
1

ENOVIA DesignSync
Stcl Programmer’s Guide

3DEXPERIENCE 2022

Introduction

4

©2021 Dassault Systèmes. All rights reserved. 3DEXPERIENCE®, the Compass icon, the 3DS logo, CATIA, SOLIDWORKS, ENOVIA, DELMIA, SIMULIA, GEOVIA, EXALEAD, 3D VIA, BIOVIA, NETVIBES,
IFWE and 3DEXCITE are commercial trademarks or registered trademarks of Dassault Systèmes, a French “société européenne” (Versailles Commercial Register # B 322 306 440), or its subsidiaries in the
United States and/or other countries. All other trademarks are owned by their respective owners. Use of any Dassault Systèmes or its subsidiaries trademarks is subject to their express written approval.

i

Table of Contents
Introduction ... 1

Why Tcl? .. 1

What's stcl? .. 1

Getting Started with stcl ... 1

Related Topics ... 3

Synchronicity's stcl Environment ... 5

The stcl Environment ... 5

What Are SyncServers? ... 5

What Are the DesignSync Clients? .. 5

How DesignSync Clients and Servers Communicate ... 6

Client-Side Versus Server-Side stcl ... 7

Client-Side Scripts .. 7

Server-Side Scripts .. 7

When to Use a Client-Side Script ... 7

When to Use a Server-Side Script ... 8

Methods of Running Client-Side Scripts ... 8

Methods of Running Server-Side Scripts ... 8

Related Topics ... 9

Synchronicity's Object Model .. 11

Introduction to the DesignSync Object Model .. 11

Accessing Web Objects ... 12

Types of Web Objects ... 14

Table of Contents

ii

Working with Revision Control Objects .. 18

Accessing Objects Using url Commands ... 18

Accessing Cadence Web Objects .. 30

Working with Properties of Revision Control Objects ... 32

Working with Notes .. 39

Accessing Notes .. 39

Creating and Attaching Notes .. 45

Working with Note Types ... 49

Updating Notes .. 50

The stcl Environment for Client Scripts ... 57

Working with Client stcl Scripts .. 57

Related Topics ... 58

Setting Up stcl Client Scripts ... 58

Accessing Environment Information from Client Scripts ... 58

Startup Scripts .. 61

Autoloaded Site and Project stcl Procedures ... 62

Client Triggers .. 65

Running stcl Scripts from Clients ... 66

How to Run stcl Scripts from Clients .. 66

dssc and dss Clients .. 67

stclc and stcl Clients ... 70

The DesSync Client ... 73

OS Shell Scripts ... 73

ENOVIA Synchronicity stcl Programmer's Guide

iii

The stcl Environment for Server Scripts .. 75

Working with Server stcl Scripts .. 75

Setting Up stcl Server Scripts .. 75

Developing Server-Side stcl Scripts ... 75

Server Scripts and SyncServer Security .. 80

Accessing Environment Information from Server Scripts 83

Running stcl Scripts from Servers .. 86

How to Run stcl Server Scripts .. 86

URL stcl Script Requests ... 87

Server Triggers .. 89

stcl Scripting Tips .. 91

stcl Scripting Tips ... 91

Hints for First Time Scripters ... 92

Running a Clean Environment ... 92

Using Commands ... 92

General Formatting .. 93

Delimiting Strings and Whitespace Tips ... 94

Return Values and Exception Handling ... 95

Output Formatting .. 105

Client Script Output Formatting .. 107

Getting Assistance .. 109

Using Help ... 109

Getting a Printable Version of Help.. 110

Table of Contents

iv

Contacting ENOVIA ... 111

Index ... 113

1

Introduction
The ENOVIA Synchronicity stcl Programmer's Guide provides information about
customizing or extending the built-in capabilities of the DesignSync family of products
(DesignSync, ProjectSync SyncAdmin, etc.) using stcl scripts. stcl (Synchronicity Tcl) is
the combination of the Tcl scripting language and the DesignSync command set. Use
this document with the ENOVIA Synchronicity Command Reference to develop stcl
scripts.

Note on using this guide: References from the ENOVIA Synchronicity stcl
Programmer's Guide to the ENOVIA Synchronicity Command Reference guide always
link to the ALL version of the guide, which contain information about all working
methodologies for DesignSync. For more information about the available working
methodologies, see ENOVIA Synchronicity Command Reference.

Why Tcl?

Tcl (tool command language) is a scripting language that provides generic
programming constructs such as variables, loops, conditionals, and procedures. The
DesignSync products incorporate the Tcl interpreter, giving you a powerful environment
in which to create and run scripts. Because Tcl is an interpreted language, you do not
have to wait for your code to compile; your results are immediate. Also, because the
DesignSync API is built on top of a standard language like Tcl, you do not have to learn
a proprietary language specific only to DesignSync.

What's stcl?

The DesignSync commands along with the Tcl scripting language are referred to as
Synchronicity tcl (stcl). You can use the stcl commands in one of the DesignSync
command shells or in scripts run on DesignSync clients or servers. For DesignSync,
you can create scripts for clients and servers (SyncServers). For ProjectSync, you
create server scripts.

Note that 'stcl' is also the name of a DesignSync command shell. The stcl shell, like the
dss shell, supports the DesignSync text commands, sometimes called dss commands.
 Unlike the dss shell, the stcl shell also runs the Tcl interpreter. You can determine the
version of Tcl included in your installation's stcl interpreter by using the Tcl info
tclversion and info patchlevel commands within an stcl/stclc client shell. You
can run client-side stcl scripts from any of the DesignSync clients (see How to Run stcl
Scripts from Clients). Note: DesignSync software supports Tcl but not Tk.

Getting Started with stcl

Although the ENOVIA Synchronicity stcl Programmer's Guide provides many
examples of Tcl scripting, it is not designed to be an introductory guide to the Tcl

Introduction

2

scripting language. The following references might be of use to new Tcl scripters. Also,
see stcl Scripting Tips for some Tcl guidelines that apply specifically to stcl scripting.

Tcl Scripting References

http://www.tcl.tk Tcl Developer Xchange web site.

The Tcl/Tk Manual Pages web page
(http://tcl.activestate.com/man)
provides Tcl command documentation.
 Use the info tclversion and info
patchlevel commands within an
stcl/stclc client shell to determine the Tcl
version supported by stcl, then select the
documentation corresponding to that
version from the
http://tcl.activestate.com/man
web page.

http://tcl.sourceforge.net Development home for Tcl.

Effective Tcl/Tk Programming by
Mark Harrison and Michael Mclennan,
Addison-Wesley, 1997. ISBN: 0-201-
63474-0

Shows how to build effective and efficient
Tcl/Tk applications. It clarifies some of the
more powerful aspects of Tcl/Tk, such as
the packer, the canvas widget, binding
tags, and sockets. Throughout the book,
the authors develop numerous
applications and a library of reusable
components.

Practical Programming in Tcl and Tk
by Brent Welch. Prentice Hall, 1999.
3rd Ed ISBN: 0-13-022028-0.

Covers Tcl/Tk 8.2 in detail, and includes
chapters on C programming for Tcl, the
Tcl Web Server, and the Tcl Web
Browser plugin. Included is a CD-ROM
with all the sources for the examples.

Tcl and the Tk Toolkit by John K.
Ousterhout. Addison-Wesley, 1994.
ISBN: 0-201-63337-X.

Tcl/Tk command reference.

ENOVIA Synchronicity stcl Programmer's Guide

3

Tcl/Tk in a Nutshell by Paul Raines
and Jeff Tranter. O'Reilly & Associates,
1999. ISBN 1-56592-433-9

Tcl/Tk command reference.

Related Topics

Client-Side Versus Server-Side stcl

Developing Server-Side stcl Scripts

How to Run stcl Scripts from Clients

How to Run stcl Server Scripts

Introduction to the DesignSync Object Model

Working with Client stcl Scripts

Working with Server stcl Scripts

5

Synchronicity's stcl Environment
The stcl Environment
You can run stcl scripts on DesignSync clients and servers. The particular application
you are developing determines whether it's best to create a DesignSync client script or
a SyncServer script. An understanding of the client/server architecture of the ENOVIA
Synchronicity tools will help you make this determination.

What Are SyncServers?

A SyncServer, is an HTTP server process configured to manage data for the ENOVIA
Synchronicity tools, including the following:

• DesignSync vault data, which consists of the hierarchy of design objects that are
under revision control. The SyncServer also contains a tags database that
manages the tag names for objects under revision control.

• ProjectSync relational database, which contains the note type data, a note link
table, and the predefined tables from ProjectSync, such as the user database.
Each note type defined on a server is stored in a database table. Each note
created is an instance of one of these tables with a set of values. Each field in
the note type is likewise a field in the table. The note type table defines
attachments of notes onto web objects. For example, revision control notes are
notes with attachments to objects under DesignSync revision control.

• IP Gear relational database. Note: The scope of the stcl Programmer's Guide
does not cover stcl scripting for IP Gear applications. See the IP Gear
documentation for IP Gear administration and customization information.

SyncServers are implemented as Apache servers on UNIX and IIS servers on
Windows. SyncServers automatically load DesignSync runtime libraries when needed.

What Are the DesignSync Clients?

As clients, DesignSync provides a graphical interface, DesSync, and a number of shells
(dssc, dss, stclc, and stcl). These DesignSync clients are the interfaces for the revision
control and configuration management commands DesignSync supports. In carrying out
the commands you specify, DesignSync communicates with the SyncServer that
manages the data under revision control. The local workspace corresponding to the
SyncServer vault folder is located on the client, as well as local metadata used by
DesignSync to manage the data.

The client for the ProjectSync tool is your HTML browser. You view the ProjectSync
interface as an HTML page. As with the DesignSync client, ProjectSync carries out your
commands by communicating with the SyncServer that manages its relational
database.

Synchronicity's stcl Environment

6

Because the ProjectSync client is an HTML browser, you can only develop server-side
stcl scripts for ProjectSync, not client stcl scripts. You can develop client stcl scripts, as
well as server stcl scripts, for DesignSync applications.

How DesignSync Clients and Servers Communicate

The ENOVIA Synchronicity tools use the http protocol, as well as a special sync
protocol, for communication between their clients, such as DesSync and stcl, and their
SyncServers. The http protocol, which is a layer on top of TCP, is the standard way that
web browsers (clients) communicate with web servers. A standard dialog between the
DesignSync clients and servers is as follows:

1. The client sends a URL to the server.
2. The SyncServer interprets the URL and performs some action.
3. The SyncServer sends back information to the client.

The type of information passed between the clients and SyncServers depends on
whether the client is DesignSync or ProjectSync, as well as the nature of the command
being executed. For example, because the ProjectSync client is an HTML browser, the
data sent from the SyncServer to ProjectSync must be in HTML format. Thus, the
architecture used has implications for stcl scripting and the formats of the input and
output of the scripts you develop.

DesignSync clients generally use the sync protocol in their URLs to communicate with
the SyncServer, for example, sync://machiavelli:2647/Projects/stclguide.
ProjectSync clients generally use the http protocol in their URLs to communicate with
the SyncServer, for example, http://bugserver:2647/Projects/rel4.4.
Synchronicity client/server communications also support secure protocols, https and
syncs. See DesignSync Data Manager Administrator's Guide:Overview of Secure
Communications for more information.

You can write stcl scripts for execution by a DesignSync client (DesSync, dssc, dss,
stclc, or stcl) or a SyncServe). DesignSync clients and SyncServers run an stcl
interpreter, a Tcl interpreter that also supports the DesignSync revision control
commands. See Client-Side Versus Server-Side stcl for a comparison of client versus
SyncServer scripts.

For further information about the DesignSync architecture, see Introduction to the
DesignSync Object Model.

Related Topics

Accessing Cadence Web Objects

Client-Side Versus Server-Side stcl

ENOVIA Synchronicity stcl Programmer's Guide

7

Introduction to the DesignSync Object Model

Types of Web Objects

Client-Side Versus Server-Side stcl
You can write stcl scripts for execution by a DesignSync client (DesSync, dssc, dss,
stclc, or stcl) or by a SyncServer. However, the commands supported by the stcl
interpreter differ slightly depending on whether your stcl script is running on a client or a
SyncServer. For example, a client script has access to your workspace, but a server
script has no knowledge about the objects in your workspace. A client script can query
a SyncServer for information about vaults, but a server script cannot query clients. A
client script cannot call note commands -- the client has no knowledge of the
SyncServer notes database.

Client-Side Scripts

Client-side scripts are necessarily DesignSync client scripts. The ProjectSync client is
an HTML browser with no access to an stcl interpreter; therefore, stcl is only supported
for ProjectSync server scripts.

Client-side scripts have visibility into the user's workspace and environment as well as a
limited visibility into the SyncServer and vaults on the server. Thus, you can create
DesignSync client-side scripts to automate user tasks or implement enhancements to
the built-in DesignSync command set. You can also run server-side scripts remotely
from a client using the DesignSync rstcl command.

Server-Side Scripts

Server-side scripts have visibility into events and data within the SyncServer, but no
visibility into the user's workspace and environment.

You create server-side scripts for any of the following reasons:

• To set server-wide policies (such as triggers or access controls)
• To create server customizations (such as customized ProjectSync panels or data

sheets)
• To reduce the amount of client/server traffic that a client-side script accessing

vault data requires
• To execute commands that are only available as server-side commands (such as

access reset and most ProjectSync commands)

When to Use a Client-Side Script

Synchronicity's stcl Environment

8

The choice to implement a script as server-side or client-side script is sometimes not
obvious. All of Tcl and most of the DesignSync command set are available for use in
both server-side and client-side scripts, although some commands are server-side only.

The following are applications where client-side scripts are applicable:

• If your site or project team needs a customized version of a DesignSync
command, you can create a wrapper script around the command. You include
your own customizations to the command in the wrapper script.

• Create stcl utilities to report the status of design objects in your workspace, such
as an stcl script to list out the design objects that have been modified.

When to Use a Server-Side Script

The following are applications where server-side scripts are applicable:

• If a client-side script is going to require many server hops, you might be better off
with a server-side script.

• If the purpose of the script is to display HTML information like a data sheet, use a
server-side script; the server returns script results as HTML.

• Most scripts that control or customize ProjectSync cannot be run from the client,
so a server-side script is necessary.

Methods of Running Client-Side Scripts

You can run client-side scripts by:

• Using the DesignSync run command (to run dssc/dss or stclc/stcl scripts)
• Using the Tcl source command (to make dssc/dss or stclc/stcl scripts available

in an stcl shell)
• Specifying a start-up script when you invoke the client
• Storing the stcl script in a directory from which it is automatically loaded

(autoloaded) when a user invokes the script
• Setting up triggers to automatically run scripts based on some event

See Working with Client stcl Scripts for details.

Methods of Running Server-Side Scripts

You can run server-side scripts by:

• Passing a URL script request from your web browser to the SyncServer
• Running a remote server-side script from a client by using the rstcl command
• Setting up triggers to automatically run scripts based on some event
• Defining custom ProjectSync panels

ENOVIA Synchronicity stcl Programmer's Guide

9

See Working with Server stcl Scripts for details.

Related Topics

Accessing Web Objects

Developing Server-Side stcl Scripts

How to Run stcl Scripts from Clients

How to Run stcl Server Scripts

Introduction to the DesignSync Object Model

The stcl Environment

Types of Web Objects

Working with Client stcl Scripts

Working with Server stcl Scripts

11

Synchronicity's Object Model
Introduction to the DesignSync Object Model
The DesignSync object model (SOM) is the data model that underlies the DesignSync
software. By understanding SOM and the relationships among the web object types,
you can more effectively use stcl commands to access and manipulate DesignSync
data.

What Are SOM Web Objects?

SOM web objects:

• Are identified by a URL with a sync: or file: protocol, and can therefore live
anywhere on the World Wide Web (WWW).

• Support one or more interfaces. Interfaces are sets of commands that are valid
for a given web object type.

• Can have properties associated with them. Properties are name/value pairs that
define attributes of a web object.

• Can have notes attached to them. Notes are web objects that contain
information of any type, for example, bug reports, change requests, revision-
control data, or threaded dialogues.

• Can be versionable. Versionable objects are objects that can be revision-
controlled with multiple versions stored in a vault. Files and collection objects
such as cellviews are examples of versionable web objects. A versionable object
is a client-side object with a URL such as
file:///home/projadmin/Sample/top.v. Associated with a versionable
object under revision control are its server-side objects -- its vault (for example,
sync://syncinc:2647/Projects/Sample/top.v;) and its versions (for
example, sync://syncinc:2647/Projects/Sample/top.v;1.2).

Related Topics

Accessing Cadence Web Objects

Client-Side Versus Server-Side stcl

The stcl Environment

Types of Web Objects

Synchronicity's Object Model

12

Accessing Web Objects
On a SyncServer, there are two main types of data stored:

• DesignSync vault data represented by these web objects: File, Folder, Vault,
Version, Branch, and Cellview, as well as tag names stored in a tags database.

• ProjectSync relational data, represented by these web objects: Project,
Configuration, User, and Note.

Client-side scripts can access some of this data; server-side scripts can access all of
this data.

Each SOM web object is identified by a URL. To access web objects on a SyncServer,
you use the sync: protocol, a protocol based on http protocol and extended for SOM
web objects. To access local web objects, you use the file: protocol in client-side
scripts. See Types of Web Objects for examples of web objects and their URLs.

Keep these points in mind when you access web objects:

• Use the url and note command sets to access web objects.

You can access a web object by specifying its URL. Additionally, you can access
web objects using the url command set. The url commands let you navigate
through the web object hierarchy without explicitly specifying web object URLs.
See Accessing Objects Using url Commands for details. To access ProjectSync
note web objects, see Accessing Notes.

• For server-side scripts, do not specify the host and port in your sync: URLs.

For example, specify:

sync:///Projects/Asic

and not

sync://chopin:2647/Projects/Asic

Because the script is run on the server itself, host:port information is
unnecessary and is stripped out by the server, which can lead to incorrect
behavior during object-name comparisons. Also, omitting the host:port
information makes your scripts more portable.

• The url commands are available from all DesignSync client shells. However, you
cannot operate on a return value in dss/dssc, so the url commands are more
useful in stcl/stclc.

ENOVIA Synchronicity stcl Programmer's Guide

13

• Quote semicolons in URLs using quotes (" ") or curly brackets ({ }). You can also
escape semicolons using the backslash (\) character.

Version and vault URLs contain semicolons
(sync://localhost:2647/Projects/Asic/x.v;). Because the semicolon
is a Tcl command separator, you must quote semicolons in URLs with quotes or
curly braces, or use the backslash (\) escape character:

"sync://localhost:2647/Projects/Asic/x.v;"

{sync://localhost:2647/Projects/Asic/x.v;}

sync://localhost:2647/Projects/Asic/x.v\;

• Wrap commands that access web objects in Tcl catch statements.

Commands that access web objects, such as url users and url getprop,
should be wrapped in catch statements because if bad property names or bad
URLs are passed into a script, they can cause exceptions to occur. See Return
Values and Exception Handling.

• Avoid special characters in URLs.

Avoid the following characters in your URL names:

@ # \ / ? * ; & |

These characters, while not necessarily illegal, are used for specific purposes in
URLs and thus can cause problems under some circumstances.

Related Topics

Client-Side Versus Server-Side stcl

Introduction to the DesignSync Object Model

The stcl Environment

Types of Web Objects

Synchronicity's Object Model

14

Types of Web Objects
The most familiar web objects are files and folders (directories). The DesignSync Object
Model (SOM) supports many other web object types such as projects, configurations,
vaults, and versions. The SOM web objects are listed in the table below. You identify
these web objects using the URL formats illustrated in the table.

Note: Web objects also have object states, such as whether an object is a replica or a
vault reference. See DesignSync Data Manager User's Guide: Object States: Original,
Replica, Reference, and Link, for details about object states. To determine the state of
an object, you can use the url fetchedstate command.

Object Type Description
File

A file-system file. Specify files on the client with the file: protocol:

file:///home/projadmin/Sample/top.v

Folder A file-system directory. Specify folders on the client with the file: protocol.

 Specify server-side folders with the sync: protocol:

file:///home/projadmin/Sample/Alu

sync://cae22:2647/Projects/Sample/Alu

A folder that is part of a vault structure on a SyncServer is referred to as a
vault folder. Folders themselves are not revision-controlled objects, but do
appear within vaults to maintain the hierarchy of vault objects.

Vault The repository of the versions checked in for a particular design object; also

contains branches. Note that a vault stores versions of a single design
object. A "project vault" refers to the top-level vault folder for a project and
thus contains a vault for each revision-controlled object in the folder.

sync://cae22.appco.com:2647/Projects/gemini/block1/top.v;

Note that vault names must include a terminating semicolon (;). If used in
stcl commands, the semicolon needs to be delimited with quotes, curly
braces, or a backslash escape character:

"sync://cae22:2647/Projects/Asic/x.v;"

{sync://cae22:2647/Projects/Asic/x.v;}

ENOVIA Synchronicity stcl Programmer's Guide

15

sync://cae22:2647/Projects/Asic/x.v\;

Version A fixed snapshot of a design object, such as a file or collection, stored in a

vault. You specify a version as a URL ending with a semicolon (;) followed by
a dot-numeric version identifier. The dot-numeric identifier for a version
contains an even number of elements (for example, top.v;1.2 or
top.v;1.23.2.2); whereas, the dot-numeric identifier for a branch
contains an odd number of elements (for example, top.v;1 or
top.v;1.23.2).

sync://cae22:2647/Projects/Sample/top.v;1.2

sync://cae22:2647/Projects/Sample/top.v;1.2.2.1

Note that version names must include a semicolon (;). If used in stcl
commands, the semicolon needs to be delimited with quotes, curly braces, or
a backslash escape character:

"sync://cae22:2647/Projects/Asic/x.v;1.2"

{sync://cae22:2647/Projects/Asic/x.v;1.2}

sync://cae22:2647/Projects/Asic/x.v\;1.2

A special type of version is a branch-point version -- a version that is the
root of a new branch. For example, if you create a branch by checking out
version 1.2 where versions beyond 1.2 already exist, the branch-point
version is designated 1.2, the branch is designated 1.2.1, and the first
version on that branch is 1.2.1.1.

Branch A thread of development of a revision-controlled object. You specify a branch

as a URL ending with a semicolon (;) followed by a dot-numeric identifier.
 The dot-numeric identifier for a branch contains an odd number of elements
(for example, top.v;1 or top.v;1.23.2); whereas, the dot-numeric
identifier for a version contains an even number of elements (for example,
top.v;1.2 or top.v;1.23.2.2). The main branch is designated with the
version number 1. A branch URL is formed by appending the branch name to
the vault URL:

Vault URL: sync://cae22:2647/Projects/Sample/top.v;

Branch URLs:

Synchronicity's Object Model

16

sync://cae22:2647/Projects/Sample/top.v;1

sync://cae22:2647/Projects/Sample/top.v;1.2.2

Note that the main branch of an object (for example,
sync://.../Sample/top.v;1) is equivalent to the object's vault
(sync://.../Sample/top.v;). You can use the vault URL to specify the
branch in this case, but in most cases it is best to explicitly specify the branch
URL.

Cadence
View

A file system file that is one of a collection of files that make up a Cadence
Design Systems view object. A Cadence Design Systems view object
 represents one of several views of a cell, where cells are the building blocks
of chips or systems and together make up Cadence libraries. For example, a
NAND2 cell may have four views: Verilog description, schematic symbol,
schematic, and layout. Views are an example of a broader category of
DesignSync objects called collection objects, where multiple files are
revision-controlled as a single object. DesignSync software understands how
to recognize views and creates an object called <name>.sync.cds, where
<name> corresponds to the name of the view folder:

file:///home/projLeader/ttlLib/and2/symbol.sync.cds

Cadence
View Folder

A Cadence Design Systems view container. Cadence views are stored in
view folders:

file:///home/projLeader/ttlLib/and2/symbol

Cadence
View
Member

One of the files stored in a Cadence Design Systems view collection object:

file:///home/projleader/ttlLib/and2/symbol/symbol.cdb

Project A group of revision-controlled objects stored together as a single design

effort. You can create and manage projects using ProjectSync. By
convention, all projects reside under the Projects folder under a
SyncServer's root. Projects are vault folders that have a
sync_project.txt file in the folder, where the sync_project.txt file
contains information about the project. A project URL is the same as a vault
folder's URL:

ENOVIA Synchronicity stcl Programmer's Guide

17

sync://cae22:2647/Projects/Sample

Configuration A snapshot of design object versions making up a design project. You create

a configuration in ProjectSync and then identify the contents of a
configuration by tagging the versions of your design objects with a tag that
corresponds to the ProjectSync configuration. A configuration is identified by
a project URL followed by an ampersand (@) and configuration name:

sync://cae22:2647/Projects/Sample@Gold

UserProfile A user profile for a DesignSync software user. You manage DesignSync

users using the DesignSync web interface. User profiles are stored under the
Users folder:

sync:///Users/<userid>

The user profile contains data such as the user's name, email address, and
telephone numbers.

Note A note is an informational object that you can attach to other web objects. A

note is an instance of a particular note type, such as a bug report, change
request, revision control note, or a web-based discussion. Users can create
notes using ProjectSync. Notes can also be generated automatically during
revision control operations if you set up revision control notes. Notes can
also be created and attached to objects programmatically using the note
create and note attach commands.

A note is identified by a URL of this format:

sync:///Note/SyncNotes/notetype/id

For example:

sync:///Note/SyncNotes/SyncDefect/19830

Note type A note type is a collection of properties that define a note. Examples of note

types include bug reports, change requests, revision control notes, and web-
based discussions. You set up note types in ProjectSync. See ProjectSync
Help for a description of the built-in property types used to create note type
properties. The note type name you create using the ProjectSync Note Type
Manager must start with a letter followed by any number of letters, numbers,
and underscores. Other special characters, such as dashes and spaces, are

Synchronicity's Object Model

18

not allowed in note type names.

A note type is identified by a URL of this format:

sync:///Note/SyncNotes/notetype

Related Topics

 Introduction to the DesignSync Object Model

Working with Revision Control Objects

Accessing Objects Using url Commands

The url commands are available from all DesignSync client shells. However, you
cannot operate on return values in dss shells, so the url commands are more useful in
stcl shells, and especially for stcl scripting.

url Commands and Revision Control Objects

url branchid - Returns the branch number of the specified object
url configs - Returns the configurations of a ProjectSync project
url container - Returns the object containing a specified object
url contents - Returns the objects in a container object
url exists - Returns whether an object exists
url fetchedstate - Returns the fetched state of an object
url fetchtime - Returns when an object was fetched
url getprop - Get a property of an object
url inconflict - Checks if a file merge had conflicts
url leaf - Returns the leaf of the URL
url locktime - Returns when a branch was locked
url members - Returns the members of the specified collection
url mirror - Returns the URL of a local directory's mirror
url modified - Checks if an object has been modified
url notes - Returns the notes attached to the specified object; server-side-only
command
url owner - Returns the owner of an object
url path - Extracts the path section of a URL
url projects - Returns a SyncServer's ProjectSync projects
url properties - Returns property/value pairs for the specified object
url registered - Checks whether an object is under revision control

ENOVIA Synchronicity stcl Programmer's Guide

19

url relations - Determine collection object dependencies (assuming the relation,
dependencies, is specified)
url resolveancestor - Returns the closest common ancestor of two versions
url resolvetag - Returns the version number associated with a selector
url retired - Returns whether a branch is retired
url selector - Returns the persistent selector list
url servers - Returns server-list definitions
url setprop - Set a property on an object
url syslock - Set a system lock on a lock name or file path
url tags - Returns the version tags of a specified object
url users - Returns all users defined for an object's server; server-side-only command
url vault - Returns the URL of an object's vault
url versionid - Returns the version number of the specified object
url versions - Returns the URLs of an object's versions

Note: url commands provide information about files and folders in your DesignSync
workareas and their associated vaults. In general, do not use these commands to obtain
information about mirrors; however, you can use the url mirror command to
determine the mirror directory associated with your local workarea.

Relationships Between Revision Control Objects

The url commands help you navigate through the SOM web objects. You can use these
commands to determine relationships among web objects and to obtain their values and
properties. For example, the url contents command returns the objects held in a
container object and the url container command returns the container (parent) of a
given object. These commands let you navigate up and down through the SOM
hierarchy. Most url commands let you access web objects without having to type out
URLs. In other words, you can use a relative path to specify web objects, rather than a
URL. For example, the object specified by the URL,
file:///home/karen/Asic/x.v, can also be specified as a relative path:
 /home/karen/Asic/x.v.

The following diagram illustrates the relationships among the web objects that exist in
your local work area and on your team's SyncServer.

Synchronicity's Object Model

20

url Command Examples

The diagram below depicts a vault hierarchy and a workarea that has been associated
with that vault hierarchy using the setvault command. The examples in the following
sections refer to this diagram.

ENOVIA Synchronicity stcl Programmer's Guide

21

The following stcl session shows how you can use the url commands to access the Asic
design objects shown in the preceding diagram. These url commands are illustrated
within an stcl session, but you can use these commands in much the same way within
an stcl script by using Tcl command substitution brackets, for example:

set filelist [url contents Asic]

For client-side scripts you include the SyncServer name and port number (for example,
sync://localhost:2647/Projects/Asic) as in the session example below. For
server-side scripts, you leave out the SyncServer name and port number (for example,
sync:///Projects/Asic). Note that the return values are formatted here for easier
reading, but actually are returned as one long string (no carriage returns after each
value and no indentation).

Synchronicity's Object Model

22

stcl Session Example

stcl> url contents Asic
file:///home/karen/Asic/Sub
file:///home/karen/Asic/x.v

If you specify a clie
or file as an argume
command, the com
a list of local, client
specified with the f
protocol.

stcl> url contents Asic/x.v

stcl> url container Asic/x.v
file:///home/karen/Asic

stcl> url container Asic
file:///home/karen

Note that the Asic
not a container; thu
contents Asic/
command returns a

stcl> url contents sync://localhost:2647/Projects/Asic
sync://localhost:2647/Projects/Asic/Sub
{sync://localhost:2647/Projects/Asic/x.v;}

Here, the sync: pr
used; server-side v
folders are returned
contents' command

stcl> url contents sync://localhost:2647/Projects/Asic/Sub
{sync://localhost:2647/Projects/Asic/Sub/y.v;}

'url contents' of a S
folder
(sync://.../Asi
yields the folder's c

stcl> url contents
"sync://localhost:2647/Projects/Asic/x.v;1.1"

stcl> url contents
"sync:/localhost:2647/Projects/Asic/x.v;1"

stcl> url versions
"sync:/localhost:2647/Projects/Asic/x.v;1"

stcl> url contents
"sync://localhost:2647/Projects/Asic/x.v;"
{sync://localhost:2647/Projects/Asic/x.v;1.1}
{sync://localhost:2647/Projects/Asic/x.v;1.2}
{sync://localhost:2647/Projects/Asic/x.v;1.3}

Note that 'url conte
version (x.v;1.1)
(x.v;1) returns an
whereas 'url conten
(x.v;) yields the v
in that vault.

stcl> url container sync://localhost:2647/Projects/Asic/x.v There is no server-

ENOVIA Synchronicity stcl Programmer's Guide

23

sync://localhost:2647/Projects/Asic

stcl> url contents
sync://localhost:2647/Projects/Asic
sync://localhost:2647/Projects/Asic/Sub
{sync://localhost:2647/Projects/Asic/x.v;}

object,
sync://.../Asi
the 'url container' c
returns its parent; t
container' comman
check for the existe
object or its parent.
the file, specify the
file, either a relative
(Asic/x.v) or usin
file:// protocol
(file://.../Asi

stcl> url contents sync://localhost:2647/Projects/Asic/x.v;

stcl> url contents
"sync://localhost:2647/Projects/Asic/x.v;"
{sync://localhost:2647/Projects/Asic/x.v;1.1}
{sync://localhost:2647/Projects/Asic/x.v;1.2}
{sync://localhost:2647/Projects/Asic/x.v;1.3}

'url contents' of
sync://.../x.v
empty list. You mu
URL containing a s
otherwise, the sem
interpreted as a Tc
separator. Use quo
brackets, or the bac
character to escape
in a URL.

stcl> url vault Asic
sync://localhost:2647/Projects/Asic

'url vault' of a client
(Asic) yields its va
(sync://.../Asi

stcl> url vault Asic/x.v
sync://localhost:2647/Projects/Asic/x.v;

'url vault' of a file (A
yields its vault
(sync://.../Asi

stcl> url contents [url vault Asic/x.v]
{sync://localhost:2647/Projects/Asic/x.v;1.1}
{sync://localhost:2647/Projects/Asic/x.v;1.2}
{sync://localhost:2647/Projects/Asic/x.v;1.3}

Note the use of the
substitution bracke
the [url vault] subst
you from typing the

stcl> set xvault [url vault Asic/x.v]
sync://gilmour:30048/Projects/Asic/x.v;

stcl> url contents $xvault
{sync://gilmour:30048/Projects/Asic/x.v;1.1}
{sync://gilmour:30048/Projects/Asic/x.v;1.2}

Another way to sav
typing a vault URL
variable to the vaul
can use the variabl
in this example) to

Synchronicity's Object Model

24

{sync://gilmour:30048/Projects/Asic/x.v;1.3}

stcl> url exists ${xvault}1.1
1

value of the vault in
command.

stcl> url versions Asic/x.v
{sync://localhost:2647/Projects/Asic/x.v;1.1}
{sync://localhost:2647/Projects/Asic/x.v;1.2}
{sync://localhost:2647/Projects/Asic/x.v;1.3}

stcl> url versions
"sync://localhost:2647/Projects/Asic/x.v;"
{sync://localhost:2647/Projects/Asic/x.v;1.1}
{sync://localhost:2647/Projects/Asic/x.v;1.2}
{sync://localhost:2647/Projects/Asic/x.v;1.3}

stcl> url versions
"sync://localhost:2647/Projects/Asic/x.v;1"
{sync://localhost:2647/Projects/Asic/x.v;1.1}
{sync://localhost:2647/Projects/Asic/x.v;1.2}
{sync://localhost:2647/Projects/Asic/x.v;1.3}

stcl> url versions
"sync://localhost:2647/Projects/Asic/x.v"

stcl> url versions
"sync://localhost:2647/Projects/Asic@Rel1"

stcl>

'url versions' applie
side file (Asic/x.v
(sync://.../Asi
version
(sync://.../Asi
or a branch
(sync://.../Asi
you specify a serve
(sync://.../Asi
configuration
(sync://.../Asi
versions' returns an
Note: If you apply '
to a branch-point ve
branches are listed
example, if x.v;1.
branch-point versio
versions' lists its ve
example, x.v;1.1
x.v;1.1.2, x.v;

stcl> url projects sync://localhost:2647

stcl> url configs Asic

No projects or conf
have been set up y
SyncServer. The S
administrator must
projects and config
ProjectSync. (See
User's Guide to set
and configurations.

stcl> url projects sync://localhost:30048
sync://localhost:30048/Projects/Thunder
sync://localhost:30048/Projects/Asic

The Asic project ha
created in ProjectS
as the Rel1 and Re
configurations. By

ENOVIA Synchronicity stcl Programmer's Guide

25

sync://localhost:30048/Projects/CPU

stcl> url configs Asic
sync://gilmour:30048/Projects/Asic@Rel1
sync://gilmour:30048/Projects/Asic@Rel2

ProjectSync projec
are implicitly assoc
ProjectSync Asic p
DesignSync Asic p
Likewise, by namin
ProjectSync configu
and Rel2, we are im
associating the Rel
ProjectSync configu
the Rel1 and Rel2 t
DesignSync shown
example.

stcl> tag Rel1 "[url vault Asic/Sub/y.v]1.1"

Beginning Tag operation...

Tagging: sync://gilmour:30048/Projects/Asic/Sub/y.v;1.1
:
Added tag 'Rel1' to version '1.1'

Tag operation finished.

{Objects succeeded (1)} {}

stcl> tag Rel2 "[url vault Asic/Sub/y.v]1.2"

Beginning Tag operation...

Tagging: sync://gilmour:30048/Projects/Asic/Sub/y.v;1.2
: Added tag 'Rel2' to version '1.2'

Tag operation finished.

{Objects succeeded (1)} {}

Here we use the Re
tag names which co
the Rel1 and Rel2 c
we set up in Projec
how we can use the
command substitut
needn't type out the

stcl> url tags
"sync://localhost:2647/Projects/Asic/Sub/y.v;1.1"

Rel1

stcl> url tags
"sync://localhost:2647/Projects/Asic/Sub/y.v;1.2"

Apply 'url tags' to th
we just tagged to v

Synchronicity's Object Model

26

Rel2

stcl> url tags Asic/x.v

Latest

stcl> url tags sync://localhost:30048/Projects/Asic/x.v

SomAPI-E-101: Object does not exist at
specified URL

stcl> url tags "sync://localhost:30048/Projects/Asic/x.v;"

stcl> url tags
"sync://localhost:30048/Projects/Asic/x.v;1.1"

Rel1 Rel2

You apply the 'url ta
to the client-side file
or the server-side v
(sync://../Asic

Notice that there is
side file object,
sync://.../Asi
'url tags' command
error. To specify th
the client-side file, e
relative specificatio
or using the file: pro
(file:///.../As

Do not apply the 'u
command on the va
(sync://.../Asi

stcl> url contents
"sync://localhost:2647/Projects/Asic@Rel1"

sync://localhost:2647/Projects/Asic/Sub@Rel1
{sync://localhost:2647/Projects/Asic/x.v;1.1}

stcl> url contents
"sync://localhost:2647/Projects/Asic/Sub@Rel1"

{sync://localhost:2647/Projects/Asic/Sub/y.v;1.1}

For configurations '
is not recursive; yo
'url contents' on ea
within the project to
objects in a configu

stcl> url resolvetag -version Rel1 Asic/x.v

1.1

stcl> url resolvetag -version Rel1 Asic/Sub/y.v

1.1

Use 'url resolvetag'
which version of an
corresponds to a pa
selector, tag, or con
name.

url Commands, Objects, and Return Values

ENOVIA Synchronicity stcl Programmer's Guide

27

The url commands operate on various web objects. Most url commands let you
specify web objects using a relative path within your workarea or an absolute URL path.
For example, both of the following are valid:

stcl> url vault . # relative

stcl> url vault [spwd] # absolute

(The url projects and url users commands are exceptions in that they require
absolute paths.)

If you apply a url command on an object that is not applicable, an error is typically
raised. For these cases, you use a Tcl catch statement to catch errors returned from
commands in your scripts. For some objects that do not apply to a url command, the
command returns an empty list. See Return Values and Exception Handling for details.

To help you decide whether you need to create an exception handler for a particular
url command, consult the url command descriptions in the ENOVIA Synchronicity
Command Reference. The url command descriptions list the types of web objects
supported by each url command, along with the return values for each type of revision
control object.

Tips for Accessing Revision Control Objects

Example: Traversing a Design Directory Using url Commands

You can traverse a design directory using url commands, as well as Tcl commands.
 The following script example, syncRecurse.tcl, in
<SYNC_DIR>/share/examples/doc/stclguide shows how you can use url
contents followed by url getprop to list and determine the types of objects in a
design directory.

proc syncRecurse arg {
 foreach obj [url contents $arg] {
 if {[url getprop $obj type] == "Folder"} {
 puts [format "Folder: %s\n" [url path $obj]]
 syncRecurse $obj
 } else {
 puts [format "Object: %s\n" [url path $obj]]
 }
 }
}

Example: Traversing a Design Directory Using Tcl Commands

Synchronicity's Object Model

28

You can interchange standard Tcl commands with the url commands. The following
script, syncRecurse2.tcl, uses the Tcl file command to determine the file types of
objects in a design directory.

proc syncRecurse2 arg {
 foreach obj [url contents $arg] {
 if {[file isdirectory [url path $obj]]} {
 puts [format "Folder: %s\n" [url path $obj]]
 syncRecurse2 $obj
 } else {
 puts [format "Object: %s\n" [url path $obj]]
 }
 }
}

Example: Listing Object States in a Design Directory

If you want more detailed information about the objects in a design directory, use the
url fetchedstate command. The following script example, syncRecurse3.tcl,
shows how to traverse a design directory, listing the state of the object -- for example,
whether the object is a replica or a reference.

proc syncRecurse3 arg {
 foreach obj [url contents $arg] {
 if {[url getprop $obj type] == "Folder"} {
 puts [format "Folder: %s\n" [url path $obj]]
 syncRecurse3 $obj
 } elseif {[url fetchedstate $obj] == "Lock"} {
 puts [format "Locked: %s\n" [url path $obj]]
 } elseif {[url fetchedstate $obj] == "Copy"} {
 puts [format "Replica: %s\n" [url path $obj]]
 } elseif {[url fetchedstate $obj] == "Mirror"} {
 puts [format "Mirror: %s\n" [url path $obj]]
 } elseif {[url fetchedstate $obj] == "Cache"} {
 puts [format "Cache: %s\n" [url path $obj]]
 } elseif {[url fetchedstate $obj] == "Reference"} {
 puts [format "Reference: %s\n" [url path $obj]]
 } elseif {[url fetchedstate $obj] == "NotFetched"} {
 puts [format "NotFetched: %s\n" [url path $obj]
 }
 }
}

The following stcl session shows how syncRecurse3 traverses the Asic hierarchy:

stcl> source /home/karen/tclscripts/syncRecurse3.tcl

ENOVIA Synchronicity stcl Programmer's Guide

29

stcl> syncRecurse3 Asic

Folder: /home/karen/Asic/Sub

Replica: /home/karen/Asic/Sub/y.v

Reference: /home/karen/Asic/Sub/y.y

Locked: /home/karen/Asic/x.v

Example: Scanning a Workarea for Files Needing Check-In

You can use the url modified and url registered commands when you traverse
your design directory to scan for design files that have been modified or new files that
you might want to put under revision control. The url modified command returns both
objects under revision control that have been modified and objects that are not under
revision control. Thus, you can use the url registered command to detect new
objects that you might want to put under revision control. The following script,
syncNeedCheckin.tcl(in the <SYNC_DIR>/share/examples/doc/stclguide
directory), checks each object in the design hierarchy and prints out those objects that
are under revision control (registered) and have been modified, as well as objects not
under revision control:

proc syncNeedCheckin arg {
 foreach obj [url contents $arg] {
 if {[url getprop $obj type] == "Folder"} {
 puts [format "Folder: %s\n" [url path $obj]]
 syncNeedCheckin $obj
 } else {
 if {[url modified $obj]} {
 if {[url registered $obj]} {
 puts [format "Registered object modified: %s\n"\
 [url path $obj]]
 } else {
 puts [format "Unregistered object: %s\n"\
 [url path $obj]]
 }
 }
 }
 }
}

Assume we have created a new file, top.v, in our Asic folder. Assume also that we
have modifed Sub/y.v. Here are the results of running the syncNeedCheckin.tcl
script on the Asic folder:

Synchronicity's Object Model

30

stcl> syncNeedCheckin Asic

Folder: /home/karen/Asic/Sub

Registered object modified: /home/karen/Asic/Sub/y.v

Unregistered object: /home/karen/Asic/top.v

See Also

Accessing Cadence Web Objects

Return Values and Exception Handling

Working with Properties of Revision Control Objects

Accessing Cadence Web Objects

Cadence web objects include cellviews, view folders, and view members. Cellviews
(<viewname>.sync.cds) do not exist as physical files; only their members exist:

• View folder - A folder containing the set of files that make up a Cadence view
• View member - One of the set of files that make up a Cadence view

The following example illustrates stcl commands you can use to access Cadence web
objects. In this example, the cellview, symbol.sync.cds, is represented by the
following directory structure:

Cell folder: file:///home/projleader/ttlLib/and2 contains:

• View folder: file:///home/projleader/ttlLib/and2/symbol
• Cellview: symbol.sync.cds

View folder: file:///home/projleader/ttlLib/and2/symbol contains:

• View member: symbol.cdb
• View member: master.tag
• View member: pc.db
• View member: prop.xx

Cadence Web Object Session Example

ENOVIA Synchronicity stcl Programmer's Guide

31

stcl> cd /home/projlead/Projects/ttlLib/and2

stcl> ls

Time Stamp Status ... Name
---------- ------ ---- ----
... symbol
... symbol.sync.cds

The cell folder (and2)
 has two objects, a view
folder (symbol) and a
view
(symbol.sync.cds).

stcl> url getprop symbol.sync.cds type
Cadence View

stcl> url contents symbol.sync.cds

stcl> url contents symbol
file:///home/projlead/Projects/ttlLib/and2/symbol
/symbol.cdb
file:///home/projlead/Projects/ttlLib/and2/symbol
/master.tag
file:///home/projlead/Projects/ttlLib/and2/symbol
/pc.db
file:///home/projlead/Projects/ttlLib/and2/symbol
/prop.xx

stcl> url getprop symbol/symbol.cdb type
Cadence View Member

...

Notice that the property
type of the
symbol.sync.cds
cellview is Cadence
View. 'url contents' of
the cellview returns the
empty string because a
cellview is not a
physical object. 'url
contents' of the symbol
directory, a container
object, returns the
Cadence view members
 (for the symbol view,
in this case).

stcl> url members symbol.sync.cds
file:///home/projlead/Projects/ttlLib/and2/symbol
/symbol.cdb
file:///home/projlead/Projects/ttlLib/and2/symbol
/master.tag
file:///home/projlead/Projects/ttlLib/and2/symbol
/pc.db
file:///home/projlead/Projects/ttlLib/and2/symbol
/prop.xx

....

Because a cellview is
not a container object,
you use the 'url
members' command to
determine its members.
 Note that this
command is similar to
'url contents symbol'
above that we used to
list the contents of the
symbol view folder. A
view folder can contain
objects that are not
members of the
cellview; thus, these
commands are not

Synchronicity's Object Model

32

necessarily identical.

stcl> url container symbol/symbol.cdb
file:///home/projlead/Projects/ttlLib/and2/symbol

...

Notice that the
container of a view
member is the view
folder--not the cellview.

stcl> cd
/home/projlead/Projects/adderLib/add16/schematic

stcl> url relations schematic.sync.cdb
dependencies
file:///home/projlead/Projects/ttlLib/and2/symbol
ttlLib:and2/symbol.sync.cds
file:///home/projlead/Projects/ttlLib/nor2/symbol
ttlLib:nor2/symbol.sync.cds

...

Use 'url relations' to list
views on which this
add16
schematic.sync.cdb
view is dependent.

Related Topics

Accessing Objects Using url Commands

Working with Properties of Revision Control Objects

Working with Properties of Revision Control Objects

Revision control objects can have the following built-in properties that you can access
with commands such as the url properties command:

Property Description

name The name of the specified object.

description The generic description for the object, or an empty string if none exists.

type The type of the specified object. Examples are File, Folder, Vault,

Version, Branch, Project, and Project Configuration.

ENOVIA Synchronicity stcl Programmer's Guide

33

owner The owner of the object. The following object types have owners:

projects, project configurations, vaults, and branches. If owner is the
only property you are interested in, use 'url owner'.

locked The name of the user who has the object locked, or '0' if it is unlocked.

A nonzero value can be expected only for files, vaults, branches, and
versions. If a vault is specified, the default branch is examined.
Specifying a file has the same effect as calling 'url locked' on the file's
branch.

locktime The time, in time_t format, that the object was locked (if the object is

locked -- value of 'locked' property is nonzero), otherwise '0'.

citime The time, in time_t format, that a version was created in the vault.

log The log information for the specified object.

selector The selector (tag) list associated with a ProjectSync project

configuration that identifies the versions of DesignSync data that are
part of the configuration.

exposure The list of team members (usernames) associated with a project

configuration.

Accessing Revision Control Object Properties

You can access these built-in revision control object properties using the url
properties command. To determine user-defined properties, use the url getprop
command. These commands are illustrated in the stcl session below:

Synchronicity's Object Model

34

stcl> url properties [url vault Asic/x.v]
 vaultprops

The 'url properties'
command stores the
array of property/value
pairs in the supplied
argument (vaultprops)

stcl> puts $vaultprops(name)
x.v;

stcl> puts $vaultprops(description)

stcl> puts $vaultprops(type)
Vault

stcl> puts $vaultprops(owner)
karen

stcl> puts $vaultprops(locked)
0

stcl> puts $vaultprops(locktime)
0

stcl> puts $vaultprops(citime)
980882754

stcl> puts $vaultprops(log)
Fixed syntax error.

stcl> puts $vaultprops(selector)

stcl> puts $vaultprops(exposure)

For this vault, the
properties name, type,
owner, locked, locktime,
citime, and log are
applicable. Properties
that are not applicable
return an empty list.

ENOVIA Synchronicity stcl Programmer's Guide

35

stcl> url properties [url vault
Asic]@Rel1 confprops

stcl> puts $confprops(name)
Rel1

stcl> puts $confprops(type)
Project Configuration

stcl> puts $confprops(description)
First release

stcl> puts $confprops(owner)
karen

stcl> puts $confprops(selector)
Rel1

stcl> puts $confprops(exposure)
sal alex karen

'url properties' of a
configuration object
stores values in the
name, type, description,
owner, selector, and
exposure properties.
 The selector property
indicates which tags are
associated with the
configuration created in
ProjectSync. In this
case, the tag name,
Rel1, matches the
configuration name. The
exposure property is the
list of users associated
with the configuration.

Synchronicity's Object Model

36

stcl> url properties Asic folderprops

stcl> puts $folderprops(name)
Asic

stcl> puts $folderprops(locked)

can't read "folderprops(locked)":
no such element in array

stcl> puts $folderprops(locktime)

can't read "folderprops(locktime)":
no such element in array

stcl> puts $folderprops(citime)

can't read "folderprops(citime)":
no such element in array

stcl> puts $folderprops(log)

can't read "folderprops(log)":
no such element in array

stcl>

Notice that a folder
cannot be revision-
controlled so the locked,
locktime, citime, and log
properties are not
applicable.

ENOVIA Synchronicity stcl Programmer's Guide

37

stcl> co -lock Asic/x.v -comment
"Fix bug"

Beginning Check out operation...

Checking out: Asic/x.v:
Success - Checked Out
version: 1.3 -> 1.4

Checkout operation finished.

{Objects succeeded (1)} {}

stcl> url properties [url vault
Asic/x.v]1.4 versionprops

stcl> puts $versionprops(name)
x.v;1.4

stcl> puts $versionprops(type)
Version

stcl> puts $versionprops(owner)

stcl> puts $versionprops(locked)
karen

stcl> puts $versionprops(locktime
981664986

stcl> puts $versionprops(citime)
0

stcl> puts $versionprops(log)
Fix bug

User karen has locked
x.v. In this example, 'url
properties' is applied to
the pending version, 1.4.
 Notice that the locktime
is accessible, but the
citime returns 0 as the
object has not yet been
checked in. Notice that
the owner property
returns an empty list;
owner only applies to
projects, project
configurations, vaults,
and branches.

stcl> clock format
$versionprops(locktime)

 Thu Feb 08 15:43:06 EST 2001

You can use the Tcl
clock format
command to convert the
time_t format to a date
string.

stcl> url setprop [url vault Asic/x.v]
completed 1
1

You can create new
properties using 'url
setprop'. Use 'url
getprop' to extract the

Synchronicity's Object Model

38

stcl> url setprop [url vault
Asic/Sub/y.v] completed 0
0

stcl> url getprop [url vault Asic/x.v]
completed
1

stcl> url getprop [url vault
Asic/Sub/y.v] completed
0

value of a user-defined
property.

stcl> url getprop Asic/x.v type
File

stcl> url getprop Asic type
Folder

You can use 'url getprop'
to return an object's type;
however, 'url getprop' is
generally used to obtain
user-defined properties,
not built-in properties.

Adding User-Defined Properties

You can create properties for revision control objects using the url setprop
command. To extract a user-defined property, use the url getprop command.
 These commands are illustrated in the stcl session below, in which a new property,
completed, is defined. Note: There is currently no method of listing all user-defined
properties. If you want to be able to list user-defined properties, you can create an
additional property, for example, customprops, to which you can add the new property
names as you create them. Then use url getprop on the customprops property to
obtain the list of properties for an object.

stcl> url setprop [url vault Asic/x.v]
completed 1
1

stcl> url setprop [url vault
Asic/Sub/y.v] completed 0
0

You can create new
properties using 'url setprop'.

stcl> url getprop [url vault Asic/x.v]
completed
1

Use 'url getprop' to extract the
value of a user-defined
property.

ENOVIA Synchronicity stcl Programmer's Guide

39

stcl> url getprop [url vault
Asic/Sub/y.v] completed
0

Adding User-Defined Properties in Server-Side Scripts

You can also set properties in server-side scripts as in the following
syncSetPriority.tcl script (in the
<SYNC_DIR>/share/examples/doc/stclguide directory):

foreach project [url projects sync:///] {
 url setprop $project priority low
}

After running this script, the Asic project has property, priority, set to low:

stcl> url getprop sync://localhost:30048/Projects/Asic priority

low

Related Topics

Accessing Cadence Web Objects

Accessing Objects Using url Commands

Working with Notes

Accessing Notes

Notes are created and modified in the following ways:

• Manually with ProjectSync when a team member adds or modifies a note.
• Automatically when a DesignSync operation occurs and attaches a revision

control note to a DesignSync object. (See DesignSync Data Manager User's
Guide: RevisionControl Notes Overview to learn how to set up these types of
notes.)

Likewise, you create and modify note types using the ProjectSync NoteType Manager.
From there, you can create, modify, rename, and delete note types.

Synchronicity's Object Model

40

However, if you want to make changes to a number of notes or note types, you can
update the note and note type databases programmatically using the note, notetype,
ptype, and url commands.

The commands that access and update notes and note types are server-side
commands. Note: When you develop scripts that work with notes and note types,
 always use the sync:/// protocol syntax (no <host>:<port> specification).

Tips for Accessing Notes and Properties

Example: Using url Commands to Extract Note Values

You can use the url leaf, url path, and url container commands to extract
values from the pathnames of note objects. For example, the note directory hierarchy
contains the note type and note IDs for notes. Here is a sample note URL:

sync:///Note/SyncNotes/HW-Defect-1/1

The following commands extract the note type and note ID:

puts "Notetype: [url leaf [url container $noteURL]]"
puts "Note Id: [url leaf [url path $noteURL]]"

Notetype: HW-Defect-1
Note Id: 1

Although these url commands can be used on the client side, if you are using them to
access notes or note types, you must incorporate them in a server-side script. See url
Commands to Access Notes for more information about url commands and notes.

Example: Using note Commands to Extract Note Values

You can use the url notes command to obtain all of the notes in a ProjectSync
project. Then you can use note getprop to access specific properties (fields) of the
note.

The following server-side script, lsNoteProps.tcl, lists the titles of all notes in all the
SyncServer projects:

foreach project [url projects sync:///] {
 foreach note [url notes $project] {
 puts <pre>
 puts "Project: $project"
 puts "NoteURL: $note"
 puts "Notetype: [url leaf [url container $note]]"
 puts "Note Id: [url leaf [url path $note]]"

ENOVIA Synchronicity stcl Programmer's Guide

41

 puts "Note Title: [note getprop $note Title]"
 puts </pre>
 }
}

See note Commands to Access Notes for more information about note commands.

Example: Using note query to List Notes

You can use the note query command to obtain a group of notes based on criteria
you set. The following example displays only notes of type Note that are attached to the
Asic project:

puts [note query -type Note -attached sync:///Projects/Asic]

Example: Using note links to List Objects and Attached Notes

You can use the note links command to list the attachments between notes and
web objects. A note link is a list that pairs a web object and the note attached to the
web object.

Example: To list the objects to which a note is attached:

Use the -note option of the note links command:

puts [note links -note sync:///Note/SyncNotes/Note/6697]

This command generates a list of the web objects to which note 6697 is attached
(formatted here to make it easier to read):

sync:///Projects/Asic
sync:///Projects/Asic@Rel1
{sync:///Projects/Asic/x.v;}
{sync:///Projects/Asic/x.v;1.4}
{sync:///Projects/Asic/x.v;1}
sync:///Notes/SyncNotes/Note/6677

Example: To list the notes attached to an object:

Use the -object option of the note links command:

puts [note links -object sync:///Projects/Asic]

This command generates a list of the notes attached to the Asic project (formatted
here):

Synchronicity's Object Model

42

sync:///Note/SyncNotes/SyncDefect/1
sync:///Note/SyncNotes/SyncDefect/2
sync:///Note/SyncNotes/Note/3
sync:///Note/SyncNotes/Note/6697

Example: To list all note attachments:

Apply the note links command with no arguments:

puts [note links]

This command generates note links of web objects and their attached notes for all web
objects on the SyncServer. You cannot rely on the order of these lists; for example,
notice that the note links for the sync:///Projects/Asic project are not grouped
together:

{{sync:///Projects/Asic} {sync:///Note/SyncNotes/Note/1}}
{{sync:///Projects/CPU} {sync:///Note/SyncNotes/Note/1}}
{{sync:///Projects/CPU} {sync:///Note/SyncNotes/Note/2}}
{{sync:///Projects/Asic} {sync:///Note/SyncNotes/Note/2}}
{{sync:///Projects/Asic} {sync:///Note/SyncNotes/Note/3}}
{{sync:///Projects/Asic@Rel1} {sync:///Note/SyncNotes/Note/4}}
{{sync:///Projects/Asic@Rel1} {sync:///Note/SyncNotes/Note/5}}
{{sync:///Projects/Asic/x.v;} {sync:///Note/SyncNotes/Note/5}}
...
...

note Commands to Access Notes

You can use note commands within server-side scripts to access notes. Use
notetype commands and ptype commands to work with the properties of notes
(reflected in a note's fields). See Working with Note Types to work with note types and
properties.

The following commands access notes and their properties:

• note counts - Computes statistics about notes and the frequency of values
• note getprop - Retrieves a property of a note
• note links - Returns note link data
• note query - Queries the note system and returns note URLs
• note setprops - Sets field values on a note
• note types - Returns a list of defined note types
• notetype enumerate - Returns a list of defined note types
• notetype getdescription - Returns a brief description of a specified note

type
• notetype schema - Extracts information about a note type's schema

ENOVIA Synchronicity stcl Programmer's Guide

43

url Commands to Access Notes

Some of the url commands are useful for accessing notes. The following subset of the
url commands let you access and work with notes. To use these url commands with
notes, include them in server-side scripts.

url Command

Examples

url container -
Returns the object
containing a
specified object

puts "Note type URL: [url container \
sync:///Note/SyncNotes/SyncDefect/40]"

Returns:

Note type URL:
sync:///Note/SyncNotes/SyncDefect

url exists - Returns
whether an object
exists

puts "Note exists? [url exists \
sync:///Note/SyncNotes/SyncDefect/40]"

Returns:

Note exists? 1

url getprop - Get a
property of an object

puts [url getprop $newnoteURL Title]

Returns:

Proposal for Parallel Architecture

url leaf - Returns the
leaf of the URL

puts "Note Id: [url leaf [url path \
$noteURL]]"

Returns:

Note Id: 40

url notes - Returns
the notes attached
to the specified
object (server-side-
only command)

foreach note [url notes \
"sync:///Projects/Asic"] {
 puts "$note"
}

Synchronicity's Object Model

44

Returns:

sync:///Note/SyncNotes/Note/6694
sync:///Note/SyncNotes/Note/6695
sync:///Note/SyncNotes/Note/6696
sync:///Note/SyncNotes/Note/6697

url path - Extracts
the path section of a
URL

puts "Note Id: [url leaf [url path \
$noteURL]]"

Returns:

Note Id: 40

url projects - Returns
a SyncServer's
ProjectSync projects

puts [url projects sync:///]

Returns:

sync:///Projects/BestProj
sync:///Projects/NotSoGoodProj
sync:///Projects/Lightening
sync:///Projects/Thunder

url properties -
Returns properties
for the specified
object

url properties \
"sync:///Note/SyncNotes/Note/6677" \ Props

foreach prop [array names Props] {
 puts "Prop $prop=$Props($prop)
"
}

Returns:

Prop Id=6677
Prop Body=Main portion of a note.
Prop CCList=
Prop DateCreate=37759.567801
Prop Title=Hello, World!
Prop Author=karen

url servers - Returns
server-list definitions

puts [url servers -user]

ENOVIA Synchronicity stcl Programmer's Guide

45

Returns:

{{My Server} {sync://localhost:2647} {}}
{{Source} {sync://src.myco.com:3001} {The
company-wide source repository.}}

url setprop - Set a
property on an
object; to set
multiple note
properties, use note
setprops

Note: See Updating Notes for examples.

url users - Returns
all users defined for
an object's server
(server-side-only
command)

foreach user [url users sync:///] {
 puts "[url getprop $user name]
"
}

Returns:

Charles Dent
Asic Developers
Jean Boswell
Anabel Blythe

Related Topics

Creating and Attaching Notes

Typically notes are created manually by ProjectSync users or automatically by
DesignSync revision control operations. You can create server-side scripts to
programmatically generate notes using the note create and note attach
commands:

• note create - Creates a new note
• note attach - Creates a link between a note and an object

There are two steps involved in generating notes. You first create the note, then, you
attach it to a web object. You can attach notes to any server-side web object, including
revision control objects and notes themselves.

Synchronicity's Object Model

46

The following server-side script(in the
<SYNC_DIR>/share/examples/doc/stclguide directory) illustrates how you can
create a note and attach it to any type of web object.

genNotes.tcl Script

set newnoteURL [note create -type Note
\
-date 1234.5678 \
{Title "Hello, World!"} \
{Body "Main portion of a note."} \
{Author karen}]

Create a note of type
Note with Title, Body,
and Author
properties.

note attach $newnoteURL \
sync:///Projects/Asic

note attach $newnoteURL \
sync:///Projects/Asic@Rel1

note attach $newnoteURL \
"sync:///Projects/Asic/x.v;"

note attach $newnoteURL \
"sync:///Projects/Asic/x.v;1.4"

note attach $newnoteURL \
"sync:///Projects/Asic/x.v;1"

note attach $newnoteURL \
"sync:///Projects/Asic/nothing.v;"

note attach $newnoteURL \
sync:///Notes/SyncNotes/Note/6677

Attach the new note
to a project, a
configuration, a vault,
a version, a branch, a
nonexistent file, and
a note. The 'note
attach' command
does not verify
whether the object
exists, so no error
message is raised
when the note is
attached to
nothing.v, a
nonexistent file.
Quotes are used if
the web object's URL
contains a semicolon
or a space.

puts <PRE>

puts "Project Asic Notes:"
foreach note [url notes \
"sync:///Projects/Asic"] {
 puts "$note"
}

puts "Config Asic@Rel1 Notes:"
foreach note [url notes \

The lists of notes
attached to all web
objects are printed.
 Because
genNotes.tcl is a
server-side script, the
output format is
HTML--the <PRE>
tag specifies
preformatted text.

ENOVIA Synchronicity stcl Programmer's Guide

47

"sync:///Projects/Asic@Rel1"] {
 puts "$note"
}

puts "Vault x.v; Notes:"
foreach note [url notes \
"sync:///Projects/Asic/x.v;"] {
 puts "$note"
}

puts "Version x.v;1.4 Notes:"
foreach note [url notes \
"sync:///Projects/Asic/x.v;1.4"] {
 puts "$note"
}

puts "Branch x.v;1 Notes:"
foreach note [url notes \
"sync:///Projects/Asic/x.v;1"]
 puts "$note"
}

puts "Vault y.v -- No Notes:"
foreach note [url notes \
"sync:///Projects/Asic/Sub/y.v"] {
 puts "$note"
}

puts "Nonexistent file Notes:"
foreach note [url notes \
"sync:///Projects/Asic/nothing.v;"] {
 puts "$note"
}

puts "Note attached to Note:"
foreach note [url notes \
sync:///Note/SyncNotes/Note/6677] {
 puts "$note"
}

puts </PRE>

 The vault y.v has no
notes attached, so
'url notes' of vault y.v
outputs an empty list.
 The file nothing.v
does not exist, but
'note attach' does not
verify this; thus, 'url
notes' lists
attachments for
nothing.v.

Sample Results from the genNotes.tcl Script

Project Asic Notes: The lists of notes

Synchronicity's Object Model

48

sync:///Note/SyncNotes/Note/6694
sync:///Note/SyncNotes/Note/6695
sync:///Note/SyncNotes/Note/6696
sync:///Note/SyncNotes/Note/6697

Config Asic@Rel1 Notes:
sync:///Note/SyncNotes/Note/6694
sync:///Note/SyncNotes/Note/6695
sync:///Note/SyncNotes/Note/6696
sync:///Note/SyncNotes/Note/6697

Vault x.v; Notes:
sync:///Note/SyncNotes/Note/6694
sync:///Note/SyncNotes/Note/6695
sync:///Note/SyncNotes/Note/6696
sync:///Note/SyncNotes/Note/6697

Version x.v;1.4 Notes:
sync:///Note/SyncNotes/Note/6694
sync:///Note/SyncNotes/Note/6695
sync:///Note/SyncNotes/Note/6696
sync:///Note/SyncNotes/Note/6697

Branch x.v;1 Notes:
sync:///Note/SyncNotes/Note/6694
sync:///Note/SyncNotes/Note/6695
sync:///Note/SyncNotes/Note/6696
sync:///Note/SyncNotes/Note/6697

attached to all web
objects are printed.

Vault y.v Notes:

The vault y.v has no
notes attached, so
'url notes' of vault
y.v outputs an
empty list.

Nonexistent file Notes:
sync:///Note/SyncNotes/Note/6694
sync:///Note/SyncNotes/Note/6695
sync:///Note/SyncNotes/Note/6696
sync:///Note/SyncNotes/Note/6697

Note attached to Note:
sync:///Note/SyncNotes/Note/6697

The file nothing.v
does not exist, but
'note attach' does not
verify this; thus, 'url
notes' lists
attachments for
nothing.v.

ENOVIA Synchronicity stcl Programmer's Guide

49

Related Topics

Accessing Notes

Updating Notes

Working with Note Types

Working with Note Types

For most work with note types, it is best to use ProjectSync's Notetype Manager. You
can use the Notetype Manager's graphical user interface to create, delete, and rename
note types. You can also change properties of existing note types using the Notetype
Manager. If you want to programmatically create, delete, or rename note types, use the
notetype create, notetype delete, and notetype rename commands. See
ProjectSync User's Guide for the list of predefined property types you use to create
properties for your note types. You can also use the ptype commands to query
existing property types.

Following are the commands that let you work with note types and query property types:

notetype create - Creates a new note type

notetype delete - Deletes the specified note type

notetype rename - Renames an existing note type

ptype choices - Returns the choice list of an enumerated type

ptype class - Returns the class of a property type

ptype enumerate - Returns a list of all property types

ptype is - Tests whether a prop type is of a certain class

ptype strwidth - Returns the maximum width for strings of this type

ptype transitions - Returns valid next states for a state machine

Determining Properties of a Note Type

Before you begin making changes to notes, you can determine the properties that
currently exist for a note type by using the notetype schema command. Include the
following line in a server-side script:

Synchronicity's Object Model

50

puts [notetype schema HW-Defect-1]

Here is the schema, or list of properties, that is output for the built-in HW-Defect-1 note
type :

Submod Manager Product Title Doc Tools Platform DateCreate
Author Severity Id Info CCList Body Keywords Status Foundby
Waiting Resp

Related Topics

Accessing Notes

Creating and Attaching Notes

Updating Notes

Updating Notes

You can use ProjectSync to update the values of note properties (fields). However, if
you want to make programmatic changes to your notes database, you can use the
note and url commands. The following note commands help you access and update
notes:

• note delete - Deletes a note and associated note links
• note detach - Deletes the link between a note and an object
• note getprop - Retrieves a property of a note
• note links - Returns note link data
• note query - Queries the note system and returns note URLs
• notetype schema - Extracts information about a note type's schema
• note setprops - Sets field values on a note

Determining Properties and Values of a Note

Before you begin making changes to notes, you can view the properties and values
 that currently exist for your notes by using the url properties command in a
server-side script. The following lines in a server-side script print out the properties and
values for all notes in the Asic project:

foreach note [url notes sync:///Projects/Asic] {
 puts "Note URL: $note"
 url properties $note Props
 foreach prop [array names Props] {
 puts "Prop $prop=$Props($prop)
"

ENOVIA Synchronicity stcl Programmer's Guide

51

 }
}

Updating Values for Particular Properties

You can use the url setprop command to update a single property and value pair on
a note. Use the note setprops command to update several properties at once. To
determine the property names of the properties you want to change for a note, use the
notetype schema command:

puts [notetype schema "Note"]

Returns:

Id DateCreate Title Body CCList Author

The modNotes.tcl script (in the <SYNC_DIR>/share/examples/doc/stclguide
directory) updates the CCList and Title properties of the notes attached to the
"x.v;" vault. Because two properties are updated, the script uses the note setprops
command rather than the url setprop command.

modNotes.tcl Script

puts <PRE>
foreach note [note query -type Note \
-attached "sync:///Projects/Asic/x.v;"] {

 puts "NoteURL: $note
"
 puts "Title: [note getprop \
 $note Title]
"
 puts "CCList: [note getprop \
 $note CCList]
"
 puts "Body: [note getprop \
 $note Body]
"

Query for the
notes attached to
the x.v; vault
and print out
properties.

 set newCCList ""
 set newTitle ""

 append newCCList "asicdev " \
 [note getprop $note CCList]

 append newTitle "x.v Note: " \
 [note getprop $note Title]

Set temporary
variables to an
empty list.
Append new
string "asicdev "
to the current
CCList. Append
new string "x.v
Note: " to the

Synchronicity's Object Model

52

current Title.

 note setprops $note CCList \
 $newCCList Title $newTitle

Set the new
properties for
CCList and Title.
Use 'note
setprops' rather
than 'url setprop'
because more
than one
property is being
updated.

 puts "New CCList: [note getprop \
 $note CCList]
"
 puts "New Title: [note getprop \
 $note Title]
"
}
puts </PRE>

Print the new
properties to
verify.

Sample Results from the modNotes.tcl Script

NoteURL: sync:///Note/SyncNotes/Note/6712

Title: Inefficient verilog code

CCList: sal karen

Body: *** Original text on Feb 23 2001,
13:40:48 (GMT 5:00) by karen ***

Module x.v needs to be rewritten. The
code would be faster if the behavioral
statements are replaced by component
instances.

New CCList: asicdev sal karen

New Title: x.v Note: Inefficient verilog
code

Notice the new
CCList and Title
properties in Note
6712.

ENOVIA Synchronicity stcl Programmer's Guide

53

NoteURL: sync:///Note/SyncNotes/Note/6713

Title: Incorrect behavior

CCList: karen

Body: *** Original text on Feb 23 2001,
13:42:36 (GMT 5:00) by karen ***

The logic is incorrect in the fork
statement.

newCCList: asicdev karen

newTitle: x.v Note: Incorrect behavior

The CCList and
Title properties
are updated in
Note 6713, as
well.

Updating Notes Based on Particular Criteria

You can use the note query command to collect notes matching particular criteria,
then operate on the generated list of notes using commands such as note setprops,
url setprop, note detach, and note delete.

The delNotes.tcl script (in the <SYNC_DIR>/share/examples/doc/stclguide
directory) uses this method to delete all notes attached to the
sync:///Projects/Asic project:

delNotes.tcl Script

puts <PRE>
puts "sync:///Projects/Asic notes:
"
puts "[note links -object \
 sync:///Projects/Asic]
" puts
"sync:///Projects/CPU notes:
"
puts "[note links -object \
 sync:///Projects/Asic]
"

Print out the
notes attached
to the Asic and
CPU projects.

puts "Notes to be deleted:
"
foreach note [note query -attached \
 sync:///Projects/Asic] {
 puts "$note
"
 note delete $note
}
puts "Asic notes deleted.
"

Use the 'note
query'
command to
obtain the
notes attached
to the Asic
project. Delete
those notes.

Synchronicity's Object Model

54

puts "sync:///Projects/Asic notes:
"
puts "[note links -object \
 sync:///Projects/Asic]
"
puts "sync:///Projects/CPU notes:
"
puts "[note links -object \
 sync:///Projects/Asic]
"
puts </PRE>

Again, print out
the notes
attached to the
Asic and CPU
projects.

Sample Results from the delNotes.tcl Script

sync:///Projects/Asic notes:

sync:///Note/SyncNotes/Note/3
sync:///Note/SyncNotes/Note/6697

sync:///Projects/CPU notes:

sync:///Note/SyncNotes/Note/3
sync:///Note/SyncNotes/Note/6697
sync:///Note/SyncNotes/Note/6677

Print the notes
attached to the
Asic and CPU
projects.

Notes to be deleted:

sync:///Note/SyncNotes/Note/3
sync:///Note/SyncNotes/Note/6697

Asic notes deleted.

Deleting all notes
attached to the
Asic project

sync:///Projects/Asic notes:

sync:///Projects/CPU notes:

sync:///Note/SyncNotes/Note/6677

Notice that the
deleted notes no
longer appear in
the CPU note
links list, as well
as the Asic note
links list.

Related Topics

Accessing Notes

Creating and Attaching Notes

ENOVIA Synchronicity stcl Programmer's Guide

55

Working with Note Types

57

The stcl Environment for Client Scripts
Working with Client stcl Scripts
Once you decide that the script you are developing is appropriate as a client-side script
as opposed to a server-side script (see Client-Side Versus Server-Side stcl for
comparisons), you can decide how to set up your stcl scripts for use by a site, project
team, or individual user. You must decide whether to source the script from a startup
script or to include it as an autoloaded procedure. DesignSync supports an autoloading
mechanism for site and project installations by which the stcl procedure is loaded only
when a DesignSync user invokes the procedure. You can also decide to set up a trigger
to run the stcl script or procedure.

Here are the basic steps for developing client stcl scripts:

Develop the code for your stcl script.

As you develop your stcl scripts, you might need to access DesignSync Object Model
(SOM) data or client environment information from within your stcl script. The following
sections will help you develop your stcl scripts:

• Introduction to the DesignSync Object Model
• Accessing Environment Information from Client Scripts
• stcl Scripting Tips
• command defaults command line topic

Test your stcl script.

During development of your script, you can test your script using the Tcl source
command or the DesignSync run command with the pathname of the script as an
argument.

Set up your script.

Once you have tested your script, however, it is best to include it in the user, site, or
project environment using a startup script or the stcl autoloading mechanism.

The following table delineates the methods of setting up client scripts.

If you want ... Set up your client script using
All users at your site, server, or project to
have access to the script without
performing set-up steps

Autoloaded stcl procedures

The stcl Environment for Client Scripts

58

To run an stcl script only when an event
occurs, for example, when a revision
control operation occurs on an object of
a particular project.

Autoloaded stcl procedures and client
triggers

To create stcl scripts for your individual
use without having to create Tcl
procedures

A user startup script

To run a script whenever any users at
your site start DesignSync

A site startup script (although you might
find it more efficient to implement stcl
scripts as autoloaded procedures
instead)

To run an stcl script as an executable
OS shell script

Create a shell script that runs the stcl
shell using 'exec'

To run an stcl script from dss or dssc

Create an alias for the stcl script

Run the script.

Once you have developed your stcl script and stored it in the desired directory, it is
either automatically fired by a trigger, sourced upon startup, or, if it is an autoloaded
procedure, it is automatically loaded when you or a team member invokes it. For details
about running scripts from clients, see How to Run stcl Scripts from Clients.

Related Topics

Client-Side Versus Server-Side stcl

How to Run stcl Scripts from Clients

stcl Scripting Tips

Setting Up stcl Client Scripts

Accessing Environment Information from Client Scripts

ENOVIA Synchronicity stcl Programmer's Guide

59

To access environment information from client or server scripts, use the syncinfo
command instead of using the Tcl global array, env. For example, instead of using
$env(SYNC_DIR) to access the SYNC_DIR directory, you use the DesignSync
command, 'syncinfo syncDir', the syncinfo command with the syncDir
argument. The reason to avoid using the global array, env, is that DesignSync does not
always obtain its values from environment variable settings; instead, DesignSync
obtains some values from registry settings. Because you cannot be sure how
DesignSync obtains particular values, the safest means of getting these values is by
using the syncinfo command.

The syncinfo command is a client- and server-side command; however, some
arguments are supported for client scripts and others are supported for server scripts.
The following table shows the arguments supported for client scripts. For usage details,
see the syncinfo command.

syncinfo Arguments Available from Clients

General Information
helpFileDir Returns the directory that contains the help

(documentation) files.
isServer Returns a Tcl boolean value (0 or 1) indicating whether the

software executing the syncinfo command is acting as a
server (1) or client (0).

syncDir Returns the root directory of the SyncServer installation.
version Returns the version of the DesignSync software.
Registry Information
clientRegistryFiles Returns a comma-separated list of registry files used by the

DesignSync clients.
portRegistryFile Returns the port-specific registry file.
projectRegistryFile Returns the project-specific registry file.
serverRegistryFiles Returns a comma-separated list of registry files used by the

SyncServer.
siteRegistryFile Returns the site-specific registry file.
enterpriseRegistryFile Returns the enterprise-specific registry file.
syncRegistryFile Returns the DesignSync-supplied standard registry file.
userRegistryFile Returns the user-specific registry file.
usingSyncRegistry Returns a Tcl boolean value (0 or 1) indicating whether the

DesignSync software is using the text-based registry (1) or
the native Windows registry (0).

Customization Information
customDir Returns the root directory of the "custom" branch of the

SyncServer installation hierarchy, which contains all site-
and server-specific customization files.

customEntDir Returns the directory that contains the enterprise-specific

The stcl Environment for Client Scripts

60

customization files.
customSiteDir Returns the directory that contains site-specific

customization files.
siteConfigDir Returns the directory that contains site-specific

configuration files.
userConfigDir Returns the directory that contains user configuration files.
userConfigFile Returns the user configuration file.
Client Information
connectTimeout Returns the number of seconds the client will wait per

communication attempt with the server.
commAttempts Returns the number of times client/server communication is

attempted before failing.
defaultCache Returns the default cache directory for the client as

specified during installation or using SyncAdmin.
fileEditor Returns the default file editor as specified during installation

or using SyncAdmin.
htmlBrowser (UNIX only) Returns the default HTML browser as specified

during installation or using SyncAdmin.
proxyNamePort Returns the <name>:<port> of a proxy, if one is defined in a

client registry file or using the ProxyNamePort environment
variable.

somTimeout Returns the number of milliseconds after an unsuccessful
server connection attempt during which the client does not
try to connect again.

User Information
home Returns the home directory of the user running syncinfo

(HOME on UNIX, or as defined in your user profile on
Windows platforms).

userName Returns the account name of the user running syncinfo.

Related Topics

Autoloaded Site and Project stcl Procedures

Client Triggers

Client-Side Versus Server-Side stcl

How to Run stcl Scripts from Clients

Startup Scripts

Working with Client stcl Scripts

ENOVIA Synchronicity stcl Programmer's Guide

61

Startup Scripts

As you are developing your script, you can use the stcl source command or the dss run
command as described in How to Run stcl Scripts from Clients. Once you have
debugged your script however, you can use a startup script to make your stcl scripts
accessible from your DesignSync clients. This type of startup script is most suitable for
use by a single user. For your site or project team, it's more efficient to set up stcl
procedures as autoload procedures. In this way, DesignSync only loads procedures
when they are invoked. See Autoloaded Site and Project stcl Procedures to set up stcl
procedures for a site or project team.

Startup scripts can contain general environment variables or aliases. You can also
include a Tcl source statement in a user startup script to:

• Read in Tcl procedure declarations so that you can invoke the procedures as
commands

• Read in Tcl scripts that you want to run upon startup of the client, such as using
the scd command to change to a particular project directory

Setting Up stcl Procedures Using Startup Scripts

To set up stcl procedures as commands that are readily available, follow these steps.
Note: These steps assume a UNIX shell, but you can create a Windows startup script
as well.

1. Develop stcl procedures and include these in a file with a .tcl extension, for
example, tcl/mytclprocs.tcl.

2. Create a startup script that sources the stcl script you have developed. For
example, create a startup script named .startup.tcl and include the following
source command:

source tcl/mytclprocs.tcl

3. Specify the startup script using the Startup tab of the DesSync Tools=>Options
dialog box.

If you do not specify a path for the script, DesignSync searches for the script in
these directories in the following order:

$SYNC_USER_CFGDIR (resolves to <HOME>/.synchronicity by default)

$SYNC_SITE_CUSTOM (resolves to <SYNC_CUSTOM_DIR>/site by
default)

The stcl Environment for Client Scripts

62

$SYNC_ENT_CUSTOM (resolves to <SYNC_CUSTOM_DIR>/enterprise by
default)

If the startup script that you specify has a .tcl extension, DesignSync automatically
interprets it as an stcl script. See DesignSync Help for details.

Related Topics

Accessing Environment Information from Client Scripts

Autoloaded Site and Project stcl Procedures

Client Triggers

Client-Side Versus Server-Side stcl

How to Run stcl Scripts from Clients

Working with Client stcl Scripts

Autoloaded Site and Project stcl Procedures

Autoloaded procedures are stcl procedures the DesignSync clients load on demand,
when a user invokes them. As a system administrator or project leader, you can set up
stcl procedures your site or project team can access. Team members can then use the
procedures within their DesignSync sessions without having to perform any set-up
steps. You can set up stcl procedures for your whole site or for a single project. After
you have set up autoloaded stcl procedures, users can call the procedures directly or
you can create client triggers to execute the stcl procedures based on criteria you define
using SyncAdmin, the ENOVIA Synchronicity Administrator tool. See Client Triggers
for a discussion about setting up client triggers.

As system administrator or project leader, you place the startup files and scripts in
designated site or project directories. DesignSync then loads an stcl procedure only
when a team member invokes it.

The autoload mechanism works with an index file, tclIndex, which indexes the stcl
procedures. After you place the startup files and scripts in their designated directories,
DesignSync generates the index file automatically upon invocation. You can also force
the index file to be generated using the auto_mkindex procedure.

Follow these steps to set up the stcl autoload capability:

1. To set up aliases and environment variables, set up autoload.tcl startup scripts.
2. To store the procedures, set up stcl procedure files.
3. To register the stcl procedures, create the tclIndex file.

ENOVIA Synchronicity stcl Programmer's Guide

63

4. Invoke the stcl procedures.

Set Up autoload.tcl Startup Scripts

To set up aliases and environment variables for use with your stcl procedures, store
them in a startup script named autoload.tcl in the site-wide or project-level tcl
directory listed below. DesignSync sources the autoload.tcl scripts in the order
shown below.

• ENOVIA Synchronicity-provided startup script:

<SYNC_DIR>/share/client/tcl/autoload.tcl

• Enterprise-wide startup script:

<SYNC_ENT_CUSTOM>/share/client/tcl/autoload.tcl

• Site-wide startup script:

<SYNC_SITE_CUSTOM>/share/client/tcl/autoload.tcl

• Project-level startup script:

<SYNC_PROJECT_CFGDIR>/tcl/autoload.tcl

<SYNC_PROJECT_CFGDIR> has no default; no project information is loaded if this
environment variable is not set. <SYNC_SITE_CUSTOM> resolves to
<SYNC_CUSTOM_DIR>/site. <SYNC_SITE_CUSTOM> is equivalent to
<SYNC_CUSTOM_DIR>/site; if <SYNC_SITE_CUSTOM> is not set, but
<SYNC_CUSTOM_DIR> is set, DesignSync can still access the site-wide
autoload.tcl startup script.

Note: Do not put custom stcl files in the <SYNC_DIR>/share/client/tcl or the
<SYNC_ENT_CUSTOM>/share/client/tcl directories; custom scripts belong in the
site-wide and project-level directories specified above.

The startup mechanism described here supports site-wide and project-level
configurations. To learn about creating user-level startup scripts, see the DesignSync
Data Manager User's Guide: Running a Script at Startup topic. Aliases and variables
defined in the user-level startup scripts have precedence over those defined in the
project-level and site-wide startup scripts.

Set Up stcl Procedure Files

The stcl Environment for Client Scripts

64

You can create any number of stcl procedure files denoted by a .tcl extension. Each
file can contain multiple stcl procedures. For your stcl procedures to be autoloaded, you
must store the procedure files in one of the site-wide or project-level tcl directories:

• For site-wide stcl files:

<SYNC_SITE_CUSTOM>/share/client/tcl

• For project-level stcl files:

<SYNC_PROJECT_CFGDIR>/tcl

<SYNC_PROJECT_CFGDIR> has no default; no project information is loaded if this
environment variable is not set. <SYNC_SITE_CUSTOM> resolves to
<SYNC_CUSTOM_DIR>/site.

Note: <SYNC_SITE_CUSTOM> is equivalent to <SYNC_CUSTOM_DIR>/site; if
<SYNC_SITE_CUSTOM> is not set, but <SYNC_CUSTOM_DIR> is set, DesignSync will
still access the site-wide stcl files.

Create the tclIndex File

The tclIndex file generates automatically when a DesignSync client is invoked. You
must have write access to the tcl directory for the file to be generated.

You can also force the generation of the tclIndex file using the auto_mkindex
procedure. Using the auto_mkindex procedure to manually generate the index file is
helpful when you are testing your Tcl procedures. To use auto_mkindex, set your
DesignSync mode to stcl and provide the absolute directory path of the site-wide or
project-level tcl directory:

stcl> auto_mkindex
"<INSTALL_DIR>\custom\\site\\share\\client\\tcl"

Note: This example shows the syntax of a Windows client where an extra backslash is
required as an escape character in a pathname.

For more information, see the auto_mkindex command.

The newly indexed procedures are not visible to currently running DesignSync clients. If
a DesignSync client is already running when the index is generated, use the
auto_reset command to have DesignSync reread the index file:

stcl> auto_reset

For more information, see the auto_reset command.

ENOVIA Synchronicity stcl Programmer's Guide

65

Invoke the stcl Procedures

When a team member invokes an stcl procedure, DesignSync searches the
DesignSync, enterprise, site, and project Tcl index files in this order:

• For DesignSync-provided stcl files:

<SYNC_DIR>/share/client/tcl/tclIndex

• For enterprise-wide stcl files:

<SYNC_ENT_CUSTOM>/share/client/tcl/tclIndex

• For site-wide stcl files:

<SYNC_SITE_CUSTOM>/share/client/tcl/tclIndex

• For project-level stcl files:

<SYNC_PROJECT_CFGDIR>/tcl/tclIndex

Thus, if an stcl procedure is overloaded, existing in both the project-level and site-wide
directories for example, the project-level version of the procedure is autoloaded when a
team member calls the procedure.

Note: Do not put custom stcl files in the <SYNC_DIR>/share/client/tcl or the
<SYNC_ENT_CUSTOM>/share/client/tcl directories; custom scripts belong in the
site-wide and project-level directories specified above.

You can use the parray command with auto_index as its argument to list the
procedures available:

stcl> parray auto_index

For more information, see the parray auto_index command.

Client Triggers

You can create client triggers, watchpoints that cause your stcl script or procedure to
fire in response to an action. Client triggers are documented fully in the DesignSync
Data Manager Administrator's Guide: Triggers Overview. This topic highlights the ways
you can set up your stcl scripts with client triggers.

You can set up client triggers using the DesignSync trigger create command or
using the SyncAdmin Client Triggers tab. You can set up client triggers so that they fire

The stcl Environment for Client Scripts

66

for an individual user, for all users at a site, or for all users on a project team. To set up
stcl scripts with client triggers, you can choose to:

• Load a set of commands that get executed when the trigger fires.

If you choose this option, you must reload the entire set of commands if you wish
to make a change. This choice maps to the Tcl Commands action type in the
SyncAdmin Client Triggers tab, as well as the DesignSync trigger create -
tcl_script option. Note: You must be in an stclc or stcl shell to use this
option.

• Load an stcl script that gets executed when the trigger fires.

If you choose this option, you must recreate the trigger and reload the stcl script
if you wish to make a change. This choice maps to the Tcl Stored Procedure
action type in the SyncAdmin Client Triggers tab, as well as the DesignSync
trigger create -tcl_store option.

• Provide the path to an stcl script so that the script is reloaded each time the
trigger fires.

Use this method so that you can continue editing the stcl script without having to
recreate the trigger. This is a good method to use while you are developing your
stcl script and the trigger to fire it. This choice maps to the Tcl File action type in
the SyncAdmin Client Triggers tab, as well as the DesignSync trigger
create -tcl_file option.

• Invoke an autoloaded stcl procedure each time the trigger fires.

This is the most effective method for setting up triggers for your site or project
team. First, you develop your stcl script and store it in the appropriate location so
that it is automatically autoloaded, then you create a trigger that invokes the
command. This choice also maps to the Tcl Commands action type in the
SyncAdmin Client Triggers tab, as well as the DesignSync trigger create -
tcl_script option. Note: You must be in an stclc or stcl shell to use this
option. See Autoloaded Site and Project stcl Procedures to learn how to set up
for autoloading.

Running stcl Scripts from Clients

How to Run stcl Scripts from Clients

There are many different DesignSync clients from which you can run stcl scripts. See
DesignSync Data Manager User's Guide:Comparing the DesignSync Shells for details
about these shells. In general, the clients are divided into dss clients and stcl clients.

ENOVIA Synchronicity stcl Programmer's Guide

67

Use the stcl shell when you need the scripting constructs of Tcl, such as conditionals
(if/then/else), loops (while, for, foreach), and variable assignment (set). If you
do not need Tcl constructs, dss provides a simpler command environment.

Note: You can run server scripts from DesignSync clients using the rstcl "remote
stcl" command. See How to Run stcl Server Scripts or the rstcl command for more
information.

The following sections describe the clients listed below and illustrate how to invoke
scripts within these clients. These sections provide steps to invoke sample stcl scripts
located in the <SYNC_DIR>/share/examples/doc/stclguide directory.

• stclc and stcl Clients
• dssc and dss Clients
• The DesSync Client (supports both the dssc and the stclc shells)
• OS Shell Scripts

dssc and dss Clients

The dssc and dss (DesignSync shell) clients are the command-line interfaces from
which you can invoke revision control commands. You can execute dss commands
directly from your terminal window or you can integrate commands into makefiles or OS
shell scripts. By using dss instead of stcl, you can perform basic DesignSync operations
without having to understand the details of Tcl syntax.

The dssc and dss clients support all DesignSync commands, but not Tcl commands
directly. However, you can run client, as well as server, stcl scripts in the dssc and dss
shells. Unlike dss, dssc does not use a DesignSync daemon process (syncd). Because
syncd handles requests serially, using dssc eliminates a potential bottleneck when you
have multiple shells communicating with a SyncServer. To decide whether to use a dss
or concurrent dssc shell, see DesignSync Data Manager User's Guide:Comparing the
DesignSync Shells.

To run stcl client scripts from the dssc and dss clients, you use the dss run command.
To run a server script on a dssc/dss client, you use the rstcl command; see the
rstcl command to run a server script remotely on your client.

Invoking the dssc and dss Shells

• To enter the dssc environment, you enter the dssc command at the OS prompt.
To enter the dssc Windows environment, select DesignSync Shell from the
Dassault Systems DesignSync program group on the Windows Start menu.

• To enter the dss environment, enter the dss command at the OS prompt.

The stcl Environment for Client Scripts

68

You remain in the dssc or dss shell until you enter the exit command, which returns
you to your OS shell. To learn about the types of editing supported in the dssc and dss
shells, see DesignSync Data Manager User's Guide:Command-Line Editing.

Using the dss run command

The run command does not let you pass arguments to the script being invoked. Use
the run command if you have an stcl script that performs its action immediately rather
than defining procedures and variables to be called later. If you want to access a
procedure or variable defined in an stcl script from a dss shell, use the alias command
as described in Using the alias Command to Access stcl Procedures below.

You can use the dss run command from a dss or dssc shell as follows:

dss> run $SYNC_DIR/share/examples/doc/stclguide/unlockall.tcl

If the script name has a .tcl extension, the run command runs the script using the stcl
interpreter. You can also invoke the dss run command directly from your OS shell also,
in which case you are returned to the OS shell:

% dss run $SYNC_DIR/share/examples/doc/stclguide/unlockall.tcl

Beginning Unlock operation...

Unlocking: stack_pointer/inc_dec_sp.gv : Not locked

Unlocking: stack_pointer/reg6.v : Unlocked.

Unlocking: top.f : Not locked

Unlocking: top.v : Not locked

Unlock operation finished.

%

The only difference between using the dss run command and the stcl source
command is that the run command does not pass the script's return value.

Using the alias Command to Access stcl Procedures

You can run an stcl script from dss using the run command. However, once the script
has finished running, none of the script's environment is available to you.

ENOVIA Synchronicity stcl Programmer's Guide

69

You can make Tcl procedures defined in a script accessible from dss by using the
DesignSync alias command. For example, the syncGo.tcl script defines a
procedure syncGo that is made available as a dss command named go:

proc syncGo {dir} {

 scd $dir

 ls

}

alias -args 1 -- go syncGo \$1

Then from dss:

dss> run $SYNC_DIR/share/examples/doc/stclguide/syncGo.tcl

Alias go created.

dss> go /Sportster

Directory of: file:///home/karen/Sportster

Time Stamp Status Version Locked By Name

---------- ------ ------- --------- ----

07/14/2000 14:40 - code

07/14/2000 14:40 - synth

07/14/2000 14:41 - test

07/14/2000 14:42 - top

This script has one required argument, the directory where you want to go, and
performs an scd (to change directories within the DesignSync environment only) and an
ls. The alias command then defines a DesignSync command, go, that executes the
syncGo procedure.

Related Topics

How to Run stcl Scripts from Clients

The stcl Environment for Client Scripts

70

OS Shell Scripts

stclc and stcl Clients

The DesSync Client

stclc and stcl Clients

The stclc and stcl shells are the DesignSync clients that support all DesignSync
commands and commercial Tcl commands. You can run client, as well as server, stcl
scripts in the stclc and stcl shells. Unlike stcl, stclc does not use syncd. Because syncd
handles requests serially, using stclc eliminates a potential bottleneck when you have
multiple shells communicating with a SyncServer. The stclc also provides more
command-line editing capabilities than the stcl shell (see DesignSync Data Manager
User's Guide: Command-Line Editing). To decide whether to use an stcl or concurrent
stclc shell, see DesignSync Data Manager User's Guide:Comparing the DesignSync
Shells.

Invoking the stclc and stcl Shells

• To enter the stclc environment, you enter the stclc command at the OS prompt.
To enter the stclc Windows environment, select DesignSync Tcl Shell from the
Dassault Systems DesignSync program group on the Windows Start menu.

• To enter the stcl environment, enter the stcl command at the OS prompt.

You remain in the stclc or stcl shell until you enter the exit command, which returns
you to your OS shell. To learn about the types of editing supported in the stclc and stcl
shells, see DesignSync Data Manager User's Guide:Command-Line Editing.

Running stcl Scripts

To run stcl client scripts from the stclc and stcl clients, you can use these methods:

• The Tcl source command
• Startup scripts
• Tcl procedure autoloading
• Client triggers

To run a server script on a stclc/stcl client, you use the rstcl command; see the
rstcl command to run a server script remotely on your client.

Using the Tcl source Command

The Tcl source command executes a Tcl script. The default return value is the value of
the last command executed in the script. You can also return a value explicitly using the

ENOVIA Synchronicity stcl Programmer's Guide

71

Tcl return command. The source command does not accept additional parameters; if
you want to specify additional parameters to a Tcl command you are creating, you
define a Tcl procedure using the proc command. When you run an stcl script (using
either the source command or the DesignSync run command), the variables and
commands defined in the script are now available for use within your stcl session.

Because the source command is a Tcl command, you cannot use it in dss mode.
However, DesignSync provides a run command that you can use to execute an stcl or
dss script from the dssc and dss clients. (See dssc and dss Clients.)

To source an stcl script within an stclc or stcl shell:

You use the stcl source command from an stclc or stcl shell as follows:

stcl> source
$SYNC_DIR/share/examples/doc/stclguide/syncIsLocked.tcl

Now that you have sourced the syncIsLocked.tcl stcl script, the variables and
procedures defined in the script are available for use within your stcl session. For
example, the syncIsLocked.tcl script defines a procedure called syncIsLocked,
so you can run the syncIsLocked command after you've sourced the script:

stcl> syncIsLocked [pwd]

invalid command name "syncIsLocked"

stcl> source
$SYNC_DIR/share/examples/doc/stclguide/syncIsLocked.tcl

stcl> syncIsLocked [pwd]

This example checks the current directory and all subdirectories and reports the name
and owner of any locked files. The script assumes that you are running in a directory
associated with a DesignSync vault folder.

To source an stcl script from the OS:

You can also source an stcl script directly from your OS shell, in which case you are
returned to the OS shell. The stcl command assumes its argument is a script so you
do not need the source command:

% stcl $SYNC_DIR/share/examples/doc/stclguide/unlockall.tcl

Note: Because the stcl command assumes its argument is a script, you need to use
the -exp argument to call other stcl commands from your OS shell. Delimit the

The stcl Environment for Client Scripts

72

command using single quotes; you can also use double quotes, but if you use single
quotes, you can still use double quotes within the command line. See the stcl
command or stclc command for more information.

% stcl -exp 'source
$SYNC_DIR/share/examples/doc/stclguide/unlockall.tcl'

Because this method returns you directly to the OS, you cannot later access procedures
and variables defined in the .tcl file. Use this method only for scripts that carry out
their action immediately.

Using a Start-Up Script

If you or your DesignSync administrator has sourced an stcl script file from a startup file,
you can type in the stcl procedure name in your OS shell or your stcl/stclc shell to run
the stcl procedure. See Startup Scripts to configure your startup file.

Invoking an Autoloaded Procedure

Your DesignSync administrator or project leader can store stcl scripts in a directory from
which they are automatically loaded (autoloaded) when you invoke the script. The
Autoloaded stcl Procedures topic describes how autoloaded procedures are set up.

If your DesignSync administrator or project leader has set up autoloaded stcl
procedures, you can type in the name of the stcl procedure in the stclc or stcl shells, or
in the DesSync GUI output window if Tcl Mode has been selected from the Options
pulldown.

To list the available autoloaded stcl procedures, use the parray command with
auto_index as its argument:

stcl> parray auto_index

For more information, see the parray auto_index command.

Using Client Triggers

You or your DesignSync administrator can set up client triggers to automatically run
scripts based on some event. You can use also force a trigger that has already been set
up to fire by using the trigger fire command. This command is useful to use to test
new triggers you are developing. See Client Triggers for more information, as well as
the DesignSync Data Manager User's Guide:Triggers Overview.

Related Topics

ENOVIA Synchronicity stcl Programmer's Guide

73

How to Run stcl Scripts from Clients

The DesSync Client

DesSync is the DesignSync graphical user interface (GUI), which provides users with a
simple interface to the revision-control commands. The menus and dialog boxes make it
easy to choose from these commands and their associated options. DesSync also
provides access to the dss and stcl command-line interfaces through the command
window at the bottom of the DesSync window. Having the command window within the
GUI both provides a means for users to enter commands or options that aren't available
in the GUI and makes the transition from GUI to command line (for those who prefer
command-line environments) easier.

To Run an stcl Script from the DesSync Client:

1. On the right side of the DesSync output window, click the Options pulldown and
select Tcl Mode.

2. At the prompt, type the following:

source
$SYNC_DIR/share/examples/doc/stclguide/syncIsLocked.tcl

The variables and commands defined in the script are now available for use within your
stcl session.

OS Shell Scripts

You can also run an stcl script as an executable OS shell script using one of the
following methods:

Include the stcl shell pathname as the shell script's first line:

In general, you can create shell scripts that use different shells than the one you are
running in. To specify the shell that a script should run under, the first line of the script
file should look like:

#![full path to shell executable]

For example, a common shell executable path is /bin/sh. You can even specify
options with which to invoke the shell. So, in order to specify stclc as the command shell
for a particular script, you might use something like:

#!/net/mymachine/usr1/syncinc/bin/stclc

There are some complications to this method however. The total length of the line used
to specify the path to the command shell, including any arguments, cannot exceed 30

The stcl Environment for Client Scripts

74

characters for some operating systems. On these operating systems, you can use links
to specify the executable.

Use the exec command to call stcl from an OS shell script:

To avoid the issue of long pathnames to the stclc shell, you can use a trick posted to the
comp.lang.tcl newsgroup. Because the syntax for comments is different in the
Bourne shell versus the stcl/stclc shell, the following sh script can call stclc on itself:

#!/bin/sh
the next line restarts using stcl \
exec stclc $0 ${1+"$@"}
from this line below is the tcl script
for eg
puts "hello world"

The /bin/sh interpreter runs this script and calls exec stclc. The $0 option calls the
script on itself and the ${1+"$@"} passes the rest of the arguments to stclc. The trick
is that in tcl and stcl shells, the \ character continues the comment line to the next line;
hence, the stclc interpreter skips over the exec stclc command line. The stclc
interpreter then continues interpreting the rest of the noncomment lines of the script.

Related Topics

dssc and dss Clients

How to Run stcl Scripts from Clients

stclc and stcl Clients

The DesSync Client

75

The stcl Environment for Server Scripts
Working with Server stcl Scripts
Once you decide that the script you are developing is appropriate as a server-side script
as opposed to a client-side script, set up your stcl script on your server so that users of
the server can run the script.

Server stcl scripts run on SyncServers and are invoked using either a URL script
request on a web browser, the rstcl command on a client, or a server-side trigger.
These invocation methods are explained in How to Run stcl Scripts from Servers.

DesignSync features security safeguards to limit stcl script access on SyncServers.
Users cannot install scripts on a SyncServer; however, they can run scripts on the
SyncServer once the scripts have been installed. The owner of the server installation,
typically the DesignSync administrator, has sole permission to the locations where
server-side stcl scripts are stored. See Developing Server-Side stcl Scripts and Server
Scripts and SyncServer Security for more information.

Related Topics

Client-Side Versus Server-Side stcl

Developing Server-Side stcl Scripts

How to Run stcl Server Scripts

stcl Scripting Tips

Setting Up stcl Server Scripts

Developing Server-Side stcl Scripts

To set up server-side stcl scripts, you must be a DesignSync tools administrator. If you
are not the tools administrator, work through your tools administrator to set up stcl
server-side scripts. In some cases, project leaders own and manage SyncServers for
their projects and can set up their own server-side stcl scripts. For more information,
see Server Scripts and SyncServer Security.

Setting Up a Server-Side Script

The stcl Environment for Server Scripts

76

The following procedure shows how you set up a server-side script. You can try out the
steps by setting up a sample server-side stcl script from the
<SYNC_DIR>/share/examples/doc/stclguide directory. The following table lists
some server-side scripts for you to try out.

Server-Side Sample Scripts

chEmailAddr.tcl Use the DesignSync web interface Admin Menu=>User Profiles=>Add
command to add new users to a SyncServer. Then, you can use the
chEmailAddr.tcl script to change all email addresses matching the
parameter you pass to the script. See Passing Parameters in Server-Side stcl
Scripts below for details. Make sure you have permission to edit users by
checking the ProjectSync EditUser access control in your AccessControl
files: <SYNC_DIR>/share/AccessControl,
<SYNC_ENT_CUSTOM>/share/AccessControl,
 <SYNC_SITE_CUSTOM>/share/AccessControl, or
<SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/AccessControl

lsUserProps.tcl Lists the ProjectSync user profile properties.

lsProjProps.tcl Lists the ProjectSync project properties if you have set up a project. To set up a

project, use the DesignSync Web interface ProjectSync Menu=>ProjectSync
Projects=>Create command.

To Set Up a Server-Side stcl Script:

1. Write your stcl script.

The following sections provide some pointers for developing server-side stcl
scripts. See also stcl Scripting Tips.

2. Store your stcl script in one of the tcl directories in your DesignSync installation.

You can set up the stcl script so that all users at your site or all users of a
SyncServer can access the script. See Where to Place Server Scripts for details.

3. Test the script and then inform your users of the script's availability.

See How to Run stcl Scripts from Servers for the various methods of invoking
server-side scripts.

ENOVIA Synchronicity stcl Programmer's Guide

77

Important: If you make modifications to the script, use the ProjectSync Reset Server
button to force the SyncServer to reread your script.

Where to Place Server Scripts

There are four tcl directories the SyncServer searches when a user invokes a server-
side stcl script:

• Server-specific script directory (UNIX servers only):

<SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/tcl

• Site script directory:

<SYNC_SITE_CUSTOM>/share/tcl

Note: By default, $SYNC_SITE_CUSTOM resolves to
$SYNC_CUSTOM_DIR/site.

• Enterprise script directory:

<SYNC_ENT_CUSTOM>/share/tcl

• Default script directory:

<SYNC_DIR>/share/tcl

You set up server-side stcl scripts by storing the scripts in either the server-specific or
site tcl directory on your SyncServer. To learn more about the directory structure of
SyncServers, see the DesignSync Data Manager Administrator's Guide.

When a user runs a script either by specifying a URL script request or by calling the
rstcl command, the SyncServer searches for the script in the order shown above. For
example, if you have a script of the same name in both the server-specific script
directory and the site script directory, the server-specific script has precedence. For
more information on running server scripts, see How to Run stcl Scripts from Servers.

IMPORTANT: Do not put custom scripts in the default DesignSync script directory
(<SYNC_DIR>/share/tcl); this directory is reserved for scripts and samples included
with the product and might be overwritten when you upgrade your DesignSync software.
 Also, do not put custom stcl files in the <SYNC_ENT_CUSTOM>/share/client/tcl
directory; the enterprise directory is intended for enterprise-wide customizations and
might also be overwritten.

Passing Parameters in Server-Side stcl Scripts

The stcl Environment for Server Scripts

78

To Pass Parameters to a Script:

Users pass parameters into a server-side stcl script using one of the following methods:

• In URL script requests, users specify the parameters as part of the URL.

The parameter list takes the form of name/value pairs following the file parameter
with the following syntax:

<param1>=<value1>&<param2>=<value2>...

You can pass any number of parameters using this method. Separate each
parameter name/value pair with an ampersand (&). Separate each name and
value with an equal sign (=). The parameter names and values cannot contain
spaces; instead, represent spaces with a plus sign (+) or enclose the entire
parameter list with quotes ("). The following is an example of a URL script
request containing two parameters, oldemail and newemail:

http://<machine>:port/scripts/isynch.dll?panel=TclScript&fi
le=chEmailAddr.tcl&oldemail=mycompany.co.uk&newemail=mycomp
any.com

• In rstcl commands, users specify the parameters using the -urlparams
argument.

The parameter list takes the form of name/value pairs with the same syntax as
the parameter list in a URL script request:

rstcl -server sync://<machine>:<port> -script
chEmailAddr.tcl -urlparams
oldemail=mycompany.co.uk&newemail=mycompany.com

To Access Parameters within the Script:

Within the script, you access the parameter values using the SYNC_Parm Tcl array. The
names (keys) in this array are the names of the parameters. To access the value of a
parameter, use the following syntax:

$SYNC_Parm(param1)

The following sample code from the chEmailAddr.tcl script in
<SYNC_DIR>/share/examples/doc/stclguide references the parameters in the
URL script request and the rstcl call above:

if {[string match "*$ SYNC_Parm(oldemail)" $ props(EmailAddr)]}
{

ENOVIA Synchronicity stcl Programmer's Guide

79

 regsub "@$ SYNC_Parm(oldemail)" $ props(EmailAddr) \
 "@$ SYNC_Parm(newemail)" changedemail
 url setprop $user EmailAddr $ changedemail
...

This sample code checks whether the oldemail parameter matches the EmailAddr
property of the ProjectSync user profile. If there's a match, the code substitutes the
value of the newemail parameter into the EmailAddr property of the user profile.

Commands Supported for Server-Side stcl Scripts

As you write your server-side stcl scripts, you will need to know the types of commands
supported for server scripts:

• The DesignSync Object Model (SOM) provides commands for directly accessing
the databases supporting the DesignSync products. See Introduction to the
DesignSync Object Model for an overview.

• For information about the commands, see the ENOVIA Synchronicity Command
Reference.

• To access server environment information from within your stcl script, see
Accessing Environment Information from Server Scripts.

Using Procedures in Server-Side stcl Scripts

Unlike the stcl autoloading mechanism for calling client-side Tcl and stcl procedures,
you cannot explicitly call a Tcl procedure on the server-side. You must call Tcl
procedures from within a script on the server-side. To call a procedure on the server-
side, include the procedure and any auxiliary procedures in a .tcl script file, then as
the last statement in the .tcl file, call the procedure as in the following example:

proc showParams {} {
 global SYNC_Parm
 foreach param [array names SYNC_Parm] {
 puts "$param = $ SYNC_Parm($param)"
 }
}

showParams

Specifying the sync Protocol in Server-Side Scripts

When you specify sync: protocol URLs within scripts that run on a SyncServer, do not
specify the host and port. For example, specify:

sync:///Projects/Asic

The stcl Environment for Server Scripts

80

and not

sync://chopin:2647/Projects/Asic

Because the script is run on the server itself, host:port information is unnecessary
and is stripped out by the server. Including the host and port can lead to incorrect
behavior during object-name comparisons. Also, omitting the host and port makes your
scripts more portable.

Note: Even if you are writing a script for a secure server, you must use the sync:///
protocol rather than specifying the syncs: SSL protocol. If your DesignSync
administrator has set up a secure SyncServer using access controls, the SyncServer
automatically redirects communications through the SSL port. For more information
about secure communications, see DesignSync Data Manager User's Guide:Overview
of Secure Communications.

Error Messages and Server-Side Scripts

Error messages resulting from server-side stcl scripts display in the web browser where
you've invoked the URL script request. If there are messages about access controls, the
server writes these messages to the error_log file,
<SYNC_CUSTOM_DIR>/servers/<host>/<port>/logs/error_log.

In addition to server error messages, you can provide explicit informational messages to
users in your scripts. See Output Formatting for details.

Related Topics

Accessing Environment Information from Server Scripts

Client-Side Versus Server-Side stcl

How to Run stcl Server Scripts

Server Scripts and SyncServer Security

Working with Server stcl Scripts

Server Scripts and SyncServer Security

Keep in mind the following important server security recommendations as you develop
your server-side stcl scripts.

SyncServer Permissions

ENOVIA Synchronicity stcl Programmer's Guide

81

Make sure your custom hierarchy has adequate permission protections so that only
select individuals can place scripts in the DesignSync script directories. There is no
explicit protection against stcl scripts; a script running on the server has complete and
unrestricted access to the server's resources including the file system, even beyond the
DesignSync software installation. A script running on the server has exactly the same
rights as the system user account that is running the server. For example, if the server
is installed and running as syncmgr, the script is allowed to do whatever the syncmgr
user is allowed to do.

SyncServers do not run stcl scripts unless they are in one of the three supported
share/tcl directories (described in Developing Server-Side stcl Scripts) or in the
share/panels ProjectSync stcl script directory. (See ProjectSync User's Guide for
details about using stcl scripts for panel customization.) The UNIX permissions for these
directories must prevent users other than the designated DesignSync administrator or
project leader from placing scripts in these script directories— even in the custom
hierarchy.

The ENOVIA Synchronicity DesignSync Administrator's Guide contains server setup
scenarios and information about using SUID to set up servers with effective
permissions.

End User Input

To protect your server, make sure that any server-side Tcl scripts you install do not use
strings entered by users as input to Tcl exec, eval, or subst commands. If input from
end users is included in calls to these commands, a user can run arbitrary commands
on the server.

Access Controls for Server Scripts

Verify access controls explicitly in server-side scripts. Access controls are generally
ignored in server-side scripts; it is up to the script itself to call the access verify
command for access controls it wishes to honor. This explicit call to access verify is not
needed for most DesignSync commands, which honor their access controls even on the
server. The call to access verify is needed for ProjectSync commands, such as note
and user, which do not perform any access checks on their own.

Note: If you make modifications to an access control file or a server-side stcl script, use
the ProjectSync Reset Server button to force the SyncServer to reread your file.

Example of access verify

The following sample script,
<SYNC_DIR>/share/examples/doc/stclguide/deleteUser.tcl, deletes a
user profile, but first verifies the DeleteUser access control to ensure that the user

The stcl Environment for Server Scripts

82

running the script has permission to delete a user on the server. Notice that the script
uses HTML formatting for its output; see Output Formatting for more information.

deleteUser.tcl

This script deletes the user, $SYNC_Parm(terminate_user).
The script first calls access verify to ensure that the
user who calls the script has permission to delete a
user (the DeleteUser access control).

set isSelf [expr {$SYNC_User==$SYNC_Parm(terminate_user)}]
if {[access verify DeleteUser $SYNC_User
 $SYNC_Parm(terminate_user) $isSelf]} {
 user delete $SYNC_Parm(terminate_user)
} else {
 puts "<h1>Permission denied: you may not delete this \
 user</h1>"
}

Custom Access Controls for Server Scripts

In some cases, the DesignSync administrator must create access control definitions in
addition to calling access verify from server-side scripts.

For example, to prevent ProjectSync users from deleting user profiles, the DesignSync
administrator might include the following access control in the
$SYNC_SITE_CUSTOM/share/AccessControl file:

access allow DeleteUser only users $admin

Note: By default, $SYNC_SITE_CUSTOM resolves to $SYNC_CUSTOM_DIR/site.

If your server-side script operates on RevisionControl notes, you need to protect the
integrity of your data by blocking access to the server while the script runs:

1. Edit your custom AccessControl file to deny all actions that operate on
RevisionControl notes, for example:

access deny Checkin everyone
access deny Tag everyone

2. Reset access controls using the ProjectSync Access Reset menu item.
3. Run your server-side script.
4. Edit your custom AccessControl file and remove the access deny commands.
5. Reset access controls using the ProjectSync Access Reset menu item.

ENOVIA Synchronicity stcl Programmer's Guide

83

See the ENOVIA Synchronicity Access Control Guide for more information about
customizing AccessControl files. See DesignSync Data Manager Administrator's Guide:
RevisionControl Notes Overview to learn about RevisionControl notes, the notes that
DesignSync creates when revision control operations occur.

Related Topics

Accessing Environment Information from Server Scripts

Client-Side Versus Server-Side stcl

Developing Server-Side stcl Scripts

How to Run stcl Server Scripts

Working with Server stcl Scripts

Accessing Environment Information from Server Scripts

To access environment information from server-side scripts, you can use environment
variables as well as the syncinfo command. The following sections describe the
types of information you can access with each of these methods.

Server-Side Environment Variables

For server-side scripts, DesignSync supports the following environment variables:

Variable Description
noteURL A namespace variable that determines the notes that are modified or

attached in trigger scripts. (In earlier releases, this was a global variab
called SYNC_NoteURL.)

objURL A namespace variable that determines the objects to which notes are
attached in trigger scripts. (In earlier releases, this was a global variab
called SYNC_NoteURL.)

oldProps A namespace variable that determines the previous value for any note
properties that have been changed. This variable lists the name/value
pairs for properties that change during an event. The oldProps varia
is defined as a list, but is in array format. (In earlier releases, this was
global variable called SYNC_OldProps).

SYNC_ClientInfo A global Tcl array that is available only to server-side scripts that are
from a browser. You cannot use SYNC_ClientInfo with client-side
scripts, server-side trigger scripts, or server-side scripts run using the
command.

This array contains the following parameters:

The stcl Environment for Server Scripts

84

AgentName - The name of the browser that sent the request, as repo
by the browser. This encodes information such as browser name, ver
and OS. The format differs depending on the browser.

Locale - Time zone information, passed in as the number of minutes
be subtracted from GMT. For example, five hours after GMT would be
represented as 300 (5 times 60).

IPAddress - The IP address of the client.

UserName - The name of the user. This information is also available v
$SYNC_User. Use $SYNC_User if you only need user name informat

You access these parameters as follows:

$SYNC_ClientInfo(AgentName)
SYNC_Parm A global Tcl array used to determine parameters passed into server-s

Tcl scripts from the URL invoking the scripts. For example, if the URL

http://<host>:<port>/scripts/isynch.dll?panel=TclSc
&file=filename&name=Joe&age=30&weight=160

then in order to access the name, age, and weight, you would use
$SYNC_Parm(name), $SYNC_Parm(age), and $SYNC_Parm(weig

Note: The parameter name command is a special-purpose parameter
used to load special modes of a panel. Do not name your parameter
command unless you are using this advanced panel programming
technique.

SYNC_User A global variable that determines the ProjectSync user in all Tcl
applications.

SYNC_ClearPort A global variable that returns the cleartext port number.
SYNC_Protocol A global variable that returns the cleartext protocol -- the standard ht

protocol or the SSL encrypted https protocol.
SYNC_ClientHttpHeaders A global Tcl array that lets you access client HTTP header information

such as agent type, language setting, and the client's host. The head
information is passed as name and value pairs that you can access fr
server-side Tcl script as follows:

foreach {name val} [array get \
 SYNC_ClientHttpHeaders] {
 puts "$name=$val
"
}

ENOVIA Synchronicity stcl Programmer's Guide

85

Note: When you make changes to your registry settings, environment variables, or
revision control note generation settings, you need to "stop_sync_server" and then
"start_sync_server" instead of using the ProjectSync Reset Server button.

Accessing the Server Environment Using syncinfo

To access other environment information from client or server scripts, use the
syncinfo command instead of using the Tcl global array, env. For example, instead of
using $env(SYNC_DIR) to access the SYNC_DIR directory, you use the dss/stcl
command, 'syncinfo syncDir', the syncinfo command with the syncDir argument.
The reason to avoid using the global array, env, is that DesignSync does not always
obtain its values from environment variable settings; instead, DesignSync obtains some
values from registry settings. Because you cannot be sure how DesignSync obtains
particular values, the safest means of getting these values is by using the syncinfo
command.

The syncinfo command is a client- and server-side command; however, some
arguments are supported for client scripts and others are supported for server scripts.
The following table shows the arguments supported for server scripts. For usage
details, see the syncinfo command.

Arguments to syncinfo Available from Servers

General Information
helpFileDir Returns the directory that contains the help (documentation) files.
isServer Returns a Tcl boolean value (0 or 1) indicating whether the software executing t

command is acting as a server (1) or client (0).
syncDir Returns the root directory of the SyncServer software installation.
version Returns the version of the SyncServer software.
Registry Information
clientRegistryFiles Returns a comma-separated list of registry files used by DesignSync clients.
portRegistryFile Returns the port-specific registry file.
projectRegistryFile Returns the project-specific registry file.
serverRegistryFiles Returns a comma-separated list of registry files used by a SyncServer.
siteRegistryFile Returns the site-specific registry file.
enterpriseRegistryFile Returns the enterprise-specific registry file.
syncRegistryFile Returns the DesignSync standard registry file.
userRegistryFile Returns the user-specific registry file.
usingSyncRegistry Returns a Tcl boolean value (0 or 1) indicating whether DesignSync is using the

registry (1) or the native Windows registry (0).
Customization Information
customDir Returns the root directory of the "custom" branch of the SyncServer installation

which contains all site- and server-specific customization files.
customEntDir Returns the directory that contains enterprise-specific customization files.

The stcl Environment for Server Scripts

86

customSiteDir Returns the directory that contains site-specific customization files.
siteConfigDir Returns the directory that contains site-specific configuration files.
userConfigDir Returns the directory that contains user configuration files.
userConfigFile Returns the user configuration file.
Server Information
serverMetadataDir Returns the directory that contains the server metadata (such as relational datab
serverDataDir Returns the directory that contains vault (repository) data that is stored by a serv
serverMachine Returns the name of the server as returned by gethostname(). This value is retu

when syncinfo is run from a server-side script.
serverName Returns the name of the server as it was specified in the URL used to contact th

This value is returned only when syncinfo is run from a server-side script.
serverPort Returns the port number used by the server to respond to the syncinfo reques

value is returned only when syncinfo is run from a server-side script.

Related Topics

Client-Side Versus Server-Side stcl

Developing Server-Side stcl Scripts

How to Run stcl Server Scripts

Server Scripts and SyncServer Security

Working with Server stcl Scripts

Running stcl Scripts from Servers

How to Run stcl Server Scripts

DesignSync leverages its client/server communication protocol to run stcl scripts on a
SyncServer and return information back to your web browser or DesignSync client:

1. The web browser or DesignSync client sends a URL containing a request that a
SyncServer run an stcl script.

2. The SyncServer interprets the URL, in this case, an instruction to load an stcl
script.

3. The SyncServer finds the script in the site or server tcl directory and runs the
script. See Developing Server-Side stcl Scripts for the location of these tcl
directories.

Important: If you make modifications to the script, use the ProjectSync Reset Server
button to force the SyncServer to reread your script. See ProjectSync User's Guide:
Resetting the SyncServer for details.

ENOVIA Synchronicity stcl Programmer's Guide

87

There are a number of methods of sending a URL script request to the SyncServer:

• URL script requests -- Users enter a URL script request in a web browser. See
URL stcl Script Requests.

• rstcl command -- Users apply the rstcl command in a DesignSync client to
specify the stcl script and its arguments, then the DesignSync client sends the
URL script request to the SyncServer. See the rstcl command.

• Server-side triggers -- stcl scripts run when a server-side trigger fires, sending
the URL script request to the SyncServer. See Server Triggers.

To illustrate how to invoke client stcl scripts in these clients, the sections mentioned
above provide steps to invoke the following sample stcl script:
<SYNC_DIR>/share/examples/doc/stclguide/deleteUser.tcl. You can use
the ProjectSync User Profiles=>Add command to add new users to a SyncServer, so
that you can delete them using the deleteUser.tcl script. Make sure you have
permission to delete users by checking the ProjectSync DeleteUser access control in
your AccessControl files: <SYNC_DIR>/share/AccessControl,
<SYNC_ENT_CUSTOM>/share/AccessControl,
 <SYNC_SITE_CUSTOM>/share/AccessControl, or
<SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/AccessControl. See
the ENOVIA Synchronicity Access Control Guide for more information.

Related Topics

Developing Server-Side stcl Scripts

Server Triggers

URL stcl Script Requests

URL stcl Script Requests

You instruct a SyncServer to execute an stcl script by issuing a URL from your web
browser, for example:

http://myserver:2647/scripts/isynch.dll?panel=TclScript&file=del
eteUser.tcl&terminate_user=hal

The SyncServer interprets this URL, invokes the stcl interpreter, and loads the file
specified with the file argument.

URL Script Request Synopsis

http://<host>:<port>/scripts/isynch.dll?panel=TclScript&file=<sc
ript>&<parmlist>

The stcl Environment for Server Scripts

88

where

<host> and <port> are the server's machine name and port number (for example:
myserver.myco.com:2647)

<script> is the name of the stcl script that the server will execute. The script name
must have a .tcl extension (for example: deleteUser.tcl).

<parmlist> is an optional list of parameters with name/value pairs to pass into the
script (for example: parm1=value1&parm2=value2&parm3=value3). Separate
each parameter from the previous one using an ampersand (&). Separate the name
from the value using an equal sign (=). These parameters and values cannot contain
spaces. Note: Certain characters must be encoded. For example, because these
parameters and values cannot contain spaces; you must replace spaces by the +
character or enclose the entire parameter list in quotes ("). If you are not sure how a
character in the parameter list should be encoded, you can use the formatQuery
command from the Tcl http package to encode your parameter list, for example:

http::formatQuery author georgia title "This is the title" url
sync:///Projects/chip

=>
author=georgia&title=This+is+the+title&url=sync%3a%2f%2f%2fProj
ects%2fchip

To Run a Script by Specifying a URL stcl Script Request:

The following example shows how to run the sample script:
<SYNC_DIR>/share/examples/doc/stclguide/deleteUser.tcl. You must
first use the ProjectSync User Profiles=>Add command to add new users to a
SyncServer, so that you can delete them using the deleteUser.tcl script. Make sure
you have permission to delete users by checking your AccessControl files.

To run the deleteUser.tcl script, follow these steps:

1. Copy the
<SYNC_DIR>/share/examples/doc/stclguide/deleteUser.tcl file into
your <SYNC_SITE_CUSTOM>/share/tcl directory.

To create a server-specific script, you can instead copy the script to:
<SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/tcl. Note: By
default, <SYNC_SITE_CUSTOM> resolves to <SYNC_CUSTOM_DIR>/site.

2. Run the deleteUser.tcl script by entering the following URL in your web
browser:

ENOVIA Synchronicity stcl Programmer's Guide

89

http://<host>:<port>/scripts/isynch.dll?panel=TclScript&fil
e=deleteUser.tcl&terminate_user=username

where username is the name of the user you are deleting.

Server Triggers

Another way that server-side stcl scripts can be invoked is through triggers. You can set
up triggers to fire when certain events take place such as the modification of a note, the
attachment of a note to an object, or DesignSync revision control commands such as
ci, co, and tag. To set up a trigger, you develop a trigger script, place it in one of the
custom tcl script directories, and register the trigger using the ProjectSync user
interface. See Developing Server-Side stcl Scripts for general scripting help, including
where to place your server-side trigger scripts.

The stcl environment passes in several environment variables to the trigger script
depending on the reason the trigger was fired. See Accessing Environment Information
from Server Scripts for descriptions of trigger-specific variables, as well as general
environment variables available to all server scripts.

You register note-related triggers using the ProjectSync Add Trigger panel. You can
define multiple triggers for different purposes and each trigger can have filters to control
the circumstances under which triggers fire. These filters include wildcards to identify
the NoteURLs and the attachments for which the triggers should fire. See ENOVIA
Sychronicity DesignSync Data Manager Administrator's Guide: Creating Note Object
Triggers to learn how to set up server-side triggers.

Note: The ProjectSync Add Trigger panel registers note-related trigger scripts. If your
trigger script is not a note-related trigger script, register the script by including the
trigger create command in a server-side script and invoking the script using a URL
stcl script request from your web browser or the rstcl (remote stcl) command from a
DesignSync client.

Related Topics

Developing Server-Side stcl Scripts

How to Run stcl Server Scripts

URL stcl Script Requests

91

stcl Scripting Tips
stcl Scripting Tips
The ENOVIA Synchronicity stcl Programmer's Guide is a guide to stcl scripting
rather than a general purpose Tcl scripting guide. For general Tcl scripting instruction,
see the list of Tcl scripting references in the Introduction.

Following are the stcl scripting guidelines. Also see Hints for First-Time Scripters for
some tips to get you started with stcl scripting.

Use the Reset Server button if you update server scripts or access controls.

If you make modifications to a server-side script or an access control file, use the
ProjectSync Reset Server button to force the SyncServer to reread your files.

To determine the Tcl version, use the info tclversion command.

You can determine the version of Tcl included in your DesignSync installation's stcl
interpreter by using the info tclversion and info patchlevel commands within
a stcl/stclc client shell.

Use the url and note commands to access DesignSync and ProjectSync web
objects.

You can use the url and note commands within your Tcl commands. For example:

if {[access verify EditUser $SYNC_User \
 [url leaf $user] 0]} {
 url properties $user props
}

The url leaf command returns the leaf of the $user URL and the url
properties command returns an array of property name/value pairs. Notice how the
url leaf command is used as an argument to another stcl command, access
verify. The url commands are available from all DesignSync client shells. However,
you cannot operate on a return value in dss/dssc, so the url commands are more
useful in stcl/stclc.

See Accessing Web Objects for details.

Use command-line editing within stcl shells.

The stcl shells provide command-line editing support. See DesignSync Help:
Command-Line Editing.

stcl Scripting Tips

92

Add exception and data handling to your stcl scripts.

You must ensure that your scripts terminate gracefully and that data returned by scripts
and commands is handled appropriately. To do so, review the guidelines in Return
Values and Exception Handling.

Use appropriate commands to format output.

Client- and server-side scripts have different requirements for output formatting. Client-
scripts are processed by the stcl interpreter; thus, you can use standard Tcl commands
like puts and format to format your output. The results of server-side scripts invoked
as URL script requests are sent to an HTML browser; thus, you format these types of
results using HTML. See Output Formatting for details.

You can abbreviate DesignSync commands in stcl scripts.

Within stcl scripts as well as dss scripts, you can abbreviate DesignSync commands.
For example, you can abbreviate 'populate' as 'pop'. You might want to test out a
command abbreviation within an stclc shell before using it in a script to make sure there
is only one command with that abbreviation; you need to provide enough characters for
the abbreviation to resolve to a unique command.

Hints for First Time Scripters
• Running a Clean Environment
• Using Commands
• General Formatting
• Delimiting Strings and Whitespace

As a new stcl scripter, review the following list of potential stcl 'gotchas':

Running a Clean Environment

When a DesignSync tool, such as stclc or DesSync launches, it may change or set
environment variables, or underlying default paths as part of creating the environment it
needs to operate. This may result in the unpredictable results if the tcl script or a user
manually running commands is unaware of these changes.

To create a clean environment, that does not use the changes introduced by the
DesignSync in which the command or script is being run, use the clean_exec
command instead of the exec command to allow any commands that use exec to use
the system level path and environment settings, rather than the DesignSync client
modified path or environment variables.

Using Commands

ENOVIA Synchronicity stcl Programmer's Guide

93

• Within stcl scripts as well as dss scripts, you can abbreviate DesignSync
commands. For example, you can abbreviate 'populate' as 'pop'. You might
want to test out an abbreviation within an stclc shell before using it in a script to
make sure there is only one command with that abbreviation; you need to
provide enough characters for the abbreviation to resolve to a unique command.

• You can call stcl commands as arguments to other stcl commands using Tcl
command substitution, for example, url contents [url vault
Asic/x.v]. See Accessing Objects Using url Commands for more examples.

• If you want to run a single DesignSync command from an OS shell, you can
precede the command with 'dss' or 'dssc'. The syntax for specifying a single
command is more complex for stcl. You must specify the -exp option to the
stcl command to execute a DesignSync command from the OS shell. Because
stclc is primarily a scripting shell, an argument specified without -exp is
assumed a script. See stclc and stcl Clients for details.

General Formatting

• You must quote objects that contain a semicolon (;), such as vaults, branches,
and versions.

Version and vault URLs contain semicolons
(sync://localhost:2647/Projects/Asic/x.v;). Because the semicolon
is a Tcl command separator, you must quote semicolons in URLs using quotes or
curly braces. You can also escape semicolons using the backslash (\)
character:

"sync://localhost:2647/Projects/Asic/x.v;"

{sync://localhost:2647/Projects/Asic/x.v;}

sync://localhost:2647/Projects/Asic/x.v\;

• You must use spaces as separators; do not rely on brackets or quotes to
separate sections of code. For example, the following statement is incorrect
because a space is required as a separator before the url container
command substitution:

INCORRECT: set notetypename [url leaf[url container $note]]

CORRECT: set notetypename [url leaf [url container $note]]

• You can use the backslash character to continue a long statement onto the next
line:

puts [format "Registered object modified: %s"\
 [url path $obj]]

stcl Scripting Tips

94

• For comments in Tcl code, the pound # character must be the first character in
the line. You can, however, append a comment to the end of a line if you include
a semicolon directly before the # character to explicitly terminate the command:

set users {jack jamie stan} ;# Create user list

Delimiting Strings and Whitespace Tips

You use curly braces { } and quotes " " to delimit strings and to handle whitespace
within strings. A question that can cause confusion for first-time Tcl scripters is when to
use quotes and when to use curly braces. The following are some differences between
curly braces and quotes:

• Tcl performs variable substitution (also called 'variable interpolation') on
expressions within quotes, but not within curly braces.

• Tcl allows nesting of curly braces, but not quotes.

Here are suggestions for quotes and curly braces:

 Argument contains
whitespace:

Argument contains no
whitespace:

Argument
requires
variable
substitution:

Use quotes:

puts "The time is
$time"

Use neither quotes nor curly
braces:

puts time=$time

Argument
does not
require
variable
substitution:

Use curly braces:

puts {Now is the
time...}

Use neither quotes nor curly
braces:

puts done

Note that the dss shell does not support the curly brackets for delimiting whitespace;
only quotes are supported in dss shell and scripts.

For example, the following works in both dss and stcl shells and scripts:

ci -comment "Fixed defect 1234" top.v

Using curly braces works only in stcl shells and scripts:

ci -comment {Fixed defect 1234} top.v

ENOVIA Synchronicity stcl Programmer's Guide

95

Return Values and Exception Handling
Tcl commands return a string value. When a Tcl command completes successfully, the
return string contains the result of the command. In many cases, you must add Tcl code
to process the results of stcl commands -- both to handle particular return value data
types and to handle errors raised by stcl commands and scripts.

Return Values - dss Versus stcl

The return values of the DesignSync commands differ depending on whether you
invoke them from a dss script (or shell) or from an stcl script (or shell). Return values of
commands in a dss shell or script are not intended to be operated upon
programmatically; unlike Tcl and stcl, the dss scripting language does not support
programming constructs such as loops and conditionals, needed to process the return
values effectively. Whereas stcl commands return string values, empty strings, or error
messages, dss commands do not return values. Instead, each dss command returns
an exit code of '0' or a non-zero integer. The returned exit code of a dss command is
always '0' unless its corresponding stcl command would have returned an error
message (thrown an exception), in which case, the dss exit code is non-zero. For
revision control commands that operate on multiple objects, the dss exit code is '0',
unless the operation fails on all objects, in which case the exit code is non-zero. In stcl,
you can operate on the results of these commands to discern the number of successes
and failures. The following examples illustrate these return values. In these examples,
file x.v exists but file top.v does not. Also assume that there are no connection
failures, so the checkin of x.v will succeed.

stcl> catch {ci -new -noc x.v top.v} error

Beginning Check in operation...

Unable to find :
file:///home/rsmith/d1/top.v

Checking in: x.v: Success - New version:
1.1 on New branch: 'Trunk' (1)

Checkin operation finished.

WARNINGS and FAILURES LISTING #####

Unable to find :
file:///home/rsmith/d1/top.v

A Tcl exception is
not raised
because at least
one of the
checkins was
successful.

stcl Scripting Tips

96

0

stcl> set error
{Objects succeeded (1)} {Objects failed
(1)}

% dss ci -new -noc top.v x.v

Logging to
/home/rsmith/dss_11142011_153804.log

V6R2013

Beginning Check in operation...

Unable to find :
file:///home/rsmith/d2/rop.v

Checking in: x.v : Success - New version:
1.1 on New branch: 'Trunk' (1)

Checkin operation finished.

WARNINGS and FAILURES LISTING #####

Unable to find :
file:///home/rsmith/d2/rop.v

{Objects succeeded (1)} {Objects failed
(1)}

% echo $?

0

The same
command in dss
returns an error
code of 0.

ENOVIA Synchronicity stcl Programmer's Guide

97

stcl> catch {ci -new -noc top.v} error

Beginning Check in operation...

Unable to find :
file:///home/rsmith/d1/top.v

Checkin command exiting.

1

stcl> set error

{} {Objects failed (1)}

stcl>

This checkin has
no successes, so
an exception is
raised.

% dss ci -new -noc top.v

Logging to
/home/rsmith/dss_11142011_154504.log

V6R2013

Beginning Check in operation...

Unable to find :
file:///home/rsmith/d1/top.v

Checkin operation finished.

{} {Objects failed (1)}

% echo $?

1

The same
command in dss
returns a non-zero
error code.

See Return Values of Revision Control Commands for other examples. Note: To add
exception handling for dss scripts, you can create an stcl wrapper script that invokes the
command and provides exception handling. Then, you use the alias command to
expose the stcl script (see dssc and dss Clients for an example).

Return Values and Error Codes

stcl Scripting Tips

98

The stcl commands yield strings that represent different types of return vales. Some
commands return strings that represent boolean values of "0" and "1". Some commands
return empty lists. Consult the ENOVIA Synchronicity Command Reference for the
types of return values associated with the commands. The url command descriptions
in the ENOVIA Synchronicity Command Reference also show the return values
associated with each type of web object.

Note that return values are not the same as return codes. Return codes are codes set
by stcl or Tcl procedures to indicate that an exception has been raised. In addition to
returning values, an stcl command called in an stcl script or shell can set an error code,
thus throwing an exception (raising an error). Note that this error code is not a returned
value; if an exception is raised, no value is returned, as in the following example:

stcl> set return [ci -new -noc x.v top.v]

Beginning Check in operation...

Unable to find :
file:///home/rsmith/d3/top.v

Checking in: x.v
 : Success - New
version: 1.1 on New branch: 'Trunk' (1)

Checkin operation finished.

WARNINGS and FAILURES LISTING #####

Unable to find :
file:///home/rsmith/d3/top.v

{Objects succeeded (1)} {Objects failed
(1)}

stcl> set return

{Objects succeeded (1)} {Objects failed
(1)}

A Tcl exception is
not raised
because at least
one of the
checkins was
successful.

stcl> set return "" An exception
occurs because

ENOVIA Synchronicity stcl Programmer's Guide

99

stcl> set return [ci -new -noc top.v]

Beginning Check in operation...

Unable to find :
file:///home/rsmith/d3/top.v

Checkin operation finished.

{} {Objects failed (1)}

stcl> set return

stcl>

the ci command
had no successes.
 Notice that the
return variable
is not set because
the ci command
did not return a
value. Because
an exception is
raised, no value is
returned.

Many commands that return error codes also display error messages. Error messages
resulting from client-side stcl scripts display in the client, whereas error messages from
server-side stcl scripts display in the web browser where you've invoked the URL script
request. If there are messages about access controls, the server writes these messages
to the error_log file,
<SYNC_CUSTOM_DIR>/servers/<host>/<port>/logs/error_log.

You can detect exceptions using the Tcl catch command. In terms of errors, some
commands throw exceptions, whereas other commands return empty lists to reflect an
unsuccessful command. The commands that throw exceptions can cause your script to
fail. In these cases, you need to provide exception handling code, typically using the
Tcl catch statement described in Handling Errors Raised by stcl Commands and
Scripts.

Return Values of Revision Control Commands

Most revision control commands operate on multiple objects. For these commands, the
return value is a list containing two strings:

{Objects succeeded (3)} {Objects failed (1)}

The first string indicates the number of objects processed successfully. The second
string indicates the number of objects whose processing failed. If, there are no failures,
the second string is an empty string:

{Objects succeeded (4)} {}

Likewise if there are no successes, the first string is an empty string. If all objects fail, an
exception occurs (the return value is thrown, not returned). The meaning of a

stcl Scripting Tips

100

successful operation varies by command. For example, if you attempt to check in a file
that has not changed, the checkin does not occur, yet the operation is counted as a
success. See the command descriptions in the ENOVIA Synchronicity Command
Reference to understand what a successful operation is for each command.

The following revision control commands yield a return value format of the type shown
above:

• cancel - Cancels a previous checkout operation
• ci - Checks in the specified objects
• co - Checks out the specified objects
• mkbranch - Creates a new branch
• populate - Creates or updates a local work area
• setselector - Sets the persistent selector list
• tag - Assigns a tag to a version or a branch

Note: If you call these commands from a dss shell or script, the exit code is '0', unless
the operation fails on all objects, in which case the exit code is a non-zero integer.

You can test non-empty lists returned by a revision control command for successes and
failures by parsing the return value. This method is not encouraged, as the format of
these returned values is subject to change in future releases. The following example
shows how to use the Tcl lindex command to parse these results. Note: You can
also capture the output of a command to parse it for other information using the stcl
record command (see Capturing Output of Commands).

stcl> set ret [co *.txt]

Beginning Check out operation...

Checking out: log-Windows_NT-201-042700-182419.txt : Failed:som:
Error 62: Not under revision control

Checking out: prefixes.txt : Success - Already fetched, and
still unmodified version 1.12.2.2

Checking out: ReadMe.txt : Success - Already fetched, and still
unmodified version 1.1.26.2

Checking out: telephones.txt : Success - Already fetched, and
still unmodified version 1.150.2.69

Checkout operation finished.

{Objects succeeded (3)} {Objects failed (1)}

ENOVIA Synchronicity stcl Programmer's Guide

101

stcl> lindex $ret 0

Objects succeeded (3)

stcl> lindex $ret 1

Objects failed (1)

Return Values of Note-Related Commands

Server-side commands that operate on notes do not necessarily return valid values;
thus, you must trap and test the values returned. Note properties (fields) can contain an
initial null value (""). Because you cannot rely on properties of numeric or Boolean
types to return values of 0 or False, some operations on Boolean or numeric properties
can fail.

A script with the following call to url getprop terminates if NumHits is unset because the
incr command expects an integer rather than an empty string (""):

incr hits [url getprop $note NumHits]

The following code traps and tests the NumHits property:

set numhits [url getprop $note NumHits]
if {$numhits != ""} {
 incr hits $numhits
}

Handling Data Returned by stcl Commands

Although a Tcl return value is always a string, the data represented by the string can be
of a variety of data types, such as a boolean, a list, or an array. You must ensure that
the code processing a return value determines the type of data the string represents so
that it can perform a data type conversion, if necessary.

All of the Tcl rules for data types apply. For example, a common return value type is a
list. In processing a returned list, use the family of list commands such as llength,
lindex, and lappend to manipulate the list. See the Tcl references listed in the
Introduction to learn more about these commands.

To help you determine whether you need to provide data handling such as converting
the results of an stcl command, see the url command descriptions in the ENOVIA
Synchronicity Command Reference, which provide the return values corresponding
to each type of revision control object.

stcl Scripting Tips

102

Return values that represent strings sometimes contain braces { }, a Tcl grouping
operator. An element of a list that contains separators (such as spaces or semicolons)
is enclosed by braces to clarify that it is one element. The braces are part of the list
structure and not part of the value of the list element. In the following example, the
second element in the return value is enclosed in braces because the semicolon might
otherwise be interpreted as a separator:

stcl> url contents sync://localhost:2647/Projects/Asic

sync://localhost:2647/Projects/Asic/Sub

{sync://localhost:2647/Projects/Asic/x.v;}

You do not need any special commands to detect these braces because the Tcl list
commands you use to operate on these returned lists handle the braces automatically.

Handling Errors Raised by stcl Commands and Scripts

If a command fails (for example, if you specified the incorrect command syntax), then
the command aborts and returns a string containing an error message. If a command
fails within a script, all commands that follow the failed command are skipped. However,
Tcl supports exception handling, which lets you catch errors and handle them more
gracefully, by stopping the script execution and providing a customized error message.

It is good coding practice to add exception handling to your calls to stcl commands.
Doing so can provide additional debugging information when your command fails, and
also allows any commands that follow your command (if you are running a script) to
execute.

Note: The rmfile, rmversion, rmvault, and rmfolder commands do not throw
exceptions if objects you are trying to delete do not exist. If you are removing a group of
objects, the operation continues even if an object does not exist. To ensure the correct
use of the remove commands in your scripts, perform a check ahead of time to make
sure the objects exist before you invoke one of the remove commands.

Using the catch Command to Handle Errors

The following Tcl statement shows how you can use the catch command to handle
exceptions.

stcl> if {[catch {syncNeedCheckin .} msg]} {puts "Error: $msg"}

Connect failure. Server 'alserv' may have reset the connection.

Folder: /home/karen/Asic/Sub

Connect failure. Server 'alserv' may have reset the connection.

ENOVIA Synchronicity stcl Programmer's Guide

103

Error: som-E-11: Communication Connect Failure.

The catch example shows how you can use a script or procedure as an argument to the
catch command to handle potential exceptions in your scripts or procedures. In this
case, the url contents stcl command could not access the server and thus returned
an error code. This error code was passed back to the catch command. The catch
command checks the error code of the script or procedure, not the output or return
value. Notice from the output that the procedure runs as normal and prints to standard
output before terminating.

You can also use a catch statement as a wrapper script for your procedures. The
syncNeedCheckin2 procedure below uses a catch statement as a wrapper to catch
exceptions in the syncNeedCheckin script.

proc syncNeedCheckin2 arg {
 if {[catch {
 foreach obj [url contents $arg] {
 if {[url getprop $obj type] == "Folder"} {
 puts [format "Folder: %s\n" [url path $obj]]
 syncNeedCheckin2 $obj
 } else {
 if {[url modified $obj]} {
 if {[url registered $obj]} {
 puts [format "Registered object modified: %s\n"\
 [url path $obj]]
 } else {
 puts [format "Unregistered object: %s\n"\
 [url path $obj]]
 }
 }
 }
 }
 } msg]} {puts "syncNeedCheckin2 Error: $msg"}
}

The following stcl session example shows how the catch statement handles an
exception:

stcl> syncNeedCheckin2 sync://localhots:2647

DNS Lookup failure on Server 'localhots'

DNS Lookup failure on Server 'localhots'

DNS Lookup failure on Server 'localhots'

stcl Scripting Tips

104

syncNeedCheckin Error: som-E-4: Communication Failure.

For more details on catch statements and exception handling, refer to one of the Tcl
references in the Introduction.

Capturing Output of Commands

Sometimes you might want to tailor the output for users of your scripts by customizing
the output of the stcl commands. You can use the stcl record command to trap a
command's output so that you can customize what the user sees. You can then parse
this output to create your own messages. Important: This method of parsing the
recorded output, although useful, is discouraged because the stcl command output
messages are subject to change. Thus, you might need to update your parsing code
upon upgrading your DesignSync software.

The following are some examples where you might use the record command to
capture output:

• If you create an stcl script that calls a number of stcl commands, you might not
want the output of each command to display for users. Instead, you can use the
record command to capture the output of each command, then you can create
your own message that summarizes the success or failure of the entire task
rather than that of each stcl command.

• Some stcl commands provide no return values, yet print informational messages.
 You can create a wrapper script by calling the stcl command within the record
command. The record command captures the informational messages, and you
can parse the captured message to create a customized return value for the
wrapper script.

• If you find the default output of a particular stcl command inadequate for your
users' purposes, you can record it and tailor the output message.

The following script shows how you can use the record command to process the results
of a populate command to ensure that a successful populate of an entire workspace has
occurred. The script uses Tcl string processing commands such as split and
string to parse the output saved in the popOutput variable.

if [catch {record {populate -recursive } popOutput} msg] {
 puts "Populate failed: $msg"
}

now scan for fail
set failOutput ""
foreach line [split $popOutput \n] {
 if [string match *Fail* $line] {
 set failOutput "$failOutput\n$line"
 set hasError 1

ENOVIA Synchronicity stcl Programmer's Guide

105

 }
}

The following stcl session shows how the script captures the output of a recursive
populate command, then parses the output for failures. The script is sourced and the
failOutput and hasError variables store the error information:

stcl> source ../tclscripts/custompop.tcl

stcl> set hasError

1

stcl> set failOutput

Sub/y.v : Failed:som: Error 135: Can't overwrite local changes.
 Use force switch.

stcl>

Output Formatting
You format output in stcl scripts differently depending on whether the script is a client-
or server-side script. The output from server-side scripts is typically displayed on the
user's browser, whereas, the output from client-side script displays in the client--the dss,
stcl, or DesSync window.

Server Script Output Formatting

For server-side scripts, you can format output using HTML, for example:

puts "<h2>Permission denied: you cannot delete this user</h2>"

A method of formatting your output text is to include your script between the following
two HTML preformatted text calls:

puts "<PRE>"

...

puts "</PRE>"

Important: If your server-side script will be invoked from a client or a client script using
the rstcl (remote stcl) command, do not include HTML formatting; the HTML
formatting commands are not processed and HTML commands such <PRE> appear in
the output text.

stcl Scripting Tips

106

To Format Lists

Many of the url and note commands return unformatted lists which are difficult for
users to read. You can format these lists using HTML ordered or unordered lists,
shown in the following excerpt of a server-side script:

puts "<PRE>"
puts "All users: "
set userlist [url users sync:///]
puts ""
puts "[join $userlist ""]"
puts ""
puts "</PRE>"

This stcl code returns:

All users:
1. sync:///Users/karen
2. sync:///Users/alex
3. sync:///Users/sal
4. sync:///Users/asicdev
5. sync:///Users/cdent
6. sync:///Users/jboswell
7. sync:///Users/anabel

If your users will be invoking the script using the rstcl command, leave out the HTML
formatting and handle the return values using the Tcl split command. For example, the
following client-side script, lsUsersFromClient.tcl uses the rstcl command to
call a server-side script, lsUsers.tcl. To process the return value of the
lsUsers.tcl script, the client script uses the split command to split the return value
list into strings separated at the carriage return characters (\n):

Example: lsUsersFromClient.tcl Client Script

proc lsUsersFromClient {} {
 set users [rstcl -server sync://localhost:30048 \
 -script lsUsers.tcl]
 set users [split $users \n]
 foreach user $users {puts $user}
}

Here's sample output of the lsUsersFromClient.tcl script:

stcl> source tclscripts/lsUsersFromClient.tcl

stcl> lsUsersFromClient

ENOVIA Synchronicity stcl Programmer's Guide

107

Karen Mendola

Alessandro Christiani

jerry

Asic Developers

Charles Dent

Jean Boswell

Anabel Blythe

lsUsers.tcl Server Script Called by the lsUsersFromClient.tcl Client Script

foreach user [url users sync:///] {
 puts [url getprop $user name]
}

Client Script Output Formatting

For client-side scripts, you can use the Tcl format command as a command substitution
within a puts command. The format command is similar to the C printf function:

puts [format "Folder: %s" [url path $obj]]

See a Tcl language reference manual for details.

109

Getting Assistance
Using Help
ENOVIA Synchronicity DesignSync Data Manager Product Documentation provides
information you need to use the products effectively. The Online Help is delivered
through WebHelp® , an HTML-based format provided by eHelp™ Corporation that is
displayed in your Web browser.

Note: Use SyncAdmin to change your default web browser, as specified during
ENOVIA Synchronicity DesignSync Data Manager tools installation.

To bring up the online help from the tool you are using, do one of the following:

 Select Help => Help Topics from the tool you are using. The help system opens
in your default browser. The Contents tab displays in the left pane and the
corresponding help topic displays in the right pane.

 Click Help on forms. The help system opens to the topic that describes the form.
 Press the F1 key. The help system opens to the topic that describes the current

form or window you have open.

To bring up stand-alone Online Help, do one of the following:

 Enter the correct URL from your Web browser:

http://<host>:<port>/syncinc/doc/<docname>/<docname.htm>

 where <host> and <port> are the SyncServer host and port information. Use this
server-based invocation when you are not on the same local area network (LAN)
as the DesignSync installation.

For example:

http://<host>:<port>/syncinc/doc/stclguide/stclguide.htm

http://<host>:<port>/syncinc/doc/DesSync/dessync.htm

 Enter the following URL from your Web browser:

file:///$SYNC_DIR/share/content/doc/<docname>/<docname.htm>

For example:

file:///$SYNC_DIR/share/content/doc/stclguide/stclguide.htm

Getting Assistance

110

file:///$SYNC_DIR/share/content/doc/DesSync/dessync.htm

where $SYNC_DIR is the location of the DesignSync installation. Specify the
value of SYNC_DIR, not the variable itself. Use this invocation when you are on
the same LAN as the installation. This local invocation may be faster than the
server-based invocation, does not tie up a server process, and can be used even
when the SyncServer is unavailable.

When the Online Help is open, you can find information in several ways:

• Use the Contents tab to see the help topics organized hierarchically.
• Use the Index tab to access the keyword index.
• Use the Search tab to perform a full-text search.

Within each topic, there are the following navigation buttons:

• Show and Hide: Clicking these buttons toggles the display of the navigation (left)
pane of WebHelp, which contains the Contents, Index, and Search tabs. Hiding
the navigation pane gives more screen real estate to the displayed topic.
Showing the navigation pane givens you access to the Contents, Index, and
Search navigation tools.

• << and >>: Clicking these buttons moves you to the previous or next topic in a
series within the help system.

You can also use your browser navigation aids, such as the Back and Forward
buttons, to navigate the help system.

Related Topics

Getting a Printable Version of Help

Getting a Printable Version of Help
The ENOVIA Synchronicity DesignSync Data Manager CD User's Guide is available in
book format from the ENOVIA Documentation CD or the
DSDocumentationPortal_Server installation available on the 3ds support website
(http://media.3ds.com/support/progdir/). The content of the book is identical to that of
the help system. Use the book format when you want to print the documentation,
otherwise the help format is recommended so you can take advantage of the extensive
hyperlinks available in the DesignSync Help.

You must have Adobe® Acrobat® Reader™ Version 8 or later installed to view the
documentation. You can download Acrobat Reader from the Adobe web site.

ENOVIA Synchronicity stcl Programmer's Guide

111

Contacting ENOVIA
For solutions to technical problems, please use the 3ds web-based support system:

http://media.3ds.com/support/

From the 3ds support website, you can access the Knowledge Base, General Issues,
Closed Issues, New Product Features and Enhancements, and Q&A's. If you are not
able to solve your problem using this information, you can submit a Service Request
(SR) that will be answered by an ENOVIA Synchronicity Support Engineer.

If you are not a registered user of the 3ds support site, send email to ENOVIA Customer
Support requesting an account for product support:

enovia.matrixone.help@3ds.com

Related Topics

Using Help

113

Index
C

Cadence Objects

web objects 30

clean_exec command 92

Clients

client-side versus server-side stcl 7

DesSync 73

developing client scripts 57

dss and dssc 67

running stcl 5, 66

stcl and stclc 70

Client-Server Communication 5, 7

controlling stcl environment 92

D

DesignSync Object Model (SOM) 11

DesSync 73

dss 67

dssc 67

E

exec

clearing vaiables and paths 92

G

GUI 73

H

Help

contacting ENOVIA 111

hints for first time scripters 92

printing 110

using 109

N

Note Types

managing 49

Notes

commands 39

creating 45

updating 50

using in programs and scripts 39

O

Objects

DesignSync object model (SOM) 11

types 14

web objects 12

114

P

ProjectSync

client 5

notes 39

Properties

notes 39, 50

revision control objects 32

updating 50

R

Registry Files 58, 83

Revision Control

objects

properties 32

URL commands 18

S

Scripts

client 57

client-side versus server-side 7

running 66, 86

security 80

server 75, 86

shell scripts 73

startup 61

Shells

dss and dssc 67

OS shell scripts 73

stcl and stclc 70

stcl 70

command abbreviation 92

running DesignSync commands 92

stcl commands as arguments 92

stclc 70

formatting tricks 92

hints for first time scripters 92

SyncAdmin 65

SyncServer 5

security 80

server stcl scripts 75

T

Triggers

client 65

server 89

U

User Profile 14

W

Web Objects 11

ENOVIA Synchronicity stcl Programmer's Guide

115

launching web object URLs

attachment to notes 39

cadence web objects 30

objects 12

	Introduction
	Why Tcl?
	What's stcl?
	Getting Started with stcl
	Related Topics

	Synchronicity's stcl Environment
	The stcl Environment
	What Are SyncServers?
	What Are the DesignSync Clients?
	How DesignSync Clients and Servers Communicate
	Related Topics

	Client-Side Versus Server-Side stcl
	Client-Side Scripts
	Server-Side Scripts
	When to Use a Client-Side Script
	When to Use a Server-Side Script
	Methods of Running Client-Side Scripts
	Methods of Running Server-Side Scripts
	Related Topics

	Synchronicity's Object Model
	Introduction to the DesignSync Object Model
	What Are SOM Web Objects?
	Related Topics

	Accessing Web Objects
	Related Topics

	Types of Web Objects
	Related Topics

	Working with Revision Control Objects
	Accessing Objects Using url Commands
	Relationships Between Revision Control Objects
	url Command Examples
	url Commands, Objects, and Return Values
	Tips for Accessing Revision Control Objects
	See Also

	Accessing Cadence Web Objects
	Related Topics

	Working with Properties of Revision Control Objects
	Accessing Revision Control Object Properties
	Adding User-Defined Properties
	Adding User-Defined Properties in Server-Side Scripts

	Related Topics

	Working with Notes
	Accessing Notes
	Tips for Accessing Notes and Properties
	note Commands to Access Notes
	url Commands to Access Notes
	Related Topics

	Creating and Attaching Notes
	Related Topics

	Working with Note Types
	Determining Properties of a Note Type
	Related Topics

	Updating Notes
	Determining Properties and Values of a Note
	Updating Values for Particular Properties
	Updating Notes Based on Particular Criteria
	Related Topics

	The stcl Environment for Client Scripts
	Working with Client stcl Scripts
	Related Topics

	Setting Up stcl Client Scripts
	Accessing Environment Information from Client Scripts
	Related Topics

	Startup Scripts
	Setting Up stcl Procedures Using Startup Scripts
	Related Topics

	Autoloaded Site and Project stcl Procedures
	Set Up autoload.tcl Startup Scripts
	Set Up stcl Procedure Files
	Create the tclIndex File
	Invoke the stcl Procedures

	Client Triggers

	Running stcl Scripts from Clients
	How to Run stcl Scripts from Clients
	dssc and dss Clients
	Invoking the dssc and dss Shells
	Using the dss run command
	Using the alias Command to Access stcl Procedures
	Related Topics

	stclc and stcl Clients
	Invoking the stclc and stcl Shells
	Running stcl Scripts
	Using the Tcl source Command
	Using a Start-Up Script
	Invoking an Autoloaded Procedure
	Using Client Triggers
	Related Topics

	The DesSync Client
	OS Shell Scripts
	Related Topics

	The stcl Environment for Server Scripts
	Working with Server stcl Scripts
	Related Topics

	Setting Up stcl Server Scripts
	Developing Server-Side stcl Scripts
	Setting Up a Server-Side Script
	Server-Side Sample Scripts

	Where to Place Server Scripts
	Passing Parameters in Server-Side stcl Scripts
	Commands Supported for Server-Side stcl Scripts
	Using Procedures in Server-Side stcl Scripts
	Specifying the sync Protocol in Server-Side Scripts
	Error Messages and Server-Side Scripts
	Related Topics

	Server Scripts and SyncServer Security
	SyncServer Permissions
	End User Input
	Access Controls for Server Scripts
	Related Topics

	Accessing Environment Information from Server Scripts
	Server-Side Environment Variables
	Accessing the Server Environment Using syncinfo
	Related Topics

	Running stcl Scripts from Servers
	How to Run stcl Server Scripts
	Related Topics

	URL stcl Script Requests
	URL Script Request Synopsis

	Server Triggers
	Related Topics

	stcl Scripting Tips
	stcl Scripting Tips
	Hints for First Time Scripters
	Running a Clean Environment
	Using Commands
	General Formatting
	Delimiting Strings and Whitespace Tips

	Return Values and Exception Handling
	Return Values - dss Versus stcl
	Return Values and Error Codes
	Return Values of Revision Control Commands
	Return Values of Note-Related Commands
	Handling Data Returned by stcl Commands
	Handling Errors Raised by stcl Commands and Scripts
	Using the catch Command to Handle Errors
	Capturing Output of Commands

	Output Formatting
	Server Script Output Formatting
	To Format Lists
	Client Script Output Formatting

	Getting Assistance
	Using Help
	Getting a Printable Version of Help
	Contacting ENOVIA

	Index

