
1

ENOVIA DesignSync
DFII SKILL Programming Interface Guide

3DEXPERIENCE 2022

Introduction

4

©2021 Dassault Systèmes. All rights reserved. 3DEXPERIENCE®, the Compass icon, the 3DS logo, CATIA, SOLIDWORKS, ENOVIA, DELMIA, SIMULIA, GEOVIA, EXALEAD, 3D VIA, BIOVIA, NETVIBES,
IFWE and 3DEXCITE are commercial trademarks or registered trademarks of Dassault Systèmes, a French “société européenne” (Versailles Commercial Register # B 322 306 440), or its subsidiaries in the
United States and/or other countries. All other trademarks are owned by their respective owners. Use of any Dassault Systèmes or its subsidiaries trademarks is subject to their express written approval.

i

Table Of Contents
Introduction ... 1

Syntax Conventions ... 1

Error Handling and Diagnostics ... 3

Error Handling in Function Invocations .. 3

Setting a Trace .. 3

Return Values .. 3

Return Values and Background Commands .. 3

Revision Control Functions ... 5

dssAddFileP .. 5

dssBranchCellP ... 5

dssBranchCellViewP ... 6

dssBranchLibraryP .. 7

dssCancelCellViewP .. 7

dssCancelFileP .. 9

dssCheckinCategoryP ... 10

dssCheckinCellP.. 13

dssCheckinCellViewP .. 15

dssCheckinFileP .. 17

dssCheckinHierarchyP .. 20

dssCheckinLibraryP ... 25

dssCheckoutCategoryP ... 28

dssCheckoutCellP ... 30

Table Of Contents

ii

dssCheckoutCellViewP .. 32

dssCheckoutFileP .. 33

dssCheckoutHierarchyP .. 36

dssCheckoutLibraryP ... 42

dssCompareViewsP .. 44

dssCompareViewsHandlerP .. 46

dssCompareViewsListHandlersP .. 50

dssCompareViewsRemoveHandlerP ... 51

dssConfigureLibraryP .. 51

dssCreateCellViewP .. 52

dssDeleteCategoryP .. 53

dssDeleteCellP .. 55

dssDeleteCellViewP .. 57

dssDeleteFileP... 59

dssDeleteLibraryP ... 61

dssDeleteTemporaryViewsP ... 63

dssDeleteVersionP .. 64

dssFetchCellViewVersionP .. 64

dssFetchLockedP .. 65

dssGetFileTagsP ... 68

dssGetFileVersionP ... 69

dssGetFileVersionsP ... 71

dssGetTagListP ... 72

DesignSync Data Manager DFII SKILL Programming Interface Guide

iii

dssGetViewPathP .. 73

dssGetViewTagsP ... 74

dssGetViewVersionP ... 75

dssGetViewVersionsP ... 77

dssIsFileLockedP ... 78

dssIsViewLockedP ... 79

dssJoinLibraryP ... 80

dssLibraryStatusP .. 81

dssListHierarchyP .. 83

dssSetModuleSelector ... 87

Description ... 87

Arguments .. 87

Value Returned .. 88

dssRollbackCellViewP ... 88

dssSwapReplaceP ... 89

dssSwapRestoreP ... 90

dssSwapShowP ... 90

dssTagCategoryP .. 91

dssTagCellP .. 92

dssTagCellViewP ... 93

dssTagFileP ... 95

dssTagHierarchyP ... 97

dssTagLibraryP.. 101

Table Of Contents

iv

dssUnlockCellViewP .. 102

dssUnlockFileP .. 103

dssViewDataSheetP .. 105

dssViewVersionHistoryP .. 106

dssViewWhereUsedP .. 108

Menu Customization Functions ... 111

Customizing the Menu ... 111

Related Topics ... 111

Customizing Menu Items ... 111

Available Menus ... 111

dssMenuAddItemP .. 113

dssMenuAddValidItemP .. 114

dssMenuListItemsP ... 115

dssMenuListMenuP ... 116

dssMenuLoadConfigP ... 116

dssMenuRefreshP ... 117

dssMenuRemoveItemAllP ... 117

dssMenuRemoveItemP ... 118

dssMenuRemoveValidItemP ... 119

dssMenuSaveConfigP ... 119

dssRefreshWindowBannerP .. 120

Miscellaneous Functions ... 121

dssChangeDefaultsContextP ... 121

DesignSync Data Manager DFII SKILL Programming Interface Guide

v

dssChangeUserLevelP .. 122

dssEnableDebugP ... 122

dssExecuteTclP ... 123

dssHelpP ... 123

dssSetWorkspaceRootPathP .. 124

dssGetWorkspaceRootPathP .. 124

dssStatusBrowserStatusIconU .. 125

Related Topics ... 126

Getting Assistance .. 127

Using Help ... 127

Getting a Printable Version of Help.. 127

Contacting ENOVIA ... 128

Index ... 129

1

Introduction
ENOVIA Synchronicity DesignSync® Data Manager DFII(TM) is the integration of many
DesignSync® design-management (DM) capabilities into the Cadence Design Systems
DFII environment.

The DesignSync Data Manager DFII SKILL Programming Interface Guide contains
function descriptions for the DesignSync DFII SKILL™ API functions available in the
DesignSync DFII environment. For general instruction on using DesignSync DFII, see
the DesignSync Data Manager DFII User's Guide. For a description of SKILL variables
you can set to customize your environment, see the DesignSync Data Manager DFII
User's Guide: Using SKILL Variables.

Note on using this guide: References from the ENOVIA Synchronicity DesignSync Data
Manager DFII SKILL Programming Interface Guide to the ENOVIA Synchronicity
Command Reference guide always link to the ALL version of the guide, which contain
information about all working methodologies for DesignSync. For more information
about the available working methodologies, see ENOVIA Synchronicity Command
Reference.

Syntax Conventions
The following syntax conventions are used in the SKILL syntax descriptions shown in
this document:

• z_argument: Words with a prefix containing one or more characters followed by
an underscore indicate arguments for which you must substitute a name or a
value. The characters before the underscore (_) in the word indicate the data
type that this argument can take. These data types include the following:

t: text; a string

l: list

S: symbol or character string

x: integer

g: general; usually a boolean (t/nil) value unless the description indicates
otherwise. Note that an argument with the g_ prefix can take any value, as in
SKILL, nil represents false and any other value represents true.

r: defstruct, a named structure that is a collection of one or more variables.

Introduction

2

Arguments that accept more than one data type use a combination of the
characters above. For example, if an argument accepts a list or a text string, the
argument has the tl_ prefix.

• ?argument: Words with a ? prefix are keyed arguments. If an argument is a
keyed argument, you include the key as well as the value for the key in the
function invocation as in the following example:

dssCheckinCellP("rtllib" "top" ?force t)

All keyed arguments are optional. Note that key names are case sensitive.

• | Vertical bars separate possible choices for a single argument. They take
precedence over other characters.

• [] Brackets denote optional arguments. When used with vertical bars, they
enclose a list of choices from which you can choose one.

• ... Three dots (...) indicate that you can repeat the previous argument. If they
are used with brackets, you can specify zero or more arguments. If they are
used without brackets, you need to specify at least one argument, but you can
specify more.

argument... Specify at least one, but more are possible.

[argument]... Specify zero or more.

• => A right arrow precedes the possible values that can be returned by a SKILL
function. It is represented with an equal sign and a greater than sign (=>).

• / A slash separates the possible values that can be returned by a SKILL
function. Note: If no value is specified, the return value is undefined.

For more details about SKILL syntax, see the Cadence SKILL documentation.

3

Error Handling and Diagnostics
Error Handling in Function Invocations
When a function is called, the SKILL interpreter checks its arguments, ensuring the
correct number and data types of arguments. If an argument's data type is
inappropriate, the SKILL interpreter raises an error. Note that an argument with the g_
prefix can take any value; as in SKILL, nil represents false and any other value
represents true. The SKILL interpreter also raises errors for invalid arguments, such as
an argument that specifies a nonexistent library.

If you need to handle these errors in a specific way, use the Cadence errset function
to trap errors returned by the DesignSync DFII SKILL functions. See the Cadence
SKILL documentation for a description of the errset function.

Setting a Trace
To create a trace of the DesignSync (stclc) session that runs beneath the DesignSync
DFII session, you can invoke the DesignSync synctrace command. To do so, call the
synctrace command from within the dssExecuteTclP function as follows:

dssExecuteTclP("synctrace set 0")

To turn off tracing:

dssExecuteTclP("synctrace unset 0")

See the synctrace command description in the ENOVIA Synchronicity Command
Reference for details.

Return Values
DesignSync DFII commands return a list of pass and fail counts. In general, the first
integer represents the number of objects processed successfully and the second integer
represents the number of failures. For commands that do not operate on a set of
objects, a single return value of t or nil is returned, indicating the success or failure of
the operation.

Return Values and Background Commands
Background commands do not necessarily run immediately and thus do not provide
meaningful return values immediately. DesignSync DFII adds new background
commands to the Background Queue. If you run DesignSync DFII commands in the

Error Handling and Diagnostics

4

background using the ?background option, the return value is (0,0)in the cases
where a pass/fail count is normally returned, and t in the cases where a t/nil value is
normally returned. The t value indicates that the DesignSync DFII successfully added
the command to the Background Queue.

Use the graphical interface command, Synchronicity => Options => Show
Background Queue to view the queue. In the Background Queue, DesignSync DFII
SKILL commands are differentiated from graphical interface commands by the
characters (API), which follow the command entry. See the DesignSync Data Manager
DFII User's Guide: Displaying the Background Queue for more information.

When the background SKILL command runs, DesignSync DFII outputs status
messages to the standard output window, for example, to the Command Interface
Window (CIW) if you invoked the background command in the CIW. If you run a
command in the background using a SKILL command with the ?background option
rather than through the graphical interface, DesignSync DFII does not display a pop-up
window when the command completes even if you have set the Display pop-up
windows when background operations complete option or the corresponding SKILL
variable: syncDisplayBackgroundCompletePopup.

5

Revision Control Functions
dssAddFileP
dssAddFileP(t_moduleName tl_fileNames [?silent g_silent])

=> nil/(x_pass x_fail)

Description

Adds specified objects to the specified module.

Arguments

t_moduleName The workspace address of the module. This can be a simple
module name, module instance name or full workspace
address. If a null string is specified, the command will use smart
module detection to determine the target module.
 For more information on referring to modules or on how
DesignSync uses smart module detection to determine the
target module, see ENOVIA Synchronicity DesignSync Data
Manager User's Guide: Specifying Module Objects for
Operations and Understanding Smart Module Detection.

t_fileNames One or more file object(s) to be added to the module. You can
add objects with wildcard characters.

g_silent Run silently (t). (Default) Command reports output (nil).

Value Returned

Function returns a count of the number of objects successfully added, and the number
which failed, unless there is an error processing the arguments.

dssBranchCellP
dssBranchCellP(
 t_libName t_cellName t_branchName
 [?checkLocked g_checkLocked]
 [?setSelector g_setSelector]
 [?silent g_silent]
)
=> t/nil

Description

Creates a branch for the specified cell.

Revision Control Functions

6

Note: You cannot specify a module to branch.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_branchName Branch name. (Required)
g_checkLocked Discontinue branching if there are checked out or new objects

(t). When set to (t), if any checked out or new objects are
found, then no objects will be branched. By default, branching
continues even if there are checked out or new objects (nil).

g_setSelector Set the persistent selector list to match the branch (t). By
default, the persistent selector list is not updated, so revision-
control operations continue on the branch associated with the
cell prior to creating the new branch (nil).

g_silent Run silently (t). (Default)

Value Returned

Returns t if the branch has been created successfully; otherwise, returns nil.

dssBranchCellViewP
dssBranchCellViewP(
 t_libName t_cellName t_viewName t_branchName
 [?checkLocked g_checkLocked] [?silent g_silent]
)
=> t/nil

Description

Creates a branch for the specified cell view.

Note: You cannot specify a module to branch.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)
t_branchName Branch name. (Required)
g_checkLocked Discontinue branching if there are checked out or new objects

(t). When set to (t), if any checked out or new objects are
found, then no objects will be branched. By default, branching

DesignSync Data Manager DFII SKILL Programming Interface Guide

7

continues even if there are checked out or new objects (nil).
g_silent Run silently (t). (Default)

Value Returned

Returns t if the branch has been created successfully; otherwise, returns nil.

dssBranchLibraryP
dssBranchLibraryP(
 t_libName t_branchName [?checkLocked g_checkLocked]
 [?setSelector g_setSelector] [?silent g_silent]
)
=> t/nil

Description

Creates a branch for the specified library.

Note: You cannot specify a module to branch.

Arguments

t_libName Library name. (Required)
t_branchName Branch name. (Required)
g_checkLocked Discontinue branching if there are checked out or new objects

(t). When set to (t), if any checked out or new objects are
found, then no objects will be branched. By default, branching
continues even if there are checked out or new objects (nil).

g_setSelector Set the persistent selector list to match the branch (t). By
default, the persistent selector list is not updated, so revision-
control operations continue on the branch associated with the
workspace prior to creating the new branch (nil).

g_silent Run silently (t). (Default)

Value Returned

Returns t if the branch has been created successfully; otherwise, returns nil.

dssCancelCellViewP
dssCancelCellViewP(
 t_libName t_cellName t_viewName
 [?mode t_mode] [?force g_force]

Revision Control Functions

8

 [?retain g_retain] [?silent g_silent]
 [?background g_background]
)
=> nil/(x_pass x_fail)

Description

Cancels the checkout of a single cell view.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)
t_mode Fetch mode ("keep", "share", or "mirror"). By default, the

mode matches the default fetch mode. If the default fetch mode
is "lock", the dssCancelCellViewP default for t_mode is
"keep". See the DesignSync Data Manager DFII User's
Guide:Selecting a Default Fetch Mode to learn how to set the
default fetch mode.

g_force Overwrite the cell view even if it is locally modified (t). If a cell
view is locally modified and you set t_mode to "share" or
"mirror", but you do not set g_force to t, the cancel
operation fails.

g_retain Retain the "last modified" timestamps of the objects that remain
in your workspace (t), or make the timestamps the time of the
cancel operation (nil). The default is nil unless defined
otherwise from SyncAdmin (see SyncAdmin Help).

The retain option is only meaningful when leaving physical
copies of objects in your workspace (keep mode), and is
silently ignored otherwise.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

DesignSync Data Manager DFII SKILL Programming Interface Guide

9

Returns a list of pass and fail counts; the first integer represents the number of
checkouts successfully canceled and the second integer represents the number of
failures. The dssCancelCellViewP function lets you cancel a single checkout, so the
returned list is (1 0) if the cancel is successful and (0 1) if the cancel fails. The function
raises an error if argument checking fails. In all other failure cases, the function either
raises an error or returns nil.

dssCancelFileP
dssCancelFileP(
 t_fileName [?mode t_mode] [?force g_force]
 [?retain g_retain] [?silent g_silent]
 [?background g_background]
)
=> nil/(x_pass x_fail)

Description

Cancels the checkout of a single file.

You can specify an absolute or relative filename. Filenames can be relative to the
current working directory or to any library on the library path. For example, if library acc
is on your library path, then you can specify the cdsinfo.tag file for that library as
acc/cdsinfo.tag, even though the acc library directory might be anywhere on disk.
If a library name exists, and there is also a directory within the current working directory
of the same name, the library name is used.

Arguments

t_fileName A filename. (Required) A filename can be absolute or relative to
the current working directory or to any library on the library path.
Note: You must specify a filename; other file objects that
resolve to directories, libraries, cells, and views are not
supported by the dssCancelFileP function. Likewise, you
cannot specify the type of view object that DesignSync creates,
for example: ~/ttlLib/and2/symbol.sync.cds. These
objects are not actual files; thus, you cannot apply the
dssCancelFileP function to this type of object.

t_mode Fetch mode ("keep", "share", or "mirror"). By default, the
mode matches the default fetch mode. If the default fetch mode
is "lock", the dssCancelFileP default for t_mode is "keep".
See the DesignSync Data Manager DFII User's Guide:Selecting
a Default Fetch Mode to learn how to set the default fetch
mode.

g_force Overwrite the file even if it is locally modified (t). If a file is

Revision Control Functions

10

locally modified and you set t_mode to "share" or "mirror",
but you do not set g_force to t, the cancel operation fails.

g_retain Retain the "last modified" timestamps of the objects that remain
in your workspace (t), or make the timestamps the time of the
cancel operation (nil). The default is nil unless defined
otherwise from SyncAdmin (see SyncAdmin Help).

The retain option is only meaningful when leaving physical
copies of objects in your workspace (keep mode), and is
silently ignored otherwise.

g_silent Run silently (t). (Default)

g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of
checkouts successfully canceled and the second integer represents the number of
failures. The dssCancelFileP function lets you cancel a single checkout, so the
returned list is (1 0) if the cancel is successful and (0 1) if the cancel fails. The function
raises an error if argument checking fails. In all other failure cases, the function either
raises an error or returns nil.

dssCheckinCategoryP
dssCheckinCategoryP(
 t_libName tl_catNames [?viewNames l_viewNames]
 [?mode t_mode] [?force g_force] [?comment t_comment]
 [?skip g_skip] [?new g_new] [?nested g_nested]
 [?retain g_retain] [?silent g_silent] [?iflock g_lock]
 [?background g_background] [?branch t_branch] [?tag g_tag]
)
=> nil/(x_pass x_fail)

Description

DesignSync Data Manager DFII SKILL Programming Interface Guide

11

Checks in objects of one or more categories. You can check in all the objects in a
category at one time or specify views to check in.

Arguments

t_libName Library name. (Required)
tl_catNames One or more category names. (Required)
l_viewNames One or more view name(s) to be checked in. (Optional). Checks

in all views by default.
t_mode Check-in mode ("lock", "share", "mirror", or "keep"). By

default, the mode matches the default fetch mode. See the
DesignSync Data Manager DFII User's Guide:Selecting a
Default Fetch Mode to learn how to set the default fetch mode.

g_force Force a checkin to create a new version in the vault (t). By
default, DesignSync DFII does not force a checkin (nil).

t_comment Check-in comment. By default, no check-in comment is
supplied. However, if DesignSync DFII has been configured to
require a comment of a particular length, a check-in comment is
required.

By using a SKILL list containing the path to a file, you can
specify a comment file. Comment files support UTF-8 compliant
multibyte characters. If DesignSync DFII is configured to require
a comment of a particular length, it should be noted that each
byte in a multibyte character counts individually towards the
comment length .

g_skip Skip version (t). By default, version skipping is not allowed
(nil).

g_new Allow new (or retired) items to be checked in (t). By default,
checking in new items is not allowed (nil).

g_nested Apply to nested category contents (t). (Default)

Note: If g_nested is set to t but one or more nested category
files are missing from your workspace, DesignSync DFII
automatically fetches the missing category files and processes
the specified objects.

g_retain Retain the "last modified" timestamps of the objects that remain
in your workspace (t), or make the timestamps the check-in
time (nil). The default is nil unless defined otherwise from
SyncAdmin (see SyncAdmin Help).

The retain option is only meaningful when leaving physical
copies of objects in your workspace (lock and keep modes),
and is silently ignored otherwise.

Revision Control Functions

12

g_silent Run silently (t). (Default)
g_iflock Specifies whether to check in all modified objects in the

workspace (f) (default) or only targeted files (t). Targeted files
include: locked DesignSync vault files or module members and
added, renamed, or removed module objects.

g_background Run command in the background (t). By default, commands
run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

t_branch Checks the object into the specified branch, rather than
checking the object into the branch it was checked out from.
The branch tag can be any valid branch selector, including
auto(branchname).

Note: This option is not applicable to modules. If used with the
-modulecontext option, or on module data, the command fails
with an appropriate error.

g_tag Tags the object version or module version on the server with the
specified tag name.

For module objects, all objects are evaluated before the checkin
begins. If the module cannot be tagged, for example if the user
does not have access to add a tag or because the tag exists
and is immutable, the entire module checkin fails.

Note: Individual module objects cannot have tags. Only the
module itself can be tagged.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully checked in and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

Example

This example shows a checkin that uses a comment file.

dssCheckinCategoryP "df2test" "inv2" "layout" ?force t ?comment
(list "/my/comments")

DesignSync Data Manager DFII SKILL Programming Interface Guide

13

dssCheckinCellP
dssCheckinCellP(
 t_libName tl_cellNames [?viewNames l_viewNames]
 [?mode t_mode] [?force g_force] [?comment t_comment]
 [?skip g_skip] [?new g_new] [?retain g_retain]
 [?silent g_silent] [?background g_background]
 [?branch t_branch] [?iflock g_lock] [?tag g_tag]
)
=> nil/(x_pass x_fail)

Description

Checks in one or more cells, either all the objects in each cell or a specified set of cell
views.

Arguments

t_libName Library name. (Required)
tl_cellNames One or more cell name(s) to be checked in. (Required)
l_viewNames One or more view name(s) to be checked in. (Optional). Checks

in all views by default.
t_mode Check-in mode ("lock", "share", "mirror", or "keep"). By

default, the mode matches the default fetch mode. See the
DesignSync Data Manager DFII User's Guide:Selecting a
Default Fetch Mode to learn how to set the default fetch mode.

g_force Force a checkin to create new versions in the vault (t). By
default, DesignSync DFII does not force a checkin (nil).

t_comment Check-in comment. By default, no check-in comment is
supplied. However, if DesignSync DFII has been configured to
require a comment of a particular length, a check-in comment is
required.

By using a SKILL list containing the path to a file, you can
specify a comment file. Comment files support UTF-8 compliant
multibyte characters. If DesignSync DFII is configured to require
a comment of a particular length, it should be noted that each
byte in a multibyte character counts individually towards the
comment length .

g_skip Skip version (t). By default, version skipping is not allowed
(nil).

g_new Allow new (or retired) items to be checked in (t). By default,
checking in new items is not allowed (nil).

g_retain Retain the "last modified" timestamps of the objects that remain

Revision Control Functions

14

in your workspace (t), or make the timestamps the check-in
time (nil). The default is nil unless defined otherwise from
SyncAdmin (see SyncAdmin Help).

The retain option is only meaningful when leaving physical
copies of objects in your workspace (lock and keep modes),
and is silently ignored otherwise.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

t_branch Checks the object into the specified branch, rather than
checking the object into the branch it was checked out from.
The branch tag can be any valid branch selector, including
auto(branchname).

Note: This option is not applicable to modules. If used with the
-modulecontext option, or on module data, the command fails
with an appropriate error.

g_iflock Specifies whether to check in all modified objects in the
workspace (f) (default) or only targeted files (t). Targeted files
include: locked DesignSync vault files or module members and
added, renamed, or removed module objects.

g_tag Tags the object version or module version on the server with the
specified tag name.

For module objects, all objects are evaluated before the checkin
begins. If the module cannot be tagged, for example if the user
does not have access to add a tag or because the tag exists
and is immutable, the entire module checkin fails.

Note: Individual module objects cannot have tags. Only the
module itself can be tagged.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully checked in and the second integer represents the number of failures. The

DesignSync Data Manager DFII SKILL Programming Interface Guide

15

function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

Example

This example shows a checkin that uses a comment file.

dssCheckinCellP"df2test" "inv2" "layout" ?force t ?comment (list
"/my/comments")

dssCheckinCellViewP
dssCheckinCellViewP(
 t_libName t_cellName t_viewName [?mode t_mode]
 [?force g_force] [?comment t_comment] [?skip g_skip]
 [?new g_new] [?silent g_silent] [?background g_background]
 [?branch t_branch] [?iflock g_lock] [?tag g_tag]
)
=> nil/(x_pass x_fail)

Description

Checks a cell view into the specified library.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)
t_mode Check-in mode (lock , share, mirror, or keep). By default,

the mode matches the default fetch mode. See DesignSync
DFII Help:Selecting a Default Fetch Mode to learn how to set
the default fetch mode.

g_force Force a checkin to create a new version in the vault (t). By
default, DesignSync DFII does not force a checkin (nil).

t_comment Provide a check-in comment. By default, no check-in comment
is supplied. However, if DesignSync DFII has been configured
to require a comment of a particular length, a check-in
comment is required.

By using a SKILL list containing the path to a file, you can
specify a comment file. Comment files support UTF-8
compliant multibyte characters. If DesignSync DFII is
configured to require a comment of a particular length, it
should be noted that each byte in a multibyte character counts

Revision Control Functions

16

individually towards the comment length .
g_skip Skip version (t). By default, version skipping is not allowed

(nil).
g_new Allow new (or retired) items to be checked in (t). By default,

checking in new items is not allowed (nil).
g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds
background commands to the Background Queue. Use the
graphical interface command, Synchronicity => Options =>
Show Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

t_branch Checks the object into the specified branch, rather than
checking the object into the branch it was checked out from.
The branch tag can be any valid branch selector, including
auto(branchname).

Note: This option is not applicable to modules. If used with the
-modulecontext option, or on module data, the command fails
with an appropriate error.

g_iflock Specifies whether to check in all modified objects in the
workspace (f) (default) or only targeted files (t). Targeted files
include: locked DesignSync vault files or module members and
added, renamed, or removed module objects.

g_tag Tags the object version or module version on the server with
the specified tag name.

For module objects, all objects are evaluated before the
checkin begins. If the module cannot be tagged, for example if
the user does not have access to add a tag or because the tag
exists and is immutable, the entire module checkin fails.

Note: Individual module objects cannot have tags. Only the
module itself can be tagged.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully checked in and the second integer represents the number of failures. The
dssCheckinCellViewP function lets you check-in a single cell view only, so the
returned list is (1 0) if the check-in operation is successful and (0 1) if the check-in

DesignSync Data Manager DFII SKILL Programming Interface Guide

17

operation fails. The function raises an error if argument checking fails. In all other
failure cases, the function either raises an error or returns nil.

Example

This example shows a checkin that uses a comment file.

dssCheckinCellViewP "df2test" "inv2" "layout" ?force t ?comment
(list "/my/comments")

dssCheckinFileP
dssCheckinFileP
 (tl_fileNames [?mode t_mode] [?force g_force]
 [?comment t_comment] [?skip g_skip] [?new g_new]
 [?retain g_retain] [?silent g_silent] [?tag g_tag]
 [?background g_background][?recursive g_recursive]
 [?branch t_branch] [?iflock g_lock]
 [?moduleContext t_moduleContext]
)
=> nil/(x_pass x_fail)

Description

Checks in one or more file objects.

You can specify absolute or relative filenames to be checked in. Filenames can be
relative to the current working directory or to any library on the library path. For
example, if library acc is on your library path, then you can specify the cdsinfo.tag
file for that library as acc/cdsinfo.tag, even though the acc library directory might
be anywhere on disk. If a library name exists, and there is also a directory within the
current working directory of the same name, the library name is used.

Specify wildcards for filenames using glob-style expressions.

Note:

For wildcards, filenames in the current working directory take precedence over library
names. That is, a glob expression of lib* will not match libraries libA and libB if
similarly named files exist in the current working directory; the dssCheckinFileP
function first expands regular expressions against the current directory, and then
performs library matching.

Arguments

tl_fileNames One or more file object(s) to be checked in. (Required) You

Revision Control Functions

18

can specify file objects as glob-style expressions. A file object
can be:

A filename, specified as a full path or a path relative to the
current working directory.

A filename, specified relative to a library, for example
<libname>/cdsinfo.tag or
<libname>/cellname/prop.xx.

A directory name, either a full path or a path relative to the
current working directory.

A library name.

A cell name, specified as <libname>/<cellname>.

A view name, specified as
<libname>/<cellname>/<viewname>.

A module name.

Note: DesignSync creates objects called <name>.sync.cds
to represent Cadence views, where <name> corresponds to
the name of the view folder, for example:
~/ttlLib/and2/symbol.sync.cds. These objects are
not actual files; thus, you cannot apply the
dssCheckinFileP function to this type of object.

t_mode Check-in mode ("lock", "share", "mirror", or "keep"). By
default, the mode matches the default fetch mode. See the
DesignSync Data Manager DFII User's Guide:Selecting a
Default Fetch Mode to learn how to set the default fetch
mode.

g_force Force a checkin to create new versions in the vault (t). By
default, DesignSync DFII does not force a checkin (nil).

t_comment Check-in comment. By default, no check-in comment is
supplied. However, if DesignSync DFII has been configured
to require a comment of a particular length, a check-in
comment is required.

By using a SKILL list containing the path to a file, you can
specify a comment file. Comment files support UTF-8
compliant multibyte characters. If DesignSync DFII is
configured to require a comment of a particular length, it
should be noted that each byte in a multibyte character

DesignSync Data Manager DFII SKILL Programming Interface Guide

19

counts individually towards the comment length .
g_skip Skip version (t). By default, version skipping is not allowed

(nil).
g_new Allow new (or retired) items to be checked in (t). By default,

checking in new items is not allowed (nil).
g_retain Retain the "last modified" timestamps of the objects that

remain in your workspace (t), or make the timestamps the
check-in time (nil). The default is nil unless defined
otherwise from SyncAdmin (see SyncAdmin Help).

The retain option is only meaningful when leaving physical
copies of objects in your workspace (lock and keep modes),
and is silently ignored otherwise.

g_silent Run silently (t). (Default)
g_tag Tags the object version or module version on the server with

the specified tag name.

For module objects, all objects are evaluated before the
checkin begins. If the module cannot be tagged, for example
if the user does not have access to add a tag or because the
tag exists and is immutable, the entire module checkin fails.

Note: Individual module objects cannot have tags. Only the
module itself can be tagged.

g_background Run command in the background (t). By default, commands
run in the foreground (nil). DesignSync DFII adds
background commands to the Background Queue. Use the
graphical interface command, Synchronicity => Options =>
Show Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

g_recursive Run checkin recursively (t). (Default)

Note: If you check in a folder, you must specify recursive to
check in the contents of the folder.

t_branch Checks the object into the specified branch, rather than
checking the object into the branch it was checked out from.
The branch tag can be any valid branch selector, including
auto(branchname).

Note: This option is not applicable to modules. If used with
the -modulecontext option, or on module data, the command
fails with an appropriate error.

Revision Control Functions

20

g_iflock Specifies whether to check in all modified objects in the
workspace (f) (default) or only targeted files (t). Targeted files
include: locked DesignSync vault files or module members
and added, renamed, or removed module objects.

t_moduleContext Specifies the module context to restrict the operation to. The
module must have its base directory at, or above, the level of
the library being checked in.

If you do not specify a module context, the operation applies
to all objects specified. If you have enabled checkin of new
objects and not specified a module context, the commandt
uses smart module detection to determine the target module.
For more information on how smart module detection
determines the target module, see ENOVIA Synchronicity
DesignSync Data Manager User's Guide: Understanding
Smart Module Detection.

Note: You can only specify one module context value..

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully checked in and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

Example

This example shows a checkin that uses a comment file.

dssCheckinFileP "/CHDX2/Rev1/chxr1" ?force t ?comment (list
"/my/comments")

dssCheckinHierarchyP
dssCheckinHierarchyP(
 t_libName t_cellName tl_viewNames
 [?switchUsing t_switchUsing]
 [?switchList l_switchList] [?stopList l_stopList]
 [?switchLibChoice S_switchLibChoice]
 [?switchLibNames l_switchLibNames]
 [?processViews gl_processViews]
 [?includeConfigs g_includeConfigs]
 [?processFiles gS_processFiles]
 [?tag g_tag] [?mode t_mode] [?silent g_silent]
 [?comment t_comment] [?force g_force] [?iflock g_lock]

DesignSync Data Manager DFII SKILL Programming Interface Guide

21

 [?new g_new] [?skip g_skip] [?retain g_retain]
 [?branch t_branch] [?background g_background]
)
=> nil/(x_pass x_fail)

Description

Checks objects into a design hierarchy. To identify the cells in a design hierarchy,
DesignSync DFII scans the hierarchy, beginning with the top-level cell views you specify
using the tl_viewNames argument. Then, DesignSync DFII descends into the views as
appropriate.

For design views, DesignSync DFII scans the hierarchy, beginning with the top-level cell
views you specify using the l_viewNames argument. Then, DesignSync DFII descends
into the views indicated by the t_switchUsing argument. You can use the
t_switchUsing argument to specify that DesignSync DFII descend into one or more
views you specify in a switch list (using the l_switchList argument). You can
instead have DesignSync DFII descend into all instantiated views or all views that exist
for a cell by setting the t_switchUsing argument to "instantiatedView" or
"allViews", respectively. Use the l_stopList argument to indicate at which views
DesignSync DFII is to stop scanning. DesignSync DFII also offers other hierarchy
controls, such as limiting which libraries are scanned using the S_switchLibChoice
argument and limiting which views are checked in using the g_processViews
argument.

For config views, DesignSync traverses the hierarchy specified by the view. Because it
uses the information contained in the config view, it does not use the arguments
l_switchList, t_switchUsing and l_stopList. You can limit which views or
libraries are tagged by using the g_processViews S_switchLibChoice arguments.

Notes:

• For DesignSync DFII to scan the hierarchy, the cells must be in your local
workspace.

• DesignSync provides support for operating both on design views and config
views, but you cannot specify both types of views within the same operation.

• DesignSync DFII does not scan through libraries that have been filtered out using
the l_switchLibNames argument. For example, suppose a cell in library_1
references a cell in library_2, which references a cell in library_3. If library_2 is
filtered out in the l_switchLibNames argument, the cell in library_3 is not
found.

Arguments

t_libName Top library name of hierarchy to be checked in. (Required)

Revision Control Functions

22

t_cellName Top cell name of hierarchy to be checked in. (Required)
tl_viewNames Top-level view names of hierarchies to be checked in.

(Required)
Can be given a single view, a string, or a list of views.

Note: The Switch Using, Switch List, and Stop List
fields are not applicable to "config" views.

DesignSync provides support for operating both on design
views and config views, but you cannot specify both types
of views within the same operation.

t_switchUsing Indicates how the design hierarchy is to be traversed.
Specify one of the following:

• "firstSwitchList": As the design is traversed,
DesignSync DFII descends into the first view
specified in the switch list that exists for a cell.
Specify the switch list using the l_switchList
argument. (Default)

• "allSwitchList": As the design is traversed,
DesignSync DFII descends into each view of the cell
in the workspace that matches a view in the switch
list. Specify the switch list using the l_switchList
argument.

• "instantiatedView": As the design is traversed,
DesignSync DFII descends into each instantiated
view. The l_switchList argument is ignored in
this case.

• "allViews": As the design is traversed,
DesignSync DFII descends into each view of the cell
in the workspace that exists for each cell. The
l_switchList argument is ignored in this case.

This field is not applicable when specifying a config view.
l_switchList Names of the views to be scanned to identify the design

hierarchy. The l_switchList argument is required if you
specify the "firstSwitchList" or "allSwitchList"
values using the t_switchUsing argument. If the
t_switchUsing argument is set to
"instantiatedView" or "allViews", this argument is
ignored.

This field is not applicable when specifying a config view.
l_stopList Names of views at which the hierarchy scanning should

stop. As the design is traversed, if the l_switchList

DesignSync Data Manager DFII SKILL Programming Interface Guide

23

view being scanned is also in this list, scanning stops.

This field is not applicable when specifying a config view.
S_switchLibChoice Specifies which libraries to enter as the hierarchy is

scanned:

• all: Enter all libraries. (Default)
• only: Enter only the libraries specified by the

l_switchLibNames argument.
• not: Enter all libraries except those specified by the

l_switchLibNames argument.

l_switchLibNames Library names controlled by the S_switchLibChoice
argument. You need not include this argument if all is
selected as the S_switchLibChoice argument.

g_processViews Once you have identified the hierarchy using the
t_switchUsing argument, as well as the switch list and
stop list if necessary, specify the views of the identified
cells to be processed:

• t: Process all views that exist for the cell.
• nil: Process only the single view switched into.

(Default)
• switchList: For config views, use the switch view

and the switch list defined within the config view. If
there are sub-configs, then the switch list of the sub-
configs is used within those sub-configs. For non-
config views, use the value specified for the
l_switchList option.

• List of views to process.

g_includeConfigs Specifies whether the config view cells are included in the
operation.

• nil: Only the design cells are included in the operation.
The hierarchy definition cells for the config view are
omitted.

• t: Operate on the design cells and the hierarchy
definition (config) cells. (Default)

This argument is silently ignored if the specified view is not
a config view.

gS_processFiles Specifies whether cell- and library-level files are processed
in addition to the specified cell views:

Revision Control Functions

24

• nil: No cell- or library-level files are processed.
(Default)

• cell: Cell-level files are processed, but library-level
files are not. This option selects only cell-level files
for those cells on which you are operating.

• library: Cell- and library-level files are processed.

t_tag Tags the object version or module version on the server
with the specified tag name.

For module objects, all objects are evaluated before the
checkin begins. If the module cannot be tagged, for
example if the user does not have access to add a tag or
because the tag exists and is immutable, the entire module
checkin fails.

Note: Individual module objects cannot have tags. Only
the module itself can be tagged.

t_mode Check-in mode (lock , share, mirror, or keep). By
default, the mode matches the default fetch mode. See
DesignSync DFII Help:Selecting a Default Fetch Mode to
learn how to set the default fetch mode.

g_silent Run silently (t). (Default)
t_comment Check-in comment. By default, no check-in comment is

supplied. However, if DesignSync DFII has been
configured to require a comment of a particular length, a
check-in comment is required.

By using a SKILL list containing the path to a file, you can
specify a comment file. Comment files support UTF-8
compliant multibyte characters. If DesignSync DFII is
configured to require a comment of a particular length, it
should be noted that each byte in a multibyte character
counts individually towards the comment length .

g_force Overwrite locally modified files in your workspace (t). By
default, local changes are not overwritten when you check
out files (nil).

g_iflock Specifies whether to check in all modified objects in the
workspace (f) (default) or only targeted files (t). Targeted
files include: locked DesignSync vault files or module
members and added, renamed, or removed module
objects.

g_new Allow new (or retired) items to be checked in (t). By
default, checking in new items is not allowed (nil).

g_skip Skip version (t). By default, version skipping is not allowed

DesignSync Data Manager DFII SKILL Programming Interface Guide

25

(nil).
g_retain Retain the "last modified" timestamps of the objects that

remain in your workspace (t), or make the timestamps the
check-in time (nil). The default is nil unless defined
otherwise from SyncAdmin (see SyncAdmin Help).

The retain option is only meaningful when leaving physical
copies of objects in your workspace (lock and keep
modes), and is silently ignored otherwise.

t_branch Checks the object into the specified branch, rather than
checking the object into the branch it was checked out
from. The branch tag can be any valid branch selector,
including auto(branchname).

Note: This option is not applicable to modules. If used with
the -modulecontext option, or on module data, the
command fails with an appropriate error.

g_background Run command in the background (t). By default,
commands run in the foreground (nil). DesignSync DFII
adds background commands to the Background Queue.
Use the graphical interface command,
Synchronicity => Options => Show Background Queue
to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully checked in and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

Example

This example shows a checkin that uses a comment file.

dssCheckinHierarchyP "df2test" "inv2" "layout" ?force t ?comment
(list "/my/comments")

dssCheckinLibraryP

Revision Control Functions

26

dssCheckinLibraryP(
 t_libName [?viewNames l_viewNames] [?mode t_mode]
 [?force g_force][?comment t_comment] [?skip g_skip]
 [?new g_new] [?retain g_retain] [?silent g_silent]
 [?background g_background] [?moduleContext t_moduleContext]
 [?branch t_branch] [?iflock g_lock] [?tag g_tag]
)
=> nil/(x_pass x_fail)

Description

Checks in a library, either all the objects in the library or a specified list of cell views.

Arguments

t_libName Library name. (Required)
l_viewNames One or more view name(s) to be checked in. (Optional).

Checks in all views by default.
t_mode Check-in mode ("lock", "share", "mirror", or "keep"). By

default, the mode matches the default fetch mode. See the
DesignSync Data Manager DFII User's Guide:Selecting a
Default Fetch Mode to learn how to set the default fetch
mode.

g_force Force a checkin to create new versions in the vault (t). The
default is nil.

t_comment Check-in comment. By default, no check-in comment is
supplied. However, if DesignSync DFII has been configured
to require a comment of a particular length, a check-in
comment is required.

By using a SKILL list containing the path to a file, you can
specify a comment file. Comment files support UTF-8
compliant multibyte characters. If DesignSync DFII is
configured to require a comment of a particular length, it
should be noted that each byte in a multibyte character
counts individually towards the comment length .

g_skip Skip version (t). By default, version skipping is not allowed
(nil).

g_new Allow new (or retired) items to be checked in (t). By default,
checking in new items is not allowed (nil).

g_retain Retain the "last modified" timestamps of the objects that
remain in your workspace (t), or make the timestamps the
check-in time (nil). The default is nil unless defined
otherwise from SyncAdmin (see SyncAdmin Help).

DesignSync Data Manager DFII SKILL Programming Interface Guide

27

The retain option is only meaningful when leaving physical
copies of objects in your workspace (lock and keep modes),
and is silently ignored otherwise.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds
background commands to the Background Queue. Use the
graphical interface command, Synchronicity => Options =>
Show Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

t_moduleContext The module context to restrict the operation to. The module
must have its base directory at, or above, the level of the
library being checked in.

Note: You can only specify one module. If you are specifying
a module, you must use two separate checkins to check
objects to two different modules in the same workspace.

If you do not specify a module context, the operation applies
to all objects specified. If you have enabled checkin of new
objects and not specified a module context, the command
uses smart module detection to determine the target module.
For more information on how smart module detection
determines the target module, see ENOVIA Synchronicity
DesignSync Data Manager User's Guide: Understanding
Smart Module Detection.

t_branch Checks the object into the specified branch, rather than
checking the object into the branch it was checked out from.
The branch tag can be any valid branch selector, including
auto(branchname).

Note: This option is not applicable to modules. If used with
the -modulecontext option, or on module data, the command
fails with an appropriate error.

g_iflock Specifies whether to check in all modified objects in the
workspace (f) (default) or only targeted files (t). Targeted files
include: locked DesignSync vault files or module members
and added, renamed, or removed module objects.

t_tag Tags the object version or module version on the server with
the specified tag name.

For module objects, all objects are evaluated before the

Revision Control Functions

28

checkin begins. If the module cannot be tagged, for example
if the user does not have access to add a tag or because the
tag exists and is immutable, the entire module checkin fails.

Note: Individual module objects cannot have tags. Only the
module itself can be tagged.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully checked in and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

Example

This example shows a checkin that uses a comment file.

dssCheckinLibraryP "df2test" ?force t ?comment (list
"/my/comments")

dssCheckoutCategoryP
dssCheckoutCategoryP(
 t_libName tl_catNames [?viewNames l_viewNames]
 [?mode t_mode] [?tag t_tag] [?force g_force]
 [?overlay g_overlay][?nested g_nested] [?all g_all]
[?retain g_retain] [?unifyState g_unifyState]
[?silent g_silent] [?background g_background]
)
> nil/(x_pass x_fail)

Description

Checks out objects of one or more categories. You can check out all the objects in a
category at one time or specify views to check out.

Arguments

t_libName Library name. (Required)
tl_catNames One or more category names. (Required)
l_viewNames One or more view name(s) to be checked out. (Optional).

Checks out all views by default.
t_mode Check-out mode ("lock", "share", "mirror", "get", or

"lockref"). By default, the mode matches the default fetch

DesignSync Data Manager DFII SKILL Programming Interface Guide

29

mode. See the DesignSync Data Manager DFII User's
Guide:Selecting a Default Fetch Mode to learn how to set the
default fetch mode.

t_tag Selector, or version name, to be checked out. By default, no
selector is specified, in which case the persistent selector list
determines the version -- typically the latest version on the
current branch. See DesignSync Data Manager User's Guide
to learn more about selectors.

Note: When used with modules, this identifies the module
version, not the module member version. Use the t_ version
option to specify a module member version. t_version and
t_tag are mutually incompatible.

g_force Overwrite locally modified files in your workspace (t). By
default, local changes are not overwritten when you check out
files (nil).

g_overlay Fetch a version of a design object from another branch and
overlay it on the version you have checked out in your
workspace (t). By default, an overlay is not performed (nil).
 Note: This option is available only if t_mode is set to "get".

g_nested Apply to nested category contents (t). (Default)

Note: If g_nested is set to t but one or more nested category
files are missing from your workspace, DesignSync DFII
automatically fetches the missing category files and processes
the specified objects.

g_all Check out all matching category objects (t), even those objects
that are not in your local workspace. (Default) If set to nil,
checks out only those objects that are already in your local
workspace.

g_retain Retain the "last modified" timestamps of the checked-out
objects as recorded when the object was checked into the vault
(t), or make the timestamps the check-out time (nil). The
default is nil unless defined otherwise from SyncAdmin (see
SyncAdmin Help).

The retain option is only meaningful when checking out physical
copies (lock and get modes) and is silently ignored otherwise.

g_unifyState Put objects in the state specified by t_mode even if the
workspace already contains the requested version and
therefore no checkout is required (t). By default (nil), a check-
out operation only changes the states of objects that are
fetched from the vault.

g_silent Run silently (t). (Default)

Revision Control Functions

30

g_background Run command in the background (t). By default, commands
run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully checked out and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssCheckoutCellP
dssCheckoutCellP(
 t_libName tl_cellNames [?viewNames l_viewNames]
 [?mode t_mode] [?tag t_tag] [?force g_force]
[?overlay g_overlay] [?retain g_retain]
[?unifyState g_unifyState] [?silent g_silent]
[?background g_background]
)
=> nil/(x_pass x_fail)

Description

Checks out one or more cells, either all the objects in each cell or a specified set of cell
views.

Arguments

t_libName Library name. (Required)
tl_cellNames One or more cell name(s) to be checked out. (Required)
l_viewNames One or more view name(s) to be checked out. (Optional).

Checks out all views by default.
t_mode Check-out mode ("lock", "share", "mirror", "get", or

"lockref"). By default, the mode matches the default fetch
mode. See the DesignSync Data Manager DFII User's
Guide:Selecting a Default Fetch Mode to learn how to set the
default fetch mode.

t_tag Selector, or version name, to be checked out. By default, no

DesignSync Data Manager DFII SKILL Programming Interface Guide

31

selector is specified, in which case the persistent selector list
determines the version -- typically the latest version on the
current branch. See DesignSync Data Manager User's Guide
to learn more about selectors.

Note: When used with modules, this identifies the module
version, not the module member version.

g_force Overwrite locally modified files in your workspace (t). By
default, local changes are not overwritten when you check out
files (nil).

g_overlay Fetch a version of a design object from another branch and
overlay it on the version you have checked out in your
workspace (t). By default, an overlay is not performed (nil).
 Note: This option is available only if t_mode is set to "get".

g_retain Retain the "last modified" timestamps of the checked-out
objects as recorded when the object was checked into the vault
(t), or make the timestamps the check-out time (nil). The
default is nil unless defined otherwise from SyncAdmin (see
SyncAdmin Help).

The retain option is only meaningful when checking out physical
copies (lock and get modes) and is silently ignored otherwise.

g_unifyState Put objects in the state specified by t_mode even if the
workspace already contains the requested version and
therefore no checkout is required (t). By default (nil), a check-
out operation only changes the states of objects that are
fetched from the vault.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully checked out and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

Revision Control Functions

32

dssCheckoutCellViewP
dssCheckoutCellViewP(
 t_libName t_cellName t_viewName
[?tag t_tag] [?vaultVersion t_vaultVersion]
 [?mode t_mode] [?force g_force] [?overlay g_overlay]
[?retain g_retain] [?unifyState g_unifyState]
[?silent g_silent] [?background g_background]
)
=> nil/(x_pass x_fail)

Description

Checks out a single cell view.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)
t_tag Selector, or version name, to be checked out. By default, no

selector is specified, in which case the persistent selector list
determines the version -- typically the latest version on the
current branch. See DesignSync Data Manager User's Guide
to learn more about selectors.

Note: When used with modules, this identifies the module
version, not the module member version. Use the t_
vaultVersion option to specify a module member version.
 t_vaultVersion and t_tag are mutually incompatible.

t_vaultVersion Version number of the module member object to be checked
out.

Note: The t_vaultVersion and t_tag options are mutually
incompatible.

t_mode Check-out mode ("lock", "share", "mirror", "get", or
"lockref"). By default, the mode matches the default fetch
mode. See the DesignSync Data Manager DFII User's
Guide:Selecting a Default Fetch Mode to learn how to set the
default fetch mode.

g_force Overwrite locally modified files in your workspace (t). By
default, local changes are not overwritten when you check out
files (nil).

g_overlay Fetch a version of a design object from another branch and
overlay it on the version you have checked out in your

DesignSync Data Manager DFII SKILL Programming Interface Guide

33

workspace (t). By default, an overlay is not performed (nil).
 Note: This option is available only if t_mode is set to "get".

g_retain Retain the "last modified" timestamp of the checked-out view
view as recorded when the view was checked into the vault (t),
or make the timestamp the check-out time (nil). The default is
nil unless defined otherwise from SyncAdmin (see
SyncAdmin Help).

The retain option is only meaningful when checking out
physical copies (lock and get modes) and is silently ignored
otherwise.

g_unifyState Put the view in the state specified by t_mode even if the
workspace already contains the requested version and
therefore no checkout is required (t). By default (nil), a
check-out operation only changes the states of objects that are
fetched from the vault.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully checked out and the second integer represents the number of failures. The
dssCheckoutCellViewP function lets you check out a single cell view only, so the
returned list is (1 0) if the checkout is successful and (0 1) if the checkout fails. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssCheckoutFileP
dssCheckoutFileP(
 tl_fileNames [?mode t_mode] [?tag t_tag]
 [?force g_force] [?incremental g_incremental]
[?overlay g_overlay] [?retain g_retain]
[?unifyState g_unifyState][?silent g_silent]
[?recursive g_recursive] [?background g_background]
[?moduleContext t_moduleContext]

Revision Control Functions

34

)
=> nil/(x_pass x_fail)

Description

Checks out one or more file objects.

You can specify absolute or relative filenames to be checked out. Filenames can be
relative to the current working directory or to any library on the library path. For
example, if library acc is on your library path, then you can specify the cdsinfo.tag
file for that library as acc/cdsinfo.tag, even though the acc library directory might
be anywhere on disk. If a library name exists, and there is also a directory within the
current working directory of the same name, the library name is used.

Specify wildcards for filenames using glob-style expressions.

Note:

For wildcards, filenames in the current working directory take precedence over library
names. That is, a glob expression of lib* will not match libraries libA and libB if
similarly named files exist in the current working directory; the dssCheckoutFileP
function first expands regular expressions against the current directory, and then
performs library matching.

Arguments

tl_fileNames One or more file object(s) to be checked out. (Required) You
can specify file objects as glob-style expressions. A file object
can be:

A filename, specified as a full path or a path relative to the
current working directory.

A filename, specified relative to a library, for example
<libname>/cdsinfo.tag or
<libname>/cellname/prop.xx.

A directory name, either a full path or a path relative to the
current working directory.

A library name.

A cell name, specified as <libname>/<cellname>.

A view name, specified as

DesignSync Data Manager DFII SKILL Programming Interface Guide

35

<libname>/<cellname>/<viewname>.

Note: DesignSync creates objects called <name>.sync.cds
to represent Cadence views, where <name> corresponds to
the name of the view folder, for example:
~/ttlLib/and2/symbol.sync.cds. These objects are
not actual files; thus, you cannot apply the
dssCheckoutFileP function to this type of object.

t_mode Check-out mode ("lock", "share", "mirror", "get", or
"lockref"). By default, the mode matches the default fetch
mode. See DesignSync DFII Help: Selecting a Default Fetch
Mode to learn how to set the default fetch mode.

Note: Because lockref mode should only be used when
you are regenerating data, it is not an appropriate mode for all
object types. For example, lockref is likely not appropriate
for library-level files such as prop.xx, cdsinfo.tag, and
category files.

t_tag Selector, or version name, to be checked out. By default, no
selector is specified, in which case the persistent selector list
determines the version -- typically the latest version on the
current branch. See DesignSync Data Manager User's Guide
to learn more about selectors.

Note: When used with modules, this identifies the module
version, not the module member version.

g_force Overwrite locally modified objects in your workspace (t). By
default, local changes are not overwritten when you check out
objects (nil).

g_incremental Perform incremental (t) or full (nil) populate. If not provided,
incremental behavior is determined by SyncAdmin setting
(see SyncAdmin Help).

g_overlay Fetch a version of an object from another branch and overlay
it on the version you have checked out in your workspace (t).
By default, an overlay is not performed (nil). Note: This
option is available only if t_mode is set to "get".

g_retain Retain the "last modified" timestamps of the checked-out
objects as recorded when the object was checked into the
vault (t), or make the timestamps the check-out time (nil).
The default is nil unless defined otherwise from SyncAdmin
(see SyncAdmin Help).

The retain option is only meaningful when checking out
physical copies (lock and get modes) and is silently ignored

Revision Control Functions

36

otherwise.
g_unifyState Put objects in the state specified by t_mode even if the

workspace already contains the requested version and
therefore no checkout is required (t). By default (nil), a
check-out operation only changes the states of objects that
are fetched from the vault.

g_silent Run silently (t). (Default)
g_recursive Check out all objects in each specified directory, as well as its

subdirectories (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds
background commands to the Background Queue. Use the
graphical interface command, Synchronicity => Options =>
Show Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

t_moduleContext The module context to restrict the operation to. The module
must have its base directory at, or above, the level of the
object being checked out.

If you do not specify a module context, the operation applies
to all objects specified.

Note: You can only specify one module. If you are checking
out objects to two different modules in the same workspace,
use two separate checkout operations.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully checked out and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssCheckoutHierarchyP
dssCheckoutHierarchyP(
 t_libName t_cellName tl_viewNames
 [?switchUsing t_switchUsing]

DesignSync Data Manager DFII SKILL Programming Interface Guide

37

 [?switchList l_switchList] [?mode t_mode]
 [?force g_force] [?tag t_tag]
 [?overlay g_overlay] [?retain g_retain]
 [?unifyState g_unifyState] [?stopList l_stopList]
 [?fetchMissingCells g_fetchMissingCells]
 [?switchLibChoice S_switchLibChoice]
 [?switchLibNames l_switchLibNames]
 [?processViews gl_processViews]
 [?includeConfigs g_includeConfigs]
 [?processFiles gS_processFiles] [?silent g_silent]
 [?background g_background]
)
=> nil/(x_pass x_fail)

Description

Checks out objects of a design hierarchy.

For design views, DesignSync DFII scans the hierarchy, beginning with the top-level cell
views you specify using the l_viewNames argument. Then, DesignSync DFII descends
into the views indicated by the t_switchUsing argument. You can use the
t_switchUsing argument to specify that DesignSync DFII descend into one or more
views you specify in a switch list (using the l_switchList argument). You can
instead have DesignSync DFII descend into all instantiated views or all views that exist
for a cell by setting the t_switchUsing argument to "instantiatedView" or
"allViews", respectively. Use the l_stopList argument to indicate at which views
DesignSync DFII is to stop scanning. DesignSync DFII also offers other hierarchy
controls, such as limiting which libraries are scanned using the S_switchLibChoice
argument and limiting which views are checked in using the g_processViews
argument.

For config views, DesignSync traverses the hierarchy specified by the view. Because it
uses the information contained in the config view, it does not use the arguments
l_switchList, t_switchUsing and l_stopList. You can limit which views or
libraries are checked out by using the g_processViews S_switchLibChoice
arguments.

Notes:

• For DesignSync DFII to scan the hierarchy, the cells must be in your local
workspace.

• DesignSync provides support for operating both on design views and config
views, but you cannot specify both types of views within the same operation.

• DesignSync DFII does not scan through libraries that have been filtered out using
the l_switchLibNames argument. For example, suppose a cell in library_1
references a cell in library_2, which references a cell in library_3. If library_2 is

Revision Control Functions

38

filtered out in the l_switchLibNames argument, the cell in library_3 is not
found.

Arguments

t_libName Top library name of hierarchy to be checked out.
(Required)

t_cellName Top cell name of hierarchy to be checked out.
(Required)

tl_viewNames Top-level view names of hierarchies to be checked out.
(Required)
Can be given a single view, a string, or a list of views.

Note: The Switch Using, Switch List, and Stop List
fields are not applicable to "config" views.

DesignSync provides support for operating both on
design views and config views, but you cannot specify
both types of views within the same operation.

t_switchUsing Indicates how the design hierarchy is to be traversed.
Specify one of the following:

• "firstSwitchList": As the design is
traversed, DesignSync DFII descends into the
first view specified in the switch list that exists for
a cell. Specify the switch list using the
l_switchList argument. (Default)

• "allSwitchList": As the design is traversed,
DesignSync DFII descends into each view of the
cell in the workspace that matches a view in the
switch list. Specify the switch list using the
l_switchList argument.

• "instantiatedView": As the design is
traversed, DesignSync DFII descends into each
instantiated view. The l_switchList argument
is ignored in this case.

• "allViews": As the design is traversed,
DesignSync DFII descends into each view of the
cell in the workspace that exists for each cell. The
l_switchList argument is ignored in this case.

This field is not applicable when specifying a config
view.

l_switchList Names of the views to be scanned to identify the design
hierarchy. The l_switchList argument is required if

DesignSync Data Manager DFII SKILL Programming Interface Guide

39

you specify the "firstSwitchList" or
"allSwitchList" values using the t_switchUsing
argument. If the t_switchUsing argument is set to
"instantiatedView" or "allViews", this argument
is ignored.

This field is not applicable when specifying a config
view.

t_mode Check-out mode ("lock", "share", "mirror", "get", or
"lockref"). By default, the mode matches the default
fetch mode. See DesignSync DFII Help:Selecting a
Default Fetch Mode to learn how to set the default fetch
mode.

g_force Overwrite locally modified files in your workspace (t). By
default, local changes are not overwritten when you
check out files (nil).

t_tag Selector, or version name, to be checked out. By
default, no selector is specified, in which case the
persistent selector list determines the version -- typically
the latest version on the current branch. See
DesignSync Data Manager User's Guide to learn more
about selectors.

Note: When used with modules, this identifies the
module version, not the module member version.

g_overlay Fetch a version of a design object from another branch
and overlay it on the version you have checked out in
your workspace (t). By default, an overlay is not
performed (nil). Note: This option is available only if
t_mode is set to "get".

g_retain Retain the "last modified" timestamps of the checked-out
objects as recorded when the object was checked into
the vault (t), or make the timestamps the check-out time
(nil). The default is nil unless defined otherwise from
SyncAdmin (see SyncAdmin Help).

The retain option is only meaningful when checking out
physical copies (lock and get modes) and is silently
ignored otherwise.

g_unifyState Put objects in the state specified by t_mode even if the
workspace already contains the requested version and
therefore no checkout is required (t). By default (nil), a
check-out operation only changes the states of objects
that are fetched from the vault.

Revision Control Functions

40

l_stopList Names of views at which the hierarchy scanning should
stop. As the design is traversed, if the l_switchList
view being scanned is also in this list, scanning stops.

This field is not applicable when specifying a config
view.

g_fetchMissingCells Fetch cells in the hierarchy that are not present in the
workspace (t). By default, a hierarchical checkout only
fetches cells in your workspace (nil). Enabling this
option also fetches missing views corresponding to the
cells in the workspace.

Select this option to check out the entire hierarchy, even
if some cells are not currently in your workspace. The
checkout can be significantly slower, but it ensures that
the entire hierarchy is checked out. The checkout is
iterative -- if cells or views are missing, DesignSync DFII
fetches those objects and then scans the hierarchy
again in order to fetch objects referenced by the missing
views and cells. This iterative scanning continues until
all of the missing cells and views have been fetched.

S_switchLibChoice Specifies which libraries to enter as the hierarchy is
scanned:

• all: Enter all libraries. (Default)
• only: Enter only the libraries specified by the

l_switchLibNames argument.
• not: Enter all libraries except those specified by

the l_switchLibNames argument.

l_switchLibNames Library names controlled by the S_switchLibChoice
argument. You need not include this argument if all is
selected as the S_switchLibChoice argument.

g_processViews Once you have identified the hierarchy using the
t_switchUsing argument, as well as the switch list
and stop list if necessary, specify the views of the
identified cells to be processed:

• t: Process all views that exist for the cell.
• nil: Process only the single view switched into.

(Default)
• switchList: For config views, use the switch

view and the switch list defined within the config
view. If there are sub-configs, then the switch list
of the sub-configs is used within those sub-

DesignSync Data Manager DFII SKILL Programming Interface Guide

41

configs. For non-config views, use the value
specified for the l_switchList option.

• List of views to process.

g_includeConfigs Specifies whether the config view cells are included in
the operation.

• nil: Only the design cells are included in the
operation. The hierarchy definition cells for the
config view are omitted.

• t: Operate on the design cells and the hierarchy
definition (config) cells. (Default)

This argument is silently ignored if the specified view is
not a config view.

gS_processFiles Specifies whether cell- and library-level files are
processed in addition to the specified cell views:

• nil: No cell- or library-level files are processed.
(Default)

• cell: Cell-level files are processed, but library-
level files are not. This option selects only cell-
level files for those cells on which you are
operating.

• library: Cell- and library-level files are
processed.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default,

commands run in the foreground (nil). DesignSync
DFII adds background commands to the Background
Queue. Use the graphical interface command,
Synchronicity => Options => Show Background
Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output
of background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully checked out and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

Revision Control Functions

42

dssCheckoutLibraryP
dssCheckoutLibraryP(
 t_libName [?viewNames l_viewNames] [?mode t_mode]
 [?tag t_tag] [?force g_force] [?incremental g_incremental]
[?overlay g_overlay] [?retain g_retain]
[?unifyState g_unifyState][?silent g_silent]
[?background g_background] [?moduleContext t_moduleContext]
)
=> nil/(x_pass x_fail)

Description

Checks out a library, either all the objects in the library or a specified list of cell views.

Note:

By default, a library checkout only fetches the views corresponding to the cells currently
in the workspace. If you want to be sure to fetch the specified views for each cell in the
library and not just those in the workspace, enable the
syncFetchMissingCellsOnLibViewsCheckout SKILL variable. See the
DesignSync Data Manager DFII User's Guide: Fetching Views of Missing Cells During
Library Checkout for details.

Arguments

t_libName Library name. (Required)
l_viewNames One or more view name(s) to be checked out. (Optional).

Checks out all views by default.
t_mode Check-out mode ("lock", "share", "mirror", "get", or

"lockref"). By default, the mode matches the default fetch
mode. See the DesignSync Data Manager DFII User's Guide:
Selecting a Default Fetch Mode to learn how to set the default
fetch mode.

Note: Because lockref mode should only be used when
you are regenerating data, it is not an appropriate mode for all
object types. For example, lockref is likely not appropriate
for library-level files such as prop.xx, cdsinfo.tag, and
category files.

t_tag Selector, or version name, to be checked out. By default, no
selector is specified, in which case the persistent selector list
determines the version -- typically the latest version on the
current branch. See DesignSync Data Manager User's Guide

DesignSync Data Manager DFII SKILL Programming Interface Guide

43

to learn more about selectors.

Note: When used with modules, this identifies the module
version, not the module member version.

g_force Overwrite locally modified files in your workspace (t). By
default, local changes are not overwritten when you check out
files (nil).

g_incremental Perform incremental (t) or full (nil) populate. If not provided,
incremental behavior is determined by SyncAdmin setting
(see SyncAdmin Help).

g_overlay Fetch a version of a design object from another branch and
overlay it on the version you have checked out in your
workspace (t). By default, an overlay is not performed (nil).
 Note: This option is available only if t_mode is set to "get".

g_retain Retain the "last modified" timestamps of the checked-out
objects as recorded when the object was checked into the
vault (t), or make the timestamps the check-out time (nil).
The default is nil unless defined otherwise from SyncAdmin
(see SyncAdmin Help).

The retain option is only meaningful when checking out
physical copies (lock and get modes) and is silently ignored
otherwise.

g_unifyState Put objects in the state specified by t_mode even if the
workspace already contains the requested version and
therefore no checkout is required (t). By default (nil), a
check-out operation only changes the states of objects that
are fetched from the vault.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds
background commands to the Background Queue. Use the
graphical interface command, Synchronicity => Options =>
Show Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

t_moduleContext The module context to restrict the operation to. The module
must have its base directory at, or above, the level of the
library being checked out.

If you do not specify a module context, the operation applies

Revision Control Functions

44

to all objects specified.

Note: You can only specify one module. If you are checking
out objects to two different modules in the same workspace,
use two separate checkout operations.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully checked out and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssCompareViewsP
dssCompareViewsP(
 d_cv1 d_cv2 [?fileName t_outFile] [?silent g_silent]) =>
x_diffs

Description

Given two cell view, reports the differences between the two views to the specified file
and optionally to the screen, and returns a count of the number of differences found.

Arguments

d_cv1 First View – a database reference as returned, for example, by
ddGetObj. (Required)

d_cv2 Second View – a database reference as returned, for example,
by ddGetObj. (Required)

t_outFile Name of the output file in which to record the differences. If the
file already exists, then it is appended to by this operation. This
allows the results of multiple comparisons to be written to the
same file.

The file contents use the SKILL DPL (disembodied property
list.) format. The list begins with the value nil and has
alternating property names and values. The file is readable in
SKILL using the standard lineread functions. The differences
are contained in a sublist that uses a "reporting key" notation
to record the location and type of the differences and allow you
to locate them.

The properties in the list are:

DesignSync Data Manager DFII SKILL Programming Interface Guide

45

• libName1: Library for first view
• cellName1: Cell for first view
• viewName1: View for first view
• libName2: Library for second view
• cellName2: Cell for second view
• viewName2: View for second view
• date: Date/time file was written (aka: command ran

time) in the standard Cadence getCurrentTime() format
which does not include the timezone.

• diffs: List of differences for each logical object type and
each LPP. The differences list appears in the following
order:

1. logical type (string, e.g. “inst”) or LPP (list of two
elements, name and purpose)
2. list of objects in first view only where each item is
identified by the reporting key for the item.
3. list of objects in second view onlywhere each item is
identified by the reporting key for the item.
4. list of objects in both views that have differences, where
each item is identified by the reporting key for the item and a
list of the text descriptions of the differences.

g_silent Run silently (t). (Default)

Note: If a value of nil is given, then a textual report of the
differences is written to the screen.

Value Returned

x_diffs The number of differences reported.

Example

This example shows results of comparing two versions of the inv/layout view where
there is one difference in an “Instance” where a single property has changed.

dssCompareViewsP("layout" "layout_v1.2" ?fileName "diff")

"1"

Below is the resulting output file for the command.

Note: the file is written using a standard Cadence list-writing function which performs a
“pretty print” of the list which spreads it across multiple lines and performs standard
indentation..

Revision Control Functions

46

(nil libName1 “master” cellName1 “inv”
viewName1 “layout” libName2 “master” cellName2
“inv” viewName2 “layout_v1.2” diffs (
 (“Instances” nil nil
 (((“basic” “pmos” “layout” 1.0 2.0) (“Property w changed
from 4.0 to 5.0”)))
)
)
)

Usage Tips

The ability to programmatically compare views and report differences can be used in a
variety of useful ways. A few sample usage scenarios are included below.

 Simple check for no changes

The API functions can be used to check whether two versions of a view are identical by
using the dssFetchCellViewVersionP() function to fetch the second version and
then calling dssCompareViewsP() and checking for a 0 return value.

Simplified check for instance additions and removals

The API function can be used to compare the views and only report additions/removals
by calling the dssCompareViewsP() function, and then reading in the results file
(using SKILL) and processing the list to only report instances that exist only in the first
view or only in the second view.

Check for differences across all views in a library with older release

You can populate two different releases of a library to two different areas (by populating
both to different areas, and setting up the cds.lib file to use different library names.) and
write a routine that compares the views in the two libraries. For any view that is in both
libraries call dssCompareViewsP() to get a full description of all changes made in the
data between two releases.

Related Topics

dssCompareViewsHandlerP

dssGetViewVersionsP

dssCompareViewsHandlerP

DesignSync Data Manager DFII SKILL Programming Interface Guide

47

dssCompareViewsHandlerP(t_objType ?name t_name ?keygenProc
s_keygen ?reportKeyProc s_reportKey ?compareProc s_compare
?mergeAddedProc s_mergeAddedProc ?mergeDeletedProc
s_mergeDeletedProc ?diffProc ls_diff ?extractProc s_extract
?figsProc s_figsProc)

=> t

Description

The dssCompareViewsHandlerP allows users to extend and modify the system to
their own requirements. It allows customization of the way logical objects (instances,
nets etc) and physical shapes (lines, paths, labels etc) are found, compared and
reported. The keyed arguments are all optional, and if any keyed argument is not given
then the default is used.

The included dssCompareViewsP API performs a useful comparison of views by
default, and the dssCompareViewsHandlerP extension capability is only intended for
users with specialized needs.

Note: If registering a handler for a new logical type (for example, pins) you must register
a keygenProc, compareProc and extractProc otherwise the comparison will fail.

Arguments

t_objType String. For a shape, this is the Cadence defined objType of
the shape, for example “rect," “path,” or “label." For logical
objects, this may be any string, though it is recommended that
it match the Cadence objType where possible. If it is a logical
object, and you want to modify the default handlers it must be
one of “inst," “net,” or “terminal.” (Required)

Note: See Cadence documentation for the full set of shape
types.

t_name String. The results display string for the type. This is for logical
items only. This is the name that appears in the drop-down
Results field on the GUI interface. This is optional and if not
specified for a new logical object will default to the objType
value. (Required)

s_keygen Symbol. The name of a procedure to generate the key for an
object. The procedure must take a single argument, d_object,
which is the object for which a key is required, and must
return a value (any type) that is the key for that object.

Note: The default key is the objects bounding box.
s_reportKey Symbol. The name of a procedure to generate the reporting

Revision Control Functions

48

key for an object. The procedure takes three arguments:
t_objType (the object type), d_object (the object itself), and
g_key (the key for the object.) The procedure must return a
single value (any type) that is the reporting key for the object.

Note: When reporting an object that has changed, the object
passed to this routine is the object from the first cellview. The
default routine returns a list of the object type and the key
passed in. DesignSync recommends that this routine returns a
list that starts with the object type.

s_compare Symbol. The name of a procedure to compare two objects.
The procedure takes two arguments: d_obj1 (the object in the
first view) and d_obj2 (the object in the second view.) The
procedure must return nil if the objects are considered to have
no differences, otherwise it must return a list of strings
detailing the differences. The strings may be any length, but
long strings may not display well in the GUI results. The
strings should NOT contain newline characters. The default is
a routine that compares the user properties for the objects.

Note:If you want the differences found by a custom compare
procedure to be merged, the compare procedure must also
return the merge procedure call. The call returned must
include both the procedure name AND the arguments to
provide to the procedure. For more information on using the
calls, see the examples provided with DSDFII.

s_mergeAddedProc The name of the procedure called to merge an object that is
present in the first cellview into the second cellview. The
supplied function takes two arguments: the object from the
first cell view, and the second cell view into which the object
is added or changed.

s_mergeDeletedPro The name of the procedure called to merge (delete) an object
that is present in the second cellview but not in the first. The
supplied function takes one argument: the object present only
in the second cellview.

ls_diff Symbol or list. May be a list of two strings, that report objects
that are only in the first view or only in the second view.
Otherwise, may be a procedure that takes two arguments,
d_object and g_isFirst (true if the object is in the first view
only, nil if in the second view only), and must return a single
string that is used to report the objects present in only one
view. The default value is the string pair “Only in first view”
and “Only in second view”.

s_extract Symbol. The name of a procedure to extract all object of a
type from the cellview. The procedure takes two arguments:
d_cv (one of the two views being compared), t_objType (the

DesignSync Data Manager DFII SKILL Programming Interface Guide

49

type of objects to be returned.) The procedure returns a list of
the objects of the given type to be compared from the given
view. This procedure is required for non-Shape types.

s_figsProc Symbol. The name of a procedure to extract the figure(s)
associated with an object. The procedure takes a single
argument, d_object, and returns a list of the figures
associated with that object, or a single figure. This procedure
is required for non-Shape types to identify the figures that will
be hilighted when a difference in this object is identified.

Value Returned

Returns t if the handler has been created; otherwise, returns nil.

Example

This example compares the “instHeaders” of the view, rather than the instances
themselves, to see if any new types of sub-objects are being used. (instHeaders
encapsulate the set of instances of the same master cellview that are instantiated.)

If there are new types, all instances using the new type are highlighted. This also
reports the lib/cell/view of the master cellview, and the number of instances that exist.
There is no compare routine used because if the instHeader is in both views it is
considered identical.

The registration function call is:

dssCompareViewsHandlerP(“instHeader” ?name “Master View”
?keygenProc ‘myKeyGen ?reportKeyProc ‘myReportKey ?compareProc
‘myCompareProc ?diffProc ‘myDiffProc ?extractProc ‘myExtractProc
?figsProc ‘myFigsProc)

The various functions used are:

procedure(myKeyGen(obj) list(obj~>libName obj~>cellName
obj~>viewName))

procedure(myReportKey(objType object key) sprintf(nil “%s:%s:%s”
object~>libName object~>cellName object~>viewName))

procedure(myCompareProc(obj1 obj2) nil)

procedure(myDiffProc(object isFirst) sprintf(nil “%d instances
only in %s cellview” length(object~>instances) if(isFirst
“first” “second”)))

Revision Control Functions

50

procedure(myExtractProc(cv objtype) cv~>instHeaders)

procedure(myFigsProc(object) object~>instances)

Notes:

• You can modify the default handlers used by the system or reuse the functions in those
handlers in your own extensions. The dssCompareViewsListHandlersP function
can be used to identify the default handlers.

• The keygenProc identifies the master using lib, cell and view names.
• The reportKeyProc was not really needed as the procedure could use the key.
• The compareProc simple returns nil to indicate two instHeaders with the same key are

always considered to have no differences. A more complicated example could compare
the properties of the instHeaders.

• The diffProc reports the number of instances of the master that exist. Ideally, this might
want to allow for “variants” of the instHeader, for things like symbolic vias.

• The figsProc returns the list of instances of the instHeader. If you return instances in the
figures list to the compare program automatically hilights the figures associated with the
instances.

Related Topics

dssCompareViewsRemoveHandlerP

dssCompareViewsListHandlersP
dssCompareViewsListHandlersP()

Description

Shows a list of all the defined system and custom list handlers.

Arguments

None.

Return Value

Returns the defined list handlers in name/value pairs.

Related Topics

dssCompareViewsHandlerP

dssCompareViewsRemoveHandlerP

DesignSync Data Manager DFII SKILL Programming Interface Guide

51

dssCompareViewsRemoveHandlerP
dssCompareViewsRemoveHandlerP(t_objType) => t

Description

Removes a defined custom handler created with dssCompareViewsHandlerP.

Argument

t_objType String. This is the defined objType of the custom handler being
removed. (Required)

Value Returned

Returns t if the handler has been removed; otherwise, returns nil.

Example

This example removes a custom defined shape object called "rect,"

dssCompareViewsRemoveHandlerP("rect")

t

dssConfigureLibraryP
dssConfigureLibraryP(
 t_libName [?vaultPath t_vaultPath]
 [?localMirrorPath t_localMirrorPath]
 [?selector t_selector] [?silent g_silent]
)
=> t/nil

Description

Configures the library for use with DesignSync DFII by setting the vault (data repository)
and, optionally, the local mirror directory for the library.

Arguments

t_libName Library name. (Required)

Revision Control Functions

52

Note: You cannot specify a module-managed library.
t_vaultPath Vault URL for the data repository:

sync://<host>:<port>/Projects/<path>/<libraryName>
(for SyncServer vaults)

file:///<clientvaultpath> (for client vaults)

By default, the existing vault setting is used, if a vault has been
previously set.

t_localMirrorPath Path of the local mirror directory, for example,
/home/karen/mirrors/ASIC. By default, the existing local
mirror directory is used, if previously set.

t_selector Selector specifying the branch of the library. For non-branching
environments, specify the Trunk selector. By default, the selector
is left unchanged.

g_silent Run silently (t). (Default)

Note: To unset the value of an argument, supply the empty string ("").

Value Returned

Returns t if the library has been configured successfully; otherwise, returns nil.

dssCreateCellViewP
dssCreateCellViewP(
 t_libName t_cellName t_viewName t_toolName
 [?force g_force] [?moduleContext t_moduleContext]
)
=> t/nil

Description

Creates a cell view in the workspace and reserves the name in the vault. You reserve
the name of the cell view at the time you create it to prevent other users from creating
the same view, which could lead to data merging problems.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)
t_toolName Design tool with which to create the cell view, for example

DesignSync Data Manager DFII SKILL Programming Interface Guide

53

"Composer-Schematic". (Required). For a list of tool
names, Select Synchronicity => Create => Cell View from
the CIW. The Tool Name drop-down list displays the valid
strings you specify as the t_ToolName argument.

g_force Force a new cell view to be created locally even if the cell
view already exists in the vault (t). By default, DesignSync
DFII does not force the cell view to be created (nil).

t_moduleContext The module context for the view being created. The module
must have its base directory at, or above, the level of the
object being created.

The new view is automatically added to the selected module.

Note: You can only specify one module.

Value Returned

Returns t if the cell view has been created; otherwise, returns nil.

dssDeleteCategoryP
dssDeleteCategoryP(
 t_libName tl_catNames [?stopOnError g_stopOnError]
 [?force g_force] [?vault g_vault] [?retire g_retire]
 [?remove g_remove] [?nested g_nested] [?silent g_silent]
 [?keepvid g_keepvid] [?background g_background]
)
=> t/nil

Description

Deletes objects of one or more categories from the workspace. You can also choose to
delete or retire the objects from the vault.

Arguments

t_libName Library name. (Required)
tl_catNames One or more category names. (Required)
g_stopOnError Cancel the delete operation if a delete operation fails for one

of the objects (t).

Revision Control Functions

54

By default, DesignSync DFII continues with delete operations
even if one of the delete operations fails (nil). The command
output details any errors that might have occurred during the
delete operations.

Note: This option cannot be used with remove operations.
g_force Force the objects to be deleted even if they are tagged or

locked (t). By default, you cannot delete an object that is
tagged or locked (nil).

g_vault Delete the objects from the vault (t). By default, the objects
are deleted only from your workspace (nil). Note: The
g_vault, g_retire, and g_remove arguments are all
mutually exclusive.

If g_vault is set to t and g_stopOnError is set to nil,
 DesignSync DFII continues to delete the workspace object
even if the vault object delete fails (for example, in the case
where an access control is set).

g_retire Retire the objects from the vault (t). By default, the objects
are deleted only from your workspace (nil). Note: The
g_vault, g_retire, and g_remove arguments are all
mutually exclusive.

If g_retire is set to t and g_stopOnError is set to nil,
 you might expect that DesignSync DFII will continue to delete
the object from your workspace even if the retire from vault
operation fails (for example, in the case where an access
control is set). However, in some cases, if the retire operation
fails, the object might remain in the workspace.

Note: This option is not applicable modules and module
members. If it is used on module or module members objects,
the command fails.

g_remove Removes the selected objects from the module (t). By
default, the objects are deleted only from your workspace
(nil). Note: The g_vault, g_retire, and g_remove
arguments are all mutually exclusive.

Note: This option is only applicable for module member
objects. If it is used on any other type of object, including a
module, the command fails.

g_nested Apply to nested category contents (t). (Default)

Note: If g_nested is set to t but one or more nested
category files are missing from your workspace, DesignSync

DesignSync Data Manager DFII SKILL Programming Interface Guide

55

DFII automatically fetches the missing category files and
processes the specified objects.

g_silent Run silently (t). (Default)
g_keepvid Retain information about the version ID of the Latest version in

the vault (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds
background commands to the Background Queue. Use the
graphical interface command, Synchronicity => Options =>
Show Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns t if the objects of the named categories have been successfully deleted;
otherwise, returns nil.

dssDeleteCellP
dssDeleteCellP(
 t_libName tl_cellNames [?stopOnError g_stopOnError]
 [?force g_force] [?vault g_vault] [?remove g_remove]
 [?retire g_retire] [?remove g_remove] [?silent g_silent]
[?keepvid g_keepvid] [?background g_background]
)
=> t/nil

Description

Deletes a cell and all its views from the workspace. You can also choose to delete or
retire the cell from the vault.

Arguments

t_libName Library name. (Required)
tl_cellNames One or more cell name(s) to be deleted. (Required)
g_stopOnError Cancel the delete operation if a delete operation fails for one of

the objects (t). If you specify multiple cells, DesignSync DFII
processes the cells in the order you list them in the
tl_cellNames argument.

By default, DesignSync DFII continues with delete operations

Revision Control Functions

56

even if one of the delete operations fails (nil). The command
output details any errors that might have occurred during the
delete operations.

Note: This option cannot be used with remove operations.
g_force Force the object or objects to be deleted even if they are

tagged or locked (t). By default, you cannot delete an object
that is tagged or locked (nil).

g_vault Delete the object or objects from the vault (t). By default,
objects are deleted only from your workspace (nil). Note: The
g_vault and the g_retire arguments are mutually
exclusive.

If g_vault is set to t and g_stopOnError is set to nil,
 DesignSync DFII continues to delete the workspace object
even if the vault object delete fails (for example, in the case
where an access control is set).

g_retire Retire the object or objects from the vault (t). By default,
objects are deleted only from your workspace (nil). Note: The
g_vault and the g_retire arguments are mutually
exclusive.

If g_retire is set to t and g_stopOnError is set to nil,
 you might expect that DesignSync DFII will continue to delete
the object from your workspace even if the retire from vault
operation fails (for example, in the case where an access
control is set). However, in some cases, if the retire operation
fails, the object might remain in the workspace.

g_remove Removes the selected objects from the module (t). By default,
the objects are deleted only from your workspace (nil). Note:
The g_vault, g_retire, and g_remove arguments are all
mutually exclusive.

Note: This option is only applicable for module member
objects. If it is used on any other type of object, including a
module, the command fails.

g_silent Run silently (t). (Default)
g_keepvid Retain information about the version ID of the Latest version in

the vault (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds
background commands to the Background Queue. Use the
graphical interface command, Synchronicity => Options =>

DesignSync Data Manager DFII SKILL Programming Interface Guide

57

Show Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns t if the cell has been successfully deleted; otherwise, returns nil.

dssDeleteCellViewP
dssDeleteCellViewP(
 t_libName t_cellName t_viewName
 [?stopOnError g_stopOnError] [?force g_force]
 [?vault g_vault] [?retire g_retire] [?remove g_remove]
[?silent g_silent] [?keepvid g_keepvid]
[?background g_background]
)
=> t/nil

Description

Deletes a cell view from the workspace. You can also choose to delete or retire the cell
view from the vault.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)
g_stopOnError Cancel the delete operation if part of the delete operation fails.

(t).

By default, DesignSync DFII continues with the delete
operation even if part of the delete operation fails (nil). For
example, if the ?vault option is set to t and DesignSync DFII
fails to delete the vault version of a cellview, you might still
want DesignSync DFII to continue and delete the workspace
version of the cellview.

Note that if the ?retire option is set to t and DesignSync
DFII fails to retire the object, there are cases where the object
remains in the workspace.

Revision Control Functions

58

The command output details any errors that might have
occurred during the delete operations.

Note: This option cannot be used with remove operations.
g_force Force the cell view to be deleted even if it is tagged or locked

(t). By default, you cannot delete an object that is tagged or
locked (nil).

g_vault Delete the cell view from the vault (t). By default, the cell view
is deleted only from your workspace (nil). Note: The
g_vault and the g_retire arguments are mutually
exclusive.

If g_vault is set to t and g_stopOnError is set to nil,
 DesignSync DFII continues to delete the workspace object
even if the vault object delete fails (for example, in the case
where an access control is set).

g_retire Retire the cell view from the vault (t). By default, the cell view
is deleted only from your workspace (nil). Note: The
g_vault and the g_retire arguments are mutually
exclusive.

If g_retire is set to t and g_stopOnError is set to nil,
 you might expect that DesignSync DFII will continue to delete
the object from your workspace even if the retire from vault
operation fails (for example, in the case where an access
control is set). However, in some cases, if the retire operation
fails, the object might remain in the workspace.

g_remove Removes the selected objects from the module (t). By default,
the objects are deleted only from your workspace (nil). Note:
The g_vault, g_retire, and g_remove arguments are all
mutually exclusive.

Note: This option is only applicable for module member
objects. If it is used on any other type of object, including a
module, the command fails.

g_silent Run silently (t). (Default)
g_keepvid Retain information about the version ID of the Latest version in

the vault (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds
background commands to the Background Queue. Use the
graphical interface command, Synchronicity => Options =>
Show Background Queue to view the queue.

DesignSync Data Manager DFII SKILL Programming Interface Guide

59

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns t if the cell view has been successfully deleted; otherwise, returns nil.

dssDeleteFileP
dssDeleteFileP(
 tl_objectNames [?stopOnError g_stopOnError]
 [?force g_force] [?vault g_vault]
 [?retire g_retire] [?remove g_remove]
[?remCdsLib g_remCdsLib] [?silent g_silent]
[?keepvid g_keepvid] [?background g_background]
)
=> t/nil

Description

Deletes one or more file objects or directories.

Note: You cannot use this function to delete a module.

You can specify absolute or relative filenames or directory names to be deleted.
Filenames and directory names can be relative to the current working directory or to any
library on the library path. For example, if library acc is on your library path, then you
can specify the cdsinfo.tag file for that library as acc/cdsinfo.tag, even though
the acc library directory might be anywhere on disk. If a library name exists, and there
is also a directory within the current working directory of the same name, the library
name is used.

Specify wildcards for filenames and directory names using glob-style expressions.

Note:

For wildcards, filenames and directory names in the current working directory take
precedence over library names. That is, a glob expression of lib* will not match
libraries libA and libB if similarly named files or directories exist in the current
working directory; the dssDeleteFileP function first expands regular expressions
against the current directory, and then performs library matching.

Arguments

Revision Control Functions

60

tl_objectNames One or more file object(s) to be deleted. (Required) You can
specify objects as glob-style expressions. An object can be:

A filename, specified as a full path or a path relative to the
current working directory.

A directory, specified as a full path or a path relative to the
current working directory.

A filename, specified relative to a library, for example
<libname>/cdsinfo.tag or
<libname>/cellname/prop.xx.

A library name.

A cell name, specified as <libname>/<cellname>.

A view name, specified as
<libname>/<cellname>/<viewname>.

Note: You cannot specify the type of view object that
DesignSync creates, for example:
~/ttlLib/and2/symbol.sync.cds as the filename. These
objects are not actual files; thus, you cannot apply the
dssDeleteFileP function to this type of object.

g_stopOnError Cancel the delete operation if a delete operation fails for one of
the objects (t).

By default, DesignSync DFII continues with delete operations
even if one of the delete operations fails (nil). The command
output details any errors that might have occurred during the
delete operations.

Note: This option cannot be used with remove operations.
g_force Force the object or objects to be deleted even if they are

tagged or locked (t). By default, you cannot delete an object
that is tagged or locked (nil).

g_vault Delete the object or objects from the vault (t). By default,
objects are deleted only from your workspace (nil). Note: The
g_vault and the g_retire arguments are mutually
exclusive.

If g_vault is set to t and g_stopOnError is set to nil,
 DesignSync DFII continues to delete the workspace object
even if the vault object delete fails (for example, in the case

DesignSync Data Manager DFII SKILL Programming Interface Guide

61

where an access control is set).
g_retire Retire the object or objects from the vault (t). By default,

objects are deleted only from your workspace (nil). Note: The
g_vault and the g_retire arguments are mutually
exclusive.

If g_retire is set to t and g_stopOnError is set to nil,
 you might expect that DesignSync DFII will continue to delete
the object from your workspace even if the retire from vault
operation fails (for example, in the case where an access
control is set). However, in some cases, if the retire operation
fails, the object might remain in the workspace.

g_remove Removes the selected objects from the module (t). By default,
the objects are deleted only from your workspace (nil). Note:
The g_vault, g_retire, and g_remove arguments are all
mutually exclusive.

Note: This option is only applicable for module member
objects. If it is used on any other type of object, including a
module, the command fails.

g_remCdsLib Remove the library's entry from the cds.lib file (t). (Default)
g_silent Run silently (t). (Default)
g_keepvid Retain information about the version ID of the Latest version in

the vault (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns t if the cell has been successfully deleted; otherwise, returns nil.

dssDeleteLibraryP
dssDeleteLibraryP(
 t_libName [?stopOnError g_stopOnError]
 [?force g_force] [?vault g_vault]
 [?retire g_retire] [?remove g_remove]

Revision Control Functions

62

[?remCdsLib g_remCdsLib] [?silent g_silent]
[?keepvid g_keepvid] [?background g_background]
)
=> t/nil

Description

Deletes a library from the workspace. You can also choose to delete or retire the library
from the vault.

Arguments

t_libName Library name. (Required)
g_stopOnError Cancel the delete operation if a delete operation fails for one of

the objects (t).

By default, DesignSync DFII continues with delete operations
even if one of the delete operations fails (nil). The command
output details any errors that might have occurred during the
delete operations.

Note: This option cannot be used with remove operations.
g_force Force objects in the library to be deleted even if they are

tagged or locked (t). By default, you cannot delete an object
that is tagged or locked (nil).

g_vault Delete the library from the vault (t). By default, the library is
deleted only from your workspace (nil). Note: The g_vault
and the g_retire arguments are mutually exclusive.

If g_vault is set to t and g_stopOnError is set to nil,
 DesignSync DFII continues to delete the workspace object
even if the vault object delete fails (for example, in the case
where an access control is set).

g_retire Retire the library from the vault (t). By default, the library is
deleted only from your workspace (nil). Note: The g_vault
and the g_retire arguments are mutually exclusive.

If g_retire is set to t and g_stopOnError is set to nil,
 you might expect that DesignSync DFII will continue to delete
the object from your workspace even if the retire from vault
operation fails (for example, in the case where an access
control is set). However, in some cases, if the retire operation
fails, the object might remain in the workspace.

g_remove Removes the selected objects from the module (t). By default,
the objects are deleted only from your workspace (nil). Note:

DesignSync Data Manager DFII SKILL Programming Interface Guide

63

The g_vault, g_retire, and g_remove arguments are all
mutually exclusive.

Note: This option is only applicable for module member
objects. If it is used on any other type of object, including a
module, the command fails.

g_remCdsLib Remove the library's entry from the cds.lib file (t). (Default)
g_silent Run silently (t). (Default)
g_keepvid Retain information about the version ID of the Latest version in

the vault (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds
background commands to the Background Queue. Use the
graphical interface command, Synchronicity => Options =>
Show Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns t if the library has been successfully deleted; otherwise, returns nil.

dssDeleteTemporaryViewsP
dssDeleteTemporaryViewsP(
 t_libName [?silent g_silent]
)
=> t/nil

Description

Deletes any temporary cell views associated with the specified library. Temporary cell
views are created when you fetch a cell view version using the
dssFetchCellViewVersionP function.

Arguments

t_libName Library name. (Required)
g_silent Run silently (t). (Default)

Value Returned

Revision Control Functions

64

Returns t if the temporary cell views are deleted successfully; otherwise, returns nil.

dssDeleteVersionP
dssDeleteVersionP(
 t_libName t_cellName t_viewName tl_versionNames
 [?force g_force] [?silent g_silent]
)
=> t/nil

Description

Deletes one or more versions of an object from the vault.

Note: Module versions cannot be deleted.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)
tl_versionNames One or more versions to be deleted. (Required)
g_force Force versions to be deleted even if they are tagged or locked

(t). By default, you cannot delete an object that is tagged or
locked (nil).

g_silent Run silently (t). (Default)

Value Returned

Returns t if the versions have been successfully deleted from the vault; otherwise,
returns nil.

dssFetchCellViewVersionP
dssFetchCellViewVersionP(
 t_libName t_cellName t_viewName t_versionName
 [?open g_open] [?silent g_silent] [?moduleVersion
g_moduleversion]
)
=> t_versionName/nil

Description

DesignSync Data Manager DFII SKILL Programming Interface Guide

65

Fetches a version of an object from the vault and creates a temporary view of the
object, without affecting the workspace version of the object. You can also choose to
open the temporary view of the version as part of the fetch operation. The function
fetches the version only if it is not already available in a temporary view.

This function lets you compare two or more versions of the same cell view. DesignSync
DFII creates a temporary, unmanaged copy of the specified version in your workspace.
The name of the temporary cell view version is <view>_v<version>, where <view>
is the name of the cell view, and <version> is the version number. For example,
opening version 1.3 of cell view layout creates a temporary cell view called
layout_v1.3.

To remove temporary views, use the dssDeleteTemporaryViewsP function.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)
t_versionName Version to be fetched. (Required)
g_open Open the cell view version as part of the fetch operation (t).

By default, the version is not opened automatically (nil).
g_silent Run silently (t). (Default)
?moduleVersion t/nil boolean value indicating whether the command uses the

version as the module member vault version or the module
version. The default, nil, indicates that the version specified is
the module member vault version. This option is ignored for
non-module objects.

Value Returned

If the version is fetched successfully, dssFetchCellViewVersionP returns the
version number passed in or, if a selector is passed in, the version that corresponds to
the selector; otherwise, returns nil.

dssFetchLockedP
dssFetchLockedP(
 t_objName [?vault g_vault] [?silent g_silent]
[?moduleContext t_moduleContext]
)
=>((l_object t_owner [t_branch t_time]) ...)/nil

Description

Revision Control Functions

66

Reports the objects that are locked in the specified library or directory, returning a list of
locked objects and their owners. You can specify whether to check for a lock on the
objects in the local workspace or in the vault. For vault objects, the list includes the
object's branch and the time the object was locked.

Arguments

t_objName Library name, workspace module, or directory path.
 (Required)

g_vault Check whether the vault versions of the objects are locked
 (t), and, for module members, what branch of the vault
object is locked. By default, the dssFetchLockedP function
checks whether the local workspace versions of the objects
are locked (nil).

g_silent Run silently (t). (Default)
t_moduleContext The module context to restrict the operation to. The module

must have its base directories at, or above, the level of the
library being queried.

If you do not specify a module context, the operation applies
to all objects specified.

Note: You can only specify one module with the
modulecontext option.

Value Returned

Returns a list of locked objects and information about their locks. Each object's lock
information is stored in a list that includes the object identifier sublist (l_object), the
lock owner (t_owner) and, if the object is a vault object, the object's branch
(t_branch) and lock time (t_time):

l_object If the object is a library, l_object returns a list of the form
(t_library t_cell_name t_cell_view t_file) The
filename can be nil, indicating that the object is a cell view.
The cell view can be nil, indicating a file at the cell level. Both
the cell name and cell view can be nil, indicating a file at the
library level.

If the object is a directory, l_object returns a list of the form
(nil nil nil t_file)indicating a file rather than a library
object, where t_file is a filename relative to the specified
directory (l_object). Note that if the directory contains
libraries, dssFetchLockedP generates an entry for each

DesignSync Data Manager DFII SKILL Programming Interface Guide

67

locked library object, as well.
t_owner The owner of the object.
t_branch The name of the object's branch selector.
t_time The date and time that the object was locked.

Returns nil if none of the objects in the library or directory are locked or if the library or
directory is not under revision control. The function raises an error if argument checking
fails. In all other failure cases, the function either raises an error or returns nil.

Example

The following examples show the return format of the dssFetchLockedP function. In
mylib, Ian has the cdsinfo.tag file and the mid2/schematic view locked in his
workspace. Fred has the mid2/symbol view locked. All locks are on branch 1 (Trunk):

dssFetchLockedP("mylib")
=>
(
 (("mylib" nil nil "cdsinfo.tag") "ian")
 (("mylib" "mid2" "schematic" nil) "ian")
)

dssFetchLockedP("mylib" ?vault t)
=>
(
(("mylib" nil nil "cdsinfo.tag") "ian" "1" "Fri Jul 06 16:42:51
BST 2001")
 (("mylib" "mid2" "schematic" nil) "ian" "1" "Mon Jul 09
08:45:28 BST 2001")
 (("mylib" "mid2" "symbol" nil) "fred" "1" "Thu Jul 05 13:21:05
BST 2001")
)

The following example shows the return format when a directory rather than a library is
specified. The directory contains the df2test library; thus, the dssFetchLockedP
function shows the locked objects in the df2test library, as well.

dssFetchLockedP("~/work")
=>
(((nil nil nil "readme.txt") "karen")
 (("df2test" nil nil "readme.txt") "karen")
 (("df2test" nil nil "cdsinfo.tag") "karen")
 (("df2test" "mid1" "verilog" nil) "karen")
 (("df2test" "mid1" "symbol" nil) "karen")
 (("df2test" "mid1" "schematic" nil) "karen")

Revision Control Functions

68

 (("df2test" "mid1" "layout" nil) "karen")
)

The following example shows the return format when a directory is specified and the
vault versions are queried.

dssFetchLockedP("~/work" ?vault t)
=>
(((nil nil nil "readme.txt") "karen" "1" "Thu Mar 28 13:02:30
EST 2002")
)

dssGetFileTagsP
dssGetFileTagsP(
 t_fileName
)
=> nil/l_tags

Description

Given a filename or workspace module name, returns a list of tags applied to the
workspace version of the object.

Module objects can be specified by full path. For other DesignSync objects, you can
specify an absolute or relative filename. Filenames can be relative to the current
working directory or to any library on the library path. For example, if library acc is on
your library path, then you can specify the cdsinfo.tag file for that library as
acc/cdsinfo.tag, even though the acc library directory might be anywhere on disk.
If a library name exists, and there is also a directory within the current working directory
of the same name, the library name is used.

Arguments

t_fileName A filename or workspace module name. (Required) A filename
can be absolute or relative to the current working directory or
to any library on the library path. Note: You must specify a
filename; other file objects that resolve to directories, libraries,
cells, and views are not supported by the dssGetFileTagsP
function. Likewise, you cannot specify the type of view object
that DesignSync creates, for example:
~/ttlLib/and2/symbol.sync.cds. These objects are not
actual files; thus, you cannot apply the dssGetFileTagsP
function to this type of object.

DesignSync Data Manager DFII SKILL Programming Interface Guide

69

Value Returned

l_tags List of tags in reverse chronological order, with Latest, if
present, always first in the list.

The function raises an error if argument checking fails. In all other failure cases, the
function either raises an error or returns nil.

dssGetFileVersionP
dssGetFileVersionP(
 t_fileName [?useCache g_useCache] [?quick g_quick]
)
=> t_version

Description

Given a filename or workspace module name, returns the version of the object in the
workspace. By default, the dssGetFileVersionP function invokes the DesignSync
url versionid command to determine the version. To improve performance, you
can choose to access the cached or local metadata value of the object's version.

Module objects can be specified by full path. For other DesignSync objects, you can
specify an absolute or relative filename. Filenames can be relative to the current
working directory or to any library on the library path. For example, if library acc is on
your library path, then you can specify the cdsinfo.tag file for that library as
acc/cdsinfo.tag, even though the acc library directory might be anywhere on disk.
If a library name exists, and there is also a directory within the current working directory
of the same name, the library name is used.

Arguments

t_fileName A filename or workspace module name. (Required) A filename
can be absolute or relative to the current working directory or
to any library on the library path. Note: You must specify a
filename; other file objects that resolve to directories, libraries,
cells, and views are not supported by the
dssGetFileVersionP function. Likewise, you cannot
specify the type of view object that DesignSync creates, for
example: ~/ttlLib/and2/symbol.sync.cds. These
objects are not actual files; thus, you cannot apply the
dssGetFileVersionP function to this type of object.

g_useCache Return the existing cached value if one exists for the object's
version (t). Extracting the cached value is the fastest method
of obtaining the version. By default (nil), the

Revision Control Functions

70

dssGetViewVersionP function does not search for the
cached value. If g_useCache is 'nil' or the cached value is
not found, the following other methods for extracting the
version are attempted in this order:

• If g_quick is 't', the local metadata value is returned.
• If both g_useCache and g_quick are 'nil', the

DesignSync url versionid command is invoked.

Note that the cached value of the version is automatically
updated following any design management operation from the
Synchronicity menu or any Auto-Checkin or Auto-Checkout
operation.

g_quick Return the local metadata value for the object's version (t).
 Quick mode also returns a fetch state indicator; use quick
mode if you need to determine the fetch state as well as the
version number. For locked objects, quick mode cannot
provide the upcoming version; use the default to determine the
upcoming version of a locked object. Note: If g_useCache
and g_quick are both 't', the cached value is returned rather
than the local metadata value.

By default (nil), the dssGetViewVersionP function does
not search for the local metadata value. If g_quick is 'nil' or
the local metadata value is not found, the following other
methods for extracting the version are attempted in this order:

• If g_useCache is 't', the cached value is returned.
• If both g_useCache and g_quick are 'nil', the

DesignSync url versionid command is invoked.

Value Returned

t_version The value returned depends upon the arguments selected:

Cached value used (useCache mode): Returns the cached
value for the object's version if one exists, for example, 1.3. If
no cached value is found, quick mode is attempted next, and if
the version cannot be obtained in quick mode, the DesignSync
url versionid command is invoked.

Local metadata value used (quick mode): Returns the
version number of the object followed by a fetch state indicator,

DesignSync Data Manager DFII SKILL Programming Interface Guide

71

for example, 1.3 (S). Fetch state indicators include:

C: Cache mode

M: Mirror mode

L: Lock mode

No state indicator: Fetch mode

Note: In quick mode if a view is locked, only the current version
is reported and not the upcoming versions, for example '1.2
(L)' is returned rather than '1.2 -> 1.3'. Also in quick mode,
if the view is in mirror mode, then the value returned is always
‘Latest (M)’, rather than a specific version number.

url versionid command invoked: Returns the version number
of the object, for example, 1.3. If the object is locked, the
current version number and upcoming version number are
returned (1.3 -> 1.4)

dssGetFileVersionsP
dssGetFileVersionsP(
 t_fileName [?branchName t_branchName]
)
=> l_versions

Description

Given a filename or workspace module name, returns the list of versions that exist for
that object, either all versions or those versions on a specified branch.

Module objects can be specified by full path. For other DesignSync objects, you can
specify an absolute or relative filename. Filenames can be relative to the current
working directory or to any library on the library path. For example, if library acc is on
your library path, then you can specify the cdsinfo.tag file for that library as
acc/cdsinfo.tag, even though the acc library directory might be anywhere on disk.
If a library name exists, and there is also a directory within the current working directory
of the same name, the library name is used.

Arguments

t_fileName A filename or workspace module name. (Required) A filename
can be absolute or relative to the current working directory or

Revision Control Functions

72

to any library on the library path. Note: You must specify a
filename; other file objects that resolve to directories, libraries,
cells, and views are not supported by the
dssGetFileVersionsP function. Likewise, you cannot
specify the type of view object that DesignSync creates, for
example: ~/ttlLib/and2/symbol.sync.cds. These
objects are not actual files; thus, you cannot apply the
dssGetFileVersionsP function to this type of object.

t_branchName Branch name. Specify a branch selector, not a branch dot-
numeric version number. You can also specify one of the
following values for the t_branchName argument:

• all: Returns all versions. (Default)
• current: Returns all versions on the branch of the file

currently in the workspace.

Value Returned

By default, the result is a list of all versions that exist in the vault for the specified object.
If a branch name is specified using the t_branchName argument, the return list is
restricted to the objects on that branch.

dssGetTagListP
dssGetTagListP(
 t_objName [?useCache g_useCache]
)
=> ((l_tags)/nil ((t_config t_tag) ...)/nil)

Description

Given a library, workspace module, or directory name, returns the user-defined tags
and configuration tags for the object. User-defined tags can be defined in two places:
the syncUserTagList SKILL variable and the DesignSync DFII Options form.
Configuration tags are defined using ProjectSync. See the DesignSync Data Manager
DFII User's Guide:Creating a Tag List for details.

Arguments

t_objName Library, workspace module, or directory name. (Required)
g_useCache Use existing cached configuration information to generate the

configuration tags list (t, default). Using cached values is
faster but may not reflect up-to-date information. If

DesignSync Data Manager DFII SKILL Programming Interface Guide

73

g_useCache is nil or cached information is not found, the
DesignSync url configs command is invoked, which
contacts the SyncServer for the latest configuration
information.

Note that g_useCache has no effect on the user-defined tags
list; an up-to-date list is always returned.

Value Returned

Returns a two-element list. The first element is the list of user-defined tags, or nil if
there are no user-defined tags. The second element is a list of two-element lists, each
consisting of a configuration name and the corresponding vault tag, or nil if there are
no configurations.

l_tags Returns the list of user-defined tags from the registry and
syncUserTagList variable.

t_config Returns a configuration name.
t_tag Returns the vault tag associated with the configuration name.

The function raises an error if argument checking fails.

Example

The following examples show the return format of the dssGetTagListP function.

In this example, the library alib has no user-defined tags or configurations:

dssGetTagListP("alib")
=> (nil nil)

In this example, the library blib has three user-defined tags (gold, silver, bronze) and
two configurations (Alpha, Beta). The cached configuration information is not accessed
in this example.

dssGetTagListP("blib" ?useCache nil)
=>
(("gold" "silver" "bronze")
 (("Alpha" "alpha_tag")
 ("Beta" "Beta")
)
)

dssGetViewPathP

Revision Control Functions

74

dssGetViewPathP(
 t_libName t_cellName t_viewName
)
=> nil/t_path

Description

Given a cell view, returns the DesignSync workspace path for that view object.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)

Value Returned

t_path Returns the path to the view.sync.cds object.

The function raises an error if argument checking fails. In all other failure cases, the
function either raises an error or returns nil.

dssGetViewTagsP
dssGetViewTagsP(
 t_libName t_cellName t_viewName
)
=> nil/l_tags

Description

Given a cell view, returns a list of tags applied to the workspace version of the view
object.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)

Value Returned

l_tags List of tags in reverse chronological order, with Latest, if
present, always first in the list.

DesignSync Data Manager DFII SKILL Programming Interface Guide

75

The function raises an error if argument checking fails. In all other failure cases, the
function either raises an error or returns nil.

dssGetViewVersionP
dssGetViewVersionP(
 t_libName t_cellName t_viewName [?useCache g_useCache]
 [?quick g_quick] [?silent g_silent]
)
=> t_version

Description

Given a cell view, returns the version of the view object in the workspace. By default,
the dssGetViewVersionP function invokes the DesignSync url versionid
command to determine the version. To improve performance, you can choose to
access the cached or local metadata value of the object's version.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)
g_useCache Return the existing cached value if one exists for the object's

version (t). Extracting the cached value is the fastest method
of obtaining the version. By default (nil), the
dssGetViewVersionP function does not search for the
cached value. If g_useCache is 'nil' or the cached value is
not found, the following other methods for extracting the
version are attempted in this order:

• If g_quick is 't', the local metadata value is returned.
• If both g_useCache and g_quick are 'nil', the

DesignSync url versionid command is invoked.

Note that the cached value of the version is automatically
updated following any design management operation from the
Synchronicity menu or any Auto-Checkin or Auto-Checkout
operation.

g_quick Return the local metadata value for the object's version (t).
 Quick mode also returns a fetch state indicator; use quick
mode if you need to determine the fetch state as well as the
version number. For locked objects, quick mode cannot
provide the upcoming version; use the default to determine the
upcoming version of a locked object. Note: If g_useCache

Revision Control Functions

76

and g_quick are both 't', the cached value is returned rather
than the local metadata value.

By default (nil), the dssGetViewVersionP function does
not search for the local metadata value. If g_quick is 'nil' or
the local metadata value is not found, the following other
methods for extracting the version are attempted in this order:

• If g_useCache is 't', the cached value is returned.
• If both g_useCache and g_quick are 'nil', the

DesignSync url versionid command is invoked.

g_silent Run silently (t). (Default)

Value Returned

t_version The value returned depends upon the arguments selected:

Cached value used (useCache mode): Returns the cached
value for the object's version if one exists, for example, 1.3. If
no cached value is found, quick mode is attempted next, and if
the version cannot be obtained in quick mode, the DesignSync
url versionid command is invoked.

Local metadata value used (quick mode): Returns the
version number of the object followed by a fetch state indicator,
for example, 1.3 (S). Fetch state indicators include:

C: Cache mode

M: Mirror mode

L: Lock mode

No state indicator: Fetch mode

Note: In quick mode if a view is locked, only the current version
is reported and not the upcoming versions, for example '1.2
(L)' is returned rather than '1.2 -> 1.3'.

url versionid command invoked: Returns the version number
of the object, for example, 1.3. If the object is locked, the
current version number and upcoming version number are
returned (1.3 -> 1.4)

DesignSync Data Manager DFII SKILL Programming Interface Guide

77

Example

The following example returns the version number of the top schematic:

dssGetViewVersionP("df2test" "top" "schematic")
=>
"1.1"

You can use the dssGetViewVersionP function to annotate a symbol so that its label
contains the current version number of the associated schematic. To do so, you can
create a label on the symbol of type, iLLabel, with Label value of:

dssGetViewVersionP(ilInst~>master~>libName
ilInst~>master~>cellName "schematic" ?useCache t ?quick t
?silent t) || "Unknown"

This call to dssGetViewVersionP passes in the library and cell names of the master
of the symbol instance, as well as the schematic view name. The call requests the
cache value for the version number and the 'quick' method. The quick method is
important, as the ILLabel expression is evaluated each time the screen is refreshed,
so it needs to be as fast as possible. If there is no associated schematic view, the
Label value is set to "Unknown"; use of the ?silent option ensures that only
"Unknown" is returned as the Label value in this case.

dssGetViewVersionsP
dssGetViewVersionsP(
 t_libName t_cellName t_viewName
 [?branchName t_branchName]
)
=> l_versions

Description

Given a cell view, returns the list of versions that exist for that cell view, either all
versions or those versions on a specified branch.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)
t_branchName Branch name. Specify a branch selector, not a branch dot-

numeric version number. You can also specify one of the

Revision Control Functions

78

following values for the t_branchName argument:

• all: Returns all versions. (Default)
• current: Returns all versions on the branch of the

version that is currently in the workspace.

Value Returned

By default, the result is a list of all versions that exist in the vault for the specified view. If
a branch name is specified using the t_branchName argument, the return list is
restricted to the versions on that branch.

dssIsFileLockedP
dssIsFileLockedP(
 t_fileName [?vault g_vault]
)
=> t_user/nil

Description

Reports whether the specified file object is locked, returning the lock owner if the file
object is locked or nil if it is not locked. You can specify whether to check for a lock on
the object in the local workspace or in the vault.

You can specify an absolute or relative filename. Filenames can be relative to the
current working directory or to any library on the library path. For example, if library acc
is on your library path, then you can specify the cdsinfo.tag file for that library as
acc/cdsinfo.tag, even though the acc library directory might be anywhere on disk.
If a library name exists, and there is also a directory within the current working directory
of the same name, the library name is used.

Arguments

t_fileName A filename. (Required) A filename can be absolute or relative
to the current working directory or to any library on the library
path. Note: You must specify a filename; other file objects that
resolve to directories, libraries, cells, and views are not
supported by the dssIsFileLockedP function. Likewise, you
cannot specify the type of view object that DesignSync
creates, for example: ~/ttlLib/and2/symbol.sync.cds.
These objects are not actual files; thus, you cannot apply the
dssIsFileLockedP function to this type of object.

DesignSync Data Manager DFII SKILL Programming Interface Guide

79

g_vault Check whether the vault version of the file is locked (t), and,
for module members, what branch of the vault object is locked.
 By default, the dssIsFileLockedP function checks whether
the local workspace version of the file is locked (nil). Note: If
you are checking for a lock on the vault version, only the
current branch of the object is checked.

Value Returned

Returns the lock owner if the object is locked. Note: If you are checking for a lock in the
local workspace, the lock owner returned is the owner of the object. The function raises
an error if argument checking fails. In all other failure cases, the function either raises
an error or returns nil.

dssIsViewLockedP
dssIsViewLockedP(
 t_libName t_cellName t_viewName [?vault g_vault]
)
=> t_user/nil

Description

Reports whether the specified cell view is locked, returning the lock owner if the cell
view is locked or nil if the cell view is not locked. You can specify whether to check for
a lock on the object in the local workspace or in the vault.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)
g_vault Check whether the vault version of the cell view is locked (t),

and, for module members, what branch of the vault object is
locked. By default, the dssIsViewLockedP function checks
whether the local workspace version of the cell view is locked
(nil). Note: If you are checking for a lock on the vault
version, only the current branch of the object is checked.

Value Returned

Returns the lock owner if the object is locked. Note: If you are checking for a lock in the
local workspace, the lock owner returned is the owner of the object. The function raises
an error if argument checking fails. In all other failure cases, the function either raises
an error or returns nil.

Revision Control Functions

80

dssJoinLibraryP
dssJoinLibraryP(
 t_vaultPath [?libName t_libName] [?libPath t_libPath]
 [?mirrorPath t_mirrorPath] [?mode t_mode]
 [?selector t_selector] [?recursive g_recursive]
 [?retain g_retain] [?silent g_silent]
 [?background g_background]
)
=> t/nil

Description

Accesses the specified library and sets up an associated workspace.

Arguments

t_vaultPath Vault URL for the data repository:

sync://<host>:<port>/Projects/<path>/<libraryName>
(for SyncServer vaults)

file:///<clientvaultpath> (for client vaults)

(Required)

Note: You cannot specify a module vault URL or a workspace path
to a module.

t_libName Library name. By default, the library name is the last element of the
vault path in the t_vaultPath argument.

t_libPath Local path to the library, including the library name. The library path
defaults to <syncJoinLibDefaultPath>/<lib_name>, where
<lib_name> is the library name as specified in the t_vaultPath
or t_libName argument. The default value for
<syncJoinLibDefaultPath> is "." where "." is the DFII current
working directory.

t_mirrorPath Path of the local mirror directory, for example,
/home/karen/mirrors/ASIC. By default, no mirror is set.

t_mode Check-out mode ("lock", "share", "mirror", or "get"). By
default, the mode matches the default fetch mode. See the
DesignSync Data Manager DFII User's Guide:Selecting a Default
Fetch Mode to learn how to set the default fetch mode.

t_selector Selector specifying the branch of the library you want to access.
 For non-branching environments, specify the Trunk selector. By
default, the selector of the parent directory of t_libPath is used.

DesignSync Data Manager DFII SKILL Programming Interface Guide

81

g_recursive Recurse to fetch entire library (t). (Default). To fetch just the library-
level files, set to nil.

g_retain Retain the "last modified" timestamps of the checked-out objects as
recorded when the object was checked into the vault (t), or make
the timestamps the check-out time (nil). The default is nil unless
defined otherwise from SyncAdmin (see SyncAdmin Help).

The retain option is only meaningful when checking out physical
copies (lock and get modes) and is silently ignored otherwise.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands run in

the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical interface
command, Synchronicity => Options => Show Background
Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns t if the workspace associated with the specified library has been set up
successfully; otherwise, returns nil.

dssLibraryStatusP
dssLibraryStatusP(
 t_libName [?silent g_silent]
)
=> l_status

Description

Reports library status, such as the workspace path. If the library is managed by
DesignSync DFII, reports the vault path, module, selector, cache, and mirror information
associated with the library, as well as SyncServer availability.

Arguments

t_libName Library name. (Required)
g_silent Run silently (t). (Default) To generate a descriptive status

output similar to the Library Status form, set to nil.

Revision Control Functions

82

Value Returned

Returns a disembodied property list of status information for the specified library.

l_status Returns a list of the form (nil
name t_name
modulePath t_modulePath
libName t_libName
libPath t_libPath
dmType t_dmType
vaultPath t_vaultPath
cachePath t_cachePath
selector t_selector
localMirrorPath t_localMirrorPath
vaultMirrorPath t_vaultMirrorPath
serverStatus t_serverStatus)

If a value is unavailable for any reason, the value is nil.
t_name The name of the module.
t_modulepath The workspace instance of the module.
t_libName The name of the library.
t_libPath The path to the library's local workspace.
t_dmType

The design management tool associated with the library as
defined by the Cadence DMTYPE variable. The value is
"sync" if the library is managed by DesignSync DFII.

t_vaultPath The vault folder associated with the managed library, or
nil if the library is unmanaged.

t_cachePath Path of the cache directory, as specified when DesignSync
DFII was installed or from SyncAdmin.

t_selector Selector specifying the branch or version of the library.
t_localMirrorPath Path of the local mirror directory.
t_vaultMirrorPath This legacy property's value, which pertains to old

"setvaultmirror" functionality, is always "nil".
t_serverStatus Status of the SyncServer on which the library's vault

resides. The value is "up" if the server is available or the
vault is a client vault, and "down" if it is unavailable.

The function raises an error if argument checking fails.

Example

The following example shows the return format of the dssLibraryStatusP function.

dssLibraryStatusP("df2test")
=>

DesignSync Data Manager DFII SKILL Programming Interface Guide

83

(nil
 localMirrorPath
"file:///home/tbarbg10/Mirrors/Libraries/df2test"
 vaultMirrorPath nil
 cachePath "/home/tbarbg10/Caches/Libraries/df2test"
 serverStatus "up"
 selector "Trunk"
 vaultPath "sync://qewfsun9:30138/Libs/df2test"
 dmType "sync"
 libPath "/home/tbarbg4/Cadence/df2test"
 libName "df2test"
)

The following example shows the output returned by the dssLibraryStatusP
function with the ?silent option set to nil.

dssLibraryStatusP("df2test" ?silent nil)
=>
 Library: df2test
 Path: /home/tbarbg4/Cadence/df2test
 DM Type: sync
 Vault: sync://qewfsun9:30138/Libs/df2test
 Cache Directory: /home/tbarbg10/Caches/Libraries/df2test
 Selector: Trunk
 Mirror: file:///home/tbarbg10/Mirrors/Libraries/df2test
 Server: Accessible
 (nil localMirrorPath
"file:///home/tbarbg10/Mirrors/Libraries/df2test"
vaultMirrorPath nil cachePath
"/home/tbarbg10/Caches/Libraries/df2test"
serverStatus "up" selector "Trunk" vaultPath
"sync://qewfsun9:30138/Libs/df2test" dmType "sync" libPath
"/home/tbarbg4/Cadence/df2test" libName "df2test"
)

dssListHierarchyP
dssListHierarchyP(
 t_libName t_cellName tl_viewNames
 [?switchUsing t_switchUsing]
 [?switchList l_switchList]
 [?stopList l_stopList]
 [?switchLibChoice S_switchLibChoice]
 [?switchLibNames l_switchLibNames]
 [?processViews gl_processViews]
 [?includeConfigs g_includeConfigs]
 [?processFiles gS_processFiles] [?silent g_silent]

Revision Control Functions

84

)
=> l_result

Description

Lists the objects of a design hierarchy in the workspace.

For design views, DesignSync DFII scans the hierarchy, beginning with the top-level cell
views you specify using the l_viewNames argument. Then, DesignSync DFII descends
into the views indicated by the t_switchUsing argument. You can use the
t_switchUsing argument to specify that DesignSync DFII descend into one or more
views you specify in a switch list (using the l_switchList argument). You can
instead have DesignSync DFII descend into all instantiated views or all views that exist
for a cell by setting the t_switchUsing argument to "instantiatedView" or
"allViews", respectively. Use the l_stopList argument to indicate at which views
DesignSync DFII is to stop scanning. DesignSync DFII also offers other hierarchy
controls, such as limiting which libraries are scanned using the S_switchLibChoice
argument and limiting which views are checked in using the g_processViews
argument.

For config views, DesignSync traverses the hierarchy specified by the view. Because it
uses the information contained in the config view, it does not use the arguments
l_switchList, t_switchUsing and l_stopList. You can limit which views or
libraries are listed by using the g_processViews S_switchLibChoice arguments.

Notes:

• For DesignSync DFII to scan the hierarchy, the cells must be in your local
workspace.

• DesignSync provides support for operating both on design views and config
views, but you cannot specify both types of views within the same operation.

• DesignSync DFII does not scan through libraries that have been filtered out using
the l_switchLibNames argument. For example, suppose a cell in library_1
references a cell in library_2, which references a cell in library_3. If library_2 is
filtered out in the l_switchLibNames argument, the cell in library_3 is not
found.

Arguments

t_libName Top library name of hierarchy to be listed. (Required)
t_cellName Top cell name of hierarchy to be listed. (Required)
tl_viewNames Top-level view names of hierarchies to be checked out.

(Required)
Can be given a single view, a string, or a list of views.

DesignSync Data Manager DFII SKILL Programming Interface Guide

85

Note: The Switch Using, Switch List, and Stop List
fields are not applicable to "config" views.

DesignSync provides support for operating both on design
views and config views, but you cannot specify both types
of views within the same operation.

t_switchUsing Indicates how the design hierarchy is to be traversed.
Specify one of the following:

• "firstSwitchList": As the design is traversed,
DesignSync DFII descends into the first view
specified in the switch list that exists for a cell.
Specify the switch list using the l_switchList
argument. (Default)

• "allSwitchList": As the design is traversed,
DesignSync DFII descends into each view of the cell
in the workspace that matches a view in the switch
list. Specify the switch list using the l_switchList
argument.

• "instantiatedView": As the design is traversed,
DesignSync DFII descends into each instantiated
view. The l_switchList argument is ignored in
this case.

• "allViews": As the design is traversed,
DesignSync DFII descends into each view of the cell
in the workspace that exists for each cell. The
l_switchList argument is ignored in this case.

This field is not applicable when specifying a config view.
l_switchList Names of the views to be scanned to identify the design

hierarchy. The l_switchList argument is required if you
specify the "firstSwitchList" or "allSwitchList"
values using the t_switchUsing argument. If the
t_switchUsing argument is set to
"instantiatedView" or "allViews", this argument is
ignored.

This field is not applicable when specifying a config view.
l_stopList Names of views at which the hierarchy scanning should

stop. As the design is traversed, if the l_switchList
view being scanned is also in this list, scanning stops.

This field is not applicable when specifying a config view.
S_switchLibChoice Specifies which libraries to enter as the hierarchy is

Revision Control Functions

86

scanned:

• all: Enter all libraries. (Default)
• only: Enter only the libraries specified by the

l_switchLibNames argument.
• not: Enter all libraries except those specified by the

l_switchLibNames argument.

l_switchLibNames Library names controlled by the S_switchLibChoice
argument. You need not include this argument if all is
selected as the S_switchLibChoice argument.

g_processViews Once you have identified the hierarchy using the
t_switchUsing argument, as well as the switch list and
stop list if necessary, specify the views of the identified
cells to be processed:

• t: Process all views that exist for the cell.
• nil: Process only the single view switched into.

(Default)
• switchList: For config views, use the switch view

and the switch list defined within the config view. If
there are sub-configs, then the switch list of the sub-
configs is used within those sub-configs. For non-
config views, use the value specified for the
l_switchList option.

• List of views to process.

g_includeConfigs Specifies whether the config view cells are included in the
operation.

• nil: Only the design cells are included in the
operation. The hierarchy definition cells for the
config view are omitted.

• t: Operate on the design cells and the hierarchy
definition (config) cells. (Default)

This argument is silently ignored if the specified view is not
a config view.

gS_processFiles Specifies whether cell- and library-level files are processed
in addition to the specified cell views:

• nil: No cell- or library-level files are processed.
(Default)

• cell: Cell-level files are processed, but library-level
files are not. This option selects only cell-level files

DesignSync Data Manager DFII SKILL Programming Interface Guide

87

for those cells on which you are operating.
• library: Cell- and library-level files are processed.

g_silent Run silently and provide no warning if no objects match (t).
 (Default). If you set g_silent to nil, warning messages
are provided if no objects match.

Value Returned

Returns the list of objects in the specified design hierarchy. Each entry in the return list
is a list containing an object's library name, its cell name, its cell view name, and its
filename. The filename can be nil, indicating that the object is a cell view. The cell
view can be nil, indicating a file at the cell level. Both the cell and cell view can be
nil, indicating a file at the library level.

dssSetModuleSelector
dssSetModuleSelectorP(

 t_moduleName t_selector [?silent g_silent]

)

=> t/nil

Description

Sets the persistent selector for the module. This allows the user to work in a module
member tag environment and use blended selectors. For more information on blended
selectors and module members tags, see the DesignSync User's Guide: Module
Member Tags.

Arguments

t_moduleName The workspace address of the module. This can be a simple
module name, module instance name or full workspace
address. If a module name or module instance name is given, it
must be unique within the set of modules that are known within
the DSDFII session.
 For more information on referring to modules or on how
DesignSync uses smart module detection to determine the
target module, see ENOVIA Synchronicity DesignSync Data
Manager User's Guide: Specifying Module Objects for
Operations and Understanding Smart Module Detection.

t_selector Selector specifying the new persistent selector for the module.

Revision Control Functions

88

This selector format is validated before being applied.
g_silent Run silently (t). (Default) Command reports output (nil).

Value Returned

Returns t if the persistent selector is modified. Returns nil if there is an error resulting in
no change to the persistent selector.

dssRollbackCellViewP
dssRollbackCellViewP(
t_libName t_cellName t_viewName
[?tag g_tag | ?vaultVersion g_vaultVersion]
[?silent g_silent] [?comment t_comment]
)

=> (1 0)/nil

Description

Creates a rollback version of a cell view; taking a previously checked in view and
making it the latest view on the branch indicated by the workspace selector.

This command follows the methodology defined in the options for the client; either the
skip method or the lock method. For more information on rollback, see the DSDFII
User's Guide: Rollback Cell Views.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)
t_tag Selector, or version name, to be checked out. By default, no

selector is specified, in which case the persistent selector list
determines the version -- typically the latest version on the
current branch. See DesignSync Data Manager User's Guide
to learn more about selectors.

Note: When used with modules, this identifies the module
version, not the module member version. Use the t_
vaultVersion option to specify a module member version.
 t_vaultVersion and t_tag are mutually incompatible.

t_vaultVersion Version number of the module member object to be checked

DesignSync Data Manager DFII SKILL Programming Interface Guide

89

out.

Note: The t_vaultVersion and t_tag options are mutually
incompatible.

g_silent Run silently (t). (Default)
t_comment Check in comment for the rollback version. This comment

should explain the reason for the rollback. The comment is pre-
pended automatically with the rollback information in the
following form:

Rollback checkin from <library> <cell> <view>
version <version> [RETURN]
<user entered comment>

Value Returned

The dssRollbackCellViewP function lets you rollback a single cell view only, so the
returned list is (1 0) if the rollback is successful. The function raises an error if
argument checking fails. In all other failure cases, the function either raises an error or
returns nil.

dssSwapReplaceP
dssSwapReplaceP(
t_moduleName t_selector [?force g_force] [?silent g_silent]
[?mcachemode t_mode]
)

=> t/nil

Description

Replaces the version of a module in the workspace with a different version of the same
module. For more information on understanding this functionality, see the DesignSync
Data Manager User's Guide: Edit-in-Place Methodology.

Arguments

t_moduleName Module name. (Required)
t_selector Selector specifying the new persistent selector for the module.

This selector format is validated before being applied.
(Required)

g_force Overwrite the file even if it is locally modified (t).
g_silent Run silently (t). (Default)
t_mode Specifies the mcache mode. The mcache mode value is not

Revision Control Functions

90

checked at the DSDFII level, but rather by the underlying
DesignSync command. The mcache mode must be one of the
valid values, "link," "copy," "server."

Value Returned

Returns t if the module replace is successful. Returns nil if there is an error resulting in
no change to the module.

dssSwapRestoreP
dssSwapRestoreP(
t_moduleName t_parent [?force g_force] [?silent g_silent]
[?mcachemode t_mode]
)

=> t/nil

Description

Restores to selected sub-module to the selector by which this sub-module is referenced
from its parent module or modules. For more information on understanding this
functionality, see the DesignSync Data Manager User's Guide: Edit-in-Place
Methodology.

Arguments

t_moduleName Module name. (Required)
t_parent Name of the parent module, usually in the form of the module instance

name. Value can also be supplied as a null ("") string. (Default)
g_force Overwrite the file even if it is locally modified (t).
g_silent Run silently (t). (Default)
t_mode Specifies the mcache mode. The mcache mode value is not

checked at the DSDFII level, but rather by the underlying
DesignSync command. the mcache mode must be one of the
valid values, "link," "copy," "server."

Value Returned

Returns t if the module restore is successful. Returns nil if there is an error resulting in
no change to the module hierarchy.

dssSwapShowP
Type todssSwapShowP()

DesignSync Data Manager DFII SKILL Programming Interface Guide

91

=> t

Description

Displays a list of all the modules in a workspace that have had their versions replaced
with different module versions. From the display window, you can perform operations,
such as restoring a module to version corresponding to the persistent selector on the
workspace. For more information on understanding this functionality, see the
DesignSync Data Manager User's Guide: Edit-in-Place Methodology.

Value Returned

Displays the result window with the output from the command. The value of this
command cannot be used in post processing.

dssTagCategoryP
dssTagCategoryP(
 t_libName tl_catNames t_tag [?viewNames l_viewNames]
 [?move g_move] [?remove g_remove] [?nested g_nested]
 [?modified g_modified] [?silent g_silent]
 [?background g_background]
)
=> nil/(x_pass x_fail)

Description

Tags (or removes a tag from) objects of one or more categories. You can tag all the
objects of a category at one time or specify views to tag.

Arguments

t_libName Library name. (Required)
tl_catNames One or more category names. (Required)
t_tag Tag to apply to the workspace versions of the objects of the

specified category. See DesignSync DFII Help for tag naming
guidelines. (Required)

l_viewNames One or more view name(s) to be tagged. (Optional). Tags all
views in the workspace by default.

g_move Move a tag that is already used on a version of an object to a
new version (t). By default (nil), a tag operation fails if the tag
is already in use, because a tag can be attached to only one
version or branch of an object at a time. Note: The g_move and
g_remove arguments are mutually exclusive.

g_remove Delete the t_tag selector from the specified objects (t). By

Revision Control Functions

92

default (nil), the t_tag selector is added to the specified
versions. Note: The g_move and g_remove arguments are
mutually exclusive.

g_nested Apply to nested category contents (t). (Default)

Note: If g_nested is set to t but one or more nested category
files are missing from your workspace, DesignSync DFII
automatically fetches the missing category files and processes
the specified objects.

g_modified For locally modified objects, tag originally checked-out version
(t) instead of failing (nil, default). Tagging is a vault operation,
so locally modified objects are themselves never tagged. Note:
The g_remove and g_modified arguments are mutually
exclusive.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully tagged and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssTagCellP
dssTagCellP(
 t_libName tl_cellNames t_tag [?viewNames l_viewNames]
 [?move g_move] [?remove g_remove] [?silent g_silent]
 [?modified g_modified] [?background g_background]
)
=> nil/(x_pass x_fail)

Description

Tags (or removes a tag from) a cell in the workspace. To tag an entire design hierarchy,
use the dssTagHierarchyP function.

DesignSync Data Manager DFII SKILL Programming Interface Guide

93

Arguments

t_libName Library name of cell to be tagged. (Required)
tl_cellNames Names of one or more cells to be tagged. (Required)
t_tag Tag to apply to the workspace versions of the objects. See the

DesignSync Data Manager DFII User's Guide for tag naming
guidelines. (Required)

l_viewNames One or more view name(s) to be tagged. (Optional). Tags all
views in the workspace by default.

g_move Move a tag that is already used on a version of an object to a
new version (t). By default (nil), a tag operation fails if the tag
is already in use, because a tag can be attached to only one
version or branch of an object at a time. Note: The g_move and
g_remove arguments are mutually exclusive.

g_remove Delete the t_tag selector from the specified objects (t). By
default (nil), the t_tag selector is added to the specified
versions. Note: The g_move and g_remove arguments are
mutually exclusive.

g_modified For locally modified objects, tag originally checked-out version
(t) instead of failing (nil, default). Tagging is a vault operation,
so locally modified objects are themselves never tagged. Note:
The g_remove and g_modified arguments are mutually
exclusive.

g_background Run silently (t). (Default)
g_silent Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully tagged and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssTagCellViewP

Revision Control Functions

94

dssTagCellViewP(
 t_libName t_cellName t_viewName t_tag
 [?versionName t_versionName] [?move g_move]
 [?remove g_remove] [?silent g_silent]
 [?modified g_modified] [?background g_background]
)
=> nil/(x_pass x_fail)

Description

Tags (or removes a tag from) a cell view in the workspace. To tag an entire design
hierarchy, use the dssTagHierarchyP function.

Arguments

t_libName Library name of cell view to be tagged. (Required)
t_cellName Cell name of cell view to be tagged. (Required)
t_viewName Cell view name to be tagged. (Required)
t_tag Tag to apply to the workspace version of the object. See the

DesignSync Data Manager DFII User's Guide for tag naming
guidelines. (Required)

t_versionName Version to be tagged. By default, the version is the current
version in the workspace.

g_move Move a tag that is already used on a version of an object to a
new version (t). By default (nil), a tag operation fails if the tag
is already in use, because a tag can be attached to only one
version or branch of an object at a time. Note: The g_move and
g_remove arguments are mutually exclusive.

g_remove Delete the t_tag selector from the specified objects (t). By
default (nil), the t_tag selector is added to the specified
versions. Note: The g_move and g_remove arguments are
mutually exclusive.

g_modified For locally modified objects, tag originally checked-out version
(t) instead of failing (nil, default). Tagging is a vault operation,
so locally modified objects are themselves never tagged. Note:
The g_remove and g_modified arguments are mutually
exclusive.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

DesignSync Data Manager DFII SKILL Programming Interface Guide

95

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully tagged and the second integer represents the number of failures. The
dssTagCellViewP function lets you tag a single cell view only, so the returned list is
(1 0) if the tag operation is successful and (0 1) if the tag operation fails. The function
raises an error if argument checking fails. In all other failure cases, the function either
raises an error or returns nil.

dssTagFileP
dssTagFileP(
 tl_fileNames t_tag [?move g_move] [?remove g_remove]
 [?modified g_modified] [?recursive g_recursive] [?silent
g_silent]
 [?background g_background]
)
=> nil/(x_pass x_fail)

Description

Tags (or removes a tag from) one or more file object(s) in the local workspace.

You can specify absolute or relative filenames. Filenames can be relative to the current
working directory or to any library on the library path. For example, if library acc is on
your library path, then you can specify the cdsinfo.tag file for that library as
acc/cdsinfo.tag, even though the acc library directory might be anywhere on disk.
If a library name exists, and there is also a directory within the current working directory
of the same name, the library name is used.

Specify wildcards for filenames using glob-style expressions.

Notes:

For wildcards, filenames in the current working directory take precedence over library
names. That is, a glob expression of lib* will not match libraries libA and libB if
similarly named files exist in the current working directory; the dssTagFileP function
first expands regular expressions against the current directory, and then performs
library matching.

Arguments

Revision Control Functions

96

tl_fileNames One or more file object(s) to be tagged. (Required) You can
specify file objects as glob-style expressions. A file object can
be:

A filename, specified as a full path or a path relative to the
current working directory.

A filename, specified relative to a library, for example
<libname>/cdsinfo.tag or
<libname>/cellname/prop.xx.

A directory name, either a full path or a path relative to the
current working directory.

A library name.

A cell name, specified as <libname>/<cellname>.

A view name, specified as
<libname>/<cellname>/<viewname>.

Note: DesignSync creates objects called <name>.sync.cds to
represent Cadence views, where <name> corresponds to the
name of the view folder, for example:
~/ttlLib/and2/symbol.sync.cds. These objects are not
actual files; thus, you cannot apply the dssTagFileP function
to this type of object.

t_tag Tag to apply to the workspace versions of the objects. See the
DesignSync Data Manager DFII User's Guide for tag naming
guidelines. (Required)

g_move Move a tag that is already used on a version of an object to a
new version (t). By default (nil), a tag operation fails if the tag
is already in use, because a tag can be attached to only one
version or branch of an object at a time. Note: The g_move and
g_remove arguments are mutually exclusive.

g_remove Delete the t_tag selector from the specified objects (t). By
default (nil), the t_tag selector is added to the specified
versions. Note: The g_move and g_remove arguments are
mutually exclusive.

g_modified For locally modified objects, tag originally checked-out version
(t) instead of failing (nil, default). Tagging is a vault operation,
so locally modified objects are themselves never tagged. Note:
The g_remove and g_modified arguments are mutually
exclusive.

DesignSync Data Manager DFII SKILL Programming Interface Guide

97

g_recursive For folders, tag the contents of the folder recursively. If
performed on a module folder, the folders are traversed
recursively, but the module hierarchy is not.
For module instances, tag the contents of the module hierarchy
recursively.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully tagged and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssTagHierarchyP
dssTagHierarchyP(
 t_libName t_cellName tl_viewNames
 t_tag [?switchUsing t_switchUsing]
 [?switchList l_switchList] [?move g_move]
 [?remove g_remove] [?stopList l_stopList]
 [?switchLibChoice S_switchLibChoice]
 [?switchLibNames l_switchLibNames]
 [?processViews gl_processViews]
 [?includeConfigs g_includeConfigs]
 [?processFiles gS_processFiles]
 [?modified g_modified] [?silent g_silent]
 [?background g_background]
)
=> nil/(x_pass x_fail)

Description

Tags (or removes a tag from) a design hierarchy in the workspace. DesignSync
provides two mechanisms to identify the cells in a design hierarchy.

Revision Control Functions

98

For design views, DesignSync DFII scans the hierarchy, beginning with the top-level cell
views you specify using the tl_viewNames argument. Then, DesignSync DFII
descends into the views indicated by the t_switchUsing argument. You can use the
t_switchUsing argument to specify that DesignSync DFII descend into one or more
views you specify in a switch list (using the l_switchList argument). You can
instead have DesignSync DFII descend into all instantiated views or all views that exist
for a cell by setting the t_switchUsing argument to "instantiatedView" or
"allViews", respectively. Use the l_stopList argument to indicate at which views
DesignSync DFII is to stop scanning. DesignSync DFII also offers other hierarchy
controls, such as limiting which libraries are scanned using the S_switchLibChoice
argument and limiting which views are checked in using the g_processViews
argument.

For config views, DesignSync traverses the hierarchy specified by the view. Because it
uses the information contained in the config view, it does not use the arguments
l_switchList, t_switchUsing and l_stopList. You can limit which views or
libraries are tagged by using the g_processViews S_switchLibChoice arguments.

Notes:

• For DesignSync DFII to scan the hierarchy, the cells must be in your local
workspace.

• DesignSync provides support for operating both on design views and config
views, but you cannot specify both types of views within the same operation.

• DesignSync DFII does not scan through libraries that have been filtered out using
the l_switchLibNames argument. For example, suppose a cell in library_1
references a cell in library_2, which references a cell in library_3. If library_2 is
filtered out in the l_switchLibNames argument, the cell in library_3 is not
found.

Arguments

t_libName Top library name of hierarchy to be tagged. (Required)
t_cellName Top cell name of hierarchy to be tagged. (Required)
tl_viewNames Top-level view names of hierarchies to be checked out.

(Required)
Can be given a single view, a string, or a list of views.

Note: The Switch Using, Switch List, and Stop List
fields are not applicable to "config" views.

DesignSync provides support for operating both on design
views and config views, but you cannot specify both types
of views within the same operation.

t_tag Tag to apply to workspace versions of the design

DesignSync Data Manager DFII SKILL Programming Interface Guide

99

hierarchy. See the DesignSync Data Manager DFII User's
Guide for tag naming guidelines. (Required)

t_switchUsing Indicates how the design hierarchy is to be traversed.
Specify one of the following:

• "firstSwitchList": As the design is traversed,
DesignSync DFII descends into the first view
specified in the switch list that exists for a cell.
Specify the switch list using the l_switchList
argument. (Default)

• "allSwitchList": As the design is traversed,
DesignSync DFII descends into each view of the cell
in the workspace that matches a view in the switch
list. Specify the switch list using the l_switchList
argument.

• "instantiatedView": As the design is traversed,
DesignSync DFII descends into each instantiated
view. The l_switchList argument is ignored in
this case.

• "allViews": As the design is traversed,
DesignSync DFII descends into each view of the cell
in the workspace that exists for each cell. The
l_switchList argument is ignored in this case.

This field is not applicable when specifying a config view.
l_switchList Names of the views to be scanned to identify the design

hierarchy. The l_switchList argument is required if you
specify the "firstSwitchList" or "allSwitchList"
values using the t_switchUsing argument. If the
t_switchUsing argument is set to
"instantiatedView" or "allViews", this argument is
ignored.

This field is not applicable when specifying a config view.
g_move Move a tag that is already used on a version of an object to

a new version (t). By default (nil), a tag operation fails if
the tag is already in use, because a tag can be attached to
only one version or branch of an object at a time. Note:
The g_move and g_remove arguments are mutually
exclusive.

g_remove Delete the t_tag selector from the specified objects (t).
By default (nil), the t_tag selector is added to the
specified versions. Note: The g_move and g_remove
arguments are mutually exclusive.

Revision Control Functions

100

l_stopList Names of views at which the hierarchy scanning should
stop. As the design is traversed, if the l_switchList
view being scanned is also in this list, scanning stops.

This field is not applicable when specifying a config view.
S_switchLibChoice Specifies which libraries to enter as the hierarchy is

scanned:

• all: Enter all libraries. (Default)
• only: Enter only the libraries specified by the

l_switchLibNames argument.
• not: Enter all libraries except those specified by the

l_switchLibNames argument.

l_switchLibNames Library names controlled by the S_switchLibChoice
argument. You need not include this argument if all is
selected as the S_switchLibChoice argument.

g_processViews Once you have identified the hierarchy using the
t_switchUsing argument, as well as the switch list and
stop list if necessary, specify the views of the identified
cells to be processed:

• t: Process all views that exist for the cell.
• nil: Process only the single view switched into.

(Default)
• switchList: For config views, use the switch view

and the switch list defined within the config view. If
there are sub-configs, then the switch list of the sub-
configs is used within those sub-configs. For non-
config views, use the value specified for the
l_switchList option.

• List of views to process.

g_includeConfigs Specifies whether the config view cells are included in the

operation.

• nil: Only the design cells are included in the
operation. The hierarchy definition cells for the
config view are omitted.

• t: Operate on the design cells and the hierarchy
definition (config) cells. (Default)

This argument is silently ignored if the specified view is not
a config view.

DesignSync Data Manager DFII SKILL Programming Interface Guide

101

gS_processFiles Specifies whether cell- and library-level files are processed
in addition to the specified cell views:

• nil: No cell- or library-level files are processed.
(Default)

• cell: Cell-level files are processed, but library-level
files are not. This option selects only cell-level files
for those cells on which you are operating.

• library: Cell- and library-level files are processed.

g_modified For locally modified objects, tag originally checked-out
version (t) instead of failing (nil, default). Tagging is a
vault operation, so locally modified objects are themselves
never tagged. Note: The g_remove and g_modified
arguments are mutually exclusive.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default,

commands run in the foreground (nil). DesignSync DFII
adds background commands to the Background Queue.
Use the graphical interface command,
Synchronicity => Options => Show Background Queue
to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully tagged and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssTagLibraryP
dssTagLibraryP(
 t_libName t_tag [?viewNames l_viewNames]
 [?move g_move] [?remove g_remove]
 [?modified g_modified][?silent g_silent]
 [?background g_background]
)
=> nil/(x_pass x_fail)

Description

Revision Control Functions

102

Tags (or removes a tag from) a library in the workspace.

Arguments

t_libName Name of library to be tagged. (Required)
t_tag Tag to apply to the workspace versions of the objects. See the

DesignSync Data Manager DFII User's Guide for tag naming
guidelines. (Required)

l_viewNames One or more view name(s) to be tagged. (Optional). Tags all
views in the workspace by default.

g_move Move a tag that is already used on a version of an object to a
new version (t). By default (nil), a tag operation fails if the tag
is already in use, because a tag can be attached to only one
version or branch of an object at a time. Note: The g_move and
g_remove arguments are mutually exclusive.

g_remove Delete the t_tag selector from the specified objects (t). By
default (nil), the t_tag selector is added to the specified
versions. Note: The g_move and g_remove arguments are
mutually exclusive.

g_modified For locally modified objects, tag originally checked-out version
(t) instead of failing (nil, default). Tagging is a vault operation,
so locally modified objects are themselves never tagged. Note:
The g_remove and g_modified arguments are mutually
exclusive.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully tagged and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssUnlockCellViewP

DesignSync Data Manager DFII SKILL Programming Interface Guide

103

dssUnlockCellViewP(
 t_libName t_cellName t_viewName [?branch t_branch]
 [?silent g_silent] [?background g_background]
)
=> nil/(x_pass x_fail)

Description

Unlocks a single cell view. Use dssCancelCellViewP to remove the lock on a cell
view that you have checked out in your workspace.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)
t_branch Branch name. By default, dssUnlockCellViewP unlocks the

current branch of the cell view in your workspace. If the cell
view is not in your workspace, then by default the library's
selector is used.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of
successful unlocks and the second integer represents the number of failures. The
dssUnlockCellViewP function lets you unlock a single cell view, so the returned list
is (1 0) if the unlock is successful and (0 1) if the unlock fails. The function raises an
error if argument checking fails. In all other failure cases, the function either raises an
error or returns nil.

dssUnlockFileP
dssUnlockFileP(
 t_fileName [?branch t_branch] [?silent g_silent]
 [?background g_background]

Revision Control Functions

104

)
=> nil/(x_pass x_fail)

Description

Unlocks a single file. Use dssCancelFileP to remove the lock on a file or module that
you have checked out in your workspace.

You can specify an absolute or relative filename. Filenames can be relative to the
current working directory or to any library on the library path. For example, if library acc
is on your library path, then you can specify the cdsinfo.tag file for that library as
acc/cdsinfo.tag, even though the acc library directory might be anywhere on disk.
If a library name exists, and there is also a directory within the current working directory
of the same name, the library name is used.

Arguments

t_fileName A file or module name. (Required) A filename can be absolute
or relative to the current working directory or to any library on
the library path.

Note: You must specify a filename; other file objects that
resolve to directories, libraries, cells, and views are not
supported by the dssUnlockFileP function. Likewise, you
cannot specify the type of view object that DesignSync creates,
for example: ~/ttlLib/and2/symbol.sync.cds. These
objects are not actual files; thus, you cannot apply the
dssUnlockFileP function to this type of object.

t_branch Branch name. By default, dssUnlockFileP unlocks the
current branch of the file in your workspace. If the file is not in
your workspace, then by default the selector of the library or
parent folder is used.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

DesignSync Data Manager DFII SKILL Programming Interface Guide

105

Returns a list of pass and fail counts; the first integer represents the number of
successful unlocks and the second integer represents the number of failures. The
dssUnlockFileP function lets you unlock a single file, so the returned list is (1 0) if
the unlock is successful and (0 1) if the unlock fails. The function raises an error if
argument checking fails. In all other failure cases, the function either raises an error or
returns nil.

dssViewDataSheetP
dssViewDataSheetP(
 t_fileName | t_libName [t_cellName] [t_viewName]
)
=> t/nil

Description

Displays the data sheet (in your HTML browser) for the specified object (library, cell,
view, file, or directory).

Arguments

t_fileName File or module name. (Required unless you specify a library
name.)

Module objects can be specified by full path.

DesignSync objects can be specified as a full path or a path
relative to the current working directory or library, for library, for
example <libname>/cdsinfo.tag or
<libname>/<cellname>/prop.xx.

Note:

• DesignSync creates objects called <name>.sync.cds
to represent Cadence views, where <name> corresponds
to the name of the view folder, for example:
~/ttlLib/and2/symbol.sync.cds. These objects
are not actual files; thus, you cannot apply the
dssViewDataSheet function to this type of object.

• You can also specify a directory to view the data sheet
for that directory.

t_libName Library name. (Required unless you specify a file name:
t_fileName.)

t_cellName Cell name.

Revision Control Functions

106

t_viewName View name.

Value Returned

Returns t if the data sheet can be displayed, otherwise, returns nil. The function
raises an error if argument checking fails.

Example

The following examples show the invocation of the dssViewDataSheetP function.

In this example, the data sheet for a file is requested.

dssViewDataSheetP("/home/users/joe/libs/smallLib/cdsinfo.tag")
=> t

Because smallLib is a library defined in this user's cds.lib file, the following
specification is equivalent:

dssViewDataSheetP("smallLib/cdsinfo.tag")
=> t

In this example, the data sheet for a cell view is requested:

dssViewDataSheetP("smallLib" "and2" "symbol")
=> t

dssViewVersionHistoryP
dssViewVersionHistoryP(
 t_fileName | t_libName [t_cellName [t_viewName]]?all g_all
 ?branch g_branch ?descendants g_descendants ?lastBranches
g_lastBranches ?lastVersions g_lastVersions ?maxTags g_maxTags
?report t_report?memberVault g_memberVault
)
=> t/nil

Description

Displays the version history (in a text window) for the specified file, module or cell view.

Arguments

t_fileName File or workspace module name. (Required unless you specify

DesignSync Data Manager DFII SKILL Programming Interface Guide

107

a cell view: t_libName t_cellName t_viewName.)

Module objects can be specified by full path.

DesignSync objects can be specified as a full path or a path
relative to the current working directory or library, for library, for
example <libname>/cdsinfo.tag or
<libname>/<cellname>/prop.xx.

Note: DesignSync creates objects called <name>.sync.cds
to represent Cadence views, where <name> corresponds to
the name of the view folder, for example:
~/ttlLib/and2/symbol.sync.cds. These objects are not
actual files; thus, you cannot apply the dssViewDataSheet
function to this type of object.

t_libName Library name. (Required unless you specify t_fileName.)
t_cellName Cell name. (Required unless you specify t_fileName.)
t_viewName View name. (Required unless you specify t_fileName.)
g_all Include all branches (t). Default is f, only include current

branch.
g_branch The branch name of the desired branch. Empty by default.
t_descendants Number of descendant versions. This field is ignored when

g_all is T.
t_lastBranches Number of branches, from the current version back, to report on.

 Must be a positive integer.
t_lastVersions Number of versions, from the current version back, to report

on. Must be a positive integer.
t_maxTags Maximum number of tags to report for a branch or version.

 Must be a positive integer.
t_report Report mode keys. For a list of valid report mode keys and

explanation of the keys, see ENOVIA Synchronicity
DesignSync DFII User's Guide: Version History Report
Options.

g_memberVault t/nil boolean value indicating whether the command runs on the
individual module member vault object or the the parent
module. When the value is t, the command runs on the
individual member vault (Default). When it is nil, the command
runs on the parent module, providing a module history
containing only the changes to the specified member.

Note: When you specify a filename with the memberVault, you
must include two sets of nil values between the filename value
and the memberVault value.

Revision Control Functions

108

Value Returned

Returns t if the version history can be displayed, otherwise, returns nil. The function
raises an error if argument checking fails.

Example

The following examples show the invocation of the dssViewVersionHistoryP
function.

In this example, the version history for a file is requested.

dssViewVersionHistoryP("/home/users/joe/libs/smallLib/cdsinfo.ta
g")
=> t

Because smallLib is a library defined in this user's cds.lib file, the following
specification is equivalent:

dssViewVersionHistoryP("smallLib/cdsinfo.tag")
=> t

In this example, the version history for a cell view is requested:

dssViewVersionHistoryP("smallLib" "and2" "symbol")
=> t

dssViewWhereUsedP
dssViewWhereUsedP(
 t_fileName | t_libraryName t_cellName t_viewName
 [?version t_version] [?showtags t_showtags]
)
=> t/nil

Description

Displays the whereused information for where the specified version of the module
member is used..

Arguments

t_fileName File name. (Required unless you specify a cell view:

DesignSync Data Manager DFII SKILL Programming Interface Guide

109

t_libName t_cellName t_viewName.)

DesignSync objects can be specified as a full path or a path
relative to the current working directory or library, for library, for
example <libname>/cdsinfo.tag or
<libname>/<cellname>/prop.xx.

t_libName Library name. (Required unless you specify t_fileName.)
t_cellName Cell name. (Required unless you specify t_fileName.)
t_viewName View name. (Required unless you specify t_fileName.)
t_version Version specifier. The legal values are:

all - show whereused results for all member versions.
current - show whereused results for the current member
version populated in the workspace.
<Selector_List> - a comma separated list of selected versions.
 This list is not validated prior to execution.

t_showtags Specifies whether tag information is displayed and optionally
restricts the output to immutable tagged version or tagged
versions. The legal values are:
all - Displays all module versions containing the member
version and all tags associated with the module or member
version. (Default)
none - Displays all module versions containing the member
version, but does not display tag information..
version - Displays any reference location that has a version tag
and the name of the tag.
immutable - Displays only module versions containing the
member version that are tagged with an immutable tag and the
name of the immutable tag.
Note: Using the -showtags immutable option may not display all
versions in which an immutable tag is used. The whereused
command queries for all the whereused information but filters
the display from the starting point until it reaches the last
immutable tag in a reference tree.
member - Displays any module version containing the member
version that has a member tag and the name of the tag.

Value Returned

Displays the result window with the output from the command. The value of this
command cannot be used in post processing.

111

Menu Customization Functions
Customizing the Menu
You (or your project leader) can configure the menus that are part of the interfaces
provided with the DSDFII integration, selectively removing, adding, or reordering
submenus and commands. You can customize menus and toolbars on the main
Command Interface Window, the Status Browser windows, and the editor windows,
including the Hierarchy Editor. For example, if your team uses scripts to place libraries
under revision control, your project leader might remove Configure Library from the
Synchronicity menu on the Command Interface Window. Or if your team policy is never
to delete cell view versions from the vault, you can remove Delete => Version.

You can control your menu configurations based on user level,menu location (CIW,
Status Browser, Hierarchy editor, etc.), and for both short and full versions of the cell
view menu (see the DesignSync Data Manager DFII User's Guide: Controlling the
Synchronicity Menu on Cell View Windows).

This section describes the SKILL functions used to configure the menues. These
functions are defined when dssInit.il is loaded (see the DesignSync Data Manager
DFII User's Guide: Loading the DesignSync Integration into DFII).

Related Topics

Customizing Menu Items

Customizing Menu Items
Each DSDFII interface, the Command Interface Window, the Design Editor, the
Hierarchy Editor and the Status Browser, provide its own set of menus that can be
customized. Using the functions provided in this section, you can add, remove or
change which menu items are displayed on any of the interface menus.

Available Menus

Menu Name Description
CIWNovice Command Interface Window menu displayed in Novice mode.
CIWAdvanced Command Interface Window menu displayed in Advanced mode.
CIWExpert Command Interface Window menu displayed in Expert mode.
DENoviceFull Design Editor full menu displayed in Novice mode.
DEAdvancedFull Design Editor full menu displayed in Advanced mode.

Menu Customization Functions

112

DEExpertFull Design Editor full menu displayed in Expert mode.
DENoviceShort Design Editor short menu displayed in Novice mode.
DEAdvancedShort Design Editor short menu displayed in Advanced mode.
DEExpertShort Design Editor short menu displayed in Expert mode.

SBBannerNovice Status Browser "banner," the menus at the top of the Status Browser,
in Novice mode.

SBBannerAdvanced Status Browser "banner," the menus at the top of the Status Browser,
in Advanced mode.

SBBannerExpert Status Browser "banner," the menus at the top of the Status Browser,
in Expert mode.

SBContextNovice Status Browser Context Menus displayed when the Status Browser is
open in Tree View in Novice mode.

SBContextAdvanced Status Browser Context Menus displayed when the Status Browser is
open in Tree View in Advanced mode.

SBContextExpert Status Browser Context Menus displayed when the Status Browser is
open in Tree View in Expert mode.

SBLibraryNovice Status Browser Context Menu for libraries selected in List View in
Novice mode.

SBLibraryAdvanced Status Browser Context Menu for libraries selected in List View in
Advanced mode.

SBLibraryExpert Status Browser Context Menu for libraries selected in List View in
Expert mode.

SBCategoryNovice Status Browser Context Menu for categories selected in List View in
Novice mode.

SBCategoryAdvanced Status Browser Context Menu for categories selected in List View in
Advanced mode.

SBCategoryExpert Status Browser Context Menu for categories selected in List View in
Expert mode.

SBCellNovice Status Browser Context Menu for cells selected in List View in
Novice mode.

SBCellAdvanced Status Browser Context Menu for cells selected in List View in
Advanced mode.

SBCellExpert Status Browser Context Menu for cells selected in List View in
Expert mode.

SBViewNovice Status Browser Context Menu for views selected in List View in
Novice mode.

SBViewAdvanced Status Browser Context Menu for views selected in List View in
Advanced mode.

SBViewExpert Status Browser Context Menu for views selected in List View in
Expert mode.

DesignSync Data Manager DFII SKILL Programming Interface Guide

113

SBFileNovice Status Browser Context Menu for files selected in List View in
Novice mode.

SBFileAdvanced Status Browser Context Menu for files selected in List View in
Advanced mode.

SBFileExpert Status Browser Context Menu for files selected in List View in
Expert mode.

SBModuleNovice Status Browser Context Menu for modules selected in List View in
Novice mode.

SBModuleAdvanced Status Browser Context Menu for modules selected in List View in
Advanced mode.

SBModuleExpert Status Browser Context Menu for modules selected in List View in
Expert mode.

HEDNovice Hierarchy editor menu displayed in Novice mode.
HEDAdvanced Hierarchy editor menu displayed in Advanced mode.
HEDExpert Hierarchy editor menu displayed in Expert mode.

dssMenuAddItemP
dssMenuAddItemP(
 t_menu tl_items t_relative [?post g_post]
)
=> t/error

Description

Adds a menu item or submenu to a menu. If a menu item to be added is not already
defined, you must first define it using the dssMenuAddValidItemP function, then use
the dssMenuAddItemP function to specify where to place an instance of the new menu
item within the existing menu structure.

Arguments

t_menu The name of a menu to which the specified menu item or
submenu is to be added. For a list of available menu names see
Customizing Menu Items.(Required)

tl_items Either the name of a predefined menu item or a list containing a
new submenu name followed by its predefined menu items.
(Required) Note: The predefined menu items can be menu
items that already exist in the DesignSync DFII interface or you
can define them using the dssMenuAddValidItemP function.

t_relative The name of an existing menu item or submenu on the
specified menu next to which the new item or submenu is to be
added. To view the structure of the menu in order to choose

Menu Customization Functions

114

where to insert the new item, use the dssMenuListMenuP
function. (Use the g_post argument to specify whether the
new item is to be added before or after the existing item.)
 (Required)

g_post By default, the item is placed before the relative menu item or
submenu (nil). Specify t to place the item after the relative
menu item or submenu (t_relative). If t_relative is a
submenu, then the new item is placed before or after that entire
menu and not as an item on that menu.

Value Returned

Returns t if the item or submenu is successfully added. Raises an error if the menu or
the relative item is not found.

Example

The following example adds the Delete Version menu item to the short version of the
DE menu in expert mode only, after the existing Delete item:

dssMenuAddItemP("DEExpertShort" "DeleteVersion" "Delete" ?post
t)

syncUseEditWindowShortMenu = t

dssMenuRefreshP()

The first line adds the menu item. The second line turns on the use of the short menu
on DE windows. The last line refreshes the displayed menus.

dssMenuAddValidItemP
dssMenuAddValidItemP(
 t_item r_initItem [?uninitItem r_uninitItem]
)
=> t

Description

Adds a new entry to the list of allowed menu items. This new menu item is specified as
an existing SKILL menu item type. You can use the SKILL hiCreateMenuItem
function to create a new type of SKILL menu item or use an existing SKILL menu item.
 See the Cadence SKILL documentation for more information about SKILL menu items.

DesignSync Data Manager DFII SKILL Programming Interface Guide

115

If the menu item you are defining already exists, it is redefined with the SKILL menu
items you specify using the r_initItem and r_uninitItem arguments.

Arguments

t_item The name of the new menu item to be defined. (Required)
r_initItem The SKILL menu item used to specify the new menu item. This

menu item is used if the resulting form is to be initialized with
the details of the current DE window cell view. (Required)

r_uninitItem The SKILL menu item to be used if the resulting form is not to
be initialized with the details of the current DE window cell view.
 The r_uninitItem argument is optional; include it only if
there are circumstances when a form is not to be initialized. If
the r_uninitItem argument is not specified, then the
r_initItem menu item is always used. If you create a SKILL
menu item using the SKILL hiCreateMenuItem function,
ensure that the menu callbacks are designed to appropriately
take advantage of this feature.

Value Returned

Returns t.

Example

The following example shows how to create a new menu item and use the item within a
Synchronicity menu. The hiCreateMenuItem SKILL function creates a SKILL menu
item, myMenuItem, which prints the current time. Next, the dssMenuAddValidItemP
function creates a new menu item, Time, defined as a myMenuItem SKILL menu item.
 Finally, the dssMenuAddItemP function adds the new menu item, Time, to the
advanced mode of the CIW menu, before the existing Options item.

myMenuItem = hiCreateMenuItem(?name 'myMenuItem ?itemText "Time"
?callback "println(getCurrentTime())")

dssMenuAddValidItemP("Time" myMenuItem)

dssMenuAddItemP("CIWAdvanced" "Time" "Options")

dssMenuRefreshP()

dssMenuListItemsP
dssMenuListItemsP(
 [?print g_print]

Menu Customization Functions

116

)
=> l_names

Description

Returns, and optionally prints, the names of all valid menu items.

Arguments

g_print Specifies whether the names should be printed, as well as
returned, by the function call (t). By default, the names are
only returned by the function and not printed (nil).

Value Returned

l_names A list of all the valid menu items.

dssMenuListMenuP
dssMenuListMenuP(
 [?menu t_menu] [?port p_port]
)
=> t

Description

Prints the existing structure for one or all of the menus. The menu structure includes the
name of each menu item and the submenus within it. Each submenu level is indented
and preceded by the submenu name.

Arguments

t_menu The name of a menu, To view the structure of all menus,
specify all. (Default) For a list of available menu names see
Customizing Menu Items.

p_port A SKILL port to which the output is to be written. The default
port is poport.

Value Returned

Returns t.

dssMenuLoadConfigP

DesignSync Data Manager DFII SKILL Programming Interface Guide

117

dssMenuLoadConfigP(
 t_fileName
)
=> t/error

Description

Load the menu configuration from the specified file. This is a simple alias for the SKILL
load function; the menu configuration file is stored in a SKILL executable format. In
addition to the menu configuration saved by the dssMenuSaveConfigP function, the
SKILL file can also contain custom menu item definitions.

Arguments

t_filename Name of the file from which to load the menu structure and any
additional custom menu definitions. (Required)

Value Returned

Returns t if the menu configuration is successfully loaded. Raises an error if the file
cannot be opened.

dssMenuRefreshP
dssMenuRefreshP()
=> t

Description

Refreshes the menus attached to all windows using the currently stored menu
definitions. Call this function after making any changes to the menu structures. Call this
function also after changing variables that control whether the long or short menus are
used and whether CIW callbacks initialize the forms.

Arguments

None.

Value Returned

Returns t.

dssMenuRemoveItemAllP

Menu Customization Functions

118

dssMenuRemoveItemAllP(
 t_item
)
=> t

Description

Removes a menu item or submenu from all menus where it is currently used.

Arguments

t_item The name of a menu item or submenu name. (Required)

Value Returned

Returns t.

dssMenuRemoveItemP
dssMenuRemoveItemP(
 t_menu t_item [?silent g_silent]
)
=> t/error

Description

Removes a menu item or submenu from a menu. The first matching item or submenu
(using a depth-first search) is removed. To remove an item or submenu from all menus,
use the dssMenuRemoveItemAllP function.

Arguments

t_menu The name of a menu from which you are removing the specified
menu item. (Required)

t_item The name of a menu item or submenu name to be removed.
(Required)

g_silent Run silently (t). (Default)

Value Returned

Returns t if the item or submenu is successfully removed. Raises an error if the
specified item is not currently on the menu.

Example

DesignSync Data Manager DFII SKILL Programming Interface Guide

119

The following example removes the Delete => Version item from the CIW and DE
menus in novice mode:

dssMenuRemoveItemP("CIWNovice" "Delete->Version")

dssMenuRemoveItemP("DENoviceFull" "Delete->Version")

dssMenuRefreshP()

The first two lines remove the menu item from the menus. The last line refreshes the
displayed menus.

dssMenuRemoveValidItemP
dssMenuRemoveValidItemP(
 t_item
)
=> t

Description

Removes the specified item from the list of allowed menu items. Note that if the
specified item is currently used in the menu structures, warnings are generated when
the menus are refreshed.

Arguments

t_item The name of the existing menu item to be removed from the list
of valid menu items. (Required)

Value Returned

Returns t.

dssMenuSaveConfigP
dssMenuSaveConfigP(
 t_fileName
)
=> t/error

Description

Menu Customization Functions

120

Saves the current menu structures in the specified file. Note that the list of valid menu
items is not saved, as it contains references to SKILL menu items, which cannot be
stored.

This function is intended as a simple way of storing a menu structure once it has been
created. If you use custom menu items, then you also need to store the commands
required to create those menu items and add them to the list of valid items. However,
you can store these additional commands in the same file used to save the menu
structure (specified with the t_filename argument) because the structure of the file is
a SKILL source code file. To load the menu structure and any additional custom menu
item definitions, use the dssMenuLoadConfigP function, which calls the SKILL load
function.

Arguments

t_filename Name of the file in which to store the menu structure.
(Required)

Value Returned

Returns t if the menu configuration is successfully saved. Raises an error if the file
cannot be opened.

dssRefreshWindowBannerP
dssRefreshWindowBannerP(
 [?windows rl_windows]
)
=> t/nil

Description

Refreshes the window banner for one or more windows.

Arguments

rl_windows The identifier of a window or a list of windows to refresh. The
default is to refresh all windows. To list all the windows that
currently exist, use the hiGetWindowList()SKILL function.

Value Returned

Returns t if the windows have been successfully refreshed; otherwise, returns nil.

121

Miscellaneous Functions
dssChangeDefaultsContextP
dssChangeDefaultsContextP(
 [?context t_context]
)
=> t_context

Description

Changes the context of default values that are saved, when using Save Defaults in a
DesignSync DFII form. See the DesignSync Data Manager DFII User's Guide: Setting
Form Default Values. Default values can be saved by an individual user, for a project
team, or for all users of a site's software installation. Similarly, the context determines
which default values are removed, either for a user, a project team, or the entire site.
See the DesignSync Data Manager DFII User's Guide: Viewing and Resetting Form
Defaults.

By default, the saving and removing of default values apply only to the user who
invoked DesignSync DFII.

If you are a project leader, and set your context to project, your saving and removing
of default values will apply to all members of the project team. See DesignSync Data
Manager Administrator's Guide: Project-Specific Configuration. Individual users can
override default values that were set for their project team.

If you are the site administrator, and set your context to site, your saving and
removing of default values will apply to all users of the software installation. See
DesignSync Data Manager Administrator's Guide: Site-Wide Configuration. Project
leaders can override default values that were set site-wide.

Invoke the dssChangeDefaultsContextP function with no argument to determine
the current context.

Arguments

t_context The context to change to (user, project, or site). (Optional)
If not specified, the context remains unchanged.

Value Returned

t_context Returns the updated context if the t_context argument was
specified; otherwise, returns the existing context.

Miscellaneous Functions

122

dssChangeUserLevelP
dssChangeUserLevelP(
 [?level t_level]
)
=> t_level

Description

Changes the user level for the current user to the level specified. Invoke the
dssChangeUserLevelP function with no argument to determine the current user level.
 See DesignSync DFII Help: Selecting a User Level for a description of the user levels.

Arguments

t_level User level to change to (novice, advanced, or expert).
(Optional) If not specified, level remains unchanged.

Value Returned

t_level Returns the updated user level if the t_level argument was
specified; otherwise, returns the existing user level.

dssEnableDebugP
dssEnableDebugP(
 [?enable g_enable]
)
=> t/nil

Description

Turns debug mode on or off. With debug mode enabled, DesignSync DFII generates
output in the CIW, displaying all commands sent to the stclc process and the output
from those commands.

Arguments

g_enable Enable debugging (t). Default. To turn off debugging, set
g_enable to 'nil'.

Value Returned

Returns t if debug mode is successfully enabled (g_enable set to 't'). Returns nil if
debug mode is successfully turned off (g_enable set to 'nil').

DesignSync Data Manager DFII SKILL Programming Interface Guide

123

dssExecuteTclP
dssExecuteTclP(
 t_cmd [?print g_print] [g_args]...
)
=> l_result

Description

Executes a Tcl command in the stclc process used by DesignSync DFII. You can
choose whether to print the output of the command and return values to the CIW.

Note: DesignSync commands invoked via dssExecuteTclP do not use the command
line defaults system. The command line defaults system only pertains to DesignSync
command line shells.

Arguments

t_cmd Tcl command to be executed. (Required) This argument can be
a format string as used for the printf function.

g_print Print the output and return values to the CIW (t). By default, the
output is not printed to the CIW.

g_args Any additional values required by the t_cmd argument.

Value Returned

l_result List of strings, one for each line of output, including return
values.

If the g_print argument is set to 't', the output and return values display in the CIW.

Example

The following example calls the DesignSync synctrace command to turn on
command tracing. See the ENOVIA Synchronicity Command Reference for more
information about the synctrace command.

dssExecuteTclP("synctrace set 0")

dssHelpP
dssHelpP()
=> t

Description

Miscellaneous Functions

124

Displays the the DesignSync Data Manager DFII User's Guide main page in a web
browser.

Arguments

None.

Value Returned

Returns t.

dssSetWorkspaceRootPathP
dssSetWorkspaceRootPathP(

 tl_path

)
=> t/nil

Description

Sets the workspace root path. The workspace root path is a list of paths to modules
that are not in the current working directory for the Cadence cIient or known library
directories.

Arguments

tl_path List of directory paths.

Value Returned

Returns t if the workspace root path is set successfully, otherwise, returns nil.

Example

The following example sets the workspace root paths.

dssSetWorkspaceRootPathP()

dssGetWorkspaceRootPathP

DesignSync Data Manager DFII SKILL Programming Interface Guide

125

dssGetWorkspaceRootPathP()
=> l_path

Description

Returns the workspace root path. The workspace root path is a list of paths to
workspace module roots that are not in the current working directory for the Cadence
cIient or known library directories.

Arguments

Value Returned

l_path List of directory paths.

Example

The following example lists the workspace root paths.

dssGetWorkspaceRootPathP()

=> ("/home/rsmith/cadenceworkspaces/" "/home/rsmith/MyMods/")

dssStatusBrowserStatusIconU
dssStatusBrowerStatusIconU(
 r_item l_props s_icon
)
=> t_result

Description

Extends the Status Browser icon system to include an icon for an element in the status
browser that does not have an icon by default or to select a different icon for a defined
element. This is an optional function. If the function is not defined, then the default icons
are used. If the function is defined, then it returns an identifier to indicate the icon to be
used for an individual item.

For example,if instead of using the provided red and green icons to indicate whether an
item is locked or unlocked, you could use this function to specify icons that are different
colors or use a padlock, similar to the one used by the DesSync GUI.

Note: If this function is defined, it will be called frequently and on each object shown.
Therefore, it must be implemented to be efficient and fast, to avoid performance issues.

Arguments

Miscellaneous Functions

126

r_item The "treeItemStruct" item to which this icon applies.
l_props The property list containing the values for each column for this

item. The keys in this property list are the report values
returned by the DesignSync ls command. For information on
data keys, see the Report Data Keys Table in the ls command
in the Synchronicity Command Reference.

s_icon A symbol matching the name of an entry in dssIconsMap that
would be used for this object by default.

Value Returned

t_result One of the following values must be returned

• A SKILL symbol that identifies one of the standard DSDFII
icons, from the dssIconsMap.

• A Cadence icon identifier/size list, similar, for example, to the
value returned by the hiLoadIconFile function.

• A null value indicating that no icon is shown for the object.

Related Topics

DesignSync Data Manager DFII User's Guide: Customizing the Status Browser Icons

127

Getting Assistance
Using Help
ENOVIA Synchronicity Product Documentation provides information you need to use
the products effectively. The Online Help is delivered through WebHelp® , an HTML-
based format.

Note:

Use SyncAdmin to change your default Web browser, as specified during ENOVIA
Synchronicity tools installation.

When the Online Help is open, you can find information in several ways:

• Use the Contents tab to see the help topics organized hierarchically.
• Use the Index tab to access the keyword index.
• Use the Search tab to perform a full-text search.

Within each topic, there are the following navigation buttons:

• Show and Hide: Clicking these buttons toggles the display of the navigation (left)
pane of WebHelp, which contains the Contents, Index, and Search tabs. Hiding
the navigation pane gives more screen real estate to the displayed topic.
Showing the navigation pane gives you access to the Contents, Index, and
Search navigation tools.

• << and >>: Clicking these buttons pages to the previous or next topic in the help
system.

You can also use your browser navigation aids, such as the Back and Forward
buttons, to navigate the help system.

Related Topics

Getting a Printable Version of Help

Getting a Printable Version of Help
The DesignSync Data Manager DFII SKILL Programming Interface Guide is available in
book format from the ENOVIA Documentation CD or through 3ds support site. The
content of the book is identical to that of the help system. Use the book format when
you want to print the documentation, otherwise the help format is recommended so you
can take advantage of the extensive hyperlinks available in the DesignSync Help.

Getting Assistance

128

You must have Adobe® Acrobat® Reader™ Version 8 or later installed to view the
documentation. You can download Acrobat Reader from the Adobe web site.

Related Topics

Using Help

Contacting ENOVIA
For solutions to technical problems, please use the 3ds web-based support system:

http://media.3ds.com/support/

From the 3ds support website, you can access the Knowledge Base, General Issues,
Closed Issues, New Product Features and Enhancements, and Q&A's. If you are not
able to solve your problem using this information, you can submit a Service Request
(SR) that will be answered by an ENOVIA Synchronicity Support Engineer.

If you are not a registered user of the 3ds support site, send email to ENOVIA Customer
Support requesting an account for product support:

enovia.matrixone.help@3ds.com

129

Index
B

Branch

cell views 6

cells 5

libraries 7

C

Cell

branching 5

check in 13

checkout 30

deleting 55

tagging 92

Cell Views

branching 6

checking in 15

checking out 32

comparing 44

creating 52

deleting 57

rollback 88

tagging 93

unlocking 102

Check In

categories 10

cell views 15

cells 13

design hierarchies 20

files 17

Checkout

canceling 7, 9

categories 28

cell views 32

cells 30

design hierarchies 36

files 33

D

Data Sheet

displaying 105

E

Error Handling 3

F

File

checking in 17

checking out 33

130

deleting 59

tagging 95

unlocking 103

H

Help

contacting ENOVIA 128

printing 127

using 127

L

Library

branching 7

check in 25

checkout 42

configuring 51

deleting 61

joining 80

status 81

tagging 101

M

Menus

customizing 111

O

Objects

adding to modules 5

checking in 10

checking out 28

deleting 59

tagging 95

S

SKILL Functions 111

swap api

replace 89

restore 90

show 90

T

Tag

categories 91

cell views 93

cells 92

design hierarchy 97

libraries 101

objects 91, 95

versions 68, 74

V

Versions

deleting 64

DesignSync Data Manager DFII SKILL Programming Interface Guide

131

displaying history 106

	Introduction
	Syntax Conventions

	Error Handling and Diagnostics
	Error Handling in Function Invocations
	Setting a Trace
	Return Values
	Return Values and Background Commands

	Revision Control Functions
	dssAddFileP
	Description
	Arguments
	Value Returned

	dssBranchCellP
	Description
	Arguments
	Value Returned

	dssBranchCellViewP
	Description
	Arguments
	Value Returned

	dssBranchLibraryP
	Description
	Arguments
	Value Returned

	dssCancelCellViewP
	Description
	Arguments
	Value Returned

	dssCancelFileP
	Description
	Arguments
	Value Returned

	dssCheckinCategoryP
	Description
	Arguments
	Value Returned
	Example

	dssCheckinCellP
	Description
	Arguments
	Value Returned
	Example

	dssCheckinCellViewP
	Description
	Arguments
	Value Returned
	Example

	dssCheckinFileP
	Description
	Arguments
	Value Returned
	Example

	dssCheckinHierarchyP
	Description
	Arguments
	Value Returned
	Example

	dssCheckinLibraryP
	Description
	Arguments
	Value Returned
	Example

	dssCheckoutCategoryP
	Description
	Arguments
	Value Returned

	dssCheckoutCellP
	Description
	Arguments
	Value Returned

	dssCheckoutCellViewP
	Description
	Arguments
	Value Returned

	dssCheckoutFileP
	Description
	Arguments
	Value Returned

	dssCheckoutHierarchyP
	Description
	Arguments
	Value Returned

	dssCheckoutLibraryP
	Description
	Arguments
	Value Returned

	dssCompareViewsP
	Description
	Arguments
	Value Returned
	Example
	Usage Tips
	Simple check for no changes
	Simplified check for instance additions and removals
	Check for differences across all views in a library with older release

	Related Topics

	dssCompareViewsHandlerP
	Description
	Arguments
	Value Returned
	Example
	Related Topics

	dssCompareViewsListHandlersP
	Description
	Arguments
	Return Value
	Related Topics

	dssCompareViewsRemoveHandlerP
	Description
	Argument
	Value Returned
	Example

	dssConfigureLibraryP
	Description
	Arguments
	Value Returned

	dssCreateCellViewP
	Description
	Arguments
	Value Returned

	dssDeleteCategoryP
	Description
	Arguments
	Value Returned

	dssDeleteCellP
	Description
	Arguments
	Value Returned

	dssDeleteCellViewP
	Description
	Arguments
	Value Returned

	dssDeleteFileP
	Description
	Arguments
	Value Returned

	dssDeleteLibraryP
	Description
	Arguments
	Value Returned

	dssDeleteTemporaryViewsP
	Description
	Arguments
	Value Returned

	dssDeleteVersionP
	Description
	Arguments
	Value Returned

	dssFetchCellViewVersionP
	Description
	Arguments
	Value Returned

	dssFetchLockedP
	Description
	Arguments
	Value Returned
	Example

	dssGetFileTagsP
	Description
	Arguments
	Value Returned

	dssGetFileVersionP
	Description
	Arguments
	Value Returned

	dssGetFileVersionsP
	Description
	Arguments
	Value Returned

	dssGetTagListP
	Description
	Arguments
	Value Returned
	Example

	dssGetViewPathP
	Description
	Arguments
	Value Returned

	dssGetViewTagsP
	Description
	Arguments
	Value Returned

	dssGetViewVersionP
	Description
	Arguments
	Value Returned
	Example

	dssGetViewVersionsP
	Description
	Arguments
	Value Returned

	dssIsFileLockedP
	Description
	Arguments
	Value Returned

	dssIsViewLockedP
	Description
	Arguments
	Value Returned

	dssJoinLibraryP
	Description
	Arguments
	Value Returned

	dssLibraryStatusP
	Description
	Arguments
	Value Returned
	Example

	dssListHierarchyP
	Description
	Arguments
	Value Returned

	dssSetModuleSelector
	Description
	Arguments
	Value Returned

	dssRollbackCellViewP
	Description
	Arguments
	Value Returned

	dssSwapReplaceP
	Description
	Arguments
	Value Returned

	dssSwapRestoreP
	Description
	Arguments
	Value Returned

	dssSwapShowP
	Description
	Value Returned

	dssTagCategoryP
	Description
	Arguments
	Value Returned

	dssTagCellP
	Description
	Arguments
	Value Returned

	dssTagCellViewP
	Description
	Arguments
	Value Returned

	dssTagFileP
	Description
	Arguments
	Value Returned

	dssTagHierarchyP
	Description
	Arguments
	Value Returned

	dssTagLibraryP
	Description
	Arguments
	Value Returned

	dssUnlockCellViewP
	Description
	Arguments
	Value Returned

	dssUnlockFileP
	Description
	Arguments
	Value Returned

	dssViewDataSheetP
	Description
	Arguments
	Value Returned
	Example

	dssViewVersionHistoryP
	Description
	Arguments
	Value Returned
	Example

	dssViewWhereUsedP
	Description
	Arguments
	Value Returned

	Menu Customization Functions
	Customizing the Menu
	Related Topics

	Customizing Menu Items
	Available Menus

	dssMenuAddItemP
	Description
	Arguments
	Value Returned
	Example

	dssMenuAddValidItemP
	Description
	Arguments
	Value Returned
	Example

	dssMenuListItemsP
	Description
	Arguments
	Value Returned

	dssMenuListMenuP
	Description
	Arguments
	Value Returned

	dssMenuLoadConfigP
	Description
	Arguments
	Value Returned

	dssMenuRefreshP
	Description
	Arguments
	Value Returned

	dssMenuRemoveItemAllP
	Description
	Arguments
	Value Returned

	dssMenuRemoveItemP
	Description
	Arguments
	Value Returned
	Example

	dssMenuRemoveValidItemP
	Description
	Arguments
	Value Returned

	dssMenuSaveConfigP
	Description
	Arguments
	Value Returned

	dssRefreshWindowBannerP
	Description
	Arguments
	Value Returned

	Miscellaneous Functions
	dssChangeDefaultsContextP
	Description
	Arguments
	Value Returned

	dssChangeUserLevelP
	Description
	Arguments
	Value Returned

	dssEnableDebugP
	Description
	Arguments
	Value Returned

	dssExecuteTclP
	Description
	Arguments
	Value Returned
	Example

	dssHelpP
	Description
	Arguments
	Value Returned

	dssSetWorkspaceRootPathP
	Description
	Arguments
	Value Returned
	Example

	dssGetWorkspaceRootPathP
	Description
	Arguments
	Value Returned
	Example

	dssStatusBrowserStatusIconU
	Description
	Arguments
	Value Returned
	Related Topics

	Getting Assistance
	Using Help
	Getting a Printable Version of Help
	Contacting ENOVIA

	Index

