managed from the Enterprise System

 This example shows the reply from the system when an object is
 managed from the Enterprise System.

 dss> entobj isplatformmanaged sync://serv1.ABCo.com/Modules/CPU;Gold
 1

Example Showing That an Object is Not Managed by the Enterprise System

 This example shows the reply from the system when an object is
 not managed by the Enterprise System.

 dss> entobj isplatformmanaged sync://serv1.ABCo.com/Modules/ROM;Gold
 0

entobj policy

entobj policy Command

NAME

 entobj policy - Displays the assigned policy for the module

DESCRIPTION

 This command displays the policy for the module. If there is no
 policy set for the module, the command returns a null value ("").

 This command is subject to access controls on the server.

SYNOPSIS

 entobj policy <module>

Enterprise Design Development

892

ARGUMENTS

• Module instance
• Server URL

Module instance

 <Workspace Module> The workspace module instance name; for example:
 Chip%0.

Server URL

 <Server URL> The Server module URL in the format:
 sync[s]://<host>[:<port>]/Module/[<category>...]/<ModuleName>
 where <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 <category> identifies path to the module, and
 <ModuleName> is the module associated with the
 Enterprise Design object.

RETURN VALUE

 This command does not return any TCL values. When successful, this
 command returns the policy name or, if no policy is assigned, an
 empty string (""). If the command fails, DesignSync displays an error
 message explaining the failure.

SEE ALSO

 entobj setpolicy
,

EXAMPLES

• Example of Showing the Set Policy

Example of Showing the Set Policy

 dss> entobj setpolicy sync://serv2.ABCo.com:2647/Modules/ChipDZ
 QualityTest

entobj setpolicy

ENOVIA Synchronicity Command Reference - Module

893

entobj setpolicy Command

NAME

 entobj setpolicy - Set or remove the policy for a module.

DESCRIPTION

 This command assigns or removes a product policy for a module. The
 policy is used on the Enterprise platform. DesignSync does not
 perform any validation on the policy to determine if the policy is in
 use on the Enterprise platform. The policy is case-sensitive.

 Tip: Before applying a new policy, synchronize the module to verify
 that the module has the latest information from the platform. If the
 product ID has changed since the last synchronization, you cannot
 set the policy.

 The policy set by this command is synchronized with the object on the
 enterprise server when the next automatic or manual synchronization
 is performed.

 This command is subject to access controls on the server.

SYNOPSIS

 entobj setpolicy <module> <policy>

ARGUMENTS

• Module instance
• Server URL

Module instance

 <Workspace Module> The workspace module instance name; for example:
 Chip%0.

Server URL

 <Server URL> The Server module URL in the format:
 sync[s]://<host>[:<port>]/Module/[<category>...]/<ModuleName>
 where <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 <category> identifies path to the module, and
 <ModuleName> is the module associated with the
 Enterprise Design object.

Enterprise Design Development

894

OPTIONS

 <policy> Policy for the Enterprise development. The
 policy is case-sensitive, and in order to be used
 must be identify toe the policy on the Enterprise
 system.

 The entobj setpolicy command does not perform any
 validation on the policy name.

RETURN VALUE

 If this command is successful, it returns a null string (""). If the
 command is unsuccessful, it returns an appropriate error explaining
 the failure.

SEE ALSO

 entobj policy, entobj settype, entobj synchronize, entobj type

EXAMPLES

• Example of Setting the Policy on Enterprise Development Module
• Example of Removing the Policy on an Enterprise Development Module

Example of Setting the Policy on Enterprise Development Module

 This example shows setting the policy for an enterprise development
 module.

 dss> entobj setpolicy sync://serv2.ABCo.com:2647/Modules/ChipDZ \
 QualityTest

Example of Removing the Policy on an Enterprise Development Module

 This example shows removing the policy for an enterprise development
 module.
 dss> entobj setpolicy sync://serv2.ABCo.com:2647/Modules/ChipDZ \
 ""

entobj settype

entobj settype Command

ENOVIA Synchronicity Command Reference - Module

895

NAME

 entobj settype - Set the product type for the module.

DESCRIPTION

 This commands sets or removes the product type for the module. The
 product type should match either the user-friendly form of a product
 type or the symbolic form (for example: "Software Product" or
 "type_SoftwareProduct") in use on the enterprise platform.

 The product type is case sensitive.

 Tip: Before applying a new product type, synchronize the module to
 verify that the module has the latest information from the platform.
 If the product ID has changed since the last synchronization, you
 cannot change the product type.

 The product type set by this command is synchronized with the object
 on the enterprise server when the next automatic or manual
 synchronization is performed.

 This command is subject to access controls on the server.

SYNOPSIS

 entobj settype <module> <productType>

ARGUMENTS

• Module instance
• Server URL

Module instance

 <Workspace Module> The workspace module instance name; for example:
 Chip%0.

Server URL

 <Server URL> The Server module URL in the format:
 sync[s]://<host>[:<port>]/Module/[<category>...]/<ModuleName>
 where <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 <category> identifies path to the module, and
 <ModuleName> is the module associated with the
 Enterprise Design object.

Enterprise Design Development

896

OPTIONS

 <productType> The name of the product type. The product type is
 case-sensitive. The product type can be specified
 either in a user-friendly form, such as "Software
 Product" or in a symbolic form, such as
 "type_SoftwareProduct".

 To clear, or remove an associated productType,
 specify a null string, for example, "".

RETURN VALUE

 If this command is successful, it returns a null string (""). If the
 command is unsuccessful, it returns an appropriate error explaining
 the failure.

SEE ALSO

 entobj synchronize, entobj policy, entobj setpolicy, entobj type

EXAMPLES

• Example of Setting the Product Type on Enterprise Development Module
• Example of Removing the Type from an Enterprise Development Module

Example of Setting the Product Type on Enterprise Development Module

 This example shows setting the product type for an enterprise
 development module.

 dss> entobj settype sync://serv2.ABCo.com:2647/Modules/ChipDZ \
 "Chip Design DZ-2"

Example of Removing the Type from an Enterprise Development Module

 This example shows removing the product type for an enterprise
 development module.
 dss> entobj settype sync://serv2.ABCo.com:2647/Modules/ChipDZ \
 ""

entobject show

entobj show Command

ENOVIA Synchronicity Command Reference - Module

897

NAME

 entobj show - Show the associated enterprise server object
 revisions

DESCRIPTION

 This command shows the object revisions on an Enterprise
 server associated with a DesignSync module object using the default
 web browser.

 For a module version or branch that has been synchronized with an
 Enterprise object, this command shows the Property page for that
 object in the Enterprise system.

 For a workspace module instance, or a module version or branch that
 has not been synchronized, this command attempt to find Enterprise
 objects associated with that module version, branch, or selector and
 display the results in a table.

 The ENOVIA server information is stored in SyncAdmin in the Site
 settings, "Enterprise Servers" tab. For more information on
 defining the ENOVIA server, see the DesignSync Data Manager
 Administrator's Guide.

 The ENOVIA object must have a defined DSFA connection to the
 module object in DesignSync.

 This command supports access controls.

SYNOPSIS

 entobj show [-branch <selector>] [-version <selector>] <module>

ARGUMENTS

• Module instance
• Server URL

Module instance

 <Workspace Module> The workspace module instance name; for example:
 Chip%0.

Server URL

Enterprise Design Development

898

 <Server URL> The Server module URL in the format:
 sync[s]://<host>[:<port>]/Module/[<category>...]/<ModuleName>
 where <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 <category> identifies path to the module, and
 <ModuleName> is the module associated with the
 Enterprise Design object.

OPTIONS

• -branch
• -version

-branch

 -branch <selector> Specifies the branch by the branch or version
 tag, or branch numeric.

 For a workspace module, if no -branch or
 -version option is specified, a combination of
 the fetched version and selector are used to
 find matching objects in the Enterprise
 system.

 For a Server URL, either a -branch or a
 -version option must be specified.

 Note: The -branch option accepts a single
 branch tag, a single version tag, or a branch
 numeric. It does not accept a selector or
 selector list.

-version

 -version Specifies the version of a module associated with
 <selector> the Enterprise Design objects.

 For a workspace module, if no -version option is
 selected, DesignSync uses the version fetched in
 the workspace and the module selector to identify
 the matching objects in the Enterprise system.

 For a server URL, you must specify either the
 -version or -branch options.

 You may specify any valid single selector. Note:
 You may specify a branch or version that is not
 among the ancestors of the branch loaded into the
 workspace; meaning you can unremove objects to

ENOVIA Synchronicity Command Reference - Module

899

 check into the local workspace branch that were
 previously not present on the branch.

RETURN VALUE

 This command has no TCL return value. The command launches the
 default web browser to display the information returned.

SEE ALSO

 entobj synchronize, populate

entobject synchronize

entobj synchronize Command

NAME

 entobj synchronize - Synchronize Enterprise Design Objects and
 DesignSync module versions and branches.

DESCRIPTION

 This command synchronizes the version and hierarchy information for a
 DesignSync module with the corresponding Enterprise Design
 representation.

 During synchronization, DesignSync validates ProductType and Policy,
 which are sent to the server in symbolic form (for example,
 "type_SoftwareProduct").

 This command supports command defaults options.

 This command is subject to access controls on the server.

SYNOPSIS

 entobj synchronize [-depth all|one|none] [-dryrun]
 [-report brief|normal|verbose] -tags <taglist> -xtras <list> <module>

ARGUMENTS

• Server URL
• Workspace Module

Enterprise Design Development

900

Server URL

 serverURL Specifies the URL of the module. Specify the URL as
 follows:
 sync://<host>[:<port>]/Modules/[<category...>/]<module>
 or
 syncs://<host>[:<port>]/Modules/[<category...>/]<module>
 where 'sync://' or 'syncs://'
 is required, <host> is the machine on which the
 SyncServer is installed, <port> is the SyncServer
 port number (defaults to 2647/2679), [<category...>}
 is the optional category (and/or sub-category)
 containing the module, and <module> is the name of
 the module.
 For example:
 sync://serv1.abco.com:1024/Modules/ChipDesigns/Chip

Workspace Module

 <workspace Specifies the workspace module instance for the module;
 module> for example: Chip%0.

OPTIONS

• -depth
• -dryrun
• -report
• -tags
• -xtras

-depth

 -depth all| Indicates how many levels of the module hierarchy to
 one|none send to the remote server hosting the associated
 Enterprise Design system.

 all - Synchronizes recursively through the entire
 hierarchy for each module version identified by each
 tag in the taglist specified with the -tags
 option. This option provides the most complete update
 to the server, but can be performance
 intensive. Hierarchical references to non-module
 objects are considered "leaf" objects and DesignSync
 does not attempt to continue traversal through that
 object or configuration.

 Hierarchical references to external modules are
 updated with the options specified with -xtras being
 passed, unaltered to the external CM system.

ENOVIA Synchronicity Command Reference - Module

901

 one - Synchronizes the first level of the module
 hierarchy. For each module version identified by the
 tag list specified by the -tags option, follow the
 hierarchical references attached to that version, but
 do not traverse the hierarchy. This option minimizes
 the risk of an out-of-date hierarchy without the
 performance impact of updating the entire
 hierarchy. (Default)

 none - Synchronizes only the specified module
 version identified by the tag list specified by the
 -tags option; does not synchronize any hierarchical
 references. This may result in an incomplete
 hierarchy on the server.

-dryrun

 -dryrun Only reports the actions performed by the command,
 but does not actually perform any action. The command
 runs to completion, noting any errors, but continuing
 to run the command.

-report

 -report brief| Determines what information is returned in the
 normal |verbose output of the command. The command output is returned
 after the command has finished processing.

 Valid values are:
 o brief - outputs the status of the running command,
 command results, and errors.

 o normal - outputs the information contained in
 -brief mode and information about the enterprise
 versions being created. (Default),

 o verbose - There is currently no difference between
 the verbose and normal reports.

 Note: The report information is also passed to the
 ENOVIA server.

-tags

 -tags <taglist> Specifies which tagged versions are processed by the
 command. The tags are specified in a comma-separated
 list. Tags may be either branch or version tags.
 Branch tags do not require a trailing semicolon. If a
 branch tag is specified, it is the branch itself that
 is specified as the work-in-progress revision.

Enterprise Design Development

902

 You may use glob style regular expressions to specify
 a tag. All tags that match the specified tag
 expression are processed. For example, R* would match
 both of the following tags: REL01 and
 READY_FOR_TEST.

 If there is no match for one or more glob style tag
 specified in the tag list, but all fully-specified
 tags exist, the command succeeds. If any
 fully-specified tag (ie: not containing a glob
 expression to be evaluated) does not exist, the
 entire command fails.

-xtras

 -xtras <list> List of command line options to pass to the
 external module change management system. Any
 options specified with the -xtras option are
 sent verbatim, with no processing by the
 populate command, to the TCL script that defines
 the external module change management
 system.

 Note: The external modules system is only
 accessed when the specified -depth option is
 all. If this option is specified with a
 different -depth level, it is silently ignored.

RETURN VALUE

 This command does not return any TCL values. If the command
 succeeds, after command completion, DesignSync displays the values of
 all set fields for the synchronized products. If the command fails,
 it returns an error message explaining the failure.

SEE ALSO

 command defaults, entobj setpolicy, entobj settype, entobj show,
 populate, selectors, tag

entobj type

entobj type Command

NAME

ENOVIA Synchronicity Command Reference - Module

903

 entobj type - Displays the product type for the module

DESCRIPTION

 This command displays the product type for the module. If there is
 no product type set for the module, the command returns a null value
 ("").

 This command is subject to access controls on the server.

SYNOPSIS

 entobj type <module>

ARGUMENTS

• Module instance
• Server URL

Module instance

 <Workspace Module> The workspace module instance name; for example:
 Chip%0.

Server URL

 <Server URL> The Server module URL in the format:
 sync[s]://<host>[:<port>]/Module/[<category>...]/<ModuleName>
 where <host> is the SyncServer on which the module
 resides, <port> is the SyncServer port number,
 <category> identifies path to the module, and
 <ModuleName> is the module associated with the
 Enterprise Design object.

RETURN VALUE

 This command does not return any TCL values. When successful, this
 command returns the product type or, if no product type is assigned,
 an empty string (""). If the command fails, DesignSync displays an
 error message explaining the failure.

SEE ALSO

 entobj policy, entobj setpolicy, entobj settype, entobj synchronize
,

Enterprise Design Development

904

EXAMPLES

• Example of Showing the Product Type

Example of Showing the Product Type

 dss> entobj type sync://serv2.ABCo.com:2647/Modules/ChipDZ
 type_Chip_ Design_DZ-2

Mcache Settings for Shared Developments

eda

eda Command

NAME

 eda - Development module cache paths commands

DESCRIPTION

 The eda commands allow you to manage your DesignSync development
 module cache paths to share common modules, rather than duplicate the
 information across multiple developments. These commands allow you to
 add, remove and list additional module cache paths.

SYNOPSIS

 eda <eda_command> [<eda_command_options>] <eda_command_arguments>

 Usage: [addmcachepath|createrefws|listmcachepath|removemcachepath]

ARGUMENTS

 Varies by command.

OPTIONS

 Varies by command.

RETURN VALUE

ENOVIA Synchronicity Command Reference - Module

905

 Varies by command.

SEE ALSO

 eda addmcachepath, eda createrefws, eda listmcachepath, eda
removemcachepath, sda

eda addmcachepath

eda addmcachepath Command

NAME

 eda addmcachepath - Adds mcachepath to available server mcache paths

DESCRIPTION

 The command adds the specified path to the set of additional module
 cache paths for the server specified. The path is also added to the
 list in the WSProjectRegistry.reg settings files for each development
 managed by the server.

 The mcache path is checked to see if
 o The path exists
 o The path specified is a modules root

 New developments inherit any existing additional mcache paths.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 eda addmcachepath -path <path>[,<path>...] [-[no]replace]
 [-[no]validate] <ServerURL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the development server hosting
 the newly added mcache paths. Specify the URL as
 follows:

Enterprise Design Development

906

 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 is required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -path
• -[no]replace
• -[no]validate

-path

 -path <path> Absolute or relative path to the mcache path.
 [,<path>...] You can specify multiple paths in a list of
 space-separated path names. To specify multiple
 paths, surround the path list with double
 quotation marks ("") and separate path names
 with a comma.
 For example:"/dir/cacheA,/dir2/cacheB".

 The path list can contain both module and legacy
 module mcache paths. For a module cache the path to
 the root directory of the module cache must be
 supplied.
 Note: To specify a path that includes spaces:
 o In stcl or stclc, surround the path
 containing the spaces with curly braces.
 For example:
 "/dir1/cache {/dir2/path name}"
 o In dss or dssc, use backslashes (\) to
 'escape' the spaces. For example:
 "/dir1/cache /dir2/path\ with\ spaces"

-[no]replace

 -[no]replace Determines whether to replace the mcache path
 information with the new mcachepaths specified by the
 -path option.

 -replace replaces the list of mcache paths for the
 server with the new list specified for the -path
 option.

 -noreplace adds the paths specified with -paths and
 does not remove any existing paths. (Default)

-[no]validate

ENOVIA Synchronicity Command Reference - Module

907

 -[no]validate Determines whether to validate the accessibility of
 the mcache path specified on the server.

 -validate checks whether the path specified by the
 -path option exists and is a modules root.

 -novalidate does not do any verification of paths
 specified with the -path option. (Default)

RETURN VALUE

 On command success, returns the list of defined mcache paths. On
 failure, displays an error message explaining the failure.

SEE ALSO

 command defaults, eda listmcachepath, eda removemcachepath

EXAMPLES

• Example Showing Adding Paths to the Mcache Path List
• Example Showing Replacing the Paths in the Mcache Path List

Example Showing Adding Paths to the Mcache Path List

 This example shows adding a path to the mcachepath list. Note that
 in the output, you see the full collection of paths, separated by a
 space. The path must be a module root.

 dss> eda addmcachepath -path /home/rsmith/workspaces/ -validate
 sync://serv1.ABCo.com:2647/Modules/ChipNZ-47

 /DesignSync/mcachestore /home/rsmith/workspaces

Example Showing Replacing the Paths in the Mcache Path List

 This example shows replacing the paths in the mcache path list with
 the path(s) specified.

 dss> eda addmcachepath -path "/home/mcachestore1,/home/mcachestore2"
 -validate -replace sync://serv1.ABCo.com:2647/ModulesChipNZ-47

 /home/mcachestore1 /homemcachestore2

eda createrefws

Enterprise Design Development

908

eda createrefws Command

NAME

 eda createrefws - Create reference workspace for development

DESCRIPTION

 The eda createrefws command creates a reference workspace used by sda
 mk for enhanced performance when creating a new development area. The
 reference workspace is created as a mirror so is automatically
 maintained for the most current and accurate workspace state.

 Before creating the reference workspace, DesignSync verifies that:
 o The reference workspace directory does not already exist
 parallel to the Data Replication Root (DRR) for the development
 instance. If it already exists, and is marked as a reference
 workspace, the operation returns success, but does not make any
 changes.

 o If a reference workspace exists, it must either be the workspace
 root directory or can be set as the module root directory.

 o File cache reference counting is disabled so the reference
 workspace is created without cache reference counting.

 o Partition based file caching must be disabled so soft links,
 rather than hard links are created to the file cache.

 This command supports the access control system.

SYNOPSIS

 eda createrefws [-assignment <AssignmentName>] -name <DevName> <ServerUrl>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the development server Specify
 the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 is required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 For example: sync://serv1.abco.com:1024

ENOVIA Synchronicity Command Reference - Module

909

OPTIONS

• -assignment
• -name

-assignment

 [-assignment The name of the assignment used for the reference
 <AssignmentName>] workspace mirror. Specify the same assignment as the one
 associated with the development area.

 If the assignment is not specified, DesignSync
 uses the first assignment found.

 If the selector for the assignment is "Default,"
 then the developmentâ€™s selector is used for the
 mirror. If no selector is provided in the assignment
 or the development instance, DesignSync uses the
 default "Trunk" selector.

-name

 -name <DevName> Name of the development. Development names are
 case sensitive.

RETURN VALUE

 The command does not return a Tcl value. If the command succeeds,
 DesignSync creates the reference workspace and displays a success
 message containing some of the reference workspace properties. If the
 command fails, DesignSync displays a message to explain the failure.

SEE ALSO

 duplicatews, mirror create, sda mk
,

eda listmcachepath

eda listmcachepath Command

NAME

Enterprise Design Development

910

 eda listmcachepath - Lists mcachepath to available server mcache paths

DESCRIPTION

 This command returns a list of the additional mcachepaths defined for
 the specified server. If no mcachepaths are defined, the command
 returns an empty list.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 eda listmcachepath [-format list|text] <ServerURL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the development server hosting
 the mcache directories. Specify the URL as
 follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 is required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -format

-format

 -format Specifies the way the output is returned.
 The default is text. The format 'text' will return
 each path on a new line in the format name=value. The
 format 'list' will list the values in a Tcl list in
 the form {name1 value1 name2 value2 ...}

RETURN VALUE

ENOVIA Synchronicity Command Reference - Module

911

 When the command runs successfully in -format list mode, returns a
 Tcl list of mcachepaths defined for the specified server. When the
 command runs successfully in -format text mode, returns a list of
 paths. When the command fails, returns an error explaining the
 failure.

SEE ALSO

 command defaults, eda addmcachepath, eda removemcachepath

EXAMPLES

• Example Showing A List of the Mcache Paths in Text Format
• Example Showing A List of the Mcache Paths in TCL List Format

Example Showing A List of the Mcache Paths in Text Format

 This example shows a listing of the additional mcache paths formatted
 for easy reading.

 dss> eda listmcachepath sync://serv1.ABCo.com:2647/Modules/ChipNZ-47
 /DesignSync/mcachestore
 /home/rsmith/workspaces
 C:/My Mirrors/workspaces

Example Showing A List of the Mcache Paths in TCL List Format

 This example shows a listing of the additional mcache paths formatted
 for TCL processing.
 dss> eda listmcachepath -format list \
 sync://serv1.ABCo.com:2647/Modules/ChipNZ-47

 /DesignSync/mcachestore /home/rsmith/workspaces {C:/My Mirrors/workspaces}

eda removemcachepath

eda removemcachepath Command

NAME

 eda removemcachepath - Removes mcachepaths from the specified server

DESCRIPTION

Enterprise Design Development

912

 This command removes a path from the set of additional module
 cache paths for the development server specified. The path is also
 removed from the list in the registry setting in
 WSProjectRegistry.reg for each development managed by the server.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 eda removemcachepath -path <path> <ServerURL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the development server hosting
 the mcache paths being removed. Specify the URL as
 follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 is required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -path

-path

 -path <path> Absolute or relative path to the mcache path.
 If the relative path is specified, the path is
 evaluated to create the absolute path before being
 removed.

 You can only remove one path.

RETURN VALUE

 Returns 0 on success. On failure, displays an error message
 explaining the failure.

SEE ALSO

ENOVIA Synchronicity Command Reference - Module

913

 eda addmcachepath, eda listmcachepath

EXAMPLES

• Example of Removing a Path from the Mcache Path list

Example of Removing a Path from the Mcache Path list

 This example shows removing a path from the additional list of mcache
 paths.
 dss> eda removemcachepath -path "C:/My Mirrors/workspaces" \
 sync://serv1.ABCo.com:2647/Modules/ChipNZ-47
 /DesignSync/mcachestore /home/rsmith/workspaces

915

URL Sync Object Model

url Commands

NAME

url - URL navigation commands

DESCRIPTION

 These commands return a value, enabling the user to access the
 Synchronicity Object Model (SOM) of information. This includes
 going from folders to files, from files to their vaults, from
 vaults to the versions inside them, and so on. All commands are
 proceeded by the super command "url".

 Note: url commands provide information about files and folders
 in your DesignSync work areas. Do not use these commands
 to obtain information about local mirror directories.
 You can use these commands to obtain information about all
 standard mirror directories.

 Most url commands accept either relative or absolute URL paths.
 For example, both of the following are valid:

 stcl> url vault . # relative
 stcl> url vault [spwd] # absolute

 The following commands require an absolute path:
 url projects, url users

 Note: The url commands are available from all DesignSync client
 shells. The stclc/tcl shells allow you to operate on the
 values returned by the url commands but the dss/dssc shells
 do not. Thus these commands are more useful in stcl/tcl
 than in dss/dssc.

SYNOPSIS

 url <url_command> [<url_command_options>] <object>

 Usage: url [branchid|contents|exist|fetchedstate|
 fetchtime|filter|getprop|inconflict|leaf|locktime|
 modified|naturalpath|notes|owner|path|
 properties|registered|relations|resolveancestor|
 resolvetag|root|selector|servers|setprop|syslock|

URL Sync Object Model

916

 tags|users|vault|versionid|versions|view]

OPTIONS

 Varies by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 stcl

EXAMPLES

 See specific url commands.

url

url Commands

NAME

url - URL navigation commands

DESCRIPTION

 These commands return a value, enabling the user to access the
 Synchronicity Object Model (SOM) of information. This includes
 going from folders to files, from files to their vaults, from
 vaults to the versions inside them, and so on. All commands are
 proceeded by the super command "url".

 Note: url commands provide information about files and folders
 in your DesignSync work areas. Do not use these commands
 to obtain information about local mirror directories.
 You can use these commands to obtain information about all
 standard mirror directories.

ENOVIA Synchronicity Command Reference - Module

917

 Most url commands accept either relative or absolute URL paths.
 For example, both of the following are valid:

 stcl> url vault . # relative
 stcl> url vault [spwd] # absolute

 The following commands require an absolute path:
 url projects, url users

 Note: The url commands are available from all DesignSync client
 shells. The stclc/tcl shells allow you to operate on the
 values returned by the url commands but the dss/dssc shells
 do not. Thus these commands are more useful in stcl/tcl
 than in dss/dssc.

SYNOPSIS

 url <url_command> [<url_command_options>] <object>

 Usage: url [branchid|contents|exist|fetchedstate|
 fetchtime|filter|getprop|inconflict|leaf|locktime|
 modified|naturalpath|notes|owner|path|
 properties|registered|relations|resolveancestor|
 resolvetag|root|selector|servers|setprop|syslock|
 tags|users|vault|versionid|versions|view]

OPTIONS

 Varies by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 stcl

EXAMPLES

 See specific url commands.

URL Sync Object Model

918

url branchid

url branchid Command

NAME

 url branchid - Returns the branch number of an object.

DESCRIPTION

 This command returns the branch number of the specified object.

o For managed objects, the url branchid command returns the current
 branch number (as stored in the local metadata).
o For branch and version objects, the url branch id command returns
 the branch number.
o For vaults and for versionable objects that are not under revision
 control, the url branch id command returns "1", (because 1 is the
 default branch number).
o For all other object types, or if the specified object does not
 exist, an exception is thrown.

SYNOPSIS

 url branchid [--] <argument>

ARGUMENTS

• Module Member
• Workspace Module

Specifies one of the following arguments:

Module Member

 <module member> Specifies the module member for which you want
 the branch id of the module it belongs to.
 You can also specify the module member branch
 or the module member version as arguments.

Workspace Module

ENOVIA Synchronicity Command Reference - Module

919

 <workspace module> Specifies the workspace module for which you want
 the current branch is.

 Note: The server module is not a valid argument
 for this command.

OPTIONS

• --

--

 -- Indicates that the command should stop looking
 for command options. Use this option when the
 argument to the command begins with a hyphen
 (-).

RETURN VALUE

 For valid objects, returns the branch number of the specified
 object. For objects not under revision control, returns 1 (which is
 identifer for the default branch, "Trunk:".

 For invalid or non-existant objects, returns an error.

SEE ALSO

 url versionid

EXAMPLES

• Examples of Displaying Branch ID

 The following examples show the different return values for
 the url branchid command.

 For unmanaged objects and vaults, returns "1":
 stcl> url branchid test.s19
 1
 stcl> url branchid [url vault samp.asm]
 1

 For invalid arguments or if the object does not exist,
 returns the following error messages.

URL Sync Object Model

920

 stcl> url branchid .
 SomAPI-E-101: The specified object is not associated with a branch
 or version.
 stcl> url branchid [url vault .]
 SomAPI-E-101: The specified object is not associated with a branch
 or version.
 stcl> url branchid nosuchobject
 SomAPI-E-101: Object does not exist at specified URL.

Examples of Displaying Branch ID

 For modules, returns the branchid of the module in your workspace
 stcl> url branchid Mod1
 1.3.1

 For module members, returns the branch id of the module it belongs
 to.
 stcl> url branchid File1.txt
 1.1.1

url container

url container Command

NAME

 url container - Returns the object containing a specified
 object

DESCRIPTION

 This command returns the URL of the object (such as a folder)
 containing the specified object (such as a file).

 Note: In stcl/stclc mode, when specifying a URL that contains a
 semicolon (;), surround the URL with double quotes.

SYNOPSIS

 url container [--] <object>

OPTIONS

ENOVIA Synchronicity Command Reference - Module

921

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-).

RETURN VALUE

 For a client-side versionable objects, returns client-side
 folder. For server-side objects, returns the vault folder. For
 projects, returns the vault folder containing the project. For
 server-side note types, returns parent URL. For server-side notes,
 returns the note type URL.

 For other objects: Returns parent folder, or if no parent folder,
 returns an empty list. Note: 'url container' does not verify that
 the object exists.

SEE ALSO

 url contents

EXAMPLES

• Example Returning the Local Folder that Contains the Object
• Example Returning the Server Folder that Contains the Object

Example Returning the Local Folder that Contains the Object

 This example returns the folder that contains top.v.
 dss> url container top.v
 file:///home/Projects/Sportster/synth

Example Returning the Server Folder that Contains the Object

 This example returns the server folder that contains the top.v
 vault.
 stcl> url container [url vault top.v]
 sync://server.company.com:port/Projects/Sportster/synth

url contents

URL Sync Object Model

922

url contents Command

NAME

 url contents - Returns the objects in a container object

DESCRIPTION

• Notes for Modules

 This command returns a list of URLs of the objects contained in the
 specified container object, such as a folder or configuration. If
 the object is not appropriate for the requested operation, an empty
 list is returned.

 The 'url contents' command is not recursive. For example, 'url
 contents' on a ProjectSync configuration always returns folders
 as part of the configuration. You can then invoke 'url contents'
 on each subfolder in the project.

 Note: In stcl/stclc mode, when specifying a URL that contains a
 semicolon (;), surround the URL with double quotes.

Notes for Modules

 The "url content" command shows the contents of a module folder, but
 is not used for examining the contents of a module and therefore does
 not accept module as a valid argument type. Use "ls" and "contents"
 commands to list the full module contents.

SYNOPSIS

 url contents [-all | -ifpopulated [-incremental]] [-prefetch]
 [-version <selector>[,<selector>...]] [--] <argument>

ARGUMENTS

• Module Folder

 Specify one or more of the following arguments:

Module Folder

ENOVIA Synchronicity Command Reference - Module

923

 <module folder> Returns a list of the URLs of files and folders
 contained in the specified workspace module
 folder.

OPTIONS

• -all
• -ifpopulated
• -incremental
• -prefetch
• -version
• --

-all

 -all Reports the objects in the local folder as well
 as those objects that would be there if it were
 fully populated with the contents of the
 associated vault. If the object is a vault-side
 object (a vault, version, or branch), this
 option is ignored.

 This option is mutually exclusive with
 -ifpopulate.

-ifpopulated

 -ifpopulated Report the contents of the local folder if it
 were fully populated with the contents of its
 associated vault.

 You can also specify -incremental to limit the
 result to return only those objects that would
 return in an incremental populate as opposed to
 a full populate. The list is empty if the
 object is not a local folder.

 This option is mutually exclusive with -all.

-incremental

 -incremental Modifies -ifpopulated to limit the result to
 return the URLs of only those objects that would
 return in an -incremental populate.

 Note: You must have at some time performed a

URL Sync Object Model

924

 full populate on the folder for the -incremental
 option to work properly.

-prefetch

 -prefetch Used for advanced programming; exposes an
 optimization to the caller. If used, the call
 to contents is slower, but the subsequent
 enumeration of the returned list has extra
 information cached. If the caller needs to
 enumerate the contents and for each object
 call commands such as 'url tags' or 'url
 properties', overall performance is better if
 this option is used. If the caller needs to
 retrieve only the names of the objects, this
 option makes the operation slower.

-version

 -version <selector> Use with -ifpopulate or -all. Specifies the
 selector list (typically branch or version
 tag) to use for the hypothetical populate. The
 default (-version not specified) is to inherit
 the selector from the parent folder.

 Note: To use -version to specify a branch,
 specify both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when the
 argument to the command begins with a
 hyphen (-).

RETURN VALUE

 For a client-side folder (Asic): Returns list of client-side folders
 and files (file://home/karen/Asic/Sub file://home/karen/Asic/x.v).

 For a vault ("sync://holzt:2647/Projects/Asic/x.v;"): Returns vault

ENOVIA Synchronicity Command Reference - Module

925

 versions: ({sync://holtz:2647/Projects/Asic/x.v;1.1}
 {sync://holtz:2647/Projects/Asic/x.v;1.2}
 {sync://holtz:2647/Projects/Asic/x.v;1.3}).

 For a version ("sync://holzt:2647/Projects/Asic/x.v;1.1",
 "sync://holzt:2647/Projects/Asic/x.v;yellow"): Not a
 container object; returns an empty list.

 For branch ("sync://holzt:2647/Projects/Asic/x.v;1.5.1",
 "sync://holzt:2647/Projects/Asic/x.v;Golden:Latest"): Not a
 container object; returns an empty list.

 For a project (sync://holzt:2647/Projects/Asic): Returns vault
 folder containing project: (sync://holzt:2647/Projects).

 For a configuration (sync://holzt:2647/Projects/Asic/Sub@Rel1):
 Returns vault folder: (sync://holzt:2647/Projects/Asic).

 For a server-side note system URL (sync:///Note)
 Returns the list of note systems on the server (currently the
 only note system is SyncNotes)

 For a server-side SyncNotes URL (sync:///Note/SyncNotes):
 Returns the list of URLs for all note types defined on the server.

 For a server-side note-type URL (sync:///Note/SyncNotes/HW-Defect-1):
 Returns a list of URLs of all notes of type HW-Defect-1.

 For a server-side Users URL (sync:///Users)
 Returns a list of URLs for all user profiles on the server.

 For a module folder, returns a list of members in that folder.

 For other objects: Returns an empty list.

SEE ALSO

 note systems, notetype enumerate, populate, selectors, url container,
 url notes, url users, url versions

EXAMPLES

• Example Showing the Contents of a Module Folder

Example Showing the Contents of a Module Folder

 In the following example, the workspace //MyModules contains the
 following:
 MyModules
 File1.txt
 File2.txt

URL Sync Object Model

926

 File3.txt
 File4.txt
 Return contents of local folder MyModules

 stcl> url contents /home/tachatterjee/MyModules
file:///home/tachatterjee/MyModules/File1.txt
file:///home/tachatterjee/MyModules/File2.txt
file:///home/tachatterjee/MyModules/File3.txt
file:///home/tachatterjee/MyModules/File4.txt

url exists

url exists Command

NAME

 url exists - Reports whether an object exists

DESCRIPTION

 This command determines whether an object physically exists either in
 the workspace or in the vault. If it exists, returns 1, if not
 returns 0.

SYNOPSIS

 url exists [--] <argument>

ARGUMENTS

• Module
• Module Member
• Module Folder

 Specify one of the following arguments:

Module

 <module> Specifies the module whose existence you want to
 verify.
 Returns 1 if the module, module branch or the
 module version exists. Else returns 0. If a

ENOVIA Synchronicity Command Reference - Module

927

 workspace module is specified, it returns whether
 that exists. Otherwise returns whether the server
 module, branch or version exists.

Module Member

 <module member> Specifies the module member whose existence you want
 to verify.
 Returns 1 if the workspace module member
 exists. Else returns 0.
 Note: The "url exists" command is not applicable
 for server module member, branch or version. It is
 not meaningful to request whether a member exists
 on the server, as a member exists only in the
 context of a module version.
 You can run the "url vault" command on a member to
 get the sea-of-vaults object, then run the "url
 exists" command on that object. However, the "url
 vault" command succeeds if the object is checked
 in, and the "url exists" command fails only if a
 catastrophic event causes the member vault to be
 deleted.

Module Folder

 <module folder> Specifies the workspace module folder whose existence
 you want to verify.
 Returns 1 if the workspace module folder
 exists. Else returns 0.
 Note: The "url exists" command is not applicable
 for server module folder. If a server folder under
 the module server path is specified, it returns 0
 as an unsupported argument type.

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-).

RETURN VALUE

URL Sync Object Model

928

 For all existing objects: Returns 1 (Tcl TRUE).
 For nonexistent objects: Returns 0 (Tcl FALSE).

SEE ALSO

 url modified, url registered

EXAMPLES

• Example of Verifying the Existence of a Module
• Example of Verifying the Existence of a Module Member

Example of Verifying the Existence of a Module

 This example uses 'url exists' to verify the existence of a
 module:
 stcl> url exists sync://srv2.ABCo.com:2647/Modules/JitaMod1
 1

Example of Verifying the Existence of a Module Member

 This example uses 'url exists' to verify the existence
 of a module member:
 stcl> url exists File1.txt
 1

url fetchedstate

url fetchedstate Command

NAME

 url fetchedstate - Returns the fetched state of an object

DESCRIPTION

 This command returns the fetched state of the specified
 object. The fetch state answers the question: "How was this object
 checked out into my local work area?" Possible states are:

 Lock - Object was checked out with a lock. Note that the
 object is not necessarily still locked; another

ENOVIA Synchronicity Command Reference - Module

929

 user could have unlocked it.
 Copy - Object was checked out unlocked (replica).
 Mirror - Object was checked out as a link to an object in
 the mirror directory.
 Cache - Object was checked out as a link to an object in
 the cache.
 Reference - Object was checked out as a reference.
 Note: For locked references, the fetched state
 returned is 'Lock'.
 NotFetched - Object was not fetched using DesignSync. The
 object is one of the following:
 o Not versionable (folder, version, and so on)
 o Not under revision control
 o Under revision control, but not fetched into
 the work area by DesignSync (for example,
 could be a tool's output, or could have been copied
 at the operating-system level)

 Note: If the object is not under revision control and is a link, a
 return value of "Mirror" instead of "NotFetched" can result.

SYNOPSIS

 url fetchedstate [--] <argument>

ARGUMENTS

• Module Member

 Specifies one of the following arguments:

Module Member

 <module member> Specifies the module member for which you want
 the fetched state.

 Note: The -modulecontext option is not required
 here as this command can only be call upon
 individual members in the workspace.

OPTIONS

• --

--

URL Sync Object Model

930

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-).

RETURN VALUE

 Returns one of the following strings "Lock", "Copy", "Mirror",
 "Cache", "Reference", "NotFetched" as indicated below:

 For a managed object (specify as client-side object: (Asic/x.v or
 file://.../Asic/x.v): Returns "Lock", "Copy", "Mirror", "Cache",
 or "Reference" depending on the command used to fetch the object.

 For an object not under revision control: Returns "NotFetched".

 For a link not under revision control: Returns "Mirror".

 For a nonversionable object (not a folder, collection, nor file):
 Returns "NotFetched".

 For an object under revision control, but not fetched into the
 work area by DesignSync: Returns "NotFetched".

SEE ALSO

 ls, url registered

EXAMPLES

• Example Showing Fetch State of a Module
• Example Showing Fetch State of a Module Member

Example Showing Fetch State of a Module

 This example uses 'url fetchedstate' to return the fetched states
 for modules:

 stcl> url fetchedstate /home/tachatterjee/JitaMOD
 NotFetched

Example Showing Fetch State of a Module Member

 This example uses 'url fetchedstate' to return the fetched states
 for module members:

ENOVIA Synchronicity Command Reference - Module

931

 stcl>url fetchedstate File1.txt
 Copy

url fetchtime

url fetchtime Command

NAME

 url fetchtime - Returns the time when an object was fetched

DESCRIPTION

 This command returns when the specified object was checked out
 into your work area. The 'url fetchtime' command actually returns the
 timestamp of the object when the object was fetched, not the
 time of the fetch itself. Therefore, the value returned by
 'url fetchtime' depends on whether or not you specified the -retain
 option when you fetched the object.

 Note: If you used 'populate -mirror' to fetch the object to your work
 area, then a 'url fetchtime' operation for the object always returns 0.

 The fetch time is unaffected by making local modifications to the
 object. In fact, the fetch time and modification time being
 different is an indicator that the file has been locally modified.

 Specify an object in your work area as the argument to 'url
 fetchtime'.

SYNOPSIS

 url fetchtime [--] <argument>

ARGUMENTS

• Module
• Module Member

 Specify one of the following arguments:

Module

URL Sync Object Model

932

 <module> Specifies the module for which you want the timestamp
 when it was fetched into your work area.

 For workspace modules, returns 0.

Module Member

 <module member> Specifies the member for which you want the time
 when it was last fetched into your work area.
 Note: A module context is not required as this
 command can only be run on individual items
 present in the workspace.

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the object
 you specify begins with a hyphen (-).

RETURN VALUE

 For a managed object specified as a client-side object
 (Asic/x.v or file://.../Asic/x.v): Returns the fetched time in
 time_t format, which is the number of seconds since the birth
 of UNIX -- January 1, 00:00:00, 1970 (GMT).

 For an object reference (or other objects that
 lack fetch time metadata): Returns 0.

 For an object not under revision control: Returns 0.

 For a nonversionable object (not a folder, collection, nor file):
 Returns 0.

 Note: You can use the Tcl 'clock format' command to convert the
 time_t format to a date string.

SEE ALSO

 url fetchedstate, url locktime, url properties

ENOVIA Synchronicity Command Reference - Module

933

EXAMPLES

• Example Showing the Last Fetchtime of a Module
• Example Showing Last Fetchtime of a Module Member

Example Showing the Last Fetchtime of a Module

 This example uses 'url fetchtime' to get the time when the module
 Module1 was last fetched to the workarea:

 stcl> url fetchtime Module1
 0

 Note: Since the workspace module was used as the argument, the result
 is 0.

Example Showing Last Fetchtime of a Module Member

 This example uses 'url fetchtime' to get the time when the module
 member File1.txt was last fetched to the workarea:
 stcl> url fetchtime File1.txt
 1163014379

url filter

url filter Command

NAME

 url filter - Returns the persistent filter for a workspace
 module

DESCRIPTION

 This command returns the persistent filter for a workspace module.
 If there is no persistent filter set (including if run on a
 DesignSync object or DesignSync folder or module member or other
 illegal argument type), returns a null value ("").

SYNOPSIS

URL Sync Object Model

934

 url filter [-filter | -hreffilter [-all]] [--] <argument>

ARGUMENTS

• Workspace Module

 Specifies one of the following arguments:

Workspace Module

 <workspace module> Specifies the workspace module for which you want
 the persistent filter.

OPTIONS

• -all
• -hreffilter
• -filter
• --

-all

 -all The -all option is used with -hreffilter switch to
 return the values of both simple and hierarchical
 href filters in a comma-separated list. If the
 -all is not provided, only simple hierarchical
 href values are returned.

-hreffilter

 -hreffilter The -hreffilter indicates that the hreffilter value is
 returned.

 This option is mutually exclusive with -filter.

-filter

 -filter The -filter option indicates that the filter value is
 returned. (Default)

 This option is mutually exclusive with -hreffilter.

--

ENOVIA Synchronicity Command Reference - Module

935

 [--] Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 For workspace modules (/home/tachatterjee/MyMod/Module1),
 returns the persistent filter.

 If the command fails, it returns an appropriate error.

EXAMPLES

 This example shows a module where a filter has been applied to the
 workspace so only HTML files are populated. Note the construction of
 the filter ensures that all HTML are populated regardless of which
 subdirectory or submodule they are present in.

 dss> url filter Chip%0
 +.../*.html

url getprop

url getprop Command

NAME

 url getprop - Retrieves a property of an object

DESCRIPTION

• Notes for Modules

 This command retrieves properties that were previously set with 'url
 setprop'. You can use 'url getprop' to access the "type" and "locked"
 properties of revision control objects; however, you cannot use
 'url getprop' to access all of the special, built-in properties as
 returned by the 'url properties' command for objects other than
 notes, notetypes, users, and project configurations. For example,
 you cannot determine when an object was locked by using 'url getprop'
 of the property "locktime".

 Both the object and property must exist. For a note system URL, this

URL Sync Object Model

936

 command always throws NO_SUCH_PROP. For a note type URL, this
 command returns the default value for that property on the note type.

 You can use 'url getprop' with any object type. However,
 depending on the type, the command may only work in server-side
 scripts, such as when accessing notes.

 DesignSync automatically determines the data type of an object.
 You can get the datatype assigned by DesignSync using the
 'url getprop' command. You can also use the 'url setprop' command to
 change the datatype of an existing object. See 'url setprop' and 'ci'
 commands for more information.

 Note: If the URL provided for the argument has a non-numeric
 extension, the url getprop command identifies the object as
 a branch and not a version.

Notes for Modules

 You can use 'url getprop' to access the "basedir" to determine the
 path of a workspace module.

SYNOPSIS

 url getprop [--] <argument> <propertyName>

ARGUMENTS

• Module
• Module Member

 Specifies one of the following arguments:

Module

 <module> Specifies the module for which you want the
 properties previously set by the 'url
 setprop' command.

Module Member

 <module member> Specifies the module member for which you
 want the properties previously set by the 'url

ENOVIA Synchronicity Command Reference - Module

937

 setprop' command.

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

OPERANDS

• Object
• Property Name

Object

 <object> A valid object URL.

Property Name

 <propertyName> The name of a property to retrieve from the
 object.

RETURN VALUE

 For all valid arguments, returns the value set for the specified
 user-defined property as a string. also returns the values for the
 built-in 'type' and 'locked properties.

 For other objects: Raises error.

SEE ALSO

 note getprop, url setprop, url properties, note setprops

EXAMPLES

URL Sync Object Model

938

• Example of Getting the DataType Property of a Module Member
• Example of Getting the Various Propreties of a Module

Example of Getting the DataType Property of a Module Member

 This example uses 'url getprop' command to get the DataType
 property of module member File2.txt:

Example of Getting the Various Propreties of a Module

 This example uses 'url getprop' command to get the various properties
 set on module Module1:

 stcl> url getprop Module1 version
 1.9
 stcl> url getprop Module1 branch
 Property not found: branch
 stcl> url getprop Module1 hrefmode
 normal
 stcl> url getprop Module1 selector
 Trunk:
 stcl> url getprop [url vault File2.txt] DataType
 ascii
 stcl> url getprop Module1%2 basedir
 /home/tachatterjee/MyMod/Module1%2

url inconflict

url inconflict Command

NAME

 url inconflict - Checks if a file merge had conflicts

DESCRIPTION

 This command checks whether a merge (see the -merge option for the
 populate and co commands) resulted in conflicts (returns 1) or not
 (returns 0). You must resolve merge conflicts before you can check
 in the file. The conflicts are considered resolved when the
 file no longer contains any of the conflict delimiters (exactly 7
 less-than, greater-than, or equal signs starting in column 1).

SYNOPSIS

ENOVIA Synchronicity Command Reference - Module

939

 url inconflict [--] <argument>

ARGUMENTS

• Workspace Module
• Module Member

 Specifies one of the following arguments:

Workspace Module

 <workspace module> Specifies the workspace module for which you want
 to know the conflict status.
 Returns 0 as modules cannot be inconflict.

Module Member

 <module member> Specifies the module member for which you want to
 know the conflict status.

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-).

RETURN VALUE

 For a client-side versionable object (Asic/x.v): Returns 1 (Tcl TRUE)
 if there is a conflict after a merge; returns 0 (Tcl FALSE)
 otherwise.

 For any invalid arguments or objects that do not exist, the command
 returns 0.

SEE ALSO

URL Sync Object Model

940

 url modified

EXAMPLES

• Example Showing The Status of File Merges for a Module
• Example Showing the Merge Status of a Module Member

Example Showing The Status of File Merges for a Module

 This example uses 'url inconflict' to get the status of file
 merges in module Module1. In this example, there is no conflict.

 stcl> url inconflict sync://srv2.ABCo.com:2647/Modules/Mod/Module1
 0

Example Showing the Merge Status of a Module Member

 This example uses 'url inconflict' to get the status of module
 member File1.txt. In this example, there is a conflict.

 stcl> url inconflict sync://srv2.ABCo.com:2647/Modules/JitaMod1/
 File1.txt
 1

url leaf

url leaf Command

NAME

 url leaf - Returns the leaf of the URL

DESCRIPTION

 Returns the leaf of the URL. The leaf is the text that
 follows the last separator.

 Note: In stcl/stclc mode, when specifying a URL that contains a
 semicolon (;), surround the URL with double quotes.

SYNOPSIS

ENOVIA Synchronicity Command Reference - Module

941

 url leaf [--] <argument>

ARGUMENTS

 Specifies one of the following arguments:

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-).

RETURN VALUE

 For a client-side versionable object (Asic/x.v): Returns a string
 containing the leaf of its path (x.v).

 For a client-side folder (Asic): Returns the leaf of its path
 (Asic).

 For a vault ("sync://holzt:2647/Projects/Asic/x.v;"): Returns
 the vault name (x.v;).

 For a version ("sync://holzt:2647/Projects/Asic/x.v;1.1",
 "sync://holzt:2647/Projects/Asic/x.v;yellow"): Returns
 object and version (x.v;1.1).

 For a branch ("sync://holzt:2647/Projects/Asic/x.v;1.5.1",
 "sync://holzt:2647/Projects/Asic/x.v;Golden:Latest"):
 Returns object and branch name (x.v;1).

 For a project (sync://holzt:2647/Projects/Asic): Returns the
 project name: (Asic).

 For a configuration (sync://holzt:2647/Projects/Asic/Sub@Rel1):
 Returns the configuration name: (sub@Rel1).

 For a server-side note type URL (sync:///Note/SyncNotes/HW-Defect-1):
 Returns note type (HW-Defect-1).

 For a server-side note URL (sync:///Note/SyncNotes/HW-Defect-1/1):
 Returns note ID (1).

URL Sync Object Model

942

 For other objects: Returns argument provided.

 Note: 'url leaf' does not verify that the object exists.

SEE ALSO

 url path

EXAMPLES

 This example extracts the leaf "ASIC" from a URL.
 dss> url leaf sync://dvorak:2647/Projects/ASIC
 ASIC

url locktime

url locktime Command

NAME

 url locktime - Returns when a branch was locked

DESCRIPTION

 This commands returns when the branch associated with the specified
 object was locked. Specify a local object or a branch as the
 argument. If you specify a local object, 'url locktime' determines
 the current branch for the object.

 One application for this command is to determine if any
 branches have been locked too long based on a project team's
 design management policies. You might trigger email reminders
 or perform unlock operations on objects that have been locked
 too long.

SYNOPSIS

 url locktime [--] <argument>

ARGUMENTS

ENOVIA Synchronicity Command Reference - Module

943

• Module Object
• Module Member

 Specifies one of the following arguments:

Module Object

 <module> Specifies the workspace module branch for which you
 the lock time, if it is locked.

 For server modules, you can get the lock time for
 a particular module branch or version. For a
 server module as a whole, the command returns 0,
 as a server module cannot be locked.

Module Member

 <module member> Specifies the module member for which you want the
 lock time, if it is locked.
 Always return 0 as module members are not locked in
 their own right. They are always locked in the
 context of a particular module branch.
 Use the showlocks command to obtain information
 on about member locks.

OPTIONS

• --

--

 -- Indicates that the command should stop looking
 for command options. Use this option when the
 object you specify begins with a hyphen (-).

RETURN VALUE

 For all valid objects, returns the lock time, in time_t format; or,
 if the object is not locked, returns 0. For any invalid arguments,
 returns 0.

 For any non-existant objects, returns error.

 Note: The time_t format is the number of seconds since the birth
 of UNIX -- January 1, 00:00:00, 1970 (GMT). You can use the Tcl

URL Sync Object Model

944

 'clock format' command to convert the time_t format to a date
 string.

SEE ALSO

 url fetchtime, url properties

EXAMPLES

• Example of Viewing the Locktime of Server Module Version
• Example of Viewing the Locktime of a Workspace Module

Example of Viewing the Locktime of Server Module Version

 This example uses 'url locktime' to see the locktime of a module
 branch of Module1 on the server:
 stcl> url locktime \
 "sync://srv2.ABCo.com:2647/Modules/Mod/Module1;1.6.1"

 1165595391

Example of Viewing the Locktime of a Workspace Module

 This example uses a workspace module to see the locktime of the
 module branch in the example above:
 stcl> url locktime Module1%1
 1165595391

 Note: Workspace module Module1%1 is populated with module branch
 sync://srv2.ABCo.com:2647/Modules/Mod/Module1;1.6.1"

url members

url members Command

NAME

 url members - Returns the members of the specified collection

DESCRIPTION

• Notes for Modules

ENOVIA Synchronicity Command Reference - Module

945

 This command returns the list of members for the specified
 collection object. Specify the collection as a URL or path.
 DesignSync currently supports the following collection object type:
 - Cadence cell views
 The members of a Cadence cell view collection object are
 determined by the Cadence software.
 - Synopsys cell view collections.
 - Custom generic collections (CTP collections).

 This command can return the list of members with full (absolute)
 paths or paths relative to the collection

 When in stcl/stclc mode only, you can optionally specify Tcl variable and
 code arguments. When specified, the command iterates through the
 returned list of member objects (see Examples).

 This command supports the command defaults system.

Notes for Modules

 This command is for members of collections, not to get the list of
 members of a module

SYNOPSIS

 url members -[no]relative [--] <collection> [<varname> <code>]

OPTIONS

• -[no]relative
• --

-[no]relative

 -[no]relative Indicates whether members are displayed using a
 relative or absolute path.

 -norelative displays the members using an absolute
 path (Default).

 -relative displays the output of the command as the
 relative path. This output is useful for
 identifying the collection cell view version of a
 member for comparing against a different member
 version.

URL Sync Object Model

946

--

 -- Indicates that the command should stop looking for
 command options. Use this option when an argument
 to the command begins with a hyphen (-).

RETURN VALUE

 For a collection specified as a URL or path
 (file:///home/projLeader/ttlLib/and2/symbol.sync.cds,
 /home/projLeader/ttlLib/and2/symbol.sync.cds):
 Returns a list of URLs of view members
 (file:///home/projleader/ttlLib/and2/symbol/symbol.cdb
 file:///home/projleader/ttlLib/and2/symbol/pc.db
 file:///home/projleader/ttlLib/and2/symbol/master.tag)

 For other objects: Returns an empty list.

EXAMPLES

 This example returns the members of the symbol.sync.cds Cadence
 cell view:
 stcl> url members symbol.sync.cds
 file:///home/goss/Projects/Cadence/smallLib/and2/symbol/symbol.cdb
 file:///home/goss/Projects/Cadence/smallLib/and2/symbol/master.tag
 file:///home/goss/projects/Cadence/smallLib/and2/symbol/pc.db
 ...

url modified

url modified Command

NAME

 url modified - Checks if an object has been modified

DESCRIPTION

• Notes for Modules

 This command determines whether an object has been modified since
 it was fetched (returns 1) or not (returns 0).

 Objects not under revision control are always flagged as

ENOVIA Synchronicity Command Reference - Module

947

 modified. Because of this behavior, 'url modified' provides a way
 to determine what objects need to be checked in to preserve the
 folder's current contents. Only by checking in both
 revision-controlled objects that are modified and objects that
 are not revision controlled will the vault contain all of the
 folder's current contents. Use 'url registered' to determine whether
 objects flagged as modified are under revision control.

Notes for Modules

 Module members that have been renamed or removed are flagged as
 modified, even if the contents of the object have not changed.

SYNOPSIS

 url modified [--] <argument>

ARGUMENTS

• Workspace Module
• Module Member

 Specifies one or more of the following arguments:

Workspace Module

 <workspace module> Specifies the workspace module for which you want
 to find modified status.
 Note: A workspace module is considered modified
 if any module member has been edited or
 a new member has been added but not yet
 checked into the vault.

Module Member

 <module member> Specifies the module member for which you want
 to find modified status.
 Note: A module member is considered modified if
 it has been touched. A module member is
 also considered modified if it is added,
 removed or renamed (moved) in the workspace
 but not checked into the vault.

URL Sync Object Model

948

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-).

RETURN VALUE

 For any valid object, returns 1 (Tcl TRUE)) if the object has been
 modified or is not under revision control. If the object has not
 been modified, it returns 0 (tcl FALSE).

 For any non-applicable or non-existant object, returns 0.

SEE ALSO

 url exists, url registered, url inconflict

EXAMPLES

• Example Showing If the Module in the Workspace is Modified
• Example Showing If the Module Member in the Workspace is Modified

Example Showing If the Module in the Workspace is Modified

 This example uses 'url modified' to see if a workspace module
 has been modified:
 stcl> url modified Module1%0
 1

Example Showing If the Module Member in the Workspace is Modified

 This example uses 'url modified' to see if a module member
 has been modified:
 stcl> url modified File1.txt
 0

ENOVIA Synchronicity Command Reference - Module

949

url naturalpath

url naturalpath Command

NAME

 url naturalpath - Returns the natural path for a module member

DESCRIPTION

 This command is run against module member objects in a workspace to
 provide the natural path for the specified object. The natural path
 is the location of the object under the module base directory.

 Note: This command also provides the natural path for objects that
 have been added to a module, but have not yet been checked in.

SYNOPSIS

 url naturalpath [--] <argument>

ARGUMENTS

• Workspace Module Member

Workspace Module Member

 <Workspace Specify a module object to determine the natural
 module member> path of the module member.

 Note: The module member cannot be a module
 folder.

OPTIONS

• --

--

 -- Indicates that the command should stop looking
 for command options. Use this option when the

URL Sync Object Model

950

 argument to the command begins with a hyphen (-).

RETURN VALUE

 For a module member: returns the natural path of module member. If
 a module member has been moved, it returns the
 new location of the module member. If a module
 member has been removed, but kept in the
 workspace, the original natural path is
 reported until the module has been checked in.

 For any other values: Not applicable; returns an empty list("").

SEE ALSO

 add

EXAMPLES

• Example Showing the Natural Path of a Module Member
• Example Showing Using the Natural Path to Unlock a Module Member

Example Showing the Natural Path of a Module Member

 The following example returns the natural path of the chipdoc.txt
 file, located in module instance Chip%0 with a base directory of
 /home/rsmith/MyModules/chip.

 stcl> url naturalpath chipdoc.txt
 /doc/chipdoc.txt

Example Showing Using the Natural Path to Unlock a Module Member

 The following example shows how to use url naturalpath, along with
 url vault and url branchId, to perform an unlock command. The
 code fragment unlocks a file. This fragment assumes the module
 instance name was previously passed to the mod variable and the
 desired filename, the same file used in the previous example, was
 passed to the modfile variable.

 stcl> unlock -modulecontext [url vault $mod]\;[url branchid $mod] \
 [url naturalpath $modfile]

 Beginning Unlock operation...

ENOVIA Synchronicity Command Reference - Module

951

 Unlocking: sync://srvr2.ABCo.com:2647/Modules/Chip;1 :
 /doc/chipdoc.txt: Unlocked

 Unlock operation finished.

 {Objects succeeded (1)} {}

url notes

url notes Command

NAME

 url notes - Returns the notes attached to the specified
 object

DESCRIPTION

 This command gathers a list of notes attached to a DesignSync object
 or a server module (branch or version). Because notes are objects
 addressed by URLs, this command returns a list of URLs. The list may
 be filtered by note type and by a specific set of query criteria on
 the note type. When applied to RevisionControl notes, the url notes
 command searches the Objects field.

 This command is a wrapper for: note query [-type <notetype>
 -attached <ObjectUrl> -dbquery <Query>. In most cases, the note
 query command provides superior capabilities.

 The url notes command' is server-side only. For more information,
 see the "server-side" and "rstcl" help topics.

SYNOPSIS

 url notes [-type <type> [-dbquery <query>]] [--]
 <argument>

ARGUMENTS

• Server Module Version

 Specifies one of the following arguments:

Server Module Version

URL Sync Object Model

952

 <server module> Specifies the server module or module branch or
 module version to which the notes are attached.
 If no notes are attached, returns an empty list

OPTIONS

• -type
• -dbquery
• --

-type

 -type <type> The name of a note type, which must exist, to
 query against.

-dbquery

 -dbquery <query> A valid dBase query string, used to further
 constrain the set of notes returned.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when the
 argument to the command begins with a hyphen (-).

OPERANDS

• Object

Object

 <object> A valid object URL.

RETURN VALUE

 For any valid object, returns a list of note URLs; or, if there are
 no notes attached, an empty list.

 For any invalid object, returns an error.

ENOVIA Synchronicity Command Reference - Module

953

 For any non-existent object, returns an empty list.

SEE ALSO

 note links, note query, url contents

EXAMPLES

• Example Showing the List of Specific Note Types in a Specific State
• Example of a Script Fragment that Extracts Attached Note Information

Example Showing the List of Specific Note Types in a Specific State

 The following example returns the list of SyncDefect notes in the
 open state attached to the Munich project:

 set notes [url notes
 sync:///Projects/Munich -type SyncDefect -dbquery "State='open'"]

Example of a Script Fragment that Extracts Attached Note Information

 The following excerpt of a server-side script extracts all of the
 notes in all of the projects on a SyncServer and prints their
 titles. The excerpt uses the 'url notes' command to extract
 the notes of a project.

 foreach project [url projects sync:///] {
 foreach note [url notes $project] {
 puts <pre>
 puts "Project: $project"
 puts "NoteURL: $note"
 puts "Notetype: [url leaf [url container $note]]"
 puts "Note Id: [url leaf [url path $note]]"
 puts "Note Title: [note getprop $note Title]"
 puts </pre>
 }
 }

url owner

url owner Command

NAME

 url owner - Returns the owner of an object

URL Sync Object Model

954

DESCRIPTION

 This command returns the owner of the specified object. The object
 can be a project, project configuration, branch, or vault.

 The owner of a branch is the creator of the initial version of the
 branch unless a different owner has been specified with the
 setowner command. For example, the default owner of the Trunk branch
 (branch 1) is the creator of version 1.1 The owner of a design
 object's vault is defined as the owner of the object's Trunk branch.

 The 'url properties' command also returns an object's owner. Use
 'url properties' when you need more property information than just
 the object owner.

SYNOPSIS

 url owner [--] <argument>

ARGUMENTS

• Workspace Module
• Module Member

 Specifies one of the following arguments:

Workspace Module

 <workspace module> Specifies the module or module branch or module
 version for which you want to know the owner.

 Note: For a module, the owner is the person who
 creates the module. Since creating a module creates
 version 1.1, the owner of the module, branch 1 and
 version 1.1 is always the same person.

Module Member

 <module member> Specifies the module member for which you want to
 know the owner.
 Note: The 'url owner' command can only be run on
 workspace module members.

ENOVIA Synchronicity Command Reference - Module

955

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-).

RETURN VALUE

 For all valid objects, returns the username of the object owner.

 For all invalid or non-existent objects, returns an applicable error.

SEE ALSO

 setowner, url properties

EXAMPLES

• Example Showing The Owner of a Module

Example Showing The Owner of a Module

 This example uses 'url owner' to get the username of the
 owner of a module:
 stcl> url owner "sync://srv2.ABCo.com:2647/Modules/Module1"
 tachatterjee

url path

url path Command

NAME

 url path - Extracts the path section of a URL

DESCRIPTION

URL Sync Object Model

956

• Module Notes

 This command extracts the path section of a URL, stripping
 off the protocol and machine name. This command also returns the
 absolute path of an object when a relative path is specified.

 Note: In stcl/stclc mode, when specifying a URL that contains a
 semicolon (;), surround the URL with double quotes.

 On Windows, this command returns a localized path using
 "\" characters, instead of "/" characters. Use the following
 Tcl example to reverse the "\" characters:

 stcl> url path .
 e:\build\main\src\doc\
 stcl> join [split [url path .] \\] /
 e:/build/main/src/doc

Module Notes

 NOTE: To find the base directory of a module instance object,
 use the 'url getprop' command.

SYNOPSIS

 url path [--] <object>

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-).

RETURN VALUE

 For all valid objects, returns the absolute path without URL protocol
 or host information, (for example, /home/karen/Asic/x.v).

 For other objects, including non-existent objects: Returns absolute
 path of the current directory with the object concatenated; for

ENOVIA Synchronicity Command Reference - Module

957

 example, 'url path' applied to a nonexistent file named 'junk'
 returns /home/karen/junk. The 'url path' command does not verify that
 the object exists.

SEE ALSO

 url leaf, url getprop

EXAMPLES

• Example Showing How to Get Path and Reverse the Separator
• Example Showing the URL Path of the Server Module

Example Showing How to Get Path and Reverse the Separator

 This example shows how to reverse the "\" characters on Windows:
 stcl> url path .
 e:\build\main\src\doc\
 stcl> join [split [url path .] \\] /
 e:/build/main/src/doc

Example Showing the URL Path of the Server Module

 This example uses 'url path' to get the path of a server module:
 stcl> url path sync://srv2.ABCo.com:2647/Modules/Module1
 /Modules/Module1

url properties

url properties Command

NAME

 url properties - Returns properties for the specified object

DESCRIPTION

• Properties Associated with Module Objects

 This command retrieves all the properties of the specified object

URL Sync Object Model

958

 and returns the values in a Tcl array passed by name. The Tcl array
 need not exist prior to the call. If the array does exist, its
 contents are first emptied and then filled in with the property
 data for the object. If <varname> was previously set as a scalar
 variable, it is changed to an array by this command. If the command
 encounters an error, <varname> is left unset, regardless of its
 prior state. The Tcl array is indexed by property name.

 The properties defined for an object depend on the object's type:

 note - The current property values on the note.
 note type - The default property values of the note type.
 note system - An empty set.
 user - The fixed set of properties of the user profile:
 EmailAddr, Key, Name, PageNumber, PhoneNumbr, UserList
 and Username. For backward compatibility, the shadow
 properties email, name, pager, phone, and userName
 are also returned.

Properties Associated with Module Objects

 The properties on an object can be:

 name - The name of the specified object.
 description - The generic description for the object, or an empty
 string if none exists.
 type - The type of the specified object. Examples are
 File, Folder, Vault, Version, Branch, Project,
 and Project Configuration.
 Note: There may be other types present as a result
 of using the CustomType System, DesignSync DFII
 or DesignSync Custom Compiler.
 owner - The owner of the object. The following object types
 have owners: modules, module folders, module members,
 module versions,and module branches. If owner is the
 only property you are interested in, use 'url owner'.
 locked - The name of the user who has the object locked, or '0'
 if it is unlocked. A non-zero value can be expected only
 for files, branches, and versions. Specifying a file
 has the same effect as specifying the file's current
 branch to the command.
 locktime - The time, in time_t format, that the object was
 locked (if the object is locked -- value of 'locked'
 property is nonzero), otherwise '0'. If locktime is the
 only property you are interested in, use 'url
 locktime'. Note that you can convert the time_t
 format to a date string using the Tcl 'clock format'
 command.
 citime - The time, in time_t format, that a version was created
 in the vault. This time is not influenced by the
 "-retain" option to ci/co/populate; citime is always
 the actual time the version was created. Note that you
 can convert the time_t format to a date string using
 the Tcl 'clock format' command.

ENOVIA Synchronicity Command Reference - Module

959

 log - The log information for the specified object. If the
 object is a version, its checkin log is returned,
 unless it is a placeholder (upcoming) version, in
 which case its checkout log is returned. If the
 object is a file, its ongoing log is returned.
 selector - The selector list (tag) associated with a ProjectSync
 project configuration that identifies the versions of
 DesignSync data that are part of the configuration.
 exposure - The list of team members (usernames) associated with a
 project configuration. The configuration owner is
 always included in the exposure list. Note that if the
 member list is the default of all users defined
 on the SyncServer, then the exposure list is empty.
 parents - The parent workspace(s) of the object. The parent
 workspace is the base directory of other modules in the
 workspace containing an href to specified module
 argument. The value is space delimited tcl list showing
 the module instance name followed by the workspace base
 directory.
 moduleviews - The list of persistent module views set on the module
 workspace. This property only exists if a persistent
 module view has been set on the workspace. If a view
 has been set and cleared, the returned value is an
 empty string ("").

 Additional properties on a module that has been moved (with the
 exportmod/importmod commands are:)

 SyncImportedURL - The URL of the original module location.

 SyncImportedBackRefs - The back references contained within the
 original module.

 Note that you use 'url properties' to access predefined (built-in)
 properties. To access user-defined properties, as created
 by 'url setprop', use 'url getprop'. You cannot use 'url setprop'
 to modify these built-in properties.

SYNOPSIS

 url properties [--] <argument> <array_name>

ARGUMENTS

• Module
• Array Name

 Specify the following arguments:

Module

URL Sync Object Model

960

 <module> Specifies the module for which you want the
 predefined properties.
 For a server module or a server module branch or a
 server module version, this information is similar
 to the information about a DesignSync vault.
 For a workspace module, the information can contain
 additional property information.

Array Name

 <array_name> The name of a Tcl variable in which to store the
 property values returned.

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-)._

RETURN VALUE

 Returns the property values indicated in the supplied array variable:

 For a client-side versionable object (Asic/x.v): Returns these property
 values in the supplied array variable: name, type, locked, locktime,
 citime, and log.

 For a client-side folder (Asic/Sub): Returns these property values:
 name and type.

For a server-side note type URL (sync:///Note/SyncNotes/HW-Defect-1):
 Returns the properties of the note type. Values are only listed for
 those properties that have default values specified in the note type
 definition.

 For a server-side note URL (sync:///Note/SyncNotes/HW-Defect-1/1):
 Returns the properties of the note type, as well as the values set
 for those properties.

 For a user URL (sync:///Users/chris): Returns the property values
 set for that user.

ENOVIA Synchronicity Command Reference - Module

961

 For a version ("sync://holzt:2647/Projects/Asic/x.v;1.1",
 "sync://holzt:2647/Projects/Asic/x.v;yellow"): Returns
 these property values: name, type, locked, locktime, citime,
 and log.

 For a branch ("sync://holzt:2647/Projects/Asic/x.v;1.5.1",
 "sync://holzt:2647/Projects/Asic/x.v;Golden:Latest"):
 Returns these property values: name, type, owner, locked, locktime,
 citime, and log.

 For a vault ("sync://holzt:2647/Projects/Asic/x.v;"): Returns these
 property values: name, type, owner, locked, locktime, citime, and
 log.

 For a project (sync://holzt:2647/Projects/Asic): Returns these
 property values: name, description, type, and owner.

 For a configuration ("sync://holzt:2647/Projects/Asic/Sub@Rel1"):
 Returns these property values: name, description, type, owner,
 selector, and exposure.

 For any invalid object, returns an appropriate error.

SEE ALSO

 note getprop, note setprops, url getprop, url setprop, url locktime,
 url owner, server-side

EXAMPLES

• Example Showing the Properties of a Module

Example Showing the Properties of a Module

 This example uses 'url properties' to get the properties of a
 module:
 url properties Indian x
foreach prop [array names x] {
 puts "prop $prop=$x($prop)
"
}

 prop recursive=1

 prop type=Module

 prop basedir=/home/tachatterjee/Example

 prop description=

 prop txnuid=00000000000000000000000000000000

 prop mappedpath=

 prop hrefs=NorthIndian {name {} naturalpath {} mappedpath {}
 uid 00000000000000000000000000000000
 target sync://srv2.ABCo.com:2647/Modules/Cuisines/NorthIndian
 dtarget {sync://srv2.ABCo.com:2647/Modules/Cuisines/NorthIndian;Trunk:}

URL Sync Object Model

962

 starget {sync://srv2.ABCo.com:2647/Modules/Cuisines/NorthIndian;1.1}
 hrefinstname NorthIndian modinstname NorthIndian%0
 basedir /home/tachatterjee/Example/NorthIndian
 relpath NorthIndian version {} targetsel Trunk:
 targetver 1.1 hreftype
 Module state added
 servertarget sync:///Modules/Cuisines/NorthIndian}

 prop name=Indian

 prop selector=Trunk:

 prop hrefmode=normal

 prop civ=

 prop uid=9ce32a1a95f4547039a55e7c3bd34906

 prop owner=

 prop exposure=

 prop toplevel=0

 prop hreffilter=

 prop naturalpath=

 prop mergefrom=

 prop keys=kkv

 prop parents=WorldCuisine%0{/home/tachatterjee/Example/worldcusine}
 AsianCusine%1 (/home/tachatterjee/Example/asiancusine)

 prop version=1.4

 prop filter=

 prop target=sync://srv2.ABCo.com:2647/Modules/Cuisine/Indian

 prop modinstname=Indian%0

url registered

url registered Command

NAME

 url registered - Checks whether an object is under revision
 control

DESCRIPTION

• Notes for modules

 This command checks whether an object has been put under revision
 control (returns 1) or not (returns 0). Objects that cannot be put
 under revision control always return 0.

 The url registered command looks up an object on the server to verify
 that the object is under revision control. By contrast, the -managed
 option to ls command checks the workspace metadata to see if the
 object is managed.

ENOVIA Synchronicity Command Reference - Module

963

Notes for modules

 If a module member has been added, but not checked in, the return
 value for the member is 0.

SYNOPSIS

 url registered [--] <argument>

ARGUMENTS

• Workspace Module
• Module Member

 Specifies one of the following arguments:

Workspace Module

 <workspace module> Specifies the module for which you want to know
 the revision control status.

 Note: For a workspace module, it should always
 return 1. If a workspace module is somehow removed
 from the server, returns 0. Specifying a server URL
 returns 0.

Module Member

 <module member> Specifies the module member for which you want to
 know the revision control status.

 Note: An object that is added to the module but not
 yet checked into the vault returns 0.

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument

URL Sync Object Model

964

 to the command begins with a hyphen (-).

RETURN VALUE

 If the object is under revision control, returns 1 (Tcl TRUE). If the
 object is not under revision control, returns 0 (Tcl FALSE).

 If the object does not exist or cannot be versioned, returns 0.

SEE ALSO

 url exists, url fetchedstate

EXAMPLES

• Example Showing Whether a Module is Under Revision Control
• Example Showing Whether a Module Member is Under Revision Control

Example Showing Whether a Module is Under Revision Control

 This example uses 'url registered' command to checked whether a
 workspace module is under revision control:
 stcl> url registered Module1%0
 1

Example Showing Whether a Module Member is Under Revision Control

 This example uses 'url registered' command to checked whether
 module members are under revision control.
 stcl> url registered File1.txt
 1

 stcl> url registered file1.txt
 0

url relations

url relations Command

NAME

ENOVIA Synchronicity Command Reference - Module

965

 url relations - Determine collection object dependencies

DESCRIPTION

 This command returns the objects on which a given collection object
 depends. Specify the collection as a URL or path. The relationship
 specification (relation_name argument) supported by DesignSync for
 Cadence cell view collections is "dependencies". For custom generic
 (CTP) collections, DesignSync supports any relation name set up for
 the collection.

 This command is useful for determining the entire set of files
 associated with a design object. For example, you might create
 an stcl script that returns all of the dependencies of a collection
 object, then checks out the collection object and its dependencies.

 When in stcl/stclc mode only, you can optionally specify Tcl
 variable and code arguments. When specified, the command iterates
 through the returned list of member objects (see Examples).

 The url relations command supports the following collection objects:
 - Cadence cell views
 The 'url relations' command determines dependencies
 from the pc.db file, which is located in the cell view folder.
 Use the 'addcdslib' command to resolve dependency paths.
 - Custom generic (CTP) collections
 For these collections, DesignSync supports any relation name set
 up for the collection.

SYNOPSIS

 url relations [--] <collection> <relation_name> [<varname> <code>]

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when an argument
 to the command begins with a hyphen (-).

RETURN VALUE

URL Sync Object Model

966

 For a collection specified as a URL or path
 (file:///home/projLeader/ttlLib/and2/symbol.sync.cds,
 /home/projLeader/ttlLib/and2/symbol.sync.cds):
 Returns a list of URLs of objects on which this collection is
 dependent as a list of lists, each sublist containing two
 values: a collection URL and a string of the format "alias:name"
 (file:///home/projlead/Projects/ttlLib/and2/symbol
 ttlLib:and2/symbol.sync.cds
 file:///home/projlead/Projects/ttlLib/nor2/symbol
 ttlLib:nor2/symbol.sync.cds)

 If the alias is unknown, the URL is replaced by the string
 "<unrecognized alias>". For Cadence cell views, use the
 'addcdslib' command to resolve library paths.

 If there are internal dependencies -- dependencies that point to
 components within the object itself, the URL is the collection
 object itself.

 For an object that is not a collection: Returns an empty list.

SEE ALSO

 addcdslib, url members

EXAMPLES

 This command shows the dependencies of a collection object on one
 or more other collection objects. Note: For Cadence cell view
 collections, use the 'addcdslib' command to resolve dependency
 paths. In this example, the cds.lib file in /home/Libraries
 contains the library definition for "basic", but not for "sample".

 stcl> url relations cmos_sch.sync.cds dependencies
 {<unrecognized alias>} basic:vdd/symbol.sync.cds
 {<unrecognized alias>} basic:gnd/symbol.sync.cds
 {<unrecognized alias>} sample:nmos/symbol.sync.cds
 stcl> addcdslib /home/Libraries
 stcl> url relations cmos_sch.sync.cds dependencies
 file:///home/tgoss/Projects/Cadence/basic/opin/symbol.sync.cds
 basic:opin/symbol.sync.cds
 file:///home/tgoss/Projects/Cadence/basic/gnd/symbol.sync.cds
 basic:gnd/symbol.sync.cds
 {<unrecognized alias>} sample:nmos/symbol.sync.cds

url resolveancestor

url resolveancestor Command

ENOVIA Synchronicity Command Reference - Module

967

NAME

 url resolveancestor - Returns the closest common ancestor of two
 versions

DESCRIPTION

 This command returns the closest common ancestor of two versions of
 the same object (file, module or collection object). DesignSync uses
 the closest common ancestor when merging two versions. DesignSync
 compares the versions to the ancestor to determine how each version
 has changed, then performs the merge. The two versions being merged
 are called the "merge sides".

 For the "url resolveancestor" command, one of the merge sides is
 specified by the "-version <selectorList>" option. DesignSync
 determines the other merge side from the object argument:
 o If the object is a local object, then DesignSync uses the
 current (last-retrieved) version, as stored in the object's
 local metadata.
 o If the object is a version, then DesignSync uses that version.
 o If the object is a branch, then DesignSync uses the Latest
 version of the object on that branch.
 o Any other object type causes DesignSync to throw an exception.

 DesignSync records "merge edges" -- information about what versions
 participated in the merge -- with the new version resulting from a
 merge. DesignSync uses merge edges in future calculations of closest
 common ancestors instead of always going back to the original
 ancestor (by considering only branch points and not merge
 edges). This capability relieves you from having to resolve the same
 merge conflicts during future merges. Specify the -noedges option if
 you want "url resolveancestor" to return the common ancestor without
 considering merge edges.

 Note: DesignSync does not currently record merge edges from
 -overlay (without -merge) and -skip operations.

SYNOPSIS

 url resolveancestor [-noedges] -version <selector>[,<selector>...]
 [--] <argument>

ARGUMENTS

• Module
• Module Member

URL Sync Object Model

968

 Specifies one of the following arguments:

Module

 <module> Specifies the module for which you want the closest
 common ancestor of two different versions.
 The specified module can be a workspace module
 or a server module. If a whole module is given,
 it is taken as version 1:Latest, if a module
 branch is given then it is taken as the Latest
 on that branch.

Module Member

 <module member> Specifies the workspace module member for which
 you want the closest common ancestor of two
 different versions.

 Note: The versions used are for the member vault
 and not the module.

OPTIONS

• -noedges
• -version
• --

-noedges

 -noedges Specifies not to consider merge edges
 when determining the closest common ancestor.

 Note: The -noedges option applies only to merge
 edges created across-branches. Merge edges
 within a branch ("skip" edges) are still
 considered when computing the closest common
 ancestor.

-version

 -version <selector> Specifies one of the versions (merge sides)
 to compare. See the "selectors" help topic for
 more information on selectors. DesignSync
 determines the other merge side from the
 command argument.

ENOVIA Synchronicity Command Reference - Module

969

 Notes:
 o If you specify Latest or Date(<date>),
 DesignSync uses branch 1
 (1:Latest,1:Date(<date>).
 o To use -version to specify a branch,
 specify both the branch and version as
 follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when the
 argument to the command begins with a hyphen
 (-).

RETURN VALUE

 For all valid objects, returns the version number of the closest
 common ancestor of the current version of this object and the version
 specified with the -version option.

 For all non-valid objects, or non-existent objects, returns an error.

 Note: If two valid versions are specified, there is always a return
 value, because all versions have a common ancestor of version 1.1.
 If two valid versions are not specified, an error is raised.

SEE ALSO

 populate, selectors

EXAMPLES

• Example Showing Common Ancestor from Versions on the Same Branch
• Example Showing Common Ancestor from Versions on Different Branches
• Example Showing Common Ancestor Using Branch and Version Arguments

 Assume the following version history for a file called "top.v":

URL Sync Object Model

970

 Trunk (branch 1) Dev (branch 1.2.1)

 top.v;1.1
 | Branch "Dev"
 top.v;1.2 ----------> top.v;1.2.1.1
 | Created |
 (Bronze) top.v;1.3 top.v;1.2.1.2
 | |
 top.v;1.4 top.v;1.2.1.3
 | Merge |
 top.v;1.5 ----------> top.v;1.2.1.4
 | |
 top.v;1.6 top.v;1.2.1.5
 |
 top.v;1.2.1.6
 |
 top.v;1.2.1.7

Example Showing Common Ancestor from Versions on the Same Branch

 Assume that version 1.3 of "top.v" is tagged "Bronze", and version
 1.6, which is the Latest version on the same branch (Trunk), is the
 current version:

 stcl> url resolveancestor -version Bronze top.v
 1.3

 DesignSync compares the version tagged "Bronze" (1.3) and the
 current version (1.6) and returns 1.3 as the closest common
 ancestor. Whenever both versions are on the same branch, the lower
 version number is, by definition, the closest common ancestor.

Example Showing Common Ancestor from Versions on Different Branches

 Assume that your current version is 1.2.1.7. You want to know the
 common ancestor of your current version and the Latest version on
 the Trunk branch.

 stcl> url resolveancestor -version Trunk top.v
 1.5

 DesignSync compares the Latest version on Trunk (1.6) and the
 current version (1.2.1.7) and returns 1.5 as the closest common
 ancestor. When versions 1.5 and 1.2.1.3 were merged to create
 version 1.2.1.4, DesignSync recorded the merge edge. Version
 1.2.1.4 includes the resolution of any conflicts between 1.2.1.3
 and 1.5. Subsequent merges between Trunk and Dev leverage this
 information so that you do not need to resolve the same conflicts.

 If you want DesignSync to ignore merge edges, specify -noedge:

 stcl> url resolveancestor -noedge -version Trunk top.v

ENOVIA Synchronicity Command Reference - Module

971

 1.2

 Version 1.2 is the branch point where Dev was branched from
 Trunk. This version is the closest common ancestor if you do not
 consider the merge of 1.5 and 1.2.1.3.

Example Showing Common Ancestor Using Branch and Version Arguments

 In the previous examples, the argument to "url resolveancestor" was
 a local file. You can also specify a version object:

 stcl> url resolveancestor -version Trunk [url vault top.v]1.2.1.7
 1.5

 or a branch object:

 stcl> url resolveancestor -version Trunk [url vault top.v]Dev
 1.5

 In the case of a branch, DesignSync uses the Latest version on
 the specified branch.

url resolvetag

url resolvetag Command

NAME

 url resolvetag - Returns the version number associated with a
 selector

DESCRIPTION

 This command returns the version number to which a specified
 selector (typically a version or branch tag) or selector list
 resolves.
 - If you specify a version selector (for example, a version tag),
 the corresponding version number is returned.
 - If you specify a branch selector (for example, a branch tag),
 the version number of the Latest version on that branch is
 returned.
 - If you do not specify a selector (no -version option), the version
 number of the Latest version on the current branch is returned.
 - If the selector list does not resolve to a version, an exception is
 thrown.

 Specify a versionable object as the argument to this command. If you
 specify any other object type, an empty string is returned.

URL Sync Object Model

972

SYNOPSIS

 url resolvetag [-version <selector>[,<selector>...]] [--]
 <argument>

ARGUMENTS

• Module
• Module Member

 Specifies one of the following arguments:

Module

 <module> Specifies the module for which you want the version
 number corresponding to the version option. If no
 version option is given, returns the version number
 of the currently fetched version for a workspace
 module, or the version associated with version
 1:Latest for a server module.

Module Member

 <module member> Specifies the module member for which you want any
 associated tag.
 The command works correctly irrespective of whether
 the member is the Latest version on the members
 branch.

 For example, for collection objects using the citags
 system, as part of the Custom Type System, the
 url resolvetag command returns any tags
 associated with the objects.

OPTIONS

• -version
• --

-version

 -version <selector> Specifies the selector list (typically a

ENOVIA Synchronicity Command Reference - Module

973

 branch or version tag) for which you want the
 corresponding version number returned. The
 default behavior (if -version is not specified)
 is to return the version number of the Latest
 version on the current branch.

 Note: To use -version to specify a branch,
 specify both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when the
 argument to the command begins with a hyphen
 (-).

RETURN VALUE

 For all valid versionable objects, returns the version
 number of the current version of this object or the version number
 corresponding to the selector specified with the -version option.

 For any non-valid objects, returns an empty list.

 For nonexistent object: raises an error.

 Note: Use the -version argument to specify the selector of the
 object. If the version specified by -version does not exist, 'url
 resolvetag' raises an error.

SEE ALSO

 url tags

EXAMPLES

• Example Showing a Resolved Version Tag
• Example Showing the Latest Version of an Object
• Example Showing the Latest Version on a Specified Branch
• Example of Using a Selector List

URL Sync Object Model

974

• Example Showing a Non-Existent Module Version

Example Showing a Resolved Version Tag

 This example returns the version of "top.v" that is tagged "gold":
 stcl> url resolvetag -version gold top.v
 1.2.2.3

Example Showing the Latest Version of an Object

 This example returns the version number of the Latest "top.v" on the
 current branch, which in this case is different than the version
 in the work area:
 stcl> url resolvetag top.v
 1.4
 stcl> url versionid top.v
 1.2

Example Showing the Latest Version on a Specified Branch

 This example returns the Latest version of "top.v" on the branch
 tagged "Rel2.1". Because "top.v" is not in the work area, you
 must specify the vault.
 stcl> url resolvetag -version Rel2.1:Latest [url vault top.v]
 1.5.1.4

Example of Using a Selector List

 This example specifies a selector list. The file "samp.asm" does
 not have a version tagged "beta", so the version corresponding to
 the tag "alpha" is returned. The file "top.v" does not have a
 version corresponding to "alpha" or "beta" version tags, so an
 exception is thrown.
 stcl> url resolvetag -version beta,alpha samp.asm
 1.3
 stcl> url resolvetag -version beta,alpha top.v
 som-E-152: No Such Version.

Example Showing a Non-Existent Module Version

 In the following example, the 'url resolvetag' command is run on a
 module version that does not exist. The -version option is used to
 specify the module version.
 stclc> url resolvetag -version GOLDer Cpu%0
 SomAPI-E-101: No Such Version.

ENOVIA Synchronicity Command Reference - Module

975

url rmprop

url rmprop Command

NAME url rmprop

 url rmprop - Removes specified properties for a module
 object from the local metadata

DESCRIPTION

 This command removes the specified properties from the local metadata
 for the specified module object. It is used to remove the properties
 that indicate that an object was renamed or removed on the branch
 merged into the workspace.

SYNOPSIS

 url rmprop <argument> <property>

ARGUMENTS

• Workspace Module Member

Workspace Module Member

 <workspace Specify an object in the workspace to remove
 module member> the specified property from.

OPTIONS

• Property

Property

 <property> Specify the property to remove from the specified
 object. The following properties can be removed
 from an object.:

 ci_rename - indicates that the object was renamed
 on the branch merged into the
 workspace. Removing this property

URL Sync Object Model

976

 removes that information.

 ci_remove - indicates that the object was removed
 on the branch merged into the
 workspace. Removing this property
 cancels that action.

RETURN VALUE

 This command returns a TCL value of null ("").

 For workspace module members (<path/>File1.txt): returns a success
 message indicating that the property has been deleted.

 For other objects: Not applicable; raises error.

 Note: The command returns a success message even if the property
 being removed was not set for the object.

SEE ALSO

 populate, url getprop, url setprop

EXAMPLES

• Example Showing Removal of the ci_rename Property
• Example Showing Removal of the ci_remove Property

Example Showing Removal of the ci_rename Property

 This example shows removing the ci_rename property from the rom.h
 file in the current directory.

 dss> pwd
 /home/rsmith/MyModules/rom

 dss> url rmprop rom.h ci_rename
 Success: deleted property ci_rename

Example Showing Removal of the ci_remove Property

 This example shows removing the ci_remove property from the rom.h
 file using the full path to the module object.

 dss> url rmprop /home/rsmith/MyModules/rom/rom.h ci_remove

ENOVIA Synchronicity Command Reference - Module

977

 Success: deleted property ci_remove

url root

url root Command

NAME

 url root - Returns the workspace root for a given path

DESCRIPTION

 This command returns the workspace root for a given path,
 which is either the given path or a parent directory. If there
 has been no "setroot" command performed, an empty string ("") is
 returned.

SYNOPSIS

 url root [--] <path>

ARGUMENTS

• Path

Path

 <path> Specify a local directory path or module instance
 name.

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the object
 you specify begins with a hyphen (-).

URL Sync Object Model

978

RETURN VALUE

• Return Values for Modules

Return Values for Modules

 For a module instance name, returns the directory path to the workspace
 root directory.

 For any object within a root structure, returns the directory
 path to the workspace root directory.

 For all other values, returns nothing indicating that there is no
 associated workspace root directory.

SEE ALSO

 setroot, mkmod, add

EXAMPLES

• Viewing the Root Directory for a Module Workspace

Viewing the Root Directory for a Module Workspace

 This example shows the root directory for the rom.doc file in
 the Doc subdirectory of the ROM module.
 Note: This example uses the absolute path to show the directory
 structure, but the command also accepts relative paths.

 dss> url root /home/rsmith/MyModules/ROM/Doc/rom.doc
 /home/rsmith/MyModules

url selector

url selector Command

NAME

 url selector - Returns an object's persistent selector list

DESCRIPTION

ENOVIA Synchronicity Command Reference - Module

979

 This command returns the persistent selector list (comma-separated
 list of selectors stored in an object's local metadata) associated
 with a specified object. You can specify a versionable object (file
 or collection object) or a local folder. If you specify any other
 object type, or a nonexistent object, an exception is thrown.

 The selector list returned by 'url selector' is determined as
 follows:
 1. If the object has its own persistent selector list,
 return that selector list.
 2. Otherwise, return the persistent selector list of the first
 folder from the parent folder to the file-system root (/)
 that has a persistent selector list. In other words, the object
 inherits its parent folder's selector list.
 3. Otherwise, return "Trunk", which is the default persistent
 selector list.

 Some revision-control commands use the persistent selector list to
 determine which branch or version to operate on, unless overridden
 by an explicit -version or -branch option. See the "selectors" help
 topic for more information on selectors and selector lists.

 Note that the "P" data key for the 'ls' command and the Selector
 column of the List View (in the DesignSync graphical user
 interface) also report an object's persistent selector list.

SYNOPSIS

 url selector [--] <argument>

ARGUMENTS

• Workspace Module

 Specify one of the following arguments:

Workspace Module

 <workspace module> Specifies the top level workspace module for
 which you want the associated persistent
 selector list.
 You also get the selectors inherited from the
 href of sub-modules.

OPTIONS

URL Sync Object Model

980

• --

--

 -- Indicates that the command should stop looking
 for command options. Use this option when the
 object you specify begins with a hyphen (-).

RETURN VALUE

 For all valid objects, returns the persistent selector list set for
 the object; if no persistent selector list is set, returns the first
 persistent selector list found from the parent folder upward to the
 file system root (/). If no persistent selector list is inherited,
 returns the default persistent selector list, Trunk.

 For any invalid or non-existant objects, returns an applicable
 error.

SEE ALSO

 setselector, selectors, ls

EXAMPLES

• Example Showing the Persistent Selector for the Module

Example Showing the Persistent Selector for the Module

 This example uses 'url selector' command to find the persistent
 selector for module1:
 stcl> url selector Module1%0
 Trunk:

url servers

url servers Command

NAME

 url servers - Returns server-list definitions

ENOVIA Synchronicity Command Reference - Module

981

DESCRIPTION

 This command returns the SyncServers or vaults specified
 in the server-list (sync_servers.txt) files.

 Using server-list files simplifies the selection of SyncServers or
 vaults from DesignSync (from the Workspace Wizard) and DesignSync
 DFII (from the Vault Browser). When setting up a work area,
 users can select a SyncServer or vault
 using a friendly name instead of specifying the URL.

 The user server-list file is:

 <SYNC_USER_CFGDIR>/sync_servers.txt

 where SYNC_USER_CFGDIR is the environment variable that specifies
 your directory for user-specific customization files.
 If you have not defined the SYNC_USER_CFGDIR environment variable,
 then DesignSync looks for:

 <home>/.synchronicity/sync_servers.txt

 where <home> is your home directory as defined by $HOME on UNIX
 or your user profile, which is managed by the User Manager tool,
 on Windows platforms.

 The site server-list file is:

 <SYNC_SITE_CNFG_DIR>/sync_servers.txt

 where SYNC_SITE_CNFG_DIR is the environment variable that specifies
 the directory for site-specific customization files. If
 you have not defined the SYNC_SITE_CNFG_DIR environment variable,
 then DesignSync looks for:

 <SYNC_DIR>/custom/site/config/sync_servers.txt

 The user and site sync_servers.txt files are not provided as part
 of the Synchronicity installation, so you need to create them if
 they do not already exist.

 The enterprise server-list file is:

 <SYNC_ENT_CUSTOM>/config/sync_servers.txt

 where SYNC_ENT_CUSTOM is the environment variable that specifies
 the directory for enterprise-specific customization files. If
 you have not defined the SYNC_ENT_CUSTOM environment variable,
 then DesignSync looks for:

 <SYNC_DIR>/custom/enterprise/config/sync_servers.txt

 The user, site, and enterprise sync_servers.txt files are not
 provided as part of the Synchronicity installation, so you need to
 create them if they do not already exist.

URL Sync Object Model

982

 The syntax for the server-list file is:

 NAME <name> Friendly name for the SyncServer or vault
 REFERENCE <url> The complete URL to the SyncServer or vault
 DESCRIPTION <text> Brief description of the SyncServer or vault

 The following rules apply to the sync_servers.txt files:
 o The NAME keyword begins a new SyncServer or vault definition. It
 must appear before the REFERENCE and DESCRIPTION keywords.
 o The REFERENCE and DESCRIPTION keywords can appear in any order.
 o The keywords are case insensitive.
 o Keywords must be the first non-whitespace characters on a line.
 o The DESCRIPTION field is optional.
 o The DESCRIPTION text can span multiple lines and is terminated
 by a blank line or a keyword as the first non-whitespace
 characters on a line. A comment itself can therefore not
 include a blank line; otherwise, the remaining comment will
 be ignored.
 o Each NAME value must be unique; duplicates are ignored.
 o If the same NAME value appears in both the user and site
 files, the user definition takes precedence.
 The order of precedence is:
 1) user
 2) site
 3) enterprise
 o Comments are indicated by a pound sign (#) as the first
 non-whitespace character on a line.
 Note: Text that does not follow a keyword is ignored and
 therefore behaves like a comment. However, because the
 supported keywords may change in future releases, precede all
 comments with #.

SYNOPSIS

 url servers [-all | -enterprise | -site | -urls* | -user]

OPTIONS

• -all
• -enterprise
• -site
• -urls
• -user

-all

 -all Returns both site and user server lists, with
 duplicates removed (user definitions have
 precedence over site definitions).

ENOVIA Synchronicity Command Reference - Module

983

-enterprise

 -enterprise Returns only the enterprise server list.

-site

 -site Returns only the site server list.

-urls

 -urls Preserves the previous behavior of returning only the
 REFERENCE URL for each SyncServer or vault with a
 unique NAME from both the site and user
 sync_servers.txt files.

 *Note: This option is the default behavior in order to
 maintain backward compatibility. The -urls option
 will be removed in a future DesignSync release, and the
 default behavior (no options specified) will
 change. Therefore, it is recommended that you use the
 -enterprise, -site, -user, or -all option.

-user

 -user Returns only the user server list.

RETURN VALUE

 If -url or no option is specified, a list of REFERENCE URLs:
 url url ...

 Otherwise, a list of lists, with each sublist containing the NAME,
 REFERENCE, and DESCRIPTION values:
 {{name} {url} {description}} {{name} {url} {description}} ...

EXAMPLES

 A site sync_servers.txt file contains the following:

 # This sync_servers.txt file is used by the entire

URL Sync Object Model

984

 # Marlboro site.
 NAME Doc Vault
 REFERENCE sync://docserver:2647/Projects/docs
 DESCRIPTION Server for documentation source files.
 Only the documentation group can lock files.

 NAME Source
 REFERENCE sync://src:3001

 and a user sync_servers.txt file contains the following:

 NAME My Server
 REFERENCE sync://localhost:2647

 NAME Source
 REFERENCE sync://src.myco.com:3001
 DESCRIPTION The company-wide source repository

 The following are the results of 'url servers'. Note that in the
 combined list (with -all specified), 'url servers' returns the
 user's "Source" definition, because the user's sync_servers.txt
 file takes precedence over the site file.

 stcl> url servers -user
 {{My Server} {sync://localhost:2647} {}}
 {{Source} {sync://src.myco.com:3001} {The company-wide source
 repository.}}
 stcl> url servers -site
 {{Doc Vault} {sync://docserver:2647/Projects/docs}
 {Server for documentation source files. Only the documentation group
 can lock files.}} {{Source} {sync://src:3001} {}}
 stcl> url servers -all {{My Server} {sync://localhost:2647} {}}
 {{Source} {sync://src.myco.com:3001} {The company-wide source
 repository.}}
 {{Doc Vault} {sync://docserver:2647/Projects/docs}
 {Server for documentation source files. Only the documentation group
 can lock files.}}

url setprop

url setprop Command

NAME

 url setprop - Sets a property on an object

DESCRIPTION

 This command lets you set the value of a property on most objects
 (on notes you can change existing properties, but not add new ones).
 Properties are specified as a name (typically a short identifier)

ENOVIA Synchronicity Command Reference - Module

985

 and a value, which can be a string of any length. Such properties
 are stored with the metadata representing the object.

 IMPORTANT: The property prefix "Sync" is reserved for DesignSync
 properties. You should not create any properties that begin with
 this reserved prefix. While this prefix is case sensitive, DesignSync
 recommends, to minimize confusion, that you avoid using "sync" with
 any casing variant as a prefix to any custom properties.

 For note URLs, both the object and property must exist and the
 property value supplied must be legal for its property type.
 The new property value specified in this command is checked against
 the current value of the property. If they are the same, no change
 is made to the object.

 Note that the "special" properties that are supported by the
 url properties command are not available to url setprop. For example,
 if url properties reports that an object is locked by someone, you
 cannot unlock it with url setprop by passing in "locked 0".

 You can use url setprop with most object types. However,
 depending on the type, the command may only work in server-side
 scripts, such as when accessing notes. User-defined properties
 are not supported for configurations.

 Because DesignSync automatically determines the datatype of the
 vault, it may assign a datatype that you do not want. For example, it
 may assign the binary datatype to an ASCII file. In such cases, you can
 use the 'url setprop' command to change the vault datatype.

 The successful execution of this command on a note object causes an
 atomic note modify event and fires the corresponding triggers in
 response. If the property value equals the current value of the
 property, no event is generated.

 Note: If you need to set more than one property on the same note, it
 is preferable to use the note setprops command, because it is more
 efficient and reduces trigger activity.

 You can use the "url setprop" command to change the checkin comments
 of objects checked into a vault.

 Note: This command does not change the comments associated with
 tags. To change tag comments remove the tag and add it back again.

 The "url setprop" command is subject to access controls on the
 server. For more information, see the ENOVIA Synchronicity Access
 Control Guide.

SYNOPSIS

 url setprop [--] <Object_url> <prop_name> <prop_value>

URL Sync Object Model

986

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when property
 names or values begin with a hyphen (-).

OPERANDS

• Object URL
• Property Name
• Property Value

Object URL

 <Object_url> A valid object URL.

Property Name

 <prop_name> The name of the property to set on the object.

 You can specify the special property name DataType to
 assign the data type of the vault.

Property Value

 <prop_value> The value of the property to set on the object.

 When you use the special DataType property for a vault,
 it can take one of the following values:

 o ascii or text - changes the vault data type ASCII.
 o binary - changes the vault data type to
 binary.
 o undefined - lets DesignSync determine the vault
 data type at the next check in,
 based on the file's contents.

RETURN VALUE

ENOVIA Synchronicity Command Reference - Module

987

 For all valid objects, returns the value set for the new property.

 For all invalid or non-existent objects, returns an error.

SEE ALSO

 note getprop, note setprops, url getprop, url properties

EXAMPLES

• Example of Setting a User-Defined Property on a Module Workspace
• Example of Setting a User-Defined Property on a Module Member

Example of Setting a User-Defined Property on a Module Workspace

 The example uses the 'url setprop' command to change the user defined
 property "respuser" for a module workspace.

 stcl> url getprop Chip%0 respuser
 tadams

 stcl> url setprop Chip%0 respuser rsmith
 rsmith

Example of Setting a User-Defined Property on a Module Member

 This example uses the 'url setprop' command to change the user defined
 property "respuser" for module member File1.txt:
 stcl> url getprop [url vault File1.txt] respuser
 tadams

 stcl> url setprop [url vault File1.txt] respuser rmsith
 rsmith

 stcl> url getprop [url vault File1.txt] respuser
 rsmith

url syslock

url syslock Command

NAME

 url syslock - Sets a system lock on a lock name or file path

URL Sync Object Model

988

DESCRIPTION

 This command lets you manipulate arbitrary system locks by
 name. The name may be a logical lock name or a path to an actual
 file. Note that the locks are advisory locks. This means that
 there is nothing from preventing a user from performing an action
 for which another user has obtained a lock. It is up to each user
 to check for the existence of the lock before performing the
 operation. This process is cooperative.

 There are two types of locks and three basic locking operations.
 Locks may be shared or exclusive. A shared lock (also called a
 read lock) may be held by several processes at one time. An
 exclusive lock (also called a write lock) may be held by only one
 process at a time. Furthermore, an exclusive lock will not be granted
 if any shared lock is in place.

 The three locking operations are acquire, yield, and release.
 Acquire and release simply obtain and give up the named lock. The
 yield call allows the holder of a lock to release that lock
 temporarily and then re-obtain it. In this way processes that
 expect to hold a lock for a long period of time may choose to
 release the lock temporarily to allow other processes to obtain
 the lock, perform some relatively fast operation, and then release
 the lock again. At this point the original process may again
 acquire the lock. Normally, acquire requests are counted and the
 lock released only when the reference count drops to zero. The
 -all option overrides this behavior and forces a release. The
 original reference count is then restored when the lock is
 re-acquired. This option is only recognized by the yield call.

 A timeout may be specified when calling to acquire or yield a lock.
 By default the call blocks until the specified lock becomes
 available. If the timeout value is supplied, however, this will
 be taken as the maximum number of seconds to wait for the
 specified lock to become available. Should the timeout period
 expire, an error is returned.

 The canonization flag specifies that the string supplied should be
 interpreted as a file path name and, further, that the name should
 be resolved into a canonical path. The canonization process will
 take file system mount points into consideration. For example,
 if your home directory is mounted to /u/home/user on
 system_X and to /home1/user on system_Y, and your home
 directory actually resides at /users/home on system_A, then the
 canonization process results in the path system_A:/users/home
 regardless of the system from which you invoke the lock request.

 The realmount and realpath calls canonize the supplied
 paths. For realmount, the path is resolved down to the mount
 point. For realpath, the path is only resolved down to the
 root of the local file system; no mount point resolution is taken
 into account.

ENOVIA Synchronicity Command Reference - Module

989

 The showlocks call displays the locks that the current process holds.
 The output format includes the lock name, its index within the master
 lock file (the file used to acquire operating system level locks),
 the number of read locks pending, and the number of write
 locks pending.

SYNOPSIS

 url syslock -acquire <name_or_path> [-canonize] [-shared]
 [-timeout secs]
 url syslock -yield <name_or_path> [-canonize] [-shared]
 [-timeout secs] [-all]
 url syslock -release <name_or_path> [-canonize]
 url syslock -realmount <name_or_path>
 url syslock -realpath <name_or_path>
 url syslock -showlocks

 Note: The <name_or_path> argument must follow the
 -acquire/-yield/-release/-realmount/-realpath option.

OPTIONS

• -all
• -acquire
• -canonize
• -realmount
• -realpath
• -release
• -shared
• -showlocks
• -timeout
• -yield
• --

-all

 -all Only available with -yield. The default behavior
 is that a lock is released only when the
 reference count drops to zero. The -all option
 overrides this behavior and forces a release. The
 original reference count is then restored when
 the lock is re-acquired.

-acquire

URL Sync Object Model

990

 -acquire Obtains the specified lock.

-canonize

 -canonize Specifies that the string supplied should be
 interpreted as a file path name and that the name
 should be resolved into a canonical path. The
 canonization process takes file system mount
 points into consideration. For example,
 if your home directory is mounted to /u/home/user
 on system_X and to /home1/user on system_Y, and
 your home directory actually resides at
 /users/home on system_A, then the canonization
 process results in the path system_A:/users/home
 regardless of the system from which you invoke
 the lock request.

-realmount

 -realmount Canonizes the specified path, resolved down to
 the mount point.

-realpath

 -realpath Canonizes the specified path, resolved down to the
 root of the local file system; no mount point
 resolution is taken into account.

-release

 -release Gives up the specified lock.

-shared

 -shared Specifies that the lock to be acquired or yielded
 is a shared (read) lock. When -share is not
 specified, the lock is an exclusive (write) lock.

-showlocks

 -showlocks Displays the locks that the current process holds.

ENOVIA Synchronicity Command Reference - Module

991

-timeout

 -timeout <secs> Available with -acquire and -yield. By default, the
 call blocks until the specified lock becomes
 available. If a timeout value is supplied, you
 specify the maximum number of seconds to wait for
 the specified lock to become available. Should the
 timeout period expire, an error is returned.

-yield

 -yield Allows the holder of a lock to release that lock
 temporarily and then re-obtain it.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-).

RETURN VALUE

 For a logical lock name (Asic/x.v:lnx:16738,rd:0,wr:1): Performs the
 action specified by the options, but provides no return value.

 Note: The logical lock name format includes the lock name, its index
 within the master lock file (the file used to acquire operating
 system level locks), the number of read locks pending, and the number
 of write locks pending.

 For other client-side objects: Performs the action specified by the
 options, but provides no return value; 'url syslock' does not verify
 that the object exists.

 For server-side objects: Raises error.

EXAMPLES

 Tihs example shows acquiring a lock, viewing the lock, and then
 releasing the lock.

 stcl> url syslock -acquire /home/users/dave/sample.txt -canonize
 Acquired: /home/users/dave/sample.txt
 stcl> url syslock -showlocks
 Current Locks: /home/users/dave/sample.txt:lnx:16738,rd:0,wr:1

URL Sync Object Model

992

 stcl> url syslock -release sample.txt -canonize
 Released: /home/users/dave/sample.txt

url tags

url tags Command

NAME

 url tags - Returns the version tags associated with
 a specified object

DESCRIPTION

 This command returns the list of version tags associated with the
 specified object. Tags are listed with "Latest" first, if
 applicable, then in order from oldest to newest. If the object has
 no associated version tags, a null string is returned.

 By default the command returns the version tags associated with
 the currently fetched version of the object. Use the -version
 option to fetch the tags associated with a particular version
 of the object.

 Note: You can use the -btags argument with the url tags command to
 specify the branch tags, rather than the version tags.

SYNOPSIS

 url tags [-btags] [-version <selector>] [--] <argument>

ARGUMENTS

• Module
• Module Member

 Specifies one of the following arguments:

Module

 <module> Specifies the module for which you want the
 associated version tags.

ENOVIA Synchronicity Command Reference - Module

993

Module Member

 <module member> This is not a valid argument type.
 Returns an empty string "".

OPTIONS

• -btags
• -version
• --

-btags

 -btags Specifies displaying branch tags instead of the
 version tags for the specified argument.

-version

 -version <selector> Specifies the version of the local object
 (file or collection) for which you want the
 associated tags.
 The -version option is ignored if you specify
 a version or branch as the argument to
 "url tags". See the "selectors" help topic for
 details on selectors.

 Note: To use -version to specify a branch,
 specify both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when the
 argument to the command begins with a hyphen
 (-).

RETURN VALUE

URL Sync Object Model

994

 For all valid objects, returns the specified list of tags associated
 with the specified object, with "Latest" first, if applicable, then
 in order from oldest to newest. If no tags exit, it returns an empty
 list.

 For other invalid or non-existent objects, returns appropriate error.

SEE ALSO

 url resolvetag, url versionid, tag

EXAMPLES

• Example Showing the Tags Associated with a Module

Example Showing the Tags Associated with a Module

 This example uses 'url tags' to get the tag associated with a
 module:
 stcl> url tags Module1%0
 Latest

url users

url users Command

NAME

 url users - Returns all users defined for an object's
 server

DESCRIPTION

 This command returns the list of all users defined for a server.
 If no users exist, an empty string is returned.

 The <object> parameter is optional and is always ignored. This
 parameter is retained for backward compatibility. If you supply
 an object URL, the URL must be valid.

 Note that the object can be the server root itself, such as:
 url users sync:///

 Note: 'url users' is a server-side only command. For more

ENOVIA Synchronicity Command Reference - Module

995

 information, type 'help server-side'.

SYNOPSIS

 url users <path>

OPTIONS

 none

OPERANDS

• Path to the Server

Path to the Server

 <path> The path to the server. Optional.

RETURN VALUE

 For a server or server-side object, returns a list of
 the users defined for the server.

 For any invalid objects or non-existent objects, returns an error.

SEE ALSO

 url contents, server-side, rstcl

EXAMPLES

 This example returns the users currently defined for the Sportster
 project. Because users are defined on a per-server basis, all users
 defined for the holzt:2647 server are returned.

 1. In <SYNC_DIR>/custom/site/share/tcl, create 'users.tcl' that
 contains the following lines:
 puts [url users sync:///Projects/Sportster]

 2. From your browser, issue the following URL:
 http://holzt:2647/scripts/isynch.dll?panel=TclScript&

URL Sync Object Model

996

 file=users.tcl

 The browser displays the users currently defined for the
 Sportster project:
 sync:///Users/goss
 sync:///Users/barbg

 You could also execute this script from a DesignSync client
 using the rstcl command.

url vault

url vault Command

NAME

 url vault - Returns the URL of an object's vault

DESCRIPTION

• Note for modules

 This command returns the URL of the vault object associated with
 the specified object. If the object is a directory, the
 vault-side directory that it is associated with is returned.

 The general syntax for the url commands is described under
 "help url".

Note for modules

 This is an internal command, not very useful except
 when a DesignSync vault is upgraded to a module and some DesignSync
 objects have versions which are not present in any module version.
 In this case, you need to know the vault URL of the object in order
 to retrieve properties from that member version.

SYNOPSIS

 url vault [-modulecontext <context>] <argument>

ARGUMENTS

ENOVIA Synchronicity Command Reference - Module

997

• Workspace Module
• Module Folder
• Module Member

 Specify one or more of the following arguments:

Workspace Module

 <workspace module> Specifies the workspace module for which you
 want the URL of the vault.

Module Folder

 <module folder> This is not a valid argument type.
 Returns the following error as module folders
 do not have a direct vault association:
 Error: <module folder>: This folder is a module
 member and does not have an individual vault
 value.

Module Member

 <module member> Specifies the module member for which you want
 the URL of the vault.

 Note: Module members are operated on in the
 context of a module and have a specific vault
 URL. However, the same module member in different
 versions of the module can have different vault
 URL. This is because of the way module members
 are renamed. See the mvmember command for more
 information.

OPTIONS

• -modulecontext

-modulecontext

 -modulecontext Specifies a module context, allowing the
 <context> retrieval of a vault for a module member that is
 not in the workspace. In this case, the argument
 must be the natural path of the object.

URL Sync Object Model

998

RETURN VALUE

 For all valid objects, returns the URL of the vault associated with
 the specified object.

 For any non-valid objects or non-existent objects, returns an empty
 list.

SEE ALSO

 url

EXAMPLES

• Example of Getting the Module Vault Information

Example of Getting the Module Vault Information

 This example uses the 'url vault' command to get the url
 of a module's vault.
 stcl> url vault Module1%0
 sync://srv2.ABCo.com:2647/Modules/Module1

url versionid

url versionid Command

NAME

 url versionid - Returns the version number of the specified
 object

DESCRIPTION

• Module Notes

 This command returns the version number of the specified object.

 - For managed objects, the current version number (as stored in the
 local metadata) is returned.
 - If the object is a reference, the version number is preceded by
 "Refers to:".

ENOVIA Synchronicity Command Reference - Module

999

 - If the object is locked, the current version number and upcoming
 version number are returned.
 - For version objects specified with a version number, that
 version number is returned.

 Notes:
 o To get the version number of a selector list or a tag, use url
 resolvetag command.

 o The return value of 'url versionid' is the same as the version
 returned by the 'ls -report R' command and the Version column of
 the List View (from the DesignSync graphical user interface).

Module Notes

 o You cannot specify a version number for a module or module member
 object.

 o Module members that have been added but not checked in are
 considered "unmanaged."

SYNOPSIS

 url versionid [--] <argument>

ARGUMENTS

• Workspace Module
• Module Member

 Specifies one or more of the following arguments:

Workspace Module

 <workspace module> Specifies the module for which you want the
 current version number.

Module Member

 <module member> Specifies the module member for which you want
 the current version number.

OPTIONS

URL Sync Object Model

1000

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument to the
 command begins with a hyphen (-).

RETURN VALUE

 For all valid objects, returns the version number of the object
 (1.3). If the object is a reference, the version number is preceded
 by "Refers to:". If the object is locked, the current version number
 and upcoming version number are returned (1.3 -> 1.4).

 For invalid revision controlled objects, returns an empty list.

 For any objects not under revision control, returns "unmanaged."

 For any objects that do not exist, returns an appropriate error.

SEE ALSO

 url versions, url branchid, url resolvetag, ls

EXAMPLES

• Example Showing Different Return Values for Module Objects

Example Showing Different Return Values for Module Objects

 The following example uses 'url versionid' to get the version
 number of a module:
 stcl> url versionid Module1%0
 1.2

 The following example uses 'url versionid' to get the version
 number of a module member that is added but not yet checked in:
 stcl> url versionid File3.txt
 Unmanaged

url versions

url versions Command

ENOVIA Synchronicity Command Reference - Module

1001

NAME

 url versions - Returns the URLs of an object's versions

DESCRIPTION

 This command returns a list of URLs of the version objects
 associated with the specified object. If the object is
 a vault, the versions on the main branch (branch 1) are returned.
 If the object is a branch, the versions on that branch are
 returned. If the object is a local managed object, the versions
 for that object's current branch are returned. If the object is
 not a vault, branch, or managed object, then an empty list is
 returned.

 Note: In stcl/stclc mode, when specifying a URL that contains a
 semicolon (;), surround the URL with double quotes.

SYNOPSIS

 url versions <argument>

ARGUMENTS

• Module Branch
• Module Member
• Server Module

Specifies one or more of the following:

Module Branch

 <module branch> Returns the versions of the specified module
 branch. If it is a workspace module, applies
 the command to the current branch of that module.

Module Member

 <module member> Returns all versions associated with the module
 member or module member branch.

URL Sync Object Model

1002

Server Module

 <server module> Returns all versions on all branches for the
 server module.

OPTIONS

 none

RETURN VALUE

 For valid objects, returns a list of the version URLs associated
 with the object; either on the specified branch or all branches.

 For any invalid object, returns empty list.

 For nonexistent objects, raises error.

SEE ALSO

 url contents

EXAMPLES

• Example of Getting Versions Associated with a Server Module

Example of Getting Versions Associated with a Server Module

This example uses 'url versions' command to get the list versions
for a server module:
 stcl> url versions sync://srv2.ABCo.com:2647/Modules/Module1
 {sync://srv2.ABCo.com:2647/Modules/Module1;1.1}
 {sync://srv2.ABCo.com:2647/Modules/Module1;1.2}

url view

url view Command

NAME

ENOVIA Synchronicity Command Reference - Module

1003

 url view - Returns persistent view list for workspace module

DESCRIPTION

This command returns the persistent view list set on a workspace
module instance.

SYNOPSIS

 url view [--] <Workspace Module>

ARGUMENTS

• Workspace Module

Workspace Module

 <workspace module> Workspace module instance name or workspace
 directory name containing the module.

OPTIONS

 none

RETURN VALUE

 For a workspace module instance DesignSync returns the persistent view
 name or list.

 If there is no persistent view for the workspace or the module does
 not exist in the workspace, DesignSync returns an empty string ("").

SEE ALSO

 setview

EXAMPLES

URL Sync Object Model

1004

• Example Showing A View

Example Showing A View

 This example shows a technical writer's workspace, which has a Doc
 view applied to the code module so the writer can populate only the
 documentation.

 dss> url view Chip%0
 Doc

1005

TCL Interface

auto_mkindex

auto_mkindex Command

NAME

 auto_mkindex - Indexes stcl procedures

DESCRIPTION

 By placing your stcl procedures in designated site-wide or
 project-level tcl directories, DesignSync indexes them so that
 users at your site can autoload the procedures only when they need
 them. In some cases, you might want to generate the indexes
 manually using the auto_mkindex command. The indexes you create are
 not accessible to currently running DesignSync clients, but you can
 issue the auto_reset command in a DesignSync client to make the
 procedures in the indexes accessible. Thus, using auto_mkindex and
 auto_reset helps you efficiently debug your stcl procedures.

 The auto_mkindex command creates the array of stcl procedures used
 by the current Tcl interpreter. These procedures are stored in the
 auto_index array and are loaded by the Tcl autoloader when users at
 your site invoke them. These autoloaded stcl procedures are only
 accessible in the stcl mode of DesignSync. If the auto_index
 generates successfully, a file named tclIndex is created in the
 site or custom tcl directory.

 For your stcl procedures to be autoloaded, you must store the
 procedure files in the site-wide or project-level tcl directory.
 Thus, the <directory_name> argument must be the absolute path to
 the site or project tcl directory:

 * For site-wide stcl files: <SYNC_SITE_CUSTOM>/share/client/tcl

 * For project-level stcl files: <SYNC_PROJECT_CFGDIR>/tcl

 SYNC_PROJECT_CFGDIR has no default; no project information is
 loaded if this environment variable is not set. SYNC_SITE_CUSTOM
 resolves to <SYNC_CUSTOM_DIR>/site.

 Note: SYNC_SITE_CUSTOM is equivalent to <SYNC_CUSTOM_DIR>/site;
 if SYNC_SITE_CUSTOM is not set, but SYNC_CUSTOM_DIR is set,
 DesignSync will still access the site-wide stcl files.
 You must have write access to the site or client tcl directory
 for the auto_index to be generated.

 If you specify a file with the <file> argument, you must specify

TCL Interface

1006

 the entire name of the file, including the .tcl extension. If you
 do not specify a file, auto_mkindex adds procedures in all files
 with .tcl extensions in the specified directory to the auto_index
 array.

SYNOPSIS

 auto_mkindex <directory_name> [<file>...]

 Note: This command is supported only in stcl mode.

RETURN VALUE

 none

SEE ALSO

 parray auto_index, auto_reset

EXAMPLES

 This example adds the procedures in the site tcl directory to the
 Tcl index. In this example, the procedure, popasic, is included in
 a file, revcmds.tcl in the site tcl directory,
 <SYNC_DIR>/custom/site/share/client/tcl. The example also shows how
 to use auto_reset to make the newly added procedure accessible in
 the current session.

 stcl> auto_mkindex "c:\\Program Files\\Synchronicity\\DesignSync\\
 custom\\site\\share\\client\\tcl"
 stcl> auto_reset
 0
 stcl> popasic
 ...

auto_reset

auto_reset Command

NAME

 auto_reset - Resets the Tcl autoload index

ENOVIA Synchronicity Command Reference - Module

1007

DESCRIPTION

 This command lets you use newly indexed stcl procedures without
 restarting your DesignSync client. Use the auto_mkindex command to
 index new stcl procedures. Then issue the auto_reset command to
 make the new procedures accessible in your current DesignSync
 session.

 You must have write access to the site-wide and project-level tcl
 directories, as well as the tclIndex files in those directories,
 for the indexes to be reloaded. The site and project tcl
 directories are located as follows:

 * For site-wide stcl files: <SYNC_SITE_CUSTOM>/share/client/tcl

 * For project-level stcl files: <SYNC_PROJECT_CFGDIR>/tcl

SYNOPSIS

 auto_reset

 Note: This command is supported only in stcl mode.

RETURN VALUE

 0 if the indexes are loaded successfully; 1 otherwise.

SEE ALSO

 auto_mkindex, parray auto_index

EXAMPLES

 This example shows how to use auto_reset to make a newly added
 procedure accessible in the current session.

 stcl> auto_mkindex "c:\\Program Files\\Synchronicity\\DesignSync\\
 custom\\site\\share\\client\\tcl"
 stcl> auto_reset
 0
 stcl> popasic
 ...

gets

TCL Interface

1008

gets Command

NAME

 gets - Reads a string from a file

DESCRIPTION

 This command is the Tcl gets command with Synchronicity
 extensions. Refer to a Tcl language reference manual for
 a full description of the standard gets command.

 Synchronicity has extended the gets command to a -prompt
 option that you use to specify a prompt string.

SYNOPSIS

 See a Tcl language reference manual.

EXAMPLES

 The following example demonstrates the -prompt option, which
 pops up a simple dialog box (when run from the graphical
 interface) and prompts the user for input:

 set name [gets stdin -prompt "Enter your name:"]

parray auto_index

parray auto_index Command

NAME

 parray auto_index - Lists the autoloaded stcl procedures

DESCRIPTION

 This command returns the array of stcl procedures in the current
 Tcl interpreter. These procedures are stored in the auto_index

ENOVIA Synchronicity Command Reference - Module

1009

 array and are loaded by the Tcl autoloader when you invoke them.
 You can add procedures to the Tcl interpreter by storing them in a
 designated tcl directory and then invoking a DesignSync client or
 by indexing them manually using the auto_mkindex command.

 If you use auto_mkindex to manually index the new procedures, issue
 the auto_reset command to make the auto_index accessible in the
 current session. The autoloaded stcl procedures are only
 accessible in the stcl mode of DesignSync.

SYNOPSIS

 parray auto_index

 Note: This command is supported only in stcl mode.

RETURN VALUE

 An array of stcl procedures and their source files.

SEE ALSO

 auto_mkindex, auto_reset

EXAMPLES

 This example lists the stcl procedures currently indexed as part
 of the Tcl interpreter:

 stcl> parray auto_index

 # auto_index(::safe::interpAddToAccessPath)= source {c:/
 Program Files/Synchronicity/DesignSync/share/tcl/
 library/safe.tcl}
 # auto_index(::safe::interpConfigure) = source {c:/Program Files/
 Synchronicity/DesignSync/share/tcl/library/safe.tcl}
 ...
 ...
 ...
 # auto_index(parray) = source {c:/Program Files/
 Synchronicity/DesignSync/share/tcl/library/parray.tcl}
 # auto_index(pkg_mkIndex) = source {c:/Program Files/
 Synchronicity/DesignSync/share/tcl/library/init.tcl}
 # auto_index(pop) = source {c:/Program Files/
 Synchronicity/DesignSync/custom/site/share/client/tcl/
 autoload.tcl}

TCL Interface

1010

 ...
 ...

puts

puts Command

NAME

 puts - Writes a string to a file

DESCRIPTION

 This command is the Tcl 'puts' command. Refer to a Tcl
 language reference manual for a full description of the
 standard 'puts' command.

 IMPORTANT:
 In previous software versions, the 'puts' command was
 extended to support two special file identifiers, 'log'
 and 'trace'. These file identifiers are no longer
 supported. The Synchronicity 'puts' command is now the
 standard Tcl 'puts' command. You can use 'puts stderr'
 in client scripts to display output on the screen. You
 can use 'puts stderr' in server scripts to channel the
 output to the server's error log,
 $SYNC_CUSTOM_DIR/servers/<host>/<port>/logs/error_log.
 Migrate existing scripts by removing instances of the
 'log' and 'trace' identifiers.

SYNOPSIS

 See a Tcl language reference manual.

SEE ALSO

 log

rstcl

rstcl Command

NAME

ENOVIA Synchronicity Command Reference - Module

1011

 rstcl - Runs server-side stcl scripts

DESCRIPTION

 This command runs server-side stcl scripts from DesignSync
 clients. You can also execute server-side scripts by passing a URL
 to the SyncServer from your browser. See the 'server-side' topic or
 the ProjectSync User's Guide for details.

 You run client-side scripts using the DesignSync run command or the
 Tcl source command. The choice of whether to implement a script as
 client-side or server-side depends on what you are trying to
 accomplish. You can use client scripts to automate user tasks or
 implement enhancements to the built-in user command set. You create
 server-side scripts for any of the following reasons:
 - To set server-wide policies (such as triggers or access controls)
 - To create server customizations (such as customized ProjectSync
 panels or data sheets)
 - To reduce the amount of client/server traffic that a
 client-side script accessing vault data would require
 - To execute commands that are only available as server-side
 commands (such as 'access reset' and most ProjectSync commands)

 When you execute a script with rstcl, the SyncServer looks for the
 specified script in the following locations (in the order listed):

 1. Server-specific Tcl scripts (UNIX only):
 <SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/tcl

 2. Site-wide Tcl scripts:
 <SYNC_CUSTOM_DIR>/site/share/tcl

 3. Enterprise-wide Tcl scripts:
 <SYNC_CUSTOM_DIR>/enterprise/share/tcl

 4. Synchronicity-provided Tcl scripts:
 <SYNC_DIR>/share/tcl

 Do not put scripts in <SYNC_DIR>/share/tcl because this
 directory is reserved for Synchronicity scripts, and your
 scripts may be overwritten when you upgrade your
 Synchronicity software.

 rstcl requests mutually exclude each other. I.e. They all acquire the
 same exclusive lock, named smdSrvrMetaDataLock. If you analyze your
 script and know it to be safe to run in parallel with other scripts,
 you may release the exclusive lock from within your script by using
 'url syslock -release smdSrvrMetaDataLock'. If your script reads or
 writes an external file, it is probably not parallelizable. rstcl
 requests and panel= requests (invoked via ProjectSync) never mutually
 exclude each other; panel requests are entirely independent of rstcl's
 lock.

TCL Interface

1012

 Notes:
 - If you make modifications to your script, use the ProjectSync
 Reset Server menu option to force the SyncServer to reread your
 script.
 - When specifying 'sync:' URLs within scripts that are run on the
 server, do not specify the host and port. For example, specify:
 sync:///Projects/Asic
 not
 sync://holzt:2647/Projects/Asic
 Because the script is run on the server itself, host:port
 information is unnecessary and is stripped out by the
 server, which may lead to incorrect behavior during object-name
 comparisons.
 - The SYNC_ClientInfo variable is not defined when running
 server-side scripts with rstcl -- you must use the browser-based
 invocation. All other SYNC_* variables (SYNC_Host, SYNC_Port,
 SYNC_Domain, SYNC_User, and SYNC_Parm if parameters are passed
 into the script) are available when using rstcl.

SYNOPSIS

 rstcl [-output <file>] -server <serverURL> -script <script>
 [-urlparams <name>=<value>[&<name>=value[...]]]

OPTIONS

• -output
• -server
• -script
• -urlparams

-output

 -output <file> Specifies the file to which script output is
 written. If omitted, the output is displayed.

-server

 -server <serverURL> Specifies the URL of the SyncServer that will
 execute the script. Specify the URL as follows:
 sync://<host>[:<port>]
 where 'sync://' is required, <host> is
 the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (if omitted, defaults to 2647/2679). For
 example, you might specify the following:
 -server sync://serv1.abco.com:1024

ENOVIA Synchronicity Command Reference - Module

1013

-script

 -script <script> Specifies the name of the script to be
 executed. This script must be in one of the Tcl
 script directories on the SyncServer specified
 by the -server option. The Tcl directories are
 (in the order in which they are searched):

 1. Server-specific Tcl scripts (UNIX only):
 <SYNC_DIR>/custom/servers/<host>/<port>/share/tcl

 2. Site-wide Tcl scripts:
 <SYNC_DIR>/custom/site/share/tcl

 3. Enterprise-wide Tcl scripts:
 <SYNC_DIR>/custom/enterprise/share/tcl

 4. Synchronicity-provided Tcl scripts:
 <SYNC_DIR>/share/tcl

 The script can contain Tcl constructs and
 Synchronicity commands, including server-side only
 commands.

-urlparams

 -urlparams <params> Specifies the parameters that are passed into
 the script. Specify each parameter as a
 name/value pair separated by an equal sign (=),
 and separate multiple parameters with an
 ampersand (&):
 <param1>=<value1>&<param2>=<value2>...
 For example:
 -urlparams Name=Joe&IDNum=1234

 Parameters are passed into the script using the
 global variable SYNC_Parm, which is a Tcl
 array. The array keys are the names of the
 parameters. To access the value of a parameter
 from within the script, use the following syntax:

 $SYNC_Parm(<param_name>)

 For example, the following Tcl line would
 display the value of the 'name' parameter:

 puts "The name is: $SYNC_Parm(name)"

 Note: If any parameter name or value
 contains whitespace, surround the entire
 parameter list with double quotes. For example:

TCL Interface

1014

 -urlparams "name=Joe Black&IDNum=1234"

RETURN VALUE

 o If -output is not specified, returns (and displays) the script
 output.
 o If -output is specified, output is written to the specified file
 and the return value is an empty string.

 If the script has an error, a Tcl exception is thrown from the
 client side and the Tcl stack trace is output. Proper usage
 for handling exceptions would be to provide an exception handler
 when you use the rstcl command:
 if [catch {rstcl -server ...} result] {
 # Something bad happened.
 # 'result' contains the output generated by the script
 # prior to the error and the Tcl stack trace.
 } else { # All is fine.
 # 'result' contains whatever output is generated
 # by the script.
 }

 If the -output option to the rstcl command was specified, then
 the exception is still thrown, but the script output and Tcl stack
 trace are written to the specified output file.

SEE ALSO

 server-side, run, url syslock

EXAMPLES

 A common use of rstcl is to run the 'access reset' command, which
 restarts the SyncServer. See the 'access reset' command for details.

 Most ProjectSync-related scripts must be run on the server and
 could therefore use rstcl. This example creates a ProjectSync note
 using the 'note create' command, which is a server-side only
 command, and displays the URL of the new note. This output is then
 returned to the rstcl command in callNoteCreate.tcl.

 1.In the <SYNC_CUSTOM_DIR>/site/share/tcl directory on the
 holzt:2647 server is the noteCreate.tcl script, which contains
 the following:

 set noteUrl [note create -type Note \
 [list Title $SYNC_Parm(title)] [list Body $SYNC_Parm(body)] \
 [list Author $SYNC_Parm(author)]]
 puts "$noteUrl"

ENOVIA Synchronicity Command Reference - Module

1015

 2. On the client side, the callNoteCreate.tcl script provides an
 exception catcher in case the noteCreate.tcl script fails.

 if [catch {rstcl -server sync://holzt:2647 -script noteCreate.tcl \
 -urlparams "author=Goss&title=This is a note.&body=New note."} \
 result] {
 puts "Couldn't create the note!"
 } else {
 puts "Created note: $result"
 }

 3. From stcl, run the client script:

 stcl> source callNoteCreate.tcl
 Created note: sync:///Note/SyncNotes/Note/3

 You could also run the rstcl command directly from the command
 line (no exception catcher). Doing so creates a second note:

 stcl> rstcl -server sync://holzt:2647 -script noteCreate.tcl \
 -urlparams "author=Goss&title=Another note.&body=New note."
 sync:///Note/SyncNotes/Note/4

run

run Command

NAME

 run - Executes a DesignSync command file or stcl script

DESCRIPTION

 This command will execute the DesignSync or Tcl commands contained
 in the specified file. Specify the file with a relative or absolute
 path, not as a URL. If the extension of the file is ".tcl", the
 script is run in stcl mode, irrespective of the current mode (dss
 or stcl). Otherwise, the script is run in dss/dssc mode
 irrespective of your current mode. From stcl/stclc, using the run
 command is the same as using the Tcl source command except that the
 run command does not return the script's return value.

 If you do not specify a path to the command file, the run command
 looks in the default log directory. By default, the default log
 directory is your home directory (as defined by $HOME on UNIX or
 your user profile, which is managed by the User Manager tool, on
 Windows platforms). You can change the default using the
 -defaultdir option to either the log or the run command.

 The batch file may be created in a text editor or captured with

TCL Interface

1016

 the log command. The '#' character in column 1 treats the
 remainder of the line as a comment.

 Note: Use the rstcl command to execute server-side stcl scripts.

SYNOPSIS

 run [-defaultdir <dir>] [-dryrun] [-ignoreerrs] [-verbose]
 [--] [<filename>]

OPTIONS

• -defaultdir
• -dryrun
• -ignoreerrs
• -verbose
• --

-defaultdir

 -defaultdir <dir> Set the location of the default log directory,
 which is also where DesignSync looks for
 scripts. This value is saved between sessions.

 Note: Specifying the defaultdir is mutually
 exclusive with specifying a filename to run.

-dryrun

 -dryrun Like verbose, but do not execute. This option
 is useful to verify the behavior of a command file
 before executing it.

-ignoreerrs

 -ignoreerrs Continue executing the DesignSync command file even
 if an error is encountered.

 This option is not allowed when running stcl
 (*.tcl) scripts. You must provide your own Tcl
 exception handler to catch errors in your stcl
 script. Use the Tcl 'catch' command.

-verbose

ENOVIA Synchronicity Command Reference - Module

1017

 -verbose Print commands as they are executed.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 none

SEE ALSO

 log, rstcl

EXAMPLES

 This example sets the default log directory, which is also where
 DesignSync looks for scripts, to /home/goss/Projects, then executes
 myscript.dss.

 dss> run -defaultdir /home/goss/Projects
 dss> run myscript.dss

1019

Third-Party Integrations

DSDFII

addcdslib

addcdslib Command

NAME

 addcdslib - Specifies a cds.lib file

DESCRIPTION

 This command adds a path to the search path that DesignSync
 uses to locate Cadence cds.lib files. The cds.lib files map Cadence
 libraries to their locations. For example, a cds.lib file might
 contain the following:
 DEFINE TTL1 /home/TTLLibraries/TTL1
 DEFINE basic /usr1/CoreLibraries/basic

 DesignSync uses these mappings to resolve dependencies that a
 design object, in this case a Cadence cell view, has on other design
 objects. Using the 'url relations' command, you could, for example,
 write an stcl script that checks out a cell view and all of its
 dependencies.

 Specify the path argument to the addcdslib command as the absolute
 path to the directory containing the cds.lib file (do not include
 "cds.lib" as part of the specification).

SYNOPSIS

 addcdslib <path>

OPTIONS

• --

--

Third-Party Integrations

1020

 -- Indicates that the command should stop looking for
 command options. Use this option when the path
 you specify begins with a hyphen (-).

SEE ALSO

 url relations

EXAMPLES

 This command shows how to resolve dependencies by using the
 addcdslib command. The cds.lib file in /home/Libraries contains
 the library definition for "basic", but not for "sample".

 stcl> url relations cmos_sch.sync.cds dependencies
 {<unrecognized alias>} basic:vdd/symbol.sync.cds
 {<unrecognized alias>} basic:gnd/symbol.sync.cds
 {<unrecognized alias>} sample:nmos/symbol.sync.cds
 stcl> addcdslib /home/Libraries
 stcl> url relations cmos_sch.sync.cds dependencies
 file:///home/tgoss/Projects/Cadence/basic/opin/symbol.sync.cds\
 basic:opin/symbol.sync.cds
 file:///home/tgoss/Projects/Cadence/basic/gnd/symbol.sync.cds\
 basic:gnd/symbol.sync.cds
 {<unrecognized alias>} sample:nmos/symbol.sync.cds

1021

Administration

Access Control

access Commands

NAME

 access - Access-control commands

DESCRIPTION

• Notes for Modules

 These commands provide access to the access control system used by
 DesignSync tools. Note that some access control commands (access
 allow, access define, access deny, access filter,
 access global, access init) are available ONLY within an
 AccessControl file. See the ENOVIA Synchronicity Access Control Guide
 for more information.

Notes for Modules

 Note: The access decline command is only available for modules access
 controls and is used only within an access control file.

SYNOPSIS

 access <access_command> [<access_command_options>]

 Usage: access [allow|db_filter|decline|define|deny|filter|global|
 init|list|reset|verify]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

Administration

1022

SEE ALSO

 stcl, server-side, rstcl, access reset, access verify

EXAMPLES

 See specific "access" commands.

ACAdmin Commands

acadmin

acadmin Command

NAME

 acadmin - Access Administrator Commands

DESCRIPTION

 The Access Administrator tool (ACAdmin) provides a graphical web
 interface to create, remove, maintain, and manage access controls.
 Using the ACAdmin interface provides a simpler, more intuitive
 interface to customizing the access controls for DesignSync. In
 addition to the graphical web interface, DesignSync provides a set of
 acadmin commands, prefixed by "acadmin" to use for scripting or other
 acadmin maintenance. For more information on the functionality,
 organization and usage of ACAdmin, see the ENOVIA Synchronicity
 Access Control Guide.

 In order to use any of the acadmin commands, the Access Control
 Administrator must be enabled on the server. When any of these
 commands are used to modify the ACAdmin configuration, the changes
 made are not applied to the server until the acadmin reset command is
 run.

SYNOPSIS

 acadmin <acadmin_command> [acadmin_command_options>]

 Usage: acadmin
 [addgroup|addgroupusers|addobj|addusers|listcats|listcmds|listgroups|
 listobjs|listperms|listusers|reset|rmgroup|rmgroupusers|rmobj|

ENOVIA Synchronicity Command Reference - Module

1023

 rmusers|setcatperm]

EXAMPLES

 See specific acadmin commands.

acadmin addgroup

acadmin addgroup Command

NAME

 acadmin addgroup - Create a new user group.

DESCRIPTION

 This command creates user groups. These user groups are then
 available to be assigned to command categories. Grouping users into
 groups allows you to define and assign roles and maintain the roles
 and functions easily even when individual group members change.

 Notes:
 o Usually only the DesignSync administrators should have permission
 to create or modify user group definitions.

 o There are three dynamic (or virtual) user groups that should never
 be manipulated manually. They are All-Module-Owners,
 All-Project-Owners, and All-Server-Users. These groups are
 automatically generated when ACAdmin is reset. If you have made
 changes that affect these groups, you should perform an ACAdmin
 Reset.

 This command is subject to ACAdmin access controls as defined in
 AccessControl.aca. See the ENOVIA Synchronicity Access Control Guide
 for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

 To apply the changes created by this command to the server, you must
 reset the server using the acadmin reset command or ACAdmin Reset
 from the DesignSync Web UI.

SYNOPSIS

 acadmin addgroup -group <groupName> [-server <SyncURL>]

Administration

1024

ARGUMENTS

• Sync URL

Sync URL

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

• -group

-group

 -group <groupName> Name of the user group. This name should
 correspond to DesignSync naming conventions. For
 a list of reserved characters that should not be
 used in the user group name, see the ENOVIA
 Synchronicity DesignSync Data Manager User's
 Guide: URL Syntax.

 Tip: To allow you to easily differentiate between
 user groups and individual users, you should
 implement a naming convention such as prefixing
 the user group with a standard prefix like Group-
 or by creating group names in all capital
 letters. For example:
 DEVELOPERS
 or
 GROUP-Developers

RETURN VALUE

ENOVIA Synchronicity Command Reference - Module

1025

 This command doesn't return any TCL values. If the command succeeds,
 you'll receive a success message. If the command fails, you'll
 receive an error message explaining the failure.

SEE ALSO

 acadmin addgroupusers, acadmin listgroups, acadmin rmgroup

EXAMPLES

• Example of Creating a Group in ACAdmin

Example of Creating a Group in ACAdmin

 This example creates a documentation group in ACAdmin.

 dss> acadmin addgroup -group GROUP-Doc -server \
 sync://serv1.ABCo.com:2647

 Created 1 User Group(s)

acadmin addgroupusers

acadmin addgroupusers Command

NAME

 acadmin addgroupusers - Add users to group

DESCRIPTION

 This command adds defined users to an existing group. Both usernames
 and group names are case sensitive. You can only add users to one
 group at a time.

 The group being added to must already exist. To create new groups,
 use the acadmin addgroup command.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

 To apply the changes created by this command to the server, you must
 reset the server using the acadmin reset command or ACAdmin Reset

Administration

1026

 from the DesignSync Web UI.

SYNOPSIS

 acadmin addgroupusers -group <groupName> -users <userlist>
 [-server <SyncURL>]

ARGUMENTS

• Sync URL

Sync URL

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

• -group
• -user

-group

 -group <groupName> Name of the group to which the users are being
 added. This group must already exist. Group
 names are case sensitive.

 If you are not sure what groups exist, use the
 acadmin listgroup command to get a list of
 existing groups.

 Note: If the group is associated with an object,
 you need to specify the fully extended group

ENOVIA Synchronicity Command Reference - Module

1027

 name. Fully extended group name is specified as:

 <GroupName>@sync:///<ServerObjectPath>
 Where <GroupName> is the case sensitive name of
 the group.
 <ServerObjectPath> is the path to the object on
 which the group was created for example:
 Projects/[<ProjectFolder>/...]ProjectName
 Modules/[<Category>/...]ModuleName

-user

 -user <userlist> A comma separated list of users to associate with
 the group. The users must already exist. You
 may also use the special user definitions
 provided by DesignSync. For more information on
 the special users, see the Access Administration
 Guide.

RETURN VALUE

 This command does not return any TCL values. When successful, this
 command returns a success message. If the command fails, it displays
 an error message explaining the failure.

SEE ALSO

 acadmin addgroup, acadmin addusers, acadmin listusers,
 acadmin listgroups, acadmin rmgroup, acadmin rmgroupusers

EXAMPLES

• Example of a User defined for a Usergroup
• Example of Adding a User to a Usergroup defined for an Object

Example of a User defined for a Usergroup

 This example shows adding a user to a usergroup.

 dss> stcl> acadmin addgroupusers -group DocWriters -users rsmith \
 -server sync://serv1.ABCo.com:30126

 Updated 1 User Group(s)

Example of Adding a User to a Usergroup defined for an Object

Administration

1028

 This example shows adding a user to a usergroup when the usergroup is
 defined for a specific object, in this example, it is the module
 XLP-12Pro in the ChipDesign category.

 dss> acadmin addgroupusers -group \
 chipDevelopers@sync:///Modules/ChipDesign/XLP-12Pro -users \
 thopkins -server sync://serv1.ABCo.com:30126

 Updated 1 User Group(s)

acadmin addobj

acadmin addobj Command

NAME

 acadmin addobj - Manage the given object with ACAdmin

DESCRIPTION

 This command adds permissions for all the existing categories for
 specified object to the acadmin configuration files. Using the
 setcatperm command, you can then modify the permissions for each
 category as needed, granting finer control for the specified object.

 The object does not need to exist in order to be added. For example,
 if you have a list of modules be created, you can define the access
 permissions first and then create the modules as needed.

 Note: When this command is run, it assigns the permission(s) selected
 to all categories that exist.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

 To apply the changes created by this command to the server, you must
 reset the server using the acadmin reset command or ACAdmin Reset
 from the DesignSync Web UI.

SYNOPSIS

 acadmin addobj -object <objectURL> [-permission <permission>]
 [-server <SyncURL>]

ARGUMENTS

ENOVIA Synchronicity Command Reference - Module

1029

• Sync URL

Sync URL

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

• -object
• -permission

-object

 -object <objectURL> Enter the Sync URL of the object on which to set
 the permissions. You can set the permissions for
 any object on the server. You may specify objects
 as follows:

 sync:///
 Controls the default permissions for all
 object-independent actions on the server. For
 example, user creation and removal actions do not
 depend on specific server objects. (Default)

 sync:///*
 Controls the default permissions for all
 object-dependent actions on the server. For
 example, browsing objects on the server, creating
 or modifying modules, etc. depend on having
 access to related server objects.

 sync:///Projects[/ProjectName]/[pathtoObject]
 Controls the permission for the specified project
 or the entire project area on the server.

Administration

1030

 sync:///Modules[/Category [...]][/ModName]
 Controls the permission for the specified module,
 category, or entire module area on the server.

 Notes:
 You can use wildcards, such as * to specify all
 matching objects within the specified path, for
 example: sync:///Modules/Chip/*.c controls access
 to all .c files within the module Chip. If Chip
 was a category and you wanted to specify all
 modules within the category, you could specify
 the URL either of the following ways:
 sync:///Modules/Chip/*
 sync:///Modules/Chip

 The sync:/// and sync:///* URLs are generic Sync
 URLs that can be used to provide default access
 for the server.

-permission

 -permission Enter a comma separated list of defined
 <permission> permissions to associate with the object.

 ALL, LIST, EXCLLIST, NONE, SERVDEF

 When LIST or EXCLLIST are used, you can specify a
 user or userlist for whom to set the permissions.

RETURN VALUE

 This command doesn't return any TCL values. If the command succeeds,
 you'll receive a success message for each category associated with
 the object. If the command fails, you'll receive an error message
 explaining the failure.

SEE ALSO

 acadmin addgroup, acadmin addgroupusers, acadmin rmobj

EXAMPLES

• Example of Adding the Permissions Categories to A Server Object

Example of Adding the Permissions Categories to A Server Object

ENOVIA Synchronicity Command Reference - Module

1031

 This example shows how to create categories for a server object. The
 command creates all the categories that exist on the server in the
 acadmin configuration file.

 dss> acadmin addobj -object sync:///Modules/Chip/ALU -permission ALL \
 -server sync://serv1.ABCo.com:30126

 Category ACAProjectDefs created
 Category ADMIN-MODULE created
 Category BROWSE created
 Category DS-PROJADMIN created
 Category DS-READ created
 Category DS-WRITE created
 Object sync:///Modules/Chip/ALU has been added

acadmin addusers

acadmin addusers Command

NAME

 acadmin addusers - Add a user(s) to specified Object and Category

DESCRIPTION

 This command adds one or more users to a specified category of
 permissions assigned to an object. This allows you to modify the list
 of users assigned to a permissions category as needed.

 Note: The specified user does not need to exist when this
 command is run; it can be created later. For more information on
 creating users in DesignSync see the DesignSync Administrator's
 Guide.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

 To apply the changes created by this command to the server, you must
 reset the server using the acadmin reset command or ACAdmin Reset
 from the DesignSync Web UI.

SYNOPSIS

 acadmin addusers -category <categoryName> -object <objectURL>
 -users <userlist> [-server <SyncURL>]

Administration

1032

ARGUMENTS

• Sync URL

Sync URL

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

• -category
• -option
• -user

-category

 -category Name of the command category associated with the
 <categoryName> user. The command category must exist already.

-option

 -object <objectURL> Sync URL of the object associated with the user.
 The object or object special URL (for example,
 sync:///) must already exist.

-user

 -user <userlist> A comma separated list of users to associate with

ENOVIA Synchronicity Command Reference - Module

1033

 the category and object.

RETURN VALUE

 This command does not return a TCL value. The commands displays a
 success message when successful or an appropriate error if the
 command fails.

SEE ALSO

 acadmin addgroup, acadmin addgroupusers, acadmin addobj,
 acadmin rmusers

EXAMPLES

• example_adduser_multiple

 This example shows adding three users to a category for an object.

 dss> acadmin addusers -category ADMIN-MODULE -object \
 sync:///Modules/Chip/ALU -users rsmith,thopkins,chipAdmin \
 -server sync://lwvrh17mon:30126

 Category ADMIN-MODULE updated

acadmin listcats

acadmin listcats Command

NAME

 listcats - Lists all categories defined on a server

DESCRIPTION

 The listcats command lists all the categories defined on the
 specified server.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

Administration

1034

SYNOPSIS

 acadmin listcats [-server <SyncURL>]

ARGUMENTS

• Sync URL

Sync URL

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

RETURN VALUE

 This command does not return a TCL value. When successful, this
 command lists the categories available on the server. If the command
 fails, it displays an error message explaining the failure.

SEE ALSO

 acadmin addusers, acadmin listcmds, acadmin listperms,
 acadmin setcatperm

EXAMPLES

• Example of Listing the Categories for a Server

Example of Listing the Categories for a Server

ENOVIA Synchronicity Command Reference - Module

1035

 This example shows listing the categories for a server. This server
 has no custom categories, so the listing shows only the default
 categories that come with ACAdmin.
 dss> acadmin listcats -server sync://serv1.ABCo.com:2647

 ACAProjectDefs
 ADMIN-MODULE
 BROWSE
 DS-PROJADMIN
 DS-READ
 DS-WRITE
 Mirrors
 PS-Read
 PS-Write
 SRV-ADMIN

acadmin listcmds

acadmin listcmds Command

NAME

 acadmin listcmds - Lists all commands by category

DESCRIPTION

 The listcmds command lists all the commands associated with the
 defined categories. If you are interested in the commands associated
 with a specific category, you can use the -category option to limit
 the results to a single category.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

SYNOPSIS

 acadmin listcmds [-category <categoryName>] [-server <SyncURL>]

ARGUMENTS

• Sync URL

Sync URL

Administration

1036

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

• -category

-category

 -category Name of the command category associated with the
 <categoryName> user. The command category must exist already.

 Note: You can only specify a single category.

RETURN VALUE

 Does not return a TCL value. Displays an alphabetized list of
 categories and the commands within each category.

SEE ALSO

 acadmin addusers, acadmin listcats, acadmin listperms,
 acadmin setcatperm

EXAMPLES

• Example Showing Listing Commands for All Categories on the Server

Example Showing Listing Commands for All Categories on the Server

 This example shows the list of command associated with the categories

ENOVIA Synchronicity Command Reference - Module

1037

 for a server. This server has no custom categories, so the listing
 shows only the default categories that come with ACAdmin.

 dss> acadmin listcmds -server sync://serv1.ABCo.com:2647

 ACAProjectDefs {AcaProjCatPrmDef AcaProjUserGroupDef}
 ADMIN-MODULE {ChangeCommentAll DeleteFolder DeleteVault
 DeleteVersion ExportModule FreezeModule ImportModule MemberUnlockAll
 Mkmod Move MoveModule Rmalias Rmconf Rmedge Rmmod Rollback SetOwner
 SwitchLocker TagRelease UnfreezeModule UnlockAll}
 BROWSE BrowseServerObj
 DS-PROJADMIN {ChangeCommentAll DeleteFolder DeleteVault
 DeleteVersion MakeBranch Move SetOwner SwitchLocker TagRelease
 UnlockAll}
 DS-READ CheckoutNoLock
 DS-WRITE {Addhref ChangeComment Checkin CheckoutLock HcmUpgrade Lock
 MakeBranch MakeBranchTrunk MakeFolder MemberUnlock Mkedge Retire
 Rmhref Tag Unlock Unretire}
 Mirrors Mirrors
 PS-Read {AcaViewDef BrowseServer EditUser EmailSubscribe ViewNote}
 PS-Write {AddNote AddPSReport CreateConfig DeleteNote DeletePSReport
 EditNote EditNoteAttachments EditUser ModifyConfig
 ModifyNoteProperty ReviseNoteHistory SetNoteProperty UnlockNote
 ViewNote}
 SRV-ADMIN {ACAActions AddDevelopmentInstance Addlogin AddMirror
 AddProject AddTrigger AddUser AdministrateNoteTypes
 AdministrateServer DeleteConfig DeleteDevelopmentInstance
 DeleteMirror DeleteProject DeletePSReportAll DeleteTrigger
 DeleteUser EditAllUser EditMirror EditTrigger EmailAllSubscribe
 EmailMgrAdmin ExportProject ImportProject ModifyDevelopmentInstance
 ModifyMirror ModifyProject PrimaryMirrorFetch ResetAccessControls
 Rmlogin Showlogins Suspend TransferFile ViewMirror}

acadmin listgroups

acadmin listgroups Command

NAME

 acadmin listgroups - lists the defined groups and their users

DESCRIPTION

 The acadmin listgroups command lists all defined groups. All groups
 are available server-wide. Groups can be specified as associated with
 an object, however this association is non-binding and purely
 intended as a guide to the user to indicate how the group should be
 used.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled

Administration

1038

 on the server being updated.

SYNOPSIS

 acadmin listgroups [-group <groupName>] [-server <SyncURL>]

ARGUMENTS

• Sync URL

Sync URL

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

• -group

-group

 -group <groupName> Name of the group you want to view the users
 associated with.

 Note: If the group was associated with an object,
 you need to specify the fully extended group
 name. Fully extended group name is specified as:

 <GroupName>@sync:///<ServerObjectPath>
 Where <GroupName> is the case sensitive name of
 the group.
 <ServerObjectPath> is the path to the object on

ENOVIA Synchronicity Command Reference - Module

1039

 which the group was created for example:
 Projects/[<ProjectFolder>/...]ProjectName
 Modules/[<Category>/...]ModuleName

RETURN VALUE

 This command does not return any TCL values. If the command is
 successful it will display a list of groups, alphabetically, followed
 by a list of users.

SEE ALSO

 acadmin addgroup, acadmin addgroupusers, acadmin rmgroup,
 acadmin rmgroupusers

EXAMPLES

• Example Showing a List of All Groups
• Example Showing the Users for a Specified Group

Example Showing a List of All Groups

 This example shows the list of all groups on the server. Groups
 associated with a specific object are shown with the object path.

 dss> acadmin listgroups -server sync://serv1.ABCo.com:30126

 DocWriters mhopkins
 chipDevelopers@sync:///Modules/ChipDev/XLP-12Pro {rsmith thopkins}

Example Showing the Users for a Specified Group

 This example shows the list for the chipDevelopers group on the
 Module object XLP-12Pro. Note that when you specify a group that is
 on an object, you must specify the full group path as
 <group>@<relativeObjectPath>, as shown.

 dss> acadmin listgroups -group \
 chipDevelopers@sync:///Modules/ChipDev/XLP-12Pro -server \
 sync://serv1.ABCo.com:30126

 chipDevelopers@sync:///Modules/ChipDev/XLP-12Pro {rsmith thopkins}

acadmin listobjs

Administration

1040

acadmin listobjs Command

NAME

 acadmin listobjs - lists all acadmin managed objects on the server

DESCRIPTION

 This command lists all the objects that are managed in the acadmin
 configuration files. The objects can be added with the acadmin
 addobjs command and modified with the setcatperm command.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

SYNOPSIS

 acadmin listobjs [-server <SyncURL>]

ARGUMENTS

• Sync URL

Sync URL

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

ENOVIA Synchronicity Command Reference - Module

1041

RETURN VALUE

 This command does not return any TCL values. When successful, this
 command returns a list, in alphabetical order, of all the objects
 managed by acadmin. If the command fails, it returns an error
 message explaining the failure.

SEE ALSO

 acadmin addobj, acadmin rmobj

EXAMPLES

• Example of Listing Objects Managed by ACAdmin

Example of Listing Objects Managed by ACAdmin

 This example shows a list of all the objects managed by ACAdmin.

 dss> acadmin listobjs -server sync://serv1.ABCo.com:30127

 sync:///
 sync:///Modules/ChipDev/ALU
 sync:///Modules/ChipDev/XLP-12Pro

acadmin listperms

acadmin listperms Command

NAME

 acadmin listperms - list all permissions for the object or category

DESCRIPTION

 This command shows the permissions for all the objects that are
 managed with ACAdmin.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

SYNOPSIS

Administration

1042

 acadmin listperms [-category <categoryName>] -object <ObjectURL>
 [-server <SyncURL>]

ARGUMENTS

• Sync URL

Sync URL

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

• -category
• -object

-category

 -category Name of the command category associated with the
 <categoryName> user. The command category must exist already.

 Note: You can only specify a single category.

-object

 -object <objectURL> Enter the Sync URL of the object for which you
 are viewing the permissions. You can view the
 permissions for any object on the server. You may
 specify objects as follows:

ENOVIA Synchronicity Command Reference - Module

1043

 sync:///
 Controls the default permissions for all
 object-independent actions on the server. For
 example, user creation and removal actions do not
 depend on specific server objects. (Default)

 sync:///*
 Controls the default permissions for all
 object-dependent actions on the server. For
 example, browsing objects on the server, creating
 or modifying modules, etc. depend on having
 access to related server objects.

 sync:///Projects[/ProjectName]/[pathtoObject]
 Controls the permission for the specified project
 or the entire project area on the server.

 sync:///Modules[/Category [...]][/ModName]
 Controls the permission for the specified module,
 category, or entire module area on the server.

 Notes:
 You can use wildcards, such as * to specify all
 matching objects within the specified path, for
 example: sync:///Modules/Chip/*.c controls access
 to all .c files within the module Chip. If Chip
 was a category and you wanted to specify all
 modules within the category, you could specify
 the URL either of the following ways:
 sync:///Modules/Chip/*
 sync:///Modules/Chip

 The sync:/// and sync:///* URLs are generic Sync
 URLs that can be used to provide default access
 for the server.

RETURN VALUE

 Does not return a TCL value. When successful, this command lists the
 categories and permissions for the object, alphabetically by
 category. If there is an error, DesignSync return an appropriate
 error message explaining the failure.

SEE ALSO

 acadmin addobj, acadmin rmobj, acadmin setcatperm

EXAMPLES

• Example Showing the List of Permissions for an Object in ACAdmin

Administration

1044

Example Showing the List of Permissions for an Object in ACAdmin

 This example shows the list of permissions for a specified object in
 ACAdmin.
 dss> acadmin listperms -object sync:///Modules/ChipDev/ALU -server \
 sync://serv1.ABCo.com:2746

 DS-READ {ALL {}}
 DS-PROJADMIN {ALL {}}
 ADMIN-MODULE {ALL {anewman rsmith}}
 BROWSE {ALL {}}
 ACAProjectDefs {ALL {}}
 DS-WRITE {ALL {}}

acadmin listusers

acadmin listusers Command

NAME

 acadmin listusers - lists users for the server or specified object

DESCRIPTION

 The acadmin listusers command lists users associated with acadmin
 objects or groups. As shown in the example below, user-defined groups
 are expanded in the output, so you will not see the user-defined
 group name. Virtual groups, such as All-Module-Owners, are not
 expanded and you may see them referenced in the command output. For
 more information on virtual groups and how to use them, see the
 ENOVIA Synchronicity Access Control Guide.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

SYNOPSIS

 acadmin listusers [-object <ObjectURL>] [-server <SyncURL>]

ARGUMENTS

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]

ENOVIA Synchronicity Command Reference - Module

1045

 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

• -object

-object

 -object <objectURL> Enter the Sync URL of the object on which to view
 the users. You can view the users for any object
 on the server. You may specify objects as
 follows:

 sync:///
 Controls the default permissions for all
 object-independent actions on the server. For
 example, user creation and removal actions do not
 depend on specific server objects. (Default)

 sync:///*
 Controls the default permissions for all
 object-dependent actions on the server. For
 example, browsing objects on the server, creating
 or modifying modules, etc. depend on having
 access to related server objects.

 sync:///Projects[/ProjectName]/[pathtoObject]
 Controls the permission for the specified project
 or the entire project area on the server.

 sync:///Modules[/Category [...]][/ModName]
 Controls the permission for the specified module,
 category, or entire module area on the server.

 Notes:
 You can use wildcards, such as * to specify all
 matching objects within the specified path, for
 example: sync:///Modules/Chip/*.c controls access
 to all .c files within the module Chip. If Chip

Administration

1046

 was a category and you wanted to specify all
 modules within the category, you could specify
 the URL either of the following ways:
 sync:///Modules/Chip/*
 sync:///Modules/Chip

 The sync:/// and sync:///* URLs are generic Sync
 URLs that can be used to provide default access
 for the server.

RETURN VALUE

 This command doesn't return any TCL values. If the command is
 successful, you will see a list of users who have been assigned to
 acadmin categories. If the command fails, it will return an
 appropriate error message explaining the failure.

SEE ALSO

 acadmin addusers, acadmin rmusers, acadmin listgroups

EXAMPLES

• Example of Listing Users Associated with Categories on the Server

Example of Listing Users Associated with Categories on the Server

 This example shows the users associated with acadmin categories on
 the server. This is a very simple example which has very open
 permissions except for one category assigned to the user group
 DocWriters. The user rsmith is the only user in the group
 DocWriters, therefore, his is the only username that appears
 separately.

 dss> acadmin listusers -server sync://serv1.ABCo.com:2476

 everyone rsmith

acadmin reset

acadmin reset Command

NAME

 acadmin reset - Regenerates the AccessControl file and runs an
 Access Reset.

ENOVIA Synchronicity Command Reference - Module

1047

DESCRIPTION

 The acadmin reset command regenerates the AccessControl to collect
 all the changes made to the system since the last reset. Then the
 command runs the Access Reset to load the changes onto the server.

SYNOPSIS

 acadmin reset [-server <SyncURL>]

ARGUMENTS

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

RETURN VALUE

 This command does not return a TCL value. When successful, the
 command displays a success result. When it fails, the command
 displays an error explaining the failure.

SEE ALSO

 acadmin addgroup, acadmin addgroupusers, acadmin addobj,
 acadmin addusers, acadmin rmgroup, acadmin rmgroupusers,
 acadmin rmobj, acadmin rmusers, acadmin setcatperm

EXAMPLES

Administration

1048

• ACAdmin Reset Example

ACAdmin Reset Example

 This example shows the response you see when an ACAdmin Reset is
 successful.

 dss> acadmin reset -server sync://serv1.ABCo.com:2647

 Updated AccessControl file
 Reset Access Control

acadmin rmgroup

acadmin rmgroup Command

NAME

 acadmin rmgroup - Remove a user group.

DESCRIPTION

 This command removes user groups. These user groups, when removed, are
 removed from all the command categories they were associated with.

 Notes:
 o Usually only the DesignSync administrators should have permission
 to remove or modify user group definitions.

 o There are three dynamic (or virtual) user groups that can never be
 removed. They are All-Module-Owners, All-Project-Owners, and
 All-Server-Users. These groups are automatically generated when
 ACAdmin is reset.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

SYNOPSIS

 acadmin rmgroup -group <groupName> [-server <SyncURL>]

ARGUMENTS

• Sync URL

ENOVIA Synchronicity Command Reference - Module

1049

Sync URL

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

 -group <groupName> Name of the user group. This name should
 match exactly the name used when the group was
 added, including case. If you are not sure how to
 correctly specify the name of the group being
 removed, you can list the available groups using
 the acadmin listgroup command.

RETURN VALUE

 This command doesn't return any TCL values. If the command succeeds,
 you'll receive a success message. If the command fails, you'll
 receive an error message explaining the failure.

SEE ALSO

 acadmin addgroup, acadmin listgroups, acadmin rmgroupusers

EXAMPLES

• Example of Removing a Group

Example of Removing a Group

Administration

1050

 This example shows removing a group from the server.

 dss> acadmin rmgroup -group DocWriters -server \
 sync://serv1.ABCo.com:2647

 Deleted 1 User Group(s)
 Updated Permissions file

acadmin rmgroupusers

acadmin rmgroupusers Command

NAME

 acadmin rmgroupusers- Remove users from group.

DESCRIPTION

 This command removes defined users from an existing group. Both
 usernames and groupsnames are case sensitive. You can only remove
 users from one group at a time.

 This does not remove users or groups from the system. In order to
 delete users or groups, you must use the acadmin rmusers or acadmin
 rmgroups command respectfully.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

 To apply the changes created by this command to the server, you must
 reset the server using the acadmin reset command or ACAdmin Reset
 from the DesignSync Web UI.

SYNOPSIS

 acadmin rmgroupusers -group <groupName> -users <userlist>
 [-server <SyncURL>]

ARGUMENTS

• Sync URL

Sync URL

ENOVIA Synchronicity Command Reference - Module

1051

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

• -group
• -user

-group

 -group <groupName> Name of the group to which the users are being
 removed. Group names are case sensitive.

 If you are not sure what groups exist, use the
 acadmin listgroups command to get a list of
 existing groups.

 Note: If the group is associated with an object,
 you need to specify the fully extended group
 name. Fully extended group name is specified as:

 <GroupName>@sync:///<ServerObjectPath>
 Where <GroupName> is the case sensitive name of
 the group.
 <ServerObjectPath> is the path to the object on
 which the group was created for example:
 Projects/[<ProjectFolder>/...]ProjectName
 Modules/[<Category>/...]ModuleName

-user

 -user <userlist> A comma separated list of users to associate with
 the group. User names are case sensitive. If you
 are not sure what usernames to specify, user the
 acadmin listusers command to get a list of

Administration

1052

 existing users. You may also use the special user
 definitions provided by DesignSync. For more
 information on the special users, see the Access
 Administration Guide.

RETURN VALUE

 This command does not return any TCL values. When successful, the
 command indicates that the usergroup was removed. If the command
 fails, DesignSync returns an appropriate error message explaining the
 failure.

SEE ALSO

 acadmin addgroup, acadmin addusers, acadmin addgroupusers,
 acadmin listusers, acadmin listgroups, acadmin rmgroup

EXAMPLES

• Example of Removing a User from a Group

Example of Removing a User from a Group

 This example shows removing a user from an acadmin group.

 dss> acadmin rmgroupusers -user rsmith -group DocWriters -server \
 sync://serv1.ABCo.com:2647

 Updated 1 User Group(s)

acadmin rmobj

acadmin rmobj Command

NAME

 acadmin rmobj - Remove the object from ACAdmin management

DESCRIPTION

 This command removes all the categories defined for the specified
 object from the acadmin configuration files. The object must have
 been added to acadmin to manage, but, the object does not need to
 exist on the server.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

ENOVIA Synchronicity Command Reference - Module

1053

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

 To apply the changes created by this command to the server, you must
 reset the server using the acadmin reset command or ACAdmin Reset
 from the DesignSync Web UI.

SYNOPSIS

 acadmin rmobj -object <objectURL> [-server <SyncURL>]

ARGUMENTS

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

 -object <objectURL> Enter the Sync URL of the object to remove from
 ACAdmin control. You may specify objects as
 follows:

 sync:///Projects[/ProjectName]/[pathtoObject]
 Controls the permission for the specified project
 or the entire project area on the server.

 sync:///Modules[/Category [...]][/ModName]
 Controls the permission for the specified module,
 category, or entire module area on the server.

 Note:
 The sync:/// and sync:///* URLs are generic Sync
 URLs that can be used to provide default access
 for the server.

Administration

1054

RETURN VALUE

 This command does not return any TCL values. When successful, the
 command returns a message indicating that the object was
 removed. If the command fails, it returns an error message explaining
 the failure.

SEE ALSO

 acadmin addobj, acadmin rmgroup, acadmin rmgroupusers

EXAMPLES

• Example of Removing an Object from ACAdmin Management

Example of Removing an Object from ACAdmin Management

 This example shows removing an object from ACAdmin management.

 dss> acadmin rmobj -object sync:///Modules/ChipDev/ALU -server \
 sync://server1.ABCo.com:2647

 Object sync:///Modules/ChipDev/ALU has been deleted from AC
 definitions.

acadmin rmusers

acadmin rmusers Command

NAME

 acadmin rmusers - Removes a user(s) from the specified Object and
 Category.

DESCRIPTION

 This command removes one or more users from a specified category of
 permissions assigned to an object. This allows you to modify the list
 of users assigned to a permissions category as needed.

 users are assigned to a permissions category as your needs change.

 Note: The user does not need to exist when the command is run, as

ENOVIA Synchronicity Command Reference - Module

1055

 long as it is present in the acadmin configurations files. For more
 information on creating users in DesignSync see the DesignSync
 Administrator's Guide.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

 To apply the changes created by this command to the server, you must
 reset the server using the acadmin reset command or ACAdmin Reset
 from the DesignSync Web UI.

SYNOPSIS

 acadmin rmusers -category <categoryName> -object <objectURL>
 -users <userlist> [-server <SyncURL>]

ARGUMENTS

• Sync URL

Sync URL

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:
 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

• -category
• -object
• -user

Administration

1056

-category

 -category Name of the command category associated with the
 <categoryName> user.

-object

 -object <objectURL> Sync URL of the object associated with the user.

-user

 -user <userlist> A comma separated list of users to remove from
 the category and object.

RETURN VALUE

 This command does not return a TCL value. The command displays a
 success message when successful or an appropriate error message if the
 command fails.

SEE ALSO

 acadmin addobj, acadmin addgroup, acadmin addgroupusers

EXAMPLES

• Example of Removing a User from a Category on an Object

Example of Removing a User from a Category on an Object

 This example shows the removal of a user from a category defined for
 an object.

 dss> acadmin rmusers -object sync:///Modules/Chip/ALU -category \
 ADMIN-MODULE -user rsmith -server sync://serv1.ABCo.com:2647

 Category ADMIN-MODULE updated

acadmin setcatperm

acadmin setcatperm Command

ENOVIA Synchronicity Command Reference - Module

1057

NAME

 acadmin setcatperm - Set permission for users, objects, & categories

DESCRIPTION

 This command allows you to adjust the permissions associated with
 categories, and optionally users, associated with objects managed by
 ACAdmin.

 Before you can adjust the permissions, you need to associate the
 objects with ACAdmin using the acadmin addobj command. This also
 makes the defined categories available for the object with the
 permissions specified by the command.

 Once those have been created, the permissions for the category can be
 adjusted for all users or individual users or user groups assigned to
 the category.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 To use this command, the Access Control Administrator must be enabled
 on the server being updated.

 To apply the changes created by this command to the server, you must
 reset the server using the acadmin reset command or ACAdmin Reset
 from the DesignSync Web UI.

SYNOPSIS

 acadmin setcatperm -category <categoryName> -object <objectURL>
 -permission <permission> [-users <userlist>]
 [-server sync(s)://host:port]

ARGUMENTS

• Sync URL

Sync URL

 -server <SyncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (defaults to 2647/2679). For example:

Administration

1058

 sync://apollo.spaceco.com:1024

 If this argument is not specified, DesignSync
 users the environment variable SYNC_SERVER_URL.

 If there is no SYNC_SERVER_URL variable defined,
 DesignSync uses the vault association set on the
 current working directory. If there is no vault
 or there are multiple vaults associated with the
 directory, for example, when you have overlapping
 modules, the command fails.

OPTIONS

• -category
• -object
• -permission
• -user

-category

 -category Name of the command category being modified.
 <categoryName> The command category must exist already.

-object

 -object <objectURL> Enter the Sync URL of the object on which to set
 the permissions. You can set the permissions for
 any object on the server. You may specify objects
 as follows:

 sync:///
 Controls the default permissions for all
 object-independent actions on the server. For
 example, user creation and removal actions do not
 depend on specific server objects. (Default)

 sync:///*
 Controls the default permissions for all
 object-dependent actions on the server. For
 example, browsing objects on the server, creating
 or modifying modules, etc. depend on having
 access to related server objects.

 sync:///Projects[/ProjectName]/[pathtoObject]
 Controls the permission for the specified project
 or the entire project area on the server.

 sync:///Modules[/Category [...]][/ModName]
 Controls the permission for the specified module,
 category, or entire module area on the server.

ENOVIA Synchronicity Command Reference - Module

1059

 Note:
 The sync:/// and sync:///* URLs are generic Sync
 URLs that can be used to provide default access
 for the server.

-permission

 -permission Enter a comma separated list of defined
 <permission> permissions to associate with the object.

 ALL, LIST, EXCLLIST, NONE, SERVDEF

 When LIST or EXCLLIST are used, you can specify a
 user or userlist for whom to set the permissions.

-user

 -user <userlist> A comma separated list of users whose permissions
 are being modified for the specified category.

 If no users are specified, the permissions for
 all users in the category are modified.

RETURN VALUE

 This command does not return any TCL values. When successful, lists
 the categories that have been modified, or returns an appropriate error
message if the command fails.

SEE ALSO

 acadmin addgroup, acadmin addobj, acadmin addusers,
 acadmin listcats, acadmin listobjs, acadmin listperms, acadmin reset

EXAMPLES

• Example of Setting Permissions for a Category
• Example of Setting Permissions for a User

Example of Setting Permissions for a Category

Administration

1060

 This example shows how to set permissions for a category defined for
 a module object. The acadmin listperms command following shows
 the permissions for the category.

 dss> acadmin setcatperm -object sync:///Modules/Chip/ALU -category \
 ADMIN-MODULE -permission ALL -server sync://serv1.ABCo.com:2647

 Category ADMIN-MODULE updated

 dss> acadmin listperms -object sync:///Modules/Chip/ALU -category \
 ADMIN-MODULE -server sync://serv1.ABCo.com:2647

 ALL rsmith

Example of Setting Permissions for a User

 This example shows how to set permissions for a user associated with
 a category defined for a module object.
 dss> acadmin setcatperm -object sync:///Modules/Chip/ALU -category \
 ADMIN-MODULE -permission LIST -user rsmith -server \
 sync://lwvrh17mon:30126

 Category ADMIN-MODULE updated

 dss> acadmin listperms -object sync:///Modules/Chip/ALU -category \
 ADMIN-MODULE -server sync://lwvrh17mon:30126

 LIST rsmith

Access Control Commands

access Commands

NAME

 access - Access-control commands

DESCRIPTION

• Notes for Modules

 These commands provide access to the access control system used by
 DesignSync tools. Note that some access control commands (access
 allow, access define, access deny, access filter,
 access global, access init) are available ONLY within an
 AccessControl file. See the ENOVIA Synchronicity Access Control Guide

ENOVIA Synchronicity Command Reference - Module

1061

 for more information.

Notes for Modules

 Note: The access decline command is only available for modules access
 controls and is used only within an access control file.

SYNOPSIS

 access <access_command> [<access_command_options>]

 Usage: access [allow|db_filter|decline|define|deny|filter|global|
 init|list|reset|verify]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 stcl, server-side, rstcl, access reset, access verify

EXAMPLES

 See specific "access" commands.

access

access Commands

NAME

 access - Access-control commands

DESCRIPTION

Administration

1062

• Notes for Modules

 These commands provide access to the access control system used by
 DesignSync tools. Note that some access control commands (access
 allow, access define, access deny, access filter,
 access global, access init) are available ONLY within an
 AccessControl file. See the ENOVIA Synchronicity Access Control Guide
 for more information.

Notes for Modules

 Note: The access decline command is only available for modules access
 controls and is used only within an access control file.

SYNOPSIS

 access <access_command> [<access_command_options>]

 Usage: access [allow|db_filter|decline|define|deny|filter|global|
 init|list|reset|verify]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 stcl, server-side, rstcl, access reset, access verify

EXAMPLES

 See specific "access" commands.

access allow

access allow Command

NAME

ENOVIA Synchronicity Command Reference - Module

1063

 access allow - Allows access to the specified actions

DESCRIPTION

 The 'access allow' and related 'access deny' commands allow or deny
 access to a specified list of actions. You can allow or deny access
 for particular users and under circumstances you specify.

 See the ENOVIA Synchronicity Access Control Guide for details on
 setting up and using access controls.

SYNOPSIS

 access {allow | deny} <actionList> {everyone | [only] users <userList>}
 [when <parm> <globExpr> [when ...]]
 [-because "<message_string>"]

OPTIONS

• actionList
• everyone
• users
• userList
• when
• -because

 Note: For list parameters, (<actionList> and <userList>) surround
 multiple values with braces, for example, {Checkin Checkout}.
 The braces are optional when you specify a single value; for example,
 both {Checkout} and Checkout are valid.

actionList

 actionList The name of the actions to be controlled. The default
 actions are defined in the default Synchronicity
 access control file by 'access define' statements
 and have names such as Checkin, Checkout,
 and Delete. Note: Actions are case sensitive.

everyone

 everyone Specifies that the access control applies to all users.

Administration

1064

users

 users Specifies the group of users to which the access control
 applies. The 'only' modifier to the users argument
 indicates that users not on the list are assigned
 opposite access permissions. For example,
 'access allow Checkin users Joe' means Joe is allowed to
 check in files, but 'access allow Checkin only users Joe'
 means that nobody other than Joe is allowed to check in
 files. One use of 'only' is to define restrictive access
 rights (deny access to everyone) and then specifically
 grant rights to certain users using the 'only' modifier.
 Users can be named more than once by multiple allow and
 deny commands. Access by users listed as both allowed
 and denied is determined by the last list in which they
 appear.

userList

 userList The list of users to which 'access allow' or
 'access deny' applies. Surround a multiple list of
 users with braces; the braces are optional for a
 single user. Note: User names are case sensitive.

when

 when Use optional 'when' clauses to indicate that the
 <userList> is only allowed or denied access when the
 named parameter <parm> (corresponding to the
 <parameterList> argument of the 'access define' command)
 matches the glob-style expression given by <globExpr>.
 If multiple 'when' clauses are used, all of them
 must match in order for the access rights to be
 affected; in other words, 'when' clauses are joined
 with an implicit AND operator.

-because

 -because Use optional -because clauses with 'access allow' and
 'access deny' statements to provide a message string to
 users indicating why an action failed. In 'access allow'
 statements, use the -because clause with the 'only'
 modifier to explain under which circumstances the 'only'
 modifier is restricting access. If an AccessControl file
 contains multiple 'access allow', 'access deny', or

ENOVIA Synchronicity Command Reference - Module

1065

 'access filter' statements for an action, the -because
 clause of the last 'access allow|deny' statement
 (or the return message string in the case of an
 'access filter' statement) is returned if the action
 fails. If a -because or return message string is not
 included in the last 'access allow', 'access deny',
 or 'access filter' statement, only the default
 "Permission denied by the AccessControl system"
 message is returned.

RETURN VALUE

 none

SEE ALSO

 access decline, access filter, access reset, access verify

EXAMPLES

 The following skeleton example uses the wildcard character passed
 to access verify to ensure that notes for which users have only
 partial view access are not entirely suppressed from the GUI:

 access allow ViewNote everyone when id *

 You also can use constructs of this type for EditNote and
 DeleteNote actions.

 For additional examples of using 'access allow' and 'access deny,'
 see the ENOVIA Synchronicity Access Control Guide.

access db_filter

access db_filter Command

NAME

 access db_filter - Specify criteria for allowing or denying access
 for ViewNote or EditNote

DESCRIPTION

 This command lets you specify criteria for allowing or denying
 access to users attempting to view or edit notes. The access
 db_filter command can be used only for ViewNote and EditNote
 filters. For any ViewNote or EditNote action that requires

Administration

1066

 verifying more than one note, access db_filter performs better
 than access filter.

 The access db_filter command is used only in scripts in conjunction
 with the note query -filter command.

 The access db_filter rule always gets a parameter query. When this
 rule is invoked by the note query -filter command, this parameter
 contains an unfiltered query string. The filter script can use this
 unfiltered query in any way. Usually the filter script constructs a
 complex query based on the unfiltered query. This complex query then
 expresses access control constraints. In this way, access control
 verification is done at once for all the notes resulting from the
 initial query.

 An access db_filter script must use the directives ALLOW, DENY,
 ALLOW_ALL, or DENY_ALL. It must not return any value.

 Most access rules (access allow, access deny, access filter)
 operate on one note at a time and can return only a single value
 (ALLOW, DENY or UNKNOWN).

 However, an access db_filter rule returns results in a different way
 from other rules because it can operate on multiple notes gathered
 from the note query command. Instead of returning a tri-state value,
 it modifies a tri-state value (0 (denied), 1 (allowed), ? (unknown))
 in a Tcl array. The access commands use this Tcl array to determine
 which notes are passed back to the user through the note query
 -filter command.

 Before entering an access db_filter block, all notes for which access
 is to be determined are stored in the ACCESS array. Each array value
 is initially set to "?", indicating that access has not been
 determined.

 When an unfiltered query is passed to access db_filter, it is allowed
 to modify the array ACCESS as appropriate by the supplied API. When
 access is granted, the array element changes to 1; when access is
 denied, the element changes to 0. At the end of the rule evaluation,
 the array ACCESS is checked for the presence of unknown elements.
 If all elements are in a known state, the loop over the rules is
 aborted. If, for instance, the last rule in a ViewNote action
 list is:

 access allow NoteActions masteradmin

 this rule is the only one processed for the masteradmin user.

 An access db_filter rule never adds entries to the array ACCESS; it
 can only modify existing unknown entries (containing "?") and can
 never set a value to ?.

 When access db_filter is called, the unfiltered query has already
 been executed, extracting only ID's. The access db_filter can:

 -Rerun the query, tacking on a filter expression, using
 FILTERED_IDS.

ENOVIA Synchronicity Command Reference - Module

1067

 -Run a related query, and then do its own "join".

 When writing custom access db_filter scripts, do not directly access
 the ACCESS array. Instead, use the functions provided by the API,
 listed in the API FUNCTIONS section.

 The access db_filter rule can coexist with other rules, such as access
 allow or access deny. All combinations of the note query -filter and
 access verify commands with access allow, access deny, access filter,
 and access db_filter rules are valid. Different rules for the same
 action are applied in the same order as in the current system, with the
 last rule providing a definite answer.

 You add 'access db_filter' commands to the site or server
 AccessControl file within the <SYNC_CUSTOM_DIR> hierarchy (defaults
 to <SYNC_DIR>/custom):

 Site-wide:
 <SYNC_SITE_CUSTOM>/share/AccessControl
 (where <SYNC_SITE_CUSTOM> defaults to <SYNC_CUSTOM_DIR>/site)
 Server-specific (UNIX only):
 <SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/AccessControl

 Note: Do not edit any of the access control files in the
 $SYNC_DIR/share area; you should edit the site or server AccessControl
 file. See the ENOVIA Synchronicity Access Control Guide for details on
 setting up and using access controls.

SYNOPSIS

 access db_filter <actionList> [when <parm> <globExpr> [when ...]]
 <script>

OPTIONS

• actionList
• when
• script

 Note: For the list parameter <actionList>, surround multiple values
 with braces, for example, {ViewNote EditNote}. The braces are optional
 when you specify a single value; for example, both {ViewNote} and
 EditNote are valid.

actionList

 actionList The name of the actions to be controlled -
 ViewNote and/or EditNote. These actions are defined

Administration

1068

 in the default Synchronicity access control
 file by 'access define' statements

when

 when Use optional 'when' clauses to indicate that the
 user is only allowed or denied access when the
 named parameter <parm> (corresponding to the
 <parameterList> argument of the 'access define'
 command) matches the glob-style expression given
 by <globExpr>.

 If multiple 'when' clauses are used, all of them
 must match for the access rights to be affected. In
 other words, 'when' clauses are ANDed.

script

 script A Tcl script or Tcl statements supplied directly to
 the 'access db_filter' command and evaluated to
 determine whether a given user should be allowed or
 denied access to the named action for each note
 returned by the query. When invoked, <script> is
 passed a parameter named $user that holds the name of
 the user whose access is in question, in addition to
 the parameters listed in the access define statement
 that defined the action.

 Another parameter available to the script is $action,
 which always has either the value EditNote or ViewNote,
 depending on what action is being verified. Using the
 $action parameter, you can invoke different commands
 depending on which action has triggered the filter
 statement.

 An access db_filter script must use the directives
 ALLOW, DENY, ALLOW_ALL, or DENY_ALL.

API FUNCTIONS

• ALLOW
• ALLOW_ALL
• CHECK_STAR
• DENY
• DENY_ALL
• FILTERED_IDS
• FOREACH_NOTE
• FOREACH_UNKNOWN

ENOVIA Synchronicity Command Reference - Module

1069

• SINGLE_NOTE

 The access db_filter contains the following API functions for
 accessing the ACCESS array:

ALLOW

 ALLOW - This function grants access to a single note and
 sets the ACCESS array element for that note to "1".
 For example:

 ALLOW $id

ALLOW_ALL

 ALLOW_ALL - This function sets all notes as allowed--that is,
 access is granted. All ACCESS array elements are
 set to "1". For example:

 ALLOW_ALL

CHECK_STAR

 CHECK_STAR - This function is used when access is always granted
 because an asterisk is passed to the access verify
 command. In this case, the CHECK_STAR function
 grants access and immediately returns to the calling
 application code. You therefore do not need to
 return after calling CHECK_STAR. This function
 should appear at the top of every access
 db_filter call unless the asterisk case is handled
 differently.

 See the EXAMPLES section for an example of using
 this function.

DENY

 DENY - This function denies access to a single note and sets
 the ACCESS array element for that note to "0". For
 example:

 DENY $id

Administration

1070

DENY_ALL

 DENY_ALL - This function sets all notes as denied--that is,
 access is denied. All ACCESS array elements are set
 to "0". For example:

 DENY_ALL

FILTERED_IDS

 FILTERED_IDS - This function returns a filtered list of note IDs
 based on a set of specified criteria. The variables
 listed below are available to every access
 db_filter script. For example:

 # Other users can access their own notes.
 set AC_squery "[sq $user] = f_Author"

 set AC_notes [FILTERED_IDS $type $sqlquery $dbquery
 $attached $AC_squery <$selectList>]

 where:

 - $type is the note type passed into the filter.
 - $sqlquery is the original SQL query passed in to
 the filter, if any.
 - $dbquery is the original database query passed in
 to the filter, if any.
 - $attached is the URL for note query -attached
 calls passed in to the filter, if any.
 - $AC_squery is an additional SQL query describing
 the additional criteria needed to determine access
 on the set of notes.
 - $selectList is an optional parameter that allows
 you to specify extra properties from the note type
 that the filter needs to determine access. If you
 specify $selectList, it returns a list of lists in
 the form: {id prop prop ...} {id prop prop ...}.

FOREACH_NOTE

 FOREACH_NOTE - This function iterates over the ACCESS array and
 returns one note at a time, regardless of whether
 the note has been allowed or denied by a previous
 ALLOW, DENY, ALLOW_ALL or DENY_ALL command. For
 example:

 FOREACH_NOTE <varName> {
 # Process the note, whose ID is stored in <varName>
 ALLOW $<varName>

ENOVIA Synchronicity Command Reference - Module

1071

 }

FOREACH_UNKNOWN

 FOREACH_UNKNOWN -This function iterates over the ACCESS array and
 returns one note at a time. Only notes marked as
 unknown ("?") are returned. For example:

 FOREACH_UNKNOWN <varName> {
 # Process the note, whose ID is stored in <varName>
 DENY $<varName>
 }

SINGLE_NOTE

 SINGLE_NOTE - This function checks whether a single note is being
 access controlled, and returns the note ID for a
 single note or a null string if there are multiple
 notes.

 It is not necessary for access db_filter to know
 whether a single note or multiple notes are being
 checked; the filter must be able to handle 0, 1, or
 multiple notes. However, in some instances, an
 optimization is possible if you know that a single
 note is being checked.

 For example:

 set noteId [SINGLE_NOTE]
 if {$noteId == ""} {
 # Multiple notes are being access controlled
 } else {
 # Only one note, $noteId contains the note id
 }

RETURN VALUE

 none

SEE ALSO

 access filter, access global, access init, access reset, access verify

EXAMPLES

Administration

1072

• Set Different Access Rights for a Note
• Create a Filter to View Notes Authored By User

Set Different Access Rights for a Note

 In this example, the script passed to 'access db_filter' ensures that
 SecretIngredient notes can be viewed by anyone if their secrecy level
 is low; otherwise, only their Inventor can view these notes. But
 SecretIngredient notes can be edited only by their Inventor,
 regardless of the secrecy level.

 The script sets up a query, filter_squery, an SQL query that gathers
 up all the notes whose Inventor is the current user if the action is
 EditNote. The query gathers up both the notes whose Inventor is the
 current user and the notes with Secrecy level set to 'low' if the
 action is ViewNote. Note that in SQL queries, you must prepend 'f_'
 to the property name, for example, 'f_Inventor' and 'f_Secrecy'.
 The query is passed to the FILTERED_IDS function which actually
 gathers the notes. Finally, for all the notes that match the query,
 the EditNote or ViewNote action is set to ALLOW.

 access db_filter {ViewNote EditNote} when type SecretIngredient {
 CHECK_STAR
 # CHECK_STAR checks if first note Id == '*' and
 # allows action if so; this is used so that the
 # note type shows up in the Quick View panel.

 if {$action == "ViewNote"} {
 set filter_squery "f_Inventor = [sq $user] OR f_Secrecy = 'low'"
 } else {
 set filter_squery "f_Inventor = [sq $user]"
 }
 set filtered_notes [FILTERED_IDS $type $sqlquery $dbquery \
 $attached $filter_squery]
 # The FILTERED_IDS function runs a subquery, which
 # is the original query with the filter_squery tacked
 # onto it.

 # filtered_notes now holds a list of notes that matches the
 # original query,
 # AND passed the access checks. Now update the ACCESS map
 # by setting the flag for each note that passed muster and
 # denying those that didn't

 foreach AC_note $filtered_notes {
 ALLOW $AC_note
 }

 FOREACH_UNKNOWN AC_note {
 DENY $AC_note
 }
 }

ENOVIA Synchronicity Command Reference - Module

1073

Create a Filter to View Notes Authored By User

 This example creates a filter to display notes authored by the user
 who runs the query.

 access db_filter ViewNote when type "SyncDefect" {

 # ---
 # The following variables are available to this filter:
 #
 # $type The note type
 # $sqlquery . . . The original SQL query, passed in from
 # the note query command, if any.
 # $dbquery . . . The original DB query, passed in from the
 # the note query command, if any.
 # $attached . . . A note attachment, passed in from the note
 # query -attached command, if any.
 # $user The user ID of the user requesting access.
 # ---

 # Check for the "*" operator, which could be sent in from a
 # note panel. If a "*" is found, the filter will return
 # immediately after granting access.

 CHECK_STAR

 # For purposes of this example filter, allow users to view
 # only the SyncDefect notes that they authored. Therefore,
 # build a new SQL query to gather only those notes where the
 # user is the author.

 Set AC_squery "[sq $user] = f_Author "

 # Gather the filtered list of note IDs where the criteria
 # matches the original query and our criteria.

 set AC_ids [FILTERED_IDS \
 $type $sqlquery $dbquery $attached $AC_squery]

 # The variable AC_ids now holds the list of note IDs that
 # pass the original query (say, we queried for all "open" defects)
 # AND match our criteria of the user being the author. These are
 # the notes the user has access to view. Therefore, we
 # iterate through the ID list and allow each note returned from
 # FILTERED_IDS.

 foreach noteId $AC_ids {
 ALLOW $noteId
 }

 # Now DENY all the notes that did NOT match our criteria.
 # Iterate through all the notes that are still in an UNKNOWN
 # state and DENY them.

 FOREACH_UNKNOWN noteId {

Administration

1074

 DENY $noteId
 }
 }

access decline

access decline Command

NAME

 access decline - Causes additional access rules to be invoked

DESCRIPTION

 The "access decline" command is used with module data. When you
 operate on a module, you are operating on the module as well as on
 the module's individual members. Access control rules can apply at
 the module level, and also at the individual module member level.

 An operation on module data will first check module level access. If the
 module level access is allowed or denied, then no further checks are
 necessary. However, if the module level access is declined, then an access
 check is needed, for each individual module member that is participating
 in the operation.

 The "access decline" command declines access to a specified list of
 actions. You can also decline access for particular users and under
 circumstances you specify.

 Attempting to decline access for a command that does not support the
 DECLINE outcome results in an outcome of DENY.

 See the ENOVIA Synchronicity Access Control Guide for details on
 module access, setting up, and using access controls.

SYNOPSIS

 access decline <actionList> {everyone | users <userList>}
 [when <parm> <globExpr> [when ...]]

OPTIONS

• actionList
• everyone
• users
• userList
• where

ENOVIA Synchronicity Command Reference - Module

1075

 Note: For list parameters, (<actionList> and <userList>) surround
 multiple values with braces, for example, {Checkin Checkout}.
 The braces are optional when you specify a single value; for example,
 both {Checkout} and Checkout are valid.

actionList

 actionList The name of the actions to be controlled. The default
 actions are defined in the default Synchronicity
 AccessControl file by "access define" statements and
 have names such as Checkin and Checkout.

 Note: Actions are case sensitive.

everyone

 everyone Specifies that the access control applies to all users.

users

 users Specifies the group of users to which the access control
 applies.

userList

 userList The list of users to which "access decline" applies.
 Surround a multiple list of users with braces; the braces
 are optional for a single user.

 Note: User names are case sensitive.

where

 when Use optional "when" clauses to indicate that the
 <userList> is only declined access when the named
 parameter <parm> (corresponding to the <parameterList>
 argument of the "access define" command) matches the
 glob-style expression given by <globExpr>.

 If multiple "when" clauses are used, all of them
 must match in order for the access rights to be
 affected. This is because "when" clauses are joined

Administration

1076

 with an implicit AND operator.

RETURN VALUE

 none

SEE ALSO

 access allow, access deny, access filter, access reset, access verify

EXAMPLES

 Let's say you want to restrict access to module data based on the
 natural path of the module's member objects. Granting or denying access
 at the module level is not sufficient. Access must be checked for each
 of the individual module members.

 In the example below:
 - Developers Ian, Mahesh, Dana and Larry are the only users granted
 Checkout access to all modules.
 - Test engineer Dave and doc writer Linda are declined Checkout access
 to all modules. That decline causes module member access checks to
 occur.
 - Linda is explicitly granted module member checkout access to member
 objects in modules' "doc" directories.
 - Dave is explicitly granted module member checkout access to member
 objects in modules' "test" directories.

 access allow Checkout only users {ian mahesh dana larry} when \
 Object sync:///Modules/*
 access decline Checkout users {dave linda} when \
 Object sync:///Modules/*
 access allow MemberCheckout users linda when NaturalPath *doc*
 access allow MemberCheckout users dave when NaturalPath *test*

access define

access define Command

NAME

 access define - Define additional actions to be access controlled

DESCRIPTION

 Use the 'access define' command within to specify new actions to be

ENOVIA Synchronicity Command Reference - Module

1077

 access controlled.

 The pre-defined access control files included with DesignSync define
 the actions for which you can control access. See the ENOVIA
 Synchronicity Access Control Guide for descriptions of the
 pre-defined action definitions and details on setting up and using
 access controls.

 You use the 'access define' command only to define additional actions
 when performing advanced access rights checking.

SYNOPSIS

 access define <action> [<parameterList>]

OPTIONS

• action Option
• parameterList Option

 Note: For list parameters, such as <parameterList>, surround
 multiple values with braces, for example, {DRCCheck ERCCheck}.
 The braces are optional when you specify a single value; for example,
 both {DRCCheck} and DRCCheck are valid.

action Option

 action The name of a new action to be defined. The default
 actions are defined in the default Synchronicity
 access control file by 'access define'
 statements. and have names such as Checkin, Checkout,
 and Delete. Note: Actions are case sensitive.

parameterList Option

 parameterList A list of the arguments required by any access filter
 scripts or when clauses in 'access allow' or
 'access deny' commands.

RETURN VALUE

 none

Administration

1078

SEE ALSO

 access allow, access decline, access filter, access reset,
 access verify

EXAMPLES

 See the ENOVIA Synchronicity Access Control Guide for an example of a
 custom action definition.

access deny

access deny Command

NAME

 access deny - Denies access to the specified actions

DESCRIPTION

 See the "access allow" command.

SYNOPSIS

 access {allow | deny} <actionList> {everyone | [only] users <userList>}
 [when <parm> <globExpr> [when ...]] [-because "<message_string>"]

access filter

access filter Command

NAME

 access filter - Specify criteria for allowing or denying access

DESCRIPTION

 Use 'access filter' in situations where you need to allow, deny or
 decline access based on criteria other than simple pattern matching of
 the parameters.

ENOVIA Synchronicity Command Reference - Module

1079

 To create filters where multiple notes are evaluated for ViewNote or
 EditNote actions, you should use the access db_filter command to
 improve performance.

 See the ENOVIA Synchronicity Access Control Guide for details on
 setting up and using access controls.

SYNOPSIS

 access filter <actionList> [when <parm> <globExpr> [when ...]]
 <script>

OPTIONS

• actionList
• script
• when

 Note: For list parameter <actionList>, surround multiple values with
 braces, for example, {Checkin Checkout}. The braces are optional when
 you specify a single value; for example, both {Checkout} and Checkout
 are valid.

actionList

 actionList The name of the actions to be controlled. The
 actions are defined in the default Synchronicity
 access control files by 'access define'
 statements and have names such as Checkin, Checkout,
 and Delete. Note: Actions are case sensitive.

script

 script A Tcl script or Tcl statements supplied directly to
 the 'access filter' command evaluated in order to
 determine if a given user should be allowed or
 denied access to the named action. When invoked,
 <script> is passed a parameter named <user> which
 holds the name of the user whose access is in question,
 in addition to the parameters listed in the access
 define statement that defined the action.

 You can also pass the parameter <action> which lets
 you differentiate between actions, such as Checkin or
 Checkout. Using the <action> parameter, you can invoke
 different commands depending on which action has

Administration

1080

 triggered the filter statement. For example, if the
 action is a Checkin, you might want to check the
 <CommentLen> parameter is a specific length. If the
 action is a Checkout, you might want to allow only
 administrators to lock the objects.

 The order in which a filter is declared relative to
 the 'access deny' and 'access allow' commands is
 important. Details are in the "Access Control Search
 Order" section of the topic "Setting Up Access Controls",
 in the ENOVIA Synchronicity Access Control Guide.

 The filter script must return a value of ALLOW, DENY,
 DECLINE, UNKNOWN, or a message string indicating that an
 action is denied and explaining why. If a message string
 was not specified, when an action is denied, only the
 default "Permission denied by the AccessControl system"
 message is returned.

 The return value of ALLOW allows the action, overriding
 DENY values already processed for the same operation.
 Likewise, the return value of DENY prevents the action,
 overriding ALLOW values already processed for the
 action. Unlike ALLOW and DENY, the return value of
 UNKNOWN causes the access control system to continue
 as if the filter had never been invoked.

 The return value of DECLINE causes the appropriate
 Member access control to be called. The effective
 return value is then the result of that Member
 access control. Or, if there is no Member access rule,
 then DENY is returned.

 In general, set the overall access controls you want
 to enforce. Then use an access filter to return ALLOW
 or DENY if you want to explicitly override those
 default rules. Otherwise, return UNKNOWN.

 Note: Any value other than ALLOW, DENY, DECLINE or
 UNKNOWN is treated as DENY. Any uncaught exceptions
 are treated as DENY. For example, if you return a
 message string rather than DENY, the action is denied
 and users receive the string as an error message in
 addition to the default "Permission denied by the
 AccessControl system" message.

when

 when Use optional 'when' clauses to indicate that the
 user is only allowed or denied access when the
 named parameter <parm> (corresponding to the
 <parameterList> argument of the 'access define'
 command) matches the glob-style expression given by
 <globExpr>.

ENOVIA Synchronicity Command Reference - Module

1081

 If multiple 'when' clauses are used, all of them
 must match in order for the access rights to be
 affected; in other words, 'when' clauses are joined
 with an implicit AND operator.

RETURN VALUE

 none

SEE ALSO

 access allow, access db_filter, access global, access init,
 access reset, access verify

EXAMPLES

 The following skeleton example uses the wildcard character passed
 to access verify to ensure that notes for which users have only
 partial delete access are not entirely suppressed from the GUI:

 access filter DeleteNote when type ... {
 if {$id == "*"} {
 return ALLOW
 }
 ...
 }

 For other examples of using "access filter", see the Access Control
 Guide.

access global

access global Command

NAME

 access global - Defines global variables and procs for
 access filters

DESCRIPTION

 Access filters let you allow or deny access based on criteria
 beyond simple pattern matching of the parameters. You define static
 variables and procs within 'access global' commands. (See 'access
 init' for defining dynamic data.) To use a global variable in an
 access filter, it must be declared as a global within the filter.

Administration

1082

 Unlike a normal Tcl script, the AccessControl files (both system
 and custom) are sourced only once, at startup. When an 'access verify'
 command is executed, only those commands given as part of access filter
 scripts are evaluated. Therefore, any variables or procs defined
 outside of the access commands are unknown by the Tcl interpreter. Do
 not define any code or data outside either an 'access global' or
 'access init' block.

 For variables and procs to be available to the access filter
 scripts, they must be defined within the <script> parameter passed
 to either 'access global' or 'access init'. Each 'access global'
 block is sourced once when the access control system initializes and
 at every "access reset" command. The 'access global' scripts are
 evaluated in the order in which they appear in the custom
 AccessControl file.

 You cannot specify a list of actions for the 'access global' command
 (unlike 'access init'). The 'access global' scripts are executed
 for all actions.

 See the ENOVIA Synchronicity Access Control Guide for details on
 setting up and using access controls.

 Important: The 'access global' code block runs inside a Tcl namespace
 called '::SyncAC'. Any variables that the global code block sets or
 procs that it defines reside in that namespace. When you use these
 variables or procs in other access filters, qualify them using the
 '::SyncAC' namespace qualifier, rather than the Tcl global
 qualifier '::'. Note that access filters let you qualify a variable
 or proc with the Tcl global namespace '::'. However, in this case,
 the variable or proc resides in the global namespace which is reset
 upon every request. Thus, these variables and procs are not visible to
 subsequent access filters. Note that 'access init' blocks reside in
 the global namespace, thus they do not need the '::SyncAC' namespace
 qualifier. See the EXAMPLES section for an example of the '::SyncAC'
 namespace qualifier.

SYNOPSIS

 access global <script>

OPTIONS

• script

script

 script A Tcl script or Tcl statements that initialize
 the variables and procs used in the 'access filter'
 command for the specified actions.

ENOVIA Synchronicity Command Reference - Module

1083

RETURN VALUE

 none

SEE ALSO

 access filter, access init, access allow, access decline, access reset,
 access verify

EXAMPLES

 This example shows how to use 'access global' and demonstrates how
 the 'access global' command differs from 'access init.' The example
 sets up two lists of administrators, globalAdmins and filterAdmins.
 The globalAdmins list is set up in an 'access global' block; the
 filterAdmins list is set up in an 'access init' block. The AddNote
 access filter demonstrates the use of the two lists. If a user is
 contained in either of the lists, the filter allows permission.
 Otherwise, the filter denies permission.

 To use the globalAdmins list in an access filter, it must be first be
 declared as a global variable in the filter. Anything declared inside
 an access global block resides in the ::SyncAC namespace rather
 than the global namespace (::) and needs to be referenced inside
 access filters using the ::SyncAC namespace qualifier.

 The filterAdmins variable does not need to be declared in the access
 filter because it is set up in an 'access init' block, which is sourced
 at the time the filter is run and is in the global scope of the filter.

 access global {
 set globalAdmins "norm barb mitch betty"
 }

 access init {
 set filterAdmins "mark deb sal"
 }

 access filter AddNote {
 global globalAdmins

 if {[lsearch -exact $::SyncAC::globalAdmins $user] == -1} {
 if {[lsearch -exact $filterAdmins $user] == -1} {
 return DENY
 } else {
 return UNKNOWN
 }
 } else {
 return UNKNOWN
 }

Administration

1084

 }

 In the example, the return value UNKNOWN defers to any other access
 controls that might be set. If no other access control denies access,
 the user is allowed to add a note.

 For other examples of using "access global", see the Access Control
 Guide.

access init

access init Command

NAME

 access init - Defines variables and procs

DESCRIPTION

 You use access init to create variables for both access filters
 and for use within simple access allow/access deny rules. You also
 can use access init to create procs for use in access filters.

 Access filters let you allow or deny access based on criteria
 beyond simple pattern matching of the parameters. You define
 dynamic variables and procs for access filters within 'access init'
 commands. (See 'access global' for defining static data.) When
 possible, you should use access global to avoid performance penalties.
 Because an access init statement is sourced each time a filter
 is run, operations such as viewing a note can become unacceptably
 slow. The access global command, which is used inside filter scripts,
 is sourced only once, when the access control system is initialized.

 Unlike a normal Tcl script, the AccessControl files (both system
 and custom) are sourced only once, at startup. When an 'access verify'
 command is executed, only those commands given as part of access filter
 scripts are evaluated; any variables or procs defined outside of the
 access commands are unknown by the Tcl interpreter. Do not
 define any code or data outside either an 'access init' or
 'access global' block.

 In order for variables and procs to be available to access filter
 scripts, they must be defined within the <script> parameter passed
 to 'access init' or 'access global'. The 'access init' scripts
 are evaluated in the order in which they appear in the custom
 AccessControl files. By default, all 'access init' scripts are
 evaluated before any 'access filter' script is evaluated. However,
 you can specify that an 'access init' script be evaluated only before
 access filters verifying a particular type of action. To do
 this, include the type of action within the <actionList>
 parameter of the 'access init' statement. See the example of
 an <actionList> within the 'access init' example below.

ENOVIA Synchronicity Command Reference - Module

1085

 Although code in 'access init' statements is executed when filters are
 run, it also is available immediately for use by access allow/access
 deny rules that follow the 'access init' definition.

 See the ENOVIA Synchronicity Access Control Guide for details on
 setting up and using access controls.

SYNOPSIS

 access init [<actionList>] <script>

OPTIONS

• actionList
• script

 Note: For list parameter <actionList>, surround multiple values with
 braces, for example, {Checkin Checkout}. The braces are optional when
 you specify a single value; for example, both {Checkout} and Checkout
 are valid.

actionList

 actionList The name of the access filter actions for which the
 access init <script> will be sourced. If no
 actionList is provided, the 'access init' script
 is evaluated before any access filter is executed
 and the script is executed for all actions.

script

 script A Tcl script or Tcl statements that initialize
 the variables and procs used in the 'access filter'
 command for the specified actions.

RETURN VALUE

 none

SEE ALSO

 access filter, access global, access allow, access decline,

Administration

1086

 access reset, access verify

EXAMPLES

 This example shows an 'access init' statement that includes an
 <actionList> argument. The 'access init' statement is defined
 for the Checkin action; thus, this 'access init' is evaluated
 only before Checkin access filters. If the <actionList> argument
 (Checkin) were not included, the 'access init' would be evaluated
 before any access filters are evaluated.

 # Set up a variable that defines the project leader
 access init Checkin {
 set projectLeader karen
 }

 # Only the project leader can check in
 access filter Checkin {
 if {$user == $projectLeader} {
 return ALLOW
 }
 return "You must be projectleader to check in."
 }

 For other examples of using "access init", see the Access Control
 Guide.

access list

access list Command

NAME

 access list - Returns a list of defined access controls

DESCRIPTION

 The access list command returns a list of defined access actions.

SYNOPSIS

 access list -actions

OPTIONS

• -actions

ENOVIA Synchronicity Command Reference - Module

1087

-actions

 -actions The list of defined access action types.

RETURN VALUE

 A space delimited list of the defined access controls appropriate to
 the options selected.

SEE ALSO

 access allow, access deny, access define

EXAMPLES

 access list -actions
 returns "Mkmod DeleteMirror EditMirror SwitchLocker ..."

access reset

access reset Command

NAME

 access reset - Updates a SyncServer's access controls

DESCRIPTION

 This server-side command causes the SyncServer to reread the
 AccessControl files, which causes any changes in access controls
 to take effect. All processes of a multi-process server are
 affected by 'access reset', not just the process that receives the
 request.

 A SyncServer reads the AccessControl files upon startup, so
 stopping and restarting the SyncServer also updates access
 controls. Using 'access reset' avoids having to stop and restart
 the SyncServer, thereby not interrupting users' access to the
 SyncServer.

 To update a SyncServer's access controls:

 1. Modify the access control files as needed.

Administration

1088

 See the ENOVIA Synchronicity Access Control Guide for details on
 setting up and using access controls.

 2. Create a file with a .tcl extension containing the
 'access reset' command in one of the Synchronicity Tcl script
 directories:

 Site-wide:
 <SYNC_SITE_CUSTOM>/share/tcl
 (where <SYNC_SITE_CUSTOM> defaults to <SYNC_CUSTOM_DIR>/site)
 Server-specific (UNIX only):
 <SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/tcl
 (where <SYNC_CUSTOM_DIR> defaults to <SYNC_DIR>/custom)

 3. Execute the script on the server using one of the following methods:

 o From your browser, specify the following URL:
 http://<host>:<port>/scripts/isynch.dll?panel=TclScript&file=<filename>

 o From a DesignSync client, specify the following command:
 rstcl -server sync://<host>:<port> -script <filename>

 where <filename> is the name of your script containing the
 'access reset' command.

 See the "server-side" and "rstcl" help topics for additional
 information on executing server-side scripts.

 Note:

 - ProjectSync provides an Access Reset option on the ProjectSync
 menu. Use this method for resetting access controls if you are a
 ProjectSync user and have privileges to use the Access Reset
 option (the Access Reset option from ProjectSync can be access
 controlled).

 - When you execute the script containing the access reset command,
 the access reset command checks the AccessControl file for
 syntactic errors before changing the server state. If the file
 contains such errors, the command aborts, leaving the server
 state (and access controls) unchanged.

 - Errors in an AccessControl file can cause your server to become
 unresponsive if the errors are not corrected quickly. To avoid this
 problem, correct access control errors immediately and reset the
 server.

SYNOPSIS

 access reset

OPTIONS

ENOVIA Synchronicity Command Reference - Module

1089

 none

RETURN VALUE

 none

SEE ALSO

 stcl, rstcl, server-side, access verify

EXAMPLES

 This example updates the holzt:2647 server with a site-wide
 access control that stops users from unlocking files they do
 not own.

 1. Add the following line to <SYNC_SITE_CUSTOM>/share/AccessControl:
 access deny Unlock everyone when IsLockOwner "no"

 Note: <SYNC_SITE_CUSTOM> defaults to <SYNC_CUSTOM_DIR>/site which
 defaults to <SYNC_DIR>/custom/site.

 2. In <SYNC_SITE_CUSTOM>/share/tcl, create 'reset.tcl' that
 contains the following line:
 access reset

 3. Execute the script using one of the following methods:
 o From your browser, issue the following URL:
 http://holzt:2647/scripts/isynch.dll?panel=TclScript&file=reset.tcl

 o From a DesignSync client (dssc in this example), execute the
 following command:
 dss> rstcl -server sync://holzt:2647 -script reset.tcl

access verify

access verify Command

NAME

 access verify - Determines whether a user is allowed to
 perform an action

DESCRIPTION

Administration

1090

 This server-side command checks whether the given user is allowed
 to perform the named action. Use 'access verify' to check access
 controls explicitly in server-side scripts; server-side scripts
 do not automatically perform the named action.

 For ViewNote, EditNote, and DeleteNote filters, you can use a special
 application of access verify to determine whether a user can access
 any notes of that type. You can pass in an asterisk as a wildcard for
 the value of a note ID. Any ViewNote, EditNote, or DeleteNote
 allow/deny/filter rule treats this wildcard specially and answers
 whether the specified user can access notes of that type. If the
 answer is DENY, then the user does not see the note type name
 in certain contexts (e.g., it disappears from QuickView because
 the user does not have the right to access any notes of that type).
 See the entries for access allow, access deny, and access filter for
 examples of how to use the wildcard in scripts with these commands.

SYNOPSIS

 access verify <action> <user> [<arg> [...]] [-why <var>]

 access verify <note_action> <note_system> <note_type> *

ARGUMENTS

• action
• args
• note_action
• note_system
• note_type
• user
• -why

action

 action The name of the action to be checked. The actions are
 defined in the access control file by "access define"
 statements and have names such as Checkin, Checkout,
 and Delete.

args

 args The definition of the action in the access control
 file includes a list of parameters that give additional
 information about the action. These parameters are used
 in 'when' clauses and filter scripts in the access
 control file to determine if access will be allowed

ENOVIA Synchronicity Command Reference - Module

1091

 or denied. You must pass a value for each of these
 parameters to the access verify command to make this
 information available to the commands in the access
 control file.

note_action

 <note_action> The ViewNote, EditNote, or DeleteNote action, when
 you want to pass as asterisk as a wildcard for the
 note ID number.

note_system

 <note_system> The name of the note system, which is always SyncNotes.

note_type

 <note_type> The name of the note type to be checked for access.

 * A wildcard character that stands for any note ID number.

user

 user The user name of the user whose access to the given
 action is being determined.

-why

 -why The definitions of access allow, deny, and filter
 statements in the access control file can include
 message strings describing why access has been denied.
 Use the -why option to retrieve this message from an
 action's access allow, deny, or filter statement and
 store it in the named variable. You can also set the
 variable to an appropriate message string directly.
 If the access statement provides no message string,
 the named variable is set to "access denied".
 If the named variable already exists and the access
 statement provides no message string, the variable's
 value remains unchanged.

 See the ENOVIA Synchronicity Access Control Guide for information on
 the pre-defined access control files.

Administration

1092

RETURN VALUE

 0 (Tcl FALSE) - user is not allowed access to the named action.
 1 (Tcl TRUE) - user is allowed access to the named action.
 2 - additional rules need to be invoked, to determine whether the user
 has access to the named action.

SEE ALSO

 access allow, access decline, access deny, access filter, stcl, rstcl,
 server-side

EXAMPLES

• Verifying Access Rights for a User
• Using the Default "why" Message
• Using a Custom "why" Message
• Using a Wildcard for note ID

Verifying Access Rights for a User

 This example determines whether user 'joe' has access rights to
 add the version tag "Release" to top.v. Note that you do not specify a
 host:port in the Object (top.v) URL (see the "server-side" help topic
 for more information).

 if {[access verify Tag $SYNC_User {sync:///Projects/ASIC/top.v} \
 Release ADD VERSION]} {
 puts "$SYNC_User is allowed to tag top.v Release"
 } else {
 puts "Nice try, $SYNC_User"
 }

Using the Default "why" Message

 This example shows the default message issued because the variable,
 message, is not set. If a message is included in the -because or return
 clause of the access allow, deny, or filter statement for the
 action, the named variable is set to that message.

 # Just use the default message.
 # output -> "access denied"
 unset message
 if {![access verify CustomTag $SYNC_User -why message]} {
 puts $message

ENOVIA Synchronicity Command Reference - Module

1093

 }

Using a Custom "why" Message

 This example shows how to use the variable, message, to issue a
 descriptive message explaining why access is denied. If a message is
 included in the -because or return clause of the access allow, deny,
 or filter statement for the action, the named variable is set to that
 message.

 # Use a descriptive default message.
 # output -> "Sorry, only project leader can perform CustomTag."
 set message "Sorry, only project leader can perform CustomTag."
 if {![access verify CustomTag $SYNC_User -why message]} {
 puts $message
 }

Using a Wildcard for note ID

 This example passes a wildcard as the value of the note ID and
 returns if access is not granted.

 if {![access verify ViewNote $SYNC_User SyncNotes $noteType *]} {
 return
 }

Authentication

hcm addlogin

hcm addlogin Command

NAME

 hcm addlogin - Stores a server login to enable hierarchical
 queries (legacy)

DESCRIPTION

 This command stores a login (username and password), or modifies an
 existing stored login, on a server, for the purposes of conducting
 cross-server recursive module queries.

 The hierarchy of modules for which a query applies is defined using
 hcm addhref commands. With the hcm addhref command, you can create

Administration

1094

 connections between two servers, the origin server (specified by the
 -fromtarget option) and the referenced server (specified by the
 -totarget option). The origin server is the server that holds the
 topmost module in a design hierarchy and the server from which the
 hierarchical query is initiated. You can run cross-server
 hierarchical queries using ProjectSync's standard Query panel.

 You need to store a login if the referenced server requires a login
 different from the one you use to connect to the origin server. For
 example, your login on the origin server is "john," but your login
 on the referenced server is "jdoe."

 Notes:
 - If you do not store a login and one is required, your query
 fails and refers you to this command.
 - After you run the hcm addlogin command, you will be prompted to
 enter a password.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 hcm addlogin -fromtarget <origin_server_url>
 -fromuser <origin_username> | -fromallusers
 -totarget <referenced_url> | -toalltargets
 -touser <referenced_username>

OPTIONS

• -fromallusers
• -fromtarget
• -fromuser
• -toalltargets
• -totarget
• -touser

-fromallusers

 -fromallusers Specifies that the stored login applies to all
 users on the origin server. A login stored
 using -fromuser takes precedence over one stored
 with -fromallusers.

-fromtarget

ENOVIA Synchronicity Command Reference - Module

1095

 -fromtarget Specifies the URL of a server on which you want
 <origin_server_url> to store a login.

 To specify the origin server, use the
 following syntax:
 sync[s]://<host>[:<port>]
 where <host> is the machine on which the
 SyncServer is installed and <port> is the
 SyncServer port number.

-fromuser

 -fromuser Specifies the username on the origin server for
 <origin_username> which this stored login applies.

-toalltargets

 -toalltargets Specifies that the stored login applies to all
 servers referenced from the origin server. A
 login stored using -totarget takes precedence
 over one stored with -toalltargets.

-totarget

 -totarget Specifies that the stored login should be used
 <referenced_url> whenever the origin server (specified by
 -fromtarget) contacts the referenced server
 (specified by -totarget).

 To specify the referenced server, use the
 following syntax:
 sync[s]://<host>[:<port>]
 where <host> is the machine on which the
 SyncServer is installed and <port> is the
 SyncServer port number.

 Note:
 - The value specified for
 <referenced_server_url> should match the URL
 returned by the hcm showhrefs command run on
 the origin server.

-touser

 -touser Specifies the username that HCM uses when
 <referenced_username> contacting the referenced server.

Administration

1096

 Note:
 - Usernames are case sensitive.

RETURN VALUE

 This command does not return Tcl values.

SEE ALSO

 access allow, access deny, addhref, hcm rmlogin, hcm showlogins,
 command defaults
,

EXAMPLES

• Example of Storing a User Login for a Specific Server
• Example of Storing a Guest Login For All Referenced Servers

Example of Storing a User Login for a Specific Server

 This example stores a login 'queryuser' that users on SyncServer
 sync://chip.ABCo.com:2647 can use to query the SyncServer
 sync://alu.ABCo.com:2647.

 dss> hcm addlogin -fromtarget sync://chip.ABCo.com:2647 -fromallusers \
 -totarget sync://alu.ABCo.com:2647 -touser queryuser

Example of Storing a Guest Login For All Referenced Servers

 This example stores a login 'guest' that users on SyncServer
 sync://chip.ABCo.com:2647 can use to query all referenced servers
 (with the exception of SyncServer sync://alu.ABCo.com:2647).

 dss> hcm addlogin -fromtarget sync://chip.ABCo.com:2647 -fromallusers \
 -toalltargets -touser guest

 Note: The "Controlling Access to Servers" example in the hcm Example
 topic includes the steps for displaying and removing the stored
 logins created in the previous examples.

hcm rmlogin

hcm rmlogin Command

NAME

ENOVIA Synchronicity Command Reference - Module

1097

 hcm rmlogin - Removes a login stored on a server

DESCRIPTION

 This command removes a login (username and password) that is stored on
 the server. This login is used for conducting cross-server recursive
 queries.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 hcm rmlogin -fromtarget <origin_server_url>
 -fromuser <origin_username> | -fromallusers
 -totarget <referenced_url> | -toalltargets

OPTIONS

• -fromallusers
• -fromtarget
• -fromuser
• toalltargets_option
• totarget_option

-fromallusers

 -fromallusers
 Specifies that the stored login you want to
 remove applies to all users on the origin
 server.

-fromtarget

 -fromtarget Specifies the URL of the server from which you
 <origin_server_url> want to remove a login.

 To specify the origin server, use the
 following syntax:
 sync[s]://<host>[:<port>]
 where <host> is the machine on which the
 SyncServer is installed and <port> is the
 SyncServer port number.

Administration

1098

-fromuser

 -fromuser Specifies the username on the origin server for
 <origin_username> which you want to remove a stored login.

 -toalltargets Specifies that the stored login you want to
 remove applies to all servers referenced from
 the origin server.

 -totarget Specifies the referenced server of the stored
 <referenced_url> login that you want to remove.

 To specify the referenced server, use the
 following syntax:
 sync[s]://<host>[:<port>]
 where <host> is the machine on which the
 SyncServer is installed and <port> is the
 SyncServer port number.

RETURN VALUE

 This command does not return Tcl values.

SEE ALSO

 access allow, access deny, hcm addlogin, hcm showlogins,
 command defaults
,

EXAMPLES

• Example of Removing a User Login for a Specific Server
• Example of Removing the Guest Login for a Specific Server

Example of Removing a User Login for a Specific Server

 This example removes the 'queryuser' login stored on the server
 sync://chip.ABCo.com:2647.

 dss> hcm rmlogin -fromtarget sync://chip.ABCo.com:2647 -fromallusers \
 -totarget sync://alu.ABCo.com:2647

Example of Removing the Guest Login for a Specific Server

ENOVIA Synchronicity Command Reference - Module

1099

 This example removes the 'guest' login stored on the server
 sync://chip.ABCo.com:2647.

 dss> hcm rmlogin -fromtarget sync://chip.ABCo.com:2647 -fromallusers \
 -toalltargets

hcm showlogins

hcm showlogins Command

NAME

 hcm showlogins - Displays the logins stored on a server

DESCRIPTION

• Understanding the Output

 This command displays the logins that are stored on the server. These
 logins (username and password) are used for conducting cross-server
 recursive queries. By default, this command returns all the login
 information for the specified server to the screen in a user-friendly
 format.

 Note:
 - The output of this command does not include passwords.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

Understanding the Output

 By default, or if you run the hcm showlogins command with the '-report
 normal' option, the command returns the login information to the screen
 in a user-friendly format.

 If you run the hcm showlogins command with the '-report script' option,
 the command returns a Tcl list in the following form:

 {{fromtarget <origin_server_url>
 fromuser <origin_server_username> totarget <reference_server_url>
 touser <reference_server_username>}
 ...
 }

 - fromtarget is the server on which the logins are stored.

Administration

1100

 - fromuser is the user(s) to which the login applies.
 o 'ALLUSERS' indicates the login applies to all users.
 o <username> indicates the login applies to the specific user
 name.

 - totarget is the referenced server to which the access applies.
 o 'ALLTARGETS' indicates the login applies to all referenced
 servers.
 o A specific URL indicates the login applies to just that server.

 - touser is the user name to which the access applies.

 If you run the hcm showlogins command with the '-report command'
 option, a list of stored logins is returned in the following form:

 -fromtarget <origin_server_url>
 -fromallusers | -fromuser <origin_server_username>
 -toalltargets | -totarget <origin_server_url>
 -touser <reference_server_username>
 ...

 - fromtarget, fromallusers, fromuser, toalltargets, totarget, and
 touser are the same for both the '-report script' and '-report
 command' options. For a description of these values, see the
 description of the '-report script' output.

SYNOPSIS

 hcm showlogins -fromtarget <origin_server_url>
 [-fromuser <origin_username> | -fromallusers]
 [-report {brief | normal | verbose | command |
 script}]

OPTIONS

• -fromallusers
• -fromtarget
• -fromuser
• -report

-fromallusers

 -fromallusers Displays the stored logins that apply to all
 users on the origin server.

-fromtarget

ENOVIA Synchronicity Command Reference - Module

1101

 -fromtarget Specifies the URL of a server for which you want
 <origin_server_url> to view logins.

 To specify the server, use the following syntax:
 sync[s]://<host>[:<port>]
 where <host> is the machine on which the
 SyncServer is installed and <port> is the
 SyncServer port number.

-fromuser

 -fromuser Displays the stored logins for the username on
 <origin_username> the server.

-report

 -report <mode> Indicates the format in which the output
 appears.

 Valid values are:

 o brief - Displays the same information as
 'normal'.

 o normal - Displays the output in a user-
 friendly format. This is the default behavior.

 o verbose - Displays the same information as
 'normal'.

 o command - Returns a list of stored logins in a
 format that closely matches the original
 usage of the hcm addlogin and hcm rmlogin
 commands. With this format you can easily cut
 and paste to change or remove a stored login.

 o script - Returns a Tcl list.

RETURN VALUE

 If you run the hcm showlogins command with the '-report script' option,
 it returns a Tcl list. If you run it with any other -report option, it
 does not return any Tcl values. For a description of the output, see
 the "Understanding the Output" section.

SEE ALSO

Administration

1102

 access allow, access deny, hcm addlogin, hcm rmlogin, command defaults
,

EXAMPLES

 This example displays all the logins stored on the server
 sync://chip.ABCo.com:2647

 dss> hcm showlogins -fromtarget sync://chip.ABCo.com:2647

password

password Command

NAME

 password - Stores a user's name and password

DESCRIPTION

This command allows you to save a userID and password for a DesignSync
 server or a 3DPassport Central Authentication Server, eliminating the
 need to manually authenticate. This allows the user to run
 background jobs without requiring user input.

 The username, password, and server information is saved in the user's
 registry, the UserRegistry.reg file. Whenever the user accesses the
 specified server from any system, the saved password is used.

 Note: The saved login information is sent to the server for all
 queries, even if authentication isn't required. If authentication is
 not required, this command succeeds regardless of the supplied values.

 To use the command, enter the server on the command line with the
 -save option, then enter the username and password when prompted.

 When using the password command with the 3DPassport server, the login
 is persistent for the command-line and graphical clients. This
 provides the ability to use the 3DPassport single-signon
 functionality. For information on using 3DPassport, see the
 DesignSync Data Manager Administrator's Guide: Enabling 3DPassport.

 Note: The password command does not save the password for Web
 authentication. If you are using a web-based application, you may
 need to log in again through that interface.

SYNOPSIS

ENOVIA Synchronicity Command Reference - Module

1103

 password -save <ServerURL>

OPTIONS

• save_option

 -save Specify the DesignSync URL for the server connection
 <serverURL> appropriate for the username/password you are saving
 in the form:
 sync[s]://<host>[:<port>]
 where <host> is the hostname of the SyncServer and
 <port> is the SyncServer port number.

RETURN VALUE

 This command does not return any TCL values. If the server cannot be
 reached, or the account does not exist on the server, the password is
 saved but not authenticated.

SEE ALSO

 dssc, stclc, dss, stcl

EXAMPLES

 This example shows how to save the username and password for the
 specified server.

 dss> password -save sync://srv2.ABCo.com:2647
 Please enter account information for Synchronicity, host srv2.ABCo.com:2647.
 Username: rsmith
 Password: ***********
 Password confirmed and saved.

Command Defaults

defaults Command

NAME

 defaults - Commands for the command defaults system

Administration

1104

DESCRIPTION

 The "defaults" commands are used to set default values for command
 options, for commands run from the command line. For general
 information about the command line defaults system, in a DesignSync
 command shell, enter: help "command defaults"

 To display a list of available "defaults" commands, in a DesignSync
 command shell, enter: defaults <Tab>

SYNOPSIS

 defaults <defaults_command> [<defaults_command_options>]

 Usage: defaults [commands|off|on|refresh|set|show|state]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 defaults commands, defaults off, defaults on, defaults refresh,
 defaults set, defaults show, defaults state, command defaults

EXAMPLES

 See specific "defaults" commands.

Command Defaults

command defaults Command

NAME

ENOVIA Synchronicity Command Reference - Module

1105

 command defaults - The command line defaults system

DESCRIPTION

 Default values can be set for command options, for commands run from
 the command line. Default values can be set for individual commands,
 a family of commands (such as all "url" sub-commands), or all commands.
 This simplifies invocations of commands from the command line, because
 the user does not need to specify "-[option] <value>" for the saved
 default value.

 To display a list of available "defaults" commands, in a DesignSync
 command shell, enter: defaults <Tab>

 Run "defaults commands" for the list of commands that support the
 command line defaults system.

 Use "defaults set" to set default values. Specifying an option on the
 command line overrides a saved default value for the specified option.
 A saved default value takes precedence over default behavior specified
 via SyncAdmin.

 To set default values for a project team, or for all users at a site,
 use the "sregistry scope" command.

 Any command that supports the command line defaults system has a
 "-nodefaults" override option. If "-nodefaults" is specified, then any
 saved default values will be ignored. The intent of the "nodefaults"
 option is for script writers to ensure that functions are called as the
 writer intends the functions to be called.

 See the "defaults set" command documentation for how to set a default
 fetch state for the command line. Saving a default value for the
 "-exclude" option pertains only to the "-exclude" command line option.
 It does not affect the Exclude Lists described in the SyncAdmin help.

 DesignSync graphical applications are not affected by the command line
 defaults system. DesignSync DFII and the DesignSync GUI do not use
 saved command line default values. However, the command bar in the
 DesignSync GUI does use the command line defaults system.

SEE ALSO

 defaults commands, defaults off, defaults on, defaults refresh,
 defaults set, defaults show, defaults state, sregistry scope

EXAMPLES

• Example of Setting the Default

Administration

1106

• Example of Showing the Saved Defaults
• Example of Overriding the Set Defaults for the Whole Command
• Example of Overriding a Specific Option

Example of Setting the Default

 To set "-report status" as the default report mode for "ls":
 stcl> defaults set -- ls -report status

Example of Showing the Saved Defaults

 To see what default options have been saved for the "ls" command:
 stcl> defaults show ls
 {ls {-report status}}

Example of Overriding the Set Defaults for the Whole Command

 To ignore the saved default for "ls", and use the built-in default
 report mode ("-report normal"):
 stcl> ls -nodefaults

Example of Overriding a Specific Option

 Specifying an option value at the command line overrides the option's
 saved default value. For example:
 stcl> ls -report brief

defaults

defaults Command

NAME

 defaults - Commands for the command defaults system

DESCRIPTION

 The "defaults" commands are used to set default values for command
 options, for commands run from the command line. For general
 information about the command line defaults system, in a DesignSync
 command shell, enter: help "command defaults"

 To display a list of available "defaults" commands, in a DesignSync

ENOVIA Synchronicity Command Reference - Module

1107

 command shell, enter: defaults <Tab>

SYNOPSIS

 defaults <defaults_command> [<defaults_command_options>]

 Usage: defaults [commands|off|on|refresh|set|show|state]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 defaults commands, defaults off, defaults on, defaults refresh,
 defaults set, defaults show, defaults state, command defaults

EXAMPLES

 See specific "defaults" commands.

defaults commands

defaults commands Command

NAME

 defaults commands - Lists the commands that support the defaults system

DESCRIPTION

 Lists the commands that support the defaults system. Those commands can
 have default values set for them, by using the "defaults set" command.

Administration

1108

SYNOPSIS

 defaults commands

RETURN VALUE

 A list of the commands that accept default values. The order of the
 entries in the list is non-deterministic. For a family of commands, its
 sub-commands are listed.

 For example:
 {replicate {addroot data showroots showdata rmroot rmdata disable
 reset enable setoptions scrub masrename}}

SEE ALSO

 defaults on, defaults refresh, defaults set, defaults show,
 defaults state, command defaults

EXAMPLES

 To list all commands that support the command defaults system:

 stcl> defaults commands
 vhistory rmlogin showmcache {view {check get list put remove}} tag
 mkmod {replicate {addroot data showroots showdata rmroot rmdata
 disable reset enable setoptions scrub masrename}} mvfile unfreezemod
 showstatus contents mkbranch compare hcm lock {mcache {scan touch
 scrub show}} annotate rmfolder remove addbackref upgrade add
 reconnectmod switchlocker mvmod showmods migratetag edithrefs rmmod
 exportmod ci showlogins addhref cancel setview freezemod co populate
 rmfile mvfolder showhrefs unremove importmod purge showlocks
 rmversion addlogin {sitr {env integrate lookup mkbranch mkmod
 populate release select status submit update}} rmvault mvmember
 {swap {replace restore show}} retire unlock rmhref whereused version
 ls

 stcl>

defaults off

defaults off Command

NAME

ENOVIA Synchronicity Command Reference - Module

1109

 defaults off - Disables the command defaults system

DESCRIPTION

 Disables the command default system. If you do not specify an <expr>,
 the command default system is disabled until a subsequent "defaults on"
 command is run within the current client session. When a DesignSync
 client is started, the command defaults system is enabled.

 If you do specify an <expr>, the command defaults system is disabled for
 the duration of the execution of the supplied Tcl expression.

 The "defaults off" and "defaults on" commands do not "nest". The caller
 of those commands must ensure that the command defaults system is in
 the correct state at any time.

 Use the "defaults state" command to show whether the command defaults
 system is current enabled or disabled.

 To disable the command defaults system when running an individual
 command, specify the "-nodefaults" option to the command. Use "defaults
 off" if you are calling a user-defined procedure or alias that itself
 calls one or more DesignSync commands.

SYNOPSIS

 defaults off [<expr>]

RETURN VALUE

 If you do not specify an <expr>, the state value "off" is returned. If
 you do specify an <expr>, the result of that <expr> is returned. If the
 <expr> throws an error, "defaults off" will throw an error.

 When an <expr> is specified, the state of the command defaults system is
 always returned to what it was originally, even if the <expr> threw an
 error.

SEE ALSO

 defaults commands, defaults on, defaults refresh, defaults set,
 defaults show, defaults state, command defaults

EXAMPLES

Administration

1110

 This example shows what happens when you set a default on a command,
 run the command. The example sets the default "-report verbose" for
 the ls command and then shows running the command with the default
 mode disabled.

 stcl> defaults set -- ls -report verbose

 The "defaults show" command confirms the default setting for "ls":

 stcl> defaults show ls
 {ls {-report verbose}}
 stcl>

 "ls" of an object, without specifying a "-report" option, uses the saved
 default mode of "-report verbose" (instead of the out-of-the-box default
 mode of "-report normal"):

 stcl> ls samp.asm
 Object Type Time Stamp Status Version Locked By Name
 ----------- ---------- ------ ------- --------- ----
 File 05/25/1997 22:04 Up-to-date 1.1 samp.asm
 Original Log: --> Created by tbarbg10 @05/26/2006 09:40:10
 --> Old DAC demo files
 Version Tags: Latest
 Branch Tags: Trunk
 stcl>

 To ignore saved default values while a command is run, preface the
 command invocation with "defaults off". For example, if the command
 defaults system is disabled while an "ls" is run, that "ls" will use
 the out-of-the-box default mode of "-report normal":

 stcl> defaults off ls samp.asm
 Time Stamp WS Status Version Type Name
 ---------- --------- ------- ---- ----
 05/25/1997 22:04 1.1 Copy samp.asm
 stcl>

defaults on

defaults on Command

NAME

 defaults on - Enables the command defaults system

DESCRIPTION

 Re-enables the command default system. The command defaults system is
 enabled by default. The command defaults system remains enabled within
 a client session until the "defaults off" command is run.

ENOVIA Synchronicity Command Reference - Module

1111

 The "defaults off" and "defaults on" commands do not "nest". The caller
 of those commands must ensure that the command defaults system is in
 the correct state at any time.

SYNOPSIS

 defaults on

RETURN VALUE

 The state value "on".

SEE ALSO

 defaults commands, defaults off, defaults refresh, defaults set,
 defaults show, defaults state, command defaults

EXAMPLES

 The example shows enabling and disabling the command defaults system,
 and using the "default state" command to show whether defaults is
 enabled.

 stcl> defaults off
 off
 stcl> defaults state
 off
 stcl> defaults on
 on
 stcl> defaults state
 on
 stcl>

defaults refresh

defaults refresh Command

NAME

 defaults refresh - Refreshes the command defaults system

DESCRIPTION

Administration

1112

 Refreshes the command defaults system, by re-reading the registry files
 sourced by the DesignSync client on startup. Default values set via the
 command defaults system are used by the DesignSync client from which the
 default values were set. If you saved default values in concurrent
 DesignSync client sessions, run the "defaults refresh" command to read
 all saved default values.

 Similarly, if default values were saved by a project lead or site
 administrator, run "defaults refresh" to read default values from all
 client registry files. See the DesignSync Data Manager User's Guide
 topic "Registry Files" for further information. New DesignSync client
 sessions read all saved default values (from registry files) on
 startup.

SYNOPSIS

 defaults refresh

RETURN VALUE

 Not defined.

SEE ALSO

 defaults commands, defaults off, defaults on, defaults set,
 defaults show, defaults state, command defaults, sregistry scope

EXAMPLES

 This example shows what happens when a default on a command
 in a different client than the one you're using, and you want to
 refresh your client to read in the new default value.

 stcl> defaults set -- ls -report verbose
 stcl>

 "defaults show" shows that the only saved default value for "ls" is
 the report mode:

 stcl> defaults show ls
 {ls {-report verbose}}
 stcl>

 In another stclc session, you save another default value for "ls":
 stcl> defaults set -- ls -report verbose -recursive
 stcl>

ENOVIA Synchronicity Command Reference - Module

1113

 Back in the stclc session from which you set the "-report verbose"
 default value, "-report verbose" is still the only default value saved
 for "ls":

 stcl> defaults show ls
 {ls {-report verbose}}
 stcl>

 Still in the stclc session from which you set the "-report verbose"
 default value, you run "defaults refresh", to re-read the client
 registry files:

 stcl> defaults refresh
 stcl>

 Now, that initial stclc recognizes the default values that were saved
 in the other stclc session:

 stcl> defaults show ls
 {ls {-recursive -report verbose}}
 stcl>

defaults set

defaults set Command

NAME

 defaults set - Defines the default values for a command

DESCRIPTION

• Note for Module Commands

 Defines the default values for a command or sub-command. For a default
 value to apply to all commands that support the specified option, specify
 a <command> value of "*". For a default value to apply to a family of
 commands, specify the parent command as the <command> value. For example,
 a <command> value of "access" applies the specified default values to all
 "access" sub-commands that support the specified option.

 Note: The values set as the new command default REPLACE the
 previously set command defaults. All previously set defaults
 specified for the same command level are removed. For example, if
 you have changed the report mode for the replicate command set, it
 will not remove the defaults set on the specific replicate commands.
 For more clarification, see the examples section.

 "defaults set" saves defaults for the user. To set default values for a
 project team, or for all users at a site, use the "sregistry scope"

Administration

1114

 command. See the "sregistry scope" command documentation for details.

 To set a command line default value for the fetch state, specify the
 exact option name used by a command. To specify local copies as the
 default fetch state value, set the "-keep" option for the "cancel" and
 "ci" commands. And set the "-get" option for the "co" and "populate"
 commands.

 To remove the saved default values for a command, specify empty double
 quotes ("") as the option value. See the Examples section for syntax.

Note for Module Commands

 Note: You cannot set a global default value on module (hcm)
 commands. You must specify the command defaults individually;
 optimally by using the command name with no hcm prefix.

SYNOPSIS

 defaults set [-temporary | -nooverrule] -- <command> <option>
 [<option> ...]

OPTIONS

• -nooverrule
• -temporary
• --

-nooverrule

 -nooverrule The saved default value cannot be overridden. This option
 is intended for project leaders or site administrators.

 When using the "sregistry scope" command to set a default
 value for a project, specifying "-nooverrule" prevents
 a user's saved default value from overriding the project's
 default value.

 Similarly, when using the "sregistry scope" command to
 set a site-wide default value, specifying "-nooverrule"
 prevents project and user saved default values from
 overriding the site's default value.

 Command options specified by the user will be used, taking
 precedence over a "-nooverrule" setting.

-temporary

ENOVIA Synchronicity Command Reference - Module

1115

 -temporary The saved default value applies only to the DesignSync
 client session from which the "defaults set" command was
 run.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when an argument to the
 command begins with a hyphen (-).

RETURN VALUE

 Not defined.

SEE ALSO

 defaults commands, defaults off, defaults on, defaults refresh,
 defaults show, defaults state, command defaults, sregistry scope

EXAMPLES

• Example of Setting the Default Options for a Specific Command
• Example of Resolving Default Conflicts
• Example of Clearing the Defaults
• Example of Setting Defaults for All Commands

Example of Setting the Default Options for a Specific Command

 This example sets the following options for the ls command:
 * Sets the -report mode to "status"
 * Sets the -[no]path option to path

 stcl> defaults set -- ls -report status -path

 To see the saved defaults for the "ls" command
 stcl> defaults show ls
 {ls {-report status -path}}

Example of Resolving Default Conflicts

 This example shows how DesignSync resolves set default conflicts.
 Locally, you have set the default defined in Example 1. Your project

Administration

1116

 team leader uses the "sregistry scope" command to save "-fullpath" as
 a default option to "ls".

 Adding the "-source" option to "defaults show" shows the two different
 (mutually exclusive) options that were saved at the user level ("-path")
 and at the project level ("-fullpath"):

 stcl> defaults show -source ls
 {ls temporary {} project -fullpath project_nooverrule {}
 user {-report status -path} user_nooverrule {} site {}
 site_nooverrule {} enterprise {} enterprise_nooverrule {}}

 The default value saved by the user ("-path") takes precedence, because
 the project leader did not specify "-nooverrule". (The project_nooverrule
 value in the "defaults show" output above is empty.) That is why
 "defaults show" (without "-source") still shows the default "-path"
 value that you saved:

 stcl> defaults show ls
 {ls {-report status -path}}

Example of Clearing the Defaults

 This example shows how to remove your saved default values for the
 "ls" command:
 stcl> defaults set ls ""

 Using the settings from example 2, the default "-fullpath" value is
 still valid because it was set at the project level:

 stcl> defaults show ls
 {ls -fullpath}
 stcl> defaults show -source ls
 {ls temporary {} project -fullpath project_nooverrule {} user {}
 user_nooverrule {} site {} site_nooverrule {} enterprise {}
 enterprise_nooverrule {}}

Example of Setting Defaults for All Commands

 This example shows setting the "-recursive" option as the default
 behavior for all commands that support the command defaults system
 (and have a "-recursive" option):

 Note: This does not remove any previously set defaults on specific
 commands or command sets. If you look at the ls command in the
 "defaults show" results displayed in this example, you will see that
 the command defaults set in the Example 1, for ls, are still set.

 stcl> defaults set -- * -recursive

 To see which commands now have "-recursive" saved as their default
 behavior:

ENOVIA Synchronicity Command Reference - Module

1117

 stcl> defaults show
 {vhistory -recursive} {rmlogin {}} {showmcache {}} {view {}} {{view
 check} {}} {{view get} {}} {{view list} {}} {{view put} {}} {{view
 remove} {}} {tag {-recursive -report normal}} {mkmod {}} {replicate
 {}} {{replicate addroot} {}} {{replicate data} {}} {{replicate
 showroots} {}} {{replicate showdata} {}} {{replicate rmroot} {}}
 {{replicate rmdata} {}} {{replicate disable} {}} {{replicate reset}
 {}} {{replicate enable} {}} {{replicate setoptions} {}} {{replicate
 scrub} {}} {{replicate masrename} {}} {mvfile {}} {showstatus
 -recursive} {contents -recursive} {mkbranch -recursive} {compare
 -recursive} {hcm -recursive} {lock {}} {mcache {}} {{mcache scan} {}}
 {{mcache touch} {}} {{mcache scrub} {}} {{mcache show} {}} {annotate
 {}} {rmfolder -recursive} {remove -recursive} {addbackref -recursive}
 {upgrade {}} {add {-recursive -report normal}} {switchlocker {}}
 {showmods {}} {migratetag {}} {rmmod -recursive} {ci {-recursive
 -report normal}} {showlogins {}} {addhref {}} {cancel -recursive}
 {setview -recursive} {co -recursive} {populate {-recursive -report
 normal}} {mvfolder {}} {rmfile {}} {showhrefs -recursive} {unremove
 {}} {purge -recursive} {rmversion {}} {showlocks -recursive}
 {addlogin {}} {sitr {}} {{sitr env} {}} {{sitr integrate} {}} {{sitr
 lookup} {}} {{sitr mkbranch} {}} {{sitr mkmod} {}} {{sitr populate}
 {}} {{sitr release} {}} {{sitr select} {}} {{sitr status} {}} {{sitr
 submit} {}} {{sitr update} {}} {mvmember {}} {swap {}} {{swap
 replace} {}} {{swap restore} {}} {{swap show} {}} {retire -recursive}
 {rmvault {}} {unlock -recursive} {rmhref {}} {whereused -recursive}
 {version {}} {ls {-recursive -report status -path}} {* -recursive}

 If you want an option, as in this example, -recursive, to be the
 default for the majority of command that support it, but have
 specific commands for which you would prefer a different mode, you
 can set the different mode as a specific default on the command.

 Note: The show output is truncated for clarify.

 stcl> defaults set -- populate -norecursive

 stcl> defaults show

 {vhistory -recursive} {rmlogin {}} {showmcache {}} {view {}}
 ...
 {setview -recursive} {co -recursive} {populate -norecursive}
 ...
 {ls {-recursive -report status -path}} {* -recursive}

defaults show

defaults show Command

NAME

 defaults show - Shows the current default values for a command

Administration

1118

DESCRIPTION

• Note for Module Commands

 Shows the current default values for a command or sub-command. If no
 <command> is specified, then the current default values for all commands
 and sub-commands are reported.

 A <command> value of "*" will show the current default values saved
 against "*". Those default values will be applied to all commands that
 take those options.

 If a sub-command is specified as the <command> value, such as
 "replicate disable", default values for the specific sub-command
 ("replicate disable" in this case), its parent command ("replicate"
 in this example) and any global default values will be
 shown. Similarly, the results for a command combine the default
 values for the specific command, with any global default values.

 If a sub-command is specified as the <command> value and the -source
 option is selected, the default command returns ONLY the default
 values for the specific command. The reply does not include any
 global defaults or any parent command defaults.

Note for Module Commands

 Note: You cannot set a global default value on module (hcm) commands.
 You must specify the command defaults individually; optimally by
 using the command name with no hcm prefix.

SYNOPSIS

 defaults show [-source] [<command>]

OPTIONS

• -source

-source

 -source When specified, the output indicates where the default
 value is saved. By default, command default values are
 stored for the user who ran the "defaults set"
 command. Default values can also be stored for a
 project, or site-wide. See the "sregistry scope"
 command for details.

ENOVIA Synchronicity Command Reference - Module

1119

 When you specify both a command and the -source
 option, the command output displays ONLY the command
 default values associated with that command. Any
 values set on a parent command or globally do not
 display.

RETURN VALUE

 A list, where each entry in the list is the current setting of defaults
 for a command or subcommand. The order of the entries in the list is
 non-deterministic.

SEE ALSO

 defaults commands, defaults off, defaults on, defaults refresh,
 defaults set, defaults state, command defaults, sregistry scope

EXAMPLES

 An example in the "defaults set" command documentation sets "-recursive"
 as the default behavior, for every command that supports the command
 defaults system (and has a "-recursive" option).

 After having saved the global "-recursive" default, "defaults show" shows
 the default "-recursive" value for the "tag" command:

 stcl> defaults show tag
 {tag -recursive}

 Next, let's save "-modified" as default behavior for the "tag" command:

 stcl> defaults set -- tag -modified

 Now, "defaults show" shows both the global "-recursive" option, and the
 "-modified" default value that was explicitly saved for the "tag" command.

 stcl> defaults show tag
 {tag {-recursive -modified}}

 The above output from "defaults show" shows the combined defaults for the
 "tag" command. This represents exactly what options will be applied when
 the "tag" command is run.

 Adding the "-source" option to the "defaults show" command shows where
 the default values for the "tag" command were saved.

 stcl> defaults show -source tag
 {tag temporary {} project {} project_nooverrule {} user -modified
 user_nooverrule {} site {} site_nooverrule {} enterprise {}

Administration

1120

 enterprise_nooverrule {}}

 The above output shows that the "-modified" option to "tag" was saved at
 the user level. The "-recursive" option is not shown, because that option
 was saved globally.

 For global default values, specify "*" as the command:

 stcl> defaults show -source *
 {* temporary {} project {} project_nooverrule {} user -recursive
 user_nooverrule {} site {} site_nooverrule {} enterprise {}
 enterprise_nooverrule {}}

 The above output shows that the "-recursive" option was set globally, at
 the user level.

defaults state

defaults state Command

NAME

 defaults state - Returns the state of the command defaults system

DESCRIPTION

 Returns whether the command defaults system is currently enabled ("on")
 or disabled ("off").

SYNOPSIS

 defaults state

RETURN VALUE

 The state value "on" or the state value "off".

SEE ALSO

 defaults commands, defaults off, defaults on, defaults refresh,
 defaults set, defaults show, command defaults

EXAMPLES

ENOVIA Synchronicity Command Reference - Module

1121

 This example shows the default state with the command defaults system
 enabled and disabled.

 stcl> defaults state
 on
 stcl> defaults off
 off
 stcl> defaults state
 off
 stcl>

Custom Type System

Custom Type Packages

ctp

ctp Commands

NAME

 ctp - Commands to list and verify Custom Type Packages

DESCRIPTION

 The 'ctp' commands help you to manage the installed Custom Type
 Packages (CTPs). You can list the CTPs using 'ctp list' and
 debug your CTPs using the 'ctp verify' command.

 A CTP is a Tcl file containing procedures that recognize and traverse
 your custom data hierarchy, grouping the data into collections. You
 install the CTP in one of the following Synchronicity custom hierarchy
 directories:

 o Project-level CTP:
 <SYNC_PROJECT_CFGDIR>/ctp/<ctp_file>.ctp

 o Site-level CTP:
 <SYNC_SITE_CUSTOM>/share/client/ctp/<ctp_file>.ctp

 When next you invoke a DesignSync client, the DesignSync Custom Type
 System registers the CTP so that each revision control operation can
 now recognize and manage the collection types defined in your CTP.

 To develop a CTP for your custom data, see the DesignSync Custom Type
 System Programmer's Guide.

SYNOPSIS

Administration

1122

 ctp <ctp_command> [<ctp_command_options>]

 Usage: ctp [list|verify]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 ctp list, ctp verify, localversion, localversion delete,
 localversion list, localversion restore, localversion save

EXAMPLES

 See specific 'ctp' commands.

ctp list

ctp list Command

NAME

 ctp list - Lists installed Custom Type Packages

DESCRIPTION

 This command lists the names of all currently installed Custom Type
 Packages (CTPs). You run the 'ctp list' command from any directory,
 with no arguments.

 A CTP is a Tcl file containing procedures that recognize and
 traverse your custom data hierarchy, grouping the data into
 collections. You install the CTP in one of the following
 Synchronicity custom hierarchy directories:

 o Project-level CTP:
 <SYNC_PROJECT_CFGDIR>/ctp/<ctp_file>.ctp

ENOVIA Synchronicity Command Reference - Module

1123

 o Site-level CTP:
 <SYNC_SITE_CUSTOM>/share/client/ctp/<ctp_file>.ctp

 When next you invoke a DesignSync client, the DesignSync Custom
 Type System registers the CTP so that each revision control
 operation can now recognize and manage the collection types
 defined in your CTP.

 To develop a CTP for your custom data, see the
 DesignSync Custom Type System Programmer's Guide.

SYNOPSIS

 ctp list

ARGUMENTS

 None.

OPTIONS

 None.

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the
 return value is irrelevant.

 In stcl/stclc mode, the command returns a list of the installed
 CTPs and an empty list if there are no installed CTPs.

SEE ALSO

 ctp, ctp verify, localversion, localversion delete,
 localversion list, localversion save, localversion restore

EXAMPLES

 The following example lists all of the Custom Type Packages (CTPs)
 currently installed.

 stcl> ctp list
 collectionCTP localCTP kmlocalCTP dsmwCTP

Administration

1124

ctp verify

ctp verify Command

NAME

 ctp verify - Validates installed Custom Type Package files

DESCRIPTION

 This command verifies all installed Custom Type Packages (CTPs).
 A CTP is a Tcl file containing procedures that recognize and traverse
 your custom data hierarchy, grouping the data into collections. You
 install the CTP in one of the following Synchronicity custom hierarchy
 directories:

 o Project-level CTP:
 <SYNC_PROJECT_CFGDIR>/ctp/<ctp_file>.ctp

 o Site-level CTP:
 <SYNC_SITE_CUSTOM>/share/client/ctp/<ctp_file>.ctp

 When next you invoke a DesignSync client, the DesignSync Custom Type
 System registers the CTP so that each revision control operation can
 now recognize and manage the collection types defined in your CTP.

 To develop a CTP for your custom data, see the DesignSync Custom
 Type System Programmer's Guide.

 The 'ctp verify' command tests for inconsistencies in the behavior
 of related procedures in the CTPs. There are several places where a
 CTP is required to return the same information in multiple places,
 and these must be consistent for the CTP to work correctly. For
 example, if mapViews assigns an objtype to a particular object, but
 updateObject does not, then the CTP will not behave correctly. 'ctp
 verify' flags this type of inconsistency. Among the ways a CTP can
 be internally inconsistent are:

 o The mapViews and determineFolderType procedures return different
 values for a given folder.

 o The mapViews procedure identifies an object as a member, but it is
 not returned by any collection's members procedure.

 o The mapViews procedure fails to identify an object as a member when
 it is returned by a collection's members procedure.

 o A collection member has an owner property identifying a collection,
 but that collection does not identify it as a member.

 o More than one collection identifies a file as a member.

 The 'ctp verify' command validates all of the installed CPTs against

ENOVIA Synchronicity Command Reference - Module

1125

 the data in the specified path. The command lists:

 o The installed and active CTPs

 o The folder and subfolders being validated

 o A status of the collection members in the folder and its subfolder

 The command lists the objects that are not members of any of the
 installed CTPs. It also lists the collections that have no members.
 These occurrences might flag an error in a CTP.

 It is important that you use the 'ctp verify' command to validate
 your CTPs before making them available for use with production
 design data. The Custom Type System checks for exceptions thrown
 by particular CTP procedures, but it does not check for inconsistent
 CTPs during revision control operations. These checks would
 greatly diminish the efficiency of DesignSync's data traversal.

 In order to fully validate your CTPs, it is important that you
 develop test data that exercises all aspects of the CTPs. See
 the DesignSync Custom Type System Programmer's Guide to help
 you design your test data to ensure that 'ctp verify' detects
 specific error conditions.

 In addition to applying 'ctp verify' to your CTPs, use the
 'ls -report OX' command to list objects and their collection
 owners. Use the 'url members' command to list a collection's
 members. These commands will help ensure that your CTP
 manages your data as intended.

SYNOPSIS

 ctp verify [<path>]

ARGUMENT

• path

path

 path The path to the directory/folder containing the
 data used to validate the installed CTPs. You can
 specify an absolute or relative path. If no path is
 specified, 'ctp verify' validates the installed CTPs
 against the current directory.

OPTIONS

Administration

1126

 None.

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the
 return value is irrelevant.

 In stcl/stclc mode, the command returns the number of errors
 found.

SEE ALSO

 ctp, ctp list, localversion, localversion delete,
 localversion list, localversion save, localversion restore

EXAMPLES

• Example of a Clean ctp verify
• Example of a cpt verify Showing Errors

Example of a Clean ctp verify

 The following example shows verification of a clean CTP;
 the 'ctp verify' command returns an error count of 0.

 stcl> ctp verify
 =============== Verifying CTPs ======================
 The following CTPs are installed: collectionCTP dsmwCTP
 Verifying at root /home/karen/sf242data/jul16/coltest

 ---- Verifying /home/karen/sf242data/jul16/coltest

 ---- Verify collection member information
 0

Example of a cpt verify Showing Errors

 This next example verifies a single CTP, collection.ctp:

 stcl> ctp list
 collectionCTP
 stcl> ctp verify
 =============== Verifying CTPs ======================
 The following CTP's are installed: collectionCTP
 Verifying at root /home/karen/sf242data/sep2/ctp_tests/coltest

ENOVIA Synchronicity Command Reference - Module

1127

 ---- Verifying /home/karen/sf242data/sep2/ctp_tests/coltest
 ctp collectionCTP: For object 'g.sgc.tst', the property 'objtype' is
 not the same:
 'Test orange' is set in the updateObject proc and
 'Test collection' is set in the mapViews proc.
 ctp collectionCTP: For object 'f.sgc.tst', the property 'objtype' is
 not the same:
 'Test orange' is set in the updateObject proc and
 'Test collection' is set in the mapViews proc.
 ctp collectionCTP: For object 'a.sgc.tst', the property 'objtype' is
 not the same:
 'Test orange' is set in the updateObject proc and
 'Test collection' is set in the mapViews proc.
 ctp collectionCTP: For object 'd.sgc.tst', the property 'objtype' is
 not the same:
 'Test orange' is set in the updateObject proc and
 'Test collection' is set in the mapViews proc.

 ---- Verify collection member information
 4

Managing Local Versions of Collections

localversion

localversion Commands

NAME

 localversion - Commands to manage local versions of collections

DESCRIPTION

 Some design tools implement their own basic version management
 by making local copies of design objects. A local copy of a design
 object is referred to as a 'local version', to distinguish it
 from the DesignSync version, which is created in the DesignSync
 vault upon checkin (a vault version).

 Where DesignSync manages such data either through a predefined
 recognition package or through a developer's
 Custom Type Package (CTP), DesignSync incorporates the local version
 number into a tag name it applies upon checkin of the object.
 For example, if an object's local version is 6, DesignSync applies
 the tag <collection_type>_6 upon checkin.

 Depending upon the options you choose, the DesignSync 'co' and
 'populate' commands can remove local versions of an object,
 replacing them with the requested version from the DesignSync
 vault. You can save the local versions using the -savelocal
 option to the 'co' or 'populate' commands. You can also save the
 local versions using the 'localversion save' command and later

Administration

1128

 retrieve them using the 'localversion restore' command. The
 'localversion list' command lets you view the saved local versions.

 You can change the local version default behavior so that DesignSync
 automatically saves all local versions before fetching. To change
 this setting, a Synchronicity administrator can use the Local
 Versions field on the Command Defaults pane of the SyncAdmin tool.
 For information, see SyncAdmin help.

SYNOPSIS

 localversion <localversion_command> [<localversion_command_options>]

 Usage: localversion [delete|list|restore|save]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 localversion delete, localversion list, localversion restore,
 localversion save, ctp

EXAMPLES

 See specific 'localversion' commands.

localversion delete

localversion delete Command

NAME

 localversion delete - Deletes a saved version of the given collection

DESCRIPTION

ENOVIA Synchronicity Command Reference - Module

1129

 Use the 'localversion delete' command to delete a local version that
 was previously saved for the specified collection. Use the
 'localversion list' command to list the local versions to be deleted.

 Some design tools implement their own basic version management
 by making local copies of design objects. A local copy of a design
 object is referred to as a 'local version', to distinguish it
 from the DesignSync version, which is created in the DesignSync
 vault upon checkin (a vault version).

 Where DesignSync manages such data either through a predefined
 recognition package or through a developer's Custom Type Package
 (CTP), DesignSync incorporates the local version number into a tag
 name it applies upon checkin of the object. For example, if an
 object's local version is 6, DesignSync applies the tag
 <collection_type>_6 upon check-in.

 Note: This command only affects objects of a collection defined by
 the Custom Type Package (CTP). This command does not affect objects
 that are not part of a collection or collections that do not have
 local versions.

SYNOPSIS

 localversion delete <sync collection>|<sgc collection> <locint>

OPTIONS

• Synchronicity Collection
• Custom Generic Collection
• Local Version Integer

Synchronicity Collection

 sync collection - Specify a Synchronicity predefined collection
 in the format <object>.sync.<collectiontype>
 where

 <object> is the base name of the object, for
 example, a cell or view name.

 sync indicates a Synchronicity predefined
 collection.

 <collectiontype> is the collection name.
 Predefined collection names include cds
 and mw.

 Examples of Synchronicity predefined collection
 objects include NAND.sync.mw and cell1.sync.mw.

Administration

1130

 You can specify the object as a local URL
 (starts with the file:/// protocol) or as an
 absolute or relative path.

Custom Generic Collection

 sgc collection - Specify a custom generic collection (defined
 in a Custom Type Package) using the format
 <object>.sgc.<collectiontype> where

 <object> is the base name of the object, for
 example, a cell or view name.

 sgc indicates a custom collection defined
 in a Custom Type Package.

 <collectiontype> is the collection name
 defined in a Custom Type Package (CTP).
 See the DesignSync Custom Type System
 Programmer's Guide for more information.
 An example of a custom generic collection
 object is symbol.sgc.mytool.

 You can specify the object as a local URL
 (starts with the file:/// protocol) or as an
 absolute or relative path.

Local Version Integer

 locint - Specify the integer assigned to the saved
 local version of the collection. If you
 do not know the integer, use the
 'localversion list' command to view the
 saved local version numbers.

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the
 return value is irrelevant.

 In stcl/stclc mode, the command returns the integer corresponding
 to the deleted local version. If a collection has no saved local
 versions or if the value specified for the saved local version
 number is not an integer, the command throws an error.

SEE ALSO

ENOVIA Synchronicity Command Reference - Module

1131

 localversion, localversion list, localversion save,
 localversion restore

EXAMPLES

 The following example deletes the saved local version of the
 local.sgc.loc collection. The example first lists the saved local
 versions of the local.sgc.loc collection.

 stcl> localversion list .
 local.sgc.loc {1 2 3}
 stcl> localversion delete local.sgc.loc 1
 1
 stcl> localversion list .
 local.sgc.loc {2 3}

localversion list

localversion list Command

NAME

 localversion list - Lists saved versions of collection objects

DESCRIPTION

 Use the 'localversion list' command to list the local versions that
 were previously saved for the specified collection. You can instead
 specify a directory name to list all of the collections with
 previously saved local versions in that directory. In this case,
 each collection is listed, followed by a list of its local version
 numbers. If a collection has no saved local versions or if
 a directory contains no collections with saved local versions,
 the 'localversion list' command returns an empty list.

 Some design tools implement their own basic version management
 by making local copies of design objects. A local copy of a design
 object is referred to as a 'local version', to distinguish it
 from the DesignSync version, which is created in the DesignSync
 vault upon checkin (a vault version).

 Where DesignSync manages such data either through a predefined
 recognition packageor through a developer's
 Custom Type Package (CTP), DesignSync incorporates the local version
 number into a tag name it applies upon checkin of the object.
 For example, if an object's local version is 6, DesignSync applies
 the tag <collection_type>_6 upon checkin.

 Note:
 This command only affects objects of a collection defined by the

Administration

1132

 Custom Type Package (CTP). This command does not affect objects that
 are not part of a collection or collections that do not have local
 versions.

SYNOPSIS

 localversion list <sync collection>|<sgc collection>|<directory>

OPTIONS

• Synchronicity Predefined Collection
• Custom Generic Collection
• Collection Directory

Synchronicity Predefined Collection

 sync collection - Specify a Synchronicity predefined collection
 in the format <object>.sync.<collectiontype>
 where

 <object> is the base name of the object, for
 example, a cell or view name.

 sync indicates a Synchronicity predefined
 collection.

 <collectiontype> is the collection name.
 Predefined collection names include cds
 and mw.

 Examples of Synchronicity predefined collection
 objects include NAND.sync.mw and cell1.sync.mw.

 You can specify the object as a local URL
 (starts with the file:/// protocol) or as an
 absolute or relative path.

Custom Generic Collection

 sgc collection - Specify a custom generic collection (defined
 in a Custom Type Package) using the format
 <object>.sgc.<collectiontype> where

 <object> is the base name of the object, for
 example, a cell or view name.

 sgc indicates a custom collection defined
 in a Custom Type Package.

ENOVIA Synchronicity Command Reference - Module

1133

 <collectiontype> is the collection name
 defined in a Custom Type Package (CTP).
 See the DesignSync Custom Type System
 Programmer's Guide for more information.
 An example of a custom generic collection
 object is symbol.sgc.mytool.

 You can specify the object as a local URL
 (starts with the file:/// protocol) or as an
 absolute or relative path.

Collection Directory

 directory - Specify a directory containing a collection.
 You can specify the directory as a local URL
 (starts with the file:/// protocol) or as an
 absolute or relative path.

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode, the command returns a list of integers
 representing the saved local version numbers if you specify a
 collection. If you specify a directory, the command returns each
 collection in the directory with a corresponding list of saved local
 version numbers for the collection.

 If a specified collection does not exists, the command throws an
 error.

SEE ALSO

 localversion delete, localversion restore, localversion save

EXAMPLES

 The following example lists the saved local versions
 of the local.sgc.loc collection.

 stcl> localversion list local.sgc.loc
 1 2 3

 You can list all of the collections containing local versions
 in a particular directory by specifying a directory instead

Administration

1134

 of a collection.

 stcl> localversion list .
 local.sgc.loc {1 2 3} kmlocal.sgc.loc2 3

localversion restore

localversion restore Command

NAME

 localversion restore- Restores a saved version of the given collection

DESCRIPTION

 Use the 'localversion restore' command to retrieve a local version that
 was previously saved for the specified collection.

 Some design tools implement their own basic version management
 by making local copies of design objects. A local copy of a design
 object is referred to as a 'local version', to distinguish it
 from the DesignSync version, which is created in the DesignSync
 vault upon checkin (a vault version).

 Where DesignSync manages such data either through a predefined
 recognition package or through a developer's Custom Type Package
 (CTP), DesignSync incorporates the local version number into a tag
 name it applies upon checkin of the object. For example, if an
 object's local version is 6, DesignSync applies the tag
 <collection_type>_6 upon check-in.

 You might want to save the local version using the 'localversion
 save' command before you check out or populate a collection. Then,
 you can use the 'localversion restore' command to retrieve your
 local version if you later decide to use it.

 Notes:
 o This command only affects objects of a collection defined by the
 Custom Type Package (CTP). This command does not affect objects
 that are not part of a collection or collections that do not have
 local versions.

 o DesignSync stores the saved local versions within the workspace
 directory. If you delete the workspace directory, you cannot
 recover the local versions.

 o If you apply 'localversion restore' to an unmanaged object, the
 command fails.

SYNOPSIS

ENOVIA Synchronicity Command Reference - Module

1135

 localversion restore <sync collection>|<sgc collection> <locint>

OPTIONS

• Synchronicity Predefined Collection
• Custom Generic Collection
• Local Version Integer

Synchronicity Predefined Collection

 sync collection - Specify a Synchronicity predefined collection
 in the format <object>.sync.<collectiontype>
 where

 <object> is the base name of the object, for
 example, a cell or view name.

 sync indicates a Synchronicity predefined
 collection.

 <collectiontype> is the collection name.
 Predefined collection names include cds
 and mw.

 Examples of Synchronicity predefined collection
 objects include NAND.sync.mw and cell1.sync.mw.

 You can specify the object as a local URL
 (starts with the file:/// protocol) or as an
 absolute or relative path.

Custom Generic Collection

 sgc collection - Specify a custom generic collection (defined
 in a Custom Type Package) using the format
 <object>.sgc.<collectiontype> where

 <object> is the base name of the object, for
 example, a cell or view name.

 sgc indicates a custom collection defined
 in a Custom Type Package.

 <collectiontype> is the collection name
 defined in a Custom Type Package (CTP).
 See the DesignSync Custom Type System
 Programmer's Guide for more information.
 An example of a custom generic collection
 object is symbol.sgc.mytool.

Administration

1136

 You can specify the object as a local URL
 (starts with the file:/// protocol) or as an
 absolute or relative path.

Local Version Integer

 locint - Specify the integer assigned to the saved
 local version of the collection. If you
 do not know the integer, use the
 'localversion list' command to view the
 saved local version numbers.

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the
 return value is irrelevant.

 In stcl/stclc mode, the command returns the integer corresponding
 to the restored local version. If a collection has no saved local
 versions or if the value specified for the saved local version
 number is not an integer, the command throws an error.

SEE ALSO

 ctp, localversion, localversion delete, localversion list,
 localversion save

EXAMPLES

 The following example restores the saved local version of the
 local.sgc.loc collection. The example first lists the saved local
 versions of the local.sgc.loc collection.

 stcl> localversion list .
 local.sgc.loc {1 2 3}
 dss> localversion restore local.sgc.loc 3
 3

localversion save

localversion save Command

NAME

ENOVIA Synchronicity Command Reference - Module

1137

 localversion save - Saves local version of the given collection

DESCRIPTION

 Use the 'localversion save' command to save the current local
 version of a collection in preparation for fetching an
 alternate local version from the vault. This command does not
 remove the local version from your workspace. If you need a
 saved local version in the future, you use the 'localversion
 restore' command to retrieve it.

 Some design tools implement their own basic version management
 by making local copies of design objects. A local copy of a design
 object is referred to as a 'local version', to distinguish it
 from the DesignSync version, which is created in the DesignSync
 vault upon checkin (a vault version).

 Where DesignSync manages such data either through a predefined
 recognition package or through a developer's Custom Type Package
 (CTP), DesignSync incorporates the local version number into a tag
 name it applies upon checkin of the object. For example, if an
 object's local version is 6, DesignSync applies the tag
 <CollectionType>_6 upon checkin.

 Depending upon the options you choose, the DesignSync 'co' and
 'populate' commands can remove local versions of an object,
 replacing them with the requested version from the DesignSync
 vault. You can save the local versions using the -savelocal
 option to the 'co' or 'populate' commands. You can also save the
 local versions using the 'localversion save' command and later
 retrieve them using the 'localversion restore' command. The
 'localversion list' command lets you view the saved local versions.

 By default, check-out and populate operations on collections
 fail if your workspace contains a local version with a higher
 number than the local version being fetched. You can change the
 local version default behavior so that DesignSync automatically
 saves or removes the local versions before fetching. To change
 this setting, a Synchronicity administrator can use the Local
 Versions field on the Command Defaults pane of the SyncAdmin tool.
 For information, see SyncAdmin help.

 Notes:

 o This command only affects objects of a collection defined by the
 Custom Type Package (CTP). This command does not affect objects
 that are not part of a collection or collections that do not have
 local versions.

 o DesignSync stores the saved local versions within the workspace
 directory. If you delete the workspace directory, you cannot
 recover the local versions.

Administration

1138

SYNOPSIS

 localversion save <sync collection>|<sgc collection>

OPTIONS

• Synchronicity Predefined Collection
• Custom Generic Collection

Synchronicity Predefined Collection

 sync collection - Specify a Synchronicity predefined collection
 in the format <object>.sync.<collectiontype>
 where

 <object> is the base name of the object, for
 example, a cell or view name.

 sync indicates a Synchronicity predefined
 collection.

 <collectiontype> is the collection name.
 Predefined collection names include cds
 and mw.

 Examples of Synchronicity predefined collection
 objects include NAND.sync.mw and cell1.sync.mw.

 You can specify the object as a local URL
 (starts with the file:/// protocol) or as an
 absolute or relative path.

Custom Generic Collection

 sgc collection - Specify a custom generic collection (defined
 in a Custom Type Package) using the format
 <object>.sgc.<collectiontype> where

 <object> is the base name of the object, for
 example, a cell or view name.

 sgc indicates a custom collection defined
 in a Custom Type Package.

 <collectiontype> is the collection name
 defined in a Custom Type Package (CTP).
 See the DesignSync Custom Type System
 Programmer's Guide for more information.
 An example of a custom generic collection
 object is symbol.sgc.mytool.

ENOVIA Synchronicity Command Reference - Module

1139

 You can specify the object as a local URL
 (starts with the file:/// protocol) or as an
 absolute or relative path.

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the
 return value is irrelevant.

 In stcl/stclc mode, the command returns an integer representing
 the saved local version.

 If a specified collection does not exists, the command throws
 an error.

SEE ALSO

 ctp, localversion, localversion delete, localversion list,
 localversion restore

EXAMPLES

• Example of Saving the Current Local Version
• Example of Saving Local Version of Milkyway Data

Example of Saving the Current Local Version

 The following example saves the current local version of the
 local.sgc.loc collection. The example lists the saved local
 versions of the local.sgc.loc collection.

 stcl> localversion save local.sgc.loc
 3
 stcl> localversion list local.sgc.loc
 1 2 3

Example of Saving Local Version of Milkyway Data

 This example shows how localversion commands might be used for
 Milkyway data.

 Note: The DesignSync Milkway integration has been deprecated. This
 example is meant to be used only as a reference.

 In this scenario, Fadi checks out the Milkyway collection object

Administration

1140

 top_design.sync.mw to fix a defect assigned against the object,
 thus fetching local version number 2 to his workspace. He edits
 the object, creating local version 3. However, he finds out
 Jocelyn has already made a fix for the defect when she checked
 in her local version 3. Before he checks out her local version,
 he saves his local versions:

 stcl> cd /home/tfadi/top_design_library
 stcl> localversion save top_design.sync.mw
 3

 Later the team decides that Jocelyn's fix was not efficient, so
 Fadi decides to retrieve his local version.

 stcl> localversion list top_design.sync.mw
 3
 stcl> localversion restore top_design.sync.mw 3
 3

Data Import/Export with DesignSync

exportmod

exportmod Command

NAME

 exportmod - Export module from a specified URL

DESCRIPTION

 This command compresses the specified module into a tar file so it
 can be moved to a different location, a different
 category, or a different server. The command tars the entire module
 contents including the module history, the module members, the
 original host, port, and module URL, and references to and from the
 module.

 Note: Any notes, access controls, subscriptions, or mirrors
 associated with the module are not exported along with the module.

 The tar file that is created is stored on the server in the following
 unique location:
 <server-data-directory>/Export.sync/<category-path>/<module-name>.tar

 Note: By providing a single, unique location for the archive file,
 DesignSync avoids the possibility of overwriting the archive with a
 different module of the same name. It also ensures that only one
 tarred version of the of the module can exist on the server at any
 given time.

 The <server-data-directory> is:

ENOVIA Synchronicity Command Reference - Module

1141

 <sync_data_directory_defined_at_install_time>/<host>/<port>/server_vault

 Tip: When the export is created, the output of the export command
 provides the full path location to the export file. Save this
 information for use with the import command.

 Part of the moving process (export and import together) focuses on
 updating the hierarchical references to and from the module. This
 information is used when determining where the module is used (visible
 with the DesignSync whereused command). When the module is exported,
 the whereused information still identifies the original module
 location. When the module is imported to the new location, the
 hierarchical references are recreated and this new module is added to
 the whereused information of the referenced submodules. DesignSync
 does not remove, on import, the references to the old module since
 you are not required to delete the module.

 Important: By default, the command freezes the module before
 beginning the exportmod and does not remove the freeze when the
 operation completes.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 exportmod [-[no]force] [-[no]freeze] <ServerURL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the module. Specify the URL as
 follows:
 sync://<host>[:<port>]/Modules/[<category...>/]<module>
 or
 syncs://<host>[:<port>]/Modules/[<category...>/]<module>
 where 'sync://' or 'syncs://'
 is required, <host> is the machine on which the
 SyncServer is installed, <port> is the SyncServer
 port number (defaults to 2647/2679), [<category...>}
 is the optional category (and/or sub-category)
 containing the module, and <module> is the name of
 the module.
 For example:
 sync://serv1.abco.com:1024/Modules/ChipDesigns/Chip

Administration

1142

OPTIONS

• -[no]force
• -[no]freeze

-[no]force

 -[no]force Overwrites the previous version of the exported
 module, if a previous version exists.

 -noforce does not remove the previous
 version. (Default)

 -force removes the previous version.

 Note: Because the name and location of the
 exported module is fixed based on the
 module and category name, only one version of
 the transportable module can exist at a
 time. For information on locating the
 exported module, see the Description section.

-[no]freeze

 -[no]freeze Freezes all the module branches on the server,
 so that no changes can be made, preserving the
 integrity of the information being exported.

 -nofreeze does not freeze module. This means
 changes can be made both during and after the
 exportmod operation.

 -freeze freezes the module so no changes can be
 made. This mode persists after the exportmod
 operation completes to support moving the
 module to a new location. (Default)

 Note: You can remove the module freeze using
 the unfreeze command.

RETURN VALUE

 There is no return value. DesignSync provides status messages while
 the command runs. If the command fails, DesignSync returns an error
 explaining the failure.

SEE ALSO

ENOVIA Synchronicity Command Reference - Module

1143

 importmod, freezemod, unfreezemod, mvmod

EXAMPLES

• Exporting a module

Exporting a module

 This example creates a transportable module from an existing, in
 production module to move to a new location.

 dss> exportmod sync://serv1.ABCo.com:2647/Modules/Chips/chip-nx1
 Beginning module export ...
 sync://serv1.ABCo.com:2647/Modules/Chips/chip-nx1 : Module is frozen.
 Module successfully exported.
 /V6R2014Server/syncdata/serv1/2647/server_vault/Export.sync/Modules/
 Chips/chip-nx1.tar

import

import Command

NAME

 import - Fetches an object, leaving it unmanaged

DESCRIPTION

 This command fetches local copies of the specified objects from the
 specified vault to your current workspace. Unlike fetching with the
 "co" command, imported files do not retain their association with the
 vault (are no longer managed).

 The "import" command can be used to switch an object's vault
 association. Perform the import on the object and then run the ci
 command on the new, unmanaged, object to check it into the new
 vault.

 Note: The selector list can be used to select what versions to fetch.
 If the select list is used, it is inherited from parent folder (the
 folder into which the objects are imported). If the selector is not
 appropriate for the vault from which you are importing use the
 -version option to specify the version. For DesignSync objects, the
 selector list will pick up tagged versions or version numbers. For
 modules, the selector list can only specify version numbers.

Administration

1144

SYNOPSIS

 import [-force] [-version <selector>] [--]
 <argument> <object> [<object>...]

ARGUMENTS

• Module URL

Module URL

 <module URL> Specifies the DesignSync URL of the module for the
 object being imported. Specify the URL (for
 example:
 sync://srvr2.ABCo.com/Modules/Chip/chip.c;)
 when the object being imported is a member of a
 module.

OBJECTS

• Module Member

Module Member

 <module member> Specifies the module member to import. You cannot
 import folders.

OPTIONS

• -force
• -version
• --

-force

 -force Overwrites a local object if the object has the
 same name as an object being imported. When
 -force is not specified, the default behavior is
 to not overwrite local objects and return an
 error message explaining why the objects were not
 imported.

-version

ENOVIA Synchronicity Command Reference - Module

1145

 -version <selector> Specifies the version of the objects being
 imported.

 If no version is specified, the default version
 imported is the latest object version in the
 module version specified by the module URL
 argument.

 Note: To use -version to specify a branch,
 specify both the branch and version as follows:
 '<branchtag>:<versiontag>', for example,
 'Rel2:Latest'. You can also use the shortcut,
 '<branchtag>:', for example "Rel2:". If
 you don't explicitly specify the branch
 selector in this way, DesignSync does not
 resolve the selector as a branch selector.

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

RETURN VALUE

 none

SEE ALSO

 populate, selectors

EXAMPLES

• Example of Importing a Specific Module Version
• Example of Importing a Module Member

Example of Importing a Specific Module Version

 This example fetches a specific version of a module object by its
 natural path.

 dss> import sync://cassini:2647/Modules/Chip;1.5 /libs/df2test/cdsinfo.tag

Example of Importing a Module Member

Administration

1146

 This example shows fetching a specific module member vault version
 using the -version option to specify the version number.

 dss> import -version 1.3 sync://h:p/Modules/Chip;1.5\
 /libs/df2test/cdsinfo.tag

importmod

importmod Command

NAME

 importmod - Import exported module to new server location

DESCRIPTION

 This command uncompresses an exported module from the tar file to the
 specified location. The new module contains the full module history
 of the old module, the module members, the original host, port, and
 module URL information. It also contains the hierarchical reference
 information. In an additional step, you can recreate the hierarchical
 references using the reconnectmod command.

 Before you perform the import, you must copy the exported file to the
 specific location that corresponds to the desired location on the
 server. Copy the file to the following location:

 <server-data-directory>/Import.sync/Modules/<category_path>/ \
 <modulename>.tar

 Where:
 <server-data-directory> is:
 <path_to_syncdata>/<host>/<port>/

 If you are also changing the name of the module, as well as the
 location, rename the tar file to <newModuleName>.tar.

 Note: The specified module location must be empty in order to import
 the module. If there is already a module in that location, you must
 remove it before performing the import.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

 This command supports the command defaults system.

SYNOPSIS

 importmod[-[no]freeze] [-[no]keep] <ServerURL>

ENOVIA Synchronicity Command Reference - Module

1147

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the module. Specify the URL as
 follows:
 sync://<host>[:<port>]/Modules/[<category...>/]<module>
 or
 syncs://<host>[:<port>]/Modules/[<category...>/]<module>
 where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, <port> is the SyncServer
 port number (defaults to 2647/2679), [<category...>}
 is the optional category (and/or sub-category)
 containing the module, and <module> is the name of
 the module.
 For example:
 sync://serv1.abco.com:1024/Modules/ChipDesigns/Chip

OPTIONS

• -[no]freeze
• -[no]keep

-[no]freeze

 -[no]freeze Freezes all the module branches on the server after
 the import completes so any additional changes can be
 made before the module is released for normal usage.

 -nofreeze immediately releases the freeze on the
 module after the import has completed. This means
 changes immediately upon completion of the importmod
 operation.

 -freeze leaves the module in a frozen state after the
 import so no changes can be made. (Default)

 Note: You can remove the module freeze using the
 unfreeze command.

-[no]keep

 -[no]keep Indicates whether DesignSync should keep or delete
 the module export file after the import is complete.

Administration

1148

 -nokeep removes the module export file after
 completing the import. If the import is not
 successful, the export file is not removed,
 regardless of how this is set. (Default)

 -keep saves the module export file after completing
 the import.

RETURN VALUE

 There is no return value. DesignSync provides status messages while
 the command runs. If the command fails, DesignSync returns an error
 explaining the failure.

SEE ALSO

 exportmod, mvmod

EXAMPLES

• Example of Importing a module

Example of Importing a module

 This example copies a transportable module, created with the
 exportmod command, changes the name of the module, and imports the
 module to the new server location.

 syncmgr@serv1> cp

/usr/syncmgr/syncdata/serv1/2647/server_vault/Export.sync/Modules/Chips/Chip-
nx1.tar

/usr/syncgmr/syncdata/serv2/2647/server_vault/Import.sync/Modules/ChipDesign/
Chip-NX2.tar
 syncmgr@serv1> dssc
 dss> importmod sync://serv2.ABCo.com:2647/Modules/ChipDesign/Chip-NX2
 Beginning module import ...
 sync://serv2.ABCo.com:2647/Modules/ChipDesign/Chip-NX2 : Module is frozen.
 Module successfully imported.

upload

upload Command

NAME

ENOVIA Synchronicity Command Reference - Module

1149

 upload - Upload/Update compressed IP stored in DesignSync

DESCRIPTION

• Understanding How a Temporary Directory is used for Upload
• Order of Precedence for Temp Directory:

 The command allows you to upload or update a tar or gzipped tar
 archive to DesignSync in an efficient manner so that, instead of
 replacing the archive with the next version, DesignSync updates
 only the elements within the archive file that have changed from the
 previous version.

 By performing a change (delta) calculation and only checking in the
 changed object set, DesignSync provides both improved speed during
 checkin and checkout and reduces the amount of disk space required
 for storing the IP.

 The user running the upload should examine the tar file to make sure
 it contains none of
 the following:
 o unnecessary or undesired parent directories
 o absolute path directories

 These should be removed before performing the upload.

Notes:
 o The executables (binaries) for tar or gtar must be on the user's
 path in order for the command to work.

 o DesignSync also provides a graphical user interface for uploading
 IP through the DesignSync Web Interface. For more information, see
 the DesignSync Administrator's Guide.

 This command is subject to Access Controls on the server.

 This command supports the command defaults system.

Understanding How a Temporary Directory is used for Upload

 The compressed archive is exploded in a temporary directory and
 compared against the last version, if applicable, on the server and
 only the changed object set is checked in.

 Tip: For optimal operation, DesignSync recommends that the upload
 directory contain at least 2.5* the size of the uncompressed
 archive file.

 By default, this operation is performed in the temporary directory
 specified by the Upload_Tmp_Dir registry setting or the SYNC_TMP_DIR

Administration

1150

 environment variable. If neither of these is set, DesignSync uses the /tmp
 directory on the repository server. For more information on setting
 the Upload_Tmp_Dir registry setting, or the SYNC_TMP_DIR environment
 variable, see the DesignSync Administrator's Guide.

 You can optionally specify either a local directory or an alternate
 location on the server. This is especially useful for servers where
 you cannot control the server space consumption; specifying an
 alternative disk partition or performing the delta comparison locally
 allows you to make sure you have enough space to perform the
 operation. Specifying an option on the command line overrides any
 existing settings.

Order of Precedence for Temp Directory:

 Note: DesignSync will use this order to determine which tmp
 directory to use for the upload operation. If there is no set value,
 DesignSync will check the next location on this. If there is a
 value set, but DesignSync is unable to use it, for example, because
 of incorrect write permissions, the command will fail.

 1. If the -vault option is used, and -servertmpdir or -localtmpdir
 is specified, the value of <tmpdir> is used. If the -workspace
 option is specified, the workspace is used as the tmp directory.

 2. If the command defaults system is used to set a value
 -servertmpdir or -localtmpdir, that value is used as the tmp
 directory.

 3. If the UploadTmpDir registry setting is specified, that value
 is used as the tmp directory.

 4. If the SYNC_TMP_DIR environment variable is set on the server
 machine, that value is used as the tmp directory.

 5. If the TMPDIR environment variable is set on the server machine,
 that value is used as the tmp directory.

 6. If no other values are set, DesignSync uses the /tmp directory on
 the server machine.

SYNOPSIS

 upload [-branch <branchname>] [-[no]collections]
 [-[no]comment <comment>] [-[no]new]
 [-report brief | normal | verbose] [-tag <tagname>]
 [-vault <vaulturl> [-servertmpdir <tmpdir>] |
 [-vault <vaulturl> [-localtmpdir <tmpdir>] |
 [-workspace <path>] <tarfile>

ARGUMENTS

ENOVIA Synchronicity Command Reference - Module

1151

• Tar file

Tar file

 <tarfile> Specify a tar or gzipped tar archive to upload or
 update on the server. The archive can be
 specified with an absolute or relative path. The
 file extension for the tar file must be either
 .tar or .tgz in order for DesignSync to
 recognize the file.

 NOTE: If the tar file contains .SYNC directories,
 they are automatically ignored and not checked in
 with the archive.

OPTIONS

• -branch
• -[no]collection
• -[no]comment
• -localtmpdir
• -[no]new
• -report
• -servertmpdir
• -tag
• -vault
• -workspace

-branch

 -branch Specifies the branch on which to place the
 <branchname> archive. You can specify only one branch with this
 option. If no branch is specified, DesignSync
 uploads to the Trunk branch. You cannot specify a
 branch tag for the initial archive upload, which
 is always checked into the Trunk branch.

 For the <branchname>, specify a branch tag (for
 example, rel40) or branch numeric (for
 example, 1.4.2) only. Do not specify a colon
 (:) with the branchname.

 If a temp directory (other than the /tmp default)
 is specified for the upload, and the -branch
 option is used, the specified branch must already
 exist on the server.

 The -branch option is mutually exclusive with the
 -new option.

Administration

1152

-[no]collection

 -[no]collection Specifies whether the compressed package includes
 collections objects. For more information on
 collection handling, see the DesignSync
 Administrator's Guide.

 -nocollection specifies that the compressed
 archive does not contain collection objects. This
 allows the upload process to use reference mode,
 improving the speed of operations. (Default)

 -collection specifies that the compressed archive
 contains collection objects. The upload process
 will not attempt to use reference mode which would
 process collections incorrectly.

-[no]comment

 -[no]comment Specifies whether a text description of the
 ["<comment>"] upload is stored with the checked in version.

 -nocomment performs the upload with no
 comment.(Default)

 -comment <text> stores the value of <text> as the
 module comment. To specify a multi-word comment,
 use quotation marks ("") around the comment text.

-localtmpdir

 -localtmpdir When -vault is used, the -localtmpdir option
 <tmpdir> is used to specify a tmp directory path on the
 local (client) machine to be used for the upload
 operation. When the upload is completed, any
 objects placed in this directory during upload are
 removed.

-[no]new

 -[no]new Performs the initial checkin of the archive. The
 initial archive checkin must be performed on the
 Trunk branch.

 -nonew is used to update the archive in revision
 control. If the archive does not exist and -nonew
 is selected, the command fails. (Default)

 -new is used to create or update the archive. If

ENOVIA Synchronicity Command Reference - Module

1153

 the archive exists and the -new option is
 specified, the archive is updated.

 The -new option is mutually exclusive with the
 -branch option.

-report

 -report brief | Controls the amount and type of information
 normal| verbose displayed by the command.

 brief mode reports the newly created module
 version, along with the generated tag.

 Normal mode additionally reports a list of the
 changes in the archive, including: added files,
 removed files and changed files.

 Verbose mode is equivalent to normal mode.

-servertmpdir

 -servertmpdir When -vault is used, the -servertmpdir option
 <tmpdir> is used to specify a tmp directory path on the
 repository server to be used for the upload
 operation. When the upload is completed, any
 objects placed in this directory during upload are
 removed.

-tag

 -tag <tag> Applies the specified tag to the data being
 imported. This tag can be used to get the data
 later, or example, when populating the archive
 into a workspace.

 If the tag already exists it moves to the new
 version.

 Note: An automatically generated tag, in the form
 Archive.<#> is also applied to the data being
 imported, where the initial value of # is 1, and
 then the number is incremented as archive is
 updated.

-vault

 -vault <vaultURL> Specify the module URL and optionally a server

Administration

1154

 [-servertmpdir <tmpdir>] or local path to use as a temporary upload
 | [-localtmpdir <tmpdir>] directory.

 Specify the module URL in the format:

sync[s]://<host>:<port>/Modules/[<category>...]/<Module>

 If the module does not exist, then it will be
 created, if the command is run with the -new
 option.

 When you specify an alternate tmp directory for
 upload, you can specify a server path on on the
 repository server or a local path on the
 client system. For more information on
 specifying a server path, see the -servertmpdir
 option. For more information on specifying a
 local path, see the -localtmpdir option.

 This option is mutually exclusive with
 -workspace. Either -workspace or -vault must be
 specified.

-workspace

 -workspace Specify an existing, unmodified workspace
 <path> as a staging area to unpack the new archive,
 determine the changes necessary and send only
 the changes to the server. If this is used for
 an initial upload, the archive is unpacked in
 the workspace and the entire contents of the
 archive is uploaded. For the initial upload,
 DesignSync uses the persistent selector to
 determine the module/vault for checkin.

 This is a performance enhancement that minimizes
 the server processing time needed to compute the
 deltas by pre-computing the deltas in the
 workspace.

 The workspace must be owned and writable by the
 person running the command.

 The -workspace option is mutually exclusive
 with -vault and -branch. The -workspace option
 is only supported for UNIX workspaces.

RETURN VALUE

 This command does not return any TCL values. DesignSync provides
 status messages while the command runs. If the command fails,
 DesignSync returns an error explaining the failure.

ENOVIA Synchronicity Command Reference - Module

1155

SEE ALSO

 defaults, access, ci

EXAMPLES

• Example of Performing an Initial Upload
• Example of Specifying a Server Temporary Directory for Module Upload
• Example of Specifying a Local Temporary Directory for Module Upload
• Example of Performing an Upload Using a Module Workspace

Example of Performing an Initial Upload

 This example shows performing an initial upload to a module.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 checked in. For brevity, those checkin lines have been removed.

 dss> upload -vault sync://qelwsun14:30126/Modules/IPWIP/FinalIP -new
 -comment "IP Finals version 1.0" FinalIP.tar

 Logging to /home/rsmith/dss_04012014_181455.log
 3DEXPERIENCE6R2022x

 Beginning Check in operation...

 Checking in objects in module FinalIP%0

 Total data to transfer: 7340 Kbytes (estimate), 626 file(s), 0
collection(s)
 Checking in:
 ...

 FinalIP%0: Version of module in workspace updated to 1.2

 Finished checkin of Module FinalIP%0, Created Version 1.2

 Time spent: 10.5 seconds, transferred 0 Kbytes, average data rate
 0.0 Kb/sec

 Checkin operation finished.

 NOTE: Workspace module argument 'FinalIP%0' supplied; will tag
 'sync://serv1.ABCo.com:2647/Modules/IPWIP/FinalIP;1.2'

 Beginning module tag operation on 'sync://qelwsun14:30126' ...

 Tagging: sync://serv1.ABCo.com:2647/Modules/IPWIP/FinalIP;1.2 :
 Added tag 'Archive.1' to version '1.2'

Administration

1156

 Module tag operation finished on 'sync://serv1.ABCo.com:2647'.

Example of Specifying a Server Temporary Directory for Module Upload

 This example updates an IP checked into a module. It uses a
 specified directory on the server as its temporary storage area
 rather than the server default which allows you to make sure that the
 space you need for the operation is available.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 populated, checked in, and tagged. For brevity, the individual
 object detail lines have been removed.

 dss> upload -vault sync://serv1.ABCo.com:2647/Modules/CustomerIP
 -servertmpdir /home/syncadmin/tmp -comment "Uploaded IP"
 ./FinalIP.tar
 Beginning Check in operation...
 Checking in: ...
 ...
 Checkin operation finished.

 Beginning Tag operation...
 ...
 Tag operation finished.
 dss>

Example of Specifying a Local Temporary Directory for Module Upload

 This example updates an IP checked into a module. It uses a
 specified directory on the client machine as its temporary storage
 area rather than the server default which allows you to make sure
 that the space you need for the operation is available and reduces
 processing time on the server.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 populated, checked in, and tagged. For brevity, the individual
 object detail lines have been removed.

 dss> upload -vault sync://serv1.ABCo.com:2647/Modules/CustomerIP
 -localtmpdir ~/tmpfiles -comment "Uploading new version" FinalIP.tar

 Beginning Check in operation...
 Checking in: ...
 ...
 Checkin operation finished.

 Beginning Tag operation...
 ...
 Tag operation finished.

ENOVIA Synchronicity Command Reference - Module

1157

 dss>

Example of Performing an Upload Using a Module Workspace

 This example updates an IP checked into a module. It uses the module
 workspace as its temporary storage area rather than the server which
 reduces the processing time needed on the server.

 Note: This example has been run in normal mode, which means that each
 object in the tar file is listed in the command output as it is
 populated and checked in. For brevity, the individual object detail
 lines have been removed.

upload -comment "uploading IP Finals version 1.5" -workspace
 ~rsmith/MyMods/customerIP ../FinalIP.tar

 Beginning populate operation at Wed Apr 02 10:45:54 AM EDT 2014...

 Populating objects in Module FinalIP%0
 Base Directory /home/rsmith/MyMods/customerIP
 Without href recursion

 Fetching contents from selector 'Trunk:', module version '1.2'
 ... [Fetching List of Objects in Lock Mode]

 FinalIP%0 : Version of module in workspace retained as 1.2

 Finished populate of Module FinalIP%0 with base directory
/home/rsmith/MyMods/customerIP

 Time spent: 0.0 seconds, transferred 0 Kbytes, copied from local
 cache 0 Kbytes, average data rate 0.0 Kb/sec

 Finished populate operation.

 Beginning Check in operation...

 Checking in objects in module FinalIP%0

 Total data to transfer: 7102 Kbytes (estimate), 596 file(s), 0 collection(s)
 Progress: 0 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 1 Kbytes, 0 file(s), 0 collection(s), 0.0% complete
 Progress: 4975 Kbytes, 404 file(s), 0 collection(s), 68.1% complete
 Progress: 7259 Kbytes, 596 file(s), 0 collection(s), 100.0% complete

 ... [Checking in new files, removing locks]

 FinalIP%0: Version of module in workspace updated to 1.3

 Finished checkin of Module FinalIP%0, Created Version 1.3

Administration

1158

 Time spent: 15.7 seconds, transferred 7259 Kbytes, average data rate 463.8
Kb/sec

 Checkin operation finished.

 NOTE: Workspace module argument 'FinalIP%0' supplied; will tag
 'sync://serv1.ABCo.com/Modules/IPWIP/FinalIP;1.3'

 Beginning module tag operation on 'sync://serv1.ABCo.com:2647' ...

 Tagging: sync://serv1.ABCo.com:2647/Modules/IPWIP/FinalIP;1.3 :
 Added tag 'Archive.2' to version '1.3'

 Module tag operation finished on 'sync://serv1.ABCo.com:2647'.

Data Replication

Data Replication System

replicate Command

NAME

 replicate - Data replication commands

DESCRIPTION

 These commands control the data replication system. The data
 replication system provides a configurable environment to
 automatically setup and manage mirrors, caches, and module caches
 associated with a server URL.

 The replicate command and sub-commands support the command default
 system.

SYNOPSIS

 replicate <replicate_command> [<replicate_command_options>]

 Usage: replicate [addroot, data, disable, enable, reset, rmdata,
 rmroot, showdata, showroots, setoptions]

OPTIONS

ENOVIA Synchronicity Command Reference - Module

1159

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 mirror

EXAMPLES

 See specific "replicate" commands.

replicate addroot

replicate addroot Command

NAME

 replicate addroot - Associates a Data Replication Root with a MAS

DESCRIPTION

 This command associates a Data Replication Root (DRR) with a
 particular Mirror Administration Server (MAS). There are no limits
 to the number of DRRs that can be associated with a MAS.

 The DRR is associated with the MAS using a name that must be unique
 across the MAS. This name is a shortcut to identify the DRR when
 enabling, disabling, or checking the status of the DRR. The name is
 also used for any auto-generated mirrors that registered to
 handle updates to the data replicated within the DRR.

 In addition to registering the name with the MAS, the addroot
 command:

 o creates the DRR path (specified by the -path option), if it does
 not already exist. If the path given to the command isn't an
 absolute path, DesignSync uses the current working directory with
 the path value appended.

 o verifies that the path is suitable for storing a replication
 root. In order to store a replication root, the specified
 directory cannot contain a module cache or dynamic folder. It can

Administration

1160

 contain an existing file cache.

 o sets the appropriate permissions on the folder.

 o creates the sub-folders needed to support data replication. The
 data replication system uses three folders: dynamic, for dynamic
 content; module_cache, for static module content; and file_cache,
 for static file and module member versions.

 This command is subject to access controls on the server.

 This command supports the command defaults system.

SYNOPSIS

 replicate addroot -name <name> -path <rootpath> [-readmode {all|group}]
 <serverURL>

ARGUMENTS

• Server URL

Server URL

 <serverURL> Specifies the URL of the MAS on which to store the
 data replication root. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -name
• -path
• -readmode

-name

 -name <name> Logical name of the DRR. This name must be unique
 with respect to all other DRRs defined on the
 MAS. This name is also used as the name of the
 mirror that handles updates to the replications
 registered in the DRR.

ENOVIA Synchronicity Command Reference - Module

1161

-path

 -path <rootpath> Specifies the path to the DRR being added.
 If the path does not exist, and is creatable, the
 command creates it.

 Note: The path cannot contain a module cache or
 dynamic folder. It can contain an existing file
 cache.

-readmode

 -readmode The read permissions set on the DRR directory. This
 [all|group] option is valid only when SUID mode is enabled.

 -readmode all sets the read permission be readable by
 all users, the primary group of the MAS owner, and
 the MAS owner.

 -readmode group sets the read permission to be
 readable by the primary group of the MAS owner, and
 the MAS owner.

 Note: If SUID is not enabled for the MAS
 installation, and the "enforce SUID" option is not
 enabled on the mirror, the system will enable read
 and write modes for all. If the "enforce SUID" option
 is enabled, the command will fail. The "enforce SUID"
 option is set on the Mirrors| General Settings page
 of the DesignSync Web Interface. For information on
 setting the "enforce SUID" option for the MAS, see
 the ENOVIA Synchronicity DesignSync Administrator's
 Guide.

RETURN VALUE

 Returns an empty string on success.

SEE ALSO

 mirror setoptions, replicate data, replicate rmroot

EXAMPLES

 This example shows the replicate addroot command and then the
 replicate showroots command showing that the DRR has been created.
 dss> replicate addroot -path /RepHome/repdata -name MainDRR -readmode

Administration

1162

 all sync://data.ABCo.com
 dss> replicate showroots sync://data.ABCo.com
 Name Read Mode Path
 ---- --------- ----
 MainDRR all /RepHome/repdata

replicate data

replicate data Command

NAME

 replicate data - Replicates data on the replication root

DESCRIPTION

• Working with Modules Objects

 This command adds the desired data to the specified data replication root
 (DRR).

 This command is subject to access controls on the server.

 This command supports the command defaults system.

Working with Modules Objects

 When you add a module to DRR, the command determines where the module
 and all its submodules are located and adds them to the data
 repository.

 After the scripted mirrors have been registered with the MAS, the
 command creates a module instance corresponding to the module
 specified with the appropriate selector. This module instance will be
 created in the 'dynamic' folder.

SYNOPSIS

 replicate data -root <drr> [-selector <selector>[,<selector>...]]
 -vaulturl <URL> <ServerURL>

ARGUMENTS

• Server URL

ENOVIA Synchronicity Command Reference - Module

1163

Server URL

 <ServerURL> Specifies the URL of the MAS on hosting the
 data replication root. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -root
• -selector
• -vaulturl

-root

 -root <drr> Logical name of the DRR. This name is case
 sensitive. If you cannot remember the name of the
 DRR, you can use the replicate showroots command to
 see a list of defined DRRs on a MAS.

 Note: The DRR must exist on the MAS specified by the
 ServerURL argument.

-selector

 -selector <list> Specifies the selector, or selector list. If no
 selector is specified, the command will use the
 default selector, 'Trunk'.

-vaulturl

 -vaulturl <URL> Specifies the URL of the data location on the
 server. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 For example: sync://serv1.abco.com:1024

RETURN VALUE

Administration

1164

 Returns an empty string on success.

SEE ALSO

 mirror create, replicate enable, replicate disable, replicate rmdata

EXAMPLES

• Example of Adding a Module Hierarchy to the DRR

Example of Adding a Module Hierarchy to the DRR

 This example shows adding a module hierarchy to the DRR and the
 subsequent replicate showdata command showing the module in the DRR.
 Note: Although only Chip, the top level module in the hierarchy, is
 specified, data replications are created for all submodules.

 dss> replicate data -vaulturl
 sync://data.ABCo.com:2647/Modules/ChipDesign/Chip -root MainDRR
 sync://mirror.ABCo.com:2647

 dss> replicate showdata -root MainDRR sync://mirror.ABCo.com:2647
 Name Enabled Status
 Vault URL Selector
 Base Dir
 ---- ------- ------
 --------- --------

 CPU%0 yes 1
 sync://data.ABCo.com:2647/Modules/Components/CPU Trunk:
 9b/1e/9b1e794175a7c24bd5a329b3a5bd8d7a/CPU/Trunk/basedir
 Chip%0 yes 1
 sync://data.ABCo.com:2647/Modules/ChipDesign/Chip Trunk:
 ef/ea/efea1173a39a7df9e42e3e8d821fd580/Chip/Trunk/basedir
 ROM%0 yes 1
 sync://data.ABCo.com:2647/Modules/Components/ROM Trunk:
 ee/f5/eef5d1b4b3eab3c9ec3f95b82b1b90dc/ROM/Trunk/basedir

replicate disable

replicate disable Command

NAME

 replicate disable - Disables a replicated data instance

ENOVIA Synchronicity Command Reference - Module

1165

DESCRIPTION

 This command turns off updates for the specified data instance or all
 replicated instances on the MAS.

 This command is subject to access controls on the server.

 This command supports the command defaults system.

SYNOPSIS

 replicate disable -all | -name <name> -root <drr> <ServerURL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the MAS hosting the data
 replication root. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -all
• -name
• -root

-all

 -all Disables all active replication instances on the
 DRR. This option is mutually exclusive with the
 -name option.

-name

 -name <name> The name of the data replication to
 disable. When the -name option is specified, only

Administration

1166

 the named data replication is disabled. Any
 referenced sub-modules continue to be updated. This
 option is mutually exclusive with the -all option.

-root

 -root <drr> Logical name of the DRR. This name is case
 sensitive. If you cannot remember the name of the
 DRR, you can use the replicate showroots command to
 see a list of defined DRRs on a MAS.

RETURN VALUE

 If the command succeeds, it returns an empty string (""). If the
 command fails, it returns an appropriate error to explain the cause
 of failure.

SEE ALSO

 replicate enable, mirror disable

EXAMPLES

 This example shows disabling all data replications on a DRR. This DRR
 consists of one file-based project, and one module hierarchy.

 Note: The reply from the server shows all the stopped data replications. In
 the example below, the CPU%0 and ROM%0 module instances are
 referenced submodules of Chip%0.

 dss> replicate disable -root MainDRR -all sync://mirror.ABCo.com
 disabling mirror 'CPU%0'
 disabling mirror 'Chip%0'
 disabling mirror 'ROM%0'
 Disabling files based mirror 'EclipseProj'

replicate enable

replicate enable Command

NAME

 replicate enable - Enables replication for a data replication

ENOVIA Synchronicity Command Reference - Module

1167

DESCRIPTION

 This command turns on updates for the specified data replication.
 If the data instance has file-based references, those are enabled by
 the replicate enable command running the mirror enable command on
 the mirror that controls the file-based updates.

 This command is subject to access controls on the server.

 This command supports the command defaults system.

SYNOPSIS

 replicate enable -all | -name <name> -root <drr> <ServerURL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the MAS hosting the data
 replication root. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -all
• -name
• -root

-all

 -all Enables all inactive data replications on the
 DRR. This option is mutually exclusive with the
 -name option.

-name

 -name <name> The name of the data replication to

Administration

1168

 enable. This option is mutually exclusive with the
 -all option.

-root

 -root <drr> Logical name of the DRR. This name is case
 sensitive. If you cannot remember the name of the
 DRR, you can use the replicate showroots command to
 see a list of defined DRRs on a MAS.

RETURN VALUE

 If the command succeeds, it returns an empty string (""). If the
 command fails, it returns an appropriate error to explain the cause
 of failure.

SEE ALSO

 replicate disable, mirror enable

EXAMPLES

 This example shows enabling all data replications on the DRR. This
 example includes a modules-based and a files based DRR.

 Note: The response from the server does not display hierarchically
 referenced submodules. In the example below, the Chip%0 module has
 submodules CPU%0 and ROM%0 module which are enabled along with their
 parent module, Chip%0, but not listed separately.

 dss> replicate enable -root MainDRR -all sync://mirror.ABCo.com
 enabling mirror 'Chip%0'
 Enabling files based mirror 'EclipseProj'

replicate reset

replicate reset Command

NAME

 replicate reset - Manually updates a data replication

DESCRIPTION

ENOVIA Synchronicity Command Reference - Module

1169

 This command performs a manual update on a data replication.

 If the specified data replication is file-based or contains
 references to a file-based sub-instance, the replicate reset
 command calls the mirror reset command to update the files on the
 DRR.

 This command is subject to access controls on the server.

 This command supports the command defaults system.

SYNOPSIS

 replicate reset -name <name> -root <drr> <ServerURL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the MAS hosting the data
 replication root. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -name
• -root

-name

 -name <name> The name of the data replication to reset. The
 reset operates recursively on the named data
 replication.

-root

 -root <drr> Logical name of the DRR. This name is case
 sensitive. If you cannot remember the name of the

Administration

1170

 DRR, you can use the replicate showroots command to
 see a list of defined DRRs on a MAS.

RETURN VALUE

 If the command succeeds, it returns an empty string (""). If the
 command fails, it returns an appropriate error to explain the cause
 of failure.

SEE ALSO

 mirror reset, replicate data, replicate showdata

EXAMPLES

 This example shows the reset command.
 dss> replicate reset -root MainDRR -name Chip%0 sync://qelwsun14:30125
 dss>

replicate rmdata

replicate rmdata Command

NAME

 replicate rmdata - Removes the data replication from the dynamic
 folder.

DESCRIPTION

• Notes for Modules Objects

 This command removes the data replication from the 'dynamic'
 folder within the DRR. The deletion cannot be undone.

 Note: Although the deletion is permanent, you can recreate the
 data replication using the same name using the replicate data
 command.

 This command is subject to access controls on the server.

 This command supports the command defaults system.

Notes for Modules Objects

ENOVIA Synchronicity Command Reference - Module

1171

 Important: To support the optimal function of the replication system,
 you should use the replicate rmdata command to remove data from the
 'dynamic' folder, NOT the rmmod command. The rmmod command does not
 provide the additional clean-up functionality of the replicate rmdata
 command which, when reference counting is enabled, also cleans the
 file cache associated with the data replication.

 This command does not remove data from the module_cache folder. To
 remove data from the module_cache folder, use the mcache scrub
 command.

 This command does not run recursively along the module
 hierarchy. You must individually remove any referenced
 submodules. If you have removed a submodule, a future update to the
 top-level data replication may re-create the submodule.

SYNOPSIS

 replicate rmdata -name <name> -root <drr> <Server-URL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the MAS hosting the
 DRR. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -name
• -root

-name

 -name <name> The name of the data replication to remove.

-root

Administration

1172

 -root <drr> Logical name of the DRR. This name is case
 sensitive. If you cannot remember the name of the
 DRR, you can use the replicate showroots command to
 see a list of defined DRRs on a MAS.

RETURN VALUE

 If the command succeeds, it returns an empty string (""). If the
 command fails, it returns an appropriate error to explain the cause
 of failure.

SEE ALSO

 replicate data, replicate showdata, replicate rmroot, mirror delete,

EXAMPLES

• Example of Removing a Module Data Replication

Example of Removing a Module Data Replication

 This example shows removing a module data replication. The replicate
 showdata command that follows shows that the Chip%0 module has been
 removed.

 dss> replicate rmdata -root MainDRR -name Chip%0
 sync://mirror.ABCo.com:2647

 dss> replicate showdata -root MainDRR sync://mirror.ABCo.com:2647

 Name Enabled Status
 Vault URL Selector
 Base Dir
 ---- ------- ------
 --------- --------

 CPU%0 yes 1
 sync://data.ABCo.com:2647/Modules/Components/CPU Trunk:
 9b/1e/9b1e794175a7c24bd5a329b3a5bd8d7a/CPU/Trunk/basedir
 EclipseProj yes 1
 sync://data.ABCo.com:2647/Projects/EclipseProj
 Trunk:Latest 9d/71/9d711cc172956426eb333ae18fb131ba/Test1/Trunk/basedir

replicate rmroot

replicate rmroot Command

ENOVIA Synchronicity Command Reference - Module

1173

NAME

 replicate rmroot - removes the specified data replication root

DESCRIPTION

 This command removes the specified data replication root (DRR) from the
 list of registered replication roots. All the data and metadata
 within the DRR are deleted along with the DRR. The deletion cannot be
 undone.

 Note: Although the deletion is permanent, you can recreate the DRR
 using the same name.

 The command does not remove any symbolic links to items in the DRR. If
 users have created symbolic links, for example, workspaces still
 pointing to the file cache contained within a data replication,
 these need to be manually removed.

 This command is subject to access controls on the server.

 This command supports the command defaults system.

SYNOPSIS

 replicate rmroot -root <drr> <ServerURL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the MAS hosting the
 DRR. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -root

-root

Administration

1174

 -root <drr> Logical name of the DRR. This name is case
 sensitive. If you cannot remember the name of the
 DRR, you can use the replicate showroots command to
 see a list of defined DRRs on a MAS.

RETURN VALUE

 If the command succeeds, it returns an empty string (""). If the
 command fails, it returns an appropriate error to explain the cause
 of failure.

SEE ALSO

 replicate rmdata, replicate addroot, replicate data

EXAMPLES

 This example shows removing the DRR on a MAS that has both replicated
 modules and files-based data.

 dss> replicate rmroot -root MainDRR sync://mirror.ABCo.com:2647
 Removing files based mirror 'EclipseProj'
 Removing the data from '/RepHome/repdata'
 Removing the dynamic scripted (autogen) mirror
 Removing the static scripted (autogen) mirror
 Removing the metadata entry for replication root 'MainDRR'

replicate setoptions

replicate setoptions Command

NAME

 replicate setoptions - Sets replicate options

DESCRIPTION

 This command sets the options for data replication. The available
 options are described in the Options section.

 This command is subject to access controls on the server.

 This command supports the command defaults system.

SYNOPSIS

ENOVIA Synchronicity Command Reference - Module

1175

 replicate setoptions [-defaultuser <user>] [-[no]refcount]
 <ServerURL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the MAS hosting the data
 replication root. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -defaultuser
• -refcount

-defaultuser

 -defaultuser Species the default user for the data replication
 <user> system. You must specify the user name with the
 -defaultuser option. If this parameter is
 specified, you are prompted for the default user's
 password. Specifying this parameter makes
 'replicate setoptions' an interactive command.

 Note: You may also use the mirror setoptions
 command to set the defaultuser. There is only one
 default user stored for each MAS, regardless of
 whether you store the username/password with the
 mirror or replicate setoptions command.

-refcount

 -[no]refcount Specifies whether reference counting in the file
 cache is enabled or disabled for the system.

 -[no]refcount specifies that references should not
 be counted. It is used if the site policy is
 not to use reference counting and the corresponding
 site-wide setting, set in SyncAdmin as "Enable Cache
 optimizations" is also disabled.

Administration

1176

 -refcount specifies that reference should be
 counted (Default). This allows DesignSync to
 maintain optimal performance by automatically
 removing files versions that are no longer linked
 to.

 Note: This option is not retroactive. Any existing
 data continues to have the refcount setting that
 was in use when the data was fetched. Any
 subsequently fetched data uses the newly set mode.

 For more information on enabling or disabling
 reference counting, see the ENOVIA Synchronicity
 DesignSync Data Manager Administrator's Guide.

RETURN VALUE

 If the command succeeds, it returns an empty string (""). If the
 command fail, it returns an appropriate error to explain the cause
 of failure.

SEE ALSO

 mirror setoptions, replicate addroot

EXAMPLES

 This example shows a single replicate setoptions command that sets
 the default user and disables reference counting.

 dss> replicate setoptions -defaultuser admin -norefcount
 sync://mirror.ABCo.com:2647
 Enter the password for the default user (admin): *****
 Processing BackupDRR
 Processing MainDRR
 Registering mirror for 'sync://mirror.ABCo.com:2647
 Done registering mirror for 'sync://mirror.ABCo.com:2647'

replicate showdata

replicate showdata Command

NAME

 replicate showdata - Lists the data replications in the DRR

ENOVIA Synchronicity Command Reference - Module

1177

DESCRIPTION

• Notes for File-Based Objects
• Understanding the Output

 This command lists all the replication instances in the 'dynamic'
 folder along with the important properties for the instance.

 This command is subject to access controls on the server.

 This command supports the command defaults system.

Notes for File-Based Objects

 For files-based vaults, the replicate showdata command calls the
 mirror status command.

Understanding the Output

 The output of the replicate showdata command can be formatted for
 easy viewing (-format text) or optimized for TCL processing (-format
 list). Both viewing formats show the same information, but may have
 different names. In the table below, the Column Titles column shows
 the text output column header and the Property Names column shows
 list output key value.

 The replicate showdata command, by default, displays the following
 information:

 Column Property
 Titles Names Description
 ------ ----- ------------
 Name name The name of the data replication.

 Base Dir basedir Base directory of the data replication.

 Status status Status of the DRR indicating whether the
 replication is functioning normally, or
 there are errors.
 o 1 (one) indicates that there are no
 failures in applying any updates.
 o 0 (zero) indicates there were failures
 in applying updates and the replication
 administrator should examine the
 replication log available from the
 DesignSync web interface.

 Vault URL vaulturl URL of the source vault for the
 data replication.

Administration

1178

 Selector selector The selector for the data replication
 as supplied to the replicate data
 command. This varies depending on the
 type of href.

 Enabled enabled Activity status of the data replication.
 o Yes or 1 (one) indicates the
 data replication is active.
 o No or 0 (zero) indicates the
 data replication is inactive.

SYNOPSIS

 replicate showdata [-format {text|list}] [-name dataname]
 [-report {brief|normal|verbose}] -root <drr>

ARGUMENTS

• -root

-root

 -root <ddr> The name of the registered DRR to examine. You can
 use the replicate showroots command to view the
 list of the DRRs.

OPTIONS

• -format
• -name
• -report

-format

 -format text|list Determines the format of the output.

 -format text displays a text table with headers and
 columns. (Default) Objects are shown in
 alphabetical order

 -format list displays a TCL list containing
 name/value pairs.

 For a list of properties displayed, see the
 "Understanding the Output" section above.

ENOVIA Synchronicity Command Reference - Module

1179

-name

 -name <dataname> The name of a data replication. If you specify
 a name, the command returns only the results for
 that data replication. If no name is specified,
 the command returns information for all the
 data replications on the DRR.

-report

 -report brief| Determines what information is returned in the
 normal |verbose output of the command.

 Valid values are:
 o brief - outputs the name of the data
 replication and any failures. The -format
 option is ignored for this report mode.

 o normal - the properties list in the format
 specified with the -format option. (Default),

 o verbose - the properties list in the format
 specified with the -format option. There is no
 difference between the verbose and normal
 reports.

RETURN VALUE

 If you run the command with the '-format list' option, it returns a
 TCL list. If the command fails, it returns a TCL error. For all other
 options, it returns an empty string ("").

SEE ALSO

 replicate showroots, replicate data, replicate rmdata

EXAMPLES

• Example of Replicate Showdata in Text Format in Report Normal Mode
• Example of Replicate Showdata in Text Format in Report Brief Mode
• Example of Replicate Showdata in List Format in Report Normal Mode
• Example of Replicate Showdata in List Format in Report Brief Mode

Example of Replicate Showdata in Text Format in Report Normal Mode

Administration

1180

 This example shows running replicate showdata in normal, text mode on
 a DRR containing both modules and file-based vaults. The
 module is a module hierarchy consisting of top-level module Chip and
 dynamically referenced submodules CPU and ROM.

 dss> replicate showdata -root MainDRR sync://mirror.ABCo.com:2647

 Name Enabled Status
 Vault URL Selector
 Base Dir
 ---- ------- ------
 --------- --------

 CPU%0 yes 1
 sync://data.ABCo.com:2647/Modules/Components/CPU Trunk:
 9b/1e/9b1e794175a7c24bd5a329b3a5bd8d7a/CPU/Trunk/basedir
 Chip%0 yes 1
 sync://data.ABCo.com:2647/Modules/ChipDesign/Chip Trunk:
 ef/ea/efea1173a39a7df9e42e3e8d821fd580/Chip/Trunk/basedir
 ROM%0 yes 1
 sync://data.ABCo.com:2647/Modules/Components/ROM Trunk:
 ee/f5/eef5d1b4b3eab3c9ec3f95b82b1b90dc/ROM/Trunk/basedir
 EclipseProj yes 1
 sync://data.ABCo.com:2647/Projects/Test1
 Trunk:Latest 9d/71/9d711cc172956426eb333ae18fb131ba/Test1/Trunk/basedir

Example of Replicate Showdata in Text Format in Report Brief Mode

 This example shows running replicate showdata in text mode with
 report -brief selected using the same data set as Example 1.

 dss> replicate showdata -report brief -root MainDRR
 sync://mirror.ABCo.com:30125

 CPU%0
 Chip%0
 ROM%0
 EclipseProj

Example of Replicate Showdata in List Format in Report Normal Mode

 This example shows running replicate showdata in -format list TCL and
 -report normal mode using the same data set as Example 1.
 Note: Because some of these strings exceed the line length for this
 documentation, the \ character is used to show that the string does
 not contain spaces.

 dss> replicate showdata -format list -root MainDRR
 sync://mirror.ABCo.com:2647

ENOVIA Synchronicity Command Reference - Module

1181

 {name CPU%0 target sync://data.ABCo.com:2647/Modules/Components/CPU
 basedir /home/RepHome/repdata/dynamic/9b/1e/\
 9b1e794175a7c24bd5a329b3a5bd8d7a/CPU/Trunk/basedir selector Trunk:
 version 1.3 enabled 1 reset 0 top 0 itags {} error {} seenlist \
 {{sync://data.ABCo.com:2647/Modules/Components/ROM;Trunk:}} touchtime
 1344447297 efile {} status 1 dynamic 1 ismodule 1} {name Chip%0 target
 sync://data.ABCo.com:2647/Modules/ChipDesign/Chip basedir
 /home/RepHome/repdata/dynamic/ef/ea/efea1173a39a7df9e42e3e8d821fd580/Chip/\
 Trunk/basedir selector Trunk: version 1.14 enabled 1 reset 0 top 1
 itags {} error {} seenlist
 {{sync://data.ABCo.com:2647/Modules/Components/CPU;Trunk:}} touchtime
 1344447292 efile {} status 1 dynamic 1 ismodule 1} {name ROM%0 target
 sync://data.ABCo.com:2647/Modules/Components/ROM basedir
 /home/RepHome/repdata/dynamic/ee/f5/eef5d1b4b3eab3c9ec3f95b82b1b90dc/\
 ROM/Trunk/basedir selector Trunk: version 1.2 enabled 1 reset 0 top 0
 itags {} error {} seenlist {} touchtime 1344447301 efile {} status 1
 dynamic 1 ismodule 1} {name EclipseProj target
 sync://data.ABCo.com:2647/Projects/Test1 basedir
 /home/RepHome/repdata/dynamic/9d/71/9d711cc172956426eb333ae18fb131ba/\
 Test1/Trunk/basedir selector Trunk:Latest enabled 1 reset 0 top 0
 itags {} error {} seenlist {} touchtime 0 dynamic 1 efile {} status 1
 ismodule 0}

Example of Replicate Showdata in List Format in Report Brief Mode

 This example shows running replicate showdata in with report -brief
 selected using the same data set as Example 1.

 dss> replicate showdata -report brief -root MainDRR
 sync://mirror.ABCo.com:2647

 CPU%0 Chip%0 ROM%0 EclipseProj

replicate showroots

replicate showroots Command

NAME

 replicate showroots - Lists the registered data replication roots

DESCRIPTION

• Understanding the Output

 This command lists the data replication roots (DRRs) and their
 properties registered on the MAS.

Administration

1182

 This command is subject to access controls on the server.

 This command supports the command defaults system.

Understanding the Output

 The output of the replicate showroots command can be formatted for
 easy viewing (-format text) or optimized for TCL processing (-format
 list). Both viewing formats show the same information, but may have
 different names. In the table below, the Column Titles column shows
 the text output column header and the Property Names column shows
 list output key value.

 The replicate showroots command, by default, displays the following
 information:

 Column Property
 Titles Names Description
 ------ ----- ------------
 Name name The name of the DRR.

 Path path The root path to the DRR.

 File cache file_cache The name of the file cache subdirectory.

 Module cache module_cache The name of the module cache
 subdirectory.

 Read Mode readmode The readmode specified when the DRR was
 created. The possible values are 'all'
 and 'group.'

 Dynamic dynamic The name of the subdirectory where the
 dynamic data is mirrored.

SYNOPSIS

 replicate showroots [-format {text|list}] [-name <rootname>]
 [-report {brief|normal|verbose}] <ServerURL>

ARGUMENTS

• Server URL

Server URL

 <ServerURL> Specifies the URL of the MAS hosting the data
 replication root. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or

ENOVIA Synchronicity Command Reference - Module

1183

 'syncs://' are required, <host> is the machine on
 which the SyncServer is installed, and <port> is
 the SyncServer port number (defaults to 2647).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -format
• -name
• -report

-format

 -format text|list Determines the format of the output.

 -format text displays a text table with headers and
 columns. (Default) Objects are shown in
 alphabetical order

 -format list displays a TCL list containing
 name/value pairs.

 For a list of properties displayed, see the
 "Understanding the Output" section above.

-name

 -name <rootname> Logical name of the DRR. This name must be unique
 with respect to all other DRRs defined on the
 MAS.

-report

 -report brief| Determines what information is returned in the
 normal |verbose output of the command.

 Valid values are:
 o brief - outputs the name of the DRRs. The
 -format option is ignored for this report mode.

 o normal - the properties list, in the format
 specified with the -format option. (Default)

 o verbose - the properties list, in the format
 specified with the -format option. This is
 identical to -report normal.

Administration

1184

RETURN VALUE

 If you run the command with the '-format list' option, it returns a
 TCL list. If the command fails, it returns a TCL error. For all other
 options, it returns an empty string ("").

SEE ALSO

 replicate addroot, replicate enable, replicate disable,
 replicate rmroot

EXAMPLES

• Example of Replicate Showroots in Text Format in Report Normal Mode
• Example of Replicate Showroots in Text Format in Report Brief Mode
• Example of Replicate Showroots in List Format in Report Normal Mode

Example of Replicate Showroots in Text Format in Report Normal Mode

 This example shows running replicate showroots in normal, text mode.

 dss> replicate showroots -root MainDRR sync://mirror.ABCo.com:2647

 Name Read Mode Path
 ---- --------- ----
 BackupDRR all /home/RepBk/repdata
 MainDRR all /home/RepHome/repdata

Example of Replicate Showroots in Text Format in Report Brief Mode

 This example shows running replicate showroots in text mode with
 report -brief specified using the same data set as Example 1.

 dss> replicate showroots -report brief sync://mirror.ABCo.com:30125

 BackupDRR
 MainDRR

Example of Replicate Showroots in List Format in Report Normal Mode

 This example shows running replicate showroots in -format list and
 -report normal (default) mode using the same data set as Example 1.
 Note: Because some of these strings exceed the line length for this
 documentation, the \ character is used to show that the string does
 not contain spaces.

ENOVIA Synchronicity Command Reference - Module

1185

 dss> replicate showroots -format list sync://mirror.ABCo.com:2647

 {name BackupDRR path /home/RepBk/repdata readmode all dynamic dynamic
 module_cache module_cache file_cache file_cache} {name MainDRR path
 /home/RepHome/repdata readmode all dynamic dynamic module_cache
 module_cache file_cache file_cache}

File Cache Maintenance

Caching Objects

caching

caching Command

NAME

 caching - Caching behavior commands

DESCRIPTION

 These commands provide a way to view and control the caching behavior
 of DesignSync objects; excepting or including intellectual property
 from the default caching.

SYNOPSIS

 caching <caching_command>

 Usage: caching disable|caching enable|caching list|caching status

ARGUMENTS

 Server URL

RETURN VALUE

 Various by command.

Administration

1186

SEE ALSO

 caching disable, caching enable, caching list, caching status
,

EXAMPLES

 See specific command.

caching disable

caching disable Command

NAME

 caching disable - Disables object caching for server URLs

DESCRIPTION

 This command disables caching for specific objects specified by
 server URLs.

 When object caching is disabled, the caching property of the object
 URL is set to zero (0). The value of this property may be viewed with
 the caching status command.

 Note: Clients with this feature can disable the local caching
 functionality for objects on an older (pre-3DEXPERIENCE 2016x) server
 version, but older clients cannot use this feature on newer
 clients. Servers accepting commands from older clients can be set up
 to refuse enable/disable caching requests from older clients. For
 more information, see the DesignSync Data Manager Administrator's
 Guide.

 If the object for which caching is being disabled were already loaded
 into a cache, those caches are not automatically removed, however
 attempts to update the cache, for example with cancel, ci, populate,
 or co, will fail.

 This command is subject to access controls on the server.

SYNOPSIS

 caching disable <SyncURL>[<SyncURL>...]

ENOVIA Synchronicity Command Reference - Module

1187

ARGUMENTS

• URL

URL

 <syncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>]/[<path>] or
 syncs://<host>[:<port>]/[<path>]
 where 'sync://' or 'syncs://' are required, <host> is the
 machine on which the SyncServer is installed, and <port>
 is the SyncServer port number (defaults to 2647/2679).
 And the path is the server path to the desired object.
 For example, all of these are valid syncURLs:
 sync://apollo.spaceco.com:2647
 sync://apollo.spaceco.com:2647/Modules
 sync://apollo.spaceco.com:2647/Modules/Blueprints/FuelCell2
 sync://apollo.spaceco.com:2647/Projects/SpaceShuttle

RETURN VALUE

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.
 If the command failed to run, DesignSync returns an appropriate error
 explaining the failure.

SEE ALSO

 caching enable, caching list, caching status, url getprop, url setprop

EXAMPLES

• Example Showing Disabling cachability for an object

Example Showing Disabling cachability for an object

 This example shows disabling the caching for a specific object and
 verifying that the cachability was disabled using the status command,
 which returns a status of zero (0).

 dss> caching disable sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 {Objects succeeded (1)} {}

 dss> caching status sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip

Administration

1188

 0

caching enable

caching enable Command

NAME

 caching enable - Enables object caching for server URLs

DESCRIPTION

 This command enables caching for specific objects specified by
 server URLs.

 When object caching is enabled, the caching property of the object
 URL is set to one (1). The value of this property may be viewed with
 the caching status command.

 Note: Clients with this feature can enable the local caching
 functionality for objects on an older (pre-3DEXPERIENCE 2016x) server
 version, but older clients cannot use this feature on newer
 clients. Servers accepting commands from older clients can be set up
 to refuse enable/disable caching requests from older clients. For
 more information, see the DesignSync Data Manager Administrator's
 Guide.

 This command is subject to access controls on the server.

SYNOPSIS

 caching enable <SyncURL>[<SyncURL>...]

ARGUMENTS

• URL

URL

 <syncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>]/[<path>] or
 syncs://<host>[:<port>]/[<path>]
 where 'sync://' or 'syncs://' are required, <host> is the
 machine on which the SyncServer is installed, and <port>
 is the SyncServer port number (defaults to 2647/2679).

ENOVIA Synchronicity Command Reference - Module

1189

 And the path is the server path to the desired object.
 For example, all of these are valid syncURLs:
 sync://apollo.spaceco.com:2647
 sync://apollo.spaceco.com:2647/Modules
 sync://apollo.spaceco.com:2647/Modules/Blueprints/FuelCell2
 sync://apollo.spaceco.com:2647/Projects/SpaceShuttle

RETURN VALUE

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.
 If the command failed to run, DesignSync returns an appropriate error
 explaining the failure.

SEE ALSO

 caching disable, caching list, caching status

EXAMPLES

• Example Showing enabling cachability for an object

Example Showing enabling cachability for an object

 This example shows enabling the caching for a specific object and
 verifying that the cachability is enabled using the status command
 which returns a status of one (1).

 dss> caching enable sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 {Objects succeeded (1)} {}

 dss> caching status sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 1

caching list

caching list Command

NAME

 caching list - Displays the cache status for folders

DESCRIPTION

Administration

1190

• Understanding the Output

 Displays a list of subfolders and/or parent folders for a specified vault
 that have an explicitly set cache status. An explicitly set cache status
indicates
 that caching is either enabled (on) or disabled (off) for the
 folder. Folders that inherit their state from their parents are not
 displayed.

 This command is subject to access controls on the server.
 This command respects the command defaults setting.

Understanding the Output

 The output of the caching list command can be formatted for
 easy viewing (-format text) or optimized for TCL processing (-format
 list). Both viewing formats show the same information, but may have
 different names. In the table below, the Column Titles column shows
 the text output column header and the Property Names column shows
 list output key value.

 The caching list command, by default, displays the following
 information:

 Column Property
 Titles Names Description

 Caching Status status Caching status for the folder.
 o Enabled - In text
 mode, if caching is
 active for folder, it
 displays Enabled. In list
 mode, it displays 1.
 o Disabled - In text
 mode, if caching is
 inactive for the
 folder, it displays
 Disabled. In list
 mode, it displays 0.
 Path path The server path to the folder.

SYNOPSIS

 caching list [-disabled] [-down] [-enabled] [-format list | text]
 [-up] <argument>

ARGUMENTS

ENOVIA Synchronicity Command Reference - Module

1191

• {} URL

{} URL

<SyncURL> Specifies the DesignSync vault URL. The command
 examines either backwards (up) or
 forwards (down) to determine whether the
 folder has an explicitly set cache
 status.
 The vault is specified as:
 sync://<host>[:<port>]/[<path>] or
 syncs://<host>[:<port>]/[<path>]
 where 'sync://' or 'syncs://' are required,
<host> is the
 machine on which the SyncServer is installed, and
<port>
 is the SyncServer port number (defaults to
2647/2679).
 And the path is the server path to the desired
object.
 For example, all of these are valid syncURLs:
 sync://serv1.abco.com:2647
 sync://serv1.abco.com:2647/Modules
 sync://serv1.abco.com:2647/Modules/ChipDesigns

sync://serv1.abco.com:2647/Projects/SharedLibraries

OPTIONS

• {}
• -down
• -enabled
• -format
• -up

{}

 -disabled Show all of the folders that have caching
 explicitly disabled.
 If this option is specified with -enabled,
 the command shows folders that have either
 enabled or disabled status specified,
 which is the same as specifying neither option.

-down

 -down Show all of the folders below the selected
 Sync URL argument.

Administration

1192

 If this option is specified with -up, the
 command shows folders up and down from the
 specified Sync URL, which is the same as
 specifying neither option.

-enabled

 -enabled Show all of the folders that have caching
 explicitly enabled.
 If this option is specified with -disabled,
 the command shows folders that have either
 enabled or disabled status specified,
 which is the same as specifying neither option.

-format

 -format text|list Determines the format of the output.

 -format text displays a text table with headers and
 columns. (Default) Objects are shown in
 alphabetical order

 -format list displays a TCL list containing
 name/value pairs.

 For a list of properties displayed, see the
 "Understanding the Output" section above.

-up

 -up Show all of the folders below the selected
 Sync URL argument.
 If this option is specified with -up, the
 command shows folders up and down from the
 specified Sync URL, which is the same as
 specifying neither option.

RETURN VALUE

 Returns an empty string when -format text is used. Returns a TCL list
 as described in the Understanding the Output section when -format list
 is used.

SEE ALSO

ENOVIA Synchronicity Command Reference - Module

1193

 caching disable, caching enable, caching status

EXAMPLES

• Example of Listing the Cache Status using Text Formatting
• Example of Listing the Cache Status using List Formatting

Example of Listing the Cache Status using Text Formatting

 This example shows listing the status of caching for all folders above
 and below the specified vault folder.
 Note that in this example, the specified module is not displayed
 because it inherits it's state from the parent category,
"/Modules/ChipDesigns"

 stcl> caching list sync://serv1.ABCo.com:2647/Modules/ChipDesigns/NXZ-45
 Caching Status Path
 -------------- ----
 Enabled /Modules
 Disabled /Modules/TradeSecrets
 Enabled /Modules/ChipDesigns
 Disabled /Modules/ChipDesigns/NXZ-45/Proprietary
 Enabled /Modules/ChipDesigns/NXZ-45/Propertary/ReadyForRelease

Example of Listing the Cache Status using List Formatting

 This example shows listing the status of caching for all folders below
 the specified vault folder.
Stcl> caching list -down â€“format list
sync://serv1.ABCo.com:2647/Modules/ChipDesigns/NXZ-45

{
 {path /Modules/ChipDesigns/NXZ-45/Proprietary status 0}
 {path /Modules/ChipDesigns/NXZ-45/Proprietary/ReadyForRelease status 0}

caching status

caching status Command

NAME

 caching status - Displays caching status of server URLs

DESCRIPTION

 Displays the caching status (on or off) of the object URL. URLs can

Administration

1194

 be explicitly excluded from the cache to protect access to the file
 and comply with intellectual property protection needs.

SYNOPSIS

 caching status <SyncURL>

ARGUMENTS

• URL

URL

 <syncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>]/[<path>] or
 syncs://<host>[:<port>]/[<path>]
 where 'sync://' or 'syncs://' are required, <host> is the
 machine on which the SyncServer is installed, and <port>
 is the SyncServer port number (defaults to 2647/2679).
 And the path is the server path to the desired object.
 For example, all of these are valid syncURLs:
 sync://serv1.abco.com:2647
 sync://serv1.abco.com:2647/Modules
 sync://serv1.abco.com:2647/Modules/Blueprints/FuelCell2
 sync://serv1.abco.com:2647/Projects/SpaceShuttle

RETURN VALUE

 Returns a value of zero (0) if the object can not be cached, or one
 (1) if the object is able to be cached.

SEE ALSO

 caching disable, caching enable, caching list

EXAMPLES

• Example Showing the cachability status for an object

Example Showing the cachability status for an object

ENOVIA Synchronicity Command Reference - Module

1195

 This example shows enabling/disabling the caching for a specific
 object and verifying that the cachability is enabled using the status
 command, which returns a zero (0) if cachability is disabled or one
 (1) if cachability is enabled.

 dss> caching enable sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 {Objects succeeded (1)} {}

 dss> caching status sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 1
 dss> caching disable sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 {Objects succeeded (1)} {}

 dss> caching status sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 0

cachescrubber

cachescrubber Command

NAME

 cachescrubber - Cleans the cache of outdated or unused files

DESCRIPTION

 This command, sometimes used in conjunction with the cachetouchlinks
 command, cleans your cache by deleting old or unused files.
 See cachetouchlinks for more information.

 The 'cachescrubber' command must be run from a Unix shell.

 Note: All users have access to the cachescrubber command, although
 it should only be run by the owner of the cache directory. It is
 possible for users to run it on a cache directory and remove files
 that should not be removed. To prevent users from inadvertently
 removing files from the cache, enable SUID for caches as described in
 the ENOVIA Synchronicity DesignSync Data Manager Administrator's Guide.

SYNOPSIS

 cachescrubber <cache directory> [<age in days>] [-dryrun] [-noref]
 [-preds32] [-report <mode>]

OPTIONS

• cache directory
• age in days

Administration

1196

• -dryrun
• -noref
• -preds32
• -report

cache directory

 <cache directory> The directory to be scrubbed.
 This can be an absolute or relative path.

age in days

 <age in days> Versions this age and older will be scrubbed. When
 specified, this must follow the <cache directory>
 argument. You must supply an integer value.
 This is optional when the -noref or -preds32
 options are supplied, since when using those options
 the files in the cache are not removed based on age.
 If the <age in days> argument is specified in addition
 to the -noref and/or -preds32 options, then files that
 don't meet the no reference or pre-DS3.2 criteria will
 be removed if they meet the <age in days> criteria.

-dryrun

 -dryrun Do not remove any files but report what will be removed
 when run without this option. This option can be run
 with any of the report modes.

-noref

 -noref Remove versions in the cache that have no references.
 If the <age in days> argument is also specified, the
 versions with no references will be removed regardless
 of the age criteria.

-preds32

 -preds32 Remove versions put into the cache from pre-version 3.2
 DesignSync clients. If the <age in days> argument is
 also specified, the pre-3.2 versions will be removed
 regardless of the age criteria.

ENOVIA Synchronicity Command Reference - Module

1197

-report

 -report Where <mode> is brief, normal, or verbose. The 'normal'
 mode will only report warnings and errors. The 'brief'
 mode displays the same information as 'normal' mode.
 The 'verbose' mode will report all objects being
 removed. The default mode is 'normal'.

RETURN VALUE

 The cachescrubber Unix command line script will return a 0 for success
 and a 1 for failure.

SEE ALSO

 cachetouchlinks

EXAMPLES

 The following example shows how to run cachetouchlinks and
 cachescrubber from a shell script. If cachetouchlinks fails,
 cachescrubber will not run.

 #!/bin/csh -f
 #
 # Touch all cache files in all workspaces listed in "workspace_files"
 cachetouchlinks -file /home/syncmgr/workspace_files
 if ($status != 0) then
 echo "### cachetouchlinks failed when running with"
 echo " /home/syncmgr/workspace_files ###"
 exit 1
 endif
 echo "### successfully touched all cache files from workspaces listed in"
 echo " /home/syncmgr/workspace_files ###"
 # If cachetouchlinks was successful, run it on all cache directories
 cachescrubber /home/syncmgr/caches/sync_cache 1
 if ($status != 0) then
 echo "### cachescrubber failed while cleaning sync_cache ###"
 exit 1
 else
 echo "### successfully cleaned sync_cache ###"
 endif
 #
 cachescrubber /home/syncmgr/caches/ASIC_cache 1
 if ($status != 0) then
 echo "### cachescrubber failed while cleaning ASIC_cache ###"
 exit 1
 else
 echo "### successfully cleaned ASIC_cache ###"

Administration

1198

 endif
 cachescrubber /home/syncmgr/caches/CPU_cache 1
 if ($status != 0) then
 echo "### cachescrubber failed while cleaning CPU_cache ###"
 exit 1
 else
 echo "### successfully cleaned CPU_cache ###"
 endif
 exit 0

 Note: If this shell script is run once a week, then the 'age in
 days' argument could be an integer greater than 1. If the
 cachetouchlinks script ran for more than 1 day, then this integer
 must be greater than 1. If 5 days were used and this script was
 run once a week, this would cover the situation where the
 cachetouchlinks script ran for more than 1 day (and less than 5
 days). Since cachetouchlinks was run 7 days earlier, then the 'age
 in days' should be less than 7. You should record the time that
 cachetouchlinks ran so that the cachescrubber could be run with an
 'age in days' argument that is greater than the number of days used
 with cachetouchlinks.

cachetouchlinks

cachetouchlinks Command

NAME

 cachetouchlinks - Determines which files to be cleaned by the
 cachescrubber command

DESCRIPTION

 Before cleaning the cache with the cachescrubber command,
 you can run cachetouchlinks on your workspace to identify which
 files should be deleted. Cachetouchlinks recurses
 through all specified workspaces and when it finds a local object
 that is a cache type, it reads the value of the symbolic link and
 "touches" the cached file that is referenced. For a collection object,
 it "touches" each cached member file.

 Notes:

 * The cachetouchlinks script does not consider hard links during
 processing.

 * If you unintentionally remove a cache file that is still being
 referenced, you can use the refreshcache command to recreate the
 links.

 * The cachetouchlinks command is both a UNIX command line script and
 Tcl command. Both commands have the same argument list, but
 return different values. See the Return Values section for more

ENOVIA Synchronicity Command Reference - Module

1199

 information.

SYNOPSIS

 cachetouchlinks [-checkerrors] [-dryrun] [-ignoreerrs]
 [-file <workspace-path-list>| -path <path-to-workspace-dir>]
 [-norecursive] [-report <mode>]

OPTIONS

• -checkerrors
• -dryrun
• -file
• -ignoreerrs
• -path
• -norecursive
• -report

-checkerrors

 -checkerrors Uses the workspace metadata to verify that objects in
 the cache state are linked to a cache. This option
 has a performance implication and should only be
 used when necessary.

-dryrun

 -dryrun Only report what will be done, do not touch any
 links. This can be run with any of the '-report'
 modes.

-file

 -file Valid path to a file containing the list of
 workspaces referring to caches that will be
 cleaned. The 'list file' can be specified as an
 absolute or relative path. The workspaces in the
 'list file' can be absolute or relative paths.
 (Entries in the file that are relative paths are
 relative to the current working directory, rather
 than relative to the file itself.) When using the
 directory list file, directories with spaces must
 not be escaped. Leading and trailing spaces are
 removed.

Administration

1200

 Workspace list file syntax:
 one line for every workspace
 comments have line beginning with #

 Example workspace path list file:

 # workspace ASIC for user larry
 /home/larry/Projects/ASIC
 # workspace CPU for user larry
 /home/larry/Projects/CPU
 # all workspaces for user frank
 /home/frank/Projects
 # workspace ASIC for user rizzo
 /home/rizzo/Projects/ASIC
 # workspace CPU for user rizzo
 /home/rizzo/Projects/CPU

 Note: Paths listed in the workspace path list file
 could be absolute or relative paths. If spaces exist
 in a path, the path should not be escaped or
 enclosed in quotes.

-ignoreerrs

 -ignoreerrs Continue executing even if an error is encountered.
 The default is to stop at the first error.

-path

 -path Valid path to a workspace whose corresponding cache
 is to be cleaned. Absolute or relative paths are
 accepted. A path containing spaces must be
 escaped. If run from the Unix command line, escaping
 can be either using a backslash '\' preceding a
 space or enclosing the path in double quotes. When
 run from an stcl shell, escaping could be using a
 backslash preceding a space or enclosing the path in
 double quotes or braces '{}'. When run from a dss
 shell, the only escaping allowed is enclosing the
 path in double quotes. A valid directory must be
 specified following this option. If this option is
 not specified, cachetouchlinks will default to the
 current working directory

-norecursive

 -norecursive Do not recursively process the workspace(s).
 The default is to recursively process each
 workspace.

ENOVIA Synchronicity Command Reference - Module

1201

-report

 -report <mode> Where mode is brief, normal, or verbose.
 The 'normal' mode will report only warnings and
 errors. The 'brief' mode displays the same information
 as 'normal' mode. The 'verbose' mode will report all
 objects that are being touched. The default is 'normal'.

RETURN VALUE

 - On failure, an exception occurs (the return value is
 thrown, not returned).
 - If -ignoreerrs is specified, The cachetouchlinks Tcl procedure will
 return a TCL_ERROR (1) on failure.
 - On success, a TCL_OK (0) will be returned.

 The cachetouchlinks Unix command line script will return a 0 for success and
 a 1 for failure.

SEE ALSO

 cachescrubber, refreshcache

EXAMPLES

 The following example shows how you can run cachetouchlinks and
 cachescrubber from a shell script. If cachetouchlinks fails,
 cachescrubber will not run.

 #!/bin/csh -f
 #
 # Touch all cache files in all workspaces listed in "workspace_files"
 cachetouchlinks -file /home/syncmgr/workspace_files
 if ($status != 0) then
 echo "### cachetouchlinks failed when running with"
 echo " /home/syncmgr/workspace_files ###"
 exit 1
 endif
 echo "### successfully touched all cache files from workspaces listed in"
 echo " /home/syncmgr/workspace_files ###"
 # If cachetouchlinks was successful, run the cachescrubber
 # on all cache directories
 cachescrubber /home/syncmgr/caches/sync_cache 1
 if ($status != 0) then
 echo "### cachescrubber failed while cleaning sync_cache ###"
 exit 1

Administration

1202

 else
 echo "### successfully cleaned sync_cache ###"
 endif
 #
 cachescrubber /home/syncmgr/caches/ASIC_cache 1
 if ($status != 0) then
 echo "### cachescrubber failed while cleaning ASIC_cache ###"
 exit 1
 else
 echo "### successfully cleaned ASIC_cache ###"
 endif
 cachescrubber /home/syncmgr/caches/CPU_cache 1
 if ($status != 0) then
 echo "### cachescrubber failed while cleaning CPU_cache ###"
 exit 1
 else
 echo "### successfully cleaned CPU_cache ###"
 endif
 exit 0

 Note: If this shell script is run once a week, then the 'age in
 days' argument could be an integer greater than 1. If the
 cachetouchlinks script ran for more than 1 day, then this integer
 must be greater than 1. If 5 days were used and this script was
 run once a week, this would cover the situation where the
 cachetouchlinks script ran for more than 1 day (and less than 5
 days). Since cachetouchlinks was run 7 days earlier, then the 'age
 in days' should be less than 7. You should record the time that
 cachetouchlinks ran so that the cachescrubber could be run with an
 'age in days' argument that is greater than the number of days used
 with cachetouchlinks.

refreshcache

refreshcache Command

NAME

 refreshcache - Refreshes a workspace, re-establishing cache links
 to point to either a new cache location or to new
 cache names

DESCRIPTION

 This command traverses the workspace directory hierarchy in search of
 objects that exist in the shared cache mode and recreates the link to the
 cache.

 This command can be used when moving a cache to re-establish links to
 the new cache directory. The cache file naming mechanism changed in
 DesignSync version 3.2 to address consistency and reliability issues.
 If pre-version 3.2 cache links still exist, the refreshcache command can be
 used to re-establish links to cache files using the new cache file name

ENOVIA Synchronicity Command Reference - Module

1203

 format. It is beneficial to re-establish links to cache files using the
 new cache name file format since there have been consistency and reliability
 issues addressed with the new cache naming. Links to the old cache file
names
 will still work.

 If you only have the latest version of any branch populated, first
 'populate -recursive -reference -unifystate' to replace any cache links
 with DesignSync references. Then 'populate -recursive -share -unifystate'
 to recreate the cache links, which will now lead to cached files in the
 new cache location. This will also replace pre- DS 3.2 style cache links
 with the newer cache link format.

 Note that the DesignSync reference state is only intended to be temporary.
 DesignSync references do not exist on disk, so tools requiring actual data
 will not work properly with DesignSync references.

 The refreshcache command is useful when non-latest versions exist in the
 workspace since it recreates a new link to the current version in the
 workspace.

SYNOPSIS

 refreshcache [-continue_on_error] [-dryrun]
 [-file <path> | -workspace <path>] [-norecursive]
 [-preds32] [-verbose]

OPTIONS

• -continue_on_error
• -dryrun
• -file
• -norecursive
• -preds32
• -workspace
• -verbose

-continue_on_error

 -continue_on_error If an error is encountered, do not exit, but
 continue processing workspace(s). By default, the
 refreshcache command will exit on encountering an
 error.

-dryrun

 -dryrun Only report what will be done, do not refresh any

Administration

1204

 links.

-file

 -file A full or relative path to a file containing a
 list of workspaces to be refreshed. Either this
 option or the '-workspace' option must be
 supplied, but not both. The format of this file
 is one line for every workspace. A line beginning
 with a '#' is a comment.

-norecursive

 -norecursive Do not recursively process the workspace(s).

-preds32

 -preds32 The cache file naming mechanism changed in
 DesignSync Version 3.2 to address consistency
 and reliability issues. It is beneficial to
 re-establish links to the new cache file
 names. Using this option will only select links
 that are currently pointing to the old cache
 file name format and re-establish them so that
 they are linking to files using the new cache
 file name format.

 This can be useful if a user already has a
 workspace with a mix of links pointing to cache
 files with the old naming convention and the new
 naming convention. This way it would not waste time
 refreshing the links to files in the new name format.

-workspace

 -workspace The full path or relative path to workspace to be
 refreshed. Either this option or the '-file'
 option must be supplied, but not both.

-verbose

 -verbose Extra report processing - reports object being
 processed, version id, object type and old cache

ENOVIA Synchronicity Command Reference - Module

1205

 file links. The old cache file links are reported
 with -preds32 option.

RETURN VALUE

 If the refresh is successful, returns an empty string. If the refresh
 fails, returns an appropriate error.

SEE ALSO

 cachescrubber, cachetouchlinks, populate

EXAMPLES

• Example Showing a Dry Run
• Example Showing Updating Pre-3.2 Cache Files
• Example Showing Updating Workspaces From a File

Example Showing a Dry Run

 Reports all cache links in the asic hierarchy that will be refreshed,
 but doesn't refresh any:

 stcl> refreshcache -workspace /home/larry/Projects/asic -dryrun

Example Showing Updating Pre-3.2 Cache Files

 Add the -preds32 option and it will report all links that point to
 cache files using the old naming convention, which will be
 refreshed if the -dryrun option is not specified.

 Re-establishes cache links in workspace /home/larry/Projects/asic:

 stcl> refreshcache -workspace /home/larry/Projects/asic

 Can use the -preds32 option to only refresh cache links that were
 linked to files before version 3.2. These links are pointing to cache
 files that used the old naming convention.

 First report what will be refreshed.

 stcl> refreshcache -workspace /home/larry/Projects/asic -preds32 -dryrun

 Re-establishes cache links:

 stcl> refreshcache -workspace /home/larry/Projects/asic -preds32

Administration

1206

Example Showing Updating Workspaces From a File

 Reports all cache links in all workspaces listed in file
 '/home/larry/workspace_list', which will be refreshed, but doesn't
 refresh any.

 The workspace list file might look like follows:

 # comment - ASIC project
 /home/larry/Projects/asic
 # CPU project
 /home/larry/Projects/cpu

 stcl> refreshcache -file /home/larry/workspace_list -dryrun

 Re-establishes cache links:

 stcl> refreshcache -file /home/larry/workspace_list

Mirror System

mirror Commands

NAME

 mirror - Mirror management commands

DESCRIPTION

 The mirror commands allow you to create, view, edit, and
 check the status of mirrors. You also can administer mirrors
 using the DesignSync WebUI.

SYNOPSIS

 mirror <mirror_command> [<mirror_command_options>]

 Usage: mirror [create|delete|disable|edit|enable|get|getoptions|
 isenabled|ismirror|list|rename|requeue|reset|setoptions|
 status|wheremirrored]

OPTIONS

 Vary by command.

ENOVIA Synchronicity Command Reference - Module

1207

RETURN VALUE

 Varies by command.

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror rename, mirror requeue,
 mirror reset, mirror setoptions, mirror status,
 mirrorsetdefaultuser, mirror wheremirrored

mirror

mirror Commands

NAME

 mirror - Mirror management commands

DESCRIPTION

 The mirror commands allow you to create, view, edit, and
 check the status of mirrors. You also can administer mirrors
 using the DesignSync WebUI.

SYNOPSIS

 mirror <mirror_command> [<mirror_command_options>]

 Usage: mirror [create|delete|disable|edit|enable|get|getoptions|
 isenabled|ismirror|list|rename|requeue|reset|setoptions|
 status|wheremirrored]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

Administration

1208

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror rename, mirror requeue,
 mirror reset, mirror setoptions, mirror status,
 mirrorsetdefaultuser, mirror wheremirrored

mirror create

mirror create Command

NAME

 mirror create - Creates a mirror

DESCRIPTION

• Using Mirror Create with Modules

 This command creates a mirror. When a password is required, you are
 prompted and the command becomes interactive.

 Note: When you create a mirror, submirrors for referenced data are
 created automatically.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

Using Mirror Create with Modules

 When the mirror create command is run for a module, the mirror
 directory must either be empty or the vault set on the mirror
 directory must match that provided by the mirror create command.
 This allows a user to manually populate a mirror directory prior to
 registering it with the mirror system.

 Mirrors can be created for modules but a workspace is not allowed to
 link to it. Thus, a set mirror and a ci or populate with the mirror
 fetch state are not allowed with modules.

 Note: If you have two hrefs to a sub-module in a hierarchy, you
 cannot create a second sub-mirror to the second sub-module.

SYNOPSIS

ENOVIA Synchronicity Command Reference - Module

1209

 mirror create [-cachedir <path>] [-cachelinktype hard|soft]
 [-category <category>] [-description <description>]
 [-[no]enable] [-fetchstate get|share]
 [-hrefmode<static|dynamic|normal>] [-MASuser <user>]
 [-mcachemode link|server] -mirrordir <mirrorDir>
 -name <name> [-notify<email_list>]
 [-parentname <parent_mirror>] [-[no]recursive]
 [-RSuser <user>] [-script <TCL_script>]
 [-selector <list>] [-type normal]
 -vaultURL <vaultURL> <serverURL>

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the MAS where the mirror will be
 created. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -cachedir
• -cachelinktype
• -category
• -description
• -[no]enable
• -fetchstate
• -hrefmode
• -MASuser
• -mcachemode
• -mirrordir
• -name
• -notify
• -parentname
• -[no]recursive
• -RSuser
• -script
• -selector
• -type
• -vaultURL

Administration

1210

-cachedir

 -cachedir The -cache option allows you specify the path to the
 <path> mirror specific file cache. If you update mirrors
 with the share state and no file cache is specified,
 the default cache or project caches are used. The
 default cache is determined by the MUP's registry
 files which include the server's registry files and
 the MirrorRegistry.reg file.

-cachelinktype

 -cachelinktype The -cachelinktype option indicates whether creating
 hard|soft a mirror with cache links uses hard or soft
 (symbolic) links in the mirror. This option is
 ignored if the -fetchstate get option is used.

 "-cachelinktype hard" populates the mirror with hard
 links to the cache. Hard links require that mirror
 and the cache be on the same disk partition. If the
 system cannot create hard links to the cache, it
 will switch automatically to creating soft links to
 the cache.

 "-cachelinktype soft" populates the mirror with
 symbolic links to the cache. (Default)

 Note: This option does not use the registry settings
 that determine whether a hard link or soft link
 should be used. The default setting for this option
 is to use soft links.

-category

 -category An optional parameter to assign a category (arbitrary
 string) to a mirror. All mirrors belonging to a
 category can be selected by using the -category
 parameter of 'mirror list'. When mirror definitions
 are automatically generated as the result of
 encountering references, they will inherit the
 category of their parent mirror. A category must be
 composed of the following set [A-Za-z0-9_/-.] or a
 space.

-description

 -description An optional description of the mirror. A description

ENOVIA Synchronicity Command Reference - Module

1211

 must be composed of the following set [A-Za-z0-9_/-.]
 or a space.

-[no]enable

 -[no]enable Determine if the mirror should be enabled when it is
 created. The default is enable.

-fetchstate

 -fetchstate An optional mode to indicate whether the mirror
 get|share should be populated with local copies, or populated
 with file cache links.

 "-fetchstate get" populates the mirror with local
 copies. (Default)

 "-fetchstate share" populates the mirror with links
 the cache. You can use the -cachelinktype to specify
 whether the links should be soft links (symbolic
 links) or hard links.

-hrefmode

 -hrefmode An optional mode to enable the selection of a
 hierarchical reference mode when recursively
 populating the mirror.
 Valid values are:
 o normal (default)
 o static
 o dynamic

 This option is only meaningful when <vaultURL>
 refers to a non-legacy module.

 You can use the -hrefmode with -nomodulerecursive.
 The recursive nature of the mirror can be changed
 using the mirror edit command to recursively populate
 a module.

-MASuser

 -MASuser The name of the user to establish communication from
 the repository server (RS) to the mirror
 administration server (MAS). When this parameter is
 omitted, the default user (mirror setoptions

Administration

1212

 -defaultuser) is used for this connection. If the
 default user is not set, an error will be thrown.
 If the 'mirror setoptions -enforcedefaultuser' option
 is set on the MAS and this parameter is specified, an
 error will be thrown. If this parameter is specified,
 the user will be prompted for the corresponding
 password. Therefore, specifying this parameter makes
 the 'mirror create' command an interactive command.

-mcachemode

 -mcachemode
 link|server When using the scripted mirror capability to populate
 an auto-generated mirror, this option specifies:
 o link - Attempt to create mcache links to referenced
 submodules by searching the mirror directory
 supplied with the scripted/autogen mirror.
 o server - Fetch the submodules from the server.

 When populating a normal mirror, this option
 specifies:
 o link - Attempt to create mcache links to
 referenced submodules by searching using the
 default mcache paths defined in the registry.
 o server - Fetch the submodules from the server.

-mirrordir

 -mirrordir The pathname of the mirror directory.
 Note: This parameter is required.

 The pathname must be unique with respect to
 all other mirrors defined on the mirror administration
 server (MAS).

 If this pathname contains a relative path with
 respect to the stcl's cwd, it is converted to an
 absolute pathname before the name is passed to the
 mirror administration server.

 If the mirror directory pathname contains a symbolic
 link (UNIX only), the user controls whether the
 symbolic link is resolved or used as is, with the
 EnableRealMirrorPaths registry key.

 The '~' home directory character is allowed (UNIX
 only).

 The directory pathname must be relevant on the same
 LAN as the mirror administration server.

ENOVIA Synchronicity Command Reference - Module

1213

 The directory name can be prefixed with 'file://' if
 an absolute pathname is specified.

 The path of a mirror directory can be shared by other
 mirrors defined on the MAS or used for multiple
 modules. Since the base directory for multiple
 modules can be the same, the base directory can work
 as a mirror directory.

 You cannot use a mirror directory for a module mirror
 that is already used for a legacy module or a
 DesignSync vault.

-name

 -name Logical name of the mirror. This name must be unique
 with respect to all other mirrors defined on the mirror
 administration server (MAS). When mirror definitions
 are automatically generated as the result of
 encountering references, the new mirror names should
 reflect the point in the mirror hierarchy where the
 reference was encountered. The hierarchical delimiter
 used must be a slash, '/'.
 EXAMPLE: If the mirror 'liba' uses mirror directory
 /home/libs/liba and during the initial populate a
 reference is encountered at the
 /home/libs/liba/iocells/scancells directory, a new
 mirror called 'liba/iocells/scancells' will be
 created. Names must be composed of the following set
 [A-Za-z0-9_/-.]. Mirror names cannot begin with a
 dash (-).

 When -name is used without the -parentname argument,
 the name parameter cannot be the name of an existing
 mirror. However, when used in combination with the
 -parentname argument, the name parameter can refer to
 an existing mirror. In this case, the mirror
 directory, vault URL, and selector are validated and
 if any of these parameters is incorrect, an error is
 thrown. When -name and -parentname are used in
 combination, all other parameters for the mirror
 create command are used only for validation.

 The -name value is required.

-notify

 -notify A comma-separated or space-separated list of email
 addresses and/or user names to send email to whenever
 the mirror generates notifications. The
 defaultnotifylist (see 'mirror setoptions') will be

Administration

1214

 internally appended to this list. If the
 defaultnotifylist has not been set then this list
 will default to the email address in the user's
 profile for the user executing this command on the
 MAS. If user names are specified, the users must have
 user profiles on the MAS servers.

-parentname

 -parentname When you are creating a submirror, the logical name
 of the parent mirror. The parent mirror must already
 exist. See the -name argument description, above, for
 information on how the -name and -parentname arguments
 interact.

-[no]recursive

 -[no]recursive Determines whether to mirror the module's contents
 only or the entire module hierarchy.

 -recursive specifies that the mirror populates a
 module's contents and the contents of all its
 sub-modules recursively. (Default)

 -norecursive specifies that the mirror
 populates a module without processing the module
 hierarchy.

-RSuser

 -RSuser The name of the user to establish communication from
 the mirror administration server (MAS) to the
 repository server (RS). This User must have a user
 profile on the RS. When this parameter is omitted, the
 default user (mirror setoptions -defaultuser) is used
 for this connection. If the default user is not set,
 an error will be thrown. If the 'mirror setoptions
 -enforcedefaultuser' option is set on the MAS and this
 parameter is specified, an error will be thrown.
 No companion password parameter is available for
 -RSuser. If this parameter is specified, the user will
 be prompted for the corresponding password. Therefore,
 specifying this parameter makes the 'mirror create'
 command an interactive command.

-script

ENOVIA Synchronicity Command Reference - Module

1215

 -script The -script option allows you to specify the TCL
 <TCL_script> script that defines the scripted mirror. The script
 must be in the syncinc/share/tcl, or
 custom/site/share/tcl directory. For information
 about how to create the TCL script, see the ENOVIA
 Synchroncity DesignSync Administrator's Guide.

 The -script option is mutually exclusive with the
 -type option.

-selector

 -selector The -selector option is used to choose which versions
 <list> of the files in the vault to place in the mirror
 directory. This value's syntax is checked to make
 sure the selector is valid. The default is
 'Trunk:Latest'.

-type

 -type The type of the mirror. The only type supported for
 modules is 'normal.'

 This option is mutually exclusive with the -script
 option.

-vaultURL

 -vaultURL Specifies the URL of the vault directory whose
 contents will be mirrored out. This parameter is
 required. Specify the URL as follows:
 sync://<host>[:<port>]/path_to_vault or
 syncs://<host>[:<port>]/path_to_vault where
 'sync://' or 'syncs://' are required,
 <host> is the remote server,
 <port> is the remote server's port number
 (defaults to 2647)
 and the path_to_vault is the path from the remote
 servers root to the vault directory being mirrored.

RETURN VALUE

 Returns an empty string on success.

Administration

1216

SEE ALSO

 mirror delete, mirror disable, mirror edit,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror rename, mirror reset,
 mirror setoptions, mirror status, mirrorsetdefaultuser

EXAMPLES

 This example creates a primary mirror on the MAS sync://faure:30138.
 The default user, as specified in the 'mirror setoptions' example, is
 used for mirror communications. The mirror is not initially enabled.

 stcl> mirror create -recursive -type primary -description "FCS builds" \
 stcl> -noenable sync://faure:30138 -name releases -mirrordir \
 stcl> /home/tbarbg2/Mirrors/releases -vaultURL \
 stcl> sync://srv2.ABCo.com:2647/releases
 stcl>

mirror delete

mirror delete Command

NAME

 mirror delete - Deletes a mirror

DESCRIPTION

 This command deletes the mirror definition from both the MAS and the
 RS. It does not stop any updates that are in progress on the mirror's
 behalf or remove the mirror directory. If the MAS can be contacted
 but the mirror cannot be removed because the RS cannot be contacted,
 the mirror will be placed in a disabled state.

 Generated mirrors cannot be removed. Scripted mirrors, which are used
 to generate and modify the generated mirrors can be deleted.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirror delete [-force] -name <name> <serverURL>

ARGUMENTS

ENOVIA Synchronicity Command Reference - Module

1217

• Server URL

Server URL

 serverURL Specifies the URL of the MAS where the mirror will be
 deleted. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -force
• -name

-force

 -force Specifying this option deletes the mirror definition
 from the MAS (to clean up the status output and stop
 unwanted email) when the RS is not available.

 Note: Use this option only when the RS is not available
 and is not likely to become available.

 When the -force option is used and the RS is not
 accessible, the user gets the following message:
 "Connect failure. Server '<host>:<port>' may have
 reset the connection." But the mirror definition is
 removed from the MAS.

-name

 -name Name of the mirror to delete.

 Note: Generated mirrors cannot be removed. Generated
 mirrors use the <TCL_script>@<script_assigned_name>.
 Any mirror containing a "@" is a generated mirror.

 The -name option is required.

RETURN VALUE

 Returns an empty string on success.

Administration

1218

SEE ALSO

 mirror create, mirror disable, mirror edit,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror rename, mirror reset,
 mirror setoptions, mirror status, mirrorsetdefaultuser

EXAMPLES

• Example Showing Deleting a Mirror
• Example Showing That the Mirror Cannot Be Deleted
• Example Using The Force Option to Delete a Mirror

Example Showing Deleting a Mirror

 This example deletes the 'Releases' mirror from the MAS
 sync://giovannelli:30138.

 stcl> mirror delete sync://giovannelli:30138 -name Releases
 stcl>

Example Showing That the Mirror Cannot Be Deleted

 This example cannot delete the 'NML8B0' mirror from the MAS
 sync://qechrhl02:30046 as the RS is disabled.

 stclc> mirror delete sync://qechrhl02:30046 -name NML8B0
 Connect failure. Server 'sting:30046' may have reset the connection.

 Could not remove the mirror's definition from the repository server.
 The mirror is disabled: NML8B0
 - Attempting to contact repository server...
 - som-E-11: Communication Connect Failure.

Example Using The Force Option to Delete a Mirror

 This example deletes the 'NML8B0' mirror from the MAS
 sync://qechrhl02:30046 even though the RS is disabled using the
 -force option.

 stclc> mirror delete sync://qechrhl02:30046 -force -name NML8B0
 Connect failure. Server 'sting:30046' may have reset the connection.

 stcl> mirror ismirror sync://qechrhl02:30046 -name NML8B0
 0

ENOVIA Synchronicity Command Reference - Module

1219

mirror disable

mirror disable Command

NAME

 mirror disable - Disables a mirror

DESCRIPTION

 The mirror disable command disables a single mirror or all mirrors
 depending on the parameter specified. When a mirror is disabled, it
 is marked disabled on the MAS and an attempt is made to remove the
 mirror definition from the mirror's repository server. Failing to
 remove the definition from the repository server does not cause an
 error. The RS mirror definition is replaced when the mirror is
 enabled or removed when the mirror is deleted.

 If an error occurs while processing one mirror in a list (during -all
 switch) all remaining mirrors are processed. An error is thrown if
 all mirrors being processed fail. If only one mirror is being
 processed, an empty string is returned on success. If multiple
 mirrors are processed, an error status message is printed for each
 mirror that fails and the return value shows success and failure
 status in the form { succeeded 3 failed 2 }.

 Note: When a parent scripted mirror is disabled, the mirrors
 generated by that script are also disabled. Additionally, the script
 can disable a generated mirror by returning a status value of 2,
 followed by a list of the generated mirrors to disable in the Mirrors
 list.

 Generated mirrors use the format <MirrorName>@<script_assigned_name>.
 Any mirror containing a "@" is a generated mirror.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirror disable <serverURL> -all | -name <name>

ARGUMENTS

• Server URL

Server URL

Administration

1220

 serverURL Specifies the URL of the MAS where the mirror will be
 disabled. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 For example: sync://serv1.abco.com:1024

OPTIONS

• -all
• -name

-all

 -all Evaluates all mirrors on the server.

-name

 -name Name of the mirror to disable.

RETURN VALUE

 If only one mirror is being processed, an empty string is returned on
 success. If multiple mirrors are being processed, an error status
 message is printed for each mirror that fails and the return
 value shows success and failure status in the form
 { succeeded 3 failed 2 }.
 An error is thrown if all of the mirrors being processed fail.

SEE ALSO

 mirror create, mirror delete, mirror edit,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror rename, mirror reset,
 mirror setoptions, mirror status, mirrorsetdefaultuser

EXAMPLES

 This example disables the "Releases" mirror on the MAS
 sync://giovannelli:30138.

ENOVIA Synchronicity Command Reference - Module

1221

 stcl> mirror disable sync://giovannelli:30138 -name Releases
 stcl>

mirror edit

mirror edit Command

NAME

 mirror edit - Modifies mirror parameters

DESCRIPTION

• Notes for File-Based and Legacy Module Objects

 The mirror edit command modifies specified mirror parameters
 Passwords are never specified on the command line for this command.
 When passwords are needed, you are prompted and the command
 becomes interactive.

 Note: You cannot change the name of the mirror using mirror edit. To
 change the mirror name, use the 'mirror rename' command.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

Notes for File-Based and Legacy Module Objects

 Vaults containing DesignSync references always recursively mirrors
 the contents of their reference vaults.

SYNOPSIS

 mirror edit [-cachedir <path>] [-cachelinktype hard|soft]
 [-category <category>] [-description <description>]
 [-fetchstate get|share] [-hrefmode <static|dynamic|normal>]
 [-MASuser <user>] [-mcachemode link | server]
 [-mirrordir <mirrorDir>] -name <name> [-notify <email_list>]
 [-PMASuser <user>] [-primaryserver <serverURL>]
 [-[no]recursive] [-RSuser <user>] [-vaultURL <vaultURL>]
 [-selector <selector_list>] [-script <TCL_script>]
 [-type normal] <serverURL>

ARGUMENTS

Administration

1222

• Server URL

Server URL

 serverURL Specifies the URL of the MAS where the mirror will be
 edited. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 Example: sync://serv1.abco.com:1024

OPTIONS

• -cachedir
• -cachelinktype
• -category
• -description
• -fetchstate
• -hrefmode
• -MASuser
• -mcachemode
• -mirrordir
• -name
• -notify
• -PMASuser
• -primaryserver
• -[no]recursive
• -RSuser
• -script
• -selector
• -type
• -vaultURL

-cachedir

 -cachedir The -cache option allows you specify the path to the
 <path> mirror specific file cache. If you update mirrors
 with the share state and no file cache is specified,
 the default cache or project caches are used. The
 default cache is determined by the MUP's registry
 files which include the server's registry files and
 the MirrorRegistry.reg file.

-cachelinktype

ENOVIA Synchronicity Command Reference - Module

1223

 -cachelinktype The -cachelinktype option indicates whether creating
 hard|soft a mirror with cache links uses hard or soft
 (symbolic) links in the mirror. This option is
 ignored if the -fetchstate get option is used.

 "-cachelinktype hard" populates the mirror with hard
 links to the cache. Hard links require that mirror
 and the cache be on the same disk partition. If the
 system cannot create hard links to the cache, it
 will switch automatically to creating soft links to
 the cache.

 "-cachelinktype soft" populates the mirror with
 symbolic links to the cache. (Default)

 Note: This option does not use the registry settings
 that determine whether a hard link or soft link
 should be used. The default setting for this option
 is to use hard links.

-category

 -category A parameter to assign a category (arbitrary string) to
 a mirror. All mirrors belonging to a category can be
 selected by using the -category parameter of
 'mirror list'. A category must be composed of the
 following set [A-Za-z0-9_/-.] or a space.

-description

 -description An optional description of the mirror. A description
 must be composed of the following set [A-Za-z0-9_/-.]
 or a space.

-fetchstate

 -fetchstate An optional mode to indicate whether the mirror
 get|share should be populated with local copies, or populated
 with file cache links.

 "-fetchstate get" populates the mirror with local
 copies. (Default)

 "-fetchstate share" populates the mirror with links
 the cache. You can use the -cachelinktype to specify
 whether the links should be soft links (symbolic
 links) or hard links.

Administration

1224

-hrefmode

 -hrefmode An optional mode to enable the selection of a
 hierarchical reference mode when recursively
 populating the mirror for a module. The default mode
 is "normal". The other modes are "static" and
 "dynamic". This option is only meaningful when
 <vaultURL> refers to a non-legacy module.

-MASuser

 -MASuser The name of the user to establish communication from
 the repository server (RS) to the mirror administration
 server (MAS). If the 'mirror setoptions
 -enforcedefaultuser' option is set on the MAS and this
 parameter is specified, an error will be thrown. If
 this parameter is specified, the user will be prompted
 for the corresponding password. Therefore, specifying
 this parameter makes the 'mirror edit' command an
 interactive command.

-mcachemode

 -mcachemode
 link|server When using the scripted mirror capability to populate
 an auto-generated mirror, this option specifies:
 o link - Attempt to create mcache links to referenced
 submodules by searching the mirror directory supplied
 with the scripted/autogen mirror.
 o server - Fetch the submodules from the server.
 When populating a normal mirror, this option
 specifies:
 o link - Attempt to create mcache links to
 referenced submodules by searching using the
 default mcache paths defined in the registry.
 o server - Fetch the submodules from the server.

-mirrordir

 -mirrordir Pathname of the mirror directory. This pathname must
 be unique with respect to all other mirrors defined on
 the mirror administration server (MAS).

 If this pathname contains a relative path with
 respect to the stcl's cwd, it will be converted to an
 absolute pathname BEFORE the name is passed to the
 mirror administration server.

ENOVIA Synchronicity Command Reference - Module

1225

 If the mirror directory pathname contains a symbolic
 link (UNIX only), the user controls whether the
 symbolic link is resolved or used as is, with the
 EnableRealMirrorPaths registry key.

 The '~' home directory character is allowed (UNIX
 only). The directory pathname must be relevant on the
 same LAN as the mirror administration server. The
 directory name can be prefixed with 'file://' if an
 absolute pathname is specified.

 The path of a mirror directory can be shared by other
 mirrors defined on the MAS or used for multiple
 modules. Since the base directory for multiple
 modules can be the same, the base directory can work
 as a mirror directory.

 You cannot use a mirror directory for a module mirror
 that is already used for a legacy module or a
 DesignSync vault.

-name

 -name Name of the mirror to edit. This parameter is
 required.

-notify

 -notify A comma-separated or space-separated list of email
 addresses and/or user names to send email to whenever
 the mirror generates notifications. The
 defaultnotifylist (see 'mirror setoptions') will be
 appended to this list. If user names are specified,
 the users must have user profiles on the MAS servers.

-PMASuser

 -PMASuser The name of the user to establish communication from
 the mirror administration server (MAS) to the primary
 mirror administration server (PMAS). If the mirror's
 type is not set to "secondary", this parameter is
 silently ignored. If the 'mirror setoptions
 -enforcedefaultuser' option is set on the MAS and
 this parameter is specified, an error will be thrown.
 If this parameter is specified, the user will be
 prompted for the corresponding password. Therefore,
 specifying this parameter makes the 'mirror edit'
 command an interactive command.

Administration

1226

-primaryserver

 -primaryserver Specifies the URL of the SyncServer hosting the
 primary mirror (PMAS). If the mirror's type is not
 set to "secondary", this parameter is silently
 ignored. Specify the URL as follows:
 sync://<host>[:<port>] or syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required, <host>
 is the machine on which the PMAS is installed, and
 <port> is the PMAS port number (defaults to 2647.
 Example: -primaryserver
 sync://serv1.abco.com:1024

-[no]recursive

 -[no]recursive Determines whether to mirror the module's contents
 only or the entire module hierarchy.

 -recursive specifies that the mirror populates a
 module's contents and the contents of all its
 sub-modules recursively. (Default)

 -norecursive specifies that the mirror
 populates a module without processing the module
 hierarchy. This does not remove the sub-module
 mirrors previously created.

-RSuser

 -RSuser The name of the user to establish communication from
 the mirror administration server (MAS) to the
 repository server (RS). This User must have a user
 profile on the RS. If the 'mirror setoptions
 -enforcedefaultuser' option is set on the MAS and this
 parameter is specified, an error will be thrown. No
 companion password parameter is available for -RSuser.
 If this parameter is specified, the user is prompted
 for the corresponding password. Therefore, specifying
 this parameter makes the 'mirror edit' command
 interactive.

-script

 -script The -script option allows you to specify the TCL
 <TCL_script> script that defines the scripted mirror. The script

ENOVIA Synchronicity Command Reference - Module

1227

 must be in the syncinc/share/tcl, or
 custom/site/share/tcl directory. For information
 about how to create the TCL script, see the ENOVIA
 Synchroncity DesignSync Administrator's Guide.

 IMPORTANT: You cannot use the -script option to
 change the mirror type. You can only use it to
 change which script controls the scripted mirror.
 The -script option is mutually exclusive with the
 -type option.

-selector

 -selector The selector_list to use to choose which versions of
 the files in the vault to place in the mirror
 directory.
 This value's syntax will be checked to make sure the
 selector is valid. With the exception of a scripted
 mirror, you cannot edit the selector when the mirror
 reflects a module.

-type

 -type The mirror type is always 'normal.'

-vaultURL

 -vaultURL Specifies the URL of the vault directory whose
 contents will be mirrored out. Specify the URL as
 follows: sync://<host>[:<port>]/path_to_vault or
 syncs://<host>[:<port>]/path_to_vault where
 'sync://' or 'syncs://' are required, <host> is the
 remote server, <port> is the remote server's port
 number (defaults to 2647), and the path_to_vault is
 the path from the remote servers root to the vault
 directory to be mirrored out.

 Note:
 o You can edit the vault URL from a DS folder to a
 legacy module and vice versa.
 o You can edit the vault URL from one module folder to
 another module folder.
 o You cannot edit the vault URL when the mirror
 reflects a module.
 o You cannot edit the vault URL from a legacy module
 or a DS vault to non-legacy module or vice
 versa. If a mirror is created to populate a legacy
 module, it cannot be modified to populate a
 non-legacy module. Likewise, if a mirror is created

Administration

1228

 to populate a non-legacy module, it cannot be
 modified to populate a legacy module. An error is
 generated if such an attempt is made.

RETURN VALUE

 Returns an empty string on success.

SEE ALSO

 mirror create, mirror delete, mirror disable,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror rename, mirror reset,
 mirror setoptions, mirror status, mirrorsetdefaultuser

EXAMPLES

 This example changes the mirror directory for the "releases" mirror that
 was created in the 'mirror create' example. The 'mirror rename' example
 shows how to change the mirror name.

 stcl> mirror edit sync://faure:30138 -name releases -mirrordir \
 stcl> /home/tbarbg2/Mirrors/Releases
 stcl>

mirror enable

mirror enable Command

NAME

 mirror enable - Enables a specified mirror

DESCRIPTION

 This command enables a single mirror, all disabled mirrors, or all
 mirrors depending on the parameter specified. When a mirror is enabled,
 it is effectively re-registered. The repository server for each mirror
 will be contacted and the mirrors definition on the repository server
 replaced. If the mirror cannot re-register, the mirror will remain in
 (or be moved to) the disabled state.

 Note that enabling an already enabled mirror could result in the
 mirror becoming disabled if the RS is unreachable. If an error occurs
 while processing one mirror in a list (-disabled or -all switches) all
 remaining mirrors will be processed. An error is thrown if all mirrors

ENOVIA Synchronicity Command Reference - Module

1229

 fail.

 Note: When a parent scripted mirror is enabled, the mirrors generated
 by that script are also enabled. Additionally, if the script returns
 a list of mirrors to generate, then those mirrors are automatically
 enabled, if they were in the disabled state.
 Generated mirrors use the format:
 <MirrorName>@<script_assigned_name>.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirror enable <serverURL> -all | -disabled | -name name

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the MAS where the mirror will be
 enabled. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 Example: sync://serv1.abco.com:1024

OPTIONS

• -all
• -disabled
• -name

-all

 -all Enables all the mirrors on the server.

 This option is mutually exclusive with -disabled and
 -name.

-disabled

Administration

1230

 -disabled Enables all all mirrors on the server
 that are currently in the disabled state.

 This option is mutually exclusive with -all and
 -name.

-name

 -name <name> Name of the mirror to enable.
 Note: Generated mirrors cannot be enabled or
 disabled. If the parent scripted mirror is enabled,
 that, in turn, enables any disabled generated mirrors
 generated by that scripted mirror. Generated mirrors
 use the name <MirrorName>@<script_assigned_name>. Any
 mirror containing a "@" is a generated mirror.

 This option is mutually exclusive with -all and
 -disabled.

RETURN VALUE

 If only one mirror is being processed, an empty string is returned on
 success. If multiple mirrors are being processed, an error status
 message is printed for each mirror that fails and the return
 value shows success and failure status in the form
 { succeeded 3 failed 2 }. An error is thrown if all of the mirrors
 being processed fail.

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror rename, mirror reset,
 mirror setoptions, mirror status, mirrorsetdefaultuser

EXAMPLES

 This example enables the "Releases" mirror.

 stcl> mirror enable sync://faure:30138 -name Releases
 stcl>

mirror get

mirror get Command

NAME

ENOVIA Synchronicity Command Reference - Module

1231

 mirror get - Returns all parameters for specified mirror

DESCRIPTION

 The mirror get command returns all the parameters for a specified
 mirror. The following parameters are set to an empty
 string if they are not relevant or cannot be derived:

 'primaryserver'
 'usingdefPMASuser',
 'PMASuser'

 The following parameters return 1 or 0 when the format is 'list'
 and 'True' or 'False' when the format is 'text':

 'modulerecursion',
 'usingdefaultRSuser'
 'usingdefaultMASuser'
 'usingdefaultPMASuser'
 'enabled'

 The defaultuser is the user specified with:

 'mirror setoptions -defaultuser'

 Note: When a generated mirror is specified, the parameters returned
 are for the scripted mirror definitions with only the following
 parameters coming directly from the generated mirror:
 'vault'
 'selector'
 'mirror directory'
 'script' (empty)
 'type' (normal)

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirror get <serverURL> [-format text|list] -name <name>

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the MAS to get the mirror

Administration

1232

 parameters from. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the
 SyncServer port number (defaults to 2647/2679).
 Example: sync://serv1.abco.com:1024

OPTIONS

• -format
• -name

-format

 -format Specifies the way the output is returned.
 The default is text. The format 'text' will return
 each mirror parameter on a new line in the format
 name=value. The format 'list' will list the values in
 a Tcl list in the form {name1 value1 name2 value2 ...}

-name

 -name <name> Name of the mirror. This parameter is required.

RETURN VALUE

 Returns the parameters for the mirror. The following parameters are
 returned:
 name
 mirrordir
 vaultURL
 selector
 script
 category
 description
 notifylist
 commonnotifylist
 modulerecursion
 hrefmode
 type
 enabled
 primaryserver
 defaultuser
 RSuser
 MASuser
 PMASuser
 usingdefaultRSuser

ENOVIA Synchronicity Command Reference - Module

1233

 usingdefaultPMASuser
 usingdefaultMASuser
 fetchstate
 cachelinktype
 cachedir
 mcachemode

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror enable, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror rename, mirror reset,
 mirror setoptions, mirror status, mirrorsetdefaultuser

EXAMPLES

• Example Showing the Parameters for a Non-Scripted Mirror
• Example Showing the Parameters for a Scripted Mirror

Example Showing the Parameters for a Non-Scripted Mirror

 This example returns the parameters for the "Releases" mirror
 (non-scripted) on the MAS sync://faure:30138.

 stcl> mirror get sync://faure:30138 -name Releases
 name = Releases
 mirrordir = /home/barbg/Mirrors/Releases
 vaultURL = sync://srv2.ABCo.com:2647/releases
 selector = Trunk:Latest
 script =
 category =
 description = FCS builds
 type = primary
 enabled = True
 modulerecursion = True
 hrefmode = Normal
 primaryserver =
 notifylist =
 commonnotifylist = barbg
 defaultuser = barbg
 usingdefaultMASuser = True
 MASuser = barbg
 usingdefaultRSuser = True
 RSuser = barbg
 usingdefaultPMASuser = False
 PMASuser =
 fetchstate = get
 cachelinktype = soft
 cachedir =
 mcachemode = server
 stcl>

Administration

1234

Example Showing the Parameters for a Scripted Mirror

 This example returns the parameters for the "AUTO_RELEASES" scripted
 mirror on the MAS sync://qewflx10:30047.

stcl> mirror get sync://qewflx10:30047 -name SCR_1
 name = AUTO_RELEASES
 mirrordir = /home/tlarry1/Modules/mirrors/DS_AUTO_RELEASES
 vaultURL = sync://qewflx10:30047/Modules/Blocks
 selector = REL_*
 script = generate_mirror.tcl
 category =
 description =
 type = autogen
 enabled = True
 modulerecursion = True
 hrefmode = normal
 primaryserver =
 notifylist =
 commonnotifylist = masteradmin
 defaultuser = masteradmin
 usingdefaultMASuser = True
 MASuser = masteradmin
 usingdefaultRSuser = True
 RSuser = masteradmin
 usingdefaultPMASuser = False
 PMASuser =
 fetchstate = share
 cachelinktype = hard
 cachedir = /home/tlarry1/Modules/sync_cache
 mcachemode = link
 stcl>

mirror getoptions

mirror getoptions Command

NAME

 mirror getoptions - Gets mirror options on a server

DESCRIPTION

 This command is used to get general mirror options for all mirrors on
 a MAS or RS. Options that have not been set will return an empty
 string. The following parameters will return 1 or 0 when the format is
 'list' and 'True' or 'False' when the format is 'text':

 isdefaultuserenforced

ENOVIA Synchronicity Command Reference - Module

1235

 isRSenabled
 isMASenabled

 The parameter warnifstale will return 'No' if the value is 0 and the
 format is text.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirror getoptions <serverURL> [-format text|list]

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the SyncServer (RS or MAS).
 Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 Example: sync://serv1.abco.com:1024

OPTIONS

• -format

-format

 -format Specifies the way the output is returned. The
 default is text. The format 'text' will return each
 option on a new line in the format name=value.
 The format 'list' will list the options in a Tcl list
 in the form {name1 value1 name2 value2 ...}

RETURN VALUE

 Returns the general options for the mirrors on a server.
 The following parameters will be returned:
 defaultuser
 commonnotifylist
 name

Administration

1236

 isdefaultuserenforced
 isRSenabled
 isMASenabled
 warnifstale
 isSUIDenforced

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror enable, mirror get, mirror isenabled,
 mirror ismirror, mirror list, mirror rename, mirror reset,
 mirror setoptions, mirror status, mirrorsetdefaultuser

EXAMPLES

• Example Showing the Mirror Options
• Example Showing the Mirror Options in a Formatted List

Example Showing the Mirror Options

 This example gets the general mirror options for the SyncServer
 sync://faure:30138.

 stcl> mirror getoptions sync://faure:30138
 isRSenabled = False
 isMASenabled = True
 name = faure
 defaultuser = barbg
 isdefaultuserenforced = True
 isSUIDenforced = False
 commonnotifylist = barbg
 warnifstale = No
 isSUIDenforced = Yes

 stcl>

Example Showing the Mirror Options in a Formatted List

 This example shows the "-format list" output format:

 stcl> mirror getoptions sync://faure:30138 -format list
 isRSenabled 0 isMASenabled 1 name faure:30138 defaultuser barbg
 isdefaultuserenforced 1 isSUIDenforced 0 commonnotifylist barbg
 warnifstale 0 isSUIDenforced 1
 stcl>

mirror isenabled

ENOVIA Synchronicity Command Reference - Module

1237

mirror isenabled Command

NAME

 mirror isenabled - Tests whether a mirror is enabled

DESCRIPTION

 Test if a mirror is enabled. Used primarily for scripting.

 Note: Generated mirrors cannot be disabled directly as an
 argument to this command. The mirror status command can be
 used to determine if a generated mirror is enabled or disabled.
 Generated mirrors are created with the name:
 <MirrorName>@<script_assigned_name>.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirror isenabled <serverURL> -name <name>

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the MAS where the mirror is
 defined. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 Example: sync://serv1.abco.com:1024

OPTIONS

• -name

-name

 -name Name of the mirror. This parameter is required.

Administration

1238

RETURN VALUE

 Returns 1 if the mirror is enabled or 0 if the mirror is disabled.

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror enable, mirror get, mirror getoptions,
 mirror ismirror, mirror list, mirror rename, mirror reset,
 mirror setoptions, mirror status, mirrorsetdefaultuser

EXAMPLES

 In this example, 'mirror isenabled' returns 1, because the "Releases"
 mirror on the SyncServer sync://faure:30138 is enabled.

 stcl> mirror isenabled sync://faure:30138 -name Releases
 1
 stcl>

mirror ismirror

mirror ismirror Command

NAME

 mirror ismirror - Tests whether a name is valid for a defined
 mirror

DESCRIPTION

 Test if a name is valid for an existing mirror. Used primarily for
 scripting. Allows a name to be tested instead of one of the other
 commands throwing an error if the mirror name was wrong.

 Note: Generated mirrors cannot be validated using the mirror ismirror
 command. Generated mirrors are created with the name
 <MirrorName>@<script_assigned_name>. Any mirror containing a "@" is
 a generated mirror.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

ENOVIA Synchronicity Command Reference - Module

1239

 mirror ismirror <serverURL> -name <name>

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the MAS where the mirror is
 defined. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 Example: sync://serv1.abco.com:1024

OPTIONS

• -name

-name

 -name Name of the mirror.

RETURN VALUE

 Returns 1 if the mirror is defined on the server or 0 if the mirror
 is not defined.

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror list, mirror rename, mirror reset,
 mirror setoptions, mirror status, mirrorsetdefaultuser

EXAMPLES

 In this example, 'mirror ismirror' returns 1, because there is a "Releases"
 mirror on the SyncServer sync://faure:30138.

 stcl> mirror ismirror sync://faure:30138 -name Releases

Administration

1240

 1
 stcl>

mirror list

mirror list Command

NAME

 mirror list - Returns a list of all mirrors from a server

DESCRIPTION

 The mirror list command returns a list of all mirrors from a server
 that matches a specified search criterion. Used primarily for
 scripting. The -enabled, -disabled, and -all switches can be combined
 with patterns from the -category and -name parameters to reduce the
 number of mirrors returned in the list.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirror list <serverURL> [-category <category_pattern>]
 [-enabled|disabled|all] [-format text|list]
 [-name <name_pattern>]

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the MAS where the mirrors are
 defined. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 Example: sync://serv1.abco.com:1024

OPTIONS

• -all

ENOVIA Synchronicity Command Reference - Module

1241

• -category
• -disabled
• -enabled
• -format
• -name

-all

 -all Request a list of all mirrors from the server. This is
 the default.

-category

 -category A category pattern used to further reduce the list of
 mirrors returned. Mirror categories that do not match
 the pattern will be removed from the result list. A
 pattern is defined using UNIX glob-style notation.
 '*' matches any number of characters, '?' matches
 exactly one character, [chars] matches any characters
 in chars, and any other characters in the pattern are
 taken as literals that must match the input exactly.

-disabled

 -disabled Request a list of all disabled mirrors from the server.

-enabled

 -enabled Request a list of all enabled mirrors from the server.

-format

 -format Specifies the way the output is returned. The
 default is text.
 With the 'text' format, the matching mirrors are
 printed to the screen, one per line.
 With the 'list" format, the matching mirrors are
 returned as a Tcl list.

-name

Administration

1242

 -name A name pattern used to further reduce the list of
 mirrors returned. Mirror names that do not match the
 pattern will be removed from the result list. A
 pattern is defined using UNIX glob-style notation.
 '*' matches any number of characters, '?' matches
 exactly one character, [chars] matches any characters
 in chars, and any other characters in the pattern are
 taken as literals that must match the input exactly.

RETURN VALUE

 Returns the names of all mirrors on the server that match the search
 criteria. If no mirrors match, an empty string is returned.

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror rename, mirror reset,
 mirror setoptions, mirror status, mirrorsetdefaultuser

EXAMPLES

• Example Showing Enabled Mirrors in Text Format
• Example Showing Enabled Mirrors in List Format

Example Showing Enabled Mirrors in Text Format

 This example returns all enabled mirrors on the SyncServer
 sync://faure:30138. There are two mirrors M01 and M02 that
 are enabled.

 stcl> mirror list sync://faure:30138 -enabled
 M01
 M02

Example Showing Enabled Mirrors in List Format

 The output format is different if you use the -format list
 option.

 stcl> mirror list sync://faure:30138 -enabled
 -format list
 M01 M02

ENOVIA Synchronicity Command Reference - Module

1243

mirror rename

mirror rename Command

NAME

 mirror rename - Changes the mirror name

DESCRIPTION

 The mirror rename command changes the mirrors name from <name> to
 <newname>. The repository server must be contacted for this command.

 This command cannot be used to rename scripted or generated mirrors.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirror rename <serverURL> -name <name> -newname <newname>

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the MAS where the mirror is
 defined. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 Example: sync://serv1.abco.com:1024

OPTIONS

• -name
• -newname

-name

Administration

1244

 -name Current name of the mirror.

-newname

 -newname New name for the mirror. Names must be composed of
 the following set [A-Za-z0-9_/-.]. Mirror names cannot
 begin with a dash (-).

RETURN VALUE

 Returns an empty string on success.

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror reset,
 mirror setoptions, mirror status, mirrorsetdefaultuser

EXAMPLES

 This example changes the name of the "releases" mirror, created in the
 'mirror create' example, to "Releases".

 stcl> mirror rename sync://faure:30138 -name releases -newname Releases
 stcl>

mirror requeue

mirror requeue Command

NAME

 mirror requeue - Requeue a transaction in the mirror

DESCRIPTION

 This command provides a manual option to requeue mirror transactions
 stored in the transaction record. When a mirror is generated, the
 transactions that need to be processed are stored in a transaction
 log and submitted in batches for processing. If the mirror fails for
 some reason, the transactions can be manually resubmitted for
 processing either for a single mirror or for all the mirrors on the

ENOVIA Synchronicity Command Reference - Module

1245

 MAS.

 For more information on mirror requeuing, see the ENOVIA
 Synchronicity DesignSync Data Manager Administratorâ€™s Guide.

SYNOPSIS

 mirror requeue -name <mirror> <ServerURL>

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the MAS where the mirror is
 defined. Specify the URL as follows:
 sync://<host>[:<port>] or syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port number
 (if omitted, defaults to 2647/2679).
 Example: sync://serv1.abco.com:1024

OPTIONS

• -name

-name

 name <mirror> Name of the mirror.
 To requeue transactions for all mirrors, specify
 "*".

RETURN VALUE

 Returns an empty string on success. If there is a failure, DesignSync
 reports an appropriate error message.

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror enable

EXAMPLES

Administration

1246

• Example of Requeuing Transactions for a Single Mirror
• Example of Requeuing Transactions for All Mirrors

Example of Requeuing Transactions for a Single Mirror

 This example shows transactions being requeued for a single mirror.

 dss> mirror requeue -name chipMirror1
 sync://serv1.ABCo.com:2647/Modules/Chip/Chip-419
 dss>

Example of Requeuing Transactions for All Mirrors

 This example shows transactions being requeued for all mirrors.

 dss> mirror requeue -name *
 sync://serv1.ABCo.com:2647/Modules/Chip/Chip-419
 dss>

mirror reset

mirror reset Command

NAME

 mirror reset - Populates the mirror's directory, leaving it in
 the same state as if the mirror had been removed
 and then repopulated

DESCRIPTION

 This command performs a full populate of the mirror and leaves
 the mirror directory in the same state as if the mirror had been
 removed and then repopulated. Resetting a mirror also resets its
 submirrors. If the mirror's submirrors are disabled, they are
 re-enabled by the reset operation.

 Note: You cannot reset a generated or scripted mirror. If a scripted
 mirror is specified, it is silently ignored. If a generated mirror is
 specified, you will see an error stating that the mirror cannot be
 reset.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

ENOVIA Synchronicity Command Reference - Module

1247

 mirror reset <serverURL> -name <name>

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the MAS where the mirror is
 defined. Specify the URL as follows:
 sync://<host>[:<port>] or syncs://<host>[:<port>]
 where 'sync://' or 'syncs://' are required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port number
 (if omitted, defaults to 2647/2679).
 Example: sync://serv1.abco.com:1024

OPTIONS

• -name

-name

 name Name of the mirror.

RETURN VALUE

 Returns an empty string on success.

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror rename,
 mirror setoptions, mirror status, mirrorsetdefaultuser

EXAMPLES

 This example resets the "Releases" mirror on the MAS sync://faure:30138.

 stcl> mirror reset sync://faure:30138 -name Releases
 stcl>

Administration

1248

mirror setoptions

mirror setoptions Command

NAME

 mirror setoptions - Sets general mirror options

DESCRIPTION

 The mirror setoptions command sets general mirror options for all
 mirrors on a MAS or RS. Passwords are never specified on the
 command line for this command. For a UNIX command-line version of
 the -defaultUser option, see the mirrorsetdefaultuser shell script
 command.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirror setoptions <serverURL> [-commonnotifylist<email_list>]
 [-defaultuser <user>] [-disableMAS | -enableMAS]
 [-disableRS | -enableRS] [-[no]enforcedefaultuser]
 [-[no]enforceSUID] [-name <name>]
 [-warnifstale <time>]

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the SyncServer (RS or MAS).
 Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 Example: sync://serv1.abco.com:1024

OPTIONS

• -commonnotifylist
• -defaultuser

ENOVIA Synchronicity Command Reference - Module

1249

• -disableMAS
• -disableRS
• -enableMAS
• -enableRS
• -enforcedefaultuser
• -enforceSUID
• -name
• -noenforcedefaultuser
• -noenforceSUID
• -warnifstale

-commonnotifylist

 -commonnotifylist A comma-separated or space-separated list of email
 addresses and/or user names. This list is internally
 appended to the notify list specified with the
 'mirror create' command for each mirror. The combined
 list is used to send email whenever a mirror
 generates notifications. The default is a list
 of all Users who have the AdministrateServer AC
 right. This option is relevant only for an MAS.
 Notify lists are not defined on the RS but passed
 to it during the enabling of a mirror.

-defaultuser

 -defaultuser The default user to be used when one of the needed
 users is not specified for the 'mirror create' command.
 If this parameter is specified, you are prompted for
 the default user's password. Specifying this parameter
 makes 'mirror setoptions' an interactive command.
 This option is only relevant for an MAS.

-disableMAS

 -disableMAS Disables a server as mirror administration server

-disableRS

 -disableRS Do not declare a server a repository server.

-enableMAS

Administration

1250

 -enableMAS Enables a server a mirror administration server

-enableRS

 -enableRS Declare a server a repository server.

-enforcedefaultuser

 -enforcedefaultuser Turn on the default user policy.
 When -enforcedefaultuser is in effect, users
 cannot be specified during the 'mirror create'
 command. This allows a company to establish a
 user as the mirror administration user (default
 user) for all servers and enforce that policy.
 This option is only relevant for a MAS.

-enforceSUID

 -enforceSUID Enable enforcement of SUID for creating or moving
 mirrors. This option sets the UNIX permissions on
 new mirror directories to the default setting of 755.
 This option is relevant only for an MAS.

-name

 -name Declare a user-friendly name for a MAS server.
 If this option is not set, all references to the MAS
 in status reports will use its hostname:port
 identifier. No attempt will be made to assure this
 name is unique across all MAS servers in a corporation.
 This is the user's responsibility.

-noenforcedefaultuser

 -noenforcedefaultuser Turn off the default user policy.
 When -enforcedefaultuser is in effect, users
 cannot be specified during the 'mirror create'
 command. This allows a company to establish a
 user as the mirror administration user (default
 user) for all servers and enforce that policy.
 This option is only relevant for a MAS.

ENOVIA Synchronicity Command Reference - Module

1251

-noenforceSUID

 -noenforceSUID Disable enforcement of SUID for creating or moving
 mirrors. If this option is selected, permissions
 on new mirror directories are set to 777 and are
 open to any user.

-warnifstale

 -warnifstale Change a mirror's status to "Warning" if the mirror
 has not been up-to-date in the specified number of
 minutes. This parameter allows the user to identify
 mirrors that have had update processes running for a
 long period of time. This condition may be normal for
 the customer's data set but also may indicate a
 problem. A value of zero (the default) means the
 server never enters the warning status for this reason.
 Only values of 0, 10, 20, 30, 60, 120, 180, 360, 720,
 and 1440 are allowed.

RETURN VALUE

 Returns an empty string on success.

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror rename, mirror reset,
 mirror status, mirrorsetdefaultuser

EXAMPLES

 This example defines the general mirror settings for the MAS
 sync://faure:30138.

 stcl> mirror setoptions sync://faure:30138 -defaultuser barbg \
 stcl> -enforcedefaultuser -noenforceSUID -enableMAS -name faure \
 stcl> -commonnotifylist barbg

 Enter the password for the default user (barbg): ****

 stcl>

mirror status

Administration

1252

mirror status Command

NAME

 mirror status - Returns the status for the mirror

DESCRIPTION

• Understanding the Output

 The mirror status command returns the status for the mirror
 specified with <name> or all the mirrors on a server if the name is
 not given. The <name> parameter is only valid when requesting status
 of mirrors on a MAS. When status is requested from an RS, the RS will
 make status calls to all the MASs that are registered with it. The
 status of a mirror from the RS will be the same information as if the
 status was requested directly from the MAS.
 [This assumes the RS/MAS communication is working. If it is not,
 status will only be shown for the mirrors where communication was
 established with a message showing where it could not.]
 The RS will include the MAS name where the mirror data came from in
 the status.

 Note: When you specify an RS as the -servertype, you cannot specify a
 specific mirror name.

Understanding the Output

 The output of the mirror status command can be formatted for easy
 viewing (-format text) or optimized for Tcl processing (-format
 list). Both viewing formats show the same information.

 The mirror status command displays the following information for each
 mirror:

 Property
 Names Description
 ----- ------------
 name Unique name for the mirror defined when the mirror
 is created. The generated mirror name is in the
 format <MirrorName>@<Script_Assigned_Name>.

 status String indicating the health of the
 mirror. Possible values include:
 o good - There are no failures of any kind.
 o warning - A mirror update has failed and has not
 adequately been retried or the heartbeat is
 late.
 o failure - A mirror has repeatedly failed, the
 heartbeat was not received, or in the case of a

ENOVIA Synchronicity Command Reference - Module

1253

 scripted mirror, there was an error creating a
 generated mirror.
 o unknown - A mirror status is unknown.
 o incomplete - The mirror status file is
 incomplete or cannot be read.
 o disabled - the mirror is currently disabled.

 lastuptodatetime Last time the mirror was up-to-date. If the
 mirror is operating normally (no failures) then if
 there are no updates currently in progress for the
 mirror, this is the time of the last successful
 update or the last heartbeat, which ever is later.
 If there are updates in progress, this is the start
 time of the first update process to start.

 mirrordir The path to the mirror directory.

 vaultURL The Sync URL of the module, DesignSync vault or
 configuration for a legacy module being mirrored.

 selector The selector or tag applied to the objects in the
 mirror.

 Note: Even when a wildcard match was used to
 generate the mirror, you see the selector that
 matched the wildcard, not the wildcard value
 defined for the mirror.

 category User-defined category used to organize mirrors.

 type Type of mirror:
 o Normal - The default DesignSync mirror, which
 fetches design objects directly from the
 RS. Generated mirrors, even though they are
 created from a scripted mirror are considered
 normal mirrors.

 o Scripted - A mirror that has an associated Tcl
 script. The script determines which mirrors are
 automatically generated at a MAS based on the
 revision control operations occurring on the
 associated URL at the RS.

 o Auto-generated (aka autogen) - Normal mirrors
 that get automatically generated by a scripted
 mirror. Autogen mirrors also go out of existence
 automatically when there's no revision control
 operations occurring on the associated URL
 at the RS.

 o Primary - The primary mirror fetches design
 objects directly from the RS and serves them to
 secondary mirrors. This option is not supported
 for modules.

 o Secondary - The secondary mirror fetches objects
 from a primary mirror instead of directly from

Administration

1254

 the RS.

 MASname The name of the server hosting the mirror. This
 is the MAS's name as specified with 'mirror
 setoptions -name' or, if not set, the
 hostname:port for the MAS.

 heartbeat Time of last heartbeat received from the RS for
 the mirror.

 lastupdatetime The last time an update process successfully
 updated the mirror.

 inprogress A Boolean (0 or 1 for -format list and 'True' or
 'False' for -format text) indicating if any
 update processes are running on the mirror's
 behalf.

 firstfailuretime (FFT)Time of first update process failure. This
 is 0 if there are no update failures. This time
 does not reflect heartbeat failures.

 numberofretries Number of update attempts to correct an update
 failure.

 lastnotifytime (LNT) The last time email was sent to all the
 recipients of the mirror's notify list.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirror status <serverURL> [-format text|list] [-name <name>]
 [-servertype RS|MAS]

ARGUMENTS

• Server URL

Server URL

 serverURL Specifies the URL of the MAS or RS to obtain mirror
 status from. Specify the URL as follows:
 sync://<host>[:<port>] or
 syncs://<host>[:<port>] where 'sync://' or 'syncs://'
 are required, <host> is the machine on which the
 SyncServer is installed, and <port> is the SyncServer
 port number (defaults to 2647/2679).
 Example: sync://serv1.abco.com:1024

ENOVIA Synchronicity Command Reference - Module

1255

OPTIONS

• -format
• -name
• -servertype

-format

 -format Specifies the way the output will be returned. The
 text|list default is text. The format 'text' will output each
 mirror status parameter on a new line in the format
 name=value. When the status for more than one mirror
 is output, a blank line separates one mirror's
 status from another. The format 'list' will list the
 status in a Tcl list. If the <name> parameter is not
 specified, this command will return a list of lists
 with each sub-list holding the status of one mirror.
 The status for a mirror is in the form:
 {name1 value1 name2 value2 ...}.

-name

 -name Name of the mirror. This parameter is not allowed if
 the server type is 'RS' You can specified any mirror,
 including a generated or scripted mirror.

-servertype

 -servertype This parameter is set to either 'RS' for repository
 RS|MAS server or 'MAS' for mirror administration server. The
 default is 'MAS' if the server is acting as both a MAS
 and RS. Otherwise, this parameter defaults to the
 mode the server is configured for. This parameter
 specifies which mirror status the user is requesting.

 "mirror status" with "-servertype RS" may take some
 time to run. For each mirror that is mirroring data
 on the RS, the mirror's MAS must be contacted. For
 faster results, use the "mirror wheremirrored" command
 with the RS as the <vaultURL> argument. Use the
 "-status" option to "mirror wheremirrored" to report
 mirror status, and specify other "mirror
 wheremirrored" options to decrease the number of
 mirrors whose status is reported.

RETURN VALUE

Administration

1256

 Returns the status for a mirror or all the mirrors on a server. If
 only one mirror is being processed, the status is output (not
 returned) when the format is text or returned as a list when the
 format is list. If a mirror does not report its status, the command
 reports that as a failure in the form { succeeded 3 failed 2 }.
 An error is thrown if all mirrors being processed fail. If there are
 no mirrors defined, an error is thrown. Requesting status for a
 mirror server type that the server is not configured for is
 considered an error. If the format is list, the mirrors' status is
 returned in a list of lists as the last element in the return list.
 Example: { succeeded 4 failed 0 {{name ...} {name...} ...}}. The
 status for each mirror consists of a set of name value pairs.

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror rename, mirror reset,
 mirror setoptions, mirrorsetdefaultuser, mirror wheremirrored

EXAMPLES

• Example Showing Mirror Status for All Mirrors on an RS
• Example Showing Mirror Status for All Mirrors on an MAS
• Example Showing Mirror Status for the MAS in TCL List Format

Example Showing Mirror Status for All Mirrors on an RS

 This example shows the status of all mirrors that are mirroring data on
 the RS sync://srv2.ABCo.com:2647.

 stcl> mirror status sync://srv2.ABCo.com:2647 -servertype RS
 name = Releases
 status = good
 lastuptodatetime = 2005-12-29 05:37:14
 mirrordir = /home/tbarbg2/Mirrors/Releases
 vaultURL = sync://srv2.ABCo.com:2647/releases
 selector = Trunk:Latest
 category =
 type = primary
 MASname = faure
 heartbeat = 2005-12-29 05:36:12
 lastupdatetime = 2005-12-29 05:37:14
 inprogress = False
 firstfailuretime = N/A
 numberofretries = 0
 lastnotifytime = N/A

 name = Releases
 status = good

ENOVIA Synchronicity Command Reference - Module

1257

 lastuptodatetime = 2005-12-29 05:48:18
 mirrordir = /home/tbarbg7/Mirrors/Releases
 vaultURL = sync://srv2.ABCo.com:2647/releases
 selector = Trunk:Latest
 category =
 type = secondary
 MASname = giovannelli
 heartbeat = 2005-12-29 05:47:12
 lastupdatetime = 2005-12-29 05:48:18
 inprogress = False
 firstfailuretime = N/A
 numberofretries = 0
 lastnotifytime = N/A

 succeeded 2 failed 0
 stcl>

Example Showing Mirror Status for All Mirrors on an MAS

 This example shows the status of all mirrors on the MAS sync://src:2647
 (2647 is the default cleartext port for DesignSync, so does not need to be
 specified.)

 stcl> mirror status sync://src -servertype MAS
 name = Trunky
 status = good
 lastuptodatetime = 2006-04-11 11:38:23
 mirrordir = /home/syncmgr/mirrors/Trunky
 vaultURL =
sync://src.matrixone.net:2647/Projects/SyncInc/build_tools
 selector = Trunk:Latest
 category = test
 type = normal
 MASname = devserver
 heartbeat = 2006-04-11 11:38:23
 lastupdatetime = 2006-04-11 06:58:27
 inprogress = False
 firstfailuretime = N/A
 numberofretries = 0
 lastnotifytime = N/A

 name = docs
 status = good
 lastuptodatetime = 2006-04-11 11:38:23
 mirrordir =
/home/syncmgr/sync_custom/servers/moniuszko/2647/htdocs/docs
 vaultURL = sync://src.matrixone.net:2647/docs
 selector = Trunk:Latest
 category = devserver
 type = normal
 MASname = devserver
 heartbeat = 2006-04-11 11:38:23
 lastupdatetime = 2006-04-11 07:02:27

Administration

1258

 inprogress = False
 firstfailuretime = N/A
 numberofretries = 0
 lastnotifytime = N/A

 name = testir
 status = good
 lastuptodatetime = 2006-04-11 11:38:23
 mirrordir =/home/syncmgr/sync_custom/servers/moniuszko
 /2647/htdocs/testir
 vaultURL = sync://src.matrixone.net:2647/Projects/testir
 selector = Trunk:Latest
 category = devserver
 type = normal
 MASname = devserver
 heartbeat = 2006-04-11 11:38:23
 lastupdatetime = 2006-04-11 06:54:06
 inprogress = False
 firstfailuretime = N/A
 numberofretries = 0
 lastnotifytime = N/A

 succeeded 3 failed 0
 stcl>

Example Showing Mirror Status for the MAS in TCL List Format

 This example shows the "-format list" output format:

 stcl> mirror status sync://src -servertype MAS -format list
 succeeded 3 failed 0 {{name Trunky status good lastuptodatetime 1144769903
 mirrordir /home/syncmgr/mirrors/Trunky vaultURL
 sync://src.matrixone.net:2647/Projects/SyncInc/build_tools selector
Trunk:Latest
 category test type normal MASname devserver heartbeat 1144769903
lastupdatetime
 1144753107 inprogress 0 firstfailuretime 0 numberofretries 0 lastnotifytime
0}
 {name docs status good lastuptodatetime 1144769903 mirrordir
 /home/syncmgr/sync_custom/servers/moniuszko/2647/htdocs/docs vaultURL
 sync://src.matrixone.net:2647/docs selector Trunk:Latest category devserver
type
 normal MASname devserver heartbeat 1144769903 lastupdatetime 1144753347
 inprogress 0 firstfailuretime 0 numberofretries 0 lastnotifytime 0} {name
testir
 status good lastuptodatetime 1144769903 mirrordir
 /home/syncmgr/sync_custom/servers/moniuszko/2647/htdocs/testir vaultURL
 sync://src.matrixone.net:2647/Projects/testir selector Trunk:Latest category
 devserver type normal MASname devserver heartbeat 1144769903 lastupdatetime
 1144752846 inprogress 0 firstfailuretime 0 numberofretries 0 lastnotifytime
0}}
 stcl>

ENOVIA Synchronicity Command Reference - Module

1259

mirror wheremirrored

mirror wheremirrored Command

NAME

 mirror wheremirrored - Shows where vault data is mirrored

DESCRIPTION

• Pattern Matching
• Upgrading a Mirror with "wheremirrored" Information

 As an end user, use the "mirror wheremirrored" command to identify
 a mirror directory at your site to "setmirror" to. As a mirror
 administrator use the "mirror wheremirrored" command when defining a
 secondary mirror, to identify available primary mirrors. The "mirror
 wheremirrored" command can also be used to report the status of
 mirrors, and is faster than "mirror status" with the "-servertype RS"
 option. (When options to the "mirror wheremirrored" command are used
 to decrease the number of mirrors whose status is reported.) Only
 active (enabled) mirrors are reported by this command.

Pattern Matching

 Some of the options described below accept a pattern. A pattern is
 defined using UNIX glob-style notation (or the <pattern> described in
 the Tcl "string match" command). "*" matches any number of characters,
 "?" matches exactly one character, and [chars] matches any characters in
 chars. Any other characters in the pattern are taken as literals that
 must match the input exactly. Also, \x an be used to match the single
 character x. This avoids the special interpretation of the characters
 *?[]\ in the pattern.

Upgrading a Mirror with "wheremirrored" Information

 The information shown by the "mirror wheremirrored" command is
 for Repository Servers (RSs) that are running version V6R2008-9 of
 the software or higher. RSs should be upgraded to a version that
 supports "wheremirrored" first,
 so that the RS's are able to receive "wheremirrored" information sent
 to them by the Mirror Administration Servers (MASs). If a
 MAS is upgraded to a version with "wheremirrored" first, the
 "wheremirrored" upgrade step must be performed after each associated
 RS is upgraded.

 If the information used by the "mirror wheremirrored" command is not

Administration

1260

 present, the value "needs-upgrade" will be shown for most of the
 mirror properties. (The EXAMPLES section below has an example of
 this.) Similarly, the "wheremirrored" information shown for MASs at
 versions prior to the implementation of "wheremirrored" will have
 "needs-upgrade" for many of their mirror properties.

 Once both the MAS and an RS are at a version with "wheremirrored"
 support, the mirror properties used by the "mirror wheremirrored"
 command are set ("upgraded") for an existing mirror, when one of
 these occur:
 - The MAS is restarted, thereby restarting the mad (mirror
 administration daemon)
 - The resetmirrordaemons command is used to restart the mad
 - ProjectSync's "Reset MAS Daemon" is used
 - A disabled mirror is enabled

 The "upgrade" stores current information on the RS about a mirror,
 which the "wheremirrored" command uses. The "upgrade" occurs only
 once for each RS that has a mirror on the MAS.

 Creating a mirror sets the properties used by the "mirror
 wheremirrored" command on the RS, for the mirror that was
 created. The mirror's "wheremirrored" properties are also updated
 when a mirror definition is edited.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirror wheremirrored <vaultURL> [-category <category>]
 [-format text|list] [-name <name>]
 [-selector <selector_list>]
 [-status good|warning|failure|unknown|none|any]
 [-type normal|primary|secondary|all]

ARGUMENTS

• Vault URL

Vault URL

 <vaultURL> Specifies the URL of the vault directory whose
 contents are being mirrored. This parameter is
 required. Specify the URL as follows:
 sync[s]://<host>[:<port>][/path_to_vault]
 where the <host> and <port> are that of the RS.
 If the <port> is omitted, the default ports are
 used (2647 for cleartext and 2679 for SSL)

 The path_to_vault is the path on the RS that is

ENOVIA Synchronicity Command Reference - Module

1261

 being mirrored. The path_to_vault part of the
 <vaultURL> can be a pattern, defined using the UNIX
 glob-style notation described above. If a
 path_to_vault is not specified, all mirrors mirroring
 data anywhere on the RS will be reported. The options
 below can be used to filter the mirrors that are
 reported.

OPTIONS

• -category
• -format
• -name
• -selector
• -status
• -type

-category

 -category The <category> pattern used to filter the list of
 mirrors returned. Mirrors whose category does not
 match the <category> pattern will be removed from the
 result list. A pattern is defined using the UNIX
 glob-style notation described above. If a literal
 value is specified for the <category>, it must be an
 exact match of the category stored with the mirror
 definition. (Mirrors whose categories are not an exact
 match will be removed from the result list.)

 If a mirror definition has not been upgraded and this
 option is specified, the mirror will not be in the
 result list. That's because the mirror does not yet
 have a category set in the "wheremirrored" properties
 on the RS, for the "mirror wheremirrored" command to
 use as a "-category" filter.

-format

 -format Specifies the way the output will be returned. The
 default is text. The format 'text' will output each
 mirror parameter on a new line in the format
 name=value. When the properties for more than one
 mirror is output, a blank line separates one mirror's
 properties from another. The format 'list' will list
 the properties in a Tcl list. The command will return
 a list of 5 elements with the last element being a
 list of lists, with each sub-list holding the
 properties of one mirror. The properties for a mirror
 will be in the form {name1 value1 name2 value2 ...}.
 The first 4 elements will be "succeeded number-

Administration

1262

 succeeded failed number-failed". See the RETURN VALUE
 section below for more details.

-name

 -name The <name> pattern used to filter the list of mirrors
 returned. Mirror names that do not match the <name>
 pattern will be removed from the result list. A
 pattern is defined using the UNIX glob-style notation
 described above. If a literal value is specified for
 the <name>, it must be an exact match of the name
 stored with the mirror definition. (Mirrors whose
 names are not an exact match will be removed from the
 result list.)

-selector

 -selector The <selector_list> pattern used to filter the list of
 mirrors returned. Mirrors whose selector list does not
 match the <selector_list> pattern will be removed from
 the result list. The <selector_list> may be specified
 as a pattern, defined using the UNIX glob-style
 notation described above. If a literal value is
 specified for the <selector_list>, it must be an exact
 match of the selector stored with the mirror
 definition. (Mirrors whose selectors are not an exact
 match will be removed from the result list.)

 However, branch selectors are normalized. I.e., a
 <selector_list> value of "bugfix:" will match mirrors
 whose selectors are "bugfix:" or "bugfix:Latest".
 Similarly, the special branch value "Trunk" will match
 mirrors whose selectors are "Trunk:Latest" and
 "Trunk:".

-status

 -status The status of the mirror, used to filter the list of
 mirrors returned. The status specified must be either
 "good", "warning", "failure", "unknown", "none" or
 "any". Mirrors that do not match the status value will
 be removed from the result list.

 The default value is "none", which means that status
 will not be reported. This is the most efficient value
 for the status, because the RS does not need to
 contact each MAS for every mirror that is reported.
 Mirror status is not reported, for "-status none".

ENOVIA Synchronicity Command Reference - Module

1263

 Specifying a status value other than "none" will cause
 the RS to contact each MAS for every mirror that is
 reported. The status is the last criterion that is
 matched for a mirror. So, the request for status from
 a MAS is only sent by the RS if all other criteria
 are matched.

 A status value of "any" will cause the RS to contact
 each MAS to get the status of every mirror (that
 matches the other criteria specified), but will not
 filter on the status value. The status value will be
 shown for all mirrors (that match the other criteria
 specified).

-type

 -type The type of the mirror, used to filter the list of
 mirrors returned. The type specified must be either
 "normal", "primary", "secondary" or "all". The default
 value is "all". Mirrors that do not match the type
 value will be removed from the result list.

 If a mirror definition has not been upgraded and a
 type value other than "all" is specified, the mirror
 will not be in the result list. That's because the
 mirror does not yet have a type set in the
 "wheremirrored" properties on the RS, for the
 "mirror wheremirrored command to use as a "-type"
 filter.

RETURN VALUE

 Returns properties and optionally status for each active (enabled)
 mirror meeting the specified criteria. When discussing the return
 value, the status of a mirror is considered to be a property.

 When the default "-format text" is used, the properties are output and
 a succeeded/failed count is returned.

 A specific mirror is only counted as a failure if there was a failure
 reporting the status of the mirror (when specifying a "-status" value
 other than "none"), and the mirror's status could not be retrieved
 from the MAS. If the mirror's status is "failure", then the "mirror
 wheremirrored" command has the mirror's "wheremirrored" return as
 succeeded, since the "mirror wheremirrored" command was successful in
 matching the mirror against the criteria specified with the command.
 Therefore, the "mirror wheremirrored" command counting a mirror as
 "succeeded" is independent of the status of the mirror. If a mirror is
 counted as "failed" due to not being able to get the status of a
 mirror, the "status" property for the mirror will have the value
 "unavailable".

Administration

1264

 When "-format list" is used, the properties and status for each mirror
 meeting the criteria is returned in a list of lists, as the last
 element in the return list. The first four elements of the returned
 list are name/value pairs with the number succeeded and number failed.
 This is similar to the return value of the "mirror status" command.

 For example:
 succeeded 4 failed 1 {{name val MASname val ...} {name val
 MASname val ...}}

 An error will not be thrown if "-status" is used with a value other
 than "none", and no status could be retrieved for any of the matching
 mirrors (all mirrors reported as "failed" to get status).

 An error is thrown if the command itself fails. Such as, if the server
 housing the vault is not enabled as an RS, if there are no active
 (enabled) mirrors registered with the RS, if the RS cannot be
 contacted, if multiple arguments are specified, or if the mirror name,
 category or selector contain illegal characters.

 Mirrors created prior to their MAS being upgraded to a version that
 supports "where mirrored" do not have certain wheremirrored
 properties available at the RS. The value shown for those properties
 is "needs-upgrade". For details, see the "Upgrading a Mirror with
 wheremirrored Information" section above.

 The following properties will be returned for each matching mirror:

 name The name of the mirror, which is only unique within a
 particular MAS.
 MASname The name of the server hosting the mirror, from the
 MAS's General Settings. This could have a value of
 "needs-upgrade".
 MASurl The URL of the MAS where the mirror is defined.
 vaultURL The URL of the vault that is being mirrored.
 selector The selector of the mirror.
 mirrordir The path to the mirror directory on the MAS's LAN.
 This could have a value of "needs-upgrade".
 category The category of the mirror on the MAS. This could
 have a value of "needs-upgrade".
 type The type of mirror: "normal", "primary", "secondary",
 or "needs-upgrade".
 primaryServer The MAS that is hosting the primary mirror. This
 could have a value of "needs-upgrade".

 See the "mirror create" documentation for further details on the above
 properties.

 If the "-status" option is specified with a value other than the
 default "none", then these additional properties are returned:

 status The mirror's status: "good", "warning", "failure",
 "unknown" or "unavailable". A status of "unavailable"
 is returned when the RS could not retrieve the status
 from the MAS. In which case, there may be a problem
 with the MAS, or the MAS may not be running.

ENOVIA Synchronicity Command Reference - Module

1265

 If a failure is encountered when trying to get the
 mirror status, the failure message will be reported
 when using the default "-format text" output. When
 "-format list" is used, the failure message will be
 returned in an additional "error" property.

 error The error message, if a failure is encountered when
 trying to get the mirror status. This property is
 only returned when "-format list" is used. If the
 default "-format text" is used, then this error
 message is output.

SEE ALSO

 mirror create, mirror status

EXAMPLES

• Example Showing All Mirrors for a Server's Projects
• Example Showing Failures in TCL List Format
• Example Showing All Mirrors for a Specific Branch and Version

Example Showing All Mirrors for a Server's Projects

 To find all mirrors that are mirroring a server's projects:

 stcl> mirror wheremirrored sync://qewflx10:30018/Projects/*
 name = Top
 MASname = North Carolina
 MASurl = sync://qewflx11.matrixone.net:30158
 vaultURL = sync://qewflx10:30018/Projects/Top
 selector = Trunk:Latest
 mirrordir = /home/tbarbg8/Mirrors/Secondary/Top/
 category = Test
 type = secondary
 primaryserver = sync://qewflx10:30148

 name = Test
 MASname = San Jose
 MASurl = sync://qewflx12.matrixone.net:30128
 vaultURL = sync://qewflx10:30018/Projects/Test
 selector = Trunk
 mirrordir = /home/tbarbg8/Mirrors/Normal/Test/
 category = Testing
 type = normal
 primaryserver =

 ...

Example Showing Failures in TCL List Format

Administration

1266

 The "-format list" return when a failure is encountered while getting
 the status of a mirror:

 stcl> mirror wheremirrored sync://qewflx10:30018 -name */ALU \
 -status any -format list
 Connect failure. Server 'qewflx10.matrixone.net:30128' may have reset
 the connection.

 succeeded 2 failed 1 {{name Top/ALU MASname {San Jose} MASurl
 sync://qewflx12.matrixone.net:30128 vaultURL
 sync://qewflx10:30018/Projects/ALU selector Trunk:Latest mirrordir
 /home/tbarbg8/Mirrors/Normal/Top/ALU/ category Production type normal
 primaryserver {} status unavailable error {Failure getting status:
 Attempting to contact mirror administration server...
 - som-E-11: Communication Connect Failure.}} {name Top/ALU MASname
 Cambridge MASurl sync://qewflx10.matrixone.net:30148 vaultURL
 sync://qewflx10:30018/Projects/ALU selector Trunk:Latest mirrordir
 /home/tbarbg8/Mirrors/Primary/Top/ALU/ category Development type
 primary primaryserver {} status good} {name Top/ALU MASname
 {North Carolina} MASurl sync://qewflx11.matrixone.net:30158 vaultURL
 sync://qewflx10:30018/Projects/ALU selector Trunk:Latest mirrordir
 /home/tbarbg8/Mirrors/Secondary/Top/ALU/ category Test type secondary
 primaryserver sync://qewflx10:30148 status good}}
 stcl>

 In the above example, note that a pattern match was specified for the
 mirror name. "ALU" by itself would not match, because it is a
 submirror. And submirrors include the parent directory in their name.

Example Showing All Mirrors for a Specific Branch and Version

 To find all mirrors that are mirroring the Latest version on any
 branch, for the specified RS:

 stcl> mirror wheremirrored sync://qewflx10:30018 -selector *:Latest
 name = Top
 MASname = North Carolina
 MASurl = sync://qewflx11.matrixone.net:30158
 vaultURL = sync://qewflx10:30018/Projects/Top
 selector = Trunk:Latest
 mirrordir = /home/tbarbg8/Mirrors/Secondary/Top/
 category = Test
 type = secondary
 primaryserver = sync://qewflx10:30148

 name = Test
 MASname = San Jose
 MASurl = sync://qewflx12.matrixone.net:30128
 vaultURL = sync://qewflx10:30018/Projects/Test
 selector = Trunk
 mirrordir = /home/tbarbg8/Mirrors/Normal/Test/
 category = Testing
 type = normal

ENOVIA Synchronicity Command Reference - Module

1267

 primaryserver =
 ...

mirrorsetdefaultuser

mirrorsetdefaultuser

NAME

 mirrorsetdefaultuser - Sets the default user and password using a
 UNIX shell script

DESCRIPTION

 Use this command to set the default user and password using a UNIX
 shell script.

 This command is subject to access controls on the server. See the
 ENOVIA Synchronicity Access Control Guide for details.

SYNOPSIS

 mirrorsetdefaultuser <serverURL> <defaultUser>

ARGUMENTS

• Server URL
• Default User

Server URL

 serverURL Specifies the URL of the MAS SyncServer. Specify the
 URL as follows:
 sync://<host>[:<port>] where 'sync://' is required,
 <host> is the machine on which the SyncServer is
 installed, and <port> is the SyncServer port number
 (defaults to 2647).
 Example: sync://serv1.abco.com:1024

Default User

 defaultUser The default user to be used when one of the needed
 users is not specified for the 'mirror create' Tcl

Administration

1268

 shell command. If a Tcl shell command can be run
 interactively, see 'mirror setoptions' for an
 alternate way to specify this user.

SEE ALSO

 mirror create, mirror delete, mirror disable, mirror edit,
 mirror enable, mirror get, mirror getoptions, mirror isenabled,
 mirror ismirror, mirror list, mirror rename, mirror reset,
 mirror setoptions, mirror status

EXAMPLES

 This example sets the default user to "barbg", for the MAS
 SyncServer sync://srv2.ABCo.com:2647. The user is prompted for a password.

 % mirrorsetdefaultuser sync://srv2.ABCo.com:2647 barbg
 Enter the password for the default user (barbg): ****

 %

Module Cache Maintenance

Caching Objects

caching

caching Command

NAME

 caching - Caching behavior commands

DESCRIPTION

 These commands provide a way to view and control the caching behavior
 of DesignSync objects; excepting or including intellectual property
 from the default caching.

SYNOPSIS

 caching <caching_command>

ENOVIA Synchronicity Command Reference - Module

1269

 Usage: caching disable|caching enable|caching list|caching status

ARGUMENTS

 Server URL

RETURN VALUE

 Various by command.

SEE ALSO

 caching disable, caching enable, caching list, caching status
,

EXAMPLES

 See specific command.

caching disable

caching disable Command

NAME

 caching disable - Disables object caching for server URLs

DESCRIPTION

 This command disables caching for specific objects specified by
 server URLs.

 When object caching is disabled, the caching property of the object
 URL is set to zero (0). The value of this property may be viewed with
 the caching status command.

 Note: Clients with this feature can disable the local caching
 functionality for objects on an older (pre-3DEXPERIENCE 2016x) server
 version, but older clients cannot use this feature on newer
 clients. Servers accepting commands from older clients can be set up
 to refuse enable/disable caching requests from older clients. For
 more information, see the DesignSync Data Manager Administrator's

Administration

1270

 Guide.

 If the object for which caching is being disabled were already loaded
 into a cache, those caches are not automatically removed, however
 attempts to update the cache, for example with cancel, ci, populate,
 or co, will fail.

 This command is subject to access controls on the server.

SYNOPSIS

 caching disable <SyncURL>[<SyncURL>...]

ARGUMENTS

• URL

URL

 <syncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>]/[<path>] or
 syncs://<host>[:<port>]/[<path>]
 where 'sync://' or 'syncs://' are required, <host> is the
 machine on which the SyncServer is installed, and <port>
 is the SyncServer port number (defaults to 2647/2679).
 And the path is the server path to the desired object.
 For example, all of these are valid syncURLs:
 sync://apollo.spaceco.com:2647
 sync://apollo.spaceco.com:2647/Modules
 sync://apollo.spaceco.com:2647/Modules/Blueprints/FuelCell2
 sync://apollo.spaceco.com:2647/Projects/SpaceShuttle

RETURN VALUE

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.
 If the command failed to run, DesignSync returns an appropriate error
 explaining the failure.

SEE ALSO

 caching enable, caching list, caching status, url getprop, url setprop

ENOVIA Synchronicity Command Reference - Module

1271

EXAMPLES

• Example Showing Disabling cachability for an object

Example Showing Disabling cachability for an object

 This example shows disabling the caching for a specific object and
 verifying that the cachability was disabled using the status command,
 which returns a status of zero (0).

 dss> caching disable sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 {Objects succeeded (1)} {}

 dss> caching status sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 0

caching enable

caching enable Command

NAME

 caching enable - Enables object caching for server URLs

DESCRIPTION

 This command enables caching for specific objects specified by
 server URLs.

 When object caching is enabled, the caching property of the object
 URL is set to one (1). The value of this property may be viewed with
 the caching status command.

 Note: Clients with this feature can enable the local caching
 functionality for objects on an older (pre-3DEXPERIENCE 2016x) server
 version, but older clients cannot use this feature on newer
 clients. Servers accepting commands from older clients can be set up
 to refuse enable/disable caching requests from older clients. For
 more information, see the DesignSync Data Manager Administrator's
 Guide.

 This command is subject to access controls on the server.

SYNOPSIS

 caching enable <SyncURL>[<SyncURL>...]

Administration

1272

ARGUMENTS

• URL

URL

 <syncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>]/[<path>] or
 syncs://<host>[:<port>]/[<path>]
 where 'sync://' or 'syncs://' are required, <host> is the
 machine on which the SyncServer is installed, and <port>
 is the SyncServer port number (defaults to 2647/2679).
 And the path is the server path to the desired object.
 For example, all of these are valid syncURLs:
 sync://apollo.spaceco.com:2647
 sync://apollo.spaceco.com:2647/Modules
 sync://apollo.spaceco.com:2647/Modules/Blueprints/FuelCell2
 sync://apollo.spaceco.com:2647/Projects/SpaceShuttle

RETURN VALUE

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.
 If the command failed to run, DesignSync returns an appropriate error
 explaining the failure.

SEE ALSO

 caching disable, caching list, caching status

EXAMPLES

• Example Showing enabling cachability for an object

Example Showing enabling cachability for an object

 This example shows enabling the caching for a specific object and
 verifying that the cachability is enabled using the status command
 which returns a status of one (1).

 dss> caching enable sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip

ENOVIA Synchronicity Command Reference - Module

1273

 {Objects succeeded (1)} {}

 dss> caching status sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 1

caching status

caching status Command

NAME

 caching status - Displays caching status of server URLs

DESCRIPTION

 Displays the caching status (on or off) of the object URL. URLs can
 be explicitly excluded from the cache to protect access to the file
 and comply with intellectual property protection needs.

SYNOPSIS

 caching status <SyncURL>

ARGUMENTS

• URL

URL

 <syncURL> Specifies the option Sync URL as follows:
 sync://<host>[:<port>]/[<path>] or
 syncs://<host>[:<port>]/[<path>]
 where 'sync://' or 'syncs://' are required, <host> is the
 machine on which the SyncServer is installed, and <port>
 is the SyncServer port number (defaults to 2647/2679).
 And the path is the server path to the desired object.
 For example, all of these are valid syncURLs:
 sync://serv1.abco.com:2647
 sync://serv1.abco.com:2647/Modules
 sync://serv1.abco.com:2647/Modules/Blueprints/FuelCell2
 sync://serv1.abco.com:2647/Projects/SpaceShuttle

RETURN VALUE

Administration

1274

 Returns a value of zero (0) if the object can not be cached, or one
 (1) if the object is able to be cached.

SEE ALSO

 caching disable, caching enable, caching list

EXAMPLES

• Example Showing the cachability status for an object

Example Showing the cachability status for an object

 This example shows enabling/disabling the caching for a specific
 object and verifying that the cachability is enabled using the status
 command, which returns a zero (0) if cachability is disabled or one
 (1) if cachability is enabled.

 dss> caching enable sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 {Objects succeeded (1)} {}

 dss> caching status sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 1
 dss> caching disable sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 {Objects succeeded (1)} {}

 dss> caching status sync://srv1.ABCo.com:2647/Modules/ChipDesign/Chip
 0

mcache Commands

mcache Command

NAME

 mcache - Module cache management commands

DESCRIPTION

 The mcache commands enable an administrator to remove unused module
 instances from module caches. Instances may be candidates for removal
 because they are too old or not currently used. For example, if a set
 of known user workspaces don't contain any mcache links to module
 cache instances.

 "mcache scan" searches a given list of user workspace paths looking

ENOVIA Synchronicity Command Reference - Module

1275

 for module cache links to module instances within a list of provided
 module cache paths. When a link to a module instance in the cache is
 found, a property attached to the module cache instance is updated
 with a timestamp of the current date/time. This property reflects the
 last time a module cache instance was known to be referenced, and is
 referred to as the "touch time".

 "mcache touch" sets the "touch time" of a list of module cache
 instances to the current time. "mcache touch" updates a module cache
 instance timestamp property when it finds a module cache link to the
 instance within one or more provided workspace paths, similar to
 "cachetouchlinks" for file caches.

 You may have a work flow that pre-populates a module cache. It is
 therefore possible for a newly fetched module cache instance to have
 no references from a user workspace when a scrub operation is run on
 the mcache. As a result, new module cache entries would be prematurely
 removed before having the opportunity to be referenced in a user
 workspace. For example, suppose that an administrator has set up a
 weekly touch/scrub cron job. If a new module release is populated to a
 module cache and then scrubbed before any users have populated their
 workspace with the new release, it will be removed from the mcache.
 To prevent the new release from being scrubbed, the administrator can
 "mcache touch" the release.

 Note that this does not consider auto-generated mirrors that populate
 modules into a module cache. To address this case, the populate
 command modifies the "touch time" of a module when its version
 changes. This ensures that modules freshly fetched into a module cache
 via a mirror have an accurate "touch time" that can be used to prevent
 their premature removal by a module cache scrub.

 "mcache show" displays the last time module cache instances were
 "touched".

 "mcache scrub" removes module cache instances in a list of module
 cache paths with a "touch time" older than a given age, similar to
 "cachescrubber" for file caches. Note that a module cache instance
 with parents cannot be removed regardless of the "touch time" unless
 all parents are also removed. This restriction is necessary to prevent
 module hierarchies from being damaged during a scrub.

 The mcache commands are directly callable from a UNIX shell, similar
 to how the "cachescrubber" and "cachetouchlinks" commands are made
 available. In particular, this allows the "mcache scan" and "mcache
 scrub" commands to be run as cron jobs, to support automating module
 cache maintenance.

 Note that there is no recognizable difference between a module cache
 and a workspace. As a result the mcache sub-commands cannot
 distinguish between them and therefore assume that the workspace on
 which they are directed to operate is in fact a module cache.

 You must run "mcache scan" or "mcache touch" prior to running "mcache
 scrub", to ensure that active module cache instances are not
 inadvertently removed by "mcache scrub". This also applies to auto-
 generated mirrors created prior to V6R2012x, which introduced the

Administration

1276

 mcache command set.

 The mcache sub-commands all require one or more module cache paths on
 which to operate. Those that rely on a registry setting for a default
 list of module cache paths use SyncAdmin's General -> Modules "Default
 module cache paths" value.

 The mcache commands are intended for administrators who have write
 access to the module caches. No SUID functionality is provided.

 The mcache commands are only applicable to modern module caches. They
 cannot be used to maintain legacy module caches.

SYNOPSIS

 mcache <mcache_command> [<mcache_command_options>]

 Usage: mcache [scan|scrub|show|touch]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 mcache scan, mcache scrub, mcache show, mcache touch

mcache scan

mcache scan Command

NAME

 mcache scan - Designates module cache instances as current

DESCRIPTION

• Understanding the Output

ENOVIA Synchronicity Command Reference - Module

1277

 This command searches one or more workspace paths looking for any
 module cache links within those paths to entries in any of the
 supplied module cache paths. Note that the search is performed over
 the root database within which the workspace path resides, looking for
 module cache link instances within that root database that exist at or
 below the provided path. The command will not perform a file system
 search for additional root directories or symbolic links. For each
 module cache link instance found the "touch time" of the entry will be
 updated to the current date/time. The "touch time" is the last time a
 module cache instance was known to be referenced.

 Run "mcache scan" or "mcache touch" prior to running "mcache scrub",
 to ensure that active module cache instances are not inadvertently
 removed by "mcache scrub".

 The mcache commands are only applicable to modern module caches. They
 cannot be used to maintain legacy module caches.

 This command supports the command defaults system.

Understanding the Output

 The mcache scan command provides the option to specify the level of
 information the command outputs during processing. The -report option
 allows you to specify what type of information is displayed:

 If you run the mcache scan command with the '-report brief' option,
 the command outputs the following information:
 o Failure messages.
 o Warning messages.
 o Success/failure status.

 By default, or if you run the mcache scan command with the '-report
 normal' option, the command displays all the information contained in
 '-report brief', and the following additional information:
 o A status message indicating that the command is scanning workspaces
 for module cache links.
 o A status message indicating that the command is gathering addresses
 of linked module cache instances.
 o A status message indicating that the command is touching module
 cache instances.

 If you run the mcache scan command with the '-report verbose' option,
 the command displays all the information contained in '-report normal'
 and the following additional information:
 o The full URL of each module cache instance that is a candidate for
 touching.
 o The full URL of each module cache instance that was successfully
 touched.

SYNOPSIS

Administration

1278

 mcache scan [-mcachepaths <path_list>]
 [-report {brief | normal | verbose}]
 [--] <argument>[<argument>...]

ARGUMENTS

• Workspace Path

Workspace Path

 <workspace path> Path of a workspace to search for module cache
 links. If no argument is provided the command
 uses the current directory.

OPTIONS

• -mcachepaths
• -report
• --

-mcachepaths

 -mcachepaths <path_list>
 Identifies one or more module caches for the
 scan operation to update.

 To specify multiple paths, surround the path
 list with double quotation marks ("") and
 separate path names with a space. For
 example: "/dir1/cacheA /dir2/cacheB"

 NOTES:
 - To specify a path that includes spaces:
 o In stcl or stclc, surround the path
 containing the spaces with curly braces.
 For example:
 "/dir1/cache {/dir2/path name}".
 o In dss or dssc, use backslashes (\) to
 "escape" the spaces. For example:
 "/dir1/cache /dir2/path\ with\ spaces"

 The command scans the module caches specified
 with the -mcachepaths option or in the default
 module cache paths registry setting if this
 option is not supplied. (For information about
 the registry setting, see the "Modules Options"
 topic in the ENOVIA Synchronicity DesignSync
 Administrator's Guide.)

ENOVIA Synchronicity Command Reference - Module

1279

-report

 -report brief|normal| Determines what information is returned in the
 verbose output of the command. The information each
 option returns is discussed in detail in the
 "Understanding the Output" section above.

 Valid values are:
 o brief - outputs failures, warnings, and
 success/failure count.

 o normal - the default report mode, outputs
 the command's progress. This is in addition
 to the information output in brief mode.

 o verbose - outputs cache module instances that
 are being touched. This is in addition to the
 information output in normal mode.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when
 arguments to the command begin with a hyphen
 (-).

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.

 Notes:
 - Scripts should only test for non-empty lists to
 determine success or failure. The actual content of a non-empty
 list currently takes the form "Objects succeeded (n)" and
 "Objects failed (n)", where 'n' is the number of objects that
 succeeded or failed. However, these return values are subject to
 change in a future release.
 - If there are no successes and at least one failure an exception
 occurs (the return value is thrown, not returned).

 The mcache scan UNIX command line script will return a 0 for success
 and a 1 for failure.

SEE ALSO

Administration

1280

 command defaults, mcache scrub, mcache show, mcache touch

EXAMPLES

 In this example, "mcache scan" is run in verbose mode from UNIX, on
 two workspaces. The -mcachepaths option is not specified, because a
 default module cache path was set by the syncmgr in SyncAdmin's
 General -> Modules pane.

 % mcache scan -report verbose /home/tbarbg8/sitar /home/tbarbg7/sitar
 Logging to /home/tbarbg8/logs/dss_07202011_083658.log
 V6R2012x

 Scanning workspaces for module cache links ...
 Scanning /home/tbarbg8/sitar ...
 Scanning /home/tbarbg7/sitar ...

 Gathering addresses of linked module cache instances ...
 /home/tbarbg8/mcache/qelwsun14_30148-Alu-1.2/Alu%0: Candidate for touching
...
 /home/tbarbg8/mcache/qelwsun14_30148-Decoder-1.2/Decoder%0: Candidate for
touching ...
 /home/tbarbg8/mcache/qelwsun14_30148-Instr_reg-1.2/Instr_reg%0: Candidate
for touching ...
 /home/tbarbg8/mcache/qelwsun14_30148-Addr_calc-1.2/Addr_calc%0: Candidate
for touching ...
 /home/tbarbg8/mcache/qelwsun14_30148-Stack_pointer-1.2/Stack_pointer%0:
Candidate for touching ...
 /home/tbarbg8/mcache/qelwsun14_30148-Alu-1.2/Alu%0: Candidate for touching
...
 /home/tbarbg8/mcache/qelwsun14_30148-Decoder-1.2/Decoder%0: Candidate for
touching ...
 /home/tbarbg8/mcache/qelwsun14_30148-Instr_reg-1.2/Instr_reg%0: Candidate
for touching ...
 /home/tbarbg8/mcache/qelwsun14_30148-Addr_calc-1.2/Addr_calc%0: Candidate
for touching ...
 /home/tbarbg8/mcache/qelwsun14_30148-Stack_pointer-1.2/Stack_pointer%0:
Candidate for touching ...

 Touching module cache instances ...

 /home/tbarbg8/mcache/qelwsun14_30148-Addr_calc-1.2/Addr_calc%0: Successfully
touched.
 /home/tbarbg8/mcache/qelwsun14_30148-Alu-1.2/Alu%0: Successfully touched.
 /home/tbarbg8/mcache/qelwsun14_30148-Decoder-1.2/Decoder%0: Successfully
touched.
 /home/tbarbg8/mcache/qelwsun14_30148-Instr_reg-1.2/Instr_reg%0: Successfully
touched.
 /home/tbarbg8/mcache/qelwsun14_30148-Stack_pointer-1.2/Stack_pointer%0:
Successfully touched.
 {Objects succeeded (5)} {}
 %

ENOVIA Synchronicity Command Reference - Module

1281

mcache scrub

mcache scrub Command

NAME

 mcache scrub - Removes old module instances from the mcache

DESCRIPTION

• Understanding the Output

 This command removes any module instance from the module cache that
 has a "touch time" older than the supplied age. The "touch time" is
 the last time a module cache instance was known to be referenced.

 Note that any modules with parents will not be removed unless all of
 the parents are being removed.

 Run "mcache scan" or "mcache touch" prior to running "mcache scrub",
 to ensure that active module cache instances are not inadvertently
 removed by "mcache scrub".

 The mcache commands are only applicable to modern module caches. They
 cannot be used to maintain legacy module caches.

 This command supports the command defaults system.

Understanding the Output

 The mcache scrub command provides the option to specify the level of
 information the command outputs during processing. The -report option
 allows you to specify what type of information is displayed:

 If you run the mcache scrub command with the '-report brief' option,
 the command outputs the following information:
 o Failure messages.
 o Warning messages.
 o Success/failure status.

 By default, or if you run the mcache scrub command with the '-report
 normal' option, the command displays all the information contained in
 '-report brief', and the following additional information:
 o A status message indicating the module cache instance being
 removed.

 If you run the mcache scrub command with the '-report verbose' option,
 the command displays all the information contained in '-report normal'
 and the following additional information:
 o Module cache instances that are skipped, because they were touched
 within the specified number of days.

Administration

1282

 o An informational note that all modules within the directory cone of
 each module that is a candidate for removal will also be removed.
 o Status messages for each module cache instance being removed, as
 the module content and module metadata are removed. Messages when
 the module has been deleted are also output.

SYNOPSIS

 mcache scrub [-mcachepaths <path_list>]
 [-report {brief | normal | verbose}] [--] <age>

ARGUMENTS

• Age

Age

 <age> Integer value representing an age in days.
 Module instances with a "touch time" older than
 <age> and having no parents will be removed.

OPTIONS

• -mcachpaths
• -report
• --

-mcachpaths

 -mcachepaths <path_list>
 Identifies one or more module caches for the
 scrub operation to process.

 To specify multiple paths, surround the path
 list with double quotation marks ("") and
 separate path names with a space. For
 example: "/dir1/cacheA /dir2/cacheB"

 NOTES:
 - To specify a path that includes spaces:
 o In stcl or stclc, surround the path
 containing the spaces with curly braces.
 For example:
 "/dir1/cache {/dir2/path name}".
 o In dss or dssc, use backslashes (\) to
 "escape" the spaces. For example:
 "/dir1/cache /dir2/path\ with\ spaces"

ENOVIA Synchronicity Command Reference - Module

1283

 The command processes the module caches
 specified with the -mcachepaths option or in
 the default module cache paths registry setting
 if this option is not supplied. (For
 information about the registry setting, see
 the "Modules Options" topic in the ENOVIA
 Synchronicity DesignSync Administrator's Guide.)

-report

 -report brief|normal| Determines what information is returned in the
 verbose output of the command. The information each
 option returns is discussed in detail in the
 "Understanding the Output" section above.

 Valid values are:
 o brief - outputs failures, warnings, and
 success/failure count.

 o normal - the default report mode, outputs a
 status message for each module cache instance
 being removed. This is in addition to the
 information output in brief mode.

 o verbose - outputs status messages are for
 module cache instances that are removed.
 Also lists cache module instances that are
 skipped. This is in addition to the
 information output in normal mode.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when
 arguments to the command begin with a hyphen
 (-).

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.

 Notes:
 - Scripts should only test for non-empty lists to
 determine success or failure. The actual content of a non-empty

Administration

1284

 list currently takes the form "Objects succeeded (n)" and
 "Objects failed (n)", where 'n' is the number of objects that
 succeeded or failed. However, these return values are subject to
 change in a future release.
 - If there are no successes and at least one failure an exception
 occurs (the return value is thrown, not returned).

 The mcache scrub UNIX command line script will return a 0 for success
 and a 1 for failure.

SEE ALSO

 command defaults, mcache scan, mcache show, mcache touch

EXAMPLES

 In this example, "mcache scrub" is run in verbose mode, to remove all
 module cache instances that haven't been touched in 120 days. The
 -mcachepaths option is not specified, because a default module cache
 path was set by the syncmgr in SyncAdmin's General -> Modules pane.

 stcl> mcache scrub -report verbose 120

 Reviewing modules in /home/tbarbg8/mcache ...
 Alu%0: Skipping; Touched within specified time.
 Decoder%0: Skipping; Touched within specified time.
 Instr_reg%0: Skipping; Touched within specified time.
 Stack_pointer%0: Skipping; Touched within specified time.

 Removing base directories for the following candidate modules:
 /home/tbarbg8/mcache/qelwsun14_30148-Addr_calc-1.2/Addr_calc%0

 Note that all modules within the directory cone of each candidate will also
be removed.

 /home/tbarbg8/mcache/qelwsun14_30148-Addr_calc-1.2/Addr_calc%0: Removing
workspace module content ...
 /home/tbarbg8/mcache/qelwsun14_30148-Addr_calc-1.2/Addr_calc%0: Removing
workspace module metadata ...
 /home/tbarbg8/mcache/qelwsun14_30148-Addr_calc-1.2/Addr_calc%0: Workspace
module removed.
 qelwsun14_30148-Addr_calc-1.2: Success deleted
 {Objects succeeded (1)} {}
 stcl>

mcache show

mcache show Command

NAME

ENOVIA Synchronicity Command Reference - Module

1285

 mcache show - Shows the "touch time" of module cache instances

DESCRIPTION

• Understanding the Output

 This command displays the last "touch time" of module instances in one
 or more module caches. The "touch time" is the last time a module
 cache instance was known to be referenced.

 The mcache commands are only applicable to modern module caches. They
 cannot be used to maintain legacy module caches.

 This command supports the command defaults system.

Understanding the Output

 By default, or if you run the mcache show command with the "-format
 text" option, the command displays a table of information for the
 module cache instances found in the module cache paths.

 The table includes the following information as columns:

 If the mcache show command is run with the "-report brief" option:

 o Instance The module instance name.

 o Available Indicates whether the module is available for use
 by the populate command. Possible values are "yes"
 and "no", where a value of "yes" indicates the
 module is available for use. A module might be
 unavailable if, for example, it is currently being
 fetched to the module cache.

 o Last Touched The time the module was last touched.

 If the mcache show command is run with the default "-report normal"
 option, then in addition to the columns listed above, these columns
 are also shown:

 o Name The module name.

 o Version The version number of the module.

 o Href Mode Indicates which href mode was used to fetch the
 module. Possible values are:
 - dynamic - Resolves hrefs to determine what
 version of the submodules were populated.
 - static - Resolves hrefs to the specific
 submodules referenced at the time the href was

Administration

1286

 created.
 - normal - Resolves hrefs according to how the
 hrefs were created. If a static href is
 reached, the persistent mode is set to "static"
 for that submodule and any submodules below it;
 otherwise, the persistent mode remains
 "normal".

 Note: The populate command will not create an
 mcache link to an mcached module version that
 was not fetched statically.

 o Hierarchical Indicates whether the module was recursively
 populated into the module mcache. Possible values
 are "yes" and "no", where "yes" indicates that the
 module was recursively populated.

 If the mcache show command is run with the "-report verbose" option,
 then in addition to the columns shown with "-report normal", these
 columns are also shown:

 o Selector The selector used to fetch the module.

 o Base Directory The absolute path of the module version base
 directory.

 o Url The full URL of the module.

 If you run the mcache show command with "-format list", it returns a
 Tcl list of property names and values, for each module reported.

 Each module in the list has the following properties:

 If the mcache show command is run with the "-report brief" option:

 o modinstname The module instance name.

 o available Indicates whether the module is available for use
 by the populate command. Possible values are "1"
 and "0", where a value of "1" indicates the
 module is available for use. A module might be
 unavailable if, for example, it is currently being
 fetched to the module cache.

 o touched The time the module was last touched. This is an
 integer value. Use "clock format" to convert the
 value to a recognizable date/time.

 If the mcache show command is run with the default "-report normal"
 option, then in addition to the columns listed above, these columns
 are also shown:

 o name The module name.

 o version The version number of the module.

 o hrefmode Indicates which href mode was used to fetch the

ENOVIA Synchronicity Command Reference - Module

1287

 module. Possible values are:
 - dynamic - Resolves hrefs to determine what
 version of the submodules were populated.
 - static - Resolves hrefs to the specific
 submodules referenced at the time the href was
 created.
 - normal - Resolves hrefs according to how the
 hrefs were created. If a static href is
 reached, the persistent mode is set to "static"
 for that submodule and any submodules below it;
 otherwise, the persistent mode remains
 "normal".

 Note: The populate command will not create an
 mcache link to an mcached module version that
 was not fetched statically.

 o hierarchical Indicates whether the module was recursively
 populated into the module mcache. Possible values
 are "1" and "0", where "1" indicates that the
 module was recursively populated.

 If the mcache show command is run with the "-report verbose" option,
 then in addition to the columns shown with "-report normal", these
 columns are also shown:

 o selector The selector used to fetch the module.

 o basedir The absolute path of the module version base
 directory.

 o url The full URL of the module.

SYNOPSIS

 mcache show [-format {list | text}] [-mcachepaths <path_list>]
 [-report { brief | normal | verbose}]

OPTIONS

• -format
• -mcachepaths
• -report

-format

 -format list|text Determines the format of the output.
 Valid values are:
 o text Display a text table with headers and
 columns. (Default) Objects are shown in

Administration

1288

 alphabetical order.

 o list Tcl list structure, designed for further
 processing, and for easy conversion to a
 Tcl array structure. This means that it
 is a list structure in name-value pair
 format. The top level structure is:
 {
 property1 <value>
 property2 <value>
 ...
 }

 A list is output for each module reported.

-mcachepaths

 -mcachepaths <path_list>
 Identifies one or more module caches for the
 mcache show operation to process.

 To specify multiple paths, surround the path
 list with double quotation marks ("") and
 separate path names with a space. For
 example: "/dir1/cacheA /dir2/cacheB"

 NOTES:
 - To specify a path that includes spaces:
 o In stcl or stclc, surround the path
 containing the spaces with curly braces.
 For example:
 "/dir1/cache {/dir2/path name}".
 o In dss or dssc, use backslashes (\) to
 "escape" the spaces. For example:
 "/dir1/cache /dir2/path\ with\ spaces"

 The command processes the module caches
 specified with the -mcachepaths option or in
 the default module cache paths registry
 setting if this option is not supplied. (For
 information about the registry setting, see
 the "Modules Options" topic in the ENOVIA
 Synchronicity DesignSync Administrator's Guide.)

-report

 -report brief|normal| Determines what information is returned in the
 verbose output of the command. The information each
 option returns is discussed in detail in the
 "Understanding the Output" section above.

ENOVIA Synchronicity Command Reference - Module

1289

 Valid values are:
 o brief - outputs the module instance, whether
 it is available to link to, and the last
 "touched time".

 o normal - the default report mode, outputs
 the module name, version, href mode, and
 whether the module was fetched recursively.
 This is in addition to the information output
 in brief mode.

 o verbose - outputs the module selector, base
 directory, and full URL. This is in addition
 to the information output in normal mode.

RETURN VALUE

 An empty string.

SEE ALSO

 command defaults, mcache scan, mcache scrub, mcache touch

EXAMPLES

 In this example, "mcache show" is run in the default "-report normal"
 mode. The -mcachepaths option is not specified, because a
 default module cache path was set by the syncmgr in SyncAdmin's
 General -> Modules pane.

 stcl> mcache show

 Name Instance Version Href Mode Available Hierarchical Last
Touched
 --

 Alu Alu%0 1.2 static yes yes 03/13/2011
03:06
 Decoder Decoder%0 1.2 static yes yes 07/20/2011
13:38

 stcl>

mcache touch

mcache touch Command

NAME

Administration

1290

 mcache touch - Updates the "touch time" of a module instance

DESCRIPTION

• Understanding the Output

 This command updates the "touch time" of a module instance to the
 current date/time. The "touch time" is the last time a module cache
 instance was known to be referenced.

 Run "mcache touch" or "mcache scan" prior to running "mcache scrub",
 to ensure that active module cache instances are not inadvertently
 removed by "mcache scrub".

 The mcache commands are only applicable to modern module caches. They
 cannot be used to maintain legacy module caches.

 This command supports the command defaults system.

Understanding the Output

 The mcache touch command provides the option to specify the level of
 information the command outputs during processing. The -report option
 allows you to specify what type of information is displayed:

 If you run the mcache touch command with the '-report brief' option,
 the command outputs the following information:
 o Failure messages.
 o Warning messages.
 o Success/failure status.

 By default, or if you run the mcache touch command with the '-report
 normal' option, the command displays all the information contained in
 '-report brief', and the following additional information:
 o A progress message that module cache instances are being touched.

 If you run the mcache touch command with the '-report verbose' option,
 the command displays all the information contained in '-report normal'
 and the following additional information:
 o A status message with the full URL of each module cache instance
 that is being touched.

SYNOPSIS

 mcache touch [-report {brief | normal | verbose}] [--]
 <argument>[<argument>...]

ENOVIA Synchronicity Command Reference - Module

1291

ARGUMENTS

• Workspace Module

Workspace Module

 <workspace module> The module whose "touch time" will be updated.
 This can be a workspace module name (if it is
 unique in the workspace), a full workspace URL,
 or a module instance.

OPTIONS

• -report
• --

-report

 -report brief|normal| Determines what information is returned in the
 verbose output of the command. The information each
 option returns is discussed in detail in the
 "Understanding the Output" section above.

 Valid values are:
 o brief - outputs failures, warnings, and
 success/failure count.

 o normal - the default report mode, outputs
 the command's progress. This is in addition
 to the information output in brief mode.

 o verbose - outputs cache module instances that
 are being touched. This is in addition to the
 information output in normal mode.

--

 -- Indicates that the command should stop looking
 for command options. Use this option when
 arguments to the command begin with a hyphen
 (-).

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

Administration

1292

 In stcl/stclc mode, two lists are returned, where the first list
 is non-empty if at least one object was successfully processed,
 and the second list is non-empty if at least one object failed.

 Notes:
 - Scripts should only test for non-empty lists to
 determine success or failure. The actual content of a non-empty
 list currently takes the form "Objects succeeded (n)" and
 "Objects failed (n)", where 'n' is the number of objects that
 succeeded or failed. However, these return values are subject to
 change in a future release.
 - If there are no successes and at least one failure an exception
 occurs (the return value is thrown, not returned).

 The mcache touch UNIX command line script will return a 0 for success
 and a 1 for failure.

SEE ALSO

 command defaults, mcache scan, mcache scrub, mcache show

EXAMPLES

 In this example, "mcache touch" is run in verbose mode on a module
 cache instance. The full workspace URL of the module instance is
 specified.

 stcl> mcache touch -report verbose \
 stcl> /home/tbarbg8/mcache/qelwsun14_30148-Alu-1.2/Alu%0

 Touching module cache instances ...

 /home/tbarbg8/mcache/qelwsun14_30148-Alu-1.2/Alu%0: Successfully touched.
 {Objects succeeded (1)} {}
 stcl>

Events and Triggers

Events

event

event Commands

NAME

 event - Event commands

ENOVIA Synchronicity Command Reference - Module

1293

DESCRIPTION

 These commands are used to manipulate custom events, which may be
 used to fire triggers.

SYNOPSIS

 event <event_command> [<event_command_options>]

 Usage: event [create]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 stcl, event create, event_prop, trigger, trigger fire, trigger list

event create

event create Command

NAME

 event create - Creates a custom event

DESCRIPTION

 Creates an event which may be used in conjunction with the 'trigger
 list' and 'trigger fire' commands to match and execute triggers.

 Events are generally created by the system, and the matching triggers
 automatically executed. This command is useful primarily to exercise
 triggers for testing and to extend the system by creating new kinds
 of events.

SYNOPSIS

Administration

1294

 event create <name_value_list>

OPTIONS

• Name/Valueist

Name/Valueist

 name_value_list
 A Tcl list of the form {name1 value1 name2 value2 ...} giving
 the names and values of all properties that define the event.
 Use the 'event_prop list' command to see the list of valid
 property names. 'event_prop create' can be used to create new
 event properties.

RETURN VALUE

 A new event object on success, an error if an invalid property was
 named.

EXAMPLES

 Suppose you want to test your triggers for the 'tag' command when the
 tag is 'GOLDEN'.

 set event [event create {command tag tag GOLDEN}]
 foreach trigger [trigger list -event $event] {
 trigger fire $trigger $event
 }

 Here's an example of creating your own event type. Suppose you want
 to automate some tasks whenever a piece of your design is ready for
 test. Further suppose that the way you know that something is ready
 for test is the application of the tag 'READY_FOR_TEST'.

 You could create all of your triggers like this:

 trigger create task1 \
 -require type preObject \
 -require command tag \
 -require tag READY_FOR_TEST \
 -exec "task1 $objURL"

 ... repeat for each task ...

 Unfortunately, if you change the way you indicate readiness for test,
 you will need to re-register all of your tasks. As an alternative,
 you could register a single trigger that generates 'readyForTest'

ENOVIA Synchronicity Command Reference - Module

1295

 events, like so:

 trigger create FireTestTriggers \
 -require type preObject \
 -require command tag \
 -require tag READY_FOR_TEST \
 -tcl_script {
 set event [event create {type readyForTest objUrl $objURL}]
 foreach t [trigger list -event $event] {
 trigger fire $t $event
 }
 }

 Now you can register each task for the 'readyForTest' event:

 trigger create task1 -require type readyForTest -exec "task1 $objURL"
 trigger create task2 -require type readyForTest -exec "task1 $objURL"
 trigger create task3 -require type readyForTest -exec "task1 $objURL"
 ... etc. ...

 When you change how you know you're ready for test, you simply update
 the 'FireTestTriggers' trigger, and the individual task triggers can
 remain unchanged.

SEE ALSO

 stcl, event_prop, trigger, trigger fire, trigger list

event_prop

event_prop Commands

NAME

 event_prop - Event_prop commands

DESCRIPTION

 These commands are used to create, delete, and get information about
 the properties that can be associated with events.

SYNOPSIS

 event_prop <event_prop_command> [<event_prop_command_options>]

 Usage: event_prop [create|delete|get|list]

OPTIONS

Administration

1296

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 stcl, event create, event_prop create, event_prop delete,
 event_prop get, event_prop list, trigger

event_prop create

event_prop create Command

NAME

 event_prop create - Defines a new event property

DESCRIPTION

 Defines a new property which may then be used to create events, which
 may be used in turn to fire triggers. See 'event create'.

SYNOPSIS

 event_prop create <name> [-prompt <prompt_string>] [-desc <description>]
 [-type <value>]

OPTIONS

• -desc
• -name
• -prompt
• -type

-desc

 -desc <description>
 A more verbose description of the property used to provide more
 extensive information than the prompt string. If not provided,

ENOVIA Synchronicity Command Reference - Module

1297

 the prompt string is used.

-name

 name
 The name of the new event property. Must be unique among set of
 known event properties.

-prompt

 -prompt <prompt_string>
 A concise description of the property used to prompt the user for
 values. If no prompt is provided, the property name is used
 instead.

-type

 -type <value>
 Defines how the value of this property is passed between DesignSync
 and a trigger.
 Available -type values are:
 in - the value of property is passed from DesignSync to the trigger
 (this is the default)
 out - the value is passed out of trigger code to DesignSync
 inOut - the value is passed in and out.

SEE ALSO

 stcl, event create, event_prop delete,
 event_prop get, event_prop list, trigger

event_prop delete

event_prop delete Command

NAME

 event_prop delete - Deletes an event property definition

DESCRIPTION

 Delete a previously-defined event property definition. Note that

Administration

1298

 system-defined event property definitions may not be deleted.

SYNOPSIS

 event_prop delete <name>

OPTIONS

• name

name

 name
 The name of the event property to be deleted.

SEE ALSO

 stcl, event create, event_prop create, event_prop get,
 event_prop list, trigger

event_prop get

event_prop get Command

NAME

 event_prop get - Gets information about an event property definition

DESCRIPTION

 Gets the name, prompt, and description of an event property.

SYNOPSIS

 event_prop get <name>

OPTIONS

• name

name

ENOVIA Synchronicity Command Reference - Module

1299

 name
 The name of the event property definition being queried.

RETURN VALUE

 A list of names and values suitable for array construction via the Tcl
 array set command. The following attributes are defined:

 name
 The name of the event property.

 prompt
 The prompt string for the event property.

 desc
 The verbose description of the event property.

SEE ALSO

 stcl, event create, event_prop create, event_prop delete,
 event_prop list, trigger

EXAMPLES

 To list the attributes of all event properties:

 foreach prop [event_prop list] {
 puts "$prop:"
 array set attrArray [event_prop get $prop]
 foreach attr [array names attrArray] {
 puts "\t$attr = $attrArray($attr)"
 }
 }

event_prop list

event_prop list Command

NAME

 event_prop list - Lists known event property definitions

DESCRIPTION

Administration

1300

 Lists all event property definitions whose name match the given
 expression(s). If no arguments are given, all event properties
 are listed.

SYNOPSIS

 event_prop list [<expr> ...]

OPTIONS

• expr_option

 expr
 This argument is a regular expression used to limit the list of
 event properties returned. Multiple expressions may be
 given. If no expressions are given, all known event properties
 are returned.

RETURN VALUE

 A list of the names of the matching event property definitions.

SEE ALSO

 stcl, event create, event_prop create, event_prop delete,
 event_prop get, trigger

EXAMPLES

 To list all event properties:

 event_prop list

 To list all properties with 'obj' in their names:

 event_prop list *obj*

 To list all properties with 'obj' or 'URL' in their names:

 event_prop list *obj* *URL*

Triggers

ENOVIA Synchronicity Command Reference - Module

1301

trigger

trigger Commands

NAME

 trigger - Trigger commands

DESCRIPTION

 These commands are used to create, delete, enable, disable, fire, and
 get information about triggers.

SYNOPSIS

 trigger <trigger_command> [<trigger_command_options>]

 Usage: trigger [block|create|delete|disable|enable|fire|get|
 isEnabled|list|status|unblock]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 stcl, event, event_prop, trigger create, trigger delete,
 trigger disable, trigger enable, trigger fire, trigger get,
 trigger isEnabled, trigger list, trigger status

EXAMPLES

 See specific "trigger" commands.

trigger block

trigger block Command

Administration

1302

NAME

 trigger block - Prevents recursive trigger script activation

DESCRIPTION

 This command is used within a trigger script to indicate that the
 script should not be invoked recursively when actions taken by the
 script cause the invocation of triggers.

 Triggers are automatically unblocked after the body of code has
 been evaluated, regardless of how that code body terminates (e.g.,
 error, return, or normal). You therefore do not need to use the
 'trigger unblock' command with 'trigger block'.

 Scripts that use the 'trigger block' and 'trigger unblock'
 construct may cause instability. Any code written in the following
 format:

 trigger block
 <perform some action>
 trigger unblock

 should be rewritten as:

 trigger block {
 <perform some action>
 }

SYNOPSIS

 trigger block

OPTIONS

 none

RETURN VALUE

 **

SEE ALSO

 trigger unblock, server-side, rstcl

ENOVIA Synchronicity Command Reference - Module

1303

EXAMPLES

 Suppose that foo.tcl is a trigger script that is executed by
 the server whenever anyone edits a note. Within foo.tcl, a
 call is made to the 'note setprops' command, which changes a
 property of a note.

 Normally this scenario would cause the script foo.tcl to be
 immediately executed again because a note has changed.

 To prevent this recursive script activation, use the trigger block
 command to tell the server not to invoke the script recursively.

 Following is an example of how the trigger block command might be used
 within a script (it is not a complete/functional script):
 trigger block
 note setprops $SYNC_NoteURL State closed

trigger create

trigger create Command

NAME

 trigger create - Creates or replaces a trigger

DESCRIPTION

 Creates a new trigger, or replaces an existing one.

 A trigger is a named action, generally a script or program, that is
 run by the system when a specified event occurs in the system (like a
 file is checked in, tagged, etc.).

 Each event has several named properties associated with it that
 describe what the system is doing. See the help for 'event'
 for more information.

 By specifying the values of event properties that are required for a
 trigger to execute (-require), or will prevent a trigger from firing
 (-exclude), a trigger can be configured to execute only when desired.

SYNOPSIS

 trigger create <name> [-exec <command_and_arguments> |
 -tcl_script <script_filename> | -tcl_file <file_name> |
 -tcl_store <file_name>] [-replace]
 [-require|exclude <name> <valueExprList> ...]

Administration

1304

OPTIONS

• -exclude
• -exec
• Name
• -replace
• -require
• -tcl_file
• -tcl_script
• -tcl_store

-exclude

 -exclude <name> Specifies that the trigger may only fire if the
 <valueExprList> value of the named event property does not match one
 of the regular expressions in the valueExprList. If
 the named property does not exist on the event, the
 event may still fire the trigger if all other
 criteria are satisfied.

-exec

 -exec <command The given command will be executed in a subprocess
 <and_arguments> and passed the provided arguments.

 Notes:

 o Before the command is executed, any variables in
 the command line will be replaced by the named
 event property value.

 o To include event property names as arguments: If
 you are using the dss or dssc command shell,
 precede the event property name with a dollar sign
 (using Tcl variable syntax). For example: dss>
 -exec "xterm -e vi $objURL" If you are using the
 stcl or stclc command shell, precede the event
 property name with a backslash and a dollar sign
 or put the entire argument inside curly
 braces. For example:
 stcl> -exec "xterm -e vi \$objURL"
 stcl> -exec {xterm -e vi $objURL}

Name

 <name>
 A unique name for the trigger.

ENOVIA Synchronicity Command Reference - Module

1305

-replace

 -replace Replace the existing trigger of the same name, if
 any. If this option is not given, and the named
 trigger already exists, an error is generated.

-require

 -require <name> Specifies that the trigger may only fire if the value
 <valueExprList> of the named event property matches one of the
 regular expressions in the valueExprList. If the
 named property does not exist on the event, the
 trigger will not fire.

 Note: You cannot specify populate as a value for the
 command event property. Use co instead.

-tcl_file

 -tcl_file The named Tcl file is loaded and executed when the
 <file_name> trigger is fired. This enables users to edit the
 trigger script and have their changes take effect
 immediately without calling trigger create again.
 DesignSync looks in the current directory for the
 specified file; if the file is in another directory,
 use a full pathname for the <file_name>.

-tcl_script

 -tcl_script The given script will be evaluated by the system
 <script> directly.

-tcl_store

 -tcl_store The named Tcl file is loaded immediately and the
 <file_name> contents stored for later execution when the trigger
 is fired. This option is essentially the same as the
 -tcl_script option, except that the script is read
 from the file instead of the command arguments. Note
 that trigger create must be called again after any
 changes to the trigger script, otherwise the stored
 version of the script will not be updated.

Administration

1306

RETURN VALUE

 If the command is successful, DesignSync returns an empty string
 (""). If the command cannot run, DesignSync throws an error message
 explaining the failure.

SEE ALSO

 stcl, event, event_prop, trigger create, trigger delete,
 trigger disable, trigger enable, trigger fire, trigger get,
 trigger isEnabled, trigger list, trigger status

EXAMPLES

• Example of Registering a Tcl Script with a Trigger
• Examples of Running a Program on the Selected Files with a Trigger
• Example of Registering a Tcl File with a Trigger
• Example of Using Loading and Storing a TCL File with a Trigger

Example of Registering a Tcl Script with a Trigger

 Use -tcl_script to register a Tcl script that will keep a running
 log file of all .v and .vlog files that have been checked in.

 stcl> trigger create LogCheckins \
 -require objPath "*.v *.vlog" \
 -require command "ci" \
 -require type postObject \
 -tcl_script {
 set fd [open [glob ~/checkin.log] a]
 puts $fd "$objURL"
 close $fd
 }

Examples of Running a Program on the Selected Files with a Trigger

 Use -exec to run the program 'lint' on all .c files before checking
 them in, except for when user 'zeus' is the one doing the checkin:
 In stcl:
 stcl> trigger create LintCheck \
 -require objPath *.c \
 -require type preObject \
 -require command ci \
 -exclude user zeus \
 -exec "lint \$objPath"

 Note: There are alternative formats for how you can specify command
 using the -exec option. In stcl you can also use:

ENOVIA Synchronicity Command Reference - Module

1307

 -exec {lint $objPath}

 In dss mode, you can use:
 -exec "lint $objPath"

Example of Registering a Tcl File with a Trigger

 Use -tcl_file to register a Tcl file to be executed after every 'tag'
 command that uses the tag 'GOLDEN':

 stcl> trigger create GoldenTag \
 -require command tag \
 -require tag GOLDEN \
 -require type postCommand \
 -tcl_file goldenTag.tcl

 Note: Unlike when tcl_store is used, the tcl file is not processed
 until the trigger runs.

Example of Using Loading and Storing a TCL File with a Trigger

 Use -tcl_store to immediately read and store the Tcl contained within
 a file for later execution before each checkin command:

 stcl> trigger create beforeCheckin \
 -require command ci \
 -require type preCommand \
 -tcl_store preCheckin.tcl

trigger delete

trigger delete Command

NAME

 trigger delete - Deletes an existing trigger

DESCRIPTION

 Deletes an existing trigger.

SYNOPSIS

 trigger delete <name>

Administration

1308

OPTIONS

• Name

Name

 name The name of the trigger to be deleted.

RETURN VALUE

 1 on success, error if the trigger does not exist.

SEE ALSO

 stcl, event, event_prop, trigger create, trigger delete,
 trigger disable, trigger enable, trigger fire, trigger get,
 trigger isEnabled, trigger list, trigger status

EXAMPLES

 Create a trigger named 'foo', then delete it.

 trigger create foo -tcl_script { puts "foo" }
 trigger delete foo

trigger disable

trigger disable Command

NAME

 trigger disable - Prevents a trigger from firing

DESCRIPTION

 The named trigger is marked as disabled, and will not be fired by the
 system. It can be subsequently re-enabled by using the 'trigger
 enable' command.

 Use 'trigger status' or 'trigger isEnabled' to determine whether or
 not a trigger is currently disabled.

SYNOPSIS

ENOVIA Synchronicity Command Reference - Module

1309

 trigger disable <name>

OPTIONS

• Name

Name

 name The name of the trigger to be disabled.

RETURN VALUE

 1 on success, error if the trigger does not exist.

SEE ALSO

 stcl, event, event_prop, trigger create, trigger delete,
 trigger disable, trigger enable, trigger fire, trigger get,
 trigger isEnabled, trigger list, trigger status

EXAMPLES

 Create a trigger named 'foo', then disable it.

 trigger create foo -tcl_script { puts "foo" }
 trigger disable foo

 The stcl client returns:

trigger enable

trigger enable Command

NAME

 trigger enable - Makes a disabled trigger active again

DESCRIPTION

 The named trigger is marked as enabled, and will be fired by the
 system if an event matching its firing criteria is created.

Administration

1310

 Use 'trigger status' or 'trigger isEnabled' to determine whether or
 not a trigger is currently enabled.

SYNOPSIS

 trigger enable <name>

OPTIONS

• Name

Name

 name The name of the trigger to be enabled.

RETURN VALUE

 1 on success, error if the trigger does not exist.

SEE ALSO

 stcl, event, event_prop, trigger create, trigger delete,
 trigger disable, trigger enable, trigger fire, trigger get,
 trigger isEnabled, trigger list, trigger status

EXAMPLES

 Create a trigger named 'foo', and disable it.

 trigger create foo -tcl_script { puts "foo" }
 trigger disable foo

 The stcl client returns:
 1

 Re-enable the trigger named foo.

 trigger enable foo

 The stcl client returns:
 # 1

trigger fire

ENOVIA Synchronicity Command Reference - Module

1311

trigger fire Command

NAME

 trigger fire - Executes a trigger

DESCRIPTION

 Execute the named trigger. Note that even disabled triggers may be
 executed by the 'trigger fire' command; this is useful to test
 triggers before enabling them.

SYNOPSIS

 trigger fire <name> <event>

OPTIONS

• Event
• Name

Event

 event
 An event returned by the 'event create' command.

Name

 name The name of the trigger to be executed.

RETURN VALUE

 1 if the trigger succeeded, 0 if it returned an error.

SEE ALSO

 stcl, event, event_prop, trigger create, trigger delete,
 trigger disable, trigger enable, trigger fire, trigger get,
 trigger isEnabled, trigger list, trigger status

Administration

1312

EXAMPLES

 Create a test trigger named 'echo' intended to output the names of all
 non-filter events as they execute, then test it by creating a simple
 event and calling trigger fire.

 trigger create echo \
 -exclude type *Filter \
 -tcl_script {
 puts "$trigger"
 }

 # create an event with the single property 'type' set to
 # 'testEvent'
 set event [event create {type testEvent}]

 # fire the trigger
 trigger fire echo $event

trigger get

trigger get Command

NAME

 trigger get - Gets information about a trigger

DESCRIPTION

 Returns a Tcl list of the names and values of various attributes of
 the named trigger. This command is primarily useful for use in Tcl
 scripts that manage triggers. For a user-friendly display of trigger
 information, use the 'trigger status' command.

SYNOPSIS

 trigger get <name>

OPTIONS

• Name

Name

 name The name of the trigger to be queried.

ENOVIA Synchronicity Command Reference - Module

1313

RETURN VALUE

 A Tcl list of name/value pairs of the form:
 {name1 value1 name2 value2 ...}
 This list can be converted into an array using 'array set'.
 The following attributes will be returned, as appropriate:

 name - name of the trigger
 type - exec, tcl_script, tcl_file, or tcl_store
 fileName - name of file for tcl_file or tcl_store triggers
 commandLine - command line for exec triggers
 tclScript - the script for tcl_script or tcl_store triggers
 reqProps - required properties list
 exclProps - exclude properties list

SEE ALSO

 stcl, event, event_prop, trigger create, trigger delete,
 trigger disable, trigger enable, trigger fire, trigger get,
 trigger isEnabled, trigger list, trigger status

EXAMPLES

 Print the name and type of all known triggers:

 foreach trigger [trigger list -all] {
 array set props [trigger get $trigger]
 puts "Trigger $props(name)"
 puts " type = $props(type)"
 }

trigger isEnabled

trigger isEnabled Command

NAME

 trigger isEnabled - Determines whether or not a trigger is enabled

DESCRIPTION

 Queries the status of the named trigger, returning a 1 if the trigger
 is enabled.

SYNOPSIS

Administration

1314

 trigger isEnabled <name>

OPTIONS

• Name

Name

 name The name of the trigger to be queried.

RETURN VALUE

 1 if enabled, 0 if disabled, error if the trigger does not exist.

SEE ALSO

 stcl, event, event_prop, trigger create, trigger delete,
 trigger disable, trigger enable, trigger fire, trigger get,
 trigger isEnabled, trigger list, trigger status

EXAMPLES

 See if the trigger 'LintCheck' is enabled:

 if [trigger isEnabled LintCheck] {
 puts "Enabled"
 } else {
 puts "Disabled"
 }

trigger list

trigger list Command

NAME

 trigger list - Gets a list of triggers

DESCRIPTION

 Lists triggers that match the given criteria. If no arguments are
 given, all triggers are listed.

ENOVIA Synchronicity Command Reference - Module

1315

SYNOPSIS

 trigger list [-all | -disabled | -enabled] [-event event]
 [name_expr ...]

OPTIONS

• -all
• -disabled
• -enabled
• -event
• Name Expression

-all

 -all If given, lists all triggers whether they are
 enabled or disabled.

 This option is mutually exclusive with -disabled and
 -enabled.

-disabled

 -disabled If given, lists only trigger that have been
 disabled.

 This option is mutually exclusive with -all and
 -enabled.

-enabled

 -enabled If given, lists only triggers that have not been
 disabled (Default.)

 This option is mutually exclusive with -all and
 -disabled.

-event

 -event event The event given is an object returned by the 'event
 create' function. If given, only triggers which

Administration

1316

 would be fired for the given event are listed. This
 parameter is typically used without any other flags
 to determine the set of triggers to fire for an
 event.

Name Expression

 name_expr ... Each name_expr gives a regular expression which is
 matched against the set of all known triggers. Only
 triggers with matching names are listed.

RETURN VALUE

 A list of matching triggers.

SEE ALSO

 stcl, event, event_prop, trigger create, trigger delete,
 trigger disable, trigger enable, trigger fire, trigger get,
 trigger isEnabled, trigger list, trigger status

EXAMPLES

• Example of Listing All Active Triggers
• Example of Listing All Disabled Triggers
• Example of Listing All Triggers that Match a Wildcard List
• Example of Using Trigger List in a Script

Example of Listing All Active Triggers

 To list all active (non-disabled) triggers:

 trigger list

Example of Listing All Disabled Triggers

 To get a list of all triggers that are currently disabled:

 trigger list -disabled

Example of Listing All Triggers that Match a Wildcard List

ENOVIA Synchronicity Command Reference - Module

1317

 List all enabled and disabled triggers that start with the letter
 'a' or the letter 'c':

 trigger list -all a* c*

Example of Using Trigger List in a Script

 Here's how this function could be used in conjunction with 'trigger
 fire' to run all triggers that match an event, exiting the loop if
 any error are encountered.

 # first create an event - pretend we are the ci command
 set event(type) preCommand
 set event(command) ci
 set event(objPath) foo.v
 set e [event create [array get event]]

 # use trigger list to loop all trigger that match our event
 foreach trigger [trigger list -event $e] {
 if ![trigger fire $trigger $e] {
 error "trigger $trigger failed"
 }
 }

trigger status

trigger status Command

NAME

 trigger status - Shows the status of triggers

DESCRIPTION

 Prints a user-friendly list of triggers, whether or not they are
 enabled, what type they are, and more information based on their type.

SYNOPSIS

 trigger status [<name_expr> ...]

OPTIONS

• Name Expression

Administration

1318

Name Expression

 name_expr ... Each name_expr gives a regular expression which is
 matched against the set of all known triggers. Only
 triggers with matching names are listed. If no
 expressions are given, all known triggers are
 listed.

SEE ALSO

 stcl, event, event_prop, trigger create, trigger delete,
 trigger disable, trigger enable, trigger fire, trigger get,
 trigger isEnabled, trigger list

EXAMPLES

• Example of Listing Information about All Triggers
• Example of Listing Information for Triggers that Match a Wildcard List
• Example of Listing Trigger Information for a Specific Trigger

Example of Listing Information about All Triggers

 To list information about all triggers:

 trigger status

Example of Listing Information for Triggers that Match a Wildcard List

 List information about all triggers with names that start with the
 letter 'a' or the letter 'c':

 trigger status a* c*

Example of Listing Trigger Information for a Specific Trigger

 List information about a trigger named 'foo':

 trigger status foo

trigger unblock

trigger unblock Command

ENOVIA Synchronicity Command Reference - Module

1319

NAME

 trigger unblock - Deprecated command

DESCRIPTION

 This command was used to allow a trigger script to be recursively
 executed when it created events for which it was a registered
 trigger. This command is deprecated because this behavior is
 the default for trigger scripts.

 This command was sometimes used to undo the effect of a
 previously executed 'trigger block' command. Under the new
 architecture, scripts that use the 'trigger block' and 'trigger
 unblock' construct may cause instability. Any code written in
 the following format:

 trigger block
 <perform some action>
 trigger unblock

 should be rewritten as:

 trigger block {
 <perform some action>
 }

SYNOPSIS

 trigger unblock

OPTIONS

 none

RETURN VALUE

 none

SEE ALSO

 trigger block, server-side, rstcl

Administration

1320

Registry File Management

SyncAdmin

SyncAdmin

NAME

 SyncAdmin - Synchronicity Administrator tool

DESCRIPTION

 Synchronicity's SyncAdmin tool is a graphical user interface that
 lets system administrators, project leaders, and users configure
 DesignSync clients (command-line and graphical) for
 site, project, or individual use.

 You execute SyncAdmin from your operating system shell, not
 from a Synchronicity client shell (dss/dssc/stcl/stclc). On
 Windows platforms, you invoke SyncAdmin from the Windows
 Start menu, typically:
 Start->Programs->Dassault Systems <version>->SyncAdmin

 See SyncAdmin help for details on SyncAdmin. From the GUI, click
 the Help button on any SyncAdmin page.

SYNOPSIS

 SyncAdmin [-file <filename> | -project | -site | -user]

OPTIONS

• -file
• -project
• -site
• -user

-file

 -file <filename> Edit the specified registry file, bypassing the initial
 SyncAdmin window (where you select which registry
 file to edit).

-project

ENOVIA Synchronicity Command Reference - Module

1321

 -project Edit the project registry file, bypassing the initial
 SyncAdmin window (where you select which registry
 file to edit).

-site

 -site Edit the site registry file, bypassing the initial
 SyncAdmin window (where you select which registry
 file to edit).

-user

 -user Edit the user registry file, bypassing the initial
 SyncAdmin window (where you select which registry
 file to edit).

RETURN VALUE

 none

SEE ALSO

 DesSync

EXAMPLES

 This example invokes SyncAdmin:
 % SyncAdmin

 This example invokes SyncAdmin, in background mode, to edit the
 user registry:
 % SyncAdmin -user &

sregistry

sregistry Commands

NAME

 sregistry - SyncAdmin file registry commands

Administration

1322

DESCRIPTION

 The sregistry commands allow you to view and edit the Synchronicity
 Administrator registries from the command line.

SYNOPSIS

 sregistry <sregistry_command> [<sregistry_command_options>]

 Usage: sregistry [delete|get|keys|reset|scope|set|source|values]

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 sregistry delete, sregistry get, sregistry keys, sregistry reset,
 sregistry set, sregistry scope, sregistry source, sregistry values

EXAMPLES

 See specific "sregistry" commands.

sregistry delete

sregistry delete Command

NAME

 sregistry delete - Delete registry key or value

DESCRIPTION

ENOVIA Synchronicity Command Reference - Module

1323

 This command deletes keys and values associated with selected
 SyncAdmin registry files. This command will not delete
 read-only registry files.

 After you run the "sregistry delete" command, be sure to run the
 "sregistry reset" command to update the registry file. You can do this
 from the client for client registry files, or in a server-side script
 for the server's registry files. You can also do this by restarting
 the client or server applications.

SYNOPSIS

 Client-Side Invocation
 sregistry delete [-currentuser | -localmachine | -synch]
 [-file <filename> | -project | -site | -user]
 <keyPath> <value>

 Server-Side Invocation
 sregistry delete [-currentuser | -localmachine | -synch]
 [-file <filename> | -port | -site]
 <keyPath> <value>

OPTIONS

• -currentuser
• -file
• keyPath
• -localmachine
• -port
• -project
• -site
• -synch
• -user
• value

-currentuser

 -currentuser Directs the command to HKEY_CURRENT_USER by adding
 a prefix to the key 'KeyPath' with
 "HKEY_CURRENT_USER\Software\Synchronicity"

 This option is mutually exclusive with
 -localmachine and -synch.

-file

 -file <filename> Executes the command using only the registry file
 'Filename'. No other files, including

Administration

1324

 SyncRegistry.reg, are read. You must have write
 permission for the specified file.

 When invoked from the client-side, this option
 is mutually exclusive with -project, -site, and
 -user. When invoked from a server-side script,
 this option is mutually exclusive with -port,
 and -site.

keyPath

 <keyPath> Specifies the key or partial key where the
 registry value lives. If more than one
 hierarchical level is specified in the path, the
 syntax is very important.

 In an stclc shell, the KeyPath must be enclosed
 in double quotes and the path elements delimited
 with two backslashes:
 "General\\Options"
 or, the KeyPath must be enclosed in braces and
 the path elements delimited with one backslash:
 {General\Options}.

 In a dssc shell, the KeyPath must be enclosed in
 double quotes and the path elements delimited
 with one backslash:
 "General\Options"

 If the root is not specified in the KeyPath or
 with the -currentuser or -localmachine options,
 HKEY_CURRENT_USER is searched.

-localmachine

 -localmachine Directs the command to HKEY_LOCAL_MACHINE by
 adding a prefix to the key 'KeyPath' with
 "HKEY_LOCAL_MACHINE\Software\Synchronicity"

 This option is mutually exclusive with
 -currentuser and -synch.

-port

 -port This is the default context and executes the
 command
 using the registry context: PortRegistry.reg,
 SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. The -port option is only valid
 when called from a server side script.

ENOVIA Synchronicity Command Reference - Module

1325

 This option is mutually exclusive with -file and
 -site.

-project

 -project Executes the command using the registry context:
 ProjectRegistry.reg, SiteRegistry.reg,
 EntRegistry.reg, SyncRegistry.reg. If the
 project registry is not available because
 $SYNC_PROJECT_CFGDIR is not defined, an error
 will be generated. The -project option is not
 allowed from a server side script as the project
 registry is only valid from a client tool.
 Requires write permission to
 ProjectRegistry.reg.

 This option is mutually exclusive with -file,
 -site, -user.

-site

 -site Executes the command using the registry context:
 SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. Requires write permission to
 SiteRegistry.reg.

 When invoked from the client-side, this option
 is mutually exclusive with -file, -project, and
 -user. When invoked from a server-side script,
 this option is mutually exclusive with -file,
 and -port.

-synch

 -synch Directs the command to Software\Synchronicity by
 adding a prefix to the key 'KeyPath' with
 "Software\Synchronicity"

 This option is mutually exclusive with
 -currentuser and -localmachine.

-user

 -user This is the default context and executes the
 command using the registry context:
 UserRegistry.reg, ProjectRegistry.reg,

Administration

1326

 SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. The -user option is valid only
 when called from a client tool. Requires write
 permission to UserRegistry.reg.

 This option is mutually exclusive with -file,
 -project, and -site.

value

 <value> The name of the registry value to retrieve the
 data from.

RETURN VALUE

 Returns an empty string on success. Deleting a value that does not
 exist will return an empty string. Deleting a key where the leaf
 name does not exist will return an empty string.

 If a Value is not specified, the key and all its values are removed.
 If the key contains sub-keys, neither the key nor it values are
 removed. You can not remove a key that contains subkeys.

 The delete command can only delete keys and values that are in the
 registry file that is open for write (the first file listed in the
 registry context). If you try to delete a value that exists in
 one of the read-only registry files, an error will be generated. If
 you try to delete a key and the key and all its values exist in
 read-only registry files, an error will be generated. If some of the
 key's values are in the writable registry file, only those values
 will be deleted and the command will return OK. The key and the values
 in the read-only registry files will still remain.

SEE ALSO

 sregistry get, sregistry set, sregistry keys, sregistry reset,
 sregistry source, sregistry values

EXAMPLES

 Continuing from the 'sregistry set' example, which showed a user setting
 their own default fetch state, overriding the site-wide "share" preference.

 stcl> sregistry set -currentuser -user "General\\Options" \
 stcl> DefaultFetchType get
 get
 stcl>

ENOVIA Synchronicity Command Reference - Module

1327

 The user can remove their default fetch state setting:

 stcl> sregistry delete -currentuser -user "General\\Options"
DefaultFetchType
 stcl>

sregistry get

sregistry get Command

NAME

 sregistry get - Get a registry value

DESCRIPTION

 Retrives the value of a registry key from the specified registry. The
 complete list of available registry keys is contained in the ENOVIA
 Synchronicity DesignSync Administrator's Guide.

SYNOPSIS

 Client-side Invocation
 sregistry get [-base dec | hex]
 [-currentuser | -localmachine | -synch]
 [-default <dataPath>] [-format text | list]
 [-user | -project | -site | -file <filename>]
 <keyPath> <value>

 Server-side Invocation
 sregistry get [-base dec | hex]
 [-currentuser | -localmachine | -synch]
 [-default <dataPath>] [-format text | list]
 [-port | -site | -file <filename>] <keyPath> <value>

OPTIONS

• -base
• -currentuser
• -default
• -file
• -format
• -localmachine
• -port
• -project

Administration

1328

• -site
• -synch
• -user
• Key Path
• Value

-base

 -base Specifies how to represent numerical data. The default
 is dec (decimal). The -base option has no effect if the
 data is of type string. If the base is selected as dec,
 the data will be represented as a signed integer. If the
 base is selected as hex (hexadecimal), the data will be
 output in unsigned hexadecimal format starting with
 0x and showing all four bytes. For example, the same
 registry value might output 0xffffffff in hex base
 and -1 in dec base.

-currentuser

 -currentuser Directs the command to HKEY_CURRENT_USER by adding
 a prefix to the key 'KeyPath' with
 "HKEY_CURRENT_USER\Software\Synchronicity"

 This option is mutually exclusive with
 -localmachine and -synch.

-default

 -default If a default value, <dataPath>, is specified, the
 <dataPath> command will return DefaultData if the value was not
 found in the registry. If a default is not specified
 and the value is not found in the registry, an error
 is returned.

-file

 -file <filename> Executes the command using only the registry file
 <filename>. No other files, including
 SyncRegistry.reg, are read. You must have write
 permission for the specified file.

 When invoked from the client-side, this option is
 mutually exclusive with -project, -site, and
 -user. When invoked from a server-side script,
 this option is mutually exclusive with -port,
 -site, and -user.

ENOVIA Synchronicity Command Reference - Module

1329

-format

 -format Specifies the way the output will be returned.
 The default is text. The format text will return the
 data from the registry as a string. If the registry
 value is a dword, the return value is a string
 representing the dword. The format list will return
 a tcl list of name value pairs. The following named
 values will display:

 data: The data requested from the registry with the
 get command.

 type: The type of the data that was returned
 from the registry. The type will be
 either number or string.
 If the value was not found in the registry,
 and the default data was returned, the type
 will be set to string.
 source: A string indicating which registry file the
 value was found in. The string will be
 one of the following: Current, Default,
 Override, or None. See the sregistry
 source command for more information.
 root: A string containing the name of the root
 (hive) where the value was found. The
 string will be either "HKEY_CURRENT_USER"
 or "HKEY_LOCAL_MACHINE".
 If the value was not found in the
 registry, and the default data was
 returned, this value will be set to
 "HKEY_CURRENT_USER".

-localmachine

 -localmachine Directs the command to HKEY_LOCAL_MACHINE by adding
 a prefix to the key 'KeyPath' with
 "HKEY_LOCAL_MACHINE\Software\Synchronicity"

 This option is mutually exclusive with
 -currentuser and -sync.

-port

 -port This is the default context and executes the command
 using the registry context: PortRegistry.reg,
 SiteRegistry.reg, EntRegistry.reg, SyncRegistry.reg.
 The -port option is only valid when called from a
 server side script.

 This option is mutually exclusive with -file and

Administration

1330

 -site.

-project

 -project Executes the command using the registry context:
 ProjectRegistry.reg, SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. If the project registry is not
 available because $SYNC_PROJECT_CFGDIR is not defined,
 an error will be generated. The -project option is not
 allowed from a server side script as the project
 registry is only valid from a client tool. Requires
 write permission to ProjectRegistry.reg.

 This option is mutually exclusive with -file,
 -site, and -user.

-site

 -site Executes the command using the registry context:
 SiteRegistry.reg, EntRegistry.reg, SyncRegistry.reg.
 Requires write permission to SiteRegistry.reg.

 When invoked from the client-side, this option is
 mutually exclusive with -file, -project, and
 -user. When invoked from a server-side script,
 this option is mutually exclusive with -file,
 -port, and -user.

-synch

 -synch Directs the command to Software\Synchronicity by
 adding a prefix to the key 'KeyPath' with
 "Software\Synchronicity"

 This option is mutually exclusive with
 -currentuser and -localmachine.

-user

 -user This is the default context and executes the command
 using the registry context: UserRegistry.reg,
 ProjectRegistry.reg, SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. The -user option is only valid when
 called from a client tool. Requires write permission
 to UserRegistry.reg.

 This option is mutually exclusive with -file,

ENOVIA Synchronicity Command Reference - Module

1331

 -project, and -site.

Key Path

 <keyPath> Specifies the key or partial key where the registry
 value lives. If more than one hierarchical level is
 specified in the path, the syntax is very important.

 In an stclc shell, the key path must be enclosed in
 double quotes and the path elements delimited with
 two backslashes:
 "General\\Options"
 or, the key path must be enclosed in braces and the
 path elements delimited with one backslash:
 {General\Options}.

 In a dssc shell, the key path must be enclosed in
 double quotes and the path elements delimited with
 one backslash:
 "General\Options"

 If the root is not specified in the key path or
 with the -currentuser or -localmachine options,
 HKEY_CURRENT_USER is searched first for the
 value, and if it is not found,
 HKEY_LOCAL_MACHINE is searched.

Value

 <value> The name of the registry value to retrieve the data
 from.

SEE ALSO

 sregistry set, sregistry keys, sregistry values, sregistry delete,
 sregistry source, sregistry reset

EXAMPLES

 Continuing from the 'sregistry values' example, which showed:

 stcl> sregistry values -currentuser -site "General\\Options"
 DefaultFetchType
 stcl>

 To find the site-wide default fetch state value:

Administration

1332

 stcl> sregistry get -currentuser -site "General\\Options" DefaultFetchType
 share
 stcl>

 See the 'sregistry set' example for how a user would set their own default
 fetch state, overriding the site default value.

sregistry keys

sregistry keys Command

NAME

 sregistry keys - Displays sub-keys in registry value

DESCRIPTION

 This command displays a list of the sub-keys associated with a specified
 KeyPath.

SYNOPSIS

 Client-side invocation:
 sregistry keys [-currentuser | -localmachine | -synch]
 [-user | -project | -site | -file <filename>]
 [-format text | list] <KeyPath>

 Server-side invocation:
 sregistry keys [-currentuser | -localmachine | -synch]
 [-format text | list]
 [-port | -site | -file <filename>] <KeyPath>

OPTIONS

• -currentuser
• -file
• -format
• Key Path
• -localmachine
• -port
• -project
• -site
• -synch
• -user

ENOVIA Synchronicity Command Reference - Module

1333

-currentuser

 -currentuser Adds the following prefix to the key <KeyPath>:
 "HKEY_CURRENT_USER\Software\Synchronicity"

 This option is mutually exclusive with
 -localmachine, and -synch.

-file

 -file <filename> Executes the command using only the registry file
 <filename>. No other files are read, including
 SyncRegistry.reg. You must have write permission
 for the specified file.

 When invoked from the client-side, this option is
 mutually exclusive with -project, -site, and
 -user. When invoked from a server-side script,
 this option is mutually exclusive with -port, and
 -site.

-format

 -format Specifies the way the output will be returned. The
 default is text. The format text will return each
 key on a new line. The format list will list the keys
 in a tcl list.

Key Path

 <KeyPath> Specifies the top-level key path or partial key path.
 If more than one hierarchical level is
 specified in the path, the syntax is very important.

 In an stclc shell, the KeyPath must be enclosed in
 double quotes and the path elements delimited with
 two backslashes:
 "General\\Options"
 or, the KeyPath must be enclosed in braces and the
 path elements delimited with one backslash:
 {General\Options}.

 In a dssc shell, the KeyPath must be enclosed in
 double quotes and the path elements delimited with
 one backslash:
 "General\Options"

 If the root is not specified in the KeyPath or
 with the -currentuser or -localmachine options,

Administration

1334

 HKEY_CURRENT_USER is searched.

-localmachine

 -localmachine Adds the following prefix to the key <KeyPath>:
 "HKEY_LOCAL_MACHINE\Software\Synchronicity"

 This option is mutually exclusive with
 -currentuser and -synch.

-port

 -port Executes the command using this registry hierarchy:
 PortRegistry.reg, SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. The -port option is the default.
 This option is only valid when called from a
 server-side script.

 This operation is mutually exclusive with -file,
 and -site.

-project

 -project Executes the command using this registry hierarchy:
 ProjectRegistry.reg, SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. If the project registry is not
 available because $SYNC_PROJECT_CFGDIR is not defined,
 an error will be generated. The -project option is not
 allowed from a server side script as the project
 registry is only valid from a client tool.

 This operation is mutually exclusive with
 -file, -site, and -user.

-site

 -site Executes the command using this registry hierarchy:
 SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg.

 When invoked from the client-side, this option is
 mutually exclusive with -file, -project, and -user.
 When invoked from a server-side script,
 this option is mutually exclusive with -file, and
 -port.

ENOVIA Synchronicity Command Reference - Module

1335

-synch

 -synch Adds the following prefix to the key <KeyPath>:
 "Software\Synchronicity"

 This option is mutually exclusive with
 -currentuser and -localmachine.

-user

 -user Executes the command using this registry hierarchy:
 UserRegistry.reg, ProjectRegistry.reg,
 SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. The -user option is the
 default. This option is valid only when called
 from a client tool.

 This operation is mutually exclusive with -file,
 -project, and -site.

RETURN VALUE

 A list of the sub-keys of KeyPath. If no subkeys exist, then an empty
 list is returned.

SEE ALSO

 sregistry get, sregistry set, sregistry values, sregistry delete,
 sregistry source, sregistry reset

EXAMPLES

 The example below finds the site-wide General registry keys. When an
 empty string is returned, that means there are no sub-keys below the
 specified KeyPath.

 stcl> sregistry keys -currentuser -site General
 ExtensionTypes
 CmdTable
 Options
 stcl> sregistry keys -currentuser -site "General\\ExtensionTypes"
 stcl> sregistry keys -currentuser -site "General\\Options"
 stcl> sregistry keys -currentuser -site "General\\CmdTable"
 DefaultLogDir
 stcl>

Administration

1336

 The 'sregistry values' example shows how to use the above result.

sregistry reset

sregistry reset Command

NAME

 sregistry reset - Forces a refresh of all registry files

DESCRIPTION

 This command forces the re-reading of all registry files,
 including the read-only files. It returns an empty string upon
 successful completion. It is important to note that reloading all the
 registry files may not be sufficient to cause Synchronicity tools
 (client and server) to immediately see the new settings. This is
 because some values are cached by the programs. To assure all new
 values are being read by an application, the application should be
 restarted.

SYNOPSIS

 sregistry reset

OPTIONS

 None.

SEE ALSO

 sregistry get, sregistry set, sregistry keys, sregistry values
 sregistry source, sregistry delete

sregistry scope

sregistry scope Command

NAME

 sregistry scope - Temporarily changes which registry files are active

ENOVIA Synchronicity Command Reference - Module

1337

DESCRIPTION

 Used only with the command defaults system, to temporarily change which
 registry files are active. By default, "defaults set" stores default
 values in the user's registry file. Use "sregistry scope" to store
 default values in other registry files that are sourced by the DesignSync
 client on startup, such as the installation's site registry file.

 Within a DesignSync client session, run "defaults refresh" to read all
 default values from the client registry files. See the DesignSync
 Data Manager User's Guide topic "Registry Files" for further information.

 To prevent users' saved default values from overriding site or project
 default values, specify the "-nooverrule" option to the "defaults set"
 command. See the "defaults set" command documentation for details.

SYNOPSIS

 sregistry scope [-project | -site]
 {defaults set -- <command> <option> [<option> ...]}

OPTIONS

• -project
• -site

-project

 -project If <SYNC_PROJECT_CFGDIR> is defined, store default values
 in the <SYNC_PROJECT_CFGDIR>/ProjectRegistry.reg file.
 Requires write permission to the ProjectRegistry.reg file.

-site

 -site Store default values in the site-wide registry file,
 <SYNC_SITE_CNFG_DIR>/SiteRegistry.reg. If not defined,
 <SYNC_SITE_CNFG_DIR> resolves to <SYNC_SITE_CUSTOM>/config
 which, in turn, resolves to <SYNC_CUSTOM_DIR>/site/config.
 Requires write permission to the SiteRegistry.reg file.

RETURN VALUE

 The result of the expression given to the "sregistry scope" command.

Administration

1338

SEE ALSO

 defaults refresh, defaults set, defaults show, command defaults

EXAMPLES

 As the installation owner, to set a default report mode for the "ls"
 command, for all users at your site:

 stcl> sregistry scope -site {defaults set -- ls -report verbose}

 The "defaults show" command confirms that the "-report verbose" default
 value for the "ls" command is set in the site registry file.

 stcl> defaults show -source ls
 {ls temporary {} project {} project_nooverrule {} user {} user_nooverrule
 {} site {-report verbose} site_nooverrule {} enterprise {}
 enterprise_nooverrule {}}
 stcl>

sregistry set

sregistry set Command

NAME

 sregistry set - Sets a registry value

DESCRIPTION

 The 'sregistry set' and related 'sregistry' commands allow you to edit
 the Synchronicity Administrator registries from the command
 line. When you enter the command, you choose the client registry
 or the server registry. You also need to specify the key or
 where the registry value lives (HKEY_CURRENT_USER or
 HKEY_LOCAL_MACHINE). The last part of the command identifies the
 KeyPath (SyncAdmin settings tree) and the key name you want to retrieve.

 After you run the "sregistry delete" command, be sure to run the
 "sregistry reset" command to update the registry file. You can do this
 from the client for client registry files, or in a server-side script
 for the server's registry files. You can also do this by restarting
 the client or server applications.

ENOVIA Synchronicity Command Reference - Module

1339

SYNOPSIS

 Client-Side Invocation
 sregistry set [-currentuser | -localmachine | -synch]
 [-file <filename> | -project | -site | -user]
 <keyPath> [-type number|string] <value> [--] Data

 Server-Side Invocation
 sregistry set [-currentuser | -localmachine | -synch]
 [-file <filename> | -site | -port]
 <keyPath> [-type number|string] <value> [--] Data

ARGUMENTS

• Data

Data

 Data Specifies the data to write into the registry. Data
 must match the type specified with -type. A number
 can be an integer (signed or unsigned) or a
 hexadecimal value. Hexadecimal numbers must be
 prefixed with '0x' or '0X' For Example: 0xFF2A.

OPTIONS

• -currentuser
• -file
• keypath
• -localmachine
• -port
• -project
• -site
• -synch
• -type
• -user
• Value
• --

-currentuser

 -currentuser Directs the command to HKEY_CURRENT_USER by adding
 a prefix to the key 'KeyPath' with
 "HKEY_CURRENT_USER\Software\Synchronicity"

 This option is mutually exclusive with

Administration

1340

 -localmachine and -synch.

-file

 -file <filename> Executes the command using only the registry file
 'Filename'. No other files, including SyncRegistry.reg,
 are read. You must have write permission for the
 specified file.

 When invoked from the client-side, this option is
 mutually exclusive with -project, -site, and -user.
 When invoked from a server-side script,
 this option is mutually exclusive with -port,
 and -site.

keypath

 <keyPath> Specifies the key or partial key where the registry
 value lives. If more than one hierarchical level is
 specified in the path, the syntax is very important.

 In an stclc shell, the key path must be enclosed in
 double quotes and the path elements delimited with
 two backslashes:
 "General\\Options"
 or, the key path must be enclosed in braces and the
 path elements delimited with one backslash:
 {General\Options}.

 In a dssc shell, the key path must be enclosed in
 double quotes and the path elements delimited with
 one backslash:
 "General\Options"

 If the root is not specified in the key path or
 with the -currentuser or -localmachine options,
 HKEY_CURRENT_USER is used.

-localmachine

 -localmachine Directs the command to HKEY_LOCAL_MACHINE by adding
 a prefix to the key 'KeyPath' with
 "HKEY_LOCAL_MACHINE\Software\Synchronicity"

 This option is mutually exclusive with
 -currentuser and -synch.

-port

ENOVIA Synchronicity Command Reference - Module

1341

 -port This is the default context and executes the command
 using the registry context: PortRegistry.reg,
 SiteRegistry.reg, EntRegistry.reg, SyncRegistry.reg.
 The -port option is only valid when called from a
 server-side script.

 This option is mutually exclusive with -file and
 -site.

-project

 -project Executes the command using the registry context:
 ProjectRegistry.reg, SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. If the project registry is not
 available because $SYNC_PROJECT_CFGDIR is not defined,
 an error will be generated. The -project option is not
 allowed from a server side script as the project
 registry is only valid from a client tool. Requires
 write permission to ProjectRegistry.reg.

 This option is mutually exclusive with -file,
 -site, and -user.

-site

 -site Executes the command using the registry context:
 SiteRegistry.reg, EntRegistry.reg, SyncRegistry.reg.
 Requires write permission to configuration
 directory for the site ($SYNC_SITE_CNFG_DIR) and
 the SiteRegistry.reg file.

 When invoked from the client-side, this option is
 mutually exclusive with -file, -project, and -user.
 When invoked from a server-side script,
 this option is mutually exclusive with -file, and
 -port.

-synch

 -synch Directs the command to Software\Synchronicity by
 adding a prefix to the key 'KeyPath' with
 "Software\Synchronicity"

 This option is mutually exclusive with
 -currentuser and -localmachine.

-type

Administration

1342

 -type Specifies the type of data to store in the registry.
 Can be either string or number with string being
 the default.

-user

 -user This is the default context and executes the command
 using the registry context: UserRegistry.reg,
 ProjectRegistry.reg, SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. The -user option is only valid when
 called from a client tool. Requires write permission
 to UserRegistry.reg.

 This option is musually exclusive with -file,
 -project, and -site.

Value

 <value> The name of the registry value to retrieve the data
 from.

--

 -- Specifies that there are no more switches to follow
 on the command line.

RETURN VALUE

 The value of Data is returned.

SEE ALSO

 sregistry get, sregistry keys, sregistry values, sregistry delete,
 sregistry source, sregistry reset

EXAMPLES

 Continuing from the 'sregistry get' example, which showed the site-wide
 default fetch state:

 stcl> sregistry get -currentuser -site "General\\Options" DefaultFetchType
 share
 stcl>

ENOVIA Synchronicity Command Reference - Module

1343

 A user can set their own default fetch state, overriding the site-wide
 preference.

 stcl> sregistry set -currentuser -user "General\\Options" \
 stcl> DefaultFetchType get
 get
 stcl>

 See the 'sregistry source' example for how to determine which registry
 file's default fetch state value is being used.

sregistry source

sregistry source Command

NAME

 sregistry source - Displays the source of a registry value

DESCRIPTION

 This command displays the source (registry file) of a SyncAdmin
 registry value.

SYNOPSIS

 Client-Side Invocation
 sregistry source [-currentuser | -localmachine | -synch]
 [-file <filename> | -project | -site | -user]
 <keyPath> <value>

 Server-Side Invocation
 sregistry source [-currentuser | -localmachine | -synch]
 [-file <filename> | -port | -site]
 <keyPath> <value>

OPTIONS

• -currentuser
• -file
• KeyPath
• -localmachine
• -port
• -project
• -site

Administration

1344

• -synch
• -user
• value

-currentuser

 -currentuser Directs the command to HKEY_CURRENT_USER by adding
 a prefix to the key 'KeyPath' with
 "HKEY_CURRENT_USER\Software\Synchronicity"

 This option is mutually exclusive with
 -localmachine and -synch.

-file

 -file <filename> Executes the command using only the registry file
 'Filename'. No other files, including SyncRegistry.reg,
 are read. You must have write permission for the
 specified file.

 When invoked from the client-side, this option is
 mutually exclusive with -project, -site, and
 -user. When invoked from a server-side script,
 this option is mutually exclusive with -port, and
 -site.

KeyPath

 <keyPath> Specifies the key or partial key where the registry
 value lives. If more than one hierarchical level is
 specified in the path, the syntax is very important.

 In an stclc shell, the key path must be enclosed in
 double quotes and the path elements delimited with
 two backslashes:
 "General\\Options"
 or, the key path must be enclosed in braces and the
 path elements delimited with one backslash:
 {General\Options}.

 In a dssc shell, the key path must be enclosed in
 double quotes and the path elements delimited with
 one backslash:
 "General\Options"

 If the root is not specified in the key path or
 with the -currentuser or -localmachine options,
 HKEY_CURRENT_USER is searched.

ENOVIA Synchronicity Command Reference - Module

1345

-localmachine

 -localmachine Directs the command to HKEY_LOCAL_MACHINE by adding
 a prefix to the key 'KeyPath' with
 "HKEY_LOCAL_MACHINE\Software\Synchronicity"

 This option is mutually exclusive with
 -currentuser and -synch.

-port

 -port This is the default context and executes the command
 using the registry context: PortRegistry.reg,
 SiteRegistry.reg, EntRegistry.reg, SyncRegistry.reg.
 The -port option is only valid when called from a
 server-side script.

 This option is mutually exclusive with -file and
 -site.

-project

 -project Executes the command using the registry context:
 ProjectRegistry.reg, SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. If the project registry is not
 available because $SYNC_PROJECT_CFGDIR is not defined,
 an error will be generated. The -project option is not
 allowed from a server side script as the project
 registry is only valid from a client tool. Requires
 write permission to ProjectRegistry.reg.

 This option is mutually exclusive with -file,
 -site, and -user.

-site

 -site Executes the command using the registry context:
 SiteRegistry.reg, EntRegistry.reg, SyncRegistry.reg.
 Requires write permission to SiteRegistry.reg.

 When invoked from the client-side, this option is
 mutually exclusive with -file, -project, and
 -user. When invoked from a server-side
 script, this option is mutually exclusive with
 -file, and -port.

-synch

Administration

1346

 -synch Directs the command to Software\Synchronicity by
 adding a prefix to the key 'KeyPath' with
 "Software\Synchronicity"

 This option is mutually exclusive with
 -currentuser and -synch.

-user

 -user This is the default context and executes the command
 using the registry context: UserRegistry.reg,
 ProjectRegistry.reg, SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. The -user option is only valid when
 called from a client tool. Requires write permission
 to UserRegistry.reg.

 This option is mutually exclusive with -file,
 -project, and -site.

value

 <value> The name of the registry value to retrieve the data
 from.

RETURN VALUE

 Current|Default|Override|None
 Returns 'Current' if the value comes from the registry file currently
 open for write.
 Returns 'Default' if the value comes from a registry with lower
 precedence than the registry file currently open for write.
 Returns 'Override' if the value comes from a registry with higher
 precedence than the registry file currently open for write.
 Returns 'None' if the value is not found in the registry.

SEE ALSO

 sregistry get, sregistry set, sregistry keys, sregistry reset
 sregistry delete, sregistry values

EXAMPLES

 Continuing from the 'sregistry set' example, which showed a user setting
 their own default fetch state, overriding the site-wide "share" preference.

ENOVIA Synchronicity Command Reference - Module

1347

 stcl> sregistry set -currentuser -user "General\\Options" \
 stcl> DefaultFetchType get
 get
 stcl>

 To determine which registry file (the site-wide registry file or the user's
 registry file) is being sourced for the default fetch state value:

 stcl> sregistry source -currentuser -user "General\\Options"
DefaultFetchType
 Current
 stcl>

 This shows that the default fetch state value in the user's registry file
 (the registry file currently open for writing by the DesignSync client) is
 in use.

sregistry values

sregistry values Command

NAME

 sregistry values - Displays the available registry values

DESCRIPTION

 This command displays a list of Values available under the <keyPath> key.

SYNOPSIS

 Client-Side Invocation
 sregistry values [-currentuser | -localmachine | -synch]
 [-user | -project | -site | -file <filename>]
 [-port | -site | -file <filename>]
 [-format text | list] <keyPath>

 Server-Side Invocation
 sregistry values [-currentuser | -localmachine | -synch]
 [-user | -project | -site | -file <filename>]
 [-port | -site | -file <filename>]
 [-format text | list] <keyPath>

OPTIONS

• -currentuser
• -file
• -format

Administration

1348

• KeyPath
• -localmachine
• -port
• -project
• -site
• -synch
• -user

-currentuser

 -currentuser Directs the command to HKEY_CURRENT_USER by adding
 a prefix to the key 'KeyPath' with
 "HKEY_CURRENT_USER\Software\Synchronicity"

 This option is mutually exclusive with
 -localmachine and -synch.

-file

 -file <filename> Executes the command using only the registry file
 'Filename'. Only the file ('Filename') will be read
 or written. No other files, including the
 SyncRegistry.reg file are read.

 When invoked from the client-side, this option is
 mutually exclusive with -project, -site, and
 -user. When invoked from a server-side script,
 this option is mutually exclusive with -port, and
 -site.

-format

 -format Specifies the way the output will be returned. The
 default is text. The format text will return each
 value on a new line. The format list will list the
 values in a tcl list.

KeyPath

 <keyPath> Specifies the key or partial key where the registry
 value lives. If more than one hierarchical level is
 specified in the path, the syntax is very important.

 In an stclc shell, the key path must be enclosed in
 double quotes and the path elements delimited with
 two backslashes:
 "General\\Options"

ENOVIA Synchronicity Command Reference - Module

1349

 or, the key path must be enclosed in braces and the
 path elements delimited with one backslash:
 General\Options}.

 In a dssc shell, the key path must be enclosed in
 double quotes and the path elements delimited with
 one backslash:
 "General\Options"

 If the root is not specified in the key path or
 with the -currentuser or -localmachine options,
 HKEY_CURRENT_USER is searched.

-localmachine

 -localmachine Directs the command to HKEY_LOCAL_MACHINE by adding
 a prefix to the key 'KeyPath' with
 "HKEY_LOCAL_MACHINE\Software\Synchronicity"

 This option is mutually exclusive with
 -currentuser and -synch.

-port

 -port This is the default context and executes the command
 using the registry context: PortRegistry.reg,
 SiteRegistry.reg, EntRegistry.reg, SyncRegistry.reg.
 The -port option is only valid when called from a
 server-side script.

 This option is mutually exclusive with -file and
 -site.

-project

 -project Executes the command using the registry context:
 ProjectRegistry.reg, SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. If the project registry is not
 available because $SYNC_PROJECT_CFGDIR is not defined,
 an error will be generated. The -project option is not
 allowed from a server side script as the project
 registry is only valid from a client tool. Requires
 write permission to ProjectRegistry.reg.

 This option is mutually exclusive with -file,
 -site, and -user.

-site

Administration

1350

 -site Executes the command using the registry context:
 SiteRegistry.reg, EntRegistry.reg, SyncRegistry.reg.
 Requires write permission to SiteRegistry.reg.

 When invoked from the client-side, this option is
 mutually exclusive with -file, -project, and -user.
 When invoked from a server-side script,
 this option is mutually exclusive with -file and
 -port.

-synch

 -synch Directs the command to Software\Synchronicity by
 adding a prefix to the key 'KeyPath' with
 "Software\Synchronicity"

 This option is mutually exclusive with
 -currentuser and -localmachine.

-user

 -user This is the default context and executes the command
 using the registry context: UserRegistry.reg,
 ProjectRegistry.reg, SiteRegistry.reg, EntRegistry.reg,
 SyncRegistry.reg. The -user option is only valid when
 called from a client tool. Requires write permission
 to UserRegistry.reg.

 This option is mutually exclusive with -file,
 -project, and -site.

RETURN VALUE

 A list of the Values available under the <keyPath> key.
 If no Values exist, then an empty list is returned.

SEE ALSO

 sregistry get, sregistry set, sregistry keys, sregistry delete,
 sregistry source, sregistry reset

EXAMPLES

 Continuing from the 'sregistry keys' example, which showed:

ENOVIA Synchronicity Command Reference - Module

1351

 stcl> sregistry keys -currentuser -site General\\Options
 stcl>

 To find the registry values available below General\\Options:

 stcl> sregistry values -currentuser -site "General\\Options"
 DefaultFetchType
 stcl>

 This means that a default fetch state has been set site-wide.

 The 'sregistry get' example shows how to retrieve that default value.

Server Backup

backup

backup Command

NAME

 backup - Backs up a SyncServer

DESCRIPTION

 The backup command lets you back up a SyncServer, including its vault,
 metadata, and notes. You can use this command to run both full and
 incremental backups. Use the backup command in conjunction with
 your standard system back-up procedures. To create a back-up that
 lets you safely restore your server, you take two steps:

 1. Use the backup command to generate back-up data in the
 server_vault/Backup.sync area.
 2. Perform a standard system back-up of your server_vault area and
 your $SYNC_CUSTOM_DIR.

 The data stored in the Backup.sync directory creates a server
 snapshot that, in conjunction with a standard system back-up, lets
 you safely restore your server and vault.

 The backup command is server-side only and must be run using the rstcl
 command or by passing a script in a URL from your browser. See
 the 'server-side' topic or the ENOVIA Synchronicity stcl Programmer's
 Guide for details.

 The back-up operation includes the server vault, metadata,
 attachments, and all of the notes, note types, and property types.
 The back-up preserves the following directories:

 o The entire server_metadata hierarchy

Administration

1352

 o The entire server_vault hierarchy
 o Parts of the $SYNC_CUSTOM_DIR/servers/<host>/<port>/share/data
 hierarchy.

 Only attachments are copied from the $SYNC_CUSTOM_DIR areas.
 Note customizations stored in the custom areas are not
 backed up.

 The backup command does not compress the backed-up data.

 The data is backed up to the directory:

 $SYNC_DIR/../syncdata/<host>/<port>/server_vault/Backup.sync

 This directory contains a subdirectory for each back-up operation.
 The back-up subdirectory name has the following format:

 <year><month><day>_<hour><minute><second>

 The time is in 24-hour format according to the local time zone of
 the server.

 Within the dated subdirectory, the backed-up data is stored in the
 following directories:

 o Attachments - Hard links to the note attachment and definition
 files in the server's $SYNC_CUSTOM_DIR/servers/<host>/<port>/
 share/data area.
 o server_metadata/ and all directories below it - Copies of
 the metadata.
 o server_vault/ and all directories below it - Copies of the
 tags database are stored in the server_vault/Partitions
 subdirectories. Hard links to the server vault are stored in
 the server_vault directory.

 For example, data in:

 $SYNC_DIR/../syncdata/<host>/<port>/server_vault/Projects/P1/file1.rca

 might be backed up to:

 $SYNC_DIR/../syncdata/<host>/<port>/server_vault/Backup.sync/
 20010710_145601/Projects/P1/file1.rca

 The Backup.sync, Import.sync, and Export.sync directories under
 server_vault are not backed up.

 Note: The backup creates symbolic links to vault data if your
 Backup.sync area is on a different partition from your server or
 if your system does not support hardlinks. If the vault data is
 removed (for example, by an rmfolder command) the backed-up
 symbolic links cannot be used to restore your data. To avoid this
 problem, archive your Backup.sync area using a switch to
 de-reference the symbolic links.

 The back-up operation does not make the server completely
 inaccessible. The server is suspended for a short time at the

ENOVIA Synchronicity Command Reference - Module

1353

 beginning of the back-up but after that it is accessible for all
 ProjectSync operations. DesignSync users have read access to
 operations after the initial suspension. For example, after the
 initial suspension, DesignSync users can populate from a vault
 during a back-up.

 For each dated back-up subdirectory, a .cleanup executable file is
 generated in the Backup.sync directory. You can run this executable
 to remove the corresponding backed-up data. For example, if your
 back-up directory is:

 $SYNC_DIR/../syncdata/<host>/<port>/server_vault/Backup.sync/
 20010710_145601

 You would enter "20010710_145601.cleanup" to remove the data in
 the 20010710_145601 directory.

 If the clean-up operation fails, you get an error message.

 During the backup, .inprogress is appended to the dated
 subdirectory of Backup.sync. This extension is removed when the
 back-up completes. You can use this feature to check the status of
 your back-up. If .inprogress is appended to the subdirectory
 name and you cannot write to the server, the back-up is still
 underway. If .inprogress is appended to the subdirectory name
 and you can write to the server, the server crashed and
 restarted while the back-up was underway.

 See the ProjectSync User's Guide: "Backing Up Your Server" help topic
 for information on recovering from server crashes, restoring
 your backed-up files, and enabling and scheduling automated backups.

 Note: If you choose to back up without using the backup command,
 you must stop your server, perform the backup, and then restart
 the server. When you use the backup command, all access to the
 metadata is refused while the metadata is copied; all write access
 to the vault is refused while the vault is copied. The metadata
 and the vault are backed up into a single archive. Most of the
 $SYNC_CUSTOM_DIR is not included in the back-up operation.

SYNOPSIS

 backup [-from <date>]

OPTIONS

• -from

-from

 -from <date> When the -from argument is specified, an

Administration

1354

 incremental backup is performed based on
 the backup that occurred on <date>. The
 <date> value must match the timestamp of
 a previous full or incremental backup
 directory. For example, if you have a
 backup directory called "20031027_085512"
 then you can specify:

 backup -from "20031027 085512"

 You also can specify the special value
 "last" to incrementally back up from
 the most recent back up.

RETURN VALUE

 Name of the back-up directory

SEE ALSO

 rstcl, access verify

EXAMPLES

 The following example illustrates how to use the backup command in
 a Tcl script. The script first calls access verify to ensure that
 the user has permission to perform a back-up. If not, the script
 returns "Permission denied." If the user has permission, the back-
 up operation performs an incremental backup based on the previous
 backup. If the operation fails, the script issues an error.

 if {[access verify AdministrateServer $SYNC_User]} {
 if {[catch { backup -from last } result]} {
 puts ""
 puts "** Backup Server Error **"
 puts "Stack Trace: $errorInfo"
 puts ""
 }
 } else {
 puts "Permission denied."
 }

 When using backup in a script, invoke the access verify command to
 ensure that only authorized users can back up the server. See the
 ENOVIA Synchronicity Access Control Guide for information on using
 the AdministrateServer access control to restrict access to server
 operations.

ENOVIA Synchronicity Command Reference - Module

1355

keydbcheckpoint

keydbcheckpoint Command

NAME

 keydbcheckpoint - Back up for module-related metadata tables

DESCRIPTION

 This command is used internally to maintain the integrity of the
 module-related metadata tables.

SYNOPSIS

 keydbcheckpoint [-restore] [--]

restoreserver

restoreserver

NAME

 restoreserver - Restores the data from a backed-up server

DESCRIPTION

 The restoreserver script restores an entire server from your
 backed-up server data. This script lets you restore not only vault
 folders but also metadata, notes, and attachments. When you restore a
 Cadence view, all the objects in the view are restored. (Note: When
 you restore a collection object other than a Cadence view object, you
 must restore both the main collection object and all of its member
 file objects.)

 Your SyncServer is shut down during the restoration and restarted again
 when the operation is complete. You must be the server owner to run the
 restoreserver script.

 Before running the restoreserver script, you need to restore the
 server_vault and $SYNC_CUSTOM_DIR data from your system backup and then
 transfer the data in the Backup.sync area to the correct place within
 the server.

Administration

1356

 Run the restoreserver script from the command line on the system where
 you run your SyncServer(s). To invoke the script, enter the following
 on the command line:

 restoreserver

 The script starts and opens a log file, restoreserver.log, in your
 home directory.

 If your SyncServer has more than one port, the script prompts you to
 choose the port you want to restore. Enter the number for the port.

 If you have more than one set of backup data, the script prompts you
 to choose the backup data that you want to restore from. The script
 displays a numbered list showing each dated incremental and full backup.
 Enter the number for the date you want to restore from.

 If you choose an incremental backup date, the script first restores the
 last full backup and then restores each subsequent incremental backup.

 See "Restoring All Server Backup Data" in the ENOVIA Synchronicity
 DesignSync Data Manager Administrator's Guide for complete details on
 restoring your server data.

SYNOPSIS

 restoreserver

RETURN VALUE

 The restoreserver command logs its activity to the restoreserver.log
 file in your home directory. If the command fails, DesignSync
 returns an error explaining the failure.

SEE ALSO

 Backup

restorevault

restorevault Command

NAME

 restorevault - Restores specified server vault or directory data

ENOVIA Synchronicity Command Reference - Module

1357

DESCRIPTION

 This command lets you specify backed-up vault data to restore. You
 can restore vault folders, directories, or individual vault
 objects. When you restore a Cadence Cell View collection object, all
 vault objects within the equivalent view folder are also
 restored. However, to restore vault data of other types of collection
 objects, you must restore both the collection object and each member
 file object.

 This command does not restore:
 o Backed-up metadata, notes, or attachments. For a full
 restoration of these objects, you must use the restoreserver
 script. See Restoring All Server Backup Data in the ProjectSync
 User's Guide for details.
 o Data for the Hierarchical Configuration Manager.
 o Vaults backed up from pre-4.0 versions of Developer Suite.

 The restorevault command is server-side only and must be run
 using the rstcl command or by passing a script in a URL from
 your browser. See the 'server-side' topic or the ENOVIA Synchronicity
 stcl Programmer's Guide for details.

 If you incorporate the restorevault command into an rstcl script,
 the access controls that govern who can restore a vault are
 not applied.

 Error messages are written to error_log in:
 $SYNC_DIR/custom/servers/<server>/<port>/logs

SYNOPSIS

 restorevault -from <backup_area> [-overwrite] [--] <path>

OPTIONS

• -from
• -overwrite
• --

-from

 -from <backup_area> The name of the directory inside Backup.sync
 that you want to restore from. For example,
 20030813_095027.

-overwrite

Administration

1358

 -overwrite Specifies that items that exist in the vault
 are overwritten during the restoration. (See
 Restoring Your Server Vault Data in the
 ProjectSync User's Guide for examples of using
 this option.)

--

 -- Indicates that the command should stop
 looking for command options. Use this
 option when the object you specify begins
 with a hyphen (-).

OPERANDS

• Vault Directory Path

Vault Directory Path

 <path> The path of the vault directory or vault
 object to be restored. If you specify a
 directory, the restoration is recursive.

RETURN VALUE

 None

SEE ALSO

 backup

EXAMPLES

 This example tcl script uses the restorevault command to restore
 the vault data from the and4 directory. Any existing files in the
 directory are overwritten:

 restorevault -overwrite -from 20030707_150817 /Projects/smallLib/and4

 This example restores vault data of the Cadence view object called
 layout and all of its member objects.

 restorevault -from /Projects/smallLib/mid2/layout.sync.cds

ENOVIA Synchronicity Command Reference - Module

1359

suspend

suspend Command

NAME

 suspend - Sets the server to a semi-active state

DESCRIPTION

 The suspend command sets the server to a semi-active state. This
 command should only be used inside a server-side TCL script. The
 script should be invoked through rstcl. It will execute the suspend
 command, run the code specified in the tcl-code argument and terminate
 the suspend, restoring the server to normal operation.

 While the server is in a semi-active state, DesignSync rejects
 operations such as checkin, with a message explaining that the server
 is in a suspended state and returning the optional -because message.
 The administrator can define registry settings that determine whether
 the operation will retry, how many retry attempts will be attempted
 before the command fails, and how long to wait between retries. For
 more information, see the ENOVIA DesignSync Data Manager
 Administrator's Guide.

 Note: The backup functionality in DesignSync uses the suspend command
 to put the server in a restricted access state.

SYNOPSIS

 suspend [-because <why>] -maintenance | -readonly [-mode]
 {tcl-code}

ARGUMENTS

• tcl Code

tcl Code

 <tcl-code> The code to execute while the server is in suspend
 mode.

OPTIONS

• -because
• -maintenance

Administration

1360

• -mode
• -readonly

-because

 -because <why> Specifies the reason the server is in semi-active
 state. Any operations that fail to run while the
 server is in this state will return this as a reason
 to the user.

-maintenance

 -maintenance Sets the server to deny all read or write
 operations.

 This option is mutually exclusive with -readonly. You
 must specify either -readonly or -maintenance.

-mode

 -mode Sets a return string indicating whether the server is
 in 'normal,' 'readonly,' or 'maintenance,' mode.
 This can be used by scripts wishing to check the
 server status.

-readonly

 -readonly Sets the server to allow read-only vault operations,
 such as populate -get/-share, or compare, contents,
 ls, and other read-only commands. It does not allow
 operations that modify the vault such as populate
 -lock, ci, mkmod, etc.

 This option is mutually exclusive with
 -maintenance. You must specify either -readonly or
 -maintenance.

RETURN VALUE

 Not applicable.

SEE ALSO

ENOVIA Synchronicity Command Reference - Module

1361

 backup, rstcl

EXAMPLES

 This example shows a procedure that releases the global server lock,
 suspends the server for 100 seconds in both maintenance and readonly
 mode.

 Releasing the global server lock is recommended to allow other
 commands past the locking gate to receive the 'in maintenance mode'
 failure. Otherwise, the lock prevents other server-side tcl scripts
 from being processed by the server.

 # first release the global lock
 # To avoid any output from the 'url syslock' command,
 # the record command places the output in the variable "msg"

 record {url syslock -release smdSrvrMetaDataLock} msg

 proc FullMaintenanceCode {} {
 # here the code that requires the server to reject
 # all requests, will be done
 after 100000
 }

 proc ReadOnlyMaintenanceCode {} {
 # here the maintenance which allows read ops
 # such as (populate -get/-share, ls, compare...)
 # but denies write ops,
 # such as (ci, populate -lock, tag, rmversion....)
 after 100000
 }

 suspend -maintenance \
 -because "Server Is Undergoing Required Maintenance" \
 {FullMaintenanceCode}

 suspend -readonly \
 -because "Server Is Undergoing Required Maintenance. \
 Read Operations are allowed" \
 {ReadOnlyMaintenanceCode}

See Also

backup Command

NAME

 backup - Backs up a SyncServer

DESCRIPTION

Administration

1362

 The backup command lets you back up a SyncServer, including its vault,
 metadata, and notes. You can use this command to run both full and
 incremental backups. Use the backup command in conjunction with
 your standard system back-up procedures. To create a back-up that
 lets you safely restore your server, you take two steps:

 1. Use the backup command to generate back-up data in the
 server_vault/Backup.sync area.
 2. Perform a standard system back-up of your server_vault area and
 your $SYNC_CUSTOM_DIR.

 The data stored in the Backup.sync directory creates a server
 snapshot that, in conjunction with a standard system back-up, lets
 you safely restore your server and vault.

 The backup command is server-side only and must be run using the rstcl
 command or by passing a script in a URL from your browser. See
 the 'server-side' topic or the ENOVIA Synchronicity stcl Programmer's
 Guide for details.

 The back-up operation includes the server vault, metadata,
 attachments, and all of the notes, note types, and property types.
 The back-up preserves the following directories:

 o The entire server_metadata hierarchy
 o The entire server_vault hierarchy
 o Parts of the $SYNC_CUSTOM_DIR/servers/<host>/<port>/share/data
 hierarchy.

 Only attachments are copied from the $SYNC_CUSTOM_DIR areas.
 Note customizations stored in the custom areas are not
 backed up.

 The backup command does not compress the backed-up data.

 The data is backed up to the directory:

 $SYNC_DIR/../syncdata/<host>/<port>/server_vault/Backup.sync

 This directory contains a subdirectory for each back-up operation.
 The back-up subdirectory name has the following format:

 <year><month><day>_<hour><minute><second>

 The time is in 24-hour format according to the local time zone of
 the server.

 Within the dated subdirectory, the backed-up data is stored in the
 following directories:

 o Attachments - Hard links to the note attachment and definition
 files in the server's $SYNC_CUSTOM_DIR/servers/<host>/<port>/
 share/data area.
 o server_metadata/ and all directories below it - Copies of
 the metadata.
 o server_vault/ and all directories below it - Copies of the

ENOVIA Synchronicity Command Reference - Module

1363

 tags database are stored in the server_vault/Partitions
 subdirectories. Hard links to the server vault are stored in
 the server_vault directory.

 For example, data in:

 $SYNC_DIR/../syncdata/<host>/<port>/server_vault/Projects/P1/file1.rca

 might be backed up to:

 $SYNC_DIR/../syncdata/<host>/<port>/server_vault/Backup.sync/
 20010710_145601/Projects/P1/file1.rca

 The Backup.sync, Import.sync, and Export.sync directories under
 server_vault are not backed up.

 Note: The backup creates symbolic links to vault data if your
 Backup.sync area is on a different partition from your server or
 if your system does not support hardlinks. If the vault data is
 removed (for example, by an rmfolder command) the backed-up
 symbolic links cannot be used to restore your data. To avoid this
 problem, archive your Backup.sync area using a switch to
 de-reference the symbolic links.

 The back-up operation does not make the server completely
 inaccessible. The server is suspended for a short time at the
 beginning of the back-up but after that it is accessible for all
 ProjectSync operations. DesignSync users have read access to
 operations after the initial suspension. For example, after the
 initial suspension, DesignSync users can populate from a vault
 during a back-up.

 For each dated back-up subdirectory, a .cleanup executable file is
 generated in the Backup.sync directory. You can run this executable
 to remove the corresponding backed-up data. For example, if your
 back-up directory is:

 $SYNC_DIR/../syncdata/<host>/<port>/server_vault/Backup.sync/
 20010710_145601

 You would enter "20010710_145601.cleanup" to remove the data in
 the 20010710_145601 directory.

 If the clean-up operation fails, you get an error message.

 During the backup, .inprogress is appended to the dated
 subdirectory of Backup.sync. This extension is removed when the
 back-up completes. You can use this feature to check the status of
 your back-up. If .inprogress is appended to the subdirectory
 name and you cannot write to the server, the back-up is still
 underway. If .inprogress is appended to the subdirectory name
 and you can write to the server, the server crashed and
 restarted while the back-up was underway.

 See the ProjectSync User's Guide: "Backing Up Your Server" help topic
 for information on recovering from server crashes, restoring
 your backed-up files, and enabling and scheduling automated backups.

Administration

1364

 Note: If you choose to back up without using the backup command,
 you must stop your server, perform the backup, and then restart
 the server. When you use the backup command, all access to the
 metadata is refused while the metadata is copied; all write access
 to the vault is refused while the vault is copied. The metadata
 and the vault are backed up into a single archive. Most of the
 $SYNC_CUSTOM_DIR is not included in the back-up operation.

SYNOPSIS

 backup [-from <date>]

OPTIONS

• -from

-from

 -from <date> When the -from argument is specified, an
 incremental backup is performed based on
 the backup that occurred on <date>. The
 <date> value must match the timestamp of
 a previous full or incremental backup
 directory. For example, if you have a
 backup directory called "20031027_085512"
 then you can specify:

 backup -from "20031027 085512"

 You also can specify the special value
 "last" to incrementally back up from
 the most recent back up.

RETURN VALUE

 Name of the back-up directory

SEE ALSO

 rstcl, access verify

EXAMPLES

 The following example illustrates how to use the backup command in

ENOVIA Synchronicity Command Reference - Module

1365

 a Tcl script. The script first calls access verify to ensure that
 the user has permission to perform a back-up. If not, the script
 returns "Permission denied." If the user has permission, the back-
 up operation performs an incremental backup based on the previous
 backup. If the operation fails, the script issues an error.

 if {[access verify AdministrateServer $SYNC_User]} {
 if {[catch { backup -from last } result]} {
 puts ""
 puts "** Backup Server Error **"
 puts "Stack Trace: $errorInfo"
 puts ""
 }
 } else {
 puts "Permission denied."
 }

 When using backup in a script, invoke the access verify command to
 ensure that only authorized users can back up the server. See the
 ENOVIA Synchronicity Access Control Guide for information on using
 the AdministrateServer access control to restrict access to server
 operations.

rstcl Command

NAME

 rstcl - Runs server-side stcl scripts

DESCRIPTION

 This command runs server-side stcl scripts from DesignSync
 clients. You can also execute server-side scripts by passing a URL
 to the SyncServer from your browser. See the 'server-side' topic or
 the ProjectSync User's Guide for details.

 You run client-side scripts using the DesignSync run command or the
 Tcl source command. The choice of whether to implement a script as
 client-side or server-side depends on what you are trying to
 accomplish. You can use client scripts to automate user tasks or
 implement enhancements to the built-in user command set. You create
 server-side scripts for any of the following reasons:
 - To set server-wide policies (such as triggers or access controls)
 - To create server customizations (such as customized ProjectSync
 panels or data sheets)
 - To reduce the amount of client/server traffic that a
 client-side script accessing vault data would require
 - To execute commands that are only available as server-side
 commands (such as 'access reset' and most ProjectSync commands)

 When you execute a script with rstcl, the SyncServer looks for the
 specified script in the following locations (in the order listed):

Administration

1366

 1. Server-specific Tcl scripts (UNIX only):
 <SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/tcl

 2. Site-wide Tcl scripts:
 <SYNC_CUSTOM_DIR>/site/share/tcl

 3. Enterprise-wide Tcl scripts:
 <SYNC_CUSTOM_DIR>/enterprise/share/tcl

 4. Synchronicity-provided Tcl scripts:
 <SYNC_DIR>/share/tcl

 Do not put scripts in <SYNC_DIR>/share/tcl because this
 directory is reserved for Synchronicity scripts, and your
 scripts may be overwritten when you upgrade your
 Synchronicity software.

 rstcl requests mutually exclude each other. I.e. They all acquire the
 same exclusive lock, named smdSrvrMetaDataLock. If you analyze your
 script and know it to be safe to run in parallel with other scripts,
 you may release the exclusive lock from within your script by using
 'url syslock -release smdSrvrMetaDataLock'. If your script reads or
 writes an external file, it is probably not parallelizable. rstcl
 requests and panel= requests (invoked via ProjectSync) never mutually
 exclude each other; panel requests are entirely independent of rstcl's
 lock.

 Notes:
 - If you make modifications to your script, use the ProjectSync
 Reset Server menu option to force the SyncServer to reread your
 script.
 - When specifying 'sync:' URLs within scripts that are run on the
 server, do not specify the host and port. For example, specify:
 sync:///Projects/Asic
 not
 sync://holzt:2647/Projects/Asic
 Because the script is run on the server itself, host:port
 information is unnecessary and is stripped out by the
 server, which may lead to incorrect behavior during object-name
 comparisons.
 - The SYNC_ClientInfo variable is not defined when running
 server-side scripts with rstcl -- you must use the browser-based
 invocation. All other SYNC_* variables (SYNC_Host, SYNC_Port,
 SYNC_Domain, SYNC_User, and SYNC_Parm if parameters are passed
 into the script) are available when using rstcl.

SYNOPSIS

 rstcl [-output <file>] -server <serverURL> -script <script>
 [-urlparams <name>=<value>[&<name>=value[...]]]

OPTIONS

ENOVIA Synchronicity Command Reference - Module

1367

• -output
• -server
• -script
• -urlparams

-output

 -output <file> Specifies the file to which script output is
 written. If omitted, the output is displayed.

-server

 -server <serverURL> Specifies the URL of the SyncServer that will
 execute the script. Specify the URL as follows:
 sync://<host>[:<port>]
 where 'sync://' is required, <host> is
 the machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (if omitted, defaults to 2647/2679). For
 example, you might specify the following:
 -server sync://serv1.abco.com:1024

-script

 -script <script> Specifies the name of the script to be
 executed. This script must be in one of the Tcl
 script directories on the SyncServer specified
 by the -server option. The Tcl directories are
 (in the order in which they are searched):

 1. Server-specific Tcl scripts (UNIX only):
 <SYNC_DIR>/custom/servers/<host>/<port>/share/tcl

 2. Site-wide Tcl scripts:
 <SYNC_DIR>/custom/site/share/tcl

 3. Enterprise-wide Tcl scripts:
 <SYNC_DIR>/custom/enterprise/share/tcl

 4. Synchronicity-provided Tcl scripts:
 <SYNC_DIR>/share/tcl

 The script can contain Tcl constructs and
 Synchronicity commands, including server-side only
 commands.

-urlparams

Administration

1368

 -urlparams <params> Specifies the parameters that are passed into
 the script. Specify each parameter as a
 name/value pair separated by an equal sign (=),
 and separate multiple parameters with an
 ampersand (&):
 <param1>=<value1>&<param2>=<value2>...
 For example:
 -urlparams Name=Joe&IDNum=1234

 Parameters are passed into the script using the
 global variable SYNC_Parm, which is a Tcl
 array. The array keys are the names of the
 parameters. To access the value of a parameter
 from within the script, use the following syntax:

 $SYNC_Parm(<param_name>)

 For example, the following Tcl line would
 display the value of the 'name' parameter:

 puts "The name is: $SYNC_Parm(name)"

 Note: If any parameter name or value
 contains whitespace, surround the entire
 parameter list with double quotes. For example:
 -urlparams "name=Joe Black&IDNum=1234"

RETURN VALUE

 o If -output is not specified, returns (and displays) the script
 output.
 o If -output is specified, output is written to the specified file
 and the return value is an empty string.

 If the script has an error, a Tcl exception is thrown from the
 client side and the Tcl stack trace is output. Proper usage
 for handling exceptions would be to provide an exception handler
 when you use the rstcl command:
 if [catch {rstcl -server ...} result] {
 # Something bad happened.
 # 'result' contains the output generated by the script
 # prior to the error and the Tcl stack trace.
 } else { # All is fine.
 # 'result' contains whatever output is generated
 # by the script.
 }

 If the -output option to the rstcl command was specified, then
 the exception is still thrown, but the script output and Tcl stack
 trace are written to the specified output file.

SEE ALSO

ENOVIA Synchronicity Command Reference - Module

1369

 server-side, run, url syslock

EXAMPLES

 A common use of rstcl is to run the 'access reset' command, which
 restarts the SyncServer. See the 'access reset' command for details.

 Most ProjectSync-related scripts must be run on the server and
 could therefore use rstcl. This example creates a ProjectSync note
 using the 'note create' command, which is a server-side only
 command, and displays the URL of the new note. This output is then
 returned to the rstcl command in callNoteCreate.tcl.

 1.In the <SYNC_CUSTOM_DIR>/site/share/tcl directory on the
 holzt:2647 server is the noteCreate.tcl script, which contains
 the following:

 set noteUrl [note create -type Note \
 [list Title $SYNC_Parm(title)] [list Body $SYNC_Parm(body)] \
 [list Author $SYNC_Parm(author)]]
 puts "$noteUrl"

 2. On the client side, the callNoteCreate.tcl script provides an
 exception catcher in case the noteCreate.tcl script fails.

 if [catch {rstcl -server sync://holzt:2647 -script noteCreate.tcl \
 -urlparams "author=Goss&title=This is a note.&body=New note."} \
 result] {
 puts "Couldn't create the note!"
 } else {
 puts "Created note: $result"
 }

 3. From stcl, run the client script:

 stcl> source callNoteCreate.tcl
 Created note: sync:///Note/SyncNotes/Note/3

 You could also run the rstcl command directly from the command
 line (no exception catcher). Doing so creates a second note:

 stcl> rstcl -server sync://holzt:2647 -script noteCreate.tcl \
 -urlparams "author=Goss&title=Another note.&body=New note."
 sync:///Note/SyncNotes/Note/4

Troubleshooting

syncinfo

syncinfo Command

Administration

1370

NAME

 syncinfo - Returns Synchronicity environment information

DESCRIPTION

 This command returns information about the Synchronicity
 software environment, such as version number, location of
 registry files, and default editor and HTML browser. The command
 can be run from the client to return client information, or from
 the server to return server information.

 By default (with no arguments specified), all available information
 is returned. You can request specific information by specifying
 one or more command arguments.

 If a given value has not been set or is not available, then
 'syncinfo' returns an empty string. For example, if you ask for
 portRegistryFile from the client, the return value is empty because
 portRegistryFile is only available from the server.

SYNOPSIS

 syncinfo [<arg> [<arg>...]]

ARGUMENTS

• General Information
• isServer
• syncDir
• version
• Registry Information
• clientRegistryFiles
• enterpriseRegistryFile
• portRegistryFile
• projectRegistryFile
• serverRegistryFiles
• siteRegistryFile
• syncRegistryFile
• userRegistryFile
• usingSyncRegistry
• Customization Information
• customDir
• customSiteDir
• customEntDir

ENOVIA Synchronicity Command Reference - Module

1371

• siteConfigDir
• usrConfigDir
• userConfigFile
• Client Information
• connectTimeout
• commAttempts
• defaultCache
• fileEditor
• htmlBrowser
• proxyNamePort
• somTimeout
• Server Information
• berkdbIsShmEnabled
• berkdbShmKey
• isTestMode
• serverMetadataDir
• serverDataDir
• serverMachine
• serverName
• serverPort
• User Information
• home
• userName

General Information

isServer

 isServer Returns a Tcl boolean value (0 or 1) indicating
 whether the software executing the syncinfo
 command is acting as a server (1) or client (0).

syncDir

 syncDir Returns the root directory of the Synchronicity
 software installation. On UNIX, this value
 corresponds to the SYNC_DIR environment
 variable (on Windows, SYNC_DIR is not required).

version

 version Returns the version of the Synchronicity software
 as a string.

Registry Information

Administration

1372

clientRegistryFiles

 clientRegistryFiles Returns a comma-separated list of registry
 files used by the Synchronicity clients
 (DesSync, stcl, dss, stclc, dssc).

enterpriseRegistryFile

 enterpriseRegistryFile Returns the enterprise-wide registry file.

portRegistryFile

 portRegistryFile Returns the port-specific registry file.

projectRegistryFile

 projectRegistryFile Returns the project-specific registry file.

serverRegistryFiles

 serverRegistryFiles Returns a comma-separated list of registry
 files used by a Synchronicity server.

siteRegistryFile

 siteRegistryFile Returns the site-wide registry file.

syncRegistryFile

 syncRegistryFile Returns the Synchronicity-supplied standard
 registry file.

userRegistryFile

 userRegistryFile Returns the user-specific registry file.

usingSyncRegistry

ENOVIA Synchronicity Command Reference - Module

1373

 usingSyncRegistry Returns a Tcl boolean value (0 or 1)
 indicating whether the Synchronicity
 software is using the text-based registry (1)
 or the native Windows registry (0).

Customization Information

customDir

 customDir Returns the root directory of the 'custom' branch
 of the Synchronicity installation hierarchy,
 which contains all site- and server-specific
 customization files. The default value,
 <SYNC_DIR>/custom, can be overridden by the
 SYNC_CUSTOM_DIR environment variable.

customSiteDir

 customSiteDir Returns the directory that contains site-specific
 customization files. The default value,
 <SYNC_CUSTOM_DIR>/site (which defaults to
 <SYNC_DIR>/custom/site), can be overridden by
 the SYNC_SITE_CUSTOM environment variable.

customEntDir

 customEntDir Returns the directory that contains enterprise-specific
 configuration files. The default value,
 <SYNC_ENT_CUSTOM> (which defaults
 to <SYNC_CUSTOM_DIR>/enterprise),
 can be overridden by the SYNC_ENT_CUSTOM
 environment variable.

siteConfigDir

 siteConfigDir Returns the directory that contains site-specific
 configuration files. The default value,
 <SYNC_SITE_CUSTOM>/config (which defaults
 to <SYNC_CUSTOM_DIR>/site/config, which
 defaults to <SYNC_DIR>/custom/site/config),
 can be overridden by the SYNC_SITE_CNFG_DIR
 environment variable.

usrConfigDir

 userConfigDir Returns the directory that contains user

Administration

1374

 configuration files. The default value,
 <HOME>/.synchronicity, can be overridden
 by the SYNC_USER_CFGDIR environment variable.

userConfigFile

 userConfigFile Returns the user configuration file. The default
 value, <HOME>/.synchronicity/user.cfg, can be
 overridden by the SYNC_USER_CONFIG
 environment variable.

Client Information

connectTimeout

 connectTimeout Returns the number of seconds the client will
 wait per communication attempt with the server.

commAttempts

 commAttempts Returns the number of times client/server
 communication is attempted before failing.
 Using multiple attempts protects against
 transient network problems. 'Connect Failure'
 failures do not trigger multiple connection
 attempts, because transient network problems
 rarely cause this error.

 Note: When the number of communication attempts
 is the default value of 3, 'syncinfo commAttempts'
 returns no value instead of returning 3.

defaultCache

 defaultCache Returns the default cache directory for the
 client as specified during installation or
 using SyncAdmin.

fileEditor

 fileEditor Returns the default file editor as specified
 during installation or using SyncAdmin.

htmlBrowser

ENOVIA Synchronicity Command Reference - Module

1375

 htmlBrowser (UNIX only) Returns the default HTML browser
 as specified during installation or using SyncAdmin.

proxyNamePort

 proxyNamePort Returns the <name>:<port> of a proxy, if
 one is defined in a client registry file or
 using the ProxyNamePort environment variable.

somTimeout

 somTimeout Returns the number of milliseconds after an
 unsuccessful server connection attempt during
 which the client does not try to connect again.
 This timeout protects against an operation
 on many objects (such as 'ls' on a large
 directory) taking an excessively long time
 to complete when there is a connection failure
 (such as when the server is down). Instead of
 waiting the connectTimeout period for each
 object, the operation fails for all objects
 after the first connection failure.

Server Information

berkdbIsShmEnabled

 berkdbIsShmEnabled For Synchronicity internal use only.

berkdbShmKey

 berkdbShmKey For Synchronicity internal use only.

isTestMode

 isTestMode For Synchronicity internal use only.
 Returns a Tcl boolean value (0 or 1) indicating
 whether the software executing the syncinfo
 command is running in test mode (1) or not (0).
 This feature is useful for regression
 testing of servers.

serverMetadataDir

Administration

1376

 serverMetadataDir Returns the directory that contains the
 server metadata (such as relational
 database) files.

serverDataDir

 serverDataDir Returns the directory that contains vault
 (repository) data that is stored by a server.

serverMachine

 serverMachine Returns the name of the server as returned by
 gethostname(). This value is returned only
 when 'syncinfo' is run from a server-side script.

serverName

 serverName Returns the name of the server as it was
 specified in the URL used to contact the
 server. This value is returned only when
 'syncinfo' is run from a server-side script.

serverPort

 serverPort Returns the port number used by the server to
 respond to the syncinfo request. This value is
 returned only when 'syncinfo' is run from a
 server-side script.

User Information

home

 home Returns the home directory of the user
 running syncinfo (HOME on UNIX, or as
 defined in your user profile on Windows platforms).

userName

 userName Returns the account name of the user
 running syncinfo.

ENOVIA Synchronicity Command Reference - Module

1377

RETURN VALUE

 In dss/dssc mode, you cannot operate on return values, so the return
 value is irrelevant.

 In stcl/stclc mode:
 - If no argument is specified, the return value is a
 name/value list (Tcl 'array get' format) containing
 all available information.
 - If a single argument is specified, the return value is
 the requested value (not a list).
 - If more than one argument is specified, the return value
 is a name/value list containing the requested information.
 - If any argument is not known, an exception is thrown.

SEE ALSO

 server-side

EXAMPLES

• Example Showing the SyncInfo Version on Client Startup
• Example of Extracting SyncInfo Information to an Array
• Example Showing Extracting the Information from an Array
• Example of extracting Name/Value Pairs for Specific Arguments

Example Showing the SyncInfo Version on Client Startup

 When you start any Synchronicity client, 'syncinfo version'
 executes, which displays (and writes to your log file
 if logging is enabled) the Synchronicity version. In this
 example, the software is version 3.0.
 % stclc
 Logging to c:\goss\dss_01192000_092559.log
 V3.0

 stcl>

Example of Extracting SyncInfo Information to an Array

 The following stcl script fragment shows how to get all known
 information as a Tcl array variable. The 'version' string is
 then printed.
 array set info [syncinfo]
 puts "Version: $info(version)"

Administration

1378

Example Showing Extracting the Information from an Array

 This example uses the single-argument form of syncinfo to print the
 same version information provided by the previous example:

 puts "Version: [syncinfo version]"

Example of extracting Name/Value Pairs for Specific Arguments

 The following example uses command arguments to return a list
 of the 'syncDir' and 'userName' values. This example
 also shows how to enumerate the name/value list returned by
 syncinfo without storing it in an array variable.
 foreach {name value} [syncinfo syncDir userName] {
 puts "$name: $value"
 }

See Also

server-side

NAME

 server-side - Understanding and using server-side commands

DESCRIPTION

 Server-side only commands can be run only on the SyncServer. You
 run server-side scripts either from your browser, or using the
 rstcl command from a DesignSync client:

 o From your browser, specify a URL as follows:
 http://<host>:<port>/scripts/isynch.dll?panel=TclScript&file=<filename>

 o From a DesignSync client, specify the following command:
 rstcl -server sync://<host>:<port> -script <filename>

 where <filename> is the name of your server-side script.

 The SyncServer looks for stcl scripts in the following locations (in the
 order listed):

 1. Server-specific Tcl scripts (UNIX only):
 <SYNC_DIR>/custom/servers/<host>/<port>/share/tcl

 2. Site-wide Tcl scripts:
 <SYNC_DIR>/custom/site/share/tcl

 3. Synchronicity-provided Tcl scripts:

ENOVIA Synchronicity Command Reference - Module

1379

 <SYNC_DIR>/share/tcl

 Do not put scripts in <SYNC_DIR>/share/tcl because this
 directory is reserved for Synchronicity scripts, and your
 scripts may be overwritten when you upgrade your
 Synchronicity software.

 Important: If you make modifications to your script, use the
 ProjectSync Reset Server menu option to force the SyncServer to
 reread your script.

 When specifying 'sync:' URLs within scripts that are run on the
 server, do not specify the host and port. For example, specify:
 sync:///Projects/Asic
 not
 sync://holzt:2647/Projects/Asic
 Because the script is run on the server itself, host:port
 information is unnecessary and is stripped out by the
 server, which may lead to incorrect behavior during object-name
 comparisons.

 You must verify access controls explicitly in server-side scripts.
 Access controls are generally ignored in server-side scripts;
 the script itself must call the 'access verify' command for access
 controls it wishes to honor. The following server-side script
 verifies the built-in AdministrateServer access control:

 if [access verify AdministrateServer $SYNC_User] {
 access reset
 puts "AccessControl files reread."
 } else {
 puts "Permission denied."
 }

 If your server-side script operates on RevisionControl notes, you need
 to protect the integrity of your data by blocking access to the server
 while the script runs:

 1. Edit your custom AccessControl file to deny all actions that operate
 on RevisionControl notes, for example:

 access deny Checkin everyone
 access deny Tag everyone

 2. Load the modified AccessControl file by using the ProjectSync Access
 Reset menu item.

 3. Run your server-side script.

 4. Edit your custom AccessControl file and remove the 'access deny'
 commands.

 5. Load the modified AccessControl file by using the ProjectSync Access
 Reset menu item.

 See the 'access' commands for more information about custom
 AccessControl files.

Administration

1380

 The following are examples (but not the exhaustive list) of
 server-side only commands:
 url users
 url notes
 note setprops
 note query
 access verify
 access reset

 For more information on server-side development, see the ENOVIA
 Synchronicity stcl Programmer's Guide.

SEE ALSO

 rstcl

EXAMPLES

 The following is an example of passing parameters into a
 server side Tcl script.

 Assuming the script uses the TclScript panel, the arguments are
 passed using the same syntax that browsers use to pass parameters
 to CGI scripts. This makes it simple to invoke TclScript panels
 from HTML forms.

 All of the arguments are packaged as members of an array variable
 named SYNC_Parm. The index to the array is the name of the
 argument, and the value is the argument value.

 For example, to pass the color and shape of an object to a script
 called 'DrawShapes.tcl', you would have something like this:

 The URL to invoke the script (this example is meant to be a single
 line but is displayed across two for enhanced readability):

 http://holzt:2647/scripts/isynch.dll?panel=TclScript&file=DrawShapes.tcl
 &color=red&shape=triangle

 Within DrawShapes.tcl, you might print out the parameters:

 puts "Color = $SYNC_Parm(color)
"
 puts "Shape = $SYNC_Parm(shape)"

 In this example, submitting the URL should produce the output:

 Color = red
 Shape = triangle

 You could also execute this script using the rstcl command from a
 DesignSync client (dssc in this example):

ENOVIA Synchronicity Command Reference - Module

1381

 dss> rstcl -server sync://holzt:2647 -script DrawShapes.tcl \
 -urlparams color=red&shape=triangle

synctrace

synctrace Commands

NAME

 synctrace - Commands to help diagnose software problems

DESCRIPTION

 The 'synctrace' commands help Synchronicity diagnose software
 problems and performance issues by enabling or disabling software
 tracing.

 See the "synctrace set" command for details. Also see "Running a
 DesignSync Client in Debug Mode" in DesignSync Data Manager User's
 Guide.

SYNOPSIS

 synctrace [un]set [-server <serverURL>] 0

SEE ALSO

 synctrace set, synctrace unset

EXAMPLES

 See the "synctrace set" command.

See Also

synctrace set Command

NAME

 synctrace set - Turns on software tracing

Administration

1382

DESCRIPTION

 Helps Synchronicity diagnose software problems and performance
 issues by enabling software tracing. Synchronicity may ask you to
 enable tracing to help with problem diagnosis.

 When you use the synctrace command to set the trace level for a
 client or server, the trace is only in effect for the current
 client or server session. The trace terminates when you shut down
 the client or the server and does not start again when you restart
 the client or server, unless you reinvoke the command. If you have
 already set (or unset) synctrace, and you inadvertently set (or
 unset) the trace again, the second setting has no effect.

 The trace output is stored in the
 <SYNC_USER_CFGDIR>/logs/sync_client_trace_<date>_<time>.log file.
 In addition, the output is stored in the dss_<date>_<time>.log
 file. The trace output for a server is stored in
 <SYNC_CUSTOM_DIR>/servers/<host>/<port>/logs/error_log.

 If you want to have tracing on when you start the client or server,
 you should set the SYNC_TRACE environment variable to 0.
 See "Running a DesignSync Client in Debug Mode" in DesignSync Data
 Manager User's Guide
 for more details.

SYNOPSIS

 synctrace set [-server <serverURL>] 0

OPTIONS

• -server

-server

 -server <serverURL> Turns on the trace for the server you specify.
 If you omit the -server switch, the trace is
 turned on for the client session from which
 you invoked the command. Specify the URL
 as follows:
 sync://<host>[:<port>]
 Where 'sync://' is required, <host> is the
 machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (if omitted, defaults to 2647/2679). For
 example, you might specify the following:
 -server sync://serv1.abco.com:30138

 Note: DesignSync also supports a syncs

ENOVIA Synchronicity Command Reference - Module

1383

 protocol for communicating with secure (SSL)
 SyncServer ports. In most cases, DesignSync
 automatically redirects requests to a
 cleartext (non-secure) port using the sync
 protocol to the secure port, if one is
 defined. The default Synchronicity secure
 port number is 2679. Your Synchronicity
 administrator defines what SyncServer ports
 are available and whether secure
 communications are required. See the
 "Overview of Secure Communications section"
 in DesignSync Data Manager User's Guide for
 more information.

 Enables tracing on all software
 components. While it is possible to
 selectively turn on tracing for specific
 software libraries, it is typically most
 useful to turn on all tracing.

RETURN VALUE

 none

EXAMPLES

• Example of Turning Tracing on for all Libraries
• Example of Turning Trace off for All Libraries
• Example of Turning Trace On for a Specific Server
• Example of Turning Trace Off for a Specific Server

Example of Turning Tracing on for all Libraries

 The following example turns on tracing for all libraries.
 stcl> synctrace set 0

Example of Turning Trace off for All Libraries

 The following example turns off tracing for all libraries.
 stcl> synctrace unset 0

Example of Turning Trace On for a Specific Server

 The following example turns on tracing for the specified server:
 stcl> synctrace set -server sync://serv1.abco.com:30138 0

Administration

1384

Example of Turning Trace Off for a Specific Server

 The following example turns off tracing for the specified server:
 stcl> synctrace unset -server sync://serv1.abco.com:30138 0

synctrace unset Command

NAME

 synctrace unset - Turns off software tracing

DESCRIPTION

 See the "synctrace set" command.

SYNOPSIS

 synctrace unset [-server <serverURL>] 0

synctrace set

synctrace set Command

NAME

 synctrace set - Turns on software tracing

DESCRIPTION

 Helps Synchronicity diagnose software problems and performance
 issues by enabling software tracing. Synchronicity may ask you to
 enable tracing to help with problem diagnosis.

 When you use the synctrace command to set the trace level for a
 client or server, the trace is only in effect for the current
 client or server session. The trace terminates when you shut down
 the client or the server and does not start again when you restart
 the client or server, unless you reinvoke the command. If you have
 already set (or unset) synctrace, and you inadvertently set (or
 unset) the trace again, the second setting has no effect.

 The trace output is stored in the

ENOVIA Synchronicity Command Reference - Module

1385

 <SYNC_USER_CFGDIR>/logs/sync_client_trace_<date>_<time>.log file.
 In addition, the output is stored in the dss_<date>_<time>.log
 file. The trace output for a server is stored in
 <SYNC_CUSTOM_DIR>/servers/<host>/<port>/logs/error_log.

 If you want to have tracing on when you start the client or server,
 you should set the SYNC_TRACE environment variable to 0.
 See "Running a DesignSync Client in Debug Mode" in DesignSync Data
 Manager User's Guide
 for more details.

SYNOPSIS

 synctrace set [-server <serverURL>] 0

OPTIONS

• -server

-server

 -server <serverURL> Turns on the trace for the server you specify.
 If you omit the -server switch, the trace is
 turned on for the client session from which
 you invoked the command. Specify the URL
 as follows:
 sync://<host>[:<port>]
 Where 'sync://' is required, <host> is the
 machine on which the SyncServer is
 installed, and <port> is the SyncServer port
 number (if omitted, defaults to 2647/2679). For
 example, you might specify the following:
 -server sync://serv1.abco.com:30138

 Note: DesignSync also supports a syncs
 protocol for communicating with secure (SSL)
 SyncServer ports. In most cases, DesignSync
 automatically redirects requests to a
 cleartext (non-secure) port using the sync
 protocol to the secure port, if one is
 defined. The default Synchronicity secure
 port number is 2679. Your Synchronicity
 administrator defines what SyncServer ports
 are available and whether secure
 communications are required. See the
 "Overview of Secure Communications section"
 in DesignSync Data Manager User's Guide for
 more information.

 Enables tracing on all software
 components. While it is possible to

Administration

1386

 selectively turn on tracing for specific
 software libraries, it is typically most
 useful to turn on all tracing.

RETURN VALUE

 none

EXAMPLES

• Example of Turning Tracing on for all Libraries
• Example of Turning Trace off for All Libraries
• Example of Turning Trace On for a Specific Server
• Example of Turning Trace Off for a Specific Server

Example of Turning Tracing on for all Libraries

 The following example turns on tracing for all libraries.
 stcl> synctrace set 0

Example of Turning Trace off for All Libraries

 The following example turns off tracing for all libraries.
 stcl> synctrace unset 0

Example of Turning Trace On for a Specific Server

 The following example turns on tracing for the specified server:
 stcl> synctrace set -server sync://serv1.abco.com:30138 0

Example of Turning Trace Off for a Specific Server

 The following example turns off tracing for the specified server:
 stcl> synctrace unset -server sync://serv1.abco.com:30138 0

synctrace unset

synctrace unset Command

NAME

ENOVIA Synchronicity Command Reference - Module

1387

 synctrace unset - Turns off software tracing

DESCRIPTION

 See the "synctrace set" command.

SYNOPSIS

 synctrace unset [-server <serverURL>] 0

Utilities

convertdata

convertdata

NAME

 convertdata - Converts CVS/RCS vault files to DesignSync format

DESCRIPTION

 The convertdata utility converts vault files from Concurrent Version
 System (CVS) or Revision Control System (RCS) data formats to the
 DesignSync format. See the DesignSync Data Manager Administrator's
 Guide: "Converting a Vault Repository from CVS/RCS Format to
 DesignSync Format".

convertutil

convertutil

NAME

 convertutil - Converts between supported vault file formats

DESCRIPTION

 The convertutil utility lets you recursively convert a vault folder from
 one format to another. The convertvault utility, another

Administration

1388

 utility for converting vaults, provides more flexibility than the
 convertutil utility; however, for most conversion tasks, convertutil is
 sufficient. See the DesignSync Data Manager Administrator's Guide:
 "Converting Vault Data".

convertvault

convertvault

NAME

 convertvault - Converts specified vault files to supported formats

DESCRIPTION

 The convertvault utility lets you convert a single vault file type to
 another supported type or you can convert multiple vault files at one
 time. The convertutil utility, another utility for converting vaults,
 provides less flexibility than the convertvault utility; however, for
 most conversion tasks, convertutil is sufficient. See the DesignSync
 Data Manager Administrator's Guide: "Converting Vault Data".

SyncAdmin

SyncAdmin

NAME

 SyncAdmin - Synchronicity Administrator tool

DESCRIPTION

 Synchronicity's SyncAdmin tool is a graphical user interface that
 lets system administrators, project leaders, and users configure
 DesignSync clients (command-line and graphical) for
 site, project, or individual use.

 You execute SyncAdmin from your operating system shell, not
 from a Synchronicity client shell (dss/dssc/stcl/stclc). On
 Windows platforms, you invoke SyncAdmin from the Windows
 Start menu, typically:
 Start->Programs->Dassault Systems <version>->SyncAdmin

 See SyncAdmin help for details on SyncAdmin. From the GUI, click
 the Help button on any SyncAdmin page.

ENOVIA Synchronicity Command Reference - Module

1389

SYNOPSIS

 SyncAdmin [-file <filename> | -project | -site | -user]

OPTIONS

• -file
• -project
• -site
• -user

-file

 -file <filename> Edit the specified registry file, bypassing the initial
 SyncAdmin window (where you select which registry
 file to edit).

-project

 -project Edit the project registry file, bypassing the initial
 SyncAdmin window (where you select which registry
 file to edit).

-site

 -site Edit the site registry file, bypassing the initial
 SyncAdmin window (where you select which registry
 file to edit).

-user

 -user Edit the user registry file, bypassing the initial
 SyncAdmin window (where you select which registry
 file to edit).

RETURN VALUE

 none

SEE ALSO

Administration

1390

 DesSync

EXAMPLES

 This example invokes SyncAdmin:
 % SyncAdmin

 This example invokes SyncAdmin, in background mode, to edit the
 user registry:
 % SyncAdmin -user &

See Also

DesSync Command

NAME

 DesSync - Invokes the DesignSync graphical interface

DESCRIPTION

 This command invokes the DesignSync graphical user interface
 (GUI). You execute DesSync from your operating system shell, not
 from a Synchronicity client shell (dss/dssc/stcl/stclc). On
 Windows platforms, you can also invoke DesSync from the Windows
 Start menu, typically:
 Start->Programs->Dassault Systems <VersionNumber>->DesignSync

 You can also execute all DesignSync command-line commands from
 the GUI.

 DesignSync Data Manager User's Guide describes the GUI. From the GUI,
 select Help->Help Topics, or click the book icon in the Tool Bar.

SYNOPSIS

 DesSync [-nosplash] [path]

OPTIONS

• -nosplash
• -path

-nosplash

ENOVIA Synchronicity Command Reference - Module

1391

 -nosplash Prevents the DesignSync splash screen from
 displaying at startup.

 You can also disable the splash screen site-wide or
 by user:

 Site Wide

 Change the last line of SYNC_DIR/bin/DesSync to the include
 the flag:

 exec .runjava -jar $SYNC_DIR/classes/dsj.jar -nosplash $*:q

 User

 Create a script with the following contents, and put it in the
 path ahead of SYNC_DIR/bin:

 #!/bin/csh -f
 exec ${SYNC_DIR}/bin/DesSync -nosplash $*:q

 Note: If you use spaces in your path arguments to the command,
 you must places them in quotes.

-path

 path The path to the directory/folder that you want
 DesignSync to expand at startup. You can specify an
 absolute or relative path. You can also set the
 DesignSync initial folder through a SyncAdmin option
 (GUI Options->Initial Folder).

RETURN VALUE

 none

SEE ALSO

 dss, dssc, stcl, stclc, SyncAdmin

EXAMPLES

• Example of Starting the DesignSync GUI
• Example of Starting the DesignSync GUI without the Splash Screen
• Example of Starting the DesignSync GUI Opened to the Current Directory
• Example of Starting the DesignSync Opened to Specified Path

Administration

1392

Example of Starting the DesignSync GUI

 This example invokes the DesignSync GUI:
 % DesSync

Example of Starting the DesignSync GUI without the Splash Screen

 This example invokes the GUI in background mode without displaying
 the splash screen:
 % DesSync -nosplash &

Example of Starting the DesignSync GUI Opened to the Current Directory

 This example invokes the GUI and specifies the current directory
 as the initial folder:
 % DesSync .

Example of Starting the DesignSync Opened to Specified Path

 This example invokes the GUI and specifies a specific project
 directory as the initial folder:
 % DesSync /home/projects/chip/alu

syncdadmin

syncdadmin Command

NAME

 syncdadmin - Manages syncd processes

DESCRIPTION

 This command manages Synchronicity daemon (syncd) processes on a
 per-user basis. 'syncdadmin' is not a DesignSync shell command, but
 is instead a standalone utility that you invoke from a standard
 shell or a shell script.

 The syncd process manages communication between dss/stcl
 sessions and SyncServers. The syncd process can manage multiple
 dss/stcl requests per user, allowing one user to run parallel

ENOVIA Synchronicity Command Reference - Module

1393

 dss/stcl sessions. Note that dssc and stclc do not use syncd;
 they communicate directly with a SyncServer.

 When you invoke dss or stcl, they connect to your syncd process if
 one is already running. Otherwise, they attempt to start
 syncd. There is at most one syncd process running per user per
 machine at any time.

 On Unix systems, the syncd process times out after 180 minutes of
 inactivity (after the last dss/stcl session communicating with the
 syncd process exits). The syncd process will not time out if there
 is an active dss or stcl session, or if there is a lock on the
 syncd process. You can define the SYNC_DAEMON_TIMEOUT environment
 variable to change the default time-out period of 180 minutes:

 setenv SYNC_DAEMON_TIMEOUT <n>

 where <n> is the number of minutes syncd waits before timing out.

 On Windows platforms, syncd never times out. However, you can
 stop syncd from the Windows Start menu, typically:
 Start->Programs->Dassault Systems <version>->Stop SyncDaemon

 Note: When using dss/stcl, many environment changes (including setting
 SYNC_DAEMON_TIMEOUT) do not take effect until syncd is stopped and
 restarted.

SYNOPSIS

 syncdadmin [begin | close [-force] | lock | start |
 status [-verbose] | stop [-force] | unlock |]

ARGUMENTS

• begin
• close
• lock
• start
• status
• stop
• unlock

begin

 begin Same as 'start'. The 'begin' argument may be removed in a
 future release.

close

Administration

1394

 close Same as 'stop'. The 'close' argument may be removed in a
 future release.

lock

 lock Locks the syncd process so that 'syncdadmin stop'
 will not terminate syncd (unless you use the -force
 option). 'syncdadmin lock' also starts syncd if it
 is not already running.

 You typically lock syncd at the beginning of a shell
 script that calls dss/stcl several times. The lock
 prevents syncd from being terminated inadvertently.
 For example:

 #!/bin/csh
 syncdadmin lock
 dss ci *.cpp
 <some shell (non dss/stcl) commands>
 dss ci *.h
 syncdadmin unlock

start

 start Starts the syncd process if one is not already running.
 The 'syncdadmin start' command is typically used in a
 shell script to invoke syncd (if necessary) before
 invoking Synchronicity commands. For example:

 #!/bin/csh
 syncdadmin start
 dss ci ...

 In this script fragment, 'syncdadmin start':
 - Starts syncd only if syncd is not already running
 - Does not allow the next line of the script to
 execute until syncd is running

 Note: There is a short start-up time associated with syncd,
 during which it does not accept commands. To prevent
 a race condition, avoid starting syncd as follows:

 % syncd &
 % dss ci ... << Likely to fail because syncd is
 still starting up

status

 status Indicates whether the syncd process is currently

ENOVIA Synchronicity Command Reference - Module

1395

 running and on which machine. Use the -verbose
 option to output additional information, such as
 whether syncd is locked.

stop

 stop Attempts to terminate the syncd process. The syncd process
 will not terminate if there is an active dss/stcl session
 running or if a lock has been set on the syncd process.
 Use the -force option to override these constraints.

unlock

 unlock Removes the lock from a syncd process. You typically
 lock syncd from a script that calls dss/stcl multiple
 times. You would then unlock syncd at the completion
 of the script.

RETURN VALUE

 none

EXAMPLES

 This example displays the syncd status before and after starting
 syncd:
 % syncdadmin status
 SYNC: syncd is not running.
 % syncdadmin start
 SYNC: Attempting to spawn daemon.
 SYNC: Syncd ready.
 % syncdadmin status
 SYNC: syncd is running on linus.
 %

1397

ProjectSync Data Manipulation

Note Manipulation

note

note Commands

NAME

 note - Server-side commands for accessing notes

DESCRIPTION

 Users create notes and manage note links using the ProjectSync
 graphical interface. The 'note' commands are for advanced users who
 need programmatic access to note capabilities.

 The 'note' family of commands provide access to the note web
 object type. URLs for notes have the following form:

 sync:///Note/SyncNotes/<notetype>/<noteid>

 For example, the following URL specifies the 5th note of the
 BugReport notetype:

 sync:///Note/SyncNotes/BugReport/5

 Notes can only be accessed from server-side scripts, so always use
 the sync:/// syntax (no <host>:<port> specification).

 Note: The "notetype schema" command provides access to the database
 structure of notetypes.

SYNOPSIS

 note <note_command> [<note_command_options>]

 Usage: note [attach|counts|create|delete|detach|getprop|links|query|
 relink|setprops|systems|]

EXAMPLES

 See specific "note" commands.

ProjectSync Data Manipulation

1398

note attach

note attach Command

NAME

 note attach - Creates a link between a note and an object

DESCRIPTION

 This command attaches a note to the specified object, creating
 a notelink -- a link between an object and a note.

 The <noteURL> argument must be a reference to an existing note.
 The <objURL> argument can be a reference to any valid object,
 including another note. If <objURL> is a local note URL, then
 the note that it refers to also must exist. However, for any
 other <objURL> type, including notes on remote servers, the
 existence of the object is not checked. Only the structure of
 the URL is checked.

 It is not possible to create a duplicate notelink. However, the
 attempt does not cause an error; attempts to create duplicate
 notelinks are silently ignored.

 The successful execution of this command generates an atomic
 note attach event and fires the corresponding triggers
 in response.

 This command is available only from server-side scripts.

SYNOPSIS

 note attach <noteURL> <objURL>

OPTIONS

 none

RETURN VALUE

 none

ENOVIA Synchronicity Command Reference - Module

1399

SEE ALSO

 note detach, note links, server-side, rstcl

EXAMPLES

• Example of Attaching a Note to a Project
• Example of Attaching a Note to a Tagged Configuration

Example of Attaching a Note to a Project

 This example attaches a bug report to the Asic project:

 note attach sync:///Note/SyncNotes/BugReport/2 sync:///Projects/Asic

Example of Attaching a Note to a Tagged Configuration

 This example attaches the bug report to the Rel1 configuration
 of the Asic project:

 note attach sync:///Note/SyncNotes/BugReport/2 \
 sync:///Projects/Asic@Rel1

note counts

note counts Command

NAME

 note counts - Computes statistics about notes and
 the frequency of values

DESCRIPTION

 This command runs a query against a note type and breaks
 down the results according to the values it finds in selected
 properties of the notes matched by the query. The breakdown can
 be zero, one-dimensional, or multi-dimensional. Dimensions of
 breakdown are note properties selected in the query, with the
 results of the query grouped by value in the selected properties
 (dimensions).

 The results of the query (that is, the counts of how many notes
 fit the search criteria and had the same values in the selected
 properties) is stored in an output variable whose name is given

ProjectSync Data Manipulation

1400

 to the command. The command treats the variable as an array into
 which to store the results. The array has indices of all
 combinations of values that were found for the selected properties
 in notes matching the query criteria. The mapped values at those
 indices are the number of notes that had that particular
 combination of values.

 For one-dimensional breakdowns (that is, breakdowns by a single
 property), the indices in the output array variable are the same
 as values found for that property in notes that matched the query.
 For two- or three-dimensional queries, the indices are a
 concatenation of values for each of the selected properties,
 separated by commas. If any of the values contain comma characters,
 then the comma characters are replaced with periods, so that the
 comma characters retain their separator semantics. The output
 array contains only non-zero entries.

 The note counts command can operate on (break down by) properties
 of any type. However, the command is practical only for operations
 on enumerable property types, such as state machines, choice
 types, user fields, and perhaps integers. Results of breakdowns
 by floating-point properties and wide strings are generally not
 useful, but such use is not disallowed. Imprudent use of this
 command can copy very large amounts of data from the database
 into memory (for example, if you were doing a breakdown by the
 Body property of a note type).

 You can generate simple time-based statistics by doing a
 breakdown on any Date or Timestamp property of a note type.
 In the resulting array, the indices will be dates and the values
 will be how many notes had that date value in that field. The
 resolution of the buckets for time-based statistics is controlled
 with the -dateresolution option. This option allows for
 specifying a unit of time (years, months, days, etc.) used to
 indicate the granularity of the statistical buckets.

 This command is available only from server-side scripts.

SYNOPSIS

 note counts <NotetypeName>
 [-countlinks] [-dateresolution <Resolution>]
 [[-dbquery <dbase_expr>] | [-sqlquery <sql_expr>]]
 [<OutVarName> [Dimension0 [Dimension1 [Dimension2]]]]

OPTIONS

• -countlinks
• -dateresolution
• -dbquery
• -sqlquery

ENOVIA Synchronicity Command Reference - Module

1401

-countlinks

 -countlinks This option is used only for RevisionControl
 notes. Use this option to count the
 number of objects in each RevisionControl
 note instead of counting only the
 individual notes. When using this option,
 you must specify <OutVarName>.

-dateresolution

 -dateresolution If one or more of the Dimension arguments
 <Resolution> references a property of type Date or
 Timestamp, specifies a resolution of the
 bucketing of notes in the output array.

 The resolution is specified in terms of date
 granularity. The set of valid values are:
 years, months, weeks, and days.

 The value of the resolution affects the values
 used to form the indices in the returned array.
 The format for the index values for a given
 resolution are:

 years yyyy
 months yyyy-mm
 weeks yyyy-Www
 days yyyy-mm-dd

 If -dateresolution is not given as an option,
 the command defaults to a resolution of days.

-dbquery

 -dbquery A valid dBase query, which is converted
 <dbase_expr> to an equivalent SQL expression, and used
 to query the database. Analogous to the
 -dbquery option to note query.

-sqlquery

 -sqlquery Filters the set of notes that are counted
 <sql_expr> by the note counts command. Analogous to
 the -sqlquery option to note query.

 -sqlquery and -dbquery are mutually
 exclusive.

ProjectSync Data Manipulation

1402

OPERANDS

• Notetype Name
• Out Var Name
• Dimensions

Notetype Name

 <NotetypeName> The name of an existing note type.

Out Var Name

 <OutVarName> The name of a Tcl array variable in which
 to place specific notes that match the query
 criteria. The indices of the returned array
 are comma-separated concatenations of the
 Dimension0...2 property values. The array
 values are the number of notes that match
 the array index.

Dimensions

 Dimension0 Up to three arguments that specify the
 Dimension1 bucketing criteria for the results. The
 Dimension2 values must be the name of an existing
 property name on the note type.

RETURN VALUE

 The total number of notes that match the query criteria.

SEE ALSO

 note query

EXAMPLES

• Example Showing Reporting Against Fields in the Notetype
• Example Showing Time-Based Reporting on NoteTypes

Example Showing Reporting Against Fields in the Notetype

ENOVIA Synchronicity Command Reference - Module

1403

 Suppose you have a note type called BugReport, with a State field
 (type SyncState), a Priority field (type SyncPriority) field, and a
 Resp field (type SyncUserList), plus all the standard note fields.
 This note type is populated with notes as follows:

 Id Author Resp State Priority

 1 caroline cara closed high
 2 jack cara closed high
 3 bert ron fixed high
 4 bert mark fixed medium
 5 lindsey mark fixed high
 6 bert mark analyzed high
 7 lindsey jason analyzed low
 8 bert jason closed high
 9 bert mark open medium
 10 caroline mark open stopper

 To find out how many BugReport notes are currently in-process (in
 any state except "closed"), you would specify:

 note counts BugReport -dbquery "State#'closed'"

 which would return the answer: 7

 To get a breakdown of whom the notes are assigned to, give two
 extra parameters: 1. The name of a Tcl variable into which
 the note counts command will store its results. 2. The name of
 the note property that you wish to do a breakdown of - in this
 case, Resp:

 note counts BugReport -dbquery "State#'closed'" MyMap Resp

 This command also returns the number 7 but stores the following
 data in the array variable MyMap:

 MyMap(ron) 1
 MyMap(mark) 5
 MyMap(jason) 1

 Use array names or array get to extract the data from the MyMap
 array. For example:

 array names MyMap

 would return

 "ron mark jason"

 and

 array get MyMap

 would return

 "ron 1 mark 5 jason 1"

ProjectSync Data Manipulation

1404

 To find the BugReports assigned to each engineer and get a breakdown
 by priority, you pass one additional parameter: the name of the
 additional property to break down by - in this case, Priority:

 note counts BugReport -dbquery "State#'closed'" MyMap Resp Priority

 You do not need to specify any additional output parameters when you
 add additional dimensions to the report; the results all go into the
 single output array parameter (MyMap), which in this example would
 be filled as follows:

 MyMap(ron,high) 1
 MyMap(mark,medium) 2
 MyMap(mark,high) 2
 MyMap(mark,stopper) 1
 MyMap(jason,low) 1

 The array contains only non-zero entries. For instance, user jason
 is not assigned any high-priority BugReports, so the report does
 not include the entry:

 MyMap(jason,high) 0

 Thus MyMap could be termed a sparse matrix.

 It is also possible to further break down data by a third dimension.

 In most cases, you would not use this command to generate this type
 of report. Like all the other note commands, the note counts command
 is best used as a building block.

Example Showing Time-Based Reporting on NoteTypes

 This example illustrates time-based reporting.

 To chart the incoming rate for BugReports, with a breakdown by month,
 you would use the following command:

 note counts BugReport MyMap DateCreate -dateresolution months

 The resulting map might look like this:

 MyMap(2002-01) 2

 MyMap(2002-02) 3

 MyMap(2002-04) 5

 This result indicates that two BugReports were filed in January 2002,
 three in February, and five in April. Empty buckets are not included:
 no BugReports were filed in March so there is no MyMap(2002-03)
 entry. Getting resolution by week would be difficult. You would have
 to use %W formatting (Week-of-year, 0-52) and convert the resulting
 data to get back to human-readable dates.

ENOVIA Synchronicity Command Reference - Module

1405

 EXAMPLE 3
 The following command itemized the objects in RevisionControl notes
 for each command and and for each user.

 note counts RevisionControl -countlinks MyMap Command Author
 parray MyMap

 The output of the MyMap variable is:

 MyMap(ci,) = 0
 MyMap(ci,Administrator) = 1
 MyMap(ci,Debra) = 4
 MyMap(ci,George) = 0
 MyMap(ci,Loren) = 6
 MyMap(co lock,George) = 2
 MyMap(co lock,Harry) = 0
 MyMap(co lock,Debra) = 7
 MyMap(co lock,Loren) = 0

note create

note create Command

NAME

 note create - Creates a new note

DESCRIPTION

 This command creates a new note of a specified note type.

 Certain default behaviors apply when a note is created:

 * Notes are assigned a unique ID number that is 1 greater
 than the largest note ID number created in the database for
 a note of this type. However, two note create calls
 in a row would not necessarily return ID numbers that were
 incremented by 1. Another call in a different process could
 have created a note of the same note type.

 * The default creation date of a note (i.e., its DateCreate
 property) is set to the current server time.

 * The Author field defaults to the user ID (user name) of the
 person executing the command.

 All of these default behaviors can be overridden with the note create
 command.

 You can set any number of properties when a note is created. If an
 invalid value is supplied for any property, the entire note creation

ProjectSync Data Manipulation

1406

 process fails. If a property is not assigned an explicit value in
 the command, the default value for the note type is used. It is not
 an error to omit values for properties that are required by the note
 type.

 If a property name is specified multiple times with different
 values, the last value is stored.

 The successful execution of this command causes an atomic note
 create event and fires the corresponding triggers in response.

 This command is available only from server-side scripts.

SYNOPSIS

 note create [-date <date>] [-id <id>] -type <type_name>
 [{<name> <value>} [...]]

ARGUMENTS

• Name/Value for Note Properties

Name/Value for Note Properties

 {<name> <value>} Additional properties of the note, expressed as
 a list of name/value pairs. The first element of
 the pair is a valid property name of the note
 type and the second is the property value,
 which must be legal for the property type.

 If a value for the Id property is specified,
 use it as if the -id option had been used. An
 AMBIGUOUS_ID error is thrown if -id is used as
 well as an Id property value.

 Similarly, if both the -date argument and the
 DateCreate property are specified, an
 AMBIGUOUS_DATE error is thrown.

 Note that the curly braces specify the Tcl list
 syntax; they do not indicate a required
 argument as is true in most syntax descriptions.

 The note create command currently accepts
 multiple name/value pair lists for backward
 compatibility; however, this form is deprecated
 and Synchronicity strongly recommends avoiding
 this form.

OPTIONS

ENOVIA Synchronicity Command Reference - Module

1407

• -date
• -id
• -type

-date

 -date <date> A date value representing the creation date of
 the note. The <date> value should be an ISO-8601
 formatted date in UTC - for example:

 2003-05-29 12:34:56

 If the -date option is omitted, the note
 creation time is the current time, stored in UTC.

 Although the creation time is stored in UTC,
 the GUI displays the creation time in the
 client's local time.

-id

 -id <id> The unique ID number for the note. If this
 number is not unique, the note is not
 created and you get the DUPLICATE_ID error code.
 If the -id option is omitted, the next
 available ID number is used.

 Each note type maintains its own internal ID
 generator. If the explicit ID number is higher
 than the currently existing internal ID of the
 generator, then the generator is adjusted to
 this new maximum ID number. That is, the next
 calls to note create with the -id option omitted
 will generate a number that is higher than the
 explicitly given ID number in this call. This
 behavior prevents collisions between the
 automatically generated IDs and explicitly
 created ones.

 If two processes are creating notes of the same
 note type and one is using the -id option while
 the other is using the default assigned ID, one
 of the processes is likely to fail because of
 conflicting ID numbers.

 If the delta number that the generator has to
 skip over is very high (e.g., above 10,000),
 then the command execution time may be much
 higher than normal, as the process has to skip
 over this delta. This case also increases the
 likelihood of failing with conflicting ID
 numbers.

ProjectSync Data Manipulation

1408

-type

 -type <type_name> The name of a note type (for example, Note or
 "BugReport") for which a new note is created.

 A note type name is limited to 24 characters and
 can contain only letters, numbers, hyphens, and
 underscores. Note type names cannot begin with
 hyphens or numbers and cannot contain spaces or
 special characters.

RETURN VALUE

 The URL of the new note.

SEE ALSO

 note delete, note attach, note detach, note links, server-side, rstcl

EXAMPLES

• Example Showing Creating of a New Note with a Specific ID.
• Example Showing Creating a Note Using the Default ID

Example Showing Creating of a New Note with a Specific ID.

 This example creates a new note of the Note notetype.

 note create -type Note \
 -id 6674 \
 -date 2002-05-29 \
 {Title "Hello, World!"} {Body "Main portion of a note."} \
 {Author goss}

Example Showing Creating a Note Using the Default ID

 This example creates a new BugReport using the next available ID
 number and sets the creation time as the current time:

 note create -type "BugReport" {Title "Broken!"} \
 {Body "It broke."} {Author norm}

note delete

ENOVIA Synchronicity Command Reference - Module

1409

note delete Command

NAME

 note delete - Deletes a note and associated notelinks

DESCRIPTION

 This command deletes a note and any associated notelinks --
 the links between the note and any objects to which it is
 attached. The note delete command also deletes any files
 attached to the note in fileattach fields. The note to be
 deleted must exist.

 The successful execution of this command causes an atomic note
 delete event and fires the corresponding triggers in response.

 This command is available only from server-side scripts.

SYNOPSIS

 note delete <NoteURL>

OPTIONS

 none

OPERANDS

• Note URL

Note URL

 <NoteURL> A valid URL for the note to be deleted.

RETURN VALUE

 none

SEE ALSO

ProjectSync Data Manipulation

1410

 note detach, note links, note create, server-side, rstcl

EXAMPLES

 This example deletes BugReport note 2:

 note delete sync:///Note/SyncNotes/BugReport/2

note detach

note detach Command

NAME

 note detach - Deletes the link between a note and an object

DESCRIPTION

 This command detaches a note from the specified object, deleting
 the notelink -- the link between the object and the note.

 The <NoteURL> argument must be to a note object. The <ObjURL>
 argument can be to any legal URL, including another note.

 It is not an error to attempt to remove a notelink that does not
 exist. However, <NoteURL> and <ObjURL> both must exist if the object
 is a note. It is not an error to remove a non-note object that does
 not exist. (Although, as with all note commands, the URLs must be
 well-formed.)

 The successful execution of this command causes an atomic note
 detach event and fires the corresponding triggers in response.

 This command is available only from server-side scripts.

SYNOPSIS

 note detach <NoteURL> <ObjURL>

OPTIONS

 none

ENOVIA Synchronicity Command Reference - Module

1411

OPERANDS

• Note URL
• Object URL

Note URL

 <NoteURL> A valid note URL.

Object URL

 <ObjURL> A valid URL to an object to detach
 from the note.

RETURN VALUE

 none

SEE ALSO

 note attach, note delete, note links, server-side, rstcl

EXAMPLES

• Example of Detaching a Bug Report from a Project
• Example of Detaching a Bug Report from a Tagged Configuration

Example of Detaching a Bug Report from a Project

 This example detaches the bug report from the Asic project:

 note detach sync:///Note/SyncNotes/BugReport/2 sync:///Projects/Asic

Example of Detaching a Bug Report from a Tagged Configuration

 This example detaches the bug report from the Rel1 configuration
 of the Asic project:

 note detach sync:///Note/SyncNotes/BugReport/2 \
 sync:///Projects/Asic@Rel1

ProjectSync Data Manipulation

1412

note getprop

note getprop Command

NAME

 note getprop - Retrieves a property of a note

DESCRIPTION

 This command retrieves the value of a single property on a note,
 such as might have been stored with note setprops, url setprop,
 or note create. The note must exist and the property name must be
 one of the property names contained in the note type of the note.

 This command only works in server-side scripts.

SYNOPSIS

 note getprop <NoteURL> <PropertyName>

OPTIONS

 None

OPERANDS

• Note URL
• Property Name

Note URL

 <NoteURL> The URL of a note, which must exist.

Property Name

 <PropertyName> The name of a property on the note.

RETURN VALUE

ENOVIA Synchronicity Command Reference - Module

1413

 Returns the property value, as a string.

SEE ALSO

 note setprops, url properties

EXAMPLES

 This example extracts and prints the Title property of $noteURL,
 where the $noteURL stands for a URL such as
 sync:///Note/SyncNotes/BugReport/42:

 puts "Note Title: [note getprop $noteURL Title]"

note links

note links Command

NAME

 note links - Returns the set of links for a note

DESCRIPTION

 This command returns information about notelinks. A notelink is a
 relationship between a particular note and another object. The note
 links command queries the database for notelinks that match certain
 constraints or, if no constraints are given, all notelinks. The
 constraints can be that the notelink be from a particular note, or
 to a particular object, or both. Additionally, wildcarding is
 supported to allow broadening the query to match groups of notes
 or objects rather than specific notes and objects.

 The 'note links' command with no arguments returns a list of
 lists, where each sublist has two elements: the first is the object
 URL, the second is the note URL.

 With the -object option, only the URLs of notes linked to a given
 object are returned.

 With the -note option, URLs for all objects that are linked to
 the specified note are returned.

 This command is available only from server-side scripts.

ProjectSync Data Manipulation

1414

SYNOPSIS

 note links [-norec] [-note <noteURL> | -object <objURL>] [-pairs]

OPTIONS

• -norec
• -note
• -object
• -pairs

-norec

 -norec This option must be used in conjunction with -object
 and with wildcarding in <objURL>. It modifies the
 meaning of the wildcard to prevent it from matching the
 forward slash character (/), thus limiting the wildcard
 to matching object URLs at the same hierarchical level as
 the wildcard and not below.

-note

 -note <noteURL> Returns all of the objects that have
 the specified note attached.

 The <noteURL> argument is the note URL pattern
 to match against in the query. In this URL, an
 asterisk (*) may be used as a wildcard in place
 of a note ID, to match any note of a particular
 type, or an asterisk may be used instead of the
 note type, the note ID, and the slash that would
 separate them, to match any note of any type.
 Valid URLs are of the form:

 sync:///Note/SyncNotes/<notetypeName>/<id>
 sync:///Note/SyncNotes/<notetypeName>/*
 sync:///Note/SyncNotes/*

 No other form of wildcarding is allowed; in
 particular, a wildcard may not be used to match
 part of a note ID, or part of a note type name,
 or the word SyncNotes, or anything to the left
 of SyncNotes.

-object

 -object <objURL> Returns all of the notes that are attached to

ENOVIA Synchronicity Command Reference - Module

1415

 the specified object.

 The <objURL> argument is the object URL pattern
 to match against in the query. In this URL, a
 trailing asterisk may be used as a wildcard to
 match attached objects whose URL begins with the
 specified pattern.

 If the object URL pattern to be matched is a
 note, then the same wildcarding restrictions
 apply as for <noteURL>. Additionally, if the
 object URL to be matched is a user URL, only
 the trailing component (the user ID) may be
 wildcarded, and only in its entirety.

 If the object URL pattern to be matched is not
 a note or user URL, slightly more flexible rules
 apply. The wildcard may still appear only as the
 end (last character), but unlike for <noteURL> it
 is allowed to match partial path elements. The
 pattern matching is strictly a substring search;
 the wildcard will match trailing @configname and
 ;versioned components and any number of embedded
 forward slashes (except when -norec is used).

 This option must be used in conjunction with
 -object and with wildcarding in <ObjUrlPat>. It
 modifies the meaning of the wildcard to prevent
 it from matching the forward slash character (/),
 thus limiting the wildcard to matching object
 URLs at the same hierarchical level as the
 wildcard and not below.

 This option forces the note links command to
 return a list of lists, even if -note, -object,
 or both, are specified. See the RETURN VALUE
 section for more detail.

-pairs

 -pairs This option forces the note links command to return
 a list of lists, even if -note, -object, or both, are
 specified. See the Return Value section for more detail.

RETURN VALUE

 This command returns results in a variety of forms, depending on
 the command options you specify. In general, the output is whatever
 was not specified as an input:

 1. If neither -object nor -note are used, then return all
 notelinks as a list of lists, with each sublist having an

ProjectSync Data Manipulation

1416

 object URL and a note URL, in that order.

 2. If -object <objURL> is used, then return a list of just the
 corresponding note URLs.

 3. If -note <noteURL> is used, then return a list of just the
 corresponding object URLs.

 4. If both -note and -object are used, then return no URLs,
 only the number of matching notelinks.

 5. If -pairs is specified, the output is in the form described
 in rule 1, taking precedence over rules 2, 3, and 4.

 The behavior ensures that if you passed in a note URL or an
 object URL, you get back its counterpart directly and do not
 have to extract it from a sublist. However, when either <objURL>
 or <noteURL> or both include wildcards, it is usually desirable
 to get back entire notelinks, with both the constituent URLs for
 each link. The use of -pairs forces this complete form of return
 value.

 Note: URLs for notetype snapshots contain the note type name
 appended by _OLD.

SEE ALSO

 note attach, note detach, server-side, rstcl

EXAMPLES

• Example Showing All the Notes Attached to a Project
• Example Showing The Objects to which a Specific Note is Attached

Example Showing All the Notes Attached to a Project

 This example displays the notes that are attached to the Asic
 project before and after attaching a new note.

 foreach note [note links -object sync:///Projects/Asic] {
 puts "$note
"
 }
 puts "
"
 note attach sync:///Note/SyncNotes/BugReport/2 sync:///Projects/Asic
 foreach note [note links -object sync:///Projects/Asic] {
 puts "$note
"
 }

Example Showing The Objects to which a Specific Note is Attached

ENOVIA Synchronicity Command Reference - Module

1417

 This example displays the objects to which BugReport #2 is
 attached (the Asic project, and the Beta configuration of Asic):

 set objects [note links -note sync:///Note/SyncNotes/BugReport/1]
 foreach note $objects {
 puts "$obj
"
 }

 Running this script outputs the following:

 sync:///Projects/Asic
 sync:///Projects/Asic@Beta

note query

note query Command

NAME

 note query - Queries the note system and returns note URLs
 and values

DESCRIPTION

 This command allows general queries against the notes database and
 returns note URLs and values

 This command is available only from server-side scripts.

SYNOPSIS

 note query [[-attached <ObjUrl> [-norec]]
 [[-dbquery <dbase_expr>] | [-sqlquery <sql_expr>]]
 [-filter ViewNote | EditNote] [-select <PropertyList>]
 [-type <notetype>]

OPTIONS

• -attached
• -dbquery
• -filter
• -norec
• -select
• -sqlquery
• -type

ProjectSync Data Manipulation

1418

-attached

 -attached <ObjUrl> Limits results to notes that are attached
 to objects whose URLs match <ObjUrl>.
 <ObjUrl> may contain a trailing wildcard
 (*) as specified for -object <ObjUrl> in
 the note links command.

 When used with RevisionControl notes, the
 -attached option applies to the Objects
 field.

-dbquery

 -dbquery <dbase_expr> Returns only notes that match this
 query string. Must be a valid dBase query.
 This query is converted to an equivalent
 SQL expression and used to query the
 database.

 Only a subset of dBase syntax is
 supported and dBase queries may be
 retired in a future release.

-filter

 -filter For access controls, accepts either the
 ViewNote or EditNote action and returns a
 list of the notes allowed for the specified
 action.

-norec

 -norec Affects the way <ObjUrl> wildcards
 work, as specified for the note links
 command. This option must be used in
 conjunction with the -attached option and
 with wildcards.

-select

 -select <PropertyList> Returns both the URLs of notes matching the
 query and, for each matching note, the
 value for each property named in
 <PropertyList>. When -select is specified,
 the return value is a list of lists.
 Within each sublist, the first element is

ENOVIA Synchronicity Command Reference - Module

1419

 the URL of a note matching the criteria;
 the others are values in that note for
 each of the properties specified in
 <PropertyList>.

 You can include the keyword @LINKS as a
 property in <PropertyList> to return the
 note's attachments as a list within the
 return value.

-sqlquery

 -sqlquery <sql_expr> Returns only notes that match this
 query string. Must be a valid SQL
 expression. The expression is used
 verbatim in the WHERE clause of an SQL
 SELECT statement. No error checking is
 performed on this expression; it is passed
 directly to the database.

 To avoid conflicts with property names and
 SQL keywords, the column names in the
 database are formed by prefixing the
 string f_ to the note property name. Thus
 a query for notes whose ID number is less
 than 10 and whose Author is 'joe' must be
 written in a -sqlquery clause as:

 f_Id<10 AND f_Author='joe'

 This prefixing is not necessary for
 -dbquery syntax.

-type

 -type <notetype> Returns only notes of this type, which
 must exist. If not specified, then the
 query is applied to all note types.

RETURN VALUE

 If -select is not specified, a list of URLs matching the query
 criteria.

 If -select is specified, the return value is a list of lists.
 If no notes match the query criteria, an empty list is returned.

SEE ALSO

ProjectSync Data Manipulation

1420

 url notes, server-side, rstcl

EXAMPLES

• Example Showing a list of URLS for all Note Types
• Example Displaying a Specific Note Type Attached to a Project
• Example Returning Notes Created by a Specific User
• Example Returning Notes Attached to a Specific Project

Example Showing a list of URLS for all Note Types

 This example displays a list of URLs of all notes of all types:
 puts [note query]

 The resulting HTML page for a server with two notetypes (BugReport
 and Note) with two notes of each notetype is:
 {sync:///Note/SyncNotes/BugReport/1} {sync:///Note/SyncNotes/
 BugReport/2} sync:///Note/SyncNotes/Note/1
 sync:///Note/SyncNotes/Note/2

Example Displaying a Specific Note Type Attached to a Project

 The following example displays only notes of type Note that are
 attached to the Asic project:
 puts [note query -type Note -attached sync:///Projects/Asic]

 The resulting HTML page displays the URL of the only note to match
 the query:
 sync:///Note/SyncNotes/Note/1

Example Returning Notes Created by a Specific User

 This example returns a list of every note of any type that was
 entered by sal, and then displays an pHTML page with the NoteID and
 Title of each note:

 set noteList [note query -dbquery Author='sal']
 foreach noteUrl $noteList {
 url properties $noteUrl noteProps
 puts "NoteID $noteProps(Id) => $noteProps(Title)
"
 }

Example Returning Notes Attached to a Specific Project

 This example returns a list of every note that is attached to

ENOVIA Synchronicity Command Reference - Module

1421

 objects under MyProj (including MyProj itself):
 set urls [note query -attached sync:///Projects/MyProj*]
 whereas this example excludes MyProj:
 set urls [note query -attached sync:///Projects/MyProj/*]

 With the 2.5 release, ProjectSync introduced a client-server
 database (PostgreSQL). Consequently, some pre-2.5 constructs
 using the note query command or combinations of commands may suffer
 from degraded performance. Note query constructs like the following
 may perform more slowly than they did under the pre-2.5 database:

 foreach note [note query] {
 url getprop $note prop1
 }

 Such constructs should be changed to the following form:

 note query -select {prop1}

note relink

note relink Command

NAME

 note relink - Moves note attachments from one object
 to another

DESCRIPTION

 This command moves all note attachments from one object to another,
 including links saved for a snapshot. The command also can move
 attachments to objects below the original source object to
 corresponding objects below the destination object; the effect is
 to maintain the same relative tree structure before and after the
 operation by re-rooting the tree at the destination object.
 If the destination object does not have a tree of objects below it
 to match the origin object tree, the attachments are moved but
 are broken.

 This command typically is used when a ProjectSync/DesignSync project
 is relocated (renamed). <FromObjURL> and <ToObjURL> cannot be note
 or user URLs, which cannot be renamed. However, the objects can
 refer to a note type when a note type is renamed.

SYNOPSIS

 note relink <FromObjURL> <ToObjURL> [-norec]

ProjectSync Data Manipulation

1422

OPTIONS

• -norec

-norec

 -norec Causes the command to operate on (re-link) only
 notes attached directly to the <FromObjURL>
 object, and not any notes attached to objects
 below it.

OPERANDS

• From Object URL
• To Object URL

From Object URL

 <FromObjURL> The object to rename. Must be a valid URL, but
 may not reference a note or user object.

To Object URL

 <ToObjURL> The object to change the references to. Must be
 a valid URL, but may not be a note or user object.

RETURN VALUE

 The number of links that were updated.

SEE ALSO

 note attach, note detach, note links, notetype rename

EXAMPLES

 Move all the attachments from the Maine project to the Indiana
 project:

 note relink sync:///Projects/Maine sync:///Projects/Indiana

See Also

ENOVIA Synchronicity Command Reference - Module

1423

note attach Command

NAME

 note attach - Creates a link between a note and an object

DESCRIPTION

 This command attaches a note to the specified object, creating
 a notelink -- a link between an object and a note.

 The <noteURL> argument must be a reference to an existing note.
 The <objURL> argument can be a reference to any valid object,
 including another note. If <objURL> is a local note URL, then
 the note that it refers to also must exist. However, for any
 other <objURL> type, including notes on remote servers, the
 existence of the object is not checked. Only the structure of
 the URL is checked.

 It is not possible to create a duplicate notelink. However, the
 attempt does not cause an error; attempts to create duplicate
 notelinks are silently ignored.

 The successful execution of this command generates an atomic
 note attach event and fires the corresponding triggers
 in response.

 This command is available only from server-side scripts.

SYNOPSIS

 note attach <noteURL> <objURL>

OPTIONS

 none

RETURN VALUE

 none

SEE ALSO

 note detach, note links, server-side, rstcl

ProjectSync Data Manipulation

1424

EXAMPLES

• Example of Attaching a Note to a Project
• Example of Attaching a Note to a Tagged Configuration

Example of Attaching a Note to a Project

 This example attaches a bug report to the Asic project:

 note attach sync:///Note/SyncNotes/BugReport/2 sync:///Projects/Asic

Example of Attaching a Note to a Tagged Configuration

 This example attaches the bug report to the Rel1 configuration
 of the Asic project:

 note attach sync:///Note/SyncNotes/BugReport/2 \
 sync:///Projects/Asic@Rel1

note detach Command

NAME

 note detach - Deletes the link between a note and an object

DESCRIPTION

 This command detaches a note from the specified object, deleting
 the notelink -- the link between the object and the note.

 The <NoteURL> argument must be to a note object. The <ObjURL>
 argument can be to any legal URL, including another note.

 It is not an error to attempt to remove a notelink that does not
 exist. However, <NoteURL> and <ObjURL> both must exist if the object
 is a note. It is not an error to remove a non-note object that does
 not exist. (Although, as with all note commands, the URLs must be
 well-formed.)

 The successful execution of this command causes an atomic note
 detach event and fires the corresponding triggers in response.

 This command is available only from server-side scripts.

SYNOPSIS

ENOVIA Synchronicity Command Reference - Module

1425

 note detach <NoteURL> <ObjURL>

OPTIONS

 none

OPERANDS

• Note URL
• Object URL

Note URL

 <NoteURL> A valid note URL.

Object URL

 <ObjURL> A valid URL to an object to detach
 from the note.

RETURN VALUE

 none

SEE ALSO

 note attach, note delete, note links, server-side, rstcl

EXAMPLES

• Example of Detaching a Bug Report from a Project
• Example of Detaching a Bug Report from a Tagged Configuration

Example of Detaching a Bug Report from a Project

 This example detaches the bug report from the Asic project:

 note detach sync:///Note/SyncNotes/BugReport/2 sync:///Projects/Asic

ProjectSync Data Manipulation

1426

Example of Detaching a Bug Report from a Tagged Configuration

 This example detaches the bug report from the Rel1 configuration
 of the Asic project:

 note detach sync:///Note/SyncNotes/BugReport/2 \
 sync:///Projects/Asic@Rel1

note links Command

NAME

 note links - Returns the set of links for a note

DESCRIPTION

 This command returns information about notelinks. A notelink is a
 relationship between a particular note and another object. The note
 links command queries the database for notelinks that match certain
 constraints or, if no constraints are given, all notelinks. The
 constraints can be that the notelink be from a particular note, or
 to a particular object, or both. Additionally, wildcarding is
 supported to allow broadening the query to match groups of notes
 or objects rather than specific notes and objects.

 The 'note links' command with no arguments returns a list of
 lists, where each sublist has two elements: the first is the object
 URL, the second is the note URL.

 With the -object option, only the URLs of notes linked to a given
 object are returned.

 With the -note option, URLs for all objects that are linked to
 the specified note are returned.

 This command is available only from server-side scripts.

SYNOPSIS

 note links [-norec] [-note <noteURL> | -object <objURL>] [-pairs]

OPTIONS

• -norec
• -note
• -object
• -pairs

ENOVIA Synchronicity Command Reference - Module

1427

-norec

 -norec This option must be used in conjunction with -object
 and with wildcarding in <objURL>. It modifies the
 meaning of the wildcard to prevent it from matching the
 forward slash character (/), thus limiting the wildcard
 to matching object URLs at the same hierarchical level as
 the wildcard and not below.

-note

 -note <noteURL> Returns all of the objects that have
 the specified note attached.

 The <noteURL> argument is the note URL pattern
 to match against in the query. In this URL, an
 asterisk (*) may be used as a wildcard in place
 of a note ID, to match any note of a particular
 type, or an asterisk may be used instead of the
 note type, the note ID, and the slash that would
 separate them, to match any note of any type.
 Valid URLs are of the form:

 sync:///Note/SyncNotes/<notetypeName>/<id>
 sync:///Note/SyncNotes/<notetypeName>/*
 sync:///Note/SyncNotes/*

 No other form of wildcarding is allowed; in
 particular, a wildcard may not be used to match
 part of a note ID, or part of a note type name,
 or the word SyncNotes, or anything to the left
 of SyncNotes.

-object

 -object <objURL> Returns all of the notes that are attached to
 the specified object.

 The <objURL> argument is the object URL pattern
 to match against in the query. In this URL, a
 trailing asterisk may be used as a wildcard to
 match attached objects whose URL begins with the
 specified pattern.

 If the object URL pattern to be matched is a
 note, then the same wildcarding restrictions
 apply as for <noteURL>. Additionally, if the
 object URL to be matched is a user URL, only
 the trailing component (the user ID) may be
 wildcarded, and only in its entirety.

ProjectSync Data Manipulation

1428

 If the object URL pattern to be matched is not
 a note or user URL, slightly more flexible rules
 apply. The wildcard may still appear only as the
 end (last character), but unlike for <noteURL> it
 is allowed to match partial path elements. The
 pattern matching is strictly a substring search;
 the wildcard will match trailing @configname and
 ;versioned components and any number of embedded
 forward slashes (except when -norec is used).

 This option must be used in conjunction with
 -object and with wildcarding in <ObjUrlPat>. It
 modifies the meaning of the wildcard to prevent
 it from matching the forward slash character (/),
 thus limiting the wildcard to matching object
 URLs at the same hierarchical level as the
 wildcard and not below.

 This option forces the note links command to
 return a list of lists, even if -note, -object,
 or both, are specified. See the RETURN VALUE
 section for more detail.

-pairs

 -pairs This option forces the note links command to return
 a list of lists, even if -note, -object, or both, are
 specified. See the Return Value section for more detail.

RETURN VALUE

 This command returns results in a variety of forms, depending on
 the command options you specify. In general, the output is whatever
 was not specified as an input:

 1. If neither -object nor -note are used, then return all
 notelinks as a list of lists, with each sublist having an
 object URL and a note URL, in that order.

 2. If -object <objURL> is used, then return a list of just the
 corresponding note URLs.

 3. If -note <noteURL> is used, then return a list of just the
 corresponding object URLs.

 4. If both -note and -object are used, then return no URLs,
 only the number of matching notelinks.

 5. If -pairs is specified, the output is in the form described
 in rule 1, taking precedence over rules 2, 3, and 4.

ENOVIA Synchronicity Command Reference - Module

1429

 The behavior ensures that if you passed in a note URL or an
 object URL, you get back its counterpart directly and do not
 have to extract it from a sublist. However, when either <objURL>
 or <noteURL> or both include wildcards, it is usually desirable
 to get back entire notelinks, with both the constituent URLs for
 each link. The use of -pairs forces this complete form of return
 value.

 Note: URLs for notetype snapshots contain the note type name
 appended by _OLD.

SEE ALSO

 note attach, note detach, server-side, rstcl

EXAMPLES

• Example Showing All the Notes Attached to a Project
• Example Showing The Objects to which a Specific Note is Attached

Example Showing All the Notes Attached to a Project

 This example displays the notes that are attached to the Asic
 project before and after attaching a new note.

 foreach note [note links -object sync:///Projects/Asic] {
 puts "$note
"
 }
 puts "
"
 note attach sync:///Note/SyncNotes/BugReport/2 sync:///Projects/Asic
 foreach note [note links -object sync:///Projects/Asic] {
 puts "$note
"
 }

Example Showing The Objects to which a Specific Note is Attached

 This example displays the objects to which BugReport #2 is
 attached (the Asic project, and the Beta configuration of Asic):

 set objects [note links -note sync:///Note/SyncNotes/BugReport/1]
 foreach note $objects {
 puts "$obj
"
 }

 Running this script outputs the following:

 sync:///Projects/Asic
 sync:///Projects/Asic@Beta

ProjectSync Data Manipulation

1430

notetype rename Command

NAME

 notetype rename - Renames an existing note type

DESCRIPTION

 Renames an existing note type from <CurrentName> to <NewName>. The
 note type specified by <NewName> must not already exist.

 Any notelinks associated with the note type being renamed are also
 converted to be associated with the renamed note type name. This
 includes attachments both to and from the note type. Any snapshot of
 the note type also is renamed.

 The note-type-specific files in
 $SYNC_CUSTOM_DIR/servers/<host>/<port>/share/data are not renamed as
 part of the operation. However, these files are renamed if you
 use the ProjectSync Note Type Manager to rename the note type.

 This command is server-side only.

 Important: It is strongly recommended that you do not rename the
 RevisionControl note type, which is a standard part of
 ProjectSync. This note type is designed to work with DesignSync
 for projects under revision control. Renaming this note type
 could cause problems if you later want to use ProjectSync notes
 with DesignSync.

SYNOPSIS

 notetype rename <CurrentName> <NewName>

OPTIONS

 none

OPERANDS

• Current Name
• New Name

Current Name

ENOVIA Synchronicity Command Reference - Module

1431

 <CurrentName> The existing note type name that you want to
 change.

New Name

 <NewName> The new, legal note type name that you want to
 use. A note type name is limited to 24 characters.
 Spaces are not allowed in note type names, and
 the legal character set for note type names
 consists of alphanumerics, hyphens, and
 underscores. The first character in a note type
 name cannot be a hyphen or a number.

RETURN VALUE

 none

SEE ALSO

 note relink, notetype create, notetype delete

EXAMPLES

 The following example changes the name of the note type
 from AcmeBug to AjaxBug:

 notetype rename AcmeBug AjaxBug

note schema

note schema Command

NAME

 note schema - Extracts information about a note type's
 structure

DESCRIPTION

 This command provides programmatic (stcl) access to the schema
 that defines a note type.

 This command is a wrapper to the notetype schema command and is

ProjectSync Data Manipulation

1432

 available for backward compatibility only. We discourage the use
 of this command, as it may be dropped in future releases.

 This command is available only from server-side scripts.

note setprops

note setprops Command

NAME

 note setprops - Sets property values on a note

DESCRIPTION

 This command sets one or more property values (database fields)
 on a note. This command gives you programmatic (stcl) access to the
 note-editing capabilities of the ProjectSync graphical interface.

 The first argument must be the URL for an existing note. Remaining
 arguments can be either:
 o One or more pairs of database field name / new value, or
 o A single list containing pairs of field name / new value pairs
 The latter form is useful when you do not know ahead of time
 what properties you will be setting; build a list of the same
 form that would be used for the Tcl "array set" command and then
 pass the list to note setprops. This list can be empty.

 The property values you supply must be legal for the corresponding
 property type. The new property values specified in this command
 are checked against the current values of the property. If they are
 the same, the new value is discarded. Therefore, if all the values
 specified in the command match their current values, the entire
 command is ignored. The command always attempts to set the complete
 set of property values on the object. If one or more attempts fail
 because of invalid values, no change is committed and the entire
 set of invalid property values is returned in the resultant error.

 If a property name is specified multiple times with different
 values, the last value is stored.

 It is not possible to change a note's ID number after the note is
 created.

 The successful execution of this command causes an atomic note
 modify event and fires the corresponding triggers in response. If
 no property value is changed by the execution of the command, no
 event is generated.

 When setting multiple properties on the same note, it is better
 to set them all in a single call to "note setprops" so that trigger
 activity is reduced.

ENOVIA Synchronicity Command Reference - Module

1433

 The related "url setprop" command is limited to one name/value pair,
 but can operate on any object type, not just notes.

 This command is available only from server-side scripts.

SYNOPSIS

 note setprops [--] <note_url> <propname> <propvalue>
 [<propname> <propvalue>]...
 note setprops [--] <note_url> <proplist>

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when property
 names or values begin with a hyphen (-).

OPERANDS

• Note URL
• Property Name
• Property Value
• Property List Name/Value Pairs

Note URL

 <note_url> The URL of a note, which must exist, for which to
 set property values.

Property Name

 <propname> The name of a property on the note, which must exist
 on the note's note type.

Property Value

 <propvalue> A value to set the property of the note to, which
 must be a valid value for the property type.

ProjectSync Data Manipulation

1434

Property List Name/Value Pairs

 <proplist> A list of property name and value pairs, in the style
 of Tcl's array set command - for example: {name1 val1
 name2 val2 ...}. The names must all be valid property
 names on the note type and the values must all be
 legal values for the property type.

RETURN VALUE

 none

SEE ALSO

 note getprop, url setprop, url getprop, url properties, server-side,
 rstcl

EXAMPLES

• Example of Setting the Title on a Specific Note
• Example of Setting the Title and History for a Specific Note
• Example of Setting Various Properties on Specific Note

Example of Setting the Title on a Specific Note

 This example sets the title on SyncDefect 42:

 note setprops sync:///Note/SyncNotes/SyncDefect/42
 Title "A test"

Example of Setting the Title and History for a Specific Note

 This example sets the title and entire history on SyncDefect 42:

 note setprops sync:///Note/SyncNotes/SyncDefect/42 \
 Title "A test" Body "This is a test"

Example of Setting Various Properties on Specific Note

 This example sets several properties on SyncDefect 42, using a
 property list:

ENOVIA Synchronicity Command Reference - Module

1435

 set newvalues(Resp) sal
 set newvalues(State) closed
 set newvalues(Priority) low

 note setprops sync:///Note/SyncNotes/SyncDefect/42 [array
 get newvalues]

note systems

note systems Command

NAME

 note systems - Gets a list of note systems

DESCRIPTION

 A list of all note systems on the server. If no note systems exist,
 an empty list is returned.

 Currently, only a single note system is defined, SyncNotes. This
 note system always exists.

SYNOPSIS

 note systems

RETURN VALUE

 A list of all note systems on the server. Currently, this command
 always returns a single item, SyncNotes.

EXAMPLES

 Returns the list of note systems on the server:

 note systems

note types

note types Command

ProjectSync Data Manipulation

1436

NAME

 note types - Gets a list of defined note types for all
 note systems

DESCRIPTION

 Returns a list of note type URLs for all note types of all note
 systems on the server. If no note types exist, an empty list is
 returned.

 This command is a wrapper to the notetype enumerate command and is
 available for backward compatibility only. Synchronicity discourages
 the use of this command, which may be dropped in future releases.

Note Type Manipulation

note types

note types Command

NAME

 note types - Gets a list of defined note types for all
 note systems

DESCRIPTION

 Returns a list of note type URLs for all note types of all note
 systems on the server. If no note types exist, an empty list is
 returned.

 This command is a wrapper to the notetype enumerate command and is
 available for backward compatibility only. Synchronicity discourages
 the use of this command, which may be dropped in future releases.

notetype

notetype Commands

NAME

 notetype - Server-side commands to manipulate note types

ENOVIA Synchronicity Command Reference - Module

1437

DESCRIPTION

 The 'notetype' family of commands provides access to the notetype web
 object type. URLs for notetypes have the following form:

 sync:///Note/SyncNotes/<notetype>

 For example, the following URL specifies the BugReport notetype:

 sync:///Note/SyncNotes/BugReport

 Notes can only be accessed from server-side scripts, so always use
 the sync:/// syntax (no <host>:<port> specification).

SYNOPSIS

 notetype <notetype_command> [<notetype_command_options>]

 Usage: notetype [create|delete|enumerate|getdescription|rename|
 schema]

EXAMPLES

 See specific "notetype" commands.

notetype create

notetype create Command

NAME

 notetype create - Creates a new note type

DESCRIPTION

 This command creates a new note type with the name you
 specify. The properties Id, Title, Body, DateCreate, and Author
 are automatically defined for all new note types.

 You also can specify additional properties as a list of lists.
 Each sublist within the property list defines an individual
 property. A property definition consists of the following five
 pieces of information, all of which must be specified: property
 name, prompt string, IsRequired, property type, default value.

ProjectSync Data Manipulation

1438

 If you define other properties for the note type, you must specify
 order-dependent values for each property. If you do not specify
 additional properties, you must supply an empty Tcl list {}
 following the NoteTypeName option.

 This command is server-side only.

SYNOPSIS

 notetype create [-description <DescStr>] [--]
 <NotetypeName> {
 [{<PropertyName> <PromptName> <IsRequired>
 <PropertyTypeName> <DefaultValue>}...]
 }

OPTIONS

• -description
• --

-description

 -description Specifies a description for the note type; if
 <DescStr> not specified, the description defaults to the
 name of the note type. Enter the description in
 quotation marks or curly braces following the
 -description option. The description is limited
 to 256 characters.

--

 -- Indicates that the command should stop
 looking for command options. Use this option
 when an argument begins with a hyphen (-).

OPERANDS

• Note Type Name
• Property Name
• Prompt Name
• Is Required
• Property Type Name
• Default Value

Note Type Name

ENOVIA Synchronicity Command Reference - Module

1439

 <NoteTypeName> A valid name that you assign to the note type.
 A note type name is limited to 24 characters.
 Spaces are not allowed in note type names, and
 the legal character set for note type names
 consists of alphanumerics, hyphens, and
 underscores. The first character in a note type
 name cannot be a hyphen or a number.

Property Name

 <PropertyName> A unique name that you assign to the property.
 A property name is limited to 24 characters.
 Spaces are not allowed in property names,
 and the legal character set for property
 names consists of alphanumerics and underscores.

Prompt Name

 <PromptName> The prompt displayed on the GUI for users. Use
 only alphanumeric characters, not special
 characters or punctuation marks.

Is Required

 <IsRequired> A Tcl Boolean indicating whether a value for
 the property is required or optional. This
 setting is enforced only at the application
 level.

Property Type Name

 <PropertyTypeName> The name of a predefined property type. You can
 use either one of ProjectSync's predefined
 property types (such as Boolean, String80, Date)
 or a property type you have defined yourself
 using the Note Type Manager on the ProjectSync
 GUI.

Default Value

 <DefaultValue> The default value for this property. If there is
 no default value, specify an empty string "" as
 a placeholder; the default value will be supplied
 by the system. If you specify a default value, it
 must be one of the valid values for this

ProjectSync Data Manipulation

1440

 property type. For example, if you have
 defined a Choice property type, the default
 value must be in your choice list.

 The default value for a property in a note type
 may be given as an empty string, meaning no
 default. In this case, and when a note is created
 with the note create command without a value for
 the corresponding property, the property in the
 note will remain unset.

RETURN VALUE

 none

SEE ALSO

 notetype delete, notetype getdescription, notetype rename,
 server-side, rstcl

EXAMPLES

 The following example creates a note type named BugReport, used
 for defect tracking. In addition to the standard built-in property
 set, this note type defines four additional properties: a required
 user list field, Resp; a required State field; a required Severity
 field; and an optional CC list.

 notetype create BugReport -description "Defect tracking" \
 {{Resp Responsible 1 SyncUserList ""} \
 {State State 1 BR_State new} \
 {Severity Severity 1 BR_Severity serious} \
 {cclist CCList 0 String240 ""}}

notetype delete

notetype delete Command

NAME

 notetype delete - Deletes the specified note type

DESCRIPTION

ENOVIA Synchronicity Command Reference - Module

1441

 This command deletes the specified note type. You can specify only
 one note type at a time. Any internal links to and from the
 note type and any snapshots of the note type also are removed.
 However, this command does not remove any triggers or customization
 files associated with the note type.

 Important: It is strongly recommended that you do not delete the
 RevisionControl note type, which is a standard part of
 ProjectSync. This note type is designed to work with DesignSync
 for projects under revision control. Removing this note type
 could cause problems if you later want to use ProjectSync notes
 with DesignSync.

 If the note type contains any notes, the -purgenotes option must
 be specified to confirm your intent to delete the note type
 (analogous to requiring rm -r for a nonempty directory).

 This command is server-side only.

SYNOPSIS

 notetype delete [-purgenotes] <NoteTypeName>

OPTIONS

• -purgenotes

-purgenotes

 -purgenotes Forces the deletion of all notes attached
 to the specified note type. If you do not
 specify this option and the note type you
 want to delete contains notes, you get an
 error and the note type is not deleted.

OPERANDS

• Note Type Name

Note Type Name

 <NoteTypeName> The name of the note type to delete, which
 must exist.

RETURN VALUE

ProjectSync Data Manipulation

1442

 none

SEE ALSO

 notetype create, notetype rename

EXAMPLES

 The following example deletes the SyncDefect note type, including
 all notelinks, even if some notes exist for the note type:

 notetype delete SyncDefect -purgenotes

notetype enumerate

notetype enumerate Command

NAME

 notetype enumerate - Gets a list of defined note types for all
 note systems

DESCRIPTION

 Returns a list of note type names for all visible note types of
 all note systems on the server. If no note types exist, an empty
 list is returned.

SYNOPSIS

 notetype enumerate [-dbtablenames <dbTablenameVar>] [-urls]

OPTIONS

• -dbtablenames
• -urls

-dbtablenames

 -dbtablenames Store a map of the SQL table names by note
 <dbTablenameVar> type name in the Tcl array named

ENOVIA Synchronicity Command Reference - Module

1443

 <dbTablenameVar>. The table name is the
 note type name prefixed by t_, but this
 convention may not be used in the future. If
 a note type name contains a hyphen, the
 hyphen is converted to an underscore in the
 table name. The information from this option
 can be used to construct SQL statements
 dynamically.

-urls

 -urls The return list is formatted as note type
 URLs instead of the note type names. This
 output format is compatible with the format
 from the note types command.

RETURN VALUE

 A list of all note type names for all note systems.

SEE ALSO

 note systems, notetype create, notetype delete, notetype rename,
 url contents

EXAMPLES

 Returns the list of note types on the server:

 puts [notetype enumerate]
 SyncDefect SW-Defect-1

notetype getdescription

notetype getdescription Command

NAME

 notetype getdescription - Returns a brief description of the
 note type

DESCRIPTION

ProjectSync Data Manipulation

1444

 Returns a brief description of the note type. The description
 was set when the note type was created.

SYNOPSIS

 notetype getdescription <NotetypeName>

OPERANDS

• Note Type Name

Note Type Name

 <NotetypeName> The name of the note type, which must
 exist. <NotetypeName> is case-sensitive.

RETURN VALUE

 A string containing the value of the brief description recorded
 when the note type was created.

SEE ALSO

 notetype create, url setprop

EXAMPLES

 Returns the description of the SyncDefect note type:

 notetype getdescription SyncDefect

notetype rename

notetype rename Command

NAME

 notetype rename - Renames an existing note type

ENOVIA Synchronicity Command Reference - Module

1445

DESCRIPTION

 Renames an existing note type from <CurrentName> to <NewName>. The
 note type specified by <NewName> must not already exist.

 Any notelinks associated with the note type being renamed are also
 converted to be associated with the renamed note type name. This
 includes attachments both to and from the note type. Any snapshot of
 the note type also is renamed.

 The note-type-specific files in
 $SYNC_CUSTOM_DIR/servers/<host>/<port>/share/data are not renamed as
 part of the operation. However, these files are renamed if you
 use the ProjectSync Note Type Manager to rename the note type.

 This command is server-side only.

 Important: It is strongly recommended that you do not rename the
 RevisionControl note type, which is a standard part of
 ProjectSync. This note type is designed to work with DesignSync
 for projects under revision control. Renaming this note type
 could cause problems if you later want to use ProjectSync notes
 with DesignSync.

SYNOPSIS

 notetype rename <CurrentName> <NewName>

OPTIONS

 none

OPERANDS

• Current Name
• New Name

Current Name

 <CurrentName> The existing note type name that you want to
 change.

New Name

 <NewName> The new, legal note type name that you want to
 use. A note type name is limited to 24 characters.

ProjectSync Data Manipulation

1446

 Spaces are not allowed in note type names, and
 the legal character set for note type names
 consists of alphanumerics, hyphens, and
 underscores. The first character in a note type
 name cannot be a hyphen or a number.

RETURN VALUE

 none

SEE ALSO

 note relink, notetype create, notetype delete

EXAMPLES

 The following example changes the name of the note type
 from AcmeBug to AjaxBug:

 notetype rename AcmeBug AjaxBug

notetype schema

notetype schema Command

NAME

 notetype schema - Extracts information about a note type's
 structure

DESCRIPTION

 This command provides programmatic (stcl) access to the schema that
 defines a note type.

 The base set of information provided by this command is the list of
 fields that make up the note type. This information is provided in the
 return value of the command. The various command-line options allow for
 retrieving additional attribute information about each property on the
 note type. The results for each type of property information are
 returned in Tcl arrays that are passed in by name. The Tcl arrays need
 not exist prior to the execution of the command. If the arrays do exist
 or are of a scalar variable type, they are first cleared of all
 information. The data returned in these Tcl arrays is indexed by

ENOVIA Synchronicity Command Reference - Module

1447

 property name.

SYNOPSIS

 notetype schema <NotetypeName> [-dbcolumns <ColumnsVar>]
 [-defaults <DefaultsVar>] [-notesys <NoteSystemName>]
 [-prompts <PromptsVar>] [-ptypes <TypesVar>]
 [-required <ReqdVar>]

OPTIONS

• -dbcolumns
• -defaults
• -notesys
• -prompts
• -ptypes
• -required

-dbcolumns

 -dbcolumns Stores a map of column names by field name in
 <ColumnsVar> the Tcl array named <ColumnsVar>. Currently, the
 column name is always the field name prefixed by
 f_, but this convention may not be used in the
 future. This information from this option can be
 used to construct SQL statements dynamically.

-defaults

 -defaults Stores a map of default values by field name in
 <DefaultsVar> the Tcl array named by <DefaultsVar>

-notesys

 -notesys A valid note system name. Defaults to SyncNotes.
 <NoteSystemName> (This name is an input parameter, not an output
 array name.)

-prompts

 -prompts Stores a map of field prompt strings by field

ProjectSync Data Manipulation

1448

 <PromptsVar> name in the Tcl array named by <PromptsVar>

-ptypes

 -ptypes Stores a map of property type names by field
 <PtypesVar> name in the Tcl array named by <PtypesVar>

-required

 -required Stores a map of required flags (1 or 0) by field
 <ReqdVar> name in the Tcl array named by <ReqdVar>

RETURN VALUE

 A list of all field names in the specified note type.

SEE ALSO

 note getprop, notetype create, url getprop, url properties

EXAMPLES

• Example Returning all Fields in the Specified Note Type
• Example Displaying the Types for Each Field

Example Returning all Fields in the Specified Note Type

 This example returns all the fields in the SyncDefect note type:

 set field_names [notetype schema SyncDefect]

Example Displaying the Types for Each Field

 This example displays the type of each field:

 set field_names [notetype schema -ptypes types SyncDefect]
 foreach field $field_names {
 puts "$field: $types($field)
"
 }

 The above example generates output such as this:

ENOVIA Synchronicity Command Reference - Module

1449

 KeyWords: String80
 Browser: SD-Browser
 Title: String80
 Class: SD-Class
 Platform: SD-Platform
 Customer: SD-Customers
 DateCreate: Timestamp

 This example determines whether the FixDate field in a note type
 called ECO is required:

 notetype schema -required reqd ECO
 if {$reqd(FixDate)} { puts "FixDate is required." }

Property Type Information Commands

ptype

ptype Commands

NAME

 ptype - Commands that get information about property types

DESCRIPTION

 The ptype commands return information about property types.
 Property types are the data types available for note type
 properties (fields). When you create a note type field
 such as 'SpecAuthor', you assign it a property type, such as
 'String80'. Synchronicity provides a number of predefined
 property types, or you can create your own. You create and
 modify property types from the Property Type Manager
 (accessed from the Note Type Manager in ProjectSync's graphical
 user interface). See the ProjectSync User's Guide for
 more information on property types.

 The ptype commands are not server-side only, but are typically
 used when accessing note and note-type objects, which are
 only accessible from server-side scripts.

SYNOPSIS

 ptype <ptype_command> [<ptype_command_options>]

 Usage: ptype [choices|class|enumerate|is|strwidth|transitions]

ProjectSync Data Manipulation

1450

OPTIONS

 Vary by command.

RETURN VALUE

 Varies by command.

SEE ALSO

 ptype choices, ptype class, ptype enumerate, ptype is,
 ptype strwidth, ptype transitions

EXAMPLES

 See specific "ptype" commands.

ptype choices

ptype choices Command

NAME

 ptype choices - Returns the set of legal values for
 an enumerated type

DESCRIPTION

 This command returns the set of legal values for an existing choice
 or state machine property type. For a state machine, the set of
 choices returned is the entire list of possible state values. Only
 choice and state machine property types may be specified. It is an
 error to supply a property of any other type.

SYNOPSIS

 ptype choices <ptype_name>

OPERANDS

ENOVIA Synchronicity Command Reference - Module

1451

• Custom Property Type Name

Custom Property Type Name

 <ptype_name> The name of an existing choice or state machine
 custom property type.

RETURN VALUE

 The list of legal values for the property type.

SEE ALSO

 ptype is, ptype class, ptype transitions

EXAMPLES

 This examples shows 'ptype choices' applied to several property
 types:
 puts [ptype choices SyncPriority] # choice class
 => low medium high stopper
 puts [ptype choices SyncState] # state-machine class
 => open analyzed fixed closed

ptype class

ptype class Command

NAME

 ptype class - Returns the class of a property type

DESCRIPTION

 This command returns the class of a property type, where a class
 is a general category of property types. For example, String10,
 String80, and String are all property types of the 'string'
 class. Note that state-machine property types belong to both the
 'machine' and 'choice' classes; the dominant class is 'machine'
 and is therefore returned by 'ptype class'.

ProjectSync Data Manipulation

1452

SYNOPSIS

 ptype class <ptype_name>

OPERANDS

• Custom Property Type Name

Custom Property Type Name

 <ptype_name> The name of an existing property type.

RETURN VALUE

 Returns one of the following strings:
 boolean - for boolean types
 choice - for choice (enumeration) types
 date - for Date types
 machine - for state machine types
 number - for integer, float and other numeric types
 string - for string types (of any size)
 time - for Time types
 timestamp - for Timestamp types
 userlist - for user list types

SEE ALSO

 ptype choices, ptype enumerate, ptype is

EXAMPLES

 This example shows 'ptype class' applied to several property
 types:
 puts [ptype class String80]
 => string
 puts [ptype class String]
 => string
 puts [ptype class SyncState]
 => machine

ptype enumerate

ptype enumerate Command

ENOVIA Synchronicity Command Reference - Module

1453

NAME

 ptype enumerate - Returns a list of all property types

DESCRIPTION

 Generates a list of all property types on the server. The set of
 property types returned consists of all custom choice and state
 machine property types plus the built-in base property types:

 String Boolean SyncClass
 String10 Integer SyncUserList
 String20 Float SyncPriority
 String80 Date SyncRevCtrlCmd
 String240 Time SyncState
 String512 Timestamp
 String4000b "WebObject"

 This list excludes the string-derived property types like cclist,
 keywords, and fileattach. These are all defined, and their semantics
 imposed, at the note panel level.

SYNOPSIS

 ptype enumerate

OPTIONS

 none

RETURN VALUE

 List of property types.

EXAMPLES

 This example lists all the property types known to the server:

 puts [ptype enumerate]
 => String80 String Boolean String240 Integer SyncClass String20
 Float String10 SyncRevCtrlCmd {WebObject } String512 SyncPriority
 Time Timestamp Date String4000b SyncUserList SyncState

ProjectSync Data Manipulation

1454

ptype is

ptype is Command

NAME

 ptype is - Tests whether a property type is of a
 certain class

DESCRIPTION

 This command tests whether the specified property type is of the
 specified class, where a class is a general category of property
 types. For example, String10, String80, and String are all
 property types of the 'string' class. Note that state-machine
 property types belong to both the 'machine' and 'choice' classes.

SYNOPSIS

 ptype is <[-boolean] | [-choice] | [-date]
 | [-machine] | [-number] | [-string]
 | [-time] | [-timestamp] [-userlist]>
 <PropertyTypeName>

OPTIONS

• -boolean
• -choice
• -date
• -machine
• -number
• -string
• -time
• -timestamp
• -userlist

-boolean

 -boolean Check if the property type is a boolean.

-choice

ENOVIA Synchronicity Command Reference - Module

1455

 -choice Check if the property type is a choice (enumeration)
 type. Note that 'ptype is -choice' also returns 1
 (TRUE) if the property type is a state machine.

-date

 -date Check if the property type is a date.

-machine

 -machine Check if the property type is a state machine.

-number

 -number Check if the property type is an integer, float, or
 other numeric type.

-string

 -string Check if the property type is a string (of any size).

-time

 -time Check if the property type is a time.

-timestamp

 -timestamp Check if the property type is a timestamp.

-userlist

 -userlist Check if the property type is a user list.

OPERANDS

• Custom Property Type Name

Custom Property Type Name

ProjectSync Data Manipulation

1456

 <PropertyTypeName> The name of an existing property type

RETURN VALUE

 Returns 1 (TRUE) if the property type is of the specified class;
 0 (FALSE) otherwise.

SEE ALSO

 ptype class, ptype enumerate

EXAMPLES

 This example verifies that the SyncPriority property type is of
 the 'choice' class (and not of the 'string' class).

 puts [ptype is -choice SyncPriority]
 => 1
 puts [ptype is -string SyncPriority]
 => 0

ptype strwidth

ptype strwidth Command

NAME

 ptype strwidth - Returns the maximum width for strings of this type

DESCRIPTION

 This command returns the maximum number of characters a string-based
 property type can hold. The property type specified must be based on
 a string class. This command deals with character width, not byte width.

SYNOPSIS

 ptype strwidth <ptype_name>

ENOVIA Synchronicity Command Reference - Module

1457

OPERANDS

• Custom Property Type Name

Custom Property Type Name

 <ptype_name> The name of an existing property type.

RETURN VALUE

 Returns the maximum number of characters allowed for the given property
 type. For the String property type, -1 is returned, indicating no
 maximum.

SEE ALSO

 ptype is, ptype class

EXAMPLES

 This example shows 'ptype strwidth' applied to several
 property types.
 puts [ptype strwidth String80]
 => 80
 puts [ptype strwidth String10]
 => 10
 puts [ptype strwidth String]
 => -1
 puts [ptype strwidth Boolean]
 => Boolean: not a string type

ptype transitions

ptype transitions Command

NAME

 ptype transitions - For the value of a state machine, returns
 the set of values that are legal for that
 value to change to

DESCRIPTION

ProjectSync Data Manipulation

1458

 This command returns a list of the valid next states for any
 specified state of a State Machine property type. The -from
 option is required and indicates the state for which you want to
 know all possible next states.

SYNOPSIS

 ptype transitions <PropertyTypeName> <-from <PropertyValue>>

OPTIONS

• -from

-from

 -from Returns the list of states that are valid from
 <PropertyValue> <PropertyValue>, which must be a legal value for
 the state machine.

OPERANDS

• Custom Property Type Name

Custom Property Type Name

 <PropertyTypeName> The name of an existing property type.

RETURN VALUE

 A list of legal state values from the value specified.

SEE ALSO

 ptype choices, ptype is

EXAMPLES

 The following example returns a list of all the valid next states for the
 state 'fixed' of the SyncState property type.

ENOVIA Synchronicity Command Reference - Module

1459

 puts [ptype choices SyncState]
 => open analyzed fixed closed
 puts [ptype transitions SyncState -from fixed]
 => open closed

Email Subscription Manipulation

subscription

subscription Commands

NAME

 subscription - Commands to manipulate email subscriptions

DESCRIPTION

 These commands allow you to manage ProjectSync email subscriptions
 which let you be notified when certain kinds of activity, such as
 revision control operations, or defect tracking, take place in
 DesignSync or ProjectSync.

SYNOPSIS

 subscription <subscription_command> [<subscription_command_options>]

 Usage: subscription [add|delete|edit|get|list]

OPTIONS

 Vary by command.

subscription add

subscription add Command

NAME

 subscription add - Subscribes for email related to specified
 objects

ProjectSync Data Manipulation

1460

DESCRIPTION

 This command has two basic forms. The first form of this command is
 general. It allows you to subscribe for email notifications related
 to any note type on the server managing the vaults for the specified
 objects.

 The second form of this command is specific to RevisionControl
 notes. It allows you to subscribe for email notifications related
 to RevisionControl notes on the server managing the vaults for the
 specified objects. This form also has convenient options for
 limiting the subscription to certain RC operations.

 Note that a single 'subscription add' command invocation can cause
 multiple entries in the subscription database, as reported by
 the 'subscription list' command. For example, this command
 creates two entries:
 subscription add *.tcl *.html
 and this one creates four entries:
 subscription add -ci -tag *.tcl *.html

 Note: If you specify a subscription for the tag command, but do not have a
 subscription for the ci command, you will not get notifications for
 any ci -tag operations that specify a tag. In order to get all tag
 activity, you must also subscribe to ci command notifications.

SYNOPSIS

 subscription add [-ci] [-colock] [-conolock] [-filter Expr]
 [-noteType noteType] [-server serverURL] [-tag]
 [-tagname TagName] [-unlock] [-user user] object...

ARGUMENTS

• Object

Object

 object An expression (possibly containing wildcards) that must
 match one of the objects associated with a note in order
 for you to receive email. If no objects are provided, the
 default is to subscribe for ALL objects.

OPTIONS

• -ci
• -colock
• -conolock

ENOVIA Synchronicity Command Reference - Module

1461

• -filter
• -notetype
• -server
• -tag
• -tagname
• -unlock
• -user

-ci

 -ci Indicates that you wish to receive email when the objects
 listed are checked in. Implies the note type
 'RevisionControl'.

-colock

 -colock Indicates that you wish to receive email when the objects
 listed are checked out with a lock. Implies the note type
 'RevisionControl'. The same assumptions are applied for
 'populate -lock' operations.

-conolock

 -conolock Indicates that you wish to receive email when the
 objects listed are checked out without a lock. For the
 'co -get' and 'populate -get' operations, the note type
 'RevisionControl' is assumed.

-filter

 -filter Gives an expression describing which modifications to
 notes of the given type(s) will cause email to be
 sent. For a complete explanation of the filter
 expression syntax, see the ProjectSync
 User's Guide 'Advanced Email Subscriptions' topic. Note
 that if stcl is used the '$' operator needs to be
 escaped when used in a filter. For example, -filter
 Title\$Test.

-notetype

 -noteType Specifies the name of the note type for which subscriptions
 are to be added.

 If -ci, -conolock, -colock, -unlock, or -tag are used, then

ProjectSync Data Manipulation

1462

 the noteType is assumed to be 'RevisionControl'.

 If a note type is not provided and there are not any revision
 control operations listed, subscriptions for ALL note
 types will be modified.

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-tag

 -tag Indicates that you wish to receive email when the objects
 listed are tagged. Implies the note type
 'RevisionControl'.

-tagname

 -tagName Limits your email subscriptions to those concerning
 revision control operations associated with the
 given tag.

-unlock

 -unlock Indicates that you wish to receive email when the
 objects listed are unlocked. Implies the note type
 'RevisionControl'. The same assumptions are applied for
 'cancel' operations.

-user

 -user Allows you to add subscriptions for another user. By
 default, subscriptions are shown for the user running
 the client.

RETURN VALUE

 none

SEE ALSO

ENOVIA Synchronicity Command Reference - Module

1463

 subscription delete, subscription edit, subscription get,
 subscription list

EXAMPLES

• Example of Subscribing to SyncDefect Notes
• Example of Subscribing to Specific Objects Tagged with a Specific Tag
• Example of Subscribing to Specified RC Notes
• Example of Subscribing to all Notes Attached to a Module
• Example of Subscribing to all Notes for Modules in a Category

Example of Subscribing to SyncDefect Notes

 This example shows subscribing to SyncDefect notes attached to any
 object under project ASIC on the SyncServer.

 dss> subscription add -noteType SyncDefect sync:///Projects/ASIC

Example of Subscribing to Specific Objects Tagged with a Specific Tag

 This example shows two different ways to subscribe to RevisionControl
 notes when objects representing the .tcl files under [url vault .]
 are tagged as golden.

 dss> subscription add -noteType RevisionControl -filter \
 "Command=tag;Tag=Golden" *.tcl

 dss> subscription add -tag -tagname Golden *.tcl

Example of Subscribing to Specified RC Notes

 Subscribe to RC notes for objects *.tcl and *.ini for operations:
 checkin, checkout with lock.

 dss> subscription add -ci -colock *.tcl *.ini

Example of Subscribing to all Notes Attached to a Module

 This example subscribes to all notes attached to a module.

 dss> subscription add -server sync://serv1.ABCo.com:2647 \
 sync:///Modules/ChipDesign/NXZ-21x

Example of Subscribing to all Notes for Modules in a Category

ProjectSync Data Manipulation

1464

 dss> subscription add -server sync://serv1.ABCo.com:2647 \
 sync:///Modules/ChipDesign

See Also

subscription delete Command

NAME

 subscription delete - Deletes email subscriptions for specified objects

DESCRIPTION

 This command allows you to delete email subscriptions for the specified
 objects. For each object you specify, the server hosting the vault for
 that object will be searched for subscriptions.

 Use the 'subscription list' command to view your existing
 subscriptions.

 This command provides several different ways to delete subscriptions.
 * Delete all subscriptions for a specified user on the server.
 * Delete any subscriptions which were defined to refer to ALL
 (objects).
 * Deletes any subscriptions for a specified note type which were
 defined to refer to ALL (objects).
 * Delete subscriptions for a user on a specified object, optionally
 for a specified note type.

 Examples of all of these methods are shown in the Examples section.

SYNOPSIS

 subscription delete [-noteType noteType] [-server serverURL]
 [-user user] [<object>[...]]

ARGUMENTS

• Object

Object

 object The objects for which subscriptions are to be deleted.
 For each object you specify, the server hosting the vault
 for that object is searched for subscriptions. You may use

ENOVIA Synchronicity Command Reference - Module

1465

 wildcards in the object value.

 Note: The object specification must match exactly the
 specification in the subscription database. For instance,
 if you subscribed for Projects/MyProj/Foo/bar, you cannot
 unsubscribe projects/MyProj/Foo/* because that is not an
 exact match.

 If an object is not specified, subscriptions to ALL
 objects (those subscriptions for which the user selected
 ALL objects instead of specifying a particular object) are
 deleted. If a noteType value is provided without an
 object, subscriptions to ALL objects for that noteType are
 deleted.

OPTIONS

• -notetype
• -server
• -user

-notetype

 -noteType Specifies the name of the note type for which subscriptions
 are to be deleted.

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-user

 -user Allows you to delete the subscriptions of a user other
 than the user you are logged in as. By default, the
 name of the user running the client is used.

RETURN VALUE

 none. After the command is run, it returns a single integer value
 showing how many subscriptions were deleted during the operation.

SEE ALSO

ProjectSync Data Manipulation

1466

 subscription add, subscription edit, subscription get, subscription list

EXAMPLES

• Example of Deleting all Subscriptions for a User
• Example of Deleting Subscriptions for all Objects
• Example of Deleting Subscriptions for a NoteType for all Objects
• Example of Deleting all Subscriptions on the Specified Object
• Example of Deleting all Specified Notetypes for an Object

Example of Deleting all Subscriptions for a User

 This example shows deleting all subscriptions created for a specified
 user on the specified server.
 Note: By using the wildcard (*) for the object, you specify deleting
 all subscriptions for all objects for the user on the server.
 dss> subscription delete -user rsmith -server
 sync://srv1.ABCo.com:2647 *
 30

Example of Deleting Subscriptions for all Objects

 This example shows deleting the subscriptions created to match all
 objects (either by not specifying an object when the subscription was
 added or by choosing the ALL option).

 Note: No value, not even wildcard, is specified for object.

 dss> subscription delete -user rsmith -server sync://srv1.ABCo.com:2647
 15

Example of Deleting Subscriptions for a NoteType for all Objects

 This examples shows deleting the subscriptions for the Defect note type.

 Note: By not specifying a user, the subscriptions deleted are those
 of the user running the command.

 dss> subscription delete -notetype Defect -server sync://srv1.ABCo.com:2647
 10

Example of Deleting all Subscriptions on the Specified Object

 This example shows deleting all subscriptions for the specified user

ENOVIA Synchronicity Command Reference - Module

1467

 for the specified project.
 Note: The /// construction shows that it is an object,not a reference
 to the server.

 dss> subscription delete -user rsmith sync:///Projects/ProjectSync/*
 30

Example of Deleting all Specified Notetypes for an Object

 This example shows deleting all Defect note types for all objects
 within the panels project.

 dss> subscription delete -noteType Defect panels/*
 8

subscription edit Command

NAME

 subscription edit - Edits email subscriptions

DESCRIPTION

 This command invokes a web browser to edit the email subscription of
 the given user.

 On Unix platforms, the default browser chosen by your system
 administrator will be used. To change the default, use the 'SyncAdmin'
 tool. On Windows platforms, the default browser defined in the system
 registry will be used.

SYNOPSIS

 subscription edit [-server serverURL] [-user user]

OPTIONS

• -server
• -user

-server

ProjectSync Data Manipulation

1468

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-user

 -user Allows you to edit the subscriptions of a user other than
 the user you are logged in as. By default, the name of
 the user running the client is used.

RETURN VALUE

 1

SEE ALSO

 subscription add, subscription delete, subscription get,
 subscription list

EXAMPLES

• Example of Editing a Subscription on the Server Associated with cwd
• Example of Editing a Subscription on a Specified Server

Example of Editing a Subscription on the Server Associated with cwd

 This example shows the command that launches your web browser to edit
 subscriptions on the server associated with the current working
 directory, pointed to by [url vault .]

 dss> subscription edit

Example of Editing a Subscription on a Specified Server

 Brings up your web browser to edit subscriptions on SyncServer:2647.

 dss> subscription edit -server sync://SyncServer:2647

subscription get Command

NAME

ENOVIA Synchronicity Command Reference - Module

1469

 subscription get - Gets subscription information as a Tcl list

DESCRIPTION

 For a user-friendly view of the subscriptions, use the 'subscription
 list' command. This command is intended for use by those who wish to
 manipulate the subscription database using Tcl.

 Each subscription entry is returned as a Tcl list with alternating
 names and values ('array get' format). The following names are used:

 noteType The name of the NoteType for which the use is subscribed.
 object The object for which the user is subscribed.
 filter The filter string for the subscription.

SYNOPSIS

 subscription get [-noteType noteType] [-server serverURL] [-user user]

OPTIONS

• -noteType
• -server
• -user

-noteType

 -noteType Specifies the name of the note type for which subscriptions
 are to be queried. If no note type is given,
 subscriptions for all note types are listed.

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-user

 -user Allows you to get the subscriptions of a user other than
 the user you are logged in as. By default, the name of
 the user running the client is used.

ProjectSync Data Manipulation

1470

RETURN VALUE

 A Tcl list of subscriptions, where each subscription is represented
 in Tcl 'array get' format, with the array indices being 'noteType',
 'object', and 'filters'.

SEE ALSO

 subscription add, subscription delete, subscription edit,
 subscription list
,

EXAMPLES

 foreach sub [subscription get -user JDoe] {
 array set info $sub
 puts "NoteType: $info(noteType)"
 puts "Object: $info(object)"
 puts "Filter: $info(filters)"
 }

 The output would resemble the following:

 NoteType: RevisionControl
 Object: *.tcl
 Filter: Tag=Golden;Command=tag

subscription list Command

NAME

 subscription list - Lists email subscriptions

DESCRIPTION

 This command prints out a listing of your current subscriptions
 on a particular server.

 Note that a single 'subscription add' invocation can cause
 multiple entries in the subscription database, as reported by
 the 'subscription list' command. For example, this command
 creates two entries:
 subscription add *.tcl *.html
 and this one creates four entries:
 subscription add -ci -tag *.tcl *.htm

ENOVIA Synchronicity Command Reference - Module

1471

SYNOPSIS

 subscription list [-noteType noteType] [-server serverURL] [-user user]

OPTIONS

• -noteType
• -server
• -user

-noteType

 -noteType Specifies the name of the note type for which subscriptions
 are to be displayed. If no note type is given,
 subscriptions for all note types are listed.

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-user

 -user Allows you to view the subscriptions of a user other than
 the user you are logged in as. By default, the name of
 the user running the client is used.

RETURN VALUE

 none

SEE ALSO

 subscription add, subscription delete, subscription edit,
 subscription get

EXAMPLES

• Example Showing Listing Subscriptions on the server
• Example Showing Listing Subscriptions for Vault Associated with cwd

ProjectSync Data Manipulation

1472

Example Showing Listing Subscriptions on the server

 This example shows a list of all subscriptions for a specified
 server.

 dss> subscription list -server sync://SyncServer:2647

 SyncDefect sync:///Projects/EmailPackage State->new;Class=enhancement
 SyncDefect sync:///Projects/EmailPackage State->new;Class=sw-bug
 SyncDefect sync:///Projects/ProjectSync Class=sw-bug
 SyncDefect sync:///Projects/ProjectSync Severity->STOPPER
 HW-Defect-1 sync:///Projects/ProjectSync
 Note sync:///Projects/ProjectSync

Example Showing Listing Subscriptions for Vault Associated with cwd

 This example shows a list of all the subscriptions for the vault
 associated with the current working directory. You could also
 specify current working directory as "[url vault .]".

 dss> subscription list -noteType Note

subscription delete

subscription delete Command

NAME

 subscription delete - Deletes email subscriptions for specified objects

DESCRIPTION

 This command allows you to delete email subscriptions for the specified
 objects. For each object you specify, the server hosting the vault for
 that object will be searched for subscriptions.

 Use the 'subscription list' command to view your existing
 subscriptions.

 This command provides several different ways to delete subscriptions.
 * Delete all subscriptions for a specified user on the server.
 * Delete any subscriptions which were defined to refer to ALL
 (objects).
 * Deletes any subscriptions for a specified note type which were
 defined to refer to ALL (objects).

ENOVIA Synchronicity Command Reference - Module

1473

 * Delete subscriptions for a user on a specified object, optionally
 for a specified note type.

 Examples of all of these methods are shown in the Examples section.

SYNOPSIS

 subscription delete [-noteType noteType] [-server serverURL]
 [-user user] [<object>[...]]

ARGUMENTS

• Object

Object

 object The objects for which subscriptions are to be deleted.
 For each object you specify, the server hosting the vault
 for that object is searched for subscriptions. You may use
 wildcards in the object value.

 Note: The object specification must match exactly the
 specification in the subscription database. For instance,
 if you subscribed for Projects/MyProj/Foo/bar, you cannot
 unsubscribe projects/MyProj/Foo/* because that is not an
 exact match.

 If an object is not specified, subscriptions to ALL
 objects (those subscriptions for which the user selected
 ALL objects instead of specifying a particular object) are
 deleted. If a noteType value is provided without an
 object, subscriptions to ALL objects for that noteType are
 deleted.

OPTIONS

• -notetype
• -server
• -user

-notetype

 -noteType Specifies the name of the note type for which subscriptions
 are to be deleted.

-server

ProjectSync Data Manipulation

1474

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-user

 -user Allows you to delete the subscriptions of a user other
 than the user you are logged in as. By default, the
 name of the user running the client is used.

RETURN VALUE

 none. After the command is run, it returns a single integer value
 showing how many subscriptions were deleted during the operation.

SEE ALSO

 subscription add, subscription edit, subscription get, subscription list

EXAMPLES

• Example of Deleting all Subscriptions for a User
• Example of Deleting Subscriptions for all Objects
• Example of Deleting Subscriptions for a NoteType for all Objects
• Example of Deleting all Subscriptions on the Specified Object
• Example of Deleting all Specified Notetypes for an Object

Example of Deleting all Subscriptions for a User

 This example shows deleting all subscriptions created for a specified
 user on the specified server.
 Note: By using the wildcard (*) for the object, you specify deleting
 all subscriptions for all objects for the user on the server.
 dss> subscription delete -user rsmith -server
 sync://srv1.ABCo.com:2647 *
 30

Example of Deleting Subscriptions for all Objects

 This example shows deleting the subscriptions created to match all
 objects (either by not specifying an object when the subscription was
 added or by choosing the ALL option).

ENOVIA Synchronicity Command Reference - Module

1475

 Note: No value, not even wildcard, is specified for object.

 dss> subscription delete -user rsmith -server sync://srv1.ABCo.com:2647
 15

Example of Deleting Subscriptions for a NoteType for all Objects

 This examples shows deleting the subscriptions for the Defect note type.

 Note: By not specifying a user, the subscriptions deleted are those
 of the user running the command.

 dss> subscription delete -notetype Defect -server sync://srv1.ABCo.com:2647
 10

Example of Deleting all Subscriptions on the Specified Object

 This example shows deleting all subscriptions for the specified user
 for the specified project.
 Note: The /// construction shows that it is an object,not a reference
 to the server.

 dss> subscription delete -user rsmith sync:///Projects/ProjectSync/*
 30

Example of Deleting all Specified Notetypes for an Object

 This example shows deleting all Defect note types for all objects
 within the panels project.

 dss> subscription delete -noteType Defect panels/*
 8

See Also

subscription add Command

NAME

 subscription add - Subscribes for email related to specified
 objects

DESCRIPTION

 This command has two basic forms. The first form of this command is
 general. It allows you to subscribe for email notifications related

ProjectSync Data Manipulation

1476

 to any note type on the server managing the vaults for the specified
 objects.

 The second form of this command is specific to RevisionControl
 notes. It allows you to subscribe for email notifications related
 to RevisionControl notes on the server managing the vaults for the
 specified objects. This form also has convenient options for
 limiting the subscription to certain RC operations.

 Note that a single 'subscription add' command invocation can cause
 multiple entries in the subscription database, as reported by
 the 'subscription list' command. For example, this command
 creates two entries:
 subscription add *.tcl *.html
 and this one creates four entries:
 subscription add -ci -tag *.tcl *.html

 Note: If you specify a subscription for the tag command, but do not have a
 subscription for the ci command, you will not get notifications for
 any ci -tag operations that specify a tag. In order to get all tag
 activity, you must also subscribe to ci command notifications.

SYNOPSIS

 subscription add [-ci] [-colock] [-conolock] [-filter Expr]
 [-noteType noteType] [-server serverURL] [-tag]
 [-tagname TagName] [-unlock] [-user user] object...

ARGUMENTS

• Object

Object

 object An expression (possibly containing wildcards) that must
 match one of the objects associated with a note in order
 for you to receive email. If no objects are provided, the
 default is to subscribe for ALL objects.

OPTIONS

• -ci
• -colock
• -conolock
• -filter
• -notetype
• -server
• -tag

ENOVIA Synchronicity Command Reference - Module

1477

• -tagname
• -unlock
• -user

-ci

 -ci Indicates that you wish to receive email when the objects
 listed are checked in. Implies the note type
 'RevisionControl'.

-colock

 -colock Indicates that you wish to receive email when the objects
 listed are checked out with a lock. Implies the note type
 'RevisionControl'. The same assumptions are applied for
 'populate -lock' operations.

-conolock

 -conolock Indicates that you wish to receive email when the
 objects listed are checked out without a lock. For the
 'co -get' and 'populate -get' operations, the note type
 'RevisionControl' is assumed.

-filter

 -filter Gives an expression describing which modifications to
 notes of the given type(s) will cause email to be
 sent. For a complete explanation of the filter
 expression syntax, see the ProjectSync
 User's Guide 'Advanced Email Subscriptions' topic. Note
 that if stcl is used the '$' operator needs to be
 escaped when used in a filter. For example, -filter
 Title\$Test.

-notetype

 -noteType Specifies the name of the note type for which subscriptions
 are to be added.

 If -ci, -conolock, -colock, -unlock, or -tag are used, then
 the noteType is assumed to be 'RevisionControl'.

 If a note type is not provided and there are not any revision

ProjectSync Data Manipulation

1478

 control operations listed, subscriptions for ALL note
 types will be modified.

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-tag

 -tag Indicates that you wish to receive email when the objects
 listed are tagged. Implies the note type
 'RevisionControl'.

-tagname

 -tagName Limits your email subscriptions to those concerning
 revision control operations associated with the
 given tag.

-unlock

 -unlock Indicates that you wish to receive email when the
 objects listed are unlocked. Implies the note type
 'RevisionControl'. The same assumptions are applied for
 'cancel' operations.

-user

 -user Allows you to add subscriptions for another user. By
 default, subscriptions are shown for the user running
 the client.

RETURN VALUE

 none

SEE ALSO

ENOVIA Synchronicity Command Reference - Module

1479

 subscription delete, subscription edit, subscription get,
 subscription list

EXAMPLES

• Example of Subscribing to SyncDefect Notes
• Example of Subscribing to Specific Objects Tagged with a Specific Tag
• Example of Subscribing to Specified RC Notes
• Example of Subscribing to all Notes Attached to a Module
• Example of Subscribing to all Notes for Modules in a Category

Example of Subscribing to SyncDefect Notes

 This example shows subscribing to SyncDefect notes attached to any
 object under project ASIC on the SyncServer.

 dss> subscription add -noteType SyncDefect sync:///Projects/ASIC

Example of Subscribing to Specific Objects Tagged with a Specific Tag

 This example shows two different ways to subscribe to RevisionControl
 notes when objects representing the .tcl files under [url vault .]
 are tagged as golden.

 dss> subscription add -noteType RevisionControl -filter \
 "Command=tag;Tag=Golden" *.tcl

 dss> subscription add -tag -tagname Golden *.tcl

Example of Subscribing to Specified RC Notes

 Subscribe to RC notes for objects *.tcl and *.ini for operations:
 checkin, checkout with lock.

 dss> subscription add -ci -colock *.tcl *.ini

Example of Subscribing to all Notes Attached to a Module

 This example subscribes to all notes attached to a module.

 dss> subscription add -server sync://serv1.ABCo.com:2647 \
 sync:///Modules/ChipDesign/NXZ-21x

ProjectSync Data Manipulation

1480

Example of Subscribing to all Notes for Modules in a Category

 dss> subscription add -server sync://serv1.ABCo.com:2647 \
 sync:///Modules/ChipDesign

subscription edit Command

NAME

 subscription edit - Edits email subscriptions

DESCRIPTION

 This command invokes a web browser to edit the email subscription of
 the given user.

 On Unix platforms, the default browser chosen by your system
 administrator will be used. To change the default, use the 'SyncAdmin'
 tool. On Windows platforms, the default browser defined in the system
 registry will be used.

SYNOPSIS

 subscription edit [-server serverURL] [-user user]

OPTIONS

• -server
• -user

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-user

ENOVIA Synchronicity Command Reference - Module

1481

 -user Allows you to edit the subscriptions of a user other than
 the user you are logged in as. By default, the name of
 the user running the client is used.

RETURN VALUE

 1

SEE ALSO

 subscription add, subscription delete, subscription get,
 subscription list

EXAMPLES

• Example of Editing a Subscription on the Server Associated with cwd
• Example of Editing a Subscription on a Specified Server

Example of Editing a Subscription on the Server Associated with cwd

 This example shows the command that launches your web browser to edit
 subscriptions on the server associated with the current working
 directory, pointed to by [url vault .]

 dss> subscription edit

Example of Editing a Subscription on a Specified Server

 Brings up your web browser to edit subscriptions on SyncServer:2647.

 dss> subscription edit -server sync://SyncServer:2647

subscription get Command

NAME

 subscription get - Gets subscription information as a Tcl list

DESCRIPTION

 For a user-friendly view of the subscriptions, use the 'subscription
 list' command. This command is intended for use by those who wish to

ProjectSync Data Manipulation

1482

 manipulate the subscription database using Tcl.

 Each subscription entry is returned as a Tcl list with alternating
 names and values ('array get' format). The following names are used:

 noteType The name of the NoteType for which the use is subscribed.
 object The object for which the user is subscribed.
 filter The filter string for the subscription.

SYNOPSIS

 subscription get [-noteType noteType] [-server serverURL] [-user user]

OPTIONS

• -noteType
• -server
• -user

-noteType

 -noteType Specifies the name of the note type for which subscriptions
 are to be queried. If no note type is given,
 subscriptions for all note types are listed.

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-user

 -user Allows you to get the subscriptions of a user other than
 the user you are logged in as. By default, the name of
 the user running the client is used.

RETURN VALUE

 A Tcl list of subscriptions, where each subscription is represented
 in Tcl 'array get' format, with the array indices being 'noteType',
 'object', and 'filters'.

ENOVIA Synchronicity Command Reference - Module

1483

SEE ALSO

 subscription add, subscription delete, subscription edit,
 subscription list
,

EXAMPLES

 foreach sub [subscription get -user JDoe] {
 array set info $sub
 puts "NoteType: $info(noteType)"
 puts "Object: $info(object)"
 puts "Filter: $info(filters)"
 }

 The output would resemble the following:

 NoteType: RevisionControl
 Object: *.tcl
 Filter: Tag=Golden;Command=tag

subscription list Command

NAME

 subscription list - Lists email subscriptions

DESCRIPTION

 This command prints out a listing of your current subscriptions
 on a particular server.

 Note that a single 'subscription add' invocation can cause
 multiple entries in the subscription database, as reported by
 the 'subscription list' command. For example, this command
 creates two entries:
 subscription add *.tcl *.html
 and this one creates four entries:
 subscription add -ci -tag *.tcl *.htm

SYNOPSIS

 subscription list [-noteType noteType] [-server serverURL] [-user user]

OPTIONS

• -noteType

ProjectSync Data Manipulation

1484

• -server
• -user

-noteType

 -noteType Specifies the name of the note type for which subscriptions
 are to be displayed. If no note type is given,
 subscriptions for all note types are listed.

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-user

 -user Allows you to view the subscriptions of a user other than
 the user you are logged in as. By default, the name of
 the user running the client is used.

RETURN VALUE

 none

SEE ALSO

 subscription add, subscription delete, subscription edit,
 subscription get

EXAMPLES

• Example Showing Listing Subscriptions on the server
• Example Showing Listing Subscriptions for Vault Associated with cwd

Example Showing Listing Subscriptions on the server

 This example shows a list of all subscriptions for a specified
 server.

 dss> subscription list -server sync://SyncServer:2647

ENOVIA Synchronicity Command Reference - Module

1485

 SyncDefect sync:///Projects/EmailPackage State->new;Class=enhancement
 SyncDefect sync:///Projects/EmailPackage State->new;Class=sw-bug
 SyncDefect sync:///Projects/ProjectSync Class=sw-bug
 SyncDefect sync:///Projects/ProjectSync Severity->STOPPER
 HW-Defect-1 sync:///Projects/ProjectSync
 Note sync:///Projects/ProjectSync

Example Showing Listing Subscriptions for Vault Associated with cwd

 This example shows a list of all the subscriptions for the vault
 associated with the current working directory. You could also
 specify current working directory as "[url vault .]".

 dss> subscription list -noteType Note

subscription edit

subscription edit Command

NAME

 subscription edit - Edits email subscriptions

DESCRIPTION

 This command invokes a web browser to edit the email subscription of
 the given user.

 On Unix platforms, the default browser chosen by your system
 administrator will be used. To change the default, use the 'SyncAdmin'
 tool. On Windows platforms, the default browser defined in the system
 registry will be used.

SYNOPSIS

 subscription edit [-server serverURL] [-user user]

OPTIONS

ProjectSync Data Manipulation

1486

• -server
• -user

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-user

 -user Allows you to edit the subscriptions of a user other than
 the user you are logged in as. By default, the name of
 the user running the client is used.

RETURN VALUE

 1

SEE ALSO

 subscription add, subscription delete, subscription get,
 subscription list

EXAMPLES

• Example of Editing a Subscription on the Server Associated with cwd
• Example of Editing a Subscription on a Specified Server

Example of Editing a Subscription on the Server Associated with cwd

 This example shows the command that launches your web browser to edit
 subscriptions on the server associated with the current working
 directory, pointed to by [url vault .]

 dss> subscription edit

Example of Editing a Subscription on a Specified Server

 Brings up your web browser to edit subscriptions on SyncServer:2647.

 dss> subscription edit -server sync://SyncServer:2647

ENOVIA Synchronicity Command Reference - Module

1487

See Also

subscription add Command

NAME

 subscription add - Subscribes for email related to specified
 objects

DESCRIPTION

 This command has two basic forms. The first form of this command is
 general. It allows you to subscribe for email notifications related
 to any note type on the server managing the vaults for the specified
 objects.

 The second form of this command is specific to RevisionControl
 notes. It allows you to subscribe for email notifications related
 to RevisionControl notes on the server managing the vaults for the
 specified objects. This form also has convenient options for
 limiting the subscription to certain RC operations.

 Note that a single 'subscription add' command invocation can cause
 multiple entries in the subscription database, as reported by
 the 'subscription list' command. For example, this command
 creates two entries:
 subscription add *.tcl *.html
 and this one creates four entries:
 subscription add -ci -tag *.tcl *.html

 Note: If you specify a subscription for the tag command, but do not have a
 subscription for the ci command, you will not get notifications for
 any ci -tag operations that specify a tag. In order to get all tag
 activity, you must also subscribe to ci command notifications.

SYNOPSIS

 subscription add [-ci] [-colock] [-conolock] [-filter Expr]
 [-noteType noteType] [-server serverURL] [-tag]
 [-tagname TagName] [-unlock] [-user user] object...

ARGUMENTS

• Object

Object

ProjectSync Data Manipulation

1488

 object An expression (possibly containing wildcards) that must
 match one of the objects associated with a note in order
 for you to receive email. If no objects are provided, the
 default is to subscribe for ALL objects.

OPTIONS

• -ci
• -colock
• -conolock
• -filter
• -notetype
• -server
• -tag
• -tagname
• -unlock
• -user

-ci

 -ci Indicates that you wish to receive email when the objects
 listed are checked in. Implies the note type
 'RevisionControl'.

-colock

 -colock Indicates that you wish to receive email when the objects
 listed are checked out with a lock. Implies the note type
 'RevisionControl'. The same assumptions are applied for
 'populate -lock' operations.

-conolock

 -conolock Indicates that you wish to receive email when the
 objects listed are checked out without a lock. For the
 'co -get' and 'populate -get' operations, the note type
 'RevisionControl' is assumed.

-filter

 -filter Gives an expression describing which modifications to
 notes of the given type(s) will cause email to be
 sent. For a complete explanation of the filter
 expression syntax, see the ProjectSync

ENOVIA Synchronicity Command Reference - Module

1489

 User's Guide 'Advanced Email Subscriptions' topic. Note
 that if stcl is used the '$' operator needs to be
 escaped when used in a filter. For example, -filter
 Title\$Test.

-notetype

 -noteType Specifies the name of the note type for which subscriptions
 are to be added.

 If -ci, -conolock, -colock, -unlock, or -tag are used, then
 the noteType is assumed to be 'RevisionControl'.

 If a note type is not provided and there are not any revision
 control operations listed, subscriptions for ALL note
 types will be modified.

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-tag

 -tag Indicates that you wish to receive email when the objects
 listed are tagged. Implies the note type
 'RevisionControl'.

-tagname

 -tagName Limits your email subscriptions to those concerning
 revision control operations associated with the
 given tag.

-unlock

 -unlock Indicates that you wish to receive email when the
 objects listed are unlocked. Implies the note type
 'RevisionControl'. The same assumptions are applied for
 'cancel' operations.

ProjectSync Data Manipulation

1490

-user

 -user Allows you to add subscriptions for another user. By
 default, subscriptions are shown for the user running
 the client.

RETURN VALUE

 none

SEE ALSO

 subscription delete, subscription edit, subscription get,
 subscription list

EXAMPLES

• Example of Subscribing to SyncDefect Notes
• Example of Subscribing to Specific Objects Tagged with a Specific Tag
• Example of Subscribing to Specified RC Notes
• Example of Subscribing to all Notes Attached to a Module
• Example of Subscribing to all Notes for Modules in a Category

Example of Subscribing to SyncDefect Notes

 This example shows subscribing to SyncDefect notes attached to any
 object under project ASIC on the SyncServer.

 dss> subscription add -noteType SyncDefect sync:///Projects/ASIC

Example of Subscribing to Specific Objects Tagged with a Specific Tag

 This example shows two different ways to subscribe to RevisionControl
 notes when objects representing the .tcl files under [url vault .]
 are tagged as golden.

 dss> subscription add -noteType RevisionControl -filter \
 "Command=tag;Tag=Golden" *.tcl

 dss> subscription add -tag -tagname Golden *.tcl

Example of Subscribing to Specified RC Notes

ENOVIA Synchronicity Command Reference - Module

1491

 Subscribe to RC notes for objects *.tcl and *.ini for operations:
 checkin, checkout with lock.

 dss> subscription add -ci -colock *.tcl *.ini

Example of Subscribing to all Notes Attached to a Module

 This example subscribes to all notes attached to a module.

 dss> subscription add -server sync://serv1.ABCo.com:2647 \
 sync:///Modules/ChipDesign/NXZ-21x

Example of Subscribing to all Notes for Modules in a Category

 dss> subscription add -server sync://serv1.ABCo.com:2647 \
 sync:///Modules/ChipDesign

subscription delete Command

NAME

 subscription delete - Deletes email subscriptions for specified objects

DESCRIPTION

 This command allows you to delete email subscriptions for the specified
 objects. For each object you specify, the server hosting the vault for
 that object will be searched for subscriptions.

 Use the 'subscription list' command to view your existing
 subscriptions.

 This command provides several different ways to delete subscriptions.
 * Delete all subscriptions for a specified user on the server.
 * Delete any subscriptions which were defined to refer to ALL
 (objects).
 * Deletes any subscriptions for a specified note type which were
 defined to refer to ALL (objects).
 * Delete subscriptions for a user on a specified object, optionally
 for a specified note type.

 Examples of all of these methods are shown in the Examples section.

SYNOPSIS

ProjectSync Data Manipulation

1492

 subscription delete [-noteType noteType] [-server serverURL]
 [-user user] [<object>[...]]

ARGUMENTS

• Object

Object

 object The objects for which subscriptions are to be deleted.
 For each object you specify, the server hosting the vault
 for that object is searched for subscriptions. You may use
 wildcards in the object value.

 Note: The object specification must match exactly the
 specification in the subscription database. For instance,
 if you subscribed for Projects/MyProj/Foo/bar, you cannot
 unsubscribe projects/MyProj/Foo/* because that is not an
 exact match.

 If an object is not specified, subscriptions to ALL
 objects (those subscriptions for which the user selected
 ALL objects instead of specifying a particular object) are
 deleted. If a noteType value is provided without an
 object, subscriptions to ALL objects for that noteType are
 deleted.

OPTIONS

• -notetype
• -server
• -user

-notetype

 -noteType Specifies the name of the note type for which subscriptions
 are to be deleted.

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-user

ENOVIA Synchronicity Command Reference - Module

1493

 -user Allows you to delete the subscriptions of a user other
 than the user you are logged in as. By default, the
 name of the user running the client is used.

RETURN VALUE

 none. After the command is run, it returns a single integer value
 showing how many subscriptions were deleted during the operation.

SEE ALSO

 subscription add, subscription edit, subscription get, subscription list

EXAMPLES

• Example of Deleting all Subscriptions for a User
• Example of Deleting Subscriptions for all Objects
• Example of Deleting Subscriptions for a NoteType for all Objects
• Example of Deleting all Subscriptions on the Specified Object
• Example of Deleting all Specified Notetypes for an Object

Example of Deleting all Subscriptions for a User

 This example shows deleting all subscriptions created for a specified
 user on the specified server.
 Note: By using the wildcard (*) for the object, you specify deleting
 all subscriptions for all objects for the user on the server.
 dss> subscription delete -user rsmith -server
 sync://srv1.ABCo.com:2647 *
 30

Example of Deleting Subscriptions for all Objects

 This example shows deleting the subscriptions created to match all
 objects (either by not specifying an object when the subscription was
 added or by choosing the ALL option).

 Note: No value, not even wildcard, is specified for object.

 dss> subscription delete -user rsmith -server sync://srv1.ABCo.com:2647
 15

Example of Deleting Subscriptions for a NoteType for all Objects

ProjectSync Data Manipulation

1494

 This examples shows deleting the subscriptions for the Defect note type.

 Note: By not specifying a user, the subscriptions deleted are those
 of the user running the command.

 dss> subscription delete -notetype Defect -server sync://srv1.ABCo.com:2647
 10

Example of Deleting all Subscriptions on the Specified Object

 This example shows deleting all subscriptions for the specified user
 for the specified project.
 Note: The /// construction shows that it is an object,not a reference
 to the server.

 dss> subscription delete -user rsmith sync:///Projects/ProjectSync/*
 30

Example of Deleting all Specified Notetypes for an Object

 This example shows deleting all Defect note types for all objects
 within the panels project.

 dss> subscription delete -noteType Defect panels/*
 8

subscription get Command

NAME

 subscription get - Gets subscription information as a Tcl list

DESCRIPTION

 For a user-friendly view of the subscriptions, use the 'subscription
 list' command. This command is intended for use by those who wish to
 manipulate the subscription database using Tcl.

 Each subscription entry is returned as a Tcl list with alternating
 names and values ('array get' format). The following names are used:

 noteType The name of the NoteType for which the use is subscribed.
 object The object for which the user is subscribed.
 filter The filter string for the subscription.

SYNOPSIS

ENOVIA Synchronicity Command Reference - Module

1495

 subscription get [-noteType noteType] [-server serverURL] [-user user]

OPTIONS

• -noteType
• -server
• -user

-noteType

 -noteType Specifies the name of the note type for which subscriptions
 are to be queried. If no note type is given,
 subscriptions for all note types are listed.

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-user

 -user Allows you to get the subscriptions of a user other than
 the user you are logged in as. By default, the name of
 the user running the client is used.

RETURN VALUE

 A Tcl list of subscriptions, where each subscription is represented
 in Tcl 'array get' format, with the array indices being 'noteType',
 'object', and 'filters'.

SEE ALSO

 subscription add, subscription delete, subscription edit,
 subscription list
,

EXAMPLES

 foreach sub [subscription get -user JDoe] {

ProjectSync Data Manipulation

1496

 array set info $sub
 puts "NoteType: $info(noteType)"
 puts "Object: $info(object)"
 puts "Filter: $info(filters)"
 }

 The output would resemble the following:

 NoteType: RevisionControl
 Object: *.tcl
 Filter: Tag=Golden;Command=tag

subscription list Command

NAME

 subscription list - Lists email subscriptions

DESCRIPTION

 This command prints out a listing of your current subscriptions
 on a particular server.

 Note that a single 'subscription add' invocation can cause
 multiple entries in the subscription database, as reported by
 the 'subscription list' command. For example, this command
 creates two entries:
 subscription add *.tcl *.html
 and this one creates four entries:
 subscription add -ci -tag *.tcl *.htm

SYNOPSIS

 subscription list [-noteType noteType] [-server serverURL] [-user user]

OPTIONS

• -noteType
• -server
• -user

-noteType

 -noteType Specifies the name of the note type for which subscriptions
 are to be displayed. If no note type is given,
 subscriptions for all note types are listed.

ENOVIA Synchronicity Command Reference - Module

1497

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-user

 -user Allows you to view the subscriptions of a user other than
 the user you are logged in as. By default, the name of
 the user running the client is used.

RETURN VALUE

 none

SEE ALSO

 subscription add, subscription delete, subscription edit,
 subscription get

EXAMPLES

• Example Showing Listing Subscriptions on the server
• Example Showing Listing Subscriptions for Vault Associated with cwd

Example Showing Listing Subscriptions on the server

 This example shows a list of all subscriptions for a specified
 server.

 dss> subscription list -server sync://SyncServer:2647

 SyncDefect sync:///Projects/EmailPackage State->new;Class=enhancement
 SyncDefect sync:///Projects/EmailPackage State->new;Class=sw-bug
 SyncDefect sync:///Projects/ProjectSync Class=sw-bug
 SyncDefect sync:///Projects/ProjectSync Severity->STOPPER
 HW-Defect-1 sync:///Projects/ProjectSync
 Note sync:///Projects/ProjectSync

Example Showing Listing Subscriptions for Vault Associated with cwd

ProjectSync Data Manipulation

1498

 This example shows a list of all the subscriptions for the vault
 associated with the current working directory. You could also
 specify current working directory as "[url vault .]".

 dss> subscription list -noteType Note

subscription get

subscription get Command

NAME

 subscription get - Gets subscription information as a Tcl list

DESCRIPTION

 For a user-friendly view of the subscriptions, use the 'subscription
 list' command. This command is intended for use by those who wish to
 manipulate the subscription database using Tcl.

 Each subscription entry is returned as a Tcl list with alternating
 names and values ('array get' format). The following names are used:

 noteType The name of the NoteType for which the use is subscribed.
 object The object for which the user is subscribed.
 filter The filter string for the subscription.

SYNOPSIS

 subscription get [-noteType noteType] [-server serverURL] [-user user]

OPTIONS

• -noteType
• -server
• -user

-noteType

 -noteType Specifies the name of the note type for which subscriptions
 are to be queried. If no note type is given,
 subscriptions for all note types are listed.

ENOVIA Synchronicity Command Reference - Module

1499

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-user

 -user Allows you to get the subscriptions of a user other than
 the user you are logged in as. By default, the name of
 the user running the client is used.

RETURN VALUE

 A Tcl list of subscriptions, where each subscription is represented
 in Tcl 'array get' format, with the array indices being 'noteType',
 'object', and 'filters'.

SEE ALSO

 subscription add, subscription delete, subscription edit,
 subscription list
,

EXAMPLES

 foreach sub [subscription get -user JDoe] {
 array set info $sub
 puts "NoteType: $info(noteType)"
 puts "Object: $info(object)"
 puts "Filter: $info(filters)"
 }

 The output would resemble the following:

 NoteType: RevisionControl
 Object: *.tcl
 Filter: Tag=Golden;Command=tag

See Also

subscription add Command

NAME

ProjectSync Data Manipulation

1500

 subscription add - Subscribes for email related to specified
 objects

DESCRIPTION

 This command has two basic forms. The first form of this command is
 general. It allows you to subscribe for email notifications related
 to any note type on the server managing the vaults for the specified
 objects.

 The second form of this command is specific to RevisionControl
 notes. It allows you to subscribe for email notifications related
 to RevisionControl notes on the server managing the vaults for the
 specified objects. This form also has convenient options for
 limiting the subscription to certain RC operations.

 Note that a single 'subscription add' command invocation can cause
 multiple entries in the subscription database, as reported by
 the 'subscription list' command. For example, this command
 creates two entries:
 subscription add *.tcl *.html
 and this one creates four entries:
 subscription add -ci -tag *.tcl *.html

 Note: If you specify a subscription for the tag command, but do not have a
 subscription for the ci command, you will not get notifications for
 any ci -tag operations that specify a tag. In order to get all tag
 activity, you must also subscribe to ci command notifications.

SYNOPSIS

 subscription add [-ci] [-colock] [-conolock] [-filter Expr]
 [-noteType noteType] [-server serverURL] [-tag]
 [-tagname TagName] [-unlock] [-user user] object...

ARGUMENTS

• Object

Object

 object An expression (possibly containing wildcards) that must
 match one of the objects associated with a note in order
 for you to receive email. If no objects are provided, the
 default is to subscribe for ALL objects.

OPTIONS

ENOVIA Synchronicity Command Reference - Module

1501

• -ci
• -colock
• -conolock
• -filter
• -notetype
• -server
• -tag
• -tagname
• -unlock
• -user

-ci

 -ci Indicates that you wish to receive email when the objects
 listed are checked in. Implies the note type
 'RevisionControl'.

-colock

 -colock Indicates that you wish to receive email when the objects
 listed are checked out with a lock. Implies the note type
 'RevisionControl'. The same assumptions are applied for
 'populate -lock' operations.

-conolock

 -conolock Indicates that you wish to receive email when the
 objects listed are checked out without a lock. For the
 'co -get' and 'populate -get' operations, the note type
 'RevisionControl' is assumed.

-filter

 -filter Gives an expression describing which modifications to
 notes of the given type(s) will cause email to be
 sent. For a complete explanation of the filter
 expression syntax, see the ProjectSync
 User's Guide 'Advanced Email Subscriptions' topic. Note
 that if stcl is used the '$' operator needs to be
 escaped when used in a filter. For example, -filter
 Title\$Test.

-notetype

ProjectSync Data Manipulation

1502

 -noteType Specifies the name of the note type for which subscriptions
 are to be added.

 If -ci, -conolock, -colock, -unlock, or -tag are used, then
 the noteType is assumed to be 'RevisionControl'.

 If a note type is not provided and there are not any revision
 control operations listed, subscriptions for ALL note
 types will be modified.

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-tag

 -tag Indicates that you wish to receive email when the objects
 listed are tagged. Implies the note type
 'RevisionControl'.

-tagname

 -tagName Limits your email subscriptions to those concerning
 revision control operations associated with the
 given tag.

-unlock

 -unlock Indicates that you wish to receive email when the
 objects listed are unlocked. Implies the note type
 'RevisionControl'. The same assumptions are applied for
 'cancel' operations.

-user

 -user Allows you to add subscriptions for another user. By
 default, subscriptions are shown for the user running
 the client.

ENOVIA Synchronicity Command Reference - Module

1503

RETURN VALUE

 none

SEE ALSO

 subscription delete, subscription edit, subscription get,
 subscription list

EXAMPLES

• Example of Subscribing to SyncDefect Notes
• Example of Subscribing to Specific Objects Tagged with a Specific Tag
• Example of Subscribing to Specified RC Notes
• Example of Subscribing to all Notes Attached to a Module
• Example of Subscribing to all Notes for Modules in a Category

Example of Subscribing to SyncDefect Notes

 This example shows subscribing to SyncDefect notes attached to any
 object under project ASIC on the SyncServer.

 dss> subscription add -noteType SyncDefect sync:///Projects/ASIC

Example of Subscribing to Specific Objects Tagged with a Specific Tag

 This example shows two different ways to subscribe to RevisionControl
 notes when objects representing the .tcl files under [url vault .]
 are tagged as golden.

 dss> subscription add -noteType RevisionControl -filter \
 "Command=tag;Tag=Golden" *.tcl

 dss> subscription add -tag -tagname Golden *.tcl

Example of Subscribing to Specified RC Notes

 Subscribe to RC notes for objects *.tcl and *.ini for operations:
 checkin, checkout with lock.

 dss> subscription add -ci -colock *.tcl *.ini

Example of Subscribing to all Notes Attached to a Module

ProjectSync Data Manipulation

1504

 This example subscribes to all notes attached to a module.

 dss> subscription add -server sync://serv1.ABCo.com:2647 \
 sync:///Modules/ChipDesign/NXZ-21x

Example of Subscribing to all Notes for Modules in a Category

 dss> subscription add -server sync://serv1.ABCo.com:2647 \
 sync:///Modules/ChipDesign

subscription delete Command

NAME

 subscription delete - Deletes email subscriptions for specified objects

DESCRIPTION

 This command allows you to delete email subscriptions for the specified
 objects. For each object you specify, the server hosting the vault for
 that object will be searched for subscriptions.

 Use the 'subscription list' command to view your existing
 subscriptions.

 This command provides several different ways to delete subscriptions.
 * Delete all subscriptions for a specified user on the server.
 * Delete any subscriptions which were defined to refer to ALL
 (objects).
 * Deletes any subscriptions for a specified note type which were
 defined to refer to ALL (objects).
 * Delete subscriptions for a user on a specified object, optionally
 for a specified note type.

 Examples of all of these methods are shown in the Examples section.

SYNOPSIS

 subscription delete [-noteType noteType] [-server serverURL]
 [-user user] [<object>[...]]

ARGUMENTS

• Object

ENOVIA Synchronicity Command Reference - Module

1505

Object

 object The objects for which subscriptions are to be deleted.
 For each object you specify, the server hosting the vault
 for that object is searched for subscriptions. You may use
 wildcards in the object value.

 Note: The object specification must match exactly the
 specification in the subscription database. For instance,
 if you subscribed for Projects/MyProj/Foo/bar, you cannot
 unsubscribe projects/MyProj/Foo/* because that is not an
 exact match.

 If an object is not specified, subscriptions to ALL
 objects (those subscriptions for which the user selected
 ALL objects instead of specifying a particular object) are
 deleted. If a noteType value is provided without an
 object, subscriptions to ALL objects for that noteType are
 deleted.

OPTIONS

• -notetype
• -server
• -user

-notetype

 -noteType Specifies the name of the note type for which subscriptions
 are to be deleted.

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-user

 -user Allows you to delete the subscriptions of a user other
 than the user you are logged in as. By default, the
 name of the user running the client is used.

RETURN VALUE

ProjectSync Data Manipulation

1506

 none. After the command is run, it returns a single integer value
 showing how many subscriptions were deleted during the operation.

SEE ALSO

 subscription add, subscription edit, subscription get, subscription list

EXAMPLES

• Example of Deleting all Subscriptions for a User
• Example of Deleting Subscriptions for all Objects
• Example of Deleting Subscriptions for a NoteType for all Objects
• Example of Deleting all Subscriptions on the Specified Object
• Example of Deleting all Specified Notetypes for an Object

Example of Deleting all Subscriptions for a User

 This example shows deleting all subscriptions created for a specified
 user on the specified server.
 Note: By using the wildcard (*) for the object, you specify deleting
 all subscriptions for all objects for the user on the server.
 dss> subscription delete -user rsmith -server
 sync://srv1.ABCo.com:2647 *
 30

Example of Deleting Subscriptions for all Objects

 This example shows deleting the subscriptions created to match all
 objects (either by not specifying an object when the subscription was
 added or by choosing the ALL option).

 Note: No value, not even wildcard, is specified for object.

 dss> subscription delete -user rsmith -server sync://srv1.ABCo.com:2647
 15

Example of Deleting Subscriptions for a NoteType for all Objects

 This examples shows deleting the subscriptions for the Defect note type.

 Note: By not specifying a user, the subscriptions deleted are those
 of the user running the command.

 dss> subscription delete -notetype Defect -server sync://srv1.ABCo.com:2647

ENOVIA Synchronicity Command Reference - Module

1507

 10

Example of Deleting all Subscriptions on the Specified Object

 This example shows deleting all subscriptions for the specified user
 for the specified project.
 Note: The /// construction shows that it is an object,not a reference
 to the server.

 dss> subscription delete -user rsmith sync:///Projects/ProjectSync/*
 30

Example of Deleting all Specified Notetypes for an Object

 This example shows deleting all Defect note types for all objects
 within the panels project.

 dss> subscription delete -noteType Defect panels/*
 8

subscription edit Command

NAME

 subscription edit - Edits email subscriptions

DESCRIPTION

 This command invokes a web browser to edit the email subscription of
 the given user.

 On Unix platforms, the default browser chosen by your system
 administrator will be used. To change the default, use the 'SyncAdmin'
 tool. On Windows platforms, the default browser defined in the system
 registry will be used.

SYNOPSIS

 subscription edit [-server serverURL] [-user user]

OPTIONS

ProjectSync Data Manipulation

1508

• -server
• -user

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-user

 -user Allows you to edit the subscriptions of a user other than
 the user you are logged in as. By default, the name of
 the user running the client is used.

RETURN VALUE

 1

SEE ALSO

 subscription add, subscription delete, subscription get,
 subscription list

EXAMPLES

• Example of Editing a Subscription on the Server Associated with cwd
• Example of Editing a Subscription on a Specified Server

Example of Editing a Subscription on the Server Associated with cwd

 This example shows the command that launches your web browser to edit
 subscriptions on the server associated with the current working
 directory, pointed to by [url vault .]

 dss> subscription edit

Example of Editing a Subscription on a Specified Server

 Brings up your web browser to edit subscriptions on SyncServer:2647.

ENOVIA Synchronicity Command Reference - Module

1509

 dss> subscription edit -server sync://SyncServer:2647

subscription list Command

NAME

 subscription list - Lists email subscriptions

DESCRIPTION

 This command prints out a listing of your current subscriptions
 on a particular server.

 Note that a single 'subscription add' invocation can cause
 multiple entries in the subscription database, as reported by
 the 'subscription list' command. For example, this command
 creates two entries:
 subscription add *.tcl *.html
 and this one creates four entries:
 subscription add -ci -tag *.tcl *.htm

SYNOPSIS

 subscription list [-noteType noteType] [-server serverURL] [-user user]

OPTIONS

• -noteType
• -server
• -user

-noteType

 -noteType Specifies the name of the note type for which subscriptions
 are to be displayed. If no note type is given,
 subscriptions for all note types are listed.

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

ProjectSync Data Manipulation

1510

-user

 -user Allows you to view the subscriptions of a user other than
 the user you are logged in as. By default, the name of
 the user running the client is used.

RETURN VALUE

 none

SEE ALSO

 subscription add, subscription delete, subscription edit,
 subscription get

EXAMPLES

• Example Showing Listing Subscriptions on the server
• Example Showing Listing Subscriptions for Vault Associated with cwd

Example Showing Listing Subscriptions on the server

 This example shows a list of all subscriptions for a specified
 server.

 dss> subscription list -server sync://SyncServer:2647

 SyncDefect sync:///Projects/EmailPackage State->new;Class=enhancement
 SyncDefect sync:///Projects/EmailPackage State->new;Class=sw-bug
 SyncDefect sync:///Projects/ProjectSync Class=sw-bug
 SyncDefect sync:///Projects/ProjectSync Severity->STOPPER
 HW-Defect-1 sync:///Projects/ProjectSync
 Note sync:///Projects/ProjectSync

Example Showing Listing Subscriptions for Vault Associated with cwd

 This example shows a list of all the subscriptions for the vault
 associated with the current working directory. You could also
 specify current working directory as "[url vault .]".

 dss> subscription list -noteType Note

ENOVIA Synchronicity Command Reference - Module

1511

subscription list

subscription list Command

NAME

 subscription list - Lists email subscriptions

DESCRIPTION

 This command prints out a listing of your current subscriptions
 on a particular server.

 Note that a single 'subscription add' invocation can cause
 multiple entries in the subscription database, as reported by
 the 'subscription list' command. For example, this command
 creates two entries:
 subscription add *.tcl *.html
 and this one creates four entries:
 subscription add -ci -tag *.tcl *.htm

SYNOPSIS

 subscription list [-noteType noteType] [-server serverURL] [-user user]

OPTIONS

• -noteType
• -server
• -user

-noteType

 -noteType Specifies the name of the note type for which subscriptions
 are to be displayed. If no note type is given,
 subscriptions for all note types are listed.

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

ProjectSync Data Manipulation

1512

-user

 -user Allows you to view the subscriptions of a user other than
 the user you are logged in as. By default, the name of
 the user running the client is used.

RETURN VALUE

 none

SEE ALSO

 subscription add, subscription delete, subscription edit,
 subscription get

EXAMPLES

• Example Showing Listing Subscriptions on the server
• Example Showing Listing Subscriptions for Vault Associated with cwd

Example Showing Listing Subscriptions on the server

 This example shows a list of all subscriptions for a specified
 server.

 dss> subscription list -server sync://SyncServer:2647

 SyncDefect sync:///Projects/EmailPackage State->new;Class=enhancement
 SyncDefect sync:///Projects/EmailPackage State->new;Class=sw-bug
 SyncDefect sync:///Projects/ProjectSync Class=sw-bug
 SyncDefect sync:///Projects/ProjectSync Severity->STOPPER
 HW-Defect-1 sync:///Projects/ProjectSync
 Note sync:///Projects/ProjectSync

Example Showing Listing Subscriptions for Vault Associated with cwd

 This example shows a list of all the subscriptions for the vault
 associated with the current working directory. You could also
 specify current working directory as "[url vault .]".

 dss> subscription list -noteType Note

See Also

ENOVIA Synchronicity Command Reference - Module

1513

subscription add Command

NAME

 subscription add - Subscribes for email related to specified
 objects

DESCRIPTION

 This command has two basic forms. The first form of this command is
 general. It allows you to subscribe for email notifications related
 to any note type on the server managing the vaults for the specified
 objects.

 The second form of this command is specific to RevisionControl
 notes. It allows you to subscribe for email notifications related
 to RevisionControl notes on the server managing the vaults for the
 specified objects. This form also has convenient options for
 limiting the subscription to certain RC operations.

 Note that a single 'subscription add' command invocation can cause
 multiple entries in the subscription database, as reported by
 the 'subscription list' command. For example, this command
 creates two entries:
 subscription add *.tcl *.html
 and this one creates four entries:
 subscription add -ci -tag *.tcl *.html

 Note: If you specify a subscription for the tag command, but do not have a
 subscription for the ci command, you will not get notifications for
 any ci -tag operations that specify a tag. In order to get all tag
 activity, you must also subscribe to ci command notifications.

SYNOPSIS

 subscription add [-ci] [-colock] [-conolock] [-filter Expr]
 [-noteType noteType] [-server serverURL] [-tag]
 [-tagname TagName] [-unlock] [-user user] object...

ARGUMENTS

• Object

Object

 object An expression (possibly containing wildcards) that must
 match one of the objects associated with a note in order
 for you to receive email. If no objects are provided, the

ProjectSync Data Manipulation

1514

 default is to subscribe for ALL objects.

OPTIONS

• -ci
• -colock
• -conolock
• -filter
• -notetype
• -server
• -tag
• -tagname
• -unlock
• -user

-ci

 -ci Indicates that you wish to receive email when the objects
 listed are checked in. Implies the note type
 'RevisionControl'.

-colock

 -colock Indicates that you wish to receive email when the objects
 listed are checked out with a lock. Implies the note type
 'RevisionControl'. The same assumptions are applied for
 'populate -lock' operations.

-conolock

 -conolock Indicates that you wish to receive email when the
 objects listed are checked out without a lock. For the
 'co -get' and 'populate -get' operations, the note type
 'RevisionControl' is assumed.

-filter

 -filter Gives an expression describing which modifications to
 notes of the given type(s) will cause email to be
 sent. For a complete explanation of the filter
 expression syntax, see the ProjectSync
 User's Guide 'Advanced Email Subscriptions' topic. Note
 that if stcl is used the '$' operator needs to be
 escaped when used in a filter. For example, -filter

ENOVIA Synchronicity Command Reference - Module

1515

 Title\$Test.

-notetype

 -noteType Specifies the name of the note type for which subscriptions
 are to be added.

 If -ci, -conolock, -colock, -unlock, or -tag are used, then
 the noteType is assumed to be 'RevisionControl'.

 If a note type is not provided and there are not any revision
 control operations listed, subscriptions for ALL note
 types will be modified.

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-tag

 -tag Indicates that you wish to receive email when the objects
 listed are tagged. Implies the note type
 'RevisionControl'.

-tagname

 -tagName Limits your email subscriptions to those concerning
 revision control operations associated with the
 given tag.

-unlock

 -unlock Indicates that you wish to receive email when the
 objects listed are unlocked. Implies the note type
 'RevisionControl'. The same assumptions are applied for
 'cancel' operations.

-user

ProjectSync Data Manipulation

1516

 -user Allows you to add subscriptions for another user. By
 default, subscriptions are shown for the user running
 the client.

RETURN VALUE

 none

SEE ALSO

 subscription delete, subscription edit, subscription get,
 subscription list

EXAMPLES

• Example of Subscribing to SyncDefect Notes
• Example of Subscribing to Specific Objects Tagged with a Specific Tag
• Example of Subscribing to Specified RC Notes
• Example of Subscribing to all Notes Attached to a Module
• Example of Subscribing to all Notes for Modules in a Category

Example of Subscribing to SyncDefect Notes

 This example shows subscribing to SyncDefect notes attached to any
 object under project ASIC on the SyncServer.

 dss> subscription add -noteType SyncDefect sync:///Projects/ASIC

Example of Subscribing to Specific Objects Tagged with a Specific Tag

 This example shows two different ways to subscribe to RevisionControl
 notes when objects representing the .tcl files under [url vault .]
 are tagged as golden.

 dss> subscription add -noteType RevisionControl -filter \
 "Command=tag;Tag=Golden" *.tcl

 dss> subscription add -tag -tagname Golden *.tcl

Example of Subscribing to Specified RC Notes

 Subscribe to RC notes for objects *.tcl and *.ini for operations:
 checkin, checkout with lock.

ENOVIA Synchronicity Command Reference - Module

1517

 dss> subscription add -ci -colock *.tcl *.ini

Example of Subscribing to all Notes Attached to a Module

 This example subscribes to all notes attached to a module.

 dss> subscription add -server sync://serv1.ABCo.com:2647 \
 sync:///Modules/ChipDesign/NXZ-21x

Example of Subscribing to all Notes for Modules in a Category

 dss> subscription add -server sync://serv1.ABCo.com:2647 \
 sync:///Modules/ChipDesign

subscription delete Command

NAME

 subscription delete - Deletes email subscriptions for specified objects

DESCRIPTION

 This command allows you to delete email subscriptions for the specified
 objects. For each object you specify, the server hosting the vault for
 that object will be searched for subscriptions.

 Use the 'subscription list' command to view your existing
 subscriptions.

 This command provides several different ways to delete subscriptions.
 * Delete all subscriptions for a specified user on the server.
 * Delete any subscriptions which were defined to refer to ALL
 (objects).
 * Deletes any subscriptions for a specified note type which were
 defined to refer to ALL (objects).
 * Delete subscriptions for a user on a specified object, optionally
 for a specified note type.

 Examples of all of these methods are shown in the Examples section.

SYNOPSIS

ProjectSync Data Manipulation

1518

 subscription delete [-noteType noteType] [-server serverURL]
 [-user user] [<object>[...]]

ARGUMENTS

• Object

Object

 object The objects for which subscriptions are to be deleted.
 For each object you specify, the server hosting the vault
 for that object is searched for subscriptions. You may use
 wildcards in the object value.

 Note: The object specification must match exactly the
 specification in the subscription database. For instance,
 if you subscribed for Projects/MyProj/Foo/bar, you cannot
 unsubscribe projects/MyProj/Foo/* because that is not an
 exact match.

 If an object is not specified, subscriptions to ALL
 objects (those subscriptions for which the user selected
 ALL objects instead of specifying a particular object) are
 deleted. If a noteType value is provided without an
 object, subscriptions to ALL objects for that noteType are
 deleted.

OPTIONS

• -notetype
• -server
• -user

-notetype

 -noteType Specifies the name of the note type for which subscriptions
 are to be deleted.

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-user

ENOVIA Synchronicity Command Reference - Module

1519

 -user Allows you to delete the subscriptions of a user other
 than the user you are logged in as. By default, the
 name of the user running the client is used.

RETURN VALUE

 none. After the command is run, it returns a single integer value
 showing how many subscriptions were deleted during the operation.

SEE ALSO

 subscription add, subscription edit, subscription get, subscription list

EXAMPLES

• Example of Deleting all Subscriptions for a User
• Example of Deleting Subscriptions for all Objects
• Example of Deleting Subscriptions for a NoteType for all Objects
• Example of Deleting all Subscriptions on the Specified Object
• Example of Deleting all Specified Notetypes for an Object

Example of Deleting all Subscriptions for a User

 This example shows deleting all subscriptions created for a specified
 user on the specified server.
 Note: By using the wildcard (*) for the object, you specify deleting
 all subscriptions for all objects for the user on the server.
 dss> subscription delete -user rsmith -server
 sync://srv1.ABCo.com:2647 *
 30

Example of Deleting Subscriptions for all Objects

 This example shows deleting the subscriptions created to match all
 objects (either by not specifying an object when the subscription was
 added or by choosing the ALL option).

 Note: No value, not even wildcard, is specified for object.

 dss> subscription delete -user rsmith -server sync://srv1.ABCo.com:2647
 15

Example of Deleting Subscriptions for a NoteType for all Objects

ProjectSync Data Manipulation

1520

 This examples shows deleting the subscriptions for the Defect note type.

 Note: By not specifying a user, the subscriptions deleted are those
 of the user running the command.

 dss> subscription delete -notetype Defect -server sync://srv1.ABCo.com:2647
 10

Example of Deleting all Subscriptions on the Specified Object

 This example shows deleting all subscriptions for the specified user
 for the specified project.
 Note: The /// construction shows that it is an object,not a reference
 to the server.

 dss> subscription delete -user rsmith sync:///Projects/ProjectSync/*
 30

Example of Deleting all Specified Notetypes for an Object

 This example shows deleting all Defect note types for all objects
 within the panels project.

 dss> subscription delete -noteType Defect panels/*
 8

subscription edit Command

NAME

 subscription edit - Edits email subscriptions

DESCRIPTION

 This command invokes a web browser to edit the email subscription of
 the given user.

 On Unix platforms, the default browser chosen by your system
 administrator will be used. To change the default, use the 'SyncAdmin'
 tool. On Windows platforms, the default browser defined in the system
 registry will be used.

ENOVIA Synchronicity Command Reference - Module

1521

SYNOPSIS

 subscription edit [-server serverURL] [-user user]

OPTIONS

• -server
• -user

-server

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-user

 -user Allows you to edit the subscriptions of a user other than
 the user you are logged in as. By default, the name of
 the user running the client is used.

RETURN VALUE

 1

SEE ALSO

 subscription add, subscription delete, subscription get,
 subscription list

EXAMPLES

• Example of Editing a Subscription on the Server Associated with cwd
• Example of Editing a Subscription on a Specified Server

Example of Editing a Subscription on the Server Associated with cwd

 This example shows the command that launches your web browser to edit
 subscriptions on the server associated with the current working
 directory, pointed to by [url vault .]

 dss> subscription edit

ProjectSync Data Manipulation

1522

Example of Editing a Subscription on a Specified Server

 Brings up your web browser to edit subscriptions on SyncServer:2647.

 dss> subscription edit -server sync://SyncServer:2647

subscription get Command

NAME

 subscription get - Gets subscription information as a Tcl list

DESCRIPTION

 For a user-friendly view of the subscriptions, use the 'subscription
 list' command. This command is intended for use by those who wish to
 manipulate the subscription database using Tcl.

 Each subscription entry is returned as a Tcl list with alternating
 names and values ('array get' format). The following names are used:

 noteType The name of the NoteType for which the use is subscribed.
 object The object for which the user is subscribed.
 filter The filter string for the subscription.

SYNOPSIS

 subscription get [-noteType noteType] [-server serverURL] [-user user]

OPTIONS

• -noteType
• -server
• -user

-noteType

 -noteType Specifies the name of the note type for which subscriptions
 are to be queried. If no note type is given,
 subscriptions for all note types are listed.

-server

ENOVIA Synchronicity Command Reference - Module

1523

 -server Gives the URL of the server to query for subscriptions.
 If no server URL is given, the server owning the vault for
 the current working directory is assumed.

-user

 -user Allows you to get the subscriptions of a user other than
 the user you are logged in as. By default, the name of
 the user running the client is used.

RETURN VALUE

 A Tcl list of subscriptions, where each subscription is represented
 in Tcl 'array get' format, with the array indices being 'noteType',
 'object', and 'filters'.

SEE ALSO

 subscription add, subscription delete, subscription edit,
 subscription list
,

EXAMPLES

 foreach sub [subscription get -user JDoe] {
 array set info $sub
 puts "NoteType: $info(noteType)"
 puts "Object: $info(object)"
 puts "Filter: $info(filters)"
 }

 The output would resemble the following:

 NoteType: RevisionControl
 Object: *.tcl
 Filter: Tag=Golden;Command=tag

User Profile Manipulation

user

user Commands

NAME

ProjectSync Data Manipulation

1524

 user - Server-side commands to edit user profiles

DESCRIPTION

 The 'user' family of commands lets you access SyncServer user
 profiles. You can add and delete user IDs and profiles.

SYNOPSIS

 user <user_command> [user_command_options>]

 Usage: user [counts|create|delete]

EXAMPLES

 See specific "user" commands.

user counts

user counts Command

NAME

 user counts - Counts the number of user records

DESCRIPTION

 Counts the number of currently defined user records. This command
 is equivalent to length [url users sync:///], but is faster.

SYNOPSIS

 user counts

OPTIONS

 none

ENOVIA Synchronicity Command Reference - Module

1525

RETURN VALUE

 Returns the number of currently defined user records.

SEE ALSO

 note counts, user create

EXAMPLES

 This command outputs the number of users:

 puts [user counts]

 25

See Also

note counts Command

NAME

 note counts - Computes statistics about notes and
 the frequency of values

DESCRIPTION

 This command runs a query against a note type and breaks
 down the results according to the values it finds in selected
 properties of the notes matched by the query. The breakdown can
 be zero, one-dimensional, or multi-dimensional. Dimensions of
 breakdown are note properties selected in the query, with the
 results of the query grouped by value in the selected properties
 (dimensions).

 The results of the query (that is, the counts of how many notes
 fit the search criteria and had the same values in the selected
 properties) is stored in an output variable whose name is given
 to the command. The command treats the variable as an array into
 which to store the results. The array has indices of all
 combinations of values that were found for the selected properties
 in notes matching the query criteria. The mapped values at those
 indices are the number of notes that had that particular
 combination of values.

 For one-dimensional breakdowns (that is, breakdowns by a single

ProjectSync Data Manipulation

1526

 property), the indices in the output array variable are the same
 as values found for that property in notes that matched the query.
 For two- or three-dimensional queries, the indices are a
 concatenation of values for each of the selected properties,
 separated by commas. If any of the values contain comma characters,
 then the comma characters are replaced with periods, so that the
 comma characters retain their separator semantics. The output
 array contains only non-zero entries.

 The note counts command can operate on (break down by) properties
 of any type. However, the command is practical only for operations
 on enumerable property types, such as state machines, choice
 types, user fields, and perhaps integers. Results of breakdowns
 by floating-point properties and wide strings are generally not
 useful, but such use is not disallowed. Imprudent use of this
 command can copy very large amounts of data from the database
 into memory (for example, if you were doing a breakdown by the
 Body property of a note type).

 You can generate simple time-based statistics by doing a
 breakdown on any Date or Timestamp property of a note type.
 In the resulting array, the indices will be dates and the values
 will be how many notes had that date value in that field. The
 resolution of the buckets for time-based statistics is controlled
 with the -dateresolution option. This option allows for
 specifying a unit of time (years, months, days, etc.) used to
 indicate the granularity of the statistical buckets.

 This command is available only from server-side scripts.

SYNOPSIS

 note counts <NotetypeName>
 [-countlinks] [-dateresolution <Resolution>]
 [[-dbquery <dbase_expr>] | [-sqlquery <sql_expr>]]
 [<OutVarName> [Dimension0 [Dimension1 [Dimension2]]]]

OPTIONS

• -countlinks
• -dateresolution
• -dbquery
• -sqlquery

-countlinks

 -countlinks This option is used only for RevisionControl
 notes. Use this option to count the
 number of objects in each RevisionControl
 note instead of counting only the
 individual notes. When using this option,

ENOVIA Synchronicity Command Reference - Module

1527

 you must specify <OutVarName>.

-dateresolution

 -dateresolution If one or more of the Dimension arguments
 <Resolution> references a property of type Date or
 Timestamp, specifies a resolution of the
 bucketing of notes in the output array.

 The resolution is specified in terms of date
 granularity. The set of valid values are:
 years, months, weeks, and days.

 The value of the resolution affects the values
 used to form the indices in the returned array.
 The format for the index values for a given
 resolution are:

 years yyyy
 months yyyy-mm
 weeks yyyy-Www
 days yyyy-mm-dd

 If -dateresolution is not given as an option,
 the command defaults to a resolution of days.

-dbquery

 -dbquery A valid dBase query, which is converted
 <dbase_expr> to an equivalent SQL expression, and used
 to query the database. Analogous to the
 -dbquery option to note query.

-sqlquery

 -sqlquery Filters the set of notes that are counted
 <sql_expr> by the note counts command. Analogous to
 the -sqlquery option to note query.

 -sqlquery and -dbquery are mutually
 exclusive.

OPERANDS

• Notetype Name
• Out Var Name
• Dimensions

ProjectSync Data Manipulation

1528

Notetype Name

 <NotetypeName> The name of an existing note type.

Out Var Name

 <OutVarName> The name of a Tcl array variable in which
 to place specific notes that match the query
 criteria. The indices of the returned array
 are comma-separated concatenations of the
 Dimension0...2 property values. The array
 values are the number of notes that match
 the array index.

Dimensions

 Dimension0 Up to three arguments that specify the
 Dimension1 bucketing criteria for the results. The
 Dimension2 values must be the name of an existing
 property name on the note type.

RETURN VALUE

 The total number of notes that match the query criteria.

SEE ALSO

 note query

EXAMPLES

• Example Showing Reporting Against Fields in the Notetype
• Example Showing Time-Based Reporting on NoteTypes

Example Showing Reporting Against Fields in the Notetype

 Suppose you have a note type called BugReport, with a State field
 (type SyncState), a Priority field (type SyncPriority) field, and a
 Resp field (type SyncUserList), plus all the standard note fields.
 This note type is populated with notes as follows:

 Id Author Resp State Priority

ENOVIA Synchronicity Command Reference - Module

1529

 1 caroline cara closed high
 2 jack cara closed high
 3 bert ron fixed high
 4 bert mark fixed medium
 5 lindsey mark fixed high
 6 bert mark analyzed high
 7 lindsey jason analyzed low
 8 bert jason closed high
 9 bert mark open medium
 10 caroline mark open stopper

 To find out how many BugReport notes are currently in-process (in
 any state except "closed"), you would specify:

 note counts BugReport -dbquery "State#'closed'"

 which would return the answer: 7

 To get a breakdown of whom the notes are assigned to, give two
 extra parameters: 1. The name of a Tcl variable into which
 the note counts command will store its results. 2. The name of
 the note property that you wish to do a breakdown of - in this
 case, Resp:

 note counts BugReport -dbquery "State#'closed'" MyMap Resp

 This command also returns the number 7 but stores the following
 data in the array variable MyMap:

 MyMap(ron) 1
 MyMap(mark) 5
 MyMap(jason) 1

 Use array names or array get to extract the data from the MyMap
 array. For example:

 array names MyMap

 would return

 "ron mark jason"

 and

 array get MyMap

 would return

 "ron 1 mark 5 jason 1"

 To find the BugReports assigned to each engineer and get a breakdown
 by priority, you pass one additional parameter: the name of the
 additional property to break down by - in this case, Priority:

 note counts BugReport -dbquery "State#'closed'" MyMap Resp Priority

ProjectSync Data Manipulation

1530

 You do not need to specify any additional output parameters when you
 add additional dimensions to the report; the results all go into the
 single output array parameter (MyMap), which in this example would
 be filled as follows:

 MyMap(ron,high) 1
 MyMap(mark,medium) 2
 MyMap(mark,high) 2
 MyMap(mark,stopper) 1
 MyMap(jason,low) 1

 The array contains only non-zero entries. For instance, user jason
 is not assigned any high-priority BugReports, so the report does
 not include the entry:

 MyMap(jason,high) 0

 Thus MyMap could be termed a sparse matrix.

 It is also possible to further break down data by a third dimension.

 In most cases, you would not use this command to generate this type
 of report. Like all the other note commands, the note counts command
 is best used as a building block.

Example Showing Time-Based Reporting on NoteTypes

 This example illustrates time-based reporting.

 To chart the incoming rate for BugReports, with a breakdown by month,
 you would use the following command:

 note counts BugReport MyMap DateCreate -dateresolution months

 The resulting map might look like this:

 MyMap(2002-01) 2

 MyMap(2002-02) 3

 MyMap(2002-04) 5

 This result indicates that two BugReports were filed in January 2002,
 three in February, and five in April. Empty buckets are not included:
 no BugReports were filed in March so there is no MyMap(2002-03)
 entry. Getting resolution by week would be difficult. You would have
 to use %W formatting (Week-of-year, 0-52) and convert the resulting
 data to get back to human-readable dates.

 EXAMPLE 3
 The following command itemized the objects in RevisionControl notes
 for each command and and for each user.

 note counts RevisionControl -countlinks MyMap Command Author

ENOVIA Synchronicity Command Reference - Module

1531

 parray MyMap

 The output of the MyMap variable is:

 MyMap(ci,) = 0
 MyMap(ci,Administrator) = 1
 MyMap(ci,Debra) = 4
 MyMap(ci,George) = 0
 MyMap(ci,Loren) = 6
 MyMap(co lock,George) = 2
 MyMap(co lock,Harry) = 0
 MyMap(co lock,Debra) = 7
 MyMap(co lock,Loren) = 0

user create Command

NAME

 user create - Creates a new user id with the specified profile

DESCRIPTION

 This command creates a new user ID and profile with the name, email
 address and password that you specify. The user ID cannot already
 exist. This command is available only from server-side scripts.

 A username should consist of alphanumeric characters. Do not include
 spaces, single quotation marks ('), double quotation marks ("), leading
 dashes (-), dollar signs ($), ampersands (&), or slashes (/) in user
 names.

 The user profile attributes are specified as a list of name/value
 pairs. The user create command accepts the following attribute names:

 Name - The user's name.
 EmailAddr - The user's email address.
 ClearKey - The user's password, in cleartext. The value is
 encrypted using MD5 encoding.
 Key - The user's password, assumed to be in MD5 format.
 The value is used as is.
 PhoneNumbr - The user's phone number.
 PageNumber - The user's pager number.

 Values for the name, email address, and password attributes must be
 supplied.

 For the password attribute, either ClearKey or Key may be used, but
 not both. If ClearKey is used, the value is assumed to be
 cleartext and is first encrypted using MD5 encoding. Use the
 ClearKey argument when the password is not encoded.

 If Key is used, the value is assumed to be encrypted and is used as
 is. Use the Key argument when the user's password is encrypted with

ProjectSync Data Manipulation

1532

 Unix style crypt() or when transferring user accounts, including
 passwords, from the Unix NIS database into ProjectSync. You can set
 the Key with url setprop and retrieve it with url getprop. ClearKey
 is write-only, so you can set it with url setprop but you cannot
 retrieve it with url getprop. For more information, see the Tcl
 Script for Importing Users and Changing User Passwords topics in the
 ENOVIA Synchronicity DesignSync Data Manager Administrator's Guide.

 If the same property is specified more than once with different
 values, the last value is stored.

 Note: If you use LDAP to store user information, you can use
 ProjectSync's LDAP client to give users from an LDAP database access
 to ProjectSync. For other user databases, you can create a trigger
 that fires whenever a user tries to access an area of ProjectSync
 that requires user authentication. See the topics Enabling LDAP and
 Creating User Authentication Scripts in the ENOVIA Synchronicity
 DesignSync Data Manager Administrator's Guide for more information.

SYNOPSIS

 user create <userid> <{Name Value Name Value...}>

OPTIONS

 none

OPERANDS

• User ID
• Name/Value Pairs for Attribute Values

User ID

 <userid> A unique user ID for new user profile.

Name/Value Pairs for Attribute Values

 {Name Value User profile attribute values, in array list
 Name Value...} format. The names must match the existing
 property names on the user profile and the
 values must be legal for the property types.

RETURN VALUE

ENOVIA Synchronicity Command Reference - Module

1533

 none

SEE ALSO

 user delete, url properties, url getprop, url setprop

EXAMPLES

 This example creates a user profile for the username jane. The
 user's full name is Jane Doe, her email address is jane@hb.com
 and her password is abcde.

 user create jane {Name "Jane Doe" EmailAddr "jane@hb.com" ClearKey "abcde"}

user create

user create Command

NAME

 user create - Creates a new user id with the specified profile

DESCRIPTION

 This command creates a new user ID and profile with the name, email
 address and password that you specify. The user ID cannot already
 exist. This command is available only from server-side scripts.

 A username should consist of alphanumeric characters. Do not include
 spaces, single quotation marks ('), double quotation marks ("), leading
 dashes (-), dollar signs ($), ampersands (&), or slashes (/) in user
 names.

 The user profile attributes are specified as a list of name/value
 pairs. The user create command accepts the following attribute names:

 Name - The user's name.
 EmailAddr - The user's email address.
 ClearKey - The user's password, in cleartext. The value is
 encrypted using MD5 encoding.
 Key - The user's password, assumed to be in MD5 format.
 The value is used as is.
 PhoneNumbr - The user's phone number.
 PageNumber - The user's pager number.

 Values for the name, email address, and password attributes must be

ProjectSync Data Manipulation

1534

 supplied.

 For the password attribute, either ClearKey or Key may be used, but
 not both. If ClearKey is used, the value is assumed to be
 cleartext and is first encrypted using MD5 encoding. Use the
 ClearKey argument when the password is not encoded.

 If Key is used, the value is assumed to be encrypted and is used as
 is. Use the Key argument when the user's password is encrypted with
 Unix style crypt() or when transferring user accounts, including
 passwords, from the Unix NIS database into ProjectSync. You can set
 the Key with url setprop and retrieve it with url getprop. ClearKey
 is write-only, so you can set it with url setprop but you cannot
 retrieve it with url getprop. For more information, see the Tcl
 Script for Importing Users and Changing User Passwords topics in the
 ENOVIA Synchronicity DesignSync Data Manager Administrator's Guide.

 If the same property is specified more than once with different
 values, the last value is stored.

 Note: If you use LDAP to store user information, you can use
 ProjectSync's LDAP client to give users from an LDAP database access
 to ProjectSync. For other user databases, you can create a trigger
 that fires whenever a user tries to access an area of ProjectSync
 that requires user authentication. See the topics Enabling LDAP and
 Creating User Authentication Scripts in the ENOVIA Synchronicity
 DesignSync Data Manager Administrator's Guide for more information.

SYNOPSIS

 user create <userid> <{Name Value Name Value...}>

OPTIONS

 none

OPERANDS

• User ID
• Name/Value Pairs for Attribute Values

User ID

 <userid> A unique user ID for new user profile.

Name/Value Pairs for Attribute Values

ENOVIA Synchronicity Command Reference - Module

1535

 {Name Value User profile attribute values, in array list
 Name Value...} format. The names must match the existing
 property names on the user profile and the
 values must be legal for the property types.

RETURN VALUE

 none

SEE ALSO

 user delete, url properties, url getprop, url setprop

EXAMPLES

 This example creates a user profile for the username jane. The
 user's full name is Jane Doe, her email address is jane@hb.com
 and her password is abcde.

 user create jane {Name "Jane Doe" EmailAddr "jane@hb.com" ClearKey "abcde"}

See Also

user delete Command

NAME

 user delete - Deletes the specified user ID and corresponding
profile

DESCRIPTION

 This command deletes a specified user ID and corresponding profile
 from the SyncServer. Additional user data associated with this profile,
 such as email subscriptions, are not modified by this command. The
 user interface performs these additional clean-up operations.

 This command is available only from server-side scripts.

SYNOPSIS

 user delete <username>

ProjectSync Data Manipulation

1536

OPTIONS

 none

OPERANDS

• User ID

User ID

 <username> The user ID of the user profile to be deleted,
 which must exist.

RETURN VALUE

 none

SEE ALSO

 user create

EXAMPLES

 In this example, you delete the username "jane" and corresponding
 profile from the SyncServer.

 user delete jane

url getprop Command

NAME

 url getprop - Retrieves a property of an object

DESCRIPTION

• Notes for Modules

 This command retrieves properties that were previously set with 'url

ENOVIA Synchronicity Command Reference - Module

1537

 setprop'. You can use 'url getprop' to access the "type" and "locked"
 properties of revision control objects; however, you cannot use
 'url getprop' to access all of the special, built-in properties as
 returned by the 'url properties' command for objects other than
 notes, notetypes, users, and project configurations. For example,
 you cannot determine when an object was locked by using 'url getprop'
 of the property "locktime".

 Both the object and property must exist. For a note system URL, this
 command always throws NO_SUCH_PROP. For a note type URL, this
 command returns the default value for that property on the note type.

 You can use 'url getprop' with any object type. However,
 depending on the type, the command may only work in server-side
 scripts, such as when accessing notes.

 DesignSync automatically determines the data type of an object.
 You can get the datatype assigned by DesignSync using the
 'url getprop' command. You can also use the 'url setprop' command to
 change the datatype of an existing object. See 'url setprop' and 'ci'
 commands for more information.

 Note: If the URL provided for the argument has a non-numeric
 extension, the url getprop command identifies the object as
 a branch and not a version.

Notes for Modules

 You can use 'url getprop' to access the "basedir" to determine the
 path of a workspace module.

SYNOPSIS

 url getprop [--] <argument> <propertyName>

ARGUMENTS

• Module
• Module Member

 Specifies one of the following arguments:

Module

 <module> Specifies the module for which you want the
 properties previously set by the 'url

ProjectSync Data Manipulation

1538

 setprop' command.

Module Member

 <module member> Specifies the module member for which you
 want the properties previously set by the 'url
 setprop' command.

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when arguments
 to the command begin with a hyphen (-).

OPERANDS

• Object
• Property Name

Object

 <object> A valid object URL.

Property Name

 <propertyName> The name of a property to retrieve from the
 object.

RETURN VALUE

 For all valid arguments, returns the value set for the specified
 user-defined property as a string. also returns the values for the
 built-in 'type' and 'locked properties.

 For other objects: Raises error.

SEE ALSO

ENOVIA Synchronicity Command Reference - Module

1539

 note getprop, url setprop, url properties, note setprops

EXAMPLES

• Example of Getting the DataType Property of a Module Member
• Example of Getting the Various Propreties of a Module

Example of Getting the DataType Property of a Module Member

 This example uses 'url getprop' command to get the DataType
 property of module member File2.txt:

Example of Getting the Various Propreties of a Module

 This example uses 'url getprop' command to get the various properties
 set on module Module1:

 stcl> url getprop Module1 version
 1.9
 stcl> url getprop Module1 branch
 Property not found: branch
 stcl> url getprop Module1 hrefmode
 normal
 stcl> url getprop Module1 selector
 Trunk:
 stcl> url getprop [url vault File2.txt] DataType
 ascii
 stcl> url getprop Module1%2 basedir
 /home/tachatterjee/MyMod/Module1%2

url properties Command

NAME

 url properties - Returns properties for the specified object

DESCRIPTION

• Properties Associated with Module Objects

 This command retrieves all the properties of the specified object
 and returns the values in a Tcl array passed by name. The Tcl array
 need not exist prior to the call. If the array does exist, its
 contents are first emptied and then filled in with the property

ProjectSync Data Manipulation

1540

 data for the object. If <varname> was previously set as a scalar
 variable, it is changed to an array by this command. If the command
 encounters an error, <varname> is left unset, regardless of its
 prior state. The Tcl array is indexed by property name.

 The properties defined for an object depend on the object's type:

 note - The current property values on the note.
 note type - The default property values of the note type.
 note system - An empty set.
 user - The fixed set of properties of the user profile:
 EmailAddr, Key, Name, PageNumber, PhoneNumbr, UserList
 and Username. For backward compatibility, the shadow
 properties email, name, pager, phone, and userName
 are also returned.

Properties Associated with Module Objects

 The properties on an object can be:

 name - The name of the specified object.
 description - The generic description for the object, or an empty
 string if none exists.
 type - The type of the specified object. Examples are
 File, Folder, Vault, Version, Branch, Project,
 and Project Configuration.
 Note: There may be other types present as a result
 of using the CustomType System, DesignSync DFII
 or DesignSync Custom Compiler.
 owner - The owner of the object. The following object types
 have owners: modules, module folders, module members,
 module versions,and module branches. If owner is the
 only property you are interested in, use 'url owner'.
 locked - The name of the user who has the object locked, or '0'
 if it is unlocked. A non-zero value can be expected only
 for files, branches, and versions. Specifying a file
 has the same effect as specifying the file's current
 branch to the command.
 locktime - The time, in time_t format, that the object was
 locked (if the object is locked -- value of 'locked'
 property is nonzero), otherwise '0'. If locktime is the
 only property you are interested in, use 'url
 locktime'. Note that you can convert the time_t
 format to a date string using the Tcl 'clock format'
 command.
 citime - The time, in time_t format, that a version was created
 in the vault. This time is not influenced by the
 "-retain" option to ci/co/populate; citime is always
 the actual time the version was created. Note that you
 can convert the time_t format to a date string using
 the Tcl 'clock format' command.
 log - The log information for the specified object. If the
 object is a version, its checkin log is returned,
 unless it is a placeholder (upcoming) version, in

ENOVIA Synchronicity Command Reference - Module

1541

 which case its checkout log is returned. If the
 object is a file, its ongoing log is returned.
 selector - The selector list (tag) associated with a ProjectSync
 project configuration that identifies the versions of
 DesignSync data that are part of the configuration.
 exposure - The list of team members (usernames) associated with a
 project configuration. The configuration owner is
 always included in the exposure list. Note that if the
 member list is the default of all users defined
 on the SyncServer, then the exposure list is empty.
 parents - The parent workspace(s) of the object. The parent
 workspace is the base directory of other modules in the
 workspace containing an href to specified module
 argument. The value is space delimited tcl list showing
 the module instance name followed by the workspace base
 directory.
 moduleviews - The list of persistent module views set on the module
 workspace. This property only exists if a persistent
 module view has been set on the workspace. If a view
 has been set and cleared, the returned value is an
 empty string ("").

 Additional properties on a module that has been moved (with the
 exportmod/importmod commands are:)

 SyncImportedURL - The URL of the original module location.

 SyncImportedBackRefs - The back references contained within the
 original module.

 Note that you use 'url properties' to access predefined (built-in)
 properties. To access user-defined properties, as created
 by 'url setprop', use 'url getprop'. You cannot use 'url setprop'
 to modify these built-in properties.

SYNOPSIS

 url properties [--] <argument> <array_name>

ARGUMENTS

• Module
• Array Name

 Specify the following arguments:

Module

 <module> Specifies the module for which you want the
 predefined properties.

ProjectSync Data Manipulation

1542

 For a server module or a server module branch or a
 server module version, this information is similar
 to the information about a DesignSync vault.
 For a workspace module, the information can contain
 additional property information.

Array Name

 <array_name> The name of a Tcl variable in which to store the
 property values returned.

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when the argument
 to the command begins with a hyphen (-)._

RETURN VALUE

 Returns the property values indicated in the supplied array variable:

 For a client-side versionable object (Asic/x.v): Returns these property
 values in the supplied array variable: name, type, locked, locktime,
 citime, and log.

 For a client-side folder (Asic/Sub): Returns these property values:
 name and type.

For a server-side note type URL (sync:///Note/SyncNotes/HW-Defect-1):
 Returns the properties of the note type. Values are only listed for
 those properties that have default values specified in the note type
 definition.

 For a server-side note URL (sync:///Note/SyncNotes/HW-Defect-1/1):
 Returns the properties of the note type, as well as the values set
 for those properties.

 For a user URL (sync:///Users/chris): Returns the property values
 set for that user.

 For a version ("sync://holzt:2647/Projects/Asic/x.v;1.1",
 "sync://holzt:2647/Projects/Asic/x.v;yellow"): Returns
 these property values: name, type, locked, locktime, citime,
 and log.

ENOVIA Synchronicity Command Reference - Module

1543

 For a branch ("sync://holzt:2647/Projects/Asic/x.v;1.5.1",
 "sync://holzt:2647/Projects/Asic/x.v;Golden:Latest"):
 Returns these property values: name, type, owner, locked, locktime,
 citime, and log.

 For a vault ("sync://holzt:2647/Projects/Asic/x.v;"): Returns these
 property values: name, type, owner, locked, locktime, citime, and
 log.

 For a project (sync://holzt:2647/Projects/Asic): Returns these
 property values: name, description, type, and owner.

 For a configuration ("sync://holzt:2647/Projects/Asic/Sub@Rel1"):
 Returns these property values: name, description, type, owner,
 selector, and exposure.

 For any invalid object, returns an appropriate error.

SEE ALSO

 note getprop, note setprops, url getprop, url setprop, url locktime,
 url owner, server-side

EXAMPLES

• Example Showing the Properties of a Module

Example Showing the Properties of a Module

 This example uses 'url properties' to get the properties of a
 module:
 url properties Indian x
foreach prop [array names x] {
 puts "prop $prop=$x($prop)
"
}

 prop recursive=1

 prop type=Module

 prop basedir=/home/tachatterjee/Example

 prop description=

 prop txnuid=00000000000000000000000000000000

 prop mappedpath=

 prop hrefs=NorthIndian {name {} naturalpath {} mappedpath {}
 uid 00000000000000000000000000000000
 target sync://srv2.ABCo.com:2647/Modules/Cuisines/NorthIndian
 dtarget {sync://srv2.ABCo.com:2647/Modules/Cuisines/NorthIndian;Trunk:}
 starget {sync://srv2.ABCo.com:2647/Modules/Cuisines/NorthIndian;1.1}
 hrefinstname NorthIndian modinstname NorthIndian%0
 basedir /home/tachatterjee/Example/NorthIndian
 relpath NorthIndian version {} targetsel Trunk:

ProjectSync Data Manipulation

1544

 targetver 1.1 hreftype
 Module state added
 servertarget sync:///Modules/Cuisines/NorthIndian}

 prop name=Indian

 prop selector=Trunk:

 prop hrefmode=normal

 prop civ=

 prop uid=9ce32a1a95f4547039a55e7c3bd34906

 prop owner=

 prop exposure=

 prop toplevel=0

 prop hreffilter=

 prop naturalpath=

 prop mergefrom=

 prop keys=kkv

 prop parents=WorldCuisine%0{/home/tachatterjee/Example/worldcusine}
 AsianCusine%1 (/home/tachatterjee/Example/asiancusine)

 prop version=1.4

 prop filter=

 prop target=sync://srv2.ABCo.com:2647/Modules/Cuisine/Indian

 prop modinstname=Indian%0

url setprop Command

NAME

 url setprop - Sets a property on an object

DESCRIPTION

 This command lets you set the value of a property on most objects
 (on notes you can change existing properties, but not add new ones).
 Properties are specified as a name (typically a short identifier)
 and a value, which can be a string of any length. Such properties
 are stored with the metadata representing the object.

 IMPORTANT: The property prefix "Sync" is reserved for DesignSync
 properties. You should not create any properties that begin with
 this reserved prefix. While this prefix is case sensitive, DesignSync
 recommends, to minimize confusion, that you avoid using "sync" with
 any casing variant as a prefix to any custom properties.

 For note URLs, both the object and property must exist and the
 property value supplied must be legal for its property type.
 The new property value specified in this command is checked against
 the current value of the property. If they are the same, no change
 is made to the object.

 Note that the "special" properties that are supported by the
 url properties command are not available to url setprop. For example,
 if url properties reports that an object is locked by someone, you
 cannot unlock it with url setprop by passing in "locked 0".

ENOVIA Synchronicity Command Reference - Module

1545

 You can use url setprop with most object types. However,
 depending on the type, the command may only work in server-side
 scripts, such as when accessing notes. User-defined properties
 are not supported for configurations.

 Because DesignSync automatically determines the datatype of the
 vault, it may assign a datatype that you do not want. For example, it
 may assign the binary datatype to an ASCII file. In such cases, you can
 use the 'url setprop' command to change the vault datatype.

 The successful execution of this command on a note object causes an
 atomic note modify event and fires the corresponding triggers in
 response. If the property value equals the current value of the
 property, no event is generated.

 Note: If you need to set more than one property on the same note, it
 is preferable to use the note setprops command, because it is more
 efficient and reduces trigger activity.

 You can use the "url setprop" command to change the checkin comments
 of objects checked into a vault.

 Note: This command does not change the comments associated with
 tags. To change tag comments remove the tag and add it back again.

 The "url setprop" command is subject to access controls on the
 server. For more information, see the ENOVIA Synchronicity Access
 Control Guide.

SYNOPSIS

 url setprop [--] <Object_url> <prop_name> <prop_value>

OPTIONS

• --

--

 -- Indicates that the command should stop looking for
 command options. Use this option when property
 names or values begin with a hyphen (-).

OPERANDS

• Object URL
• Property Name
• Property Value

ProjectSync Data Manipulation

1546

Object URL

 <Object_url> A valid object URL.

Property Name

 <prop_name> The name of the property to set on the object.

 You can specify the special property name DataType to
 assign the data type of the vault.

Property Value

 <prop_value> The value of the property to set on the object.

 When you use the special DataType property for a vault,
 it can take one of the following values:

 o ascii or text - changes the vault data type ASCII.
 o binary - changes the vault data type to
 binary.
 o undefined - lets DesignSync determine the vault
 data type at the next check in,
 based on the file's contents.

RETURN VALUE

 For all valid objects, returns the value set for the new property.

 For all invalid or non-existent objects, returns an error.

SEE ALSO

 note getprop, note setprops, url getprop, url properties

EXAMPLES

• Example of Setting a User-Defined Property on a Module Workspace
• Example of Setting a User-Defined Property on a Module Member

Example of Setting a User-Defined Property on a Module Workspace

ENOVIA Synchronicity Command Reference - Module

1547

 The example uses the 'url setprop' command to change the user defined
 property "respuser" for a module workspace.

 stcl> url getprop Chip%0 respuser
 tadams

 stcl> url setprop Chip%0 respuser rsmith
 rsmith

Example of Setting a User-Defined Property on a Module Member

 This example uses the 'url setprop' command to change the user defined
 property "respuser" for module member File1.txt:
 stcl> url getprop [url vault File1.txt] respuser
 tadams

 stcl> url setprop [url vault File1.txt] respuser rmsith
 rsmith

 stcl> url getprop [url vault File1.txt] respuser
 rsmith

user delete

user delete Command

NAME

 user delete - Deletes the specified user ID and corresponding
profile

DESCRIPTION

 This command deletes a specified user ID and corresponding profile
 from the SyncServer. Additional user data associated with this profile,
 such as email subscriptions, are not modified by this command. The
 user interface performs these additional clean-up operations.

 This command is available only from server-side scripts.

SYNOPSIS

 user delete <username>

ProjectSync Data Manipulation

1548

OPTIONS

 none

OPERANDS

• User ID

User ID

 <username> The user ID of the user profile to be deleted,
 which must exist.

RETURN VALUE

 none

SEE ALSO

 user create

EXAMPLES

 In this example, you delete the username "jane" and corresponding
 profile from the SyncServer.

 user delete jane

See Also

user create Command

NAME

 user create - Creates a new user id with the specified profile

DESCRIPTION

 This command creates a new user ID and profile with the name, email
 address and password that you specify. The user ID cannot already
 exist. This command is available only from server-side scripts.

ENOVIA Synchronicity Command Reference - Module

1549

 A username should consist of alphanumeric characters. Do not include
 spaces, single quotation marks ('), double quotation marks ("), leading
 dashes (-), dollar signs ($), ampersands (&), or slashes (/) in user
 names.

 The user profile attributes are specified as a list of name/value
 pairs. The user create command accepts the following attribute names:

 Name - The user's name.
 EmailAddr - The user's email address.
 ClearKey - The user's password, in cleartext. The value is
 encrypted using MD5 encoding.
 Key - The user's password, assumed to be in MD5 format.
 The value is used as is.
 PhoneNumbr - The user's phone number.
 PageNumber - The user's pager number.

 Values for the name, email address, and password attributes must be
 supplied.

 For the password attribute, either ClearKey or Key may be used, but
 not both. If ClearKey is used, the value is assumed to be
 cleartext and is first encrypted using MD5 encoding. Use the
 ClearKey argument when the password is not encoded.

 If Key is used, the value is assumed to be encrypted and is used as
 is. Use the Key argument when the user's password is encrypted with
 Unix style crypt() or when transferring user accounts, including
 passwords, from the Unix NIS database into ProjectSync. You can set
 the Key with url setprop and retrieve it with url getprop. ClearKey
 is write-only, so you can set it with url setprop but you cannot
 retrieve it with url getprop. For more information, see the Tcl
 Script for Importing Users and Changing User Passwords topics in the
 ENOVIA Synchronicity DesignSync Data Manager Administrator's Guide.

 If the same property is specified more than once with different
 values, the last value is stored.

 Note: If you use LDAP to store user information, you can use
 ProjectSync's LDAP client to give users from an LDAP database access
 to ProjectSync. For other user databases, you can create a trigger
 that fires whenever a user tries to access an area of ProjectSync
 that requires user authentication. See the topics Enabling LDAP and
 Creating User Authentication Scripts in the ENOVIA Synchronicity
 DesignSync Data Manager Administrator's Guide for more information.

SYNOPSIS

 user create <userid> <{Name Value Name Value...}>

OPTIONS

ProjectSync Data Manipulation

1550

 none

OPERANDS

• User ID
• Name/Value Pairs for Attribute Values

User ID

 <userid> A unique user ID for new user profile.

Name/Value Pairs for Attribute Values

 {Name Value User profile attribute values, in array list
 Name Value...} format. The names must match the existing
 property names on the user profile and the
 values must be legal for the property types.

RETURN VALUE

 none

SEE ALSO

 user delete, url properties, url getprop, url setprop

EXAMPLES

 This example creates a user profile for the username jane. The
 user's full name is Jane Doe, her email address is jane@hb.com
 and her password is abcde.

 user create jane {Name "Jane Doe" EmailAddr "jane@hb.com" ClearKey "abcde"}

1551

Index
A

access allow 1062

access db_filter 1065

access decline 1074

access define 1076

access deny 1078

access filter 1078

access global 1081

access init 1084

access list 1086

access reset 1087

access verify 1089

ActionList 1062, 1065, 1074, 1078

add 185

addbackref 561

addcdslib 964, 1019

addhref 566

addlogin 1093

alias 43

annotate 619

auto_mkindex 1005

auto_reset 1006

Autobranching 193, 460

Automcache 820, 849

B

backup 1351, 1361

Branching Modules 203, 374, 838

C

Cache links 1202

recreate 1202

cachescrubber 1195

cachetouchlinks 1198

caching

list 1189

caching list 1189

cancel 193

cd 511

ci 203

command defaults 1104, 1107

compare 622

compare-foreach 641

contents 643

contents-foreach 655

Control-c 10

1552

convertdata 1387

convertutil 1387

convertvault 1388

CTP 1121

ctp list 1122

ctp verify 1124

Custom Type Package 1121

D

Data Replication Root 1159

datasheet 658, 782

Datatype 203, 935, 984, 1536, 1544

Date Format 14

Date selectors 169

defaults 1103, 1106

Defaults commands 1107

defaults off 1108

defaults on 1110

defaults refresh 1111

defaults set 1113

defaults show 1117

defaults state 1120

DesignSync Client 27, 1390

DesignSync client shells 29, 31, 34, 38

DesignSync Concurrent Tcl Shell 38

DesSync 27, 1390

diff 659

dss 29

dssc 31

duplicatews 353

E

edithref 583

enterprise developments

add mcache path 905

create reference workspace 908

list mcache path 909

remove mcache path 911

environment variables 29, 31, 34, 38,
673, 772, 820, 825, 830, 844, 849,
854, 859, 866, 980, 1005, 1369, 1381,
1384, 1392

event 1292

event create 1293

event_prop 1295, 1303, 1307, 1308,
1309, 1311, 1312, 1313, 1314, 1317

event_prop create 1296

event_prop delete 1297

event_prop get 1298

event_prop list 1299

ENOVIA Synchronicity Command Reference - Module

1553

exit 45

exportmod 358, 1140

F

fetch preference 6

freezemod 361

G

gets 1008

H

hcm addlogin 1093

hcm rmlogin 1096

hcm showlogins 1099

help 670

hierarchical references

addbackref 561

addhref 566

rmhref 598

showhrefs 603, 715

whereused 535, 804

I

import 363, 1143

importmod 366, 1146

interrupt 10

K

keydbcheckpoint 1355

keywords 11

L

localversion 1127

locate 673

lock 368

log 46

ls 677

ls-foreach 712

M

mcache 1274

mcache Commands 729, 1274, 1276,
1281, 1284, 1289

mcache scan 1276

mcache scrub 1281

mcache show 1284

mcache touch 1289

migratetag 371

mirror 1206, 1207

mirror commands 1206, 1207, 1208,
1216, 1219, 1221, 1228, 1230, 1234,
1237, 1238, 1240, 1243, 1246, 1248,
1252, 1259, 1267

mirror create 1208

1554

mirror delete 1216

mirror disable 1219

mirror edit 1221

mirror enable 1228

mirror get 1230

mirror getoptions 1234

mirror isenabled 1237

mirror ismirror 1237

mirror list 1240

mirror rename 1243

mirror reset 1246

mirror setoptions 1248

mirror status 1252

mirror wheremirrored 1259

mirrorsetdefaultuser 1267

mkbranch 374

mkedge 379

mkfolder 383

mkmod 234

more 50

mvmember 385

mvmod 393

N

note 1397

note attach 1398, 1423

note counts 1399, 1525

note create 1405

note delete 1409

note detach 1410, 1424

note getprop 1412

note links 1413, 1426

note query 1417

note relink 1421

note schema 1431

note setprops 1432

note systems 1435

note types 1435, 1436

notetype 1436

notetype create 1437

notetype delete 1440

notetype enumerate 1442

notetype getdescription 1443

notetype rename 1430, 1444

notetype schema 1446

ENOVIA Synchronicity Command Reference - Module

1555

P

parray auto_index 1008

password 1102

populate 102, 243

prompt 52

ptype 1449

ptype choices 1450

ptype class 1451

ptype enumerate 1452

ptype is 1454

ptype strwidth 1456

ptype transitions 1457

purge 396

puts 1010

pwd 511

R

reconnectmod 406, 595

record 58

refreshcache 1202

registry keys 1321

remove 409

remove hrefs 583, 598

replicate 1158

replicate addroot 1159

replicate data 1162

replicate disable 1164

replicate enable 1166

replicate reset 1168

replicate rmdata 1170

replicate rmroot 1172

replicate setoptions 1174

replicate showdata 1176

replicate showroots 1159, 1176, 1181

restoreserver 1355

restorevault 1356

rmdata 1170

rmedge 418

rmfile 420

rmfolder 423

rmhref 598

rmlogin 1096

rmmod 427

rmroot 1172

rmversion 438

rollback 443

rstcl 53, 1010, 1365

1556

run 1015

S

select 447

selectors 14

server-side 8, 1378

setfilter 163, 450

setowner 456

setroot 174

setselector 169

setvault 177

setview 180

showhrefs 603, 715

showlocks 769

showlogins 1099

showmcache 729

showmods 304, 735

showstatus 314, 747

SITaR 815, 816, 820, 825, 830, 838,
844, 849, 854, 859, 869, 876

SITaR automcache 849

SITaR integration 825

SITaR release 854

SITaR submitt 869

sitr env 820

sitr integrate 825

sitr lookup 830

sitr mkbranch 838

sitr mkmod 844

sitr populate 849

sitr release 854

sitr select 859

sitr status 866

sitr submit 869

sitr update 876

Snapshots 335

sregistry 1321

sregistry delete 1322

sregistry get 1327

sregistry keys 1332

sregistry reset 1336

sregistry scope 1336

sregistry set 1338

sregistry source 1343

sregistry values 1347

stcl 34

stclc 38

subscription 1459

ENOVIA Synchronicity Command Reference - Module

1557

subscription add 1459, 1475, 1487,
1499, 1513

subscription delete 1464, 1472, 1491,
1504, 1517

subscription edit 1467, 1480, 1485,
1507, 1520

subscription get 1468, 1481, 1494,
1498, 1522

subscription list 1470, 1483, 1496, 1509,
1511

suspend 1359

swap 513

swap replace 515

swap restore 523

swap show 531

switchlocker 457

SyncAdmin 1320, 1388

syncdadmin 1392

syncinfo 772, 1369

synctrace 1381

synctrace set 1381, 1384

synctrace unset 1384, 1386

T

tag 335

trigger 1301, 1312

trigger block 1301

trigger create 1303

trigger delete 1307

trigger disable 1308

trigger enable 1301, 1303, 1307, 1308,
1309, 1311, 1312, 1313, 1314, 1317

trigger fire 1311

trigger get 1312

trigger isEnabled 1313

trigger list 1314

trigger status 1317

trigger unblock 1318

U

unfreezemod 466

unlock 203, 368

unremove 468

unselect 472

upgrade 474

upload 491, 501, 1148

url 915, 916

url branchid 918

url container 920

url contents 922

url exists 926

url fetchedstate 928

1558

url fetchtime 931

url filter 933

url getprop 935, 1536

url inconflict 938

url leaf 940

url locktime 942

url members 944

url modified 946

url naturalpath 949

url notes 951

url owner 953

url path 955

url properties 957, 1539

url registered 962

url relations 964

url resolveancestor 966

url resolvetag 971

url root 977

url selector 978

url servers 980

url setprop 984, 1544

url syslock 987

url tags 992

url users 994

url vault 996

url versionid 998

url versions 1000

url view 1002

user 1523

user counts 1524

user create 1531, 1533, 1548

user delete 1535, 1547

V

vhistory 782

vhistory-foreach 798

Vhistory-foreach obj 800

view 89

view check 90

view list 95

view put 97

view remove 100

W

webhelp 801

wheremirrored 1259

whereused 535, 804

wildcard 24

1559

	ENOVIA Synchronicity Command Reference
	Using this Guide with Different Methodologies
	Organization of the Command Reference
	Syntax Description
	Accessing Command Descriptions from Client Shells

	Fundamental Topics
	Overview of Module Commands
	module Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Understanding Fetch Preference
	fetch preference
	NAME
	DESCRIPTION
	SEE ALSO
	EXAMPLES

	Understanding Server-Side Commands
	server-side
	NAME
	DESCRIPTION
	SEE ALSO
	EXAMPLES

	Using Interrupt (Control-c)
	interrupt
	NAME
	DESCRIPTION
	SYNOPSIS
	EXAMPLES

	Using Revision Control Keywords
	keywords
	NAME
	DESCRIPTION
	Module Note

	SEE ALSO
	EXAMPLES

	Using Selectors
	selectors
	NAME
	DESCRIPTION
	What Are Selectors?
	Static Selectors Versus Dynamic Selectors
	How Does DesignSync Resolve Branch and Version Selectors?
	What are Selector Lists and Persistant Selector Lists
	Selector Formats
	Date Formats

	SEE ALSO
	EXAMPLES

	Using Wildcards
	wildcard
	NAME
	DESCRIPTION
	EXAMPLES

	Client Applications
	DesSync
	DesSync Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-nosplash
	-path

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Starting the DesignSync GUI
	Example of Starting the DesignSync GUI without the Splash Screen
	Example of Starting the DesignSync GUI Opened to the Current Directory
	Example of Starting the DesignSync Opened to Specified Path

	dss
	dss Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Invoking DSS (DesignSync Shell)
	Example of Running a DSS Command From OS Shell

	dssc
	dssc Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Invoking DSSC (DesignSync Concurrent Shell)
	Example of Running a DSSC Command From OS Shell

	stcl
	stcl Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-exp
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Invoking the stcl shell
	Example of Using stcl to Run a Script
	Example of Invoking Commands in stcl without Using the Shell
	Example of Invoking Commands that Include a Quoted String

	stclc
	stclc Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-exp
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Invoking the stclc shell
	Example of Invoking a Tcl Script
	Example of Invoking Commands with stclc
	Example of Invoking Commands including a Quoted String

	Client Shell Control
	alias
	alias Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-args
	-delete
	-list
	-temporary
	--

	RETURN VALUE
	EXAMPLE

	exit
	exit Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-daemon
	-force

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Exiting a dssc Session
	Example of Exiting a stcl Session and Stoppping the syncdaemon

	log
	log Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Log File Name

	OPTIONS
	-defaultdir
	-nooutput
	off
	-on
	-output
	-state
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Setting the Default Log File Directory
	Example Showing the Current Logging State

	more
	more Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-lines
	--

	RETURN VALUE
	EXAMPLES
	Example Showing More With a Specified Amount of Lines
	Example Showing More with the Default Amount of Lines

	prompt
	prompt Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-default
	-url

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	rstcl
	rstcl Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-output
	-server
	-script
	-urlparams

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	record
	record Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Recording to a Variable
	Example Showing Typical Usage of Record
	Example Showing Using Command Arguments with Record

	Workspace Setup
	Enterprise Design Development Areas
	sda
	sda Command
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sda cd
	sda cd Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Development Area Name
	Tool

	OPTIONS
	-development
	-gui
	-suite
	-[no]update
	-version

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Running sda cd in Interactive Mode
	Running sda cd in non-interactive mode

	sda gui
	sda gui Command
	NAME
	DESCRIPTION
	SYNOPSIS
	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Starting sda GUI in the Background

	sda join
	sda join Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Area Name

	OPTIONS
	-development
	-gui

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sda ls
	sda ls Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-area
	-development
	-gui
	-noheader
	-report

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the List of Development Areas

	sda mk
	sda mk Command
	NAME
	DESCRIPTION
	Running in Interactive Mode
	Tips for Naming Your Development Area
	External Development Areas
	Notes for Modules-Based Development

	SYNOPSIS
	ARGUMENTS
	Area Name
	Development Name

	OPTIONS
	-assignment
	-gui
	-path
	-shared

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Running sda mk in Interactive Mode

	sda rm
	sda rm Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-development
	-gui
	-noconfirm

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Removing a Development
	Example Showing Removing a Development in Interactive Mode

	Exclude from Workspace
	exclude
	exclude Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	exclude add
	exclude add Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	File Path Argument
	Folder Path Argument

	OPTIONS
	--

	PATTERN
	Pattern for Exclude

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Adding an Exclusion to the Exclude File
	Example Showing Adding an Folder-Based Exclude

	exclude list
	exclude list Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	File Path Argument
	Folder Path Argument

	OPTIONS
	-format

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Listing the Exclusions in text format
	Example Showing Listing the Exclusions in List Format

	exclude remove
	exclude remove Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	File Path Argument
	Folder Path Argument

	OPTIONS
	--

	PATTERN
	Pattern for Exclude

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Removing an Exclusion from the Exclude File

	Module Views
	view
	view Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	EXAMPLES

	view check
	view check Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	File

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Reading Correct View Definitions
	Example of Reading an Incorrect View Definition

	view get
	view get Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module URL

	OPTIONS
	-format
	-name
	-output

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Getting the View in Text Format
	Example of Getting the View in List Format
	Example using the Extended Include Syntax

	view list
	view list Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module URL

	OPTIONS
	-format

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Showing All the Views in Text Format
	Example of Showing All the Views in List Format

	view put
	view put Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module URL

	OPTIONS
	-all
	-infile
	-name
	-[no]replace

	RETURN VALUES
	SEE ALSO
	EXAMPLES
	Example of Loading a Single View from a File
	Example of Loading All the Views in a File

	view remove
	view remove Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module URL

	OPTIONS
	-name

	RETURN VALUES
	SEE ALSO
	EXAMPLES

	populate
	populate Command
	NAME
	DESCRIPTION
	Object States
	How Populate Handles Selectors
	Populate Log
	How Populate Handles Collections with Local Versions
	Populating Module Objects
	Setting up Your Workspace
	How Populate Handles Module Snapshots
	How Populate Handles Module Views
	Resolving Module Conflicts with Populate
	Module Cache
	External Module Support
	Populating Modules Recursively
	Module Version Updating
	Incremental Versus Full Populate
	How Populate Handles Moved and Removed Module Members
	Merging Across Branches
	Understanding the Output
	Forcing, Replacing, and Non-Replacing Modes

	SYNOPSIS
	ARGUMENTS
	Server Module URL
	Workspace Module
	Module Folder
	Module Member
	Hierarchical Reference
	External Module

	OPTIONS
	-[no]connectinstances
	-[no]emptydirs
	-exclude
	-filter
	-[no]force
	-from
	-full
	-get
	-hreffilter
	-hrefmode
	-incremental
	-keys
	-lock
	-lock -reference
	-log
	-mcachemode
	-mcachepaths
	-[no]merge
	-modulecontext
	-[no]new
	-overlay
	-path
	-[no]recursive
	-reference
	-[no]replace
	-report
	-[no]retain
	-savelocal
	-share
	-trigarg
	-[no]unifystate
	-version
	-view
	-xtras

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Populating a Module
	Example of Populating a Specific Module Member
	Example of Populating a Module with a Static Selector
	Example of Populating a Module Using Version-Extended Naming
	Example of Creating a Module Cache
	Example of Populating an Mcache Link
	Example of Populating a Module View
	Example of Specifying a Hierarchical Hreffilter
	Example of Merge Across Branches

	setfilter
	setfilter Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Workspace Module
	Filter
	Hreffilter

	OPTIONS
	-filter
	-hreffilter
	-recursive
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of setting a filter
	Example of setting an href filter
	Example of setting a hierarchical href filter
	Example of clearing an href filter
	Example of clearing a hierarchical href filter

	setselector
	setselector Command
	NAME
	DESCRIPTION
	Notes for Using setselector
	Valid Selectors for Module Objects

	SYNOPSIS
	SELECTORS
	-selector

	ARGUMENTS
	Workspace Module
	Workspace Folder
	Workspace Objects

	OPTIONS
	-recursive
	-selected
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Using Setselector with Module Snapshots

	setroot
	setroot Command
	NAME
	DESCRIPTION
	Notes for Modules Root

	SYNOPSIS
	ARGUMENTS
	Workspace Folder

	OPTIONS
	-[un]set
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Setting the Workspace Root for a Module
	Unsetting the Workspace Root for a Module

	setvault
	setvault Command
	NAME
	DESCRIPTION
	Note for Module Workspaces
	Using setvault with Modules

	SYNOPSIS
	ARGUMENTS
	Vault URL
	Local Module

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Associating a Server Vault with the Current Folder
	Example of Associating a Server Vault with a Specified Directory
	Example of Changing the Vault Association Recursively in a Workspace
	Example of Associating a Local Vault with a Specified Directory

	setview
	setview Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Workspace Module

	VIEWS
	Name of View(s)

	OPTIONS
	-recursive

	RETURN VALUES
	SEE ALSO
	EXAMPLES
	Example of Setting a View for a Workspace

	Primary Revision Control
	add
	add Command
	NAME
	DESCRIPTION
	Understanding the Output

	SYNOPSIS
	ARGUMENTS
	Folder or Unmanaged Object
	Workspace Module
	Symbolic Link

	OPTIONS
	-[no]candidates
	-[no]emptydirs
	-filter
	-modulecontext
	-[no]recursive
	-report
	-[no]selected
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Adding a File
	Adding Folders Recursively
	Listing the Candidate Modules to Add Objects

	cancel
	cancel Command
	NAME
	DESCRIPTION
	Notes on Using cancel with Collections
	Notes on Using Cancel with Modules

	SYNOPSIS
	ARGUMENTS
	Member Module/Member Folder
	Workspace Module

	OPTIONS
	-exclude
	-filter
	-[no]force
	-hreffilter
	-keep
	-modulecontext
	-[no]recursive
	-reference
	-[no]retain
	-[no]selected
	-share
	-trigarg
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	ci
	ci Command
	NAME
	DESCRIPTION
	Versions and Branches
	Changing Checkin Comments
	Understanding the Output
	Object States
	Determining the Objects to be Checked In
	Determining Which Branch is Selected for the Check In
	Filtering or Excluding Objects From Checkin
	Checking in Module Objects
	Branching Modules
	Automerging of Module Objects
	How Checkin Works with Enterprise Design Synchronization

	SYNOPSIS
	ARGUMENTS
	Module Folder
	Module Member
	Workspace Module

	OPTIONS
	-autohrefversions
	-branch
	-[no]comment
	-cfile
	-datatype
	-[no]dryrun
	-exclude
	-filter
	-[no]force
	-hreffilter
	-[no]hrefversions
	-[no]iflock
	-keep
	-keys
	-lock
	-modulecontext
	-[no]new
	-[no]recursive
	-reference
	-report
	-[no]resume
	-[no]retain
	-[no]retry
	-[no]selected
	-share
	-[no]skip
	-tag
	-trigarg
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Creating a Module and Performing an Initial File Checkin
	Example of Checking in Module Structure Changes
	Example of Checking in on a New Branch
	Example of Attempting to Modify A Member in a Static Workspace

	mkmod
	mkmod Command
	NAME
	DESCRIPTION
	Understanding the Output

	SYNOPSIS
	ARGUMENTS
	Server URL

	OPTIONS
	-checkin
	-[no]comment
	-filter
	-path
	-report
	-[no]retry

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Creating a Module with a Specified Workspace Path
	Example Creating a Module and Checking in Workspace Files

	populate
	populate Command
	NAME
	DESCRIPTION
	Object States
	How Populate Handles Selectors
	Populate Log
	How Populate Handles Collections with Local Versions
	Populating Module Objects
	Setting up Your Workspace
	How Populate Handles Module Snapshots
	How Populate Handles Module Views
	Resolving Module Conflicts with Populate
	Module Cache
	External Module Support
	Populating Modules Recursively
	Module Version Updating
	Incremental Versus Full Populate
	How Populate Handles Moved and Removed Module Members
	Merging Across Branches
	Understanding the Output
	Forcing, Replacing, and Non-Replacing Modes

	SYNOPSIS
	ARGUMENTS
	Server Module URL
	Workspace Module
	Module Folder
	Module Member
	Hierarchical Reference
	External Module

	OPTIONS
	-[no]connectinstances
	-[no]emptydirs
	-exclude
	-filter
	-[no]force
	-from
	-full
	-get
	-hreffilter
	-hrefmode
	-incremental
	-keys
	-lock
	-lock -reference
	-log
	-mcachemode
	-mcachepaths
	-[no]merge
	-modulecontext
	-[no]new
	-overlay
	-path
	-[no]recursive
	-reference
	-[no]replace
	-report
	-[no]retain
	-savelocal
	-share
	-trigarg
	-[no]unifystate
	-version
	-view
	-xtras

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Populating a Module
	Example of Populating a Specific Module Member
	Example of Populating a Module with a Static Selector
	Example of Populating a Module Using Version-Extended Naming
	Example of Creating a Module Cache
	Example of Populating an Mcache Link
	Example of Populating a Module View
	Example of Specifying a Hierarchical Hreffilter
	Example of Merge Across Branches

	showmods
	showmods Command
	NAME
	DESCRIPTION
	Understanding the Output

	SYNOPSIS
	ARGUMENTS
	Server Path
	Workspace Folder

	OPTIONS
	-[no]all
	-format
	-filter
	-report
	-[no]top

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Showing the Modules on the Server in Text Format
	Example of Showing the Modules on the Server in List Format
	Example Showing the Server Modules Using Verbose Report Mode
	Example Showing a TCL List of Server Modules Using Verbose Report Mode

	showstatus
	showstatus Command
	NAME
	DESCRIPTION
	Understanding the Output
	Text Formatted Output
	List Formatted Output
	External Module Support
	Legacy Module Output

	SYNOPSIS
	ARGUMENTS
	Workspace Module
	Legacy Module Base Directory
	External Module Instance

	OPTIONS
	-format
	-[no]hrefs
	-[no]objects
	-[no]recursive
	-releases
	-report
	-xtras

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Module Hierarchy for Module Examples
	Example Showing Module Href Status Where Hrefs are Current
	Example Showing Module Href Status Where Hrefs are Outdated
	Example Showing Outdated Module Href Status in List Format
	Example Showing Legacy showstatus Command Formats
	Example of using showstatus on a legacy module

	tag
	tag Command
	NAME
	DESCRIPTION
	Working with Tags
	Branch Tags Versus Version Tags
	Tagging Modules
	Module Snapshots
	Tag Name Syntax
	Determining the Objects to be Tagged
	Using Tags on Module Versions

	SYNOPSIS
	ARGUMENTS
	Server Module
	Module Folder
	Module Member
	Workspace Module
	External Module

	OPTIONS
	-branch
	-[no]comment
	-[no]delete
	-exclude
	-filter
	-modulecontext
	-[im]mutable
	-[no]recursive
	-[no]replace
	-report
	-[no]selected
	-trigarg
	-version
	-warn
	-xtras
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Tagging a Module with an Immutable Tag

	Advanced Revision Control
	duplicatews
	duplicatews Command
	NAME
	DESCRIPTION
	Creating a Duplicated Workspace
	Updating a Duplicated Workspace
	Replacing an Existing Duplicated Workspace

	SYNOPSIS
	OPTIONS
	-dir
	-dryrun
	-refws
	-report
	-status
	-update
	-validate

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example showing the status of a workspace in report verbose mode

	exportmod
	exportmod Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL

	OPTIONS
	-[no]force
	-[no]freeze

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Exporting a module

	freezemod
	freezemod Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Freezing a module

	import
	import Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module URL

	OBJECTS
	Module Member

	OPTIONS
	-force
	-version
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Importing a Specific Module Version
	Example of Importing a Module Member

	importmod
	importmod Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL

	OPTIONS
	-[no]freeze
	-[no]keep

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Importing a module

	lock
	lock Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module Branch

	OPTIONS
	-[no]comment

	SEE ALSO
	RETURN VALUE
	EXAMPLES

	migratetag
	migratetag Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server Module URL
	Selector(s)

	OPTIONS
	-branchname
	-list

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the Available Tags for Migration
	Example Showing Migrating a Tag To a Module

	mkbranch
	mkbranch Command
	NAME
	DESCRIPTION
	Branching Modules

	SYNOPSIS
	ARGUMENTS
	Branch Name
	Server Module Version

	OPTIONS
	-[no]comment
	-exclude
	-[no]selected
	-version
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Module Branching

	mkedge
	mkedge Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Workspace Module
	Module Version

	OPTIONS
	-modulecontext
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mkfolder
	mkfolder Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	--

	SEE ALSO
	EXAMPLES

	mvmember
	mvmember Command
	NAME
	DESCRIPTION
	Moving Folders

	SYNOPSIS
	FROMARGUMENTS
	Server Module Folder
	Workspace Module Folder
	Module Member
	Select List

	TOARGUMENTS
	Module Folder
	Module Member

	OPTIONS
	-[no]comment
	-[no]immediate
	-modulecontext
	-[no]selected
	--

	SEE ALSO
	EXAMPLES
	Example of Moving a Folder
	Example of Renaming a File
	Example of Renaming a File and Immediately Creating a New Version

	mvmod
	mvmod Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL

	OPTIONS
	-[no]freeze

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	purge
	purge Command
	NAME
	DESCRIPTION
	Restrictions
	Triggers and Revision Control Notes and 'purge'
	Error Handling
	Using Purge with Modules

	SYNOPSIS
	ARGUMENTS
	Module URL
	Module Workspace

	OPTIONS
	-branch
	-dryrun
	-[no]force
	-keepsince
	-keepversions
	-report
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Purging All but a 4 Versions of a Collection Object
	Example of Using Keep Since to Maintain 30 Days of Versions
	Example of Using both the -keepsince and -keepversions Options
	Example of Purging Versions from the Server
	Example of Making then Purging a Branch
	Example Showing Module Purge on the Trunk Branch

	reconnectmod
	reconnectmod Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL

	OPTIONS
	-force
	-from
	-parents

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	remove
	remove Command
	NAME
	DESCRIPTION
	Removing a folder from a module

	SYNOPSIS
	ARGUMENTS
	Module Folder
	Module Member

	OPTIONS
	-[no]comment
	-filter
	-[no]force
	-[no]immediate
	-[no]keep
	-modulecontext
	-recursive
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Removing Added Files
	Example of Removing a Folder
	Example Showing Removing Using Wildcards for Pattern Match

	rmedge
	rmedge Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module Version

	OPTIONS
	-modulecontext
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	rmfile
	rmfile Command
	NAME
	DESCRIPTION
	Notes for Module Objects

	SYNOPSIS
	ARGUMENTS
	Object

	OPTIONS
	-trigarg
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Removing a Specific File in the Current Working Directory
	Example of Removing Two Files
	Example of Removing a File with a Leading "-"
	Example of Removing a Member of a Collection

	rmfolder
	rmfolder Command
	NAME
	DESCRIPTION
	Notes for Modules

	SYNOPSIS
	ARGUMENTS
	Folder

	OPTIONS
	-[no]keepvid
	-[no]recursive
	-trigarg

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Removing Folder without Recursive
	Example of Removing Folders Recursively
	Example of Removing a Folder on the Server
	Example of Removing a Folder Containing References

	rmmod
	rmmod Command
	NAME
	DESCRIPTION
	Removing a Workspace Module Recursively
	Removing an External Module
	Removing a legacy module from a server

	SYNOPSIS
	ARGUMENTS
	Server Module
	Workspace Module
	Mcache Link
	Mcache Module
	External Module

	OPTIONS
	-[no]force
	-[no]keep
	-[no]notes
	-[no]recursive
	-report
	-[no]unmanaged
	-vaultdata
	-xtras

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Removing a Module from a Server
	Example of Removing a Module Hierarchy from a Workspace
	Example of Removing a Module from a Workspace
	Example of Removing a Legacy Module from a Server
	Example of Removing a Module Cache Link from a Workspace

	rmversion
	rmversion Command
	NAME
	DESCRIPTION
	Notes for Modules
	Removing Orphaned Module Members

	SYNOPSIS
	ARGUMENTS
	DesignSync Object
	Server Module URL
	Workspace Module

	OPTIONS
	-force
	-report
	-[no]scrub
	-trigarg
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Removing a File Version
	Example of Removing a File Specified with a Path
	Example of Removing Multiple Files with Associated Tags

	rollback
	rollback Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server Module Version

	OPTIONS
	-[no]comment
	-version

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	select
	select Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server Module
	Workspace Module
	Module Member

	OPTIONS
	-show
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Using Select on the Command Line to Select Files
	Example of Using Select within a Script

	setfilter
	setfilter Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Workspace Module
	Filter
	Hreffilter

	OPTIONS
	-filter
	-hreffilter
	-recursive
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of setting a filter
	Example of setting an href filter
	Example of setting a hierarchical href filter
	Example of clearing an href filter
	Example of clearing a hierarchical href filter

	setowner
	setowner Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Setting the Ownership for a Project
	Example of Setting the Owner of a Branch

	switchlocker
	switchlocker Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Username of New Locker
	Server Module Branch
	Module Member Argument

	OPTIONS
	-modulecontext
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Switching the Locker for a Module Member

	unlock
	unlock Command
	NAME
	DESCRIPTION
	Notes on Modules

	SYNOPSIS
	ARGUMENTS
	Module Branch/Module Version
	Module Member
	Module Folder

	OPTIONS
	-branch
	-exclude
	-modulecontext
	-[no]recursive
	-[no]selected
	-trigarg
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Unlocking a Module Member in the Workspace
	Example of Unlocking a Module Member Using -modulecontext

	unfreezemod
	unfreezemod Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Unfreezing a module

	unremove
	unremove Command
	NAME
	DESCRIPTION
	Understanding the Output

	SYNOPSIS
	ARGUMENTS
	Member Path

	OPTIONS
	-modulecontext
	-report
	-version

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	unselect
	unselect Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server Module
	Workspace Module
	Workspace Module Member

	OPTIONS
	-all
	-quiet
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Removing Specified Objects from the Select List
	Example of Removing All Objects from the Select List

	upgrade
	upgrade Command
	NAME
	DESCRIPTION
	The Upgrade Process
	Module Name
	Module Branches
	Module Versions
	Migrating Module Tags
	Hierarchical References
	Hierarchical Reference Names
	Hierarchical Reference Types
	Hierarchical Reference Static Versions
	ProjectSync Module Notes and Subscriptions
	Access Controls
	The ModuleUpgrade Directory
	Post-Upgrade Tasks
	Understanding the Output

	SYNOPSIS
	ARGUMENTS
	Legacy Module URL
	DesignSync Vault URL

	OPTIONS
	-category
	-[no]maperror
	-[no]maphrefs
	-name
	-report

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	upload Command
	NAME
	DESCRIPTION
	Understanding How a Temporary Directory is used for Upload
	Order of Precedence for Temp Directory:

	SYNOPSIS
	ARGUMENTS
	Tar file

	OPTIONS
	-branch
	-[no]collection
	-[no]comment
	-localtmpdir
	-[no]new
	-report
	-servertmpdir
	-tag
	-vault
	-workspace

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Performing an Initial Upload
	Example of Specifying a Server Temporary Directory for Module Upload
	Example of Specifying a Local Temporary Directory for Module Upload
	Example of Performing an Upload Using a Module Workspace

	upload
	upload Command
	NAME
	DESCRIPTION
	Understanding How a Temporary Directory is used for Upload
	Order of Precedence for Temp Directory:

	SYNOPSIS
	ARGUMENTS
	Tar file

	OPTIONS
	-branch
	-[no]collection
	-[no]comment
	-localtmpdir
	-[no]new
	-report
	-servertmpdir
	-tag
	-vault
	-workspace

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Performing an Initial Upload
	Example of Specifying a Server Temporary Directory for Module Upload
	Example of Specifying a Local Temporary Directory for Module Upload
	Example of Performing an Upload Using a Module Workspace

	Navigational
	cd
	cd Command
	NAME
	DESCRIPTION
	SYNOPSIS
	SEE ALSO

	pwd
	pwd Command
	NAME
	DESCRIPTION
	SYNOPSIS
	SEE ALSO

	Module Hierarchy Management
	Module Swapping
	swap
	swap Command
	NAME
	DESCRIPTION
	populate of a swapped sub-module
	ci of a swapped sub-module

	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO

	swap replace
	swap replace Command
	NAME
	DESCRIPTION
	Replacing mcache Links
	Understanding the Output

	SYNOPSIS
	SELECTOR
	Selector

	ARGUMENTS
	Module Instance

	OPTIONS
	-force
	-hrefmode
	-mcachemode
	-mcachepaths
	-report
	-trigarg
	-xtras
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	swap restore
	swap restore Command
	NAME
	DESCRIPTION
	Restoring mcache Links
	Understanding the Output

	SYNOPSIS
	ARGUMENTS
	Workspace Module

	OPTIONS
	-force
	-mcachemode
	-mcachepaths
	-parent
	-report
	-trigarg
	-xtras
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	swap show
	swap show Command
	NAME
	DESCRIPTION
	Understanding the Output

	SYNOPSIS
	ARGUMENTS
	Workspace Folder

	OPTIONS
	-format
	-report
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Module whereused
	whereused
	whereused Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	DesignSync Vault
	Server Module
	Legacy Module URL

	OPTIONS
	-format
	-[no]recursive
	-report
	-showtags
	-versions

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Using whereused to find direct references to a version
	Example of Using whereused to find all references to version
	Example of Using whereused to find immutable tagged versions
	Example of Using whereused to find tagged versions
	Example of Displaying whereused Output in Tcl list

	whereused member
	whereused member Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module Member

	OPTIONS
	-format
	-modulecontext
	-report
	-showtags
	-versions

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the whereused member Commmand
	Example Showing the whereused member Commmand in List Mode

	whereused module
	whereused module Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server Module

	OPTIONS
	-format
	-[no]recursive
	-report
	-showtags
	-versions

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Using whereused module to find direct references to a version
	Example of Using whereused module to find all references to version
	Example of Using whereused module to find immutable tagged versions
	Example of Using whereused module to find tagged versions
	Example of Displaying whereused module Output in Tcl list

	whereused vault
	whereused vault Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	DesignSync Vault
	Legacy Module URL

	OPTIONS
	-format
	-[no]recursive
	-report
	-showtags
	-versions

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	addbackref
	addbackref Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Branch/Version URL
	Category URL
	Module URL

	OPTIONS
	-[no]recursive

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Adding Back References to a Specific Module
	Adding Back References to All Modules Within a Category

	addhref
	addhref Command
	NAME
	DESCRIPTION
	Adding Multiple Hrefs Within a Single Operation
	Adding Overriding Hrefs

	SYNOPSIS
	ARGUMENTS
	From Arguments
	From Argument: Server Module Version
	From Argument: Workspace Module
	To Arguments
	To Argument: DesignSync Vault
	To Argument: External Module
	To Argument: IP Gear Deliverable
	To Argument: Legacy Module Configuration
	To Argument: Server Module Version
	To Argument: Workspace Module(s)

	OPTIONS
	-file|-tcllist
	-name
	-relpath
	-rootpath
	-selector

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Creating a Module Hierarchy from a Workspace
	Creating a Module Hierarchy without Staging in the Workspace
	Using Empty Relative Paths
	Adding Multiple Hrefs from a Tcl List

	edithrefs
	edithrefs Command
	NAME
	DESCRIPTION
	Adding a Hierarchical Reference
	Removing a Hierarchical Reference
	Changing a Hierarchical Reference
	File Format for Editing Hierarchical References
	Running in Interactive Mode
	Understanding the Output

	SYNOPSIS
	ARGUMENTS
	Server URL
	Workspace Module

	OPTIONS
	-infile
	-outfile
	-report
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Generating a list of Hierarchical References
	Example of Modifying Hierarchical References in Interactive Mode
	Example of Modifying Hierarchical References From an Href List
	Example of Generating a verbose list of Hierarchical References

	reconnectmod
	reconnectmod Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL

	OPTIONS
	-force
	-from
	-parents

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	rmhref
	rmhref Command
	NAME
	DESCRIPTION
	SYNOPSIS
	FROMARGUMENTS
	Server Module Version
	Workspace Module

	TOARGUMENTS
	Hierarchical Reference Name

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Removing an Href from a Module Workspace
	Example of Removing a Hierarchical Reference from a Server Module Version

	showhrefs
	showhrefs Command
	NAME
	DESCRIPTION
	External Module Support
	Understanding the Output

	SYNOPSIS
	ARGUMENTS
	Server Module
	Workspace Module
	External Module Instance
	Server Legacy Module
	Workspace Legacy Module

	OPTIONS
	-[no]conflict
	-format
	-hrefmode
	-[no]recursive
	-report
	-[no]stopatconflict
	-xtras

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Displaying the Hierarchical References on the Server
	Example of Showing Hrefs on the Server Vault in List Format
	Example of Displaying the Hierarchical References in a Workspace
	Example of Showing Hrefs on the Workspace in List Format
	Example of Showing Hrefs in Brief Report mode and List Format
	Example Showing Overridden Hrefs in the Workspace in Text Format
	Example Showing Overridden Hrefs in List Format
	Example Showing Conflicting Hierarchical References in the Workspace

	Informational
	annotate
	annotate Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Workspace File
	Server File

	OPTIONS
	-back
	-from
	-output
	-version
	-[no]white
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	compare
	compare Command
	NAME
	DESCRIPTION
	Understanding the Types of Possible Compare Operations
	Understanding the Output
	Understanding Status Values in the Ouput
	Running Compare on Modules
	Understanding Columns Returned When Comparing Module Objects

	SYNOPSIS
	ARGUMENTS
	Module Folder

	OPTIONS
	-exclude
	-filter
	-format
	-hreffilter
	-hrefmode
	-hrefmode2
	-modulecontext
	-output
	-[no]path
	-[no]recursive
	-report
	-[no]same
	-selector
	-selector2
	-view
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Comparing Two Selectors
	Example of Comparing Two Selectors with a URL
	Example of Comparing the Current Directory Against Another Directory
	Example of how to use '-format list' option
	Example Comparing a Workspace to a Server Module Version
	Example of Compare the Current Workspace Against A Module
	Example of Current Workspace Against Server Module Version
	Example of Comparing a Module with different Hrefmodes
	Example of Comparing a Tagging Module Version Against Latest

	compare-foreach
	compare-foreach Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Loop Variables
	Result List
	Tcl Script

	OPTIONS
	-nofolder
	-path

	SEE ALSO
	EXAMPLE
	Example of Using compare-foreach On a Result List From compare

	contents
	contents Command
	NAME
	DESCRIPTION
	Using Contents on Modules
	Understanding Module Hierarchy Output
	Understanding the path option

	SYNOPSIS
	ARGUMENTS
	Module
	Module Folder

	OPTIONS
	-exclude
	-filter
	-format
	-fullpath
	-hreffilter
	-hrefmode
	-modulecontext
	-output
	-path
	-recursive
	-report
	-selector
	-stream
	-version
	-view
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Contents of Server for Current Working Directory
	Example Showing Contents Output to a Stream
	Example Showing Contents of a Module Instance
	Example Showing Contents of Server Module Version

	contents-foreach
	contents-foreach Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	var
	results_list
	tcl_script

	OPTIONS
	-nofolder
	-path

	SEE ALSO
	EXAMPLE

	datasheet
	datasheet Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	EXAMPLES

	diff
	diff Command
	NAME
	DESCRIPTION
	Notes for Collection Objects
	Note for Modules

	SYNOPSIS
	ARGUMENTS
	File Object

	OPTIONS
	-ancestor
	-annotate
	-binary
	-case
	-embed
	-file1
	-file2
	-gui
	-kk
	-member
	-modulecontext
	-output
	-standard
	-syncdiff
	-unified
	-usemoduleversions
	-version
	-white
	--

	SEE ALSO
	EXAMPLES
	Examples of Comparing a File against the Original Version
	Examples of Comparing a File Against the Latest Server Version
	Example of Comparing a File Against A Specified Version
	Example of Comparing Original File Against Latest Server Version
	Example of Showing Conflicts in Your Local Version
	Examples of Comparing Collection Cell View Versions
	Example of Comparing Against the Local Cell View Version
	Example of Comparing Files Using the Module Version
	Example of Comparing Files Using the Member Version
	Example Comparing a Module Member to a Non-Local Module Member
	Example of Specifying the Module Version with the Ancestor * Option

	help
	help Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-all
	-brief
	-output
	-summary

	RETURN VALUE
	EXAMPLES

	locate
	locate Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Object Name

	OPTIONS
	-all
	-env
	-first
	-nothrow
	-path
	-reverse
	-url
	--

	RETURN VALUE
	EXAMPLES
	Examples of using locate
	Example of Using -nothrow with locate

	ls
	ls Command
	NAME
	DESCRIPTION
	Notes for Module Objects and Module Snapshots
	Report Options
	Report Data Keys Table
	Status Values for Modules and Modules Members

	SYNOPSIS
	ARGUMENT
	Server Folder
	Server Object
	Workspace Module
	Module Member or Folder
	External Module

	OPTIONS
	-[no]addselect
	-branch
	-[un]changed
	-exclude
	-filter
	-format
	-fullpath
	-[no]header
	-hreffilter
	-[un]locked
	-[un]managed
	-merged
	-[un]modified
	-modulecontext
	-[no]needsmerge
	-output
	-path
	-[no]recursive
	-report
	-[no]selected
	-stream
	-[non]versionable
	-workspace/-vault
	-writeableunlocked
	-xtras
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the Contents of the Current Folder
	Example Showing the Contents of the Specified Folder
	Example Showing Objects that Need to be Merged
	Example Showing Objects that do not Need to be Merged
	Example Showing a Recursive Directory Listening
	Example Showing the ls Output in List Format
	Example Showing Locked Objects in the Workspace
	Example Showing All Locked Objects
	Example Showing All Locked Objects with Users
	Example Showing Locked Server Objects Using Status Report Mode
	Example Showing Locked Workspace Objects in Status Report Mode
	Example Showing Unmanaged Objects in Current Folder
	Example Showing Unlocked Writable Objects in the Workspace
	Example Showing Excluding Objects
	Example Showing a Variety of ls Commands To Display Object Vault
	Examples Showing Writing to an Output File or TCL stream
	Example Showing Locked References
	Example Showing Collection List
	Example Showing Module Structural Changes

	ls-foreach
	ls-foreach Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Loop Variable
	List of Objects to be Processed
	TCL script

	OPTIONS
	-nofolder
	-path

	SEE ALSO
	EXAMPLE

	showhrefs
	showhrefs Command
	NAME
	DESCRIPTION
	External Module Support
	Understanding the Output

	SYNOPSIS
	ARGUMENTS
	Server Module
	Workspace Module
	External Module Instance
	Server Legacy Module
	Workspace Legacy Module

	OPTIONS
	-[no]conflict
	-format
	-hrefmode
	-[no]recursive
	-report
	-[no]stopatconflict
	-xtras

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Displaying the Hierarchical References on the Server
	Example of Showing Hrefs on the Server Vault in List Format
	Example of Displaying the Hierarchical References in a Workspace
	Example of Showing Hrefs on the Workspace in List Format
	Example of Showing Hrefs in Brief Report mode and List Format
	Example Showing Overridden Hrefs in the Workspace in Text Format
	Example Showing Overridden Hrefs in List Format
	Example Showing Conflicting Hierarchical References in the Workspace

	showmcache
	showmcache Command
	NAME
	DESCRIPTION
	Notes for Modules
	Notes for Legacy Modules
	Understanding the Output for Modules Objects
	Understanding the Output for Legacy Modules

	SYNOPSIS
	OPTIONS
	-format
	-mcachepaths

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	showmods
	showmods Command
	NAME
	DESCRIPTION
	Understanding the Output

	SYNOPSIS
	ARGUMENTS
	Server Path
	Workspace Folder

	OPTIONS
	-[no]all
	-format
	-filter
	-report
	-[no]top

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Showing the Modules on the Server in Text Format
	Example of Showing the Modules on the Server in List Format
	Example Showing the Server Modules Using Verbose Report Mode
	Example Showing a TCL List of Server Modules Using Verbose Report Mode

	showproduct
	showproduct Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module instance
	Server URL

	OPTIONS
	-branch
	-version

	RETURN VALUE
	SEE ALSO

	showstatus
	showstatus Command
	NAME
	DESCRIPTION
	Understanding the Output
	Text Formatted Output
	List Formatted Output
	External Module Support
	Legacy Module Output

	SYNOPSIS
	ARGUMENTS
	Workspace Module
	Legacy Module Base Directory
	External Module Instance

	OPTIONS
	-format
	-[no]hrefs
	-[no]objects
	-[no]recursive
	-releases
	-report
	-xtras

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Module Hierarchy for Module Examples
	Example Showing Module Href Status Where Hrefs are Current
	Example Showing Module Href Status Where Hrefs are Outdated
	Example Showing Outdated Module Href Status in List Format
	Example Showing Legacy showstatus Command Formats
	Example of using showstatus on a legacy module

	showlocks
	showlocks Command
	NAME
	DESCRIPTION
	Understanding the Output

	SYNOPSIS
	ARGUMENTS
	Server URL
	Workspace

	OPTIONS
	-alloverridden
	-format
	-modulecontext
	-[no]overriden
	-[no]recursive

	SEE ALSO
	EXAMPLES
	Example Showing the Locks on Module Members
	Example Showing a Module Branch Lock

	syncinfo
	syncinfo Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	General Information
	isServer
	syncDir
	version
	Registry Information
	clientRegistryFiles
	enterpriseRegistryFile
	portRegistryFile
	projectRegistryFile
	serverRegistryFiles
	siteRegistryFile
	syncRegistryFile
	userRegistryFile
	usingSyncRegistry
	Customization Information
	customDir
	customSiteDir
	customEntDir
	siteConfigDir
	usrConfigDir
	userConfigFile
	Client Information
	connectTimeout
	commAttempts
	defaultCache
	fileEditor
	htmlBrowser
	proxyNamePort
	somTimeout
	Server Information
	berkdbIsShmEnabled
	berkdbShmKey
	isTestMode
	serverMetadataDir
	serverDataDir
	serverMachine
	serverName
	serverPort
	User Information
	home
	userName

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the SyncInfo Version on Client Startup
	Example of Extracting SyncInfo Information to an Array
	Example Showing Extracting the Information from an Array
	Example of extracting Name/Value Pairs for Specific Arguments

	version
	hcm version Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	vhistory
	vhistory Command
	NAME
	DESCRIPTION
	Reporting on Modules
	Report options
	Understanding the output

	SYNOPSIS
	ARGUMENTS
	Module Member
	Workspace Module
	Server Module

	OPTIONS
	-all
	-branch
	-descendants
	-exclude
	-format
	-lastbranches
	-lastversions
	-maxtags
	-modulecontext
	-output
	-report
	-[no]selected
	-stream
	-xtras
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Version History of a Module Branch
	Example of Version History Showing Module Rollback Operation

	vhistory-foreach
	vhistory-foreach Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Object Loop Variable
	Results List
	Tcl Script

	SEE ALSO
	EXAMPLE

	vhistory-foreach-obj
	vhistory-foreach-obj Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Version/Branch Loop Variable
	Object Tcl Array
	Tcl Code

	SEE ALSO
	EXAMPLE

	webhelp
	webhelp Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENT
	Topic

	OPTIONS
	-mode

	RETURN VALUE
	EXAMPLES
	Example of Opening a Single Tab in the Default Mode
	Example of Opening Multiple Tab Help for a Specified Mode

	whereused
	whereused Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	DesignSync Vault
	Server Module
	Legacy Module URL

	OPTIONS
	-format
	-[no]recursive
	-report
	-showtags
	-versions

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Using whereused to find direct references to a version
	Example of Using whereused to find all references to version
	Example of Using whereused to find immutable tagged versions
	Example of Using whereused to find tagged versions
	Example of Displaying whereused Output in Tcl list

	Workflows
	SITaR
	sitr Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sitr
	sitr Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sitr context
	sitr context Command
	NAME
	DESCRIPTION
	Understanding the Output

	SYNOPSIS
	ARGUMENTS
	Module Name
	Module URL

	OPTIONS
	-allconfigs
	-release

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sitr env
	sitr env Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sitr integrate
	sitr integrate Command
	NAME
	DESCRIPTION
	SITaR Integration interactive mode

	SYNOPSIS
	OPTIONS
	-force
	-nopopulate
	-noprompt
	-report
	-[no]truncate

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Integrating in SITR in Interactive Mode
	Example Showing Integrating in SITR

	sitr lookup
	sitr lookup Command
	NAME
	DESCRIPTION
	Understanding the Output

	SYNOPSIS
	ARGUMENTS
	Module Name
	Server URL

	OPTIONS
	-allconfig
	-report
	-since
	-[no]truncate

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Looking Up Configurations in SITaR
	Example of Sample Tcl procedure using Lookup Output
	Example of Using the -since Option
	Example of Looking up all module configurations for all modules

	sitr mkbranch
	sitr mkbranch Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server Module Version
	Workspace Module
	Workspace Module Base Directory

	OPTIONS
	-comment
	-description
	-[no]integrate
	-[no]populate
	Branch Name

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Branching the Container Module
	Example of Branching a Submodule
	Example of Creating a New Release From a Submodule Branch

	sitr mkmod
	sitr mkmod Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-comment
	-context
	-description
	-name
	-nomcache
	-top
	-vaultpath

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Creating a Top-Level Module Container
	Example of Creating Module in SITR

	sitr populate
	sitr populate Command
	NAME
	DESCRIPTION
	Using module caches

	SYNOPSIS
	OPTIONS
	-config
	-force
	-noprompt
	-report
	-xtras

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sitr release
	sitr release Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-comment
	-cfile
	-description
	-noprompt
	-noupdate
	-release

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sitr select
	sitr select Command
	NAME
	DESCRIPTION
	Viewing the sitr select Command Buffer
	Working with Multiple Module Versions

	SYNOPSIS
	ARGUMENTS
	Module Name
	Server URL

	OPTIONS
	-clear
	-delete
	-name
	-relpath
	-report
	-[no]truncate

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Selecting a Submitted Module
	Example of Replacing a Selection with an Updated Module
	Example of Showing the Selected Modules

	sitr status
	sitr status Command
	NAME
	DESCRIPTION
	Understanding the Output

	SYNOPSIS
	OPTIONS
	-versus
	-xtras

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sitr submit
	sitr submit Command
	NAME
	DESCRIPTION
	Storing the Module Context

	SYNOPSIS
	ARGUMENTS
	Workspace Module Base Directory
	Workspace Module

	OPTIONS
	-comment
	-cfile
	-description
	-force
	-nointegrate
	-[no]modified
	-noprompt
	-release

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sitr update
	sitr update Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Workspace Module Base Directory
	Workspace Module

	OPTIONS
	-config
	-force
	-nooverwrite
	-noprompt
	-xtras

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Enterprise Design Development
	Development Areas
	sda cd
	sda cd Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Development Area Name
	Tool

	OPTIONS
	-development
	-gui
	-suite
	-[no]update
	-version

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Running sda cd in Interactive Mode
	Running sda cd in non-interactive mode

	Enterprise Object Viewing and Synchronization
	entobj
	entobj Command
	NAME
	DESCRIPTION
	SYNOPSIS

	entobj id
	entobj id Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of a request for the id

	entobj isplatformmanaged
	entobj isplatformmanaged Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing That an Object is Managed from the Enterprise System
	Example Showing That an Object is Not Managed by the Enterprise System

	entobj policy
	entobj policy Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module instance
	Server URL

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Showing the Set Policy

	entobj setpolicy
	entobj setpolicy Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module instance
	Server URL

	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Setting the Policy on Enterprise Development Module
	Example of Removing the Policy on an Enterprise Development Module

	entobj settype
	entobj settype Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module instance
	Server URL

	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Setting the Product Type on Enterprise Development Module
	Example of Removing the Type from an Enterprise Development Module

	entobject show
	entobj show Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module instance
	Server URL

	OPTIONS
	-branch
	-version

	RETURN VALUE
	SEE ALSO

	entobject synchronize
	entobj synchronize Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL
	Workspace Module

	OPTIONS
	-depth
	-dryrun
	-report
	-tags
	-xtras

	RETURN VALUE
	SEE ALSO

	entobj type
	entobj type Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module instance
	Server URL

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Showing the Product Type

	Mcache Settings for Shared Developments
	eda
	eda Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO

	eda addmcachepath
	eda addmcachepath Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL

	OPTIONS
	-path
	-[no]replace
	-[no]validate

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Adding Paths to the Mcache Path List
	Example Showing Replacing the Paths in the Mcache Path List

	eda createrefws
	eda createrefws Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL

	OPTIONS
	-assignment
	-name

	RETURN VALUE
	SEE ALSO

	eda listmcachepath
	eda listmcachepath Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL

	OPTIONS
	-format

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing A List of the Mcache Paths in Text Format
	Example Showing A List of the Mcache Paths in TCL List Format

	eda removemcachepath
	eda removemcachepath Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL

	OPTIONS
	-path

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Removing a Path from the Mcache Path list

	URL Sync Object Model
	url Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	url
	url Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	url branchid
	url branchid Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module Member
	Workspace Module

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Examples of Displaying Branch ID

	url container
	url container Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Returning the Local Folder that Contains the Object
	Example Returning the Server Folder that Contains the Object

	url contents
	url contents Command
	NAME
	DESCRIPTION
	Notes for Modules

	SYNOPSIS
	ARGUMENTS
	Module Folder

	OPTIONS
	-all
	-ifpopulated
	-incremental
	-prefetch
	-version
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the Contents of a Module Folder

	url exists
	url exists Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module
	Module Member
	Module Folder

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Verifying the Existence of a Module
	Example of Verifying the Existence of a Module Member

	url fetchedstate
	url fetchedstate Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module Member

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Fetch State of a Module
	Example Showing Fetch State of a Module Member

	url fetchtime
	url fetchtime Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module
	Module Member

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the Last Fetchtime of a Module
	Example Showing Last Fetchtime of a Module Member

	url filter
	url filter Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Workspace Module

	OPTIONS
	-all
	-hreffilter
	-filter
	--

	RETURN VALUE
	EXAMPLES

	url getprop
	url getprop Command
	NAME
	DESCRIPTION
	Notes for Modules

	SYNOPSIS
	ARGUMENTS
	Module
	Module Member

	OPTIONS
	--

	OPERANDS
	Object
	Property Name

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Getting the DataType Property of a Module Member
	Example of Getting the Various Propreties of a Module

	url inconflict
	url inconflict Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Workspace Module
	Module Member

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing The Status of File Merges for a Module
	Example Showing the Merge Status of a Module Member

	url leaf
	url leaf Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	url locktime
	url locktime Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module Object
	Module Member

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Viewing the Locktime of Server Module Version
	Example of Viewing the Locktime of a Workspace Module

	url members
	url members Command
	NAME
	DESCRIPTION
	Notes for Modules

	SYNOPSIS
	OPTIONS
	-[no]relative
	--

	RETURN VALUE
	EXAMPLES

	url modified
	url modified Command
	NAME
	DESCRIPTION
	Notes for Modules

	SYNOPSIS
	ARGUMENTS
	Workspace Module
	Module Member

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing If the Module in the Workspace is Modified
	Example Showing If the Module Member in the Workspace is Modified

	url naturalpath
	url naturalpath Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Workspace Module Member

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the Natural Path of a Module Member
	Example Showing Using the Natural Path to Unlock a Module Member

	url notes
	url notes Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server Module Version

	OPTIONS
	-type
	-dbquery
	--

	OPERANDS
	Object

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the List of Specific Note Types in a Specific State
	Example of a Script Fragment that Extracts Attached Note Information

	url owner
	url owner Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Workspace Module
	Module Member

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing The Owner of a Module

	url path
	url path Command
	NAME
	DESCRIPTION
	Module Notes

	SYNOPSIS
	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing How to Get Path and Reverse the Separator
	Example Showing the URL Path of the Server Module

	url properties
	url properties Command
	NAME
	DESCRIPTION
	Properties Associated with Module Objects

	SYNOPSIS
	ARGUMENTS
	Module
	Array Name

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the Properties of a Module

	url registered
	url registered Command
	NAME
	DESCRIPTION
	Notes for modules

	SYNOPSIS
	ARGUMENTS
	Workspace Module
	Module Member

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Whether a Module is Under Revision Control
	Example Showing Whether a Module Member is Under Revision Control

	url relations
	url relations Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	url resolveancestor
	url resolveancestor Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module
	Module Member

	OPTIONS
	-noedges
	-version
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Common Ancestor from Versions on the Same Branch
	Example Showing Common Ancestor from Versions on Different Branches
	Example Showing Common Ancestor Using Branch and Version Arguments

	url resolvetag
	url resolvetag Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module
	Module Member

	OPTIONS
	-version
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing a Resolved Version Tag
	Example Showing the Latest Version of an Object
	Example Showing the Latest Version on a Specified Branch
	Example of Using a Selector List
	Example Showing a Non-Existent Module Version

	url rmprop
	url rmprop Command
	NAME url rmprop
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Workspace Module Member

	OPTIONS
	Property

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Removal of the ci_rename Property
	Example Showing Removal of the ci_remove Property

	url root
	url root Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Path

	OPTIONS
	--

	RETURN VALUE
	Return Values for Modules

	SEE ALSO
	EXAMPLES
	Viewing the Root Directory for a Module Workspace

	url selector
	url selector Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Workspace Module

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the Persistent Selector for the Module

	url servers
	url servers Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-all
	-enterprise
	-site
	-urls
	-user

	RETURN VALUE
	EXAMPLES

	url setprop
	url setprop Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	--

	OPERANDS
	Object URL
	Property Name
	Property Value

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Setting a User-Defined Property on a Module Workspace
	Example of Setting a User-Defined Property on a Module Member

	url syslock
	url syslock Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-all
	-acquire
	-canonize
	-realmount
	-realpath
	-release
	-shared
	-showlocks
	-timeout
	-yield
	--

	RETURN VALUE
	EXAMPLES

	url tags
	url tags Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module
	Module Member

	OPTIONS
	-btags
	-version
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the Tags Associated with a Module

	url users
	url users Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	OPERANDS
	Path to the Server

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	url vault
	url vault Command
	NAME
	DESCRIPTION
	Note for modules

	SYNOPSIS
	ARGUMENTS
	Workspace Module
	Module Folder
	Module Member

	OPTIONS
	-modulecontext

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Getting the Module Vault Information

	url versionid
	url versionid Command
	NAME
	DESCRIPTION
	Module Notes

	SYNOPSIS
	ARGUMENTS
	Workspace Module
	Module Member

	OPTIONS
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Different Return Values for Module Objects

	url versions
	url versions Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module Branch
	Module Member
	Server Module

	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Getting Versions Associated with a Server Module

	url view
	url view Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Workspace Module

	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing A View

	TCL Interface
	auto_mkindex
	auto_mkindex Command
	NAME
	DESCRIPTION
	SYNOPSIS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	auto_reset
	auto_reset Command
	NAME
	DESCRIPTION
	SYNOPSIS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	gets
	gets Command
	NAME
	DESCRIPTION
	SYNOPSIS
	EXAMPLES

	parray auto_index
	parray auto_index Command
	NAME
	DESCRIPTION
	SYNOPSIS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	puts
	puts Command
	NAME
	DESCRIPTION
	SYNOPSIS
	SEE ALSO

	rstcl
	rstcl Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-output
	-server
	-script
	-urlparams

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	run
	run Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-defaultdir
	-dryrun
	-ignoreerrs
	-verbose
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Third-Party Integrations
	DSDFII
	addcdslib
	addcdslib Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	--

	SEE ALSO
	EXAMPLES

	Administration
	Access Control
	access Commands
	NAME
	DESCRIPTION
	Notes for Modules

	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	ACAdmin Commands
	acadmin
	acadmin Command
	NAME
	DESCRIPTION
	SYNOPSIS
	EXAMPLES

	acadmin addgroup
	acadmin addgroup Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin addgroupusers
	acadmin addgroupusers Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin addobj
	acadmin addobj Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin addusers
	acadmin addusers Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin listcats
	acadmin listcats Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin listcmds
	acadmin listcmds Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin listgroups
	acadmin listgroups Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin listobjs
	acadmin listobjs Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin listperms
	acadmin listperms Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin listusers
	acadmin listusers Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin reset
	acadmin reset Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin rmgroup
	acadmin rmgroup Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin rmgroupusers
	acadmin rmgroupusers Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin rmobj
	acadmin rmobj Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin rmusers
	acadmin rmusers Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	acadmin setcatperm
	acadmin setcatperm Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Access Control Commands
	access Commands
	NAME
	DESCRIPTION
	Notes for Modules

	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	access
	access Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	access allow
	access allow Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	access db_filter
	access db_filter Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	API FUNCTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	access decline
	access decline Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	access define
	access define Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	access deny
	access deny Command
	NAME
	DESCRIPTION
	SYNOPSIS

	access filter
	access filter Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	access global
	access global Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	access init
	access init Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	access list
	access list Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	access reset
	access reset Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	access verify
	access verify Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Authentication
	hcm addlogin
	hcm addlogin Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-fromallusers
	-fromtarget
	-fromuser
	-toalltargets
	-totarget
	-touser

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Storing a User Login for a Specific Server
	Example of Storing a Guest Login For All Referenced Servers

	hcm rmlogin
	hcm rmlogin Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-fromallusers
	-fromtarget
	-fromuser

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Removing a User Login for a Specific Server
	Example of Removing the Guest Login for a Specific Server

	hcm showlogins
	hcm showlogins Command
	NAME
	DESCRIPTION
	Understanding the Output

	SYNOPSIS
	OPTIONS
	-fromallusers
	-fromtarget
	-fromuser
	-report

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	password
	password Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Command Defaults
	defaults Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Command Defaults
	command defaults Command
	NAME
	DESCRIPTION
	SEE ALSO
	EXAMPLES
	Example of Setting the Default
	Example of Showing the Saved Defaults
	Example of Overriding the Set Defaults for the Whole Command
	Example of Overriding a Specific Option

	defaults
	defaults Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	defaults commands
	defaults commands Command
	NAME
	DESCRIPTION
	SYNOPSIS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	defaults off
	defaults off Command
	NAME
	DESCRIPTION
	SYNOPSIS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	defaults on
	defaults on Command
	NAME
	DESCRIPTION
	SYNOPSIS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	defaults refresh
	defaults refresh Command
	NAME
	DESCRIPTION
	SYNOPSIS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	defaults set
	defaults set Command
	NAME
	DESCRIPTION
	Note for Module Commands

	SYNOPSIS
	OPTIONS
	-nooverrule
	-temporary
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Setting the Default Options for a Specific Command
	Example of Resolving Default Conflicts
	Example of Clearing the Defaults
	Example of Setting Defaults for All Commands

	defaults show
	defaults show Command
	NAME
	DESCRIPTION
	Note for Module Commands

	SYNOPSIS
	OPTIONS
	-source

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	defaults state
	defaults state Command
	NAME
	DESCRIPTION
	SYNOPSIS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Custom Type System
	Custom Type Packages
	ctp
	ctp Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	ctp list
	ctp list Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	ctp verify
	ctp verify Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENT
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Managing Local Versions of Collections
	localversion
	localversion Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	localversion delete
	localversion delete Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	localversion list
	localversion list Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	localversion restore
	localversion restore Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	localversion save
	localversion save Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Data Import/Export with DesignSync
	exportmod
	exportmod Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL

	OPTIONS
	-[no]force
	-[no]freeze

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Exporting a module

	import
	import Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Module URL

	OBJECTS
	Module Member

	OPTIONS
	-force
	-version
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Importing a Specific Module Version
	Example of Importing a Module Member

	importmod
	importmod Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Server URL

	OPTIONS
	-[no]freeze
	-[no]keep

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Importing a module

	upload
	upload Command
	NAME
	DESCRIPTION
	Understanding How a Temporary Directory is used for Upload
	Order of Precedence for Temp Directory:

	SYNOPSIS
	ARGUMENTS
	Tar file

	OPTIONS
	-branch
	-[no]collection
	-[no]comment
	-localtmpdir
	-[no]new
	-report
	-servertmpdir
	-tag
	-vault
	-workspace

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Performing an Initial Upload
	Example of Specifying a Server Temporary Directory for Module Upload
	Example of Specifying a Local Temporary Directory for Module Upload
	Example of Performing an Upload Using a Module Workspace

	Data Replication
	Data Replication System
	replicate Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	replicate addroot
	replicate addroot Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	replicate data
	replicate data Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	replicate disable
	replicate disable Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	replicate enable
	replicate enable Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	replicate reset
	replicate reset Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	replicate rmdata
	replicate rmdata Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	replicate rmroot
	replicate rmroot Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	replicate setoptions
	replicate setoptions Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	replicate showdata
	replicate showdata Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	replicate showroots
	replicate showroots Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	File Cache Maintenance
	Caching Objects
	caching
	caching Command

	caching disable
	caching disable Command

	caching enable
	caching enable Command

	caching list
	caching list Command

	caching status
	caching status Command

	cachescrubber
	cachescrubber Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	cachetouchlinks
	cachetouchlinks Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	refreshcache
	refreshcache Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Mirror System
	mirror Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO

	mirror
	mirror Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO

	mirror create
	mirror create Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror delete
	mirror delete Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror disable
	mirror disable Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror edit
	mirror edit Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror enable
	mirror enable Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror get
	mirror get Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror getoptions
	mirror getoptions Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror isenabled
	mirror isenabled Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror ismirror
	mirror ismirror Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror list
	mirror list Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror rename
	mirror rename Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror requeue
	mirror requeue Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror reset
	mirror reset Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror setoptions
	mirror setoptions Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror status
	mirror status Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirror wheremirrored
	mirror wheremirrored Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mirrorsetdefaultuser
	mirrorsetdefaultuser
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	SEE ALSO
	EXAMPLES

	Module Cache Maintenance
	Caching Objects
	caching
	caching Command

	caching disable
	caching disable Command

	caching enable
	caching enable Command

	caching status
	caching status Command

	mcache Commands
	mcache Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO

	mcache scan
	mcache scan Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mcache scrub
	mcache scrub Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mcache show
	mcache show Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	mcache touch
	mcache touch Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Events and Triggers
	Events
	event
	event Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO

	event create
	event create Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	EXAMPLES
	SEE ALSO

	event_prop
	event_prop Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO

	event_prop create
	event_prop create Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	SEE ALSO

	event_prop delete
	event_prop delete Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	SEE ALSO

	event_prop get
	event_prop get Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	event_prop list
	event_prop list Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Triggers
	trigger
	trigger Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	trigger block
	trigger block Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	trigger create
	trigger create Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	trigger delete
	trigger delete Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	trigger disable
	trigger disable Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	trigger enable
	trigger enable Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	trigger fire
	trigger fire Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	trigger get
	trigger get Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	trigger isEnabled
	trigger isEnabled Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	trigger list
	trigger list Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	trigger status
	trigger status Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	SEE ALSO
	EXAMPLES

	trigger unblock
	trigger unblock Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO

	Registry File Management
	SyncAdmin
	SyncAdmin
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-file
	-project
	-site
	-user

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sregistry
	sregistry Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sregistry delete
	sregistry delete Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-currentuser
	-file
	keyPath
	-localmachine
	-port
	-project
	-site
	-synch
	-user
	value

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sregistry get
	sregistry get Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-base
	-currentuser
	-default
	-file
	-format
	-localmachine
	-port
	-project
	-site
	-synch
	-user
	Key Path
	Value

	SEE ALSO
	EXAMPLES

	sregistry keys
	sregistry keys Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-currentuser
	-file
	-format
	Key Path
	-localmachine
	-port
	-project
	-site
	-synch
	-user

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sregistry reset
	sregistry reset Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	SEE ALSO

	sregistry scope
	sregistry scope Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-project
	-site

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sregistry set
	sregistry set Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Data

	OPTIONS
	-currentuser
	-file
	keypath
	-localmachine
	-port
	-project
	-site
	-synch
	-type
	-user
	Value
	--

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sregistry source
	sregistry source Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-currentuser
	-file
	KeyPath
	-localmachine
	-port
	-project
	-site
	-synch
	-user
	value

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	sregistry values
	sregistry values Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-currentuser
	-file
	-format
	KeyPath
	-localmachine
	-port
	-project
	-site
	-synch
	-user

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Server Backup
	backup
	backup Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-from

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	keydbcheckpoint
	keydbcheckpoint Command
	NAME
	DESCRIPTION
	SYNOPSIS

	restoreserver
	restoreserver
	NAME
	DESCRIPTION
	SYNOPSIS
	RETURN VALUE
	SEE ALSO

	restorevault
	restorevault Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-from
	-overwrite
	--

	OPERANDS
	Vault Directory Path

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	suspend
	suspend Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	tcl Code

	OPTIONS
	-because
	-maintenance
	-mode
	-readonly

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	See Also
	backup Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	rstcl Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Troubleshooting
	syncinfo
	syncinfo Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	General Information
	isServer
	syncDir
	version
	Registry Information
	clientRegistryFiles
	enterpriseRegistryFile
	portRegistryFile
	projectRegistryFile
	serverRegistryFiles
	siteRegistryFile
	syncRegistryFile
	userRegistryFile
	usingSyncRegistry
	Customization Information
	customDir
	customSiteDir
	customEntDir
	siteConfigDir
	usrConfigDir
	userConfigFile
	Client Information
	connectTimeout
	commAttempts
	defaultCache
	fileEditor
	htmlBrowser
	proxyNamePort
	somTimeout
	Server Information
	berkdbIsShmEnabled
	berkdbShmKey
	isTestMode
	serverMetadataDir
	serverDataDir
	serverMachine
	serverName
	serverPort
	User Information
	home
	userName

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing the SyncInfo Version on Client Startup
	Example of Extracting SyncInfo Information to an Array
	Example Showing Extracting the Information from an Array
	Example of extracting Name/Value Pairs for Specific Arguments

	See Also
	server-side
	NAME
	DESCRIPTION
	SEE ALSO
	EXAMPLES

	synctrace
	synctrace Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	SEE ALSO
	EXAMPLES

	See Also
	synctrace set Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	EXAMPLES

	synctrace unset Command
	NAME
	DESCRIPTION
	SYNOPSIS

	synctrace set
	synctrace set Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-server

	RETURN VALUE
	EXAMPLES
	Example of Turning Tracing on for all Libraries
	Example of Turning Trace off for All Libraries
	Example of Turning Trace On for a Specific Server
	Example of Turning Trace Off for a Specific Server

	synctrace unset
	synctrace unset Command
	NAME
	DESCRIPTION
	SYNOPSIS

	Utilities
	convertdata
	convertdata
	NAME
	DESCRIPTION

	convertutil
	convertutil
	NAME
	DESCRIPTION

	convertvault
	convertvault
	NAME
	DESCRIPTION

	SyncAdmin
	SyncAdmin
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-file
	-project
	-site
	-user

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	See Also
	DesSync Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	syncdadmin
	syncdadmin Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	begin
	close
	lock
	start
	status
	stop
	unlock

	RETURN VALUE
	EXAMPLES

	ProjectSync Data Manipulation
	Note Manipulation
	note
	note Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	EXAMPLES

	note attach
	note attach Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Attaching a Note to a Project
	Example of Attaching a Note to a Tagged Configuration

	note counts
	note counts Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-countlinks
	-dateresolution
	-dbquery
	-sqlquery

	OPERANDS
	Notetype Name
	Out Var Name
	Dimensions

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Reporting Against Fields in the Notetype
	Example Showing Time-Based Reporting on NoteTypes

	note create
	note create Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Name/Value for Note Properties

	OPTIONS
	-date
	-id
	-type

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Creating of a New Note with a Specific ID.
	Example Showing Creating a Note Using the Default ID

	note delete
	note delete Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	OPERANDS
	Note URL

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	note detach
	note detach Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	OPERANDS
	Note URL
	Object URL

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Detaching a Bug Report from a Project
	Example of Detaching a Bug Report from a Tagged Configuration

	note getprop
	note getprop Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	OPERANDS
	Note URL
	Property Name

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	note links
	note links Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-norec
	-note
	-object
	-pairs

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing All the Notes Attached to a Project
	Example Showing The Objects to which a Specific Note is Attached

	note query
	note query Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-attached
	-dbquery
	-filter
	-norec
	-select
	-sqlquery
	-type

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing a list of URLS for all Note Types
	Example Displaying a Specific Note Type Attached to a Project
	Example Returning Notes Created by a Specific User
	Example Returning Notes Attached to a Specific Project

	note relink
	note relink Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-norec

	OPERANDS
	From Object URL
	To Object URL

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	See Also
	note attach Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	note detach Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	OPERANDS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	note links Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	notetype rename Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	OPERANDS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	note schema
	note schema Command
	NAME
	DESCRIPTION

	note setprops
	note setprops Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	--

	OPERANDS
	Note URL
	Property Name
	Property Value
	Property List Name/Value Pairs

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Setting the Title on a Specific Note
	Example of Setting the Title and History for a Specific Note
	Example of Setting Various Properties on Specific Note

	note systems
	note systems Command
	NAME
	DESCRIPTION
	SYNOPSIS
	RETURN VALUE
	EXAMPLES

	note types
	note types Command
	NAME
	DESCRIPTION

	Note Type Manipulation
	note types
	note types Command
	NAME
	DESCRIPTION

	notetype
	notetype Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	EXAMPLES

	notetype create
	notetype create Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-description
	--

	OPERANDS
	Note Type Name
	Property Name
	Prompt Name
	Is Required
	Property Type Name
	Default Value

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	notetype delete
	notetype delete Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-purgenotes

	OPERANDS
	Note Type Name

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	notetype enumerate
	notetype enumerate Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-dbtablenames
	-urls

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	notetype getdescription
	notetype getdescription Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPERANDS
	Note Type Name

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	notetype rename
	notetype rename Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	OPERANDS
	Current Name
	New Name

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	notetype schema
	notetype schema Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-dbcolumns
	-defaults
	-notesys
	-prompts
	-ptypes
	-required

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Returning all Fields in the Specified Note Type
	Example Displaying the Types for Each Field

	Property Type Information Commands
	ptype
	ptype Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	ptype choices
	ptype choices Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPERANDS
	Custom Property Type Name

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	ptype class
	ptype class Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPERANDS
	Custom Property Type Name

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	ptype enumerate
	ptype enumerate Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	EXAMPLES

	ptype is
	ptype is Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-boolean
	-choice
	-date
	-machine
	-number
	-string
	-time
	-timestamp
	-userlist

	OPERANDS
	Custom Property Type Name

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	ptype strwidth
	ptype strwidth Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPERANDS
	Custom Property Type Name

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	ptype transitions
	ptype transitions Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-from

	OPERANDS
	Custom Property Type Name

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Email Subscription Manipulation
	subscription
	subscription Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS

	subscription add
	subscription add Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Object

	OPTIONS
	-ci
	-colock
	-conolock
	-filter
	-notetype
	-server
	-tag
	-tagname
	-unlock
	-user

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Subscribing to SyncDefect Notes
	Example of Subscribing to Specific Objects Tagged with a Specific Tag
	Example of Subscribing to Specified RC Notes
	Example of Subscribing to all Notes Attached to a Module
	Example of Subscribing to all Notes for Modules in a Category

	See Also
	subscription delete Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	subscription edit Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	subscription get Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	subscription list Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	subscription delete
	subscription delete Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	Object

	OPTIONS
	-notetype
	-server
	-user

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Deleting all Subscriptions for a User
	Example of Deleting Subscriptions for all Objects
	Example of Deleting Subscriptions for a NoteType for all Objects
	Example of Deleting all Subscriptions on the Specified Object
	Example of Deleting all Specified Notetypes for an Object

	See Also
	subscription add Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	subscription edit Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	subscription get Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	subscription list Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	subscription edit
	subscription edit Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-server
	-user

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example of Editing a Subscription on the Server Associated with cwd
	Example of Editing a Subscription on a Specified Server

	See Also
	subscription add Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	subscription delete Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	subscription get Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	subscription list Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	subscription get
	subscription get Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-noteType
	-server
	-user

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	See Also
	subscription add Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	subscription delete Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	subscription edit Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	subscription list Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	subscription list
	subscription list Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	-noteType
	-server
	-user

	RETURN VALUE
	SEE ALSO
	EXAMPLES
	Example Showing Listing Subscriptions on the server
	Example Showing Listing Subscriptions for Vault Associated with cwd

	See Also
	subscription add Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	subscription delete Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	subscription edit Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	subscription get Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	User Profile Manipulation
	user
	user Commands
	NAME
	DESCRIPTION
	SYNOPSIS
	EXAMPLES

	user counts
	user counts Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	See Also
	note counts Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	OPERANDS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	user create Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	OPERANDS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	user create
	user create Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	OPERANDS
	User ID
	Name/Value Pairs for Attribute Values

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	See Also
	user delete Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	OPERANDS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	url getprop Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	OPERANDS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	url properties Command
	NAME
	DESCRIPTION
	SYNOPSIS
	ARGUMENTS
	OPTIONS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	url setprop Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	OPERANDS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	user delete
	user delete Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	OPERANDS
	User ID

	RETURN VALUE
	SEE ALSO
	EXAMPLES

	See Also
	user create Command
	NAME
	DESCRIPTION
	SYNOPSIS
	OPTIONS
	OPERANDS
	RETURN VALUE
	SEE ALSO
	EXAMPLES

	Index

