
1 

 

 

 

 

 

 

 

 

 

 

 

 

ENOVIA ProjectSync  
Advanced Customization Guide 
 
 

3DEXPERIENCE 2022  
 



ProjectSync Customizations 

4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
©2021 Dassault Systèmes. All rights reserved. 3DEXPERIENCE®, the Compass icon, the 3DS logo, CATIA, SOLIDWORKS, ENOVIA, DELMIA, SIMULIA, GEOVIA, EXALEAD, 3D VIA, BIOVIA, NETVIBES, 
IFWE and 3DEXCITE are commercial trademarks or registered trademarks of Dassault Systèmes, a French “société européenne” (Versailles Commercial Register # B 322 306 440), or its subsidiaries in the 
United States and/or other countries. All other trademarks are owned by their respective owners. Use of any Dassault Systèmes or its subsidiaries trademarks is subject to their express written approval. 
 



i 

Table Of Contents 
ProjectSync Customizations ............................................................................................ 1 

Introduction .................................................................................................................. 1 

Types of ProjectSync Customizations ......................................................................... 1 

ProjectSync Panel Architecture ....................................................................................... 3 

Anatomy of ProjectSync Note Types ........................................................................... 3 

Note Type Directories: SW-Defect-1 ........................................................................ 4 

Anatomy of ProjectSync Panels .................................................................................. 7 

Panel Modes ............................................................................................................ 7 

Template and Driver Implementation ....................................................................... 8 

Straight Tcl Implementation ................................................................................... 11 

URLs for Loading Panels ........................................................................................... 14 

Precedence of Panel Customization Files ................................................................. 17 

Precedence of Panel Initialization Driver Files ....................................................... 18 

Precedence of tcl Scripts ....................................................................................... 19 

Precedence of Custom Panels ............................................................................... 19 

Precedence of Global Variables ............................................................................. 20 

Note Panel Fields ...................................................................................................... 20 

Configurable Fields ................................................................................................ 22 

Seeding Fields ....................................................................................................... 25 

Hidden Fields ......................................................................................................... 26 

Note Type Configuration Files ................................................................................... 26 

String Table Configuration Files ................................................................................ 27 



Table Of Contents 

ii 

Customizing Panels ....................................................................................................... 29 

Customizing Panels ................................................................................................... 29 

Customizing Standard ProjectSync Panels ............................................................ 29 

Creating New Panels ............................................................................................. 30 

Securing Custom Panels ........................................................................................... 30 

Securing Dialog Panels .......................................................................................... 30 

Securing Actions .................................................................................................... 32 

Related Topics ....................................................................................................... 32 

Panel Gather Phase .................................................................................................. 33 

Customizations for the Gather Phase .................................................................... 33 

Panel Process Phase ................................................................................................ 35 

Customizations for the Process Phase .................................................................. 36 

Customizing Panels: Step by Step............................................................................. 36 

HTML Panel Templates ................................................................................................. 39 

Generating HTML Templates .................................................................................... 39 

Customizing HTML for Panels ................................................................................... 40 

Editing Panel HTML Templates .............................................................................. 40 

Example: Customizing a New Note Type .................................................................. 42 

Panel Initialization Drivers ............................................................................................. 47 

Creating Panel Initialization Drivers ........................................................................... 47 

Changing the Prompt String ................................................................................... 47 

Creating New Substitutions .................................................................................... 48 

Selecting Between HTML Templates ..................................................................... 48 



ProjectSync Advanced Customization Guide 

iii 

Special Considerations .......................................................................................... 48 

Postprocessing in Panel Initialization Files ................................................................ 49 

Tcl Panel Scripts ........................................................................................................... 55 

Implementing Panels Using Tcl Panels Scripts ......................................................... 55 

Implementing an HTML Form in a Tcl Script .......................................................... 55 

Note Panel Substitution Tags ........................................................................................ 61 

What Are Substitution Tags? ..................................................................................... 61 

Syntax of Substitution Tags ................................................................................... 62 

attachment Substitution ............................................................................................. 62 

charset Substitution ................................................................................................... 64 

configuration Substitution .......................................................................................... 65 

controls Substitution .................................................................................................. 66 

eval Substitution ........................................................................................................ 68 

field Substitution ........................................................................................................ 69 

hiddens Substitution .................................................................................................. 81 

js_data Substitution ................................................................................................... 82 

NoteForm Substitution ............................................................................................... 83 

NoteId Substitution .................................................................................................... 84 

notetype Substitution ................................................................................................. 84 

pagetitle Substitution ................................................................................................. 85 

project Substitution .................................................................................................... 86 

prompt Substitution .................................................................................................... 87 

scripts Substitution ..................................................................................................... 88 



Table Of Contents 

iv 

std_header Substitution ............................................................................................. 89 

std_separator Substitution ......................................................................................... 91 

style Substitution........................................................................................................ 92 

Note Panel Global Variables ......................................................................................... 95 

Global Variables ........................................................................................................ 95 

AllModulesList ........................................................................................................... 95 

AllProjectsList ............................................................................................................ 96 

AllProjectsMap ........................................................................................................... 98 

AllUsersList ................................................................................................................ 99 

AllUsersMap .............................................................................................................. 99 

classes ..................................................................................................................... 100 

defvals ..................................................................................................................... 101 

DisplayMode ............................................................................................................ 102 

field_values .............................................................................................................. 103 

fields ........................................................................................................................ 104 

NoteId ...................................................................................................................... 104 

Module Name .......................................................................................................... 105 

Module Tag .............................................................................................................. 105 

NoteSystem ............................................................................................................. 106 

NoteType ................................................................................................................. 107 

NoteURL .................................................................................................................. 108 

other_attachments ................................................................................................... 108 

ProjectConfig ........................................................................................................... 109 



ProjectSync Advanced Customization Guide 

v 

ProjectName ............................................................................................................ 110 

ProjectRelease ........................................................................................................ 111 

prompts .................................................................................................................... 111 

ptypes ...................................................................................................................... 112 

reqfields ................................................................................................................... 113 

SYNC_ClientInfo ...................................................................................................... 113 

SYNC_Parm ............................................................................................................ 114 

SYNC_Query ........................................................................................................... 115 

SYNC_User ............................................................................................................. 116 

Note Panel Arguments ................................................................................................ 117 

Note Panel Arguments ............................................................................................. 117 

Tcl Utilities ................................................................................................................... 119 

call_substitution ....................................................................................................... 119 

cgi_arg ..................................................................................................................... 119 

encodeUrl ................................................................................................................ 122 

htmlResult ................................................................................................................ 123 

select_template ....................................................................................................... 125 

substitution .............................................................................................................. 126 

Other Utilities ........................................................................................................... 129 

Case Study: Design Tool Process Survey ................................................................... 133 

Design Tool Process Survey ................................................................................... 133 

Develop Paper Prototype of Survey ..................................................................... 133 

Develop Property Types ....................................................................................... 135 



Table Of Contents 

vi 

Create Feedback Note Type ................................................................................ 136 

Generate HTML Templates .................................................................................. 138 

Modify the AddFeedback Panel ........................................................................... 138 

Redirect to System Administration Panel ............................................................. 139 

Getting Assistance ...................................................................................................... 143 

Using Help ............................................................................................................... 143 

Getting a Printable Version of Help.......................................................................... 144 

Contacting ENOVIA ................................................................................................. 144 

Index ........................................................................................................................... 147 



1 

ProjectSync Customizations 
Introduction 
ENOVIA Synchronicity ProjectSync® is a web-accessible database used to manage 
electronic design life-cycle data.  Through a standard web browser, teams can share 
issue, bug, and engineering change order (ECO) data associated with design projects. 
 Built within the DesignSync SyncServer architecture, ProjectSync: 

• Is tightly integrated with DesignSync, letting teams access design configuration 
management and revision control data on their own web browsers. 

• Enforces security using encryption, user authentication, and customizable access 
control policies. 

• Supports email notification, as well as triggers and events so that you can 
develop powerful Tcl scripts to customize your ProjectSync environment. 

• Helps globally dispersed design teams enforce design practices and 
methodologies by modeling design processes as ProjectSync notes. 

• Provides a highly customizable user interface, letting you design your own 
applications such as project home pages and forecasting tools. 

This Guide illustrates methods of customizing the ProjectSync interface so that you can 
tailor the user interface directly to your project team's needs. 

Note: The ProjectSync programming interface may change and evolve with the product. 
Changes are documented as they occur. 

Note on using this guide: References from the ENOVIA ProjectSync Advanced 
Customization Guide to the ENOVIA Synchronicity Command Reference guide always 
link to the ALL version of the guide, which contain information about all working 
methodologies for DesignSync. For more information about the available working 
methodologies, see  ENOVIA Synchronicity Command Reference. 

Types of ProjectSync Customizations 
ProjectSync uses the abstraction of a note to help you model engineering processes. 
For example, you can create a SyncDefect or HW-Defect-1 note to submit a bug report. 
 You can create a Note, the default ProjectSync note type, to start a discussion about a 
project.  ProjectSync automatically emails the note entries to team members who have 
subscribed for that project and note type.  Later you can query the note to view the 
history of the issue or defect.  To understand the basics of notes and note types, see 
ProjectSync User's Guide: What Is a Note? 

The term panel refers to a ProjectSync window.  The most prevalent type of panel in 
ProjectSync is a note panel, a form most often used to gather information from a user. 



ProjectSync Customizations 

2 

ProjectSync lets you customize most aspects of the product using notes and panels. 
 You can customize existing ProjectSync note types, create new note types, add new 
fields to existing note types using the Note Type Manager, accessible from the 
ProjectSync menu.  You can customize the ProjectSync main menu, welcome page, 
and data sheets. You implement these customizations using the ProjectSync graphical 
interface.  See ProjectSync Help to make these customizations. 

For other more complex customizations, you write scripts and edit initialization files that 
correspond to ProjectSync panels.  These types of customizations are covered in this 
document.  Using this Guide, you can 

• Change the appearance of panels, such as note type panels, by developing 
HTML code for the panel 

• Change the behavior of existing note type panels by creating an associated 
panel initialization script 

• Override the default ProjectSync behavior of commands and panels 
• Specify new behavior for the gather phase of a note type -- the phase when the 

note collects input in its panel fields 
• Specify new behavior in the process phase of a note type -- the phase when 

ProjectSync processes the note 
• Generate a customized results panel 
• Store alternate versions of a panel and display a specific version based on some 

criteria, such as whether the user belongs to a particular group of users 



3 

ProjectSync Panel Architecture 
Anatomy of ProjectSync Note Types 
The ProjectSync panels you will likely customize most often are note type panels.  You 
work with these panels to create new note types or to modify existing note types. 
 Whereas a note is a database record in the ProjectSync relational database, a note 
type defines the set of properties that make up the database record.  Each note you 
create is associated with a particular note type. 

When you create a note type, you specify the properties and their property types. A 
property corresponds to a field name. The property type defines the type of data the 
property represents.  The property type not only signifies the type of data, but also 
determines the graphical element displayed within the note.  The graphical elements 
displayed for particular property types can be text boxes, editable text fields, editable 
multi-line text boxes, read-only fields, pull-down fields, and calendar pop-ups.  See 
ProjectSync User's Guide: Predefined Property Types for a complete list of property 
types.   

The type of graphical element displayed for a property type depends also on the mode 
of the note type.  Note types can have modes for Add, View, and Edit. For instance, the 
String property type, which corresponds to a multi-line text box, displays as an editable 
text box in Edit mode and a read-only text box in View mode.   

Another distinction to keep in mind about note properties is that the property name does 
not display within the note panel.  Instead, when you create a note type, you specify a 
prompt for each property that displays in the note panel.   

A good way to become familiar with note types and properties is to select the Note Type 
Manager from the ProjectSync main menu and select Modify an existing note type. 
 Select one of your installed note types such as SW-Defect-1.  If you have not installed 
any note types, select Install one of the prepackaged note types and follow the 
prompts to install a note type.  If you are installing a note type only to experiment with it, 
you can later remove it by selecting Delete a note type. 

The Modify Note Type panel displays the field names (properties), the field types 
(property types), the prompts, and default values of each property.  If you do not make 
any changes and then select the Next>> button, "No Action Required" displays.  You 
can also experiment with modifying properties and then delete and reinstall the note 
type. 

In order to programmatically customize note type panels, you work with various 
components on the SyncServer that make up ProjectSync note types. The SyncServer 
is an HTTP server process that manages shared information and performs 
administrative functions such as user privilege validation for DesignSync and 



ProjectSync Panel Architecture 

4 

ProjectSync.  (For more information, see DesignSync Data Manager Administrator's 
Guide: SyncServer Architecture.) The data of each note resides in a relational database 
on the SyncServer.  You access this data using the ProjectSync graphical interface or 
commands such as note and url, described in the ENOVIA Synchronicity Command 
Reference.  While the data for a note is stored in the relational database, most of the 
display information for the note is stored within the SyncServer file structure.  Because 
users access ProjectSync on their web browsers, all of the information displayed for a 
note is not stored in a database, but is instead rendered as needed based on property 
type files, property order files, optional HTML panel layout files, and initialization scripts. 

Note Type Directories: SW-Defect-1 

The following diagrams show the files ProjectSync uses to implement the SW-Defect-1 
note type.  The blocks shown in dark mauve are the files ProjectSync installs for the 
SW-Defect-1 note type; ProjectSync stores these files within the 
<SYNC_CUSTOM_DIR>/servers/<host>/<port>/share hierarchy.  You can make 
customizations to the note type files either within this custom server share directory or 
the site share directory (<SYNC_SITE_CUSTOM>/share).  See (ProjectSync User's 
Guide: The Custom Hierarchy for more information about these directories.) 

content directory 

 

To implement the SW-Defect-1 note type, ProjectSync installs a file named Add.gif, 
an icon accompanying the SW-Defect-1 note type in the main menu.  You can store 
your own Add.gif files for particular note types to customize the main menu icons.  To 
do so, you must name the icon file, Add.gif, and store it in the 
/share/content/images/Notes/SyncNotes/<NoteType> directory. See 
ProjectSync User's Guide: Customizing the Main Menu for details. 



ProjectSync Advanced Customization Guide 

5 

data directory 

 

The NoteTypes directory contains a directory for each note type, within which is a 
PropOrder.dat file. The PropOrder.dat file lists the properties (fields) within the 
note type and defines the order of the properties.  To change the order of fields in the 
note type, use the ProjectSync Note Type Manager and select Rearrange the display 
order of fields on an existing note type (ProjectSync User's Guide: Rearranging 
Fields on a Note Panel). 

Resources directory 

 

The PropertyTypes directory stores the definitions for custom property types.  If you 
need new graphical elements to represent a property, such as a customized pull-down 
menu, you create a property type using the ProjectSync Note Type Manager and 
selecting Manage property types (ProjectSync User's Guide: Creating New Property 
Types).  For example, the SW1_DesignPhase property type is a pull-down menu 
containing the phases of a software design cycle with the choices listed in a specified 
order: 



ProjectSync Panel Architecture 

6 

 

panels directory 

 

The panels directory contains the files that implement note panels.  The NoteAdd 
directory contains the files that implement the Add mode of each note panel. The 
NoteDetail directory implements the Edit and View modes of each note panel. These 
directories can contain an HTML panel layout file (for example, EditSW-Defect-
1.html) and a panel initialization script (EditSW-Defect-1.ini) for each mode of a 
note type. The NoteAdd and NoteDetail directories also contain ProcessSW-Defect-
1.ini files that customize the behavior of the panel after it is submitted. These types of 
panel files are described in Anatomy of ProjectSync Panels. 

In addition to the SW-Defect-1 note panel files, the NoteAdd and NoteDetail directories 
in the <SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/panels directory 
contain note panels for other note types that you have installed.  If you customize note 
type panels or create custom note type panels, these panels reside in these directories, 
as well.   

tcl directory 



ProjectSync Advanced Customization Guide 

7 

 

The tcl directory is the directory where you place .tcl files.  Place your triggers or Tcl 
functions in the tcl directory. In your scripts, you can include the Tcl locate 
command to find this directory, regardless of which custom share/tcl directory (site 
or server) stores the script: 

source [locate share/tcl/tclUtilities.tcl] 

When you install the SW-Defect-1 note type, ProjectSync stores the associated server 
trigger script in the custom server share/tcl directory.   

Server trigger scripts control the behavior of a note type. For example, the SW-Defect-
1_NoteChangeTrigger.tcl script sets the DateFixed field to the current date when 
a note enters the closed state or clears it when a note transitions from closed to open. 

Anatomy of ProjectSync Panels 
A ProjectSync panel is an element of the ProjectSync user interface, such as a window 
or a form.  Panels implement the ProjectSync home page, menus, and notes.  Panels 
generally have a 'gather' phase and a 'process' phase.  The gather phase of a panel is 
implemented with a graphical interface that collects input from users.  The process 
phase processes the data from the gather phase, performing data checking and 
displaying processing results. 

Panel Modes 

A panel mode is a particular view of a panel.  Panels you create can have multiple panel 
modes.  For example, users can add, view, and edit notes. Panel modes let you select 
different graphical elements for different modes.  For example, an Add Note panel might 
display a pull-down menu field with choices listed in a particular order.  The View Note 
panel for the same note type might display a read-only text box showing the value a 
user has selected for the field.     

Each note type mode has its own panel implementation.  To customize a note type, you 
can customize each of these panel modes.  You can 

• Customize just the HTML template. 
• Customize the HTML template and a corresponding panel initialization driver file. 
• Replace the HTML template and initialization driver by a Tcl panel script. 



ProjectSync Panel Architecture 

8 

Template and Driver Implementation 

 

ProjectSync implements panels with HTML panel template (.html) files and optional 
panel initialization driver (.ini) files.  The HTML template provides the static format of 
the panel and the initialization driver provides the dynamic content. You implement the 
fields within the HTML template by including substitutions for the fields, commands 
that insert graphical elements. You can then use any HTML commands you need to 
format the graphical elements of a panel within the HTML template file. 

You change the behavior of a panel by editing or creating an optional panel initialization 
driver (.ini) file. The initialization driver file contains the definitions of the substitutions, 
the commands that generate the content for the panel.  In the panel initialization driver, 
you can create new substitution tags for panels. Then, you embed these substitution 
tags within the HTML template. You can also use a panel initialization script to display 
different modes, or views, of a panel depending on circumstances you specify. For 
example, you can customize the panels for different types of users.  You can also 
customize the behavior of a panel after a user submits the panel by creating a 
processing initialization driver. 

Use the method of a template and initialization driver if your panel has mostly static 
HTML content.   

Example: Creating a Custom Template and Driver 

The following HTML template, MyPanel.html, and initialization driver, MyPanel.ini, 
generate a panel displaying the user's name and the date.  Most panels you will 
customize will be note panels; however, for simplicity, this example generates a basic 
panel: 

HTML Template Example: MyPanel.html 

<html> 
<head> 
  <title>My Custom Panel</title> 
</head> 
 
<body> 



ProjectSync Advanced Customization Guide 

9 

<table border=4 bordercolor=darkblue bgcolor=lightblue> 
      <tr> 
  <td> <h2>User:</h2> </td> 
  <td> <h2><!-- SYNC user --></h2> </td> 
</tr> 
<tr> 
  <td> <h2>Date:</h2> </td> 
  <td> <h2><!-- SYNC date --></h2> </td> 
</tr> 
</table> 
</body> 
 
</html> 

Initialization Driver File: MyPanel.ini 

substitution date {} { 
  puts "[clock format [clock seconds]]" 
} 

substitution user {} { 
  global SYNC_User 
  set userUrl sync:///Users/$SYNC_User 
  set name [url getprop $userUrl Name] 
  puts -nonewline $name 
} 

MyPanel Output 

 

The MyPanel.ini initialization driver file defines two custom substitutions, user and 
date.  These substitutions are called in the HTML template using this syntax: 

<!-- SYNC user --> 
<!-- SYNC date --> 

The user substitution uses the $SYNC_User global variable and the url getprop 
command to extract the user's name. The date substitution calls the Tcl clock 
command to obtain the date.  The MyPanel.html file invokes these custom 
substitutions and also implements the look and feel of the panel.    



ProjectSync Panel Architecture 

10 

The substitutions in MyPanel.ini are custom substitutions. To learn more about 
creating your own substitutions, see the substitution command. Predefined note 
panel substitutions and the syntax for calling them are described in Note Panel 
Substitution Tags.   

Many ProjectSync panels are implemented using the template and initialization driver 
method.  ProjectSync stores these files in the following directory: 

<SYNC_DIR>/share/panels 

Setting Up the MyPanel Sample Panel 

To create the MyPanel custom panel, you store both the MyPanel.html and 
MyPanel.ini files in a panel directory you create specifically for the new panel in 
either the custom server or site hierarchy: 

Server: 
<SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/panels/MyPanel 

Site: <SYNC_CUSTOM_DIR>/site/share/panels/MyPanel 

The name of the custom panel directory must match that of the HTML template and the 
panel initialization file, in this case, MyPanel.   

To load the custom panel, you enter the ProjectSync panel URL into your web browser 
using this syntax: 

http://<host>:<port>/scripts/isynch.dll?panel=MyPanel 

Replace the <host> and <port> variables above with the host and port number of 
your SyncServer. 

See URLs for Loading Note Panels for more detailed information about loading panels, 
including parameters. 

Note: 

ProjectSync does not override the default .ini file with your .ini files in the server-
specific or site-wide panels directory. Instead, the contents of all of the .ini files are 
merged.  The more-local definitions of functions and substitutions take precedence. 
 See Precedence of Panel Initialization Driver Files for details. 

HTML Templates for Note Panel Modes 

Most panels you will customize will be note panels. Like general panels, you also create 
HTML templates and Tcl panel initialization scripts in the custom site-wide 



ProjectSync Advanced Customization Guide 

11 

(<SYNC_SITE_CUSTOM>/share/panels) or server-specific 
(<SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/panels) location for 
note panels.  See ProjectSync User's Guide: The Custom Hierarchy for more 
information about these directories. Unlike general panels (of which the MyPanel panel 
is an example), note panels are stored in the NoteAdd or NoteDetail subdirectories 
of the panels directory. 

These are the HTML templates you can include for a note type: 

• NoteAdd/Add<notetype>.html - HTML template that implements the Add 
panel of the note type. 

• NoteDetail/Edit<notetype>.html - HTML template that implements the 
Edit panel of the note type. 

• NoteDetail/View<notetype>.html - HTML template that implements the 
View panel of the note type. 

These are the initialization scripts you can include for a note type: 

• NoteAdd/Add<notetype>.ini - Create this script to modify the behavior of 
the Add panel of the note type. 

• NoteDetail/Edit<notetype>.ini - Create this script to modify the behavior 
of the Edit panel of the note type. 

• NoteDetail/View<notetype>.ini - Create this script to modify the behavior 
of the View panel of the note type. 

Note: 

ProjectSync does not override the default .ini file with your .ini files in the server-
specific or site-wide panels directory. Instead, the contents of all of the .ini files are 
merged.  See Precedence of Panel Customization Files for details. 

Straight Tcl Implementation 

 

If your panel requires mostly dynamic HTML, you can forego the HTML template and 
use a Tcl script to implement the panel. In this case, you create a Tcl script that 
generates the entire HTML code for the panel. This method of implementing panels is 



ProjectSync Panel Architecture 

12 

for advanced Tcl programmers.   Much like a web developer uses Common Gateway 
Interface (CGI) to implement web pages, you can use the Tcl programming language to 
implement ProjectSync panels. The HTML panels generated by your Tcl script can be 
as sophisticated as you like.  You can use the Synchronicity Tcl (stcl) commands 
documented in the ENOVIA Synchronicity Command Reference. 

Example: Creating a Custom Tcl Panel Script 

Like the  MyPanel.html HTML template and the MyPanel.ini initialization driver 
shown above, the following Tcl script, MyPanel.tcl generates a panel displaying the 
user's name and the date.   

Tcl Script Example: MyPanel.tcl 

proc getdate {} { 
  return [clock format [clock seconds]] 
} 

proc getuser {} { 
  global SYNC_User 
  set userUrl sync:///Users/$SYNC_User 
  return [url getprop $userUrl Name] 
} 

puts " 
<html> 
<head> 
  <title>My Custom Panel</title> 
</head> 
<body> 
  <table border=4 bordercolor=darkblue bgcolor=lightblue> 
  <tr> 
    <td> <h2>User:</h2> </td> 
    <td> <h2>[getuser]</h2> </td> 
  </tr> 
  <tr> 
    <td> <h2>Date:</h2> </td> 
    <td> <h2>[getdate]</h2> </td> 
  </tr> 
  </table> 
</body> 
</html> 
" 

MyPanel Output 



ProjectSync Advanced Customization Guide 

13 

 

You can try this example by creating the MyPanel.tcl file above and storing the file in 
the custom server or site /share/panels directory within a directory named 
MyPanel: 

Server: 
<SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/panels/MyPanel/MyP
anel.tcl 

Site: <SYNC_CUSTOM_DIR>/site/share/panels/MyPanel/MyPanel.tcl 

You load a Tcl script panel as you load a panel implemented with a template and driver, 
using this syntax: 

http://<host>:<port>/scripts/isynch.dll?panel=MyPanel 

Replace the <host> and <port> variables above with the host and port number of 
your SyncServer. 

To customize a panel using this method, see Implementing Panels Using Tcl Panels 
Scripts. 

Tcl Scripts for Note Panel Modes 

You create Tcl panel scripts in the same share/panels directories where the HTML 
templates for the note panels are stored. These files are located in either the site-wide 
(<SYNC_SITE_CUSTOM>/share/panels) or server-specific 
(<SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/panels) location: 

• NoteAdd/Add<notetype>.tcl - Create this script to implement the Add panel 
for the note type. 

• NoteDetail/Edit<notetype>.tcl - Create this script to implement the Edit 
panel for the note type. 

• NoteDetail/View<notetype>.tcl - Create this script to implement the View 
panel for the note type. 

Important: 



ProjectSync Panel Architecture 

14 

If you have implemented a panel using both methods -- the template and driver method 
as well as the Tcl method -- the template and driver method overrides the Tcl 
implementation and the Tcl panel script is ignored. For more information, see 
Precedence of Panel Customization Files. 

URLs for Loading Panels 
You specify the invocation of a panel using a URL (uniform resource locator).  The 
panel specified can be an existing ProjectSync panel, a note panel, or a custom panel. 
The user's web browser decodes the URL and loads the specified panel.  The URL 
includes encoded parameters made available to the note panel.  You can customize 
panels by setting up links or buttons that execute a panel URL, thus loading a new 
panel.  In your Tcl scripts or initialization driver (.ini) files, use the cgi_arg Tcl utility 
to access the parameters passed into a note panel. 

Panel URL 

http://<host>:<port>/scripts/isynch.dll?panel=<panelmode> 
&NoteType=<notetype>&DisplayMode=<displaymode> 
&command=<commandmode>&<parmlist> 

Arguments 

<host> Specifies the machine name of the SyncServer. 
<port> Specifies the port number.  The default port number for the SyncServer is 

2647. 
<panelmode> Specifies a panel name or a note panel mode: 

• panel=NoteAdd - The Add mode of a note panel. 
• panel=NoteDetail - The Edit or View mode of a note panel. 
• ProjectSync panel - An existing ProjectSync custom panel. For 

example,  panel=UserAdd loads the User Profile panel and 
panel=TextSearch loads the Full Text Search panel. 

• panel=<custom_panel> - One of your own panels, for example, 
panel=MyPanel. 

<commandmode> Specifies the mode of the panel to be loaded.  For note panels, the mode 
supported is Process.  You can set up a process mode panel to process 
the results of the gather stage of a panel. For example, you can execute the 
processing phase of a panel by specifying &command=Process to load the 
Process<panel>.tcl file (or the Process<panel>.html and 
Process<panel>.ini files).  Your processing scripts 
(Process<panel>.tcl or Process<panel>.ini) must follow the 
guidelines described in the Panel Process Phase topic. 



ProjectSync Advanced Customization Guide 

15 

For custom panels, you can create your own modes.  You can use the 
command parameter to specify a special mode.  The special mode of the 
panel must be stored in the following directory structure: 

/share/panels/<custompanel>/ 
<custompanel><commandmode>.html 

 See Example: Loading a Special Mode of a Panel. 

  
<notetype> Specifies an existing predefined or custom note type, for example,  

NoteType=SW-Defect-1. 

  
<displaymode> Distinguishes between the NoteDetail panel modes (Optional): 

• Edit 
• View (default) 

<parmlist> Specifies an optional list of parameters with name/value pairs to pass into 
the script: parm1=value1&parm2=value2&parm3=value3.   

• Separate each parameter from the previous one using an ampersand 
(&). 

• Separate the name from its value using an equal sign (=). 
• The parameters and values cannot contain spaces.  Replace spaces 

in values with the + character or enclose the entire parameter list in 
quotes ("). 

• Encode URLs using the encodeUrl Tcl utility. 

For a list of possible parameters used with note panels, see Note Panel 
Arguments.  You can also create your own parameters and extract their 
values in a .ini initialization driver or a Tcl script using the cgi_arg 
command.   

For parameters with multiple values, repeat the parameter name for each 
value: 
multvalparm=value1&multvalparm=value2&multvalparm=value3. 

For example: 
&stoplights=red&stoplights=green&stoplights=yellow.   

Use the cgi_arg -multi option to extract a multi-valued parameter.  See 
the cgi_arg command description for an example of the -multi option. 



ProjectSync Panel Architecture 

16 

Example: Loading a Note Panel in Add Mode 

To load a note panel, the URL you specify must include the panel's mode: NoteAdd for 
Add mode, NoteDetail for Edit or View mode.  For example, to load the note panel of 
the Note note type in Add mode, you enter the following URL: 

http://myhost:2647/scripts/isynch.dll?panel=NoteAdd&NoteType=Not
e 

The Add Note panel displays. 

Example: Loading a Note Panel in View Mode 

To pass an argument to the note panel, you use the following syntax: 

&parm=value 

For example, 

http://myhost:2647/scripts/isynch.dll?panel=NoteDetail&NoteType= 
Note&NoteId=1 

Note 1 displays in View mode, the default mode for the NoteDetail panel. 

Example: Loading a Note Panel in Edit Mode 

If you want a note panel to display in Edit mode, you set the panel parameter to 
NoteDetail panel parameter (NoteDetailspecifies Edit and View mode) and set the 
DisplayMode parameter to Edit: 

http://gilmour:30048/scripts/isynch.dll?panel=NoteDetail&NoteTyp
e= 
Note&DisplayMode=Edit&NoteId=1 

Note 1 displays in Edit mode. 

Example: Passing Multiple Parameters 

To specify multiple parameters, you chain together parameter=value pairs using the 
& character.  For example, in the following example, custom parameters name and 
month are specified: 

http://myhost:2647/scripts/isynch.dll?panel=StatusResult&name=Jo
se&month=February 

Example: Loading a Command Mode of a Panel 



ProjectSync Advanced Customization Guide 

17 

For panels that are not note panels, you can use the command parameter to specify 
your own command modes.    The files for the command modes must be specified as 
follows: 

/share/panels/<custompanel>/<custompanel><commandmode>.html 

The following directory structure shows a custom panel, Results, with two command 
modes: Qualitative (named ResultsQualitative.html) and Quantitative (named 
ResultsQuantitative.html). 

 

To invoke the main Results panel, use invoke the following URL: 

http://gilmour:30048/scripts/isynch.dll?panel=Results 

To invoke the Qualitative command mode, you use the command parameter: 

http://gilmour:30048/scripts/isynch.dll?panel=Results&command=Qu
alitative 

Likewise, to invoke the Quantitative command mode, you use the command parameter: 

http://gilmour:30048/scripts/isynch.dll?panel=Results&command=Qu
alitative 

Precedence of Panel Customization Files 
In most cases, when ProjectSync applies customizations, the more-local settings take 
precedence over the less-local settings. The search order is: 

1. Server-specific customization files 
2. Site-wide customization files 
3. Enterprise-level customization files (The custom enterprise area is reserved for 

future development. Do not create custom files in this area.) 
4. Default installation files 



ProjectSync Panel Architecture 

18 

The following panel customization files adhere to this search order, where the more-
local version of the file takes precedence: 

• HTML panel template files, for example: 
/share/panels/NoteDetail/EditSW-Defect-1.html 

• Image files, for example: 
/share/content/images/Notes/SyncNotes/SW-Defect-1/Add.gif 

• Property (field) order files, for example: 
/share/data/NoteTypes/SW-Defect-1/PropOrder.dat 

• Property type definition files, for example: 
/share/Resources/PropertyTypes/SW1_DesignPhase 

• Note type configuration files, for example: 
/share/config/YellowSticky.conf 

• Tcl panel scripts (located in the /share/panels directory), for example: 
/share/panels/NoteDetail/EditSW-Defect-1.tcl 

• Tcl server-side trigger scripts, for example:  
share/tcl/SW-Defect-1_NoteChangeTrigger.tcl 

• Other .tcl scripts in the /share/tcl directory 

Precedence of Panel Initialization Driver Files 

Unlike most of the customization files, ProjectSync handles the panel initialization 
(.ini)  files in a cascading method. ProjectSync reads in all versions of the file and 
merges the contents. This is similar to how the DesignSync handles registry files.  If the 
.ini files contain duplicate definitions for a function or substitution, the more-local 
definition takes precedence.  For example, a substitution named hi in a panel 
initialization (.ini) file within the server hierarchy 
(<SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/panels/MyPanel/MyP
anel.ini) takes precedence over the substitution of the same name in the site panel 
initialization file 
(<SYNC_CUSTOM_DIR>/site/share/panels/MyPanel/MyPanel.ini). 

Important 

If you customize a panel initialization (.ini) file, do not copy the entire .ini file from 
another /share/panels hierarchy, such as the default installation .ini file (for 
example, <SYNC_DIR>/share/panels/NoteAdd/NoteAdd.ini)  or the server 
.ini file (for example, 
<SYNC_DIR>/custom/servers/myhost/2647/share/panels/NoteAdd/AddSW
-Defect-1.ini). If you duplicate the entire .ini file and just modify some part of the 
file, the panel might execute slower and show unintended behavior.  The .ini  files can 
perform actions as well as store definitions; thus, duplicate .ini files might 
unintentionally repeat actions and cause unexpected behavior.  Instead, only include 
new customizations in your custom site or server .ini file. 



ProjectSync Advanced Customization Guide 

19 

Precedence of tcl Scripts 

If you have .tcl files with the same name in different parts of the custom hierarchy and 
the same setting is specified in more than one version of the file, the more-specific 
setting takes precedence over the wider setting. That is, settings in the site area 
override those in the enterprise area and settings in the server area override those in 
the site area. (The custom enterprise area is reserved for future development.) 

Precedence of Custom Panels 

ProjectSync searches the custom panel directories and the DesignSync system 
(defautl)  directories for panel implementations: 

• Server-wide customizations: 
<SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/panels/ 

• Site-wide customizations: <SYNC_CUSTOM_DIR>/site/share/panels/ 
• Default panels: <SYNC_DIR>/share/panels/ 

ProjectSync loads the most local of the panel implementations.  The implementation 
can be a single panel Tcl script (.tcl) or a panel  template (.html) and initialization 
driver (.ini) pair.    

Keep these points in mind when you load custom panels: 

• You can implement panels using either a Tcl script or an HTML template and 
optional initialization driver file. (See Anatomy of ProjectSync Panels to 
understand these methods).  If a panel has an associated HTML template as well 
as a Tcl panel script, the template has precedence over the Tcl panel script for 
implementing the panel; in this case, the Tcl panel script is ignored. 

• If you have a Tcl panel script for a panel as well as an initialization driver script, 
you can override the initialization script's precedence; you can call the Tcl script 
directly. To do this, you call the select_tcl_script utility from within the 
.ini file: 

select_tcl_script <template_name> 

where template name is the name of the Tcl file without the .tcl extension. You 
can explicitly specify that the HTML template and optional initialization driver be 
used by calling the select_template command, as well. 

• If initialization drivers (.ini files) exist for a panel in both the site and server 
panel directories, their contents are merged.  See Precedence of Panel 
Initialization Driver Files for details.   

• Read access is needed to the template files so ProjectSync can load them into 
the interpreter. 



ProjectSync Panel Architecture 

20 

• If you make changes to panel files, you do not need to restart the SyncServer as 
you do with customizations such as access controls.  You can make a change 
and then reload your web browser to verify your change.  Likewise, if you are 
editing note panels, the next time you or a user adds, edits, or views the note, the 
changes display. 

Precedence of Global Variables 

You can set global variables in a number of locations.  The following list includes the 
files in which you can set global variables in order of precedence: 

• Note Panel Initialization Files (for example, 
share/panel/NoteAdd/AddYellowSticky.ini) 

See Coding Practices for Panel Initialization Drivers. 

• Note Type Configuration Files (for example, 
share/panel/config/YellowSticky.conf) 

See Note Type Configuration Files. 

• Tcl Files (for example, share/tcl/common.tcl) 

See Coding Practices for Tcl Panels Scripts. 

Thus, if you set the ProjectName variable in the AddYellowSticky.ini file and in 
the YellowSticky.conf file, the AddYellowSticky.ini file takes precedence. 
 Set the variable at the scope that makes sense for your needs.  If you are setting the 
ProjectName variable in order to seed the Project field in the Add mode of a note type, 
it makes sense to add the variable to the initialization file for that panel mode, in this 
case, AddYellowSticky.ini.   If you want to set the variable for all modes of a 
particular note type, set the variable in the configuration file. Unlike panel files, 
configuration files require a server reset if you modify them. Use the ProjectSync Reset 
Server command to reread configuration files. 

Note Panel Fields 
You use the ProjectSync Note Type Manager to create fields. You can then modify the 
fields in your HTML panel templates or your Tcl panel scripts.  The type of field 
generated for each property depends on its property type and the panel mode -- Add, 
Edit, or View. The following table describes the graphical elements generated by default 
for the predefined property types.  See ProjectSync User's Guide: Predefined Property 
Types for complete descriptions of these property types. 

Property Type Add Mode Edit Mode View Mode 



ProjectSync Advanced Customization Guide 

21 

Boolean Check box Check box True/False in read-
only text 

Date 

The Date property 
type has a date 
component, but no 
time component. 
(The Date property 
type used prior to 
ProjectSync2.5 is 
now the equivalent 
of the Timestamp 
property type.) 

Type-in field with 
calendar pop-up 

  

Type-in field with 
calendar pop-up 

Date in read-only 
text 

Time 

The Time property 
type has a time 
component, but no 
date component. 

Type-in field with 
calendar pop-up 

Type-in field with 
calendar pop-up 

Time in read-only 
text 

Timestamp 

The Timestamp 
property type has 
a date and a time 
component. 
(Equivalent to the 
pre-2.5 Date 
property type.) 

Type-in field with 
calendar pop-up 

Type-in field with 
calendar pop-up 

Date and time in 
read-only text 

Float Type-in field Type-in field Float value in 
read-only text 

Integer Type-in field Type-in field Integer value in 
read-only text 

String# Type-in field 
allowing # 
characters 

Type-in field 
allowing # 
characters 

Read-only text box 

String Type-in field 
allowing unlimited 
# characters 

Type-in field 
allowing # 
characters 

Read-only text box 

ChoiceList Pull-down menu Pull-down menu Read-only text box 
StateMachine Pull-down menu Pull-down menu Read-only text box 
SyncClass Pull-down menu Pull-down menu Read-only text box 
SyncPriority Pull-down menu Pull-down menu Read-only text box 
SyncRevCtrlCmd Pull-down menu Pull-down menu Read-only text box 
SyncState Pull-down menu Pull-down menu Read-only text box 



ProjectSync Panel Architecture 

22 

SyncUserList Pull-down menu Pull-down menu Read-only text box 

You specify the default values of the fields for Add mode when you create the field 
using the Note Type Manager. If you edit the HTML template for a note panel, you can 
specify optional presentations of these fields.  For example, you can choose to display a 
ChoiceList field as a pull-down menu or a series of radio button fields.  To see examples 
of the graphical elements generated by the note type fields, see the field substitution 
description. 

Configurable Fields 

Configurable fields are special fields you can include in a note type: 

• cclist – Creates a CC list field for entering the names of users to receive email 
notifications when the note is updated. This field includes a Modify button that 
brings up a list of all the users registered on the ProjectSync server. Users can 
select names from this list to insert in the CC list field. To create a CC list field, 
you use the property name cclist or cc_list (not case sensitive).  For 
multiple CC list fields, specify the CC list field names in your <notetype>.conf 
file. See ProjectSync User's Guide: Adding CC List Fields to Notes for details. 

• linknotes – Creates a field for linking to other notes. Users can enter one or 
more note type names and numbers to create hyperlinks to the notes. To add a 
linked notes field, you use the property name linknotes, link_notes, 
linknote, or link_note. For multiple linked notes fields, specify the link notes 
field names in your <notetype>.conf file. See Example: Links Notes Field in 
the field substitution description for an example. See ProjectSync Help: Setting 
Up Links Between Notes for details. 

Note: If you want to create a field that links to an object of a project other than a 
ProjectSync note, use an attachment substitution. 

• fileattach – Creates a field where users can upload an attachment file to the 
server so that people can read or download the attached file. To add a file 
attachment field, you use the field name fileattach for a single field.  For 
multiple file attachment fields, specify the file attachment field names in your 
<notetype>.conf file. See Example: File Attachment Field in the field 
substitution description for an example. See ProjectSync Help: Attaching Files to 
Notes for details. 

Note: If you are modifying an HTML panel template and your note panel contains 
a file attachment field, you  must include the NoteForm substitution. The 
NoteForm substitution generates an HTML FORM tag with an attribute that 
ensures the proper operation of the file attachment fields. If you add a file 
attachment field when you create your note type using the ProjectSync Note 
Type Manager, ProjectSync adds the NoteForm substitution automatically.  If 



ProjectSync Advanced Customization Guide 

23 

you are implementing a custom panel that is not a ProjectSync note panel or if 
you want to include your own validate function within the FORM tag, you must 
include your own FORM tag with the enctype attribute shown below in bold 
typeface: 

<FORM name=NoteAddForm action=isynch.dll 
enctype=multipart/form-data method=post onSubmit='return 
Validate(this)'> 

• keywords – Creates a field for entering search keywords. This field includes a 
Modify button that brings up a list of predefined standard keywords. Use the 
ProjectSync Keyword Manager available from the Note Type Manager to add or 
edit keywords.  Keywords provide another mechanism to group notes besides 
grouping by project, configuration, and note type.  You can query on keywords to 
gather all the notes pertaining to a particular keyword. To add a keywords field, 
you use the field name keywords or key_words. For multiple keyword fields, 
specify the keyword field names in your <notetype>.conf file. See Example: 
Keywords Field in the field substitution description for an example. See 
ProjectSync Help: Adding Search Keyword Fields to Notes for details. 

• transcript – Creates a type-in field where added text is appended to earlier text, 
rather than replacing it. To create a transcript field, you use transcript as your 
field name.  For multiple transcript fields, specify the transcript field names in 
your <notetype>.conf file. See Example: Transcript Field in the field 
substitution description for an example. See also ProjectSync Help: Adding 
Transcript Fields to Notes for details. 

The following table describes the types of graphical elements generated for configurable 
fields. 

Configurable 
Field 

Add Mode Edit Mode View Mode 

cclist Type-in field 
displaying 
resultant CC list 
members 

Modify button that 
brings up a list box 
containing all 
users registered 
on SyncServer 

Type-in field 
displaying 
resultant CC list 
members 

Modify button that 
brings up a list box 
containing all 
users registered 
on SyncServer 

Read-only list of 
users on CC list 

linknotes Pull-down menu 
containing note 
types 

List of hypertext 
links to notes 

Pull-down menu 

Read-only list of 
hypertext links to 
notes 



ProjectSync Panel Architecture 

24 

Type-in Id number 
field 

Add Link button 

Type-in field 
displaying 
resultant note 
hypertext links 

containing note 
types 

Type-in Id number 
field 

Add Link button 

Type-in field 
displaying 
resultant note 
hypertext links 

fileattach Type-in field 
displaying 
resultant file 
hypertext links 

Browse button to 
select file to be 
uploaded to 
SyncServer 

List of hypertext 
links to objects of 
the project 

Type-in field 
displaying 
resultant file 
hypertext links 

Browse button to 
select file to be 
uploaded to 
SyncServer 

Delete 
Attachment 
checkbox 

Read-only list of 
hypertext links to 
objects of the 
project 

keywords Type-in field 
displaying 
resultant keywords 

Modify button that 
brings up a list box 
containing all 
keywords 
registered for the 
note type or 
globally for the 
SyncServer 

List of keywords 

Type-in field 
displaying 
resultant keywords 

Modify button that 
brings up a list box 
containing all 
keywords 
registered for the 
note type or 
globally for the 
SyncServer 

Read-only list of 
keywords 

transcript Type-in field for 
transcript entry 

Read-only text 
showing prior 
transcript entries, 

Read-only text 
showing prior 
transcript entries, 



ProjectSync Advanced Customization Guide 

25 

Radio buttons, 
Allow HTML Tags 
and No HTML 
Markup Intended 

with authors and 
timestamps 

Type-in field for 
transcript entry 

Radio buttons, 
Allow HTML Tags 
and No HTML 
Markup Intended 

with authors and 
timestamps 

You add configurable fields to a note type in one of two ways: 

• Enter the configurable property name as a new field name when you create or 
edit a note type using the ProjectSync Note Type Manager. 

• If you are creating more than one instance of a particular configuration field, map 
the configuration field type to a new property name in the note type configuration 
file, /share/panels/config/<notetype>.conf (in the server or site share 
directory).  (See Note Type Configuration Files.) Enter the new configurable 
property name as a new field name when you create or edit a note type using the 
ProjectSync Note Type Manager. 

See ProjectSync Help: Configurable Property Types to learn more about setting up 
configurable fields. 

Seeding Fields 

You can seed the Project and Configuration fields for the Add mode of note panels by: 

• Passing these values into a panel as parameters: 

http://<host>:<port>/scripts/isynch.dll?panel=NoteAdd 
&NoteType=Feedback&ProjectName=FeedbackSurvey&ProjectConfig
=2003 

• Setting the ProjectName and ProjectConfig global variables: 

set ProjectName FeedbackSurvey 
set ProjectConfig 2003 

You can set these variables in the <notetype>.conf file in the 
/share/panels/config directory of the custom site or server directory or in the 
Add<notetype>.ini initialization driver file: 

Note Type Configuration File: 



ProjectSync Panel Architecture 

26 

Site: <SYNC_SITE_CUSTOM>/share/config/<notetype>.conf 

Server: 
<SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/config/<notetype>.
conf 

See Note Type Configuration Files to learn more about this file. 

Note Type Initialization File: 

Site: <SYNC_SITE_CUSTOM>/share/panels/NoteAdd/Add<notetype>.ini 

Server: 
<SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/panels/NoteAdd/Add
<notetype>.ini 

If you set these variables in both the note type configuration (.conf) file and the note 
type initialization (.ini) file for a particular panel mode, the .ini file takes 
precedence. 

Hidden Fields 

ProjectSync uses HTML hidden fields to pass data to the processing phase of note 
panels.  The hiddens substitution command passes the values of these hidden fields. 
The predefined NoteDetail and NoteAdd initialization driver files define the hiddens 
substitution for each mode such that the appropriate hidden fields are passed to the 
processing phase of that note panel mode.  For example, the hiddens substitution for 
the Edit mode of a note panel passes the values for panel, NoteSystem, NoteType, 
NoteId, and the Display mode (Edit, in this case).  Your HTML panel definitions should 
contain the <!-- SYNC hiddens --> substitution to ensure that these hidden field 
values are passed to the processing phase for each note panel mode. 

You can choose to hide fields by adding the -hidden option to the field and std_header 
substitutions.   See the field Substitution and the std_header Substitution. 

Note Type Configuration Files 
You can customize various note type settings by creating a note type configuration file. 
 The note type configuration file is named <NoteType>.conf and is stored in one of 
the following locations: 

Server: 
<SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/config/<NoteType>.
conf 



ProjectSync Advanced Customization Guide 

27 

Site: <SYNC_CUSTOM_DIR>/site/share/config/<NoteType>.conf 

Use the note type configuration file to change the definition of a note type for all modes. 
 For example, you can set the ProjectName and ProjectC variables to seed the 
Configuration field, but if you set these in the Add<NoteType>.ini file, the settings 
will only affect Add mode.  Set the following types of customizations in Note Type 
Configuration Files: 

• CC list pulldown entries 
• Transcript files 
• Default display language 
• Attachment fields 
• Link fields 
• Default values for variables such as ProjectName and ProjectConfig. 

See Note Panel Fields for details on setting up fields and field defaults. 

Note: If you modify the note type configuration file, apply the ProjectSync Reset Server 
command so that the SyncServer reads the new configuration settings. 

String Table Configuration Files 
ProjectSync uses a string table to map terms used in panels to strings.  The string table 
ProjectSync manages for English language messages is: 

<SYNC_DIR>/share/config/strings/en.msg 

To learn about customizing a string table file for a language besides English, please see 
contact a DesignSync  representative. 

Mapping Identifiers Using String Table Files 

To map identifiers to new strings, create your own string table file in a site-wide or 
server-specific string table file: 

Site-wide: <SYNC_CUSTOM_DIR>/site/share/config/strings/en.msg 

Server-specific: 
<SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/config/strings/en.
msg 

Important: Do not edit the system default string table file 
(<SYNC_DIR>/share/config/strings/en.msg). 

Notes: 



ProjectSync Panel Architecture 

28 

• You might have to create one or more of the directories in the paths above if they 
do not yet exist in your custom hierarchy. See ProjectSync User's Guide: The 
Custom Hierarchy for more information about these directories. 

• If you modify the string table configuration file, apply the ProjectSync Reset 
Server command so that the SyncServer reads the new custom strings. 

• The more-local en.msg file takes precedence over the other versions. 

The following examples show some examples of using the string table to specify string 
values. For more examples and details, see ProjectSync User's Guide: Configuring the 
Wording on the GUI. 

Example: Displaying a Space within a Note Type Name 

Although spaces within note type names are not supported, you can have ProjectSync 
display a space within a note type name by mapping the name to a new string in the 
string table file.  For example, if a custom note type named YellowSticky was created, 
you can create an en.msg string table file containing the following line: 

NOTETYPE:YellowSticky "Yellow Sticky" 

Store the en.msg file in the site-wide or server-specific share/config/strings 
directory and reset the SyncServer. The next time a ProjectSync panel displays, each 
instance of the note type name displays with a space as indicated in the new string.  For 
example, after creating the en.msg string table file above, the Add YellowSticky menu 
item is replaced by the item, Add Yellow Sticky. 

Example: Updating Field Names 

To update field names, create a custom string table and include the following definition 
for the field: 

FIELD:<notetype>:<property>        "<new string>" 

For example: 

FIELD:SyncDefect:DateFixed         "Date Completed" 

See the default <SYNC_DIR>/config/strings/en.msg file for the other attributes 
whose strings you can modify, such as property types and choices; however, do not 
modify the default en.msg file.  Instead, create a custom version in your site or servers 
custom area as described in section, Mapping Identifiers Using String Table Files. 



29 

Customizing Panels 
Customizing Panels 
ProjectSync lets you customize the user interface in varying levels of granularity.  You 
can replace entire panels of the ProjectSync product.  You can create your own panels 
and create links to the new panels from the main menu, the ProjectSync home page, or 
from other panels. 

For a finer granularity of customization, you can limit your modifications to the HTML 
presentation of a ProjectSync panel or you can overload the substitution for a particular 
field in an existing panel. 

Customizing Standard ProjectSync Panels 

In general, the method for customizing ProjectSync panels is to place your own version 
of an existing panel in one of the custom share/panels subdirectories.  If ProjectSync 
locates a custom panel in the custom directory hierarchy, it uses that panel instead of 
the default  in the $SYNC_DIR/share/panels.   

For example, you want to replace the user interface for the Add User Profiles 
(UserAdd) panel.   

1. Create a .tcl script (or an HTML template and optional .ini panel initialization 
driver) to generate the HTML for the new panel.   

2. Store your new UserAdd.tcl file (or UserAdd.html and UserAdd.ini files) 
in either of the following directories: 

Server: 
<SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/panels/UserAdd 

Site: <SYNC_CUSTOM_DIR>/site/share/panels/UserAdd 

See Precedence of Panel Customization Files for details about search order and the 
precedence of .ini, .html, and .tcl files. 

To determine what you need to name the standard panel files that you wish to override, 
you can look in the $SYNC_DIR/share/panels directory to see the names of the 
directories that correspond to the ProjectSync panels.  You can also hold your cursor 
over the command name in the ProjectSync main menu and view the URL that displays 
at the bottom of your browser window.  For example, if you hold your cursor over the 
User Profiles:Add main menu button, the following URL displays at the bottom of your 
browser: http://<host>:<port>/scripts/isynch.dll?UserAdd.  Thus, to 



Customizing Panels 

30 

replace the existing Add User Profiles panel, you can create your custom panel files in a 
custom directory named share/panels/UserAdd. 

Creating New Panels 

You can create your own panels from scratch, as well, and invoke these panels from the 
main menu, the ProjectSync home page, or from any other panel.  In this case, you 
create a new directory in a site or server share/panels directory named for the panel. 
 For example, if your new panel is to be named ListBugReports, you create one of the 
following directories: 

Server: 
<SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/panels/ListBugRepo
rts 

Site: <SYNC_CUSTOM_DIR>/site/share/panels/ListBugReports 

Within the ListBugReports directory, create either a Tcl script or an HTML template 
and optional .ini initialization driver pair to implement the panel.  These files must be 
named ListBugReports.tcl, ListBugReports.html, and 
ListBugReports.ini respectively. For an example, see Anatomy of ProjectSync 
Panels. 

Securing Custom Panels 
DesignSync panels that perform data modifications (adding information, removing 
information, changing information, server or access control resets) are secured against 
external attacks that could compromise data by including a security token that is 
required in order for the data modification to be accepted. Custom forms that perform 
data modifications can be secured in the same way. 

Note: If you choose not to secure the custom panels, or if you have a staged rollout of 
existing custom panels, the existing panels continue to work even without adding the 
security token handshake. 

There are two types of panels that modify data: 

• Dialog (or Form) Panels - which require the user to enter some information and submit 
the information to the server in order to affect change. For example, creating a user, 
requires you enter information and click a button to submit. 

• Action Buttons - in which there is no user-submitted information, the act of submitting 
the change is the only thing required.  For example, if a server reset uses an action button 
to launch the reset action. 

Securing Dialog Panels 



ProjectSync Advanced Customization Guide 

31 

DesignSync provides a procedure that sets the security token field for dialog (or form) 
panels. 

Using the DesignSync provided Procedure: 

1.  In order to take advantage of the DesignSync provided procedure, add this 
procedure call to your code: 
 
proc htmlFormBegin 

2. To validate the token after the data is submitted, add this call to the top of the 
processing .tcl code.. If there is an iterative process, for example if you collect 
data on multiple pages, this code should be inserted into the final process; the 
one that commits the changes to the server. 
 
validateDialogToken 

Adding the Security Token without using the DesignSync provided procedure: 

You can also manually insert the security token into your panel code. In the HTML file, 
within the <FORM...> section, most DesignSync panels, and templates have a <!--
SYNC hiddens --> section.  The security token call, syncDialogTokenField  is placed 
within the TCL code or INI that adds hidden fields to the form. 

Here are a few possible formats for including the token: 

Format Option 1: 

substitution hiddens {} { 

    puts "<INPUT type=hidden name=panel value=PanelName>" 

    puts "<INPUT type=hidden name=mode value=Process>" 

    puts [syncDialogTokenField] 

} 

 Format Option 2 

substitution hiddens {} { 

    puts [htmlHiddenField panel PanelName] 

    puts [htmlHiddenField command Process] 

    puts [syncDialogTokenField] 



Customizing Panels 

32 

} 

Format Option 3 

substitution hiddens {} { 

    hidden panel EmailMgrAdmin 

    syncDialogTokenField 1 

} 

To validate the token after the data is submitted, add the following call to the top of the 
processing .tcl code..If there is an iterative process, for example if you collect data on 
multiple pages, this code should be inserted into the final process; the one that commits 
the changes to the server. 
 
validateDialogToken 

Securing Actions 

Some panels have a button that performs an action that performs data modification, 
such as the server reset commands.  Since there isn't a form to act on, the security 
token should be included in the URL submitted by the action button, for example, your 
TCL code should look something like this, where the link is set: 

set link $serverUrl?panel=PanelName&command=Action  

And the security token is appended to the link: 

append link & SYNC_Dialog_Token = [_httpsession getdialogtoken] 

Note: If there are no arguments to the URL, as shown above, append the link with ? 
instead of &, for example: 

set link $serverUrl?panel=PanelName&SYNC_Dialog_Token = 
[_httpsession getdialogtoken]  

As with the Secure Dialog Panels, add this call to the top of the processing .tcl code to 
validate the token. 
 
validateDialogToken 

Related Topics 

Customizing Panels 



ProjectSync Advanced Customization Guide 

33 

  

Panel Gather Phase 
The gather phase of panel processing is the phase where the user's web browser 
displays the HTML layout of the note panel mode: the Add, View, or Edit panel for the 
note type.  The substitutions defined in an initialization driver (for example, 
AddSyncDefect.ini) generate the dynamic behavior of graphical elements. The user 
makes selections and enters information in the panel.  The user can perform various 
actions such as entering text, selecting values from pull-down menus, and selecting 
dates from calendar pop-up fields. 

The gather phase of a panel is implemented with customization files named 
<panel>.tcl (or <panel>.html and <panel>.ini). 

During the gather phase, ProjectSync 

• Validates access controls to ensure that the user can access the panel. 

• Loads any custom HTML templates, panel initialization drivers (.ini files), or Tcl 
files, and performs error checks. See  Precedence of Panel Customization Files 
to understand the order in which ProjectSync loads these files. 

• Generates substitutions within the HTML templates. 
• Loads attachments.  For example, ProjectSync loads a project attachment by 

assembling the list of projects on the SyncServer in order to generate the choice 
list of the Project pull-down menu. 

• Displays the panel in the user's browser. 
• Displays the input the user enters and the settings the user applies to graphical 

elements such as pull-down menus and check boxes. 

Customizations for the Gather Phase 

You can customize the gather phase of a note panel in these ways: 

• Add, edit, or remove fields of a note panel. 

You add, edit, and remove fields of a note panel using the ProjectSync Note 
Type Manager.  See ProjectSync Help: Editing Note Types to learn how. 

Note: If you have generated HTML templates to customize a note panel, create 
new fields using the ProjectSync Note Type Manager, then add the new fields to 
the HTML templates by hand. To learn about the ProjectSync commands 
(substitutions) you use to add or modify fields, see field Substitution. 

• Change the string displayed for a note type, field, property, or choice. 



Customizing Panels 

34 

To change the strings displayed, you create a custom string table configuration 
file.  See String Table Configuration Files for details.  Use the string table 
configuration file to change all types of strings in panels.  You can also change 
prompt strings by adding a new prompt string to the panel initialization (.ini) 
file.  See Creating Panel Initialization Drivers for an example. 

• Change the order of fields in a note panel. 

To rearrange fields, use the Note Type Manager. See ProjectSync User's Guide: 
Rearranging Fields on a Note Panel.  If you want to rearrange the fields after you 
have completed your note type design, you can instead call the setFieldOrder 
utility from a .ini panel initialization file or a Tcl script. 

• Change the appearance of a note panel by editing its HTML.   

You can generate HTML templates for your note types and then use HTML tags 
to modify the layout of the note panel.  See Customizing HTML for Panels.  You 
can also add substitution commands to your HTML template.  See What Are 
Substitution Tags? to learn about substitutions. 

• Change the property type definition underlying a field. 

The property type dictates the type of graphical element a field substitution 
generates.  To learn about note property types, see ProjectSync User's Guide: 
Predefined Property Types. 

• Add graphical icons to the ProjectSync menu. 

You can create your own icons for the main menu and link these to existing note 
panels or to your own Tcl scripts.  See ProjectSync Help: Customizing the Main 
Menu. 

• Change the substitutions called from the panel's HTML file. 

For the definitions of the substitutions you can include in note panels, see Note 
Panel Substitution Tags. 

• Add new substitutions to the panel's initialization driver file. 

To create new substitutions, the commands that generate panel content, see the 
substitution command. 

• Add custom documentation for your custom note types. 



ProjectSync Advanced Customization Guide 

35 

You can install your own documentation for each custom note type so that the 
Help button of an Add Note panel links to your custom documentation.  See 
ProjectSync User's Guide: Adding Documentation for Custom Note Types. 

Panel Process Phase 
The process phase for note panels is the phase when ProjectSync processes the 
user's input. The process phase occurs after the user submits the panel. ProjectSync 
generates a URL string that loads the process phase of the panel. For an Add note 
panel, the process phase performs error checking and adds the note to the SyncServer 
note system.  For an Edit note panel, the process phase makes the user-specified 
changes to the note. 

During the process phase, ProjectSync 

• Validates access controls to ensure that the user has the necessary permissions 
to perform the requested action on the note. 

• Loads the custom process driver if one exists. 

To create a custom process driver, store your substitutions and Tcl procs in a file 
in the site or server custom area named 
/share/panels/NoteAdd/Process<NoteType>.ini (to process a note 
after it is created) or 
/share/panels/NoteDetail/Process<NoteType>.ini (to process a note 
after it is edited). 

• Performs preprocessing checks. 

ProjectSync carries out preprocessing checks before loading any information 
about the note being processed.  Store your own preprocessing code in a proc 
named Process_<NoteType>_PreSchema and store it in a file in the site or 
server custom area named 
/share/panels/NoteAdd/Process<NoteType>.ini file or 
/share/panels/NoteDetail/Process<NoteType>.ini.  The 
 preprocessing checks allow the user to cancel out of note processing 
immediately if necessary, so do not include extensive data processing in your 
preprocessing code.  During the preprocessing phase, the data available for 
checking is limited to the SYNC_Parm and SYNC_ClientInfo global variables. 
 If your checks detect errors, ProjectSync displays a failure panel. 

• Fetches the note schema and loads attachments. 
• Performs postprocessing checks. 



Customizing Panels 

36 

ProjectSync carries out postprocessing checks after loading the note schema but 
before creating or updating the note.  Store your own postprocessing code in a 
proc named Process_<NoteType>_PostSchema and store it in a file in the 
site or server custom area named 
/share/panels/NoteAdd/Process<NoteType>.ini file or 
/share/panels/NoteDetail/Process<NoteType>.ini. During the 
postprocessing phase, you can perform extensive checks on the data supplied in 
the note panel form by the user.  If your checks detect errors, ProjectSync 
displays a failure panel. 

• Creates or modifies the note. 
• Processes note attachments. 
• Displays the resulting note panel in the user's browser. 

By default, a ProjectSync success panel displays.  You can choose to redirect 
processing to a specified HTML template. 

Customizations for the Process Phase 

You can customize the process phase of a note panel to: 

• Perform data checking in order to efficiently cancel an operation such as adding 
or editing a note if necessary. 

• Display a different panel based on criteria you specify. 
• Generate informative diagnostic or success panels depending upon the results of 

processing. 

For an example that shows how to use the process phase to modify notes, see 
 Postprocessing in Panel Initialization Files. 

Customizing Panels: Step by Step 
If you decide to customize a panel by modifying its HTML template or initialization 
driver, follow the steps described below.  For more advanced applications, you might 
want to override the HTML panel template completely by developing a Tcl script that 
performs the desired behavior; see Coding Practices for Tcl Panels Scripts for 
guidelines. 

The basic steps for customizing ProjectSync note panels are: 

1. Generate HTML templates. 

ProjectSync lets you generate the HTML templates for any installed note type, 
including custom note types you have created.  Use the ProjectSync Note Type 



ProjectSync Advanced Customization Guide 

37 

Manager to generate the HTML templates.  You can choose to generate the 
templates in the site or server custom area.  See Generating HTML Templates. 

2. Customize the HTML templates. 

After you generate the HTML templates, you can edit them in a text editor or a 
WYSIWYG HTML editor.  You customize the look and feel of the note panel by 
modifying its HTML representation.  See Customizing HTML for Panels for 
details.  Note that you do not have to add fields manually within the HTML 
templates; if you want to add a field to a note panel, you can update its note type 
directly using the Note Type Manager before generating the HTML templates 
(ProjectSync User's Guide: Editing Note Types). 

3. Create or modify the Tcl panel initialization driver. 

Change the behavior of a note panel by creating a Tcl panel initialization script. 
 Each panel has a .ini panel initialization driver that contains the commands, or 
substitutions, reflected in the panel's HTML representation.  See Coding 
Practices for Panel Initialization Drivers for details. 

Note: The appearance of the SW-Defect-1 and BugReport note types cannot be 
customized in this way because these note type already use the template mechanism to 
implement the behavior of different views for some properties. 





39 

HTML Panel Templates 
Generating HTML Templates 
The Note Type Template Generator panel lets you generate the HTML templates for a 
note type. After you have generated the templates, you can customize them to modify 
the layout of the note type panels.  If you generate HTML templates in the site-wide or 
server-specific panels directory, ProjectSync adheres to these custom HTML files to 
display the note panels instead of those specified in the default ProjectSync panels 
directory. 

Use the Note Type Template Generator for extensive customizations of note types. To 
simply rearrange fields, use the Note Type Manager. See ProjectSync User's Guide: 
Rearranging Fields on a Note Panel.   

Important: After you have generated HTML templates for a note type, you cannot use 
the Note Type Manager to rearrange the fields for the custom note type.  Also if you use 
the Note Type Manager to add or remove a field, you must add or remove the field in 
each of the corresponding panel mode HTML templates (the Add, View, and Edit mode 
of the panel).   

Warning: Do not attempt to generate templates for note types derived from the built-in 
note types SW-Defect-1 or BugReport, as errors will result.  

To generate the HTML templates for a note type: 

1. Select NoteType Manager from the ProjectSync menu. 
2. From the list of related tasks, select Generate HTML note type templates for a 

note type. 

The Note Type Template Generator panel appears. 

3. From the Note Types list, select the note type you want to customize. 

The Note Types list also displays the existing custom templates if you have 
already generated HTML templates for a note type. 

4. Select the Location for the note type's HTML templates. 

If you want your template customizations to be available across all the servers on 
your site, select Site. If you want your customizations to be available only to 
users on the current server, select Servers area. 

5. Keep the Backup button checked to ensure that ProjectSync backs up any 
existing templates for the note type. 



HTML Panel Templates 

40 

6. Select the Create Template button to generate the HTML templates. 

ProjectSync generates three templates in the share/panels directory of either 
the site-wide (<SYNC_SITE_CUSTOM>/share/panels) or server-specific 
(<SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/panels) location 
you specified: 

o NoteAdd/Add<note_type>.html - Edit this file to modify the Add 
mode of the note type. 

o NoteDetail/Edit<note_type>.html - Customize this panel to 
modify the Edit mode of the note type. 

o NoteDetail/View<note_type>.html - Customize this panel to 
modify the View mode of the note type. 

Note: After you have generated an HTML template for a note type, you cannot use the 
Note Type Manager's Order NoteType Properties panel to rearrange the fields for the 
custom note type. 

Customizing HTML for Panels 
You can customize the appearance of a panel by editing its HTML template using either 
a web page (WYSIWYG) editor or a text editor. To customize a panel, you can create, 
move, edit, or delete fields and their associated ProjectSync substitution tags.  See 
What Are Substitution Tags? for a description of these tags. 

This topic describes how to customize the appearance but not the behavior of fields in 
panels. To learn how to customize the behavior of fields, see Creating Panel 
Initialization Drivers. 

Editing Panel HTML Templates 

Before editing the HTML templates for your note panels, you must generate the 
templates by following the steps in the topic, Generating HTML Templates. 

ProjectSync generates the HTML templates for you to edit in the following locations 
depending on whether you opted to generate the HTML templates in a site or server 
directory: 

• Server-specific location: 
<SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/panels/<panel
>/<panel>.html 

• Site-wide location: 
<SYNC_SITE_CUSTOM>/share/panels/<panel>/<panel>.html 



ProjectSync Advanced Customization Guide 

41 

After you have generated HTML templates in the site-wide or server-specific panels 
directory, ProjectSync adheres to these custom HTML files to display the note panels 
instead of those specified in the default ProjectSync $SYNC_DIR/share/panels 
directory. 

Important: If you later add fields to the note type definition as described in ProjectSync 
User's Guide: Editing Note Types, you must manually add the fields to your custom 
templates for the note type. ProjectSync does not automatically add the fields to the 
HTML templates in the custom area. 

You can edit your HTML templates using: 

• A web page (WYSIWYG) editor 
• A text editor 

An example of editing a note panel is illustrated in Example: Customizing a New Note 
Type.   

Editing HTML Templates Using a WYSIWYG Editor 

When you load an HTML note panel template into a WYSIWYG editor, you see the 
basic layout of the panel. The fields display in a table. You can use the WYSIWYG 
editor to move, modify, delete, and create fields. 

Here are some general guidelines for editing the template with a WYSIWYG editor: 

• Be sure to turn on the viewing of special tags in your editor. It is very important 
that you do not inadvertently delete the existing substitution tags in your HTML 
templates. 

• There are particular substitution tags that are required properties on all note 
types. Do not delete these substitution tags. See ProjectSync User's Guide: 
Required Properties for a list of these properties. 

• WYSIWYG editors often break up long lines with newlines. If your WYSIWYG 
editor inserts newlines within comments, the substitution tags will be corrupted 
and the panel will not display or behave correctly in ProjectSync. 

• An alternate representation for substitution tags is supported by ProjectSync. 
Substitution tags can be implemented with this syntax: %(Title)% instead of the 
HTML comment syntax: <!-- SYNC field Title -->. We recommend that 
you do not use the alternate syntax, %(X)%, if you are editing with a WYSIWYG 
editor because most WYSIWYG editors freely insert newlines into text strings. A 
newline within the substitution tag corrupts it and prevents the panel from 
displaying properly. 

Editing HTML Templates Using a Text Editor 



HTML Panel Templates 

42 

You can also edit the HTML templates using a text editor if you have a working 
knowledge of HTML. We recommend that you use an editor that highlights HTML 
syntax elements, such as emacs. 

Edit the HTML template files as you would edit other HTML documents, keeping in mind 
these guidelines: 

• Substitution tags are unlike standard HTML code, in that white space and 
newlines are not automatically removed. The following is an example of a 
substitution tag: 

<!-- SYNC field Title --> 

There must be a single space before and after the SYNC keyword in the 
substitution tag. There can be no newlines in substitution tags. 

• Substitution tags can also use this syntax: 

%(field Title)% 

As in the HTML comment syntax, there can be no newlines in these substitution 
tags.  

• ProjectSync uses tables to display lists of fields. The header cell of a row 
contains a prompt and the data cell contains the substitution tag. Below is an 
example of a table row: 

<TABLE> 
  <TR> 
    <TH>Responsible</TH> 
    <TD><!-- SYNC field Resp --></TD> 
  </TR> 
</TABLE> 

Example: Customizing a New Note Type 
To modify an HTML template: 

1. Create your own custom note type using the Note Type Manager by selecting 
Create a new note type from scratch. 

2. After you create the note type, generate HTML templates for it by following the 
steps in the topic, Generating HTML Templates.  You can generate the templates 
in the site-wide or server-specify area. 

3. Edit the template files for the Add, View, or Edit mode of the note, for example: 

share/panels/NoteAdd/AddYellowSticky.html 



ProjectSync Advanced Customization Guide 

43 

share/panels/NoteDetail/EditYellowSticky.html 

share/panels/NoteDetail/ViewYellowSticky.html 

Generally, if you make a change to one of these panel modes, you need to make 
a corresponding change to the other panel modes. 

4. Try rearranging fields or adding a new substitution within the templates by editing 
the HTML.    

To learn about the predefined substitutions available, see Note Panel 
Substitution Commands.   

Example: Adding a Column to a Layout 

The following example shows a custom note type before and after the HTML was 
modified. Following are the required attributes of a sample custom note type, 
YellowSticky, in Add mode: 

 

Here is the HTML template code segment from the custom site or server 
/share/panels/NoteAdd/AddYellowSticky.html template for the fields shown 
above: 



HTML Panel Templates 

44 

... 
<!-- SYNC std_separator -tdclass SEPARATOR -mapped 
REQUIRED_ATTRS --> 

<TR> 
  <!-- SYNC std_header -prompt Title --> 
  <TD> 
    <!-- SYNC field Title --> 
  </TD> 
</TR> 

<TR> 
  <TH align=right  bgcolor=#CCDDD0><!-- SYNC prompt Subject --
></TH> 
  <TD> 
    <!-- SYNC field Subject --> 
  </TD> 
</TR> 

<TR> 
  <TH align=right  bgcolor=#CCDDD0><!-- SYNC prompt Resolved --
></TH> 
  <TD> 
    <!-- SYNC field Resolved --> 
  </TD> 
</TR> 

<TR> 
  <TH align=right  bgcolor=#CCDDD0><!-- SYNC prompt Actions --
></TH> 
  <TD> 
    <!-- SYNC field Actions --> 
  </TD> 
</TR> 

<TR> 
  <TH align=right  bgcolor=#CCDDD0><!-- SYNC prompt Priority --
></TH> 
  <TD> 
    <!-- SYNC field Priority --> 
  </TD> 
</TR> 

<TR> 
  <!-- SYNC std_header --> 
  <TD><HR width=80%></TD> 
</TR> 



ProjectSync Advanced Customization Guide 

45 

<TR> 
  <!-- SYNC std_header -prompt Body -valign top --> 
  <TD> 
    <!-- SYNC field Body -rows 12 --> 
  </TD> 
</TR> 

We modify the above note type so that the small fields, Resolved and Priority, lie side 
by side by including both fields in a single row.  The new row is shown in bold below. 
 The remaining rows require a column span of 3 to align the new column properly (also 
shown in bold). 

<!-- SYNC std_separator -tdclass SEPARATOR -mapped 
REQUIRED_ATTRS -colspan 3 --> 

<TR> 
<!-- SYNC std_header -prompt Title --> 
  <TD COLSPAN=3> 
    <!-- SYNC field Title --> 
  </TD> 
</TR> 

<TR> 
<TH align=right  bgcolor=#CCDDD0><!-- SYNC prompt Subject --
></TH> 
  <TD COLSPAN=3> 
    <!-- SYNC field Subject --> 
  </TD> 
</TR> 

<TR> 
<TH align=right  bgcolor=#CCDDD0><!-- SYNC prompt Resolved --
></TH> 
<TD> 
<!-- SYNC field Resolved --> 
</TD> 
<TH align=right  bgcolor=#CCDDD0><!-- SYNC prompt Priority --
></TH> 
<TD> 
<!-- SYNC field Priority --> 
</TD> 
</TR> 

<TR> 
<TH align=right  bgcolor=#CCDDD0><!-- SYNC prompt Actions --
></TH> 
<TD COLSPAN=3> 



HTML Panel Templates 

46 

<!-- SYNC field Actions --> 
</TD> 
</TR> 

<TH align=right  bgcolor=#CCDDD0><!-- SYNC prompt Priority --
></TH> 
<TD COLSPAN=3> 
<!-- SYNC field Priority --> 
</TD> 

<TR> 
<!-- SYNC std_header --> 
<TD COLSPAN=3><HR width=80%></TD> 
</TR> 

<TR> 
<!-- SYNC std_header -prompt Body -valign top --> 
<TD COLSPAN=3> 
<!-- SYNC field Body -rows 12 --> 
</TD> 
</TR> 

The panel now appears as follows: 

 



47 

Panel Initialization Drivers 
Creating Panel Initialization Drivers 
Panel initialization driver (.ini) files contain the Tcl code that drive the panel templates. 
You create Tcl panel initialization scripts in the share/panels directories where the 
HTML templates for the note panels are stored. These templates and initialization 
scripts are located in either the site-wide (<SYNC_SITE_CUSTOM>/share/panels) or 
server-specific (<SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/panels) 
location. These are the initialization scripts you can include for a note type: 

• NoteAdd/Add<note_type>.ini - Create this script to modify the behavior of 
the Add mode of the note type. 

• NoteDetail/Edit<note_type>.ini - Create this script to modify the 
behavior of the Edit mode of the note type. 

• NoteDetail/View<note_type>.ini - Create this script to modify the 
behavior of the View mode of the note type. 

You use Tcl panel initialization scripts to: 

• Create new substitutions 
• Select between different HTML panel templates 

See Special Considerations for more general guidelines for using Tcl panel initialization 
scripts. 

For examples of panel initialization scripts and custom substitutions within them, see the 
examples in the following topics: 

• Anatomy of ProjectSync Panels 
• AllProjectsList 
• AllProjectsMap 
• AllUsersList 
• AllUsersMap 
• Design Tool Process Survey 
• substitution 

Changing the Prompt String 

You can override the default prompt strings for a note type in its .ini files. To specify 
your own prompt strings, add the following definition to the .ini files for the note type: 

set prompts(<property_name>) <prompt_string> 



Panel Initialization Drivers 

48 

For example, suppose that you want to rename the Note Text prompt in the default 
SyncDefect note type. This prompt is set by the Body property. To rename Note Text to 
Comments, add the following line to the .ini files for the SyncDefect note type: 

set prompts(Body) Comments 

You can also change a prompt string by creating a string table configuration file.  See 
String Table Configuration Files. 

Creating New Substitutions 

You can create new substitution tags with new behaviors that are different from those of 
the standard HTML substitution tags described in Customizing HTML for Panels. 

You create new substitution tags by calling the substitution utility. If a substitution 
definition for a new tag is included in a note panel's .ini file, you can then include that 
substitution tag in the corresponding HTML template file.  See the substitution 
utility for examples. 

Selecting Between HTML Templates 

You can include any Tcl code in a panel initialization script, not just substitution 
definitions. A common use for the Tcl initialization script is to choose between HTML 
templates that implement the same note panel. For example, some of your users might 
see one template and others might see a different template depending on criteria you 
define. You might also use access control information as the criteria by which 
ProjectSync determines which HTML template to display.  See the select_template 
utility for an example. 

For example, for the EditNote template, you might specify the following line in your 
EditNote.ini file: 

select_template UserEditNote 

where UserEditNote.html is the template that implements the Edit Note panel. If a 
UserEditNote.ini file exists, ProjectSync uses this file as the panel initialization 
driver. 

Special Considerations 

• ProjectSync uses standard .ini files of its own for note types and stores them in 
the <SYNC_DIR>/share/panels directory. ProjectSync does not override the 
default .ini file with your .ini files in the server-specific or site-wide panels 
directory. Instead, the contents of all of the .ini files are merged. 



ProjectSync Advanced Customization Guide 

49 

• Do not use puts statements at the top level of a .ini file. In a .ini file, you can 
use puts statements only inside substitution subroutines or in procs called 
from within substitution subroutines. 

• You can have ProjectSync abort template processing, for example, if the current 
user does not have permission for an operation.  In this case, you can include a 
 puts statement at the top level of your Tcl script, as long as the puts statement 
is followed by the quit command to prevent the HTML template from being 
substituted and generated. 

• There are two types of initialization drivers: 

Gather phase initialization driver files.  See Panel Gather Phase. 

Process phase initialization driver files.  See Panel Process Stage. 

Postprocessing in Panel Initialization Files 
You can create your own procedures to process a note after the user submits it. To do 
so, create a Process initialization file in the site or server custom area. 

• To process a note before it is created, create the following file: 

/share/panels/NoteAdd/Process<NoteType>.ini 

• To process a note before it is modified, create the following file: 

/share/panels/NoteDetail/Process<NoteType>.ini 

Note: If you want to add a procedure to process the predefined SyncDefect, HW-
Defect-1, or the SW-Defect-1 note types, you must add your procedure to the existing 
Process initialization files that ProjectSync stores upon their installation in the custom 
servers/<host>/port/share/panels/NoteAdd and 
servers/<host>/port/share/panels/NoteDetail directories.  The files are 
named ProcessSyncDefect-1.ini, ProcessHW-Defect-1.ini, and 
ProcessSW-Defect-1.ini, respectively. 

PreSchema Processing Procedures 

You can create a procedure that processes the note immediately upon note submission, 
before ProjectSync processes the note and accesses the notes database.  This type of 
procedure is a PreSchema procedure.  You use PreSchema procedures to perform 
error checking so that you can abandon note processing immediately if an error is found 
in the user's input.   



Panel Initialization Drivers 

50 

You include a PreSchema procedure in your Process<NoteType>.ini file naming 
the procedure Process_<NoteType>_PreSchema.   The following example shows a 
PreSchema procedure for the TimeCard notetype, stored in the following file: 

/share/panels/NoteDetail/ProcessTimeCard.ini 

PreSchema procedures have access to only the following global variables: 

• SYNC_Parm 
• SYNC_ClientInfo 

Example: PreSchema Procedure 

The following example checks the number of hours a user has entered in the Hours field 
and provides an error message, abandoning note processing if the number of hours is 
greater than 40. 

proc Process_TimeCard_PreSchema {} { 
  global SYNC_Parm 

  set hoursworked SYNC_Parm(Hours) 
  if {$hoursworked > 40} { 
  error "Working more than 40 hours is not allowed at this 
time." 
  } 
} 

PostSchema Processing Procedures 

You can create a procedure to process a note after the user submits it and after 
ProjectSync loads the note schema, but before ProjectSync adds or modifies the note in 
the notes database.  This type of procedure is a PostSchema procedure.  Unlike 
PreSchema procedures, PostSchema procedures can access the note schema with the 
full range of global variables.   

You include a PostSchema procedure in your Process<NoteType>.ini file naming it 
Process_<NoteType>_PostSchema.   The following example shows a PostSchema 
procedure for the Note note type, stored in the following file: 

/share/panels/NoteDetail/ProcessNote.ini 

Example 1: PostSchema Procedure adding current user and date 

Upon submission of a Note, the following example fills in the LastModBy and LastModDt 
fields with the current user and the current date. 



ProjectSync Advanced Customization Guide 

51 

Note: To try out this postprocessing procedure, install and modify the predefined Note 
note type, adding two fields: LastModBy (of type SyncUserList) and LastModDt (of type 
Date).  Store the following procedure in file 
/share/panels/NoteDetail/ProcessNote.ini in your server or site area, and 
reset the server.   To test out the procedure, add and then edit a Note. 

The Process_Note_PostSchema procedure obtains the current timestamp by 
accessing the getCurrentApp utility in the ::sdate namespace.  You do not have to 
source the sdate package, $SYNC_DIR/share/tcl/sdate/sdate.tcl directly; 
ProjectSync sources the package at start-up and exports the date utilities.  You can also 
specify the -pclass time option with getCurrentApp to return just the time or use 
the -pclass date option with getCurrentApp to return just the date.   

proc Process_Note_PostSchema {} { 
  global field_values 
  global SYNC_Parm 
  global SYNC_User 

#### Calculate the date for PS use 
  set SyncDate [::sdate::getCurrentApp] 

#### Make sure that the fields to store LastMod 
#### info are available 
  set fieldNames [note schema -ptypes noteTypes Note] 
  if {[lsearch -exact $fieldNames LastModBy] == -1} { 
    error "Could not find field LastModBy" 
  } 

  if {[lsearch -exact $fieldNames LastModDt] == -1} { 
    error "Could not find field LastModDt" 
  } 

#### Set the values 
  set SYNC_Parm(LastModDt) $SyncDate 
  set SYNC_Parm(LastModBy) $SYNC_User 
} 

To complete the example, you convert the LastModBy and LastModDt fields into read-
only fields by creating a custom HTML panel.  To do so, use the Note Type Manager to 
generate the HTML for the Note note type.  In the generated 
share/panels/NoteDetail/EditNote.html file, add the -readonly option to 
the LastModBy and LastModDt field substitutions as follows: 

<TR> 
  <TH align=right ><!-- SYNC prompt LastModDt --></TH> 
  <TD> 



Panel Initialization Drivers 

52 

    <!-- SYNC field LastModDt -readonly --> 
  </TD> 
</TR> 

<TR> 
  <TH align=right ><!-- SYNC prompt LastModBy --></TH> 
  <TD> 
    <!-- SYNC field LastModBy -readonly --> 
  </TD> 
</TR> 

The read-only fields display as follows: 

 

Example 2: PostSchema Procedure inserting text 

This example adds a text message to the note body before updating the note. 

proc Process_Note_PostSchema {} { 
   global SYNC_Parm 
   set  prefix "Message appears before append" 
   set SYNC_Parm(Appendage) "${prefix}\n$SYNC_Parm(Appendage)" 
} 

Note: The Appendage field is a virtual note field. It is not a field available for display in 
the notetype, as, for example, Author and Body are. The contents of the Appendage 
field are stored temporarily while the note is being edited then committed to the Body 
field along with the note; but the Appendage field can be used to query the note body 
content before it is committed in order to manipulate the resulting content. 

Working with Global Variables in Process Procedures 

There are three sets of variables relevant to Process procedures: 

• The previous value of a field 

The previous value of a field is the value at the time the field was displayed for 
editing.  These values are stored in the SYNC_Parm array. The index into  the 
SYNC_Parm array for a field's previous value is _OLDVALUE_<fieldname>. 

• The current value of a field 



ProjectSync Advanced Customization Guide 

53 

The current value of a field is the value at the time the note was submitted.  The 
current value of a field is stored in the field_values array.  The index into the 
field_values array is the field name.  Access the field_values array to test or 
verify values the user has entered.  The field_values array is available only 
to PostSchema procedures, not PreSchema procedures. 

Note: Do not modify the field_values array; to modify a field value, modify 
the SYNC_Parm array instead. 

• The new value of a field 

Store the new value of a field in the SYNC_Parm array, indexed by its field name. 
See Example: PostSchema Procedure to see how to set a new value for a field. 
Although you access a field's previous value (using 
SYNC_Parm(_OLDVALUE_<fieldname>)) and its current value (using 
field_values(<fieldname>) for reference purposes, you make changes to 
the field by setting new field values in the SYNC_Parm array. 

Examples of these variables are included below. 

Example: Displaying Parameter Values 

To display the values of the available SYNC_Parm variables, include the following code 
segment in your Process_<NoteType>_PreSchema or 
Process_<NoteType>_PostSchema procedure. 

foreach f [array names SYNC_Parm] { 
  puts "$f = $SYNC_Parm($f)<br>" 
} 

This code segment added to the Process_Note_PostSchema procedure displays the 
following results: 

ProjectConfig = Rel1.1 
CCList = jblaine karen 
NoteSystem = SyncNotes 
_OLDVALUE_Title = New note 
Appendage = Started working on ms134 bug. 
_SYNCDate_LastModDt = 2004-02-11 
_OLDVALUE_LastModDt = 2004-02-11 
NoteType = Note 
ProjectName = Triton 
_OLDVALUE_LastModBy = jblaine 
Title = Fix bug in submodule ms134 
NoteId = 1 
LastModDt = 2004-02-11 



Panel Initialization Drivers 

54 

_OLDVALUE_CCList = 
LinkedURLs = 
LastModBy = karen 
command = Process 

Aborting Note Submission 

To abort note submission, add a Tcl error command; the note is not submitted: 

if {[lsearch -exact $fieldNames LastModBy] == -1} { 
    error "Could not find field LastModBy" 
} 



55 

Tcl Panel Scripts 
Implementing Panels Using Tcl Panels Scripts 
If your panel requires mostly dynamic HTML, you can  use a Tcl script to implement the 
panel. In this case, you create a Tcl script that generates the entire HTML code for the 
panel. This method of implementing panels is for advanced Tcl programmers. 

Implementing an HTML Form in a Tcl Script 

If you create a note panel using a Tcl script, you can use the call_substitution 
utility to generate note fields in a panel.  If instead you are creating a custom panel from 
scratch that is not a note panel, you can implement the fields using HTML form input 
elements.  You wrap the HTML tags within puts statements to generate your panel. 

Example: Creating HTML Forms in a Tcl Script 

The Status.tcl and StatusResult.tcl scripts implement a status report form: 

 

The following sample panel (implemented in Status.tcl) uses HTML tags to 
implement a form that queries for status.   



Tcl Panel Scripts 

56 

 

A second panel (implemented in StatusResult.tcl) receives the form input and 
displays the status results: 

 

The Status.tcl script (below) uses the HTML <form> tag to implement a form.  The 
<select> tag implements a pull-down Month field, as well as a Projects multiple choice 
list.   

To implement the panel in the style of the ProjectSync cascading style sheets, the 
Status.tcl and StatusResult.tcl scripts call the style substitution and include 
the class=Status attribute (within the <body> HTML tag below). 

Status.tcl Script 

puts { 
  <html> 
  <head> 
  <title>Status</title> 
} 

call_substitution style 



ProjectSync Advanced Customization Guide 

57 

puts { 
  </head> 
  <body class="Status"> 
  <table align="center" width="100%" cellspacing=0 cellpadding=4 
border=0> 
  <tr><th class="PAGETITLE">Status Report</th></tr> 
  </table> 

  <form action="/scripts/isynch.dll" method="post"> 
  <input type="hidden" name="panel" value="StatusResult"> 

  <table class=LEFTHEADERTBL> 
      <tr><th align=left>Status for: </th> 
        <td><input type="text" name="name"></td> 
      </tr> 
      <tr><th align=left>Month:  </th> 
        <td><select name="month"> 
          <option>January 
          <option>February 
          <option>March 
          <option>April 
          <option>May 
          <option>June 
          <option>July 
          <option>August 
          <option>September 
          <option>October 
          <option>November 
          <option>December 
         </select> 
      </td> 
    </tr> 
    <tr><th align=left valign=top>Projects Worked on:</th> 
      <td><select name="projects" size="6" multiple> 
          <option>AS34 
          <option>AS35 
          <option>DP234 
          <option>DP235 
          <option>EL212 
          <option>EL356 
          </select> 
      </td> 
    </tr> 
    <tr><th align=left valign=top>Enter Status:</th> 
      <td><textarea name=report cols=40 rows=5> 
        </textarea> 
      </td> 



Tcl Panel Scripts 

58 

    </tr> 
    </table> 
    <input type="submit" value="Submit Status"> 
    </form> 
  </body> 
  </html> 
} 

Example: Passing Control and Arguments to Panels 

The Status.tcl script (shown in the previous section) passes control and parameters 
to the StatusResult.tcl script (below).   

StatusResult.tcl Script 

cgi_arg name 
cgi_arg month 
cgi_arg -multi projects 
cgi_arg report 

puts { 
  <html><head><title>StatusResult</title></head> 
} 

call_substitution style 

puts { 
  <body CLASS=StatusResult> 
  <table align="center" width="100%" cellspacing=0 cellpadding=4 
border=0> 
  <tr><th class="PAGETITLE">Status Report</th></tr> 
  </table> 

  <table class=LEFTHEADERTBL> 
} 

puts "<tr><th align=left>NAME:</th><td>$name</td></tr>" 
puts "<tr><th align=left>MONTH:</th><td>$month</td></tr>" 
puts "<tr><th align=left>PROJECTS:</th><td>$projects</td></tr>" 
puts "<tr><th align=left>STATUS:</th><td>$report</td></tr>" 

puts { 
  </table></body></html> 
} 

The Status.tcl script passes the parameters using the post method, where the 
browser contacts the form-processing server and sends the data to the server.  Note 



ProjectSync Advanced Customization Guide 

59 

that you set the action attribute of the <form> tag to "/scripts/isynch.dll", the 
SyncServer process that handles the form: 

<form action="/scripts/isynch.dll" method="post"> 

The post method generates a URL that includes the list of parameter name/value pairs 
and passes the URL to the SyncServer. One of the parameter name/value pairs is the 
panel parameter specified in the following line of Status.tcl: 

<input type="hidden" name="panel" value="StatusResult"> 

This hidden panel parameter indicates that upon submitting the Status panel, the 
browser must load the StatusResult panel.  For this URL panel specification to work, the 
StatusResult.tcl file must be located in a directory with the same name in a 
custom /share/panels directory: 

/share/panels/StatusResult/StatusResult.tcl 

The URL includes the rest of the parameter name/value pairs  generated by the 
<input> fields of the Status form.  The StatusResult.tcl script uses the cgi_arg 
utility to access the parameters passed from the Status.tcl script.  Because the 
Projects fields is a multi-valued select list (specified using the multiple attribute of the 
<select> tag),  we use the -multi argument of the cgi_arg utility to access the 
projects parameter from within the StatusResult.tcl script.  See the cgi_arg 
utility for more information. 

Example: Using the format Command to Handle HTML Code 

To invoke a proc or substitute a global variable within a chunk of HTML code, you can 
use the format command within a puts statement to simplify the syntax.  The 
following example uses the format command with the %s string substitution syntax to 
insert a call to the date proc and to insert the $username variable.  The values 
substituted for the %s strings appear in the last line of the script below. 

MyPanel.tcl Script 

proc getdate {} { 
  return [clock format [clock seconds]] 
} 

proc getuser {} { 
  global SYNC_User 
  set userUrl sync:///Users/$SYNC_User 
  return [url getprop $userUrl Name] 
} 



Tcl Panel Scripts 

60 

set username [getuser] 

puts [format { 
  <html> 
  <head> 
    <title>My Custom Panel</title> 
  </head> 
  <body> 
    <table border=4 bordercolor=darkblue bgcolor=lightblue> 
    <tr> 
      <td> <h2>User:</h2> </td> 
      <td> <h2>%s</h2> </td> 
    </tr> 
    <tr> 
      <td> <h2>Date:</h2> </td> 
      <td> <h2>%s</h2> </td> 
    </tr> 
    </table> 
  </body> 
  </html> 
} $username [getdate]] 

MyPanel.tcl Results 

 



61 

Note Panel Substitution Tags 
What Are Substitution Tags? 
A substitution is a Tcl procedure that generates dynamic content in a panel.  You invoke 
substitutions inside of a panel's HTML template file.  You can also reference 
substitutions in Tcl panel scripts using the call_substitution Tcl utility. 

You embed substitution tags within HTML panel templates as placeholders for 
graphical interface elements. The substitution tags appear as HTML comments in the 
template.  For example, a property named Title is implemented with this tag: 

<!-- SYNC field Title --> 

Substitution names (in this case, field) are case sensitive. A substitution tag 
generates HTML code for a ProjectSync panel.  In most cases, the HTML code 
generates graphical interface elements in a ProjectSync panel.  The placement of the 
graphical element coincides with the placement of the substitution tag in the HTML 
template for the panel. 

The type of graphical element generated in a note panel by ProjectSync depends on the 
substitution tag used and its property (field). The type of graphical element generated 
also depends on which panel is displaying the substitution tag. In the Add and Edit 
panels, the graphical element displayed is that prescribed for the property type.  In the 
View mode of a note panel, the substitution tag displays as plain text. Also, if a property 
is access-controlled, the substitution tag displays as plain text. 

For example, the field substitution tag for the Title property generates a type-in 
field in the Add and Edit modes, but displays as read-only text in View mode. As 
another example, if a property is of the property type SyncState, a property type built on 
the primitive StateMachine property type, a cyclic field displays in the Add or Edit 
panels. The SyncState cyclic field lists the states which are valid transitions from the 
current state. See ProjectSync User's Guide: Predefined Property Types to learn about 
the graphical elements generated if you use particular property types. 

You can generate the HTML templates for a note type so that you can edit them as 
described in the Generating HTML Templates and Customizing HTML for Panels topics. 
 The following generated templates correspond to the panels and modes of a note type. 
These templates are located in the share/panels directory of either the site-wide 
(<SYNC_SITE_CUSTOM>/share/panels) or server-specific 
(<SYNC_CUSTOM_DIR>/servers/<host>/<port>/share/panels) location. 

• NoteAdd/Add<note_type>.html - This panel displays if a user selects the 
Add button for the note type. Edit this file to change the layout of the Add panel 
for the note type. 



Note Panel Substitution Tags 

62 

• NoteDetail/Edit<note_type>.html - This panel displays if a user brings 
up a note of this note type in Edit mode. Edit this file to change the layout of the 
Edit panel for the note type. 

• NoteDetail/View<note_type>.html - This panel displays if a user brings 
up a note of this note type in View mode. Edit this file to change the layout of the 
View panel for the note type. 

If you are adding a field to one of a note type's panel modes such as the 
NoteAdd/AddSyncDefect.html panel, be sure to add the field to its other modes as 
well (in this case, the NoteDetail/EditSyncDefect.html and 
NoteDetail/ViewSyncDefect.html panels). 

You use substitution tags in your note panels, as well as in any other ProjectSync panel. 
Each ProjectSync panel can have its own set of substitutions defined in its initialization 
(.ini) driver file. Likewise, a predefined set of substitutions is accessible to all note 
panels. 

Syntax of Substitution Tags 

The descriptions in the following topics provide the syntax of the predefined substitution 
tags you will find most useful in note panel templates. The tag descriptions include the 
types of graphical elements the tags generate and the options you can use with them.   

The ProjectSync panel substitution tags are implemented as HTML comments with the 
HTML templates for a note panel, for example: 

<!-- tagname value -option --> 

In the following substitution descriptions, the syntax of each substitution is provided with 
all possible options.  Optional arguments are preceded by a hyphen (-). You must 
specify required arguments in the order shown in the syntax descriptions.  Specify 
optional arguments after the required arguments.  You can specify optional arguments 
in any order. 

attachment Substitution 
<!-- SYNC attachment -hidden -rows <#> -cols <#> --> 

<!-- SYNC attachment -readonly -rows <#> -cols <#> --> 

Description 

The attachment substitution lets users create links in a note to objects of a project. 
 Clicking on an attachment link in a note displays the attached object's data sheet.   



ProjectSync Advanced Customization Guide 

63 

Add and Edit Mode 

The attachment tag generates a type-in field for the Add and Edit modes of note 
types so that a user can attach a note to a ProjectSync object.  The type-in field is 
defined as a variable named LinkedURLs.  A Browse button displays objects on the 
SyncServer, so that the user can select objects to attach to the new note. If the Project 
field is set to a project, the Browse button displays the objects defined for that project. 
 If the Configuration field is set to a configuration, the Browse button displays the 
objects defined for that configuration. If a user edits an existing note, the Attach To field 
displays a list of the current attachments, which the user can edit. 

View Mode 

For View mode, the attachment tag displays as a read-only list of hyperlinked note 
attachments. 

Use 

Use of the attachment substitution is optional in panel HTML templates. 

Arguments 

-readonly Displays the Attachment values as read-only. 
-hidden Prevents the Attach To box from displaying on the generated 

panel. Optional. 
-rows <#> Controls the height of the text area that displays an editable list of 

attachments. (Optional) Specify the number of rows as an integer 
value. Default value is 4.  The -rows option is not applicable in 
View  mode. 

-cols <#> Controls the width of the text area that displays an editable list of 
attachments. (Optional) Specify the number of columns as an 
integer value. Default value is 40. The -cols option is not 
applicable in View  mode. 

Globals Referenced 

LinkedURLs You can seed the Attach To field by invoking the Add mode of the 
panel using a panel URL with the LinkedURLs argument.  See 
Note Panel Arguments for more information. 

Examples 

<TR> 
  <!-- SYNC std_header -valign top -mapped ATTACH_TO --> 
  <TD> 



Note Panel Substitution Tags 

64 

    <!-- SYNC attachment -rows 10 -cols 50 -->    
  </TD> 
</TR> 

This attachment substitution displays in Add or Edit mode as: 

 

This attachment substitution displays in View mode as: 

 

Note that the -rows and -cols options are not meaningful in View mode. 

charset Substitution 
<!-- SYNC charset --> 

Description 

The charset substitution ensures proper display of non-English characters. 

Use 

Use of the charset substitution is required in all panels, including custom panels that 
are not note panels.   

Arguments 

None. 

Globals Referenced 

None. 



ProjectSync Advanced Customization Guide 

65 

Example 

<!-- SYNC charset --> 

configuration Substitution 
<!-- SYNC configuration -hidden --> 

<!-- SYNC configuration -readonly --> 

Description 

The configuration substitution lets users select a configuration for a project or view 
the configuration chosen for a project. To seed the Configuration value, see "Note Panel 
Fields". 

Add and Edit Mode 

The configuration tag generates a pull-down menu that displays a choice list of the 
configurations for the project selected in the Project cyclic field.  If no project is selected 
or the project has no configurations, the choice list is empty. 

If a user edits an existing note, the Configuration cyclic field displays the current value 
of the configuration. 

View Mode 

For View mode, the configuration tag displays a read-only text box containing the 
current configuration.  The configuration is a hypertext link to the configuration's data 
sheet. 

Use 

Use of the configuration substitution is optional in panels; however, if there are 
attachments to a configuration in a note panel and you do not include the 
configuration substitution in each mode of the note panel's HTML templates, the 
attachment will be deleted during the processing phase.  If you do not want to display 
the Configuration choice list field in one of the panel's modes,  use the -hidden option 
of the configuration substitution. 

Arguments 

-readonly Display the Configuration value as read-only. Optional. 
-hidden Prevents the Configuration pull-down menu from displaying on the 

generated panel.  Optional. 



Note Panel Substitution Tags 

66 

Globals Referenced 

ProjectName ProjectSync references the ProjectName global variable to 
display the possible configurations that correspond to the 
project. 

ProjectConfig ProjectSync references the ProjectConfig global variable 
to display the possible configurations that correspond to the 
project. 

Examples 

<TR> 
  <!-- SYNC std_header -mapped CONFIGURATION --> 
  <TD> 
    <!-- SYNC configuration --> 
  </TD> 
</TR> 

In Add or Edit mode, this configuration substitution generates a pull-down menu 
containing configurations corresponding to the selected project, Asic: 

 

The project and configuration substitutions display in View mode as: 

 

controls Substitution 
<!-- SYNC controls --> 

Description 

The controls substitution generates the appropriate buttons for a particular note 
panel.  Buttons include: 

• Submit button - Submits the values the user has set in the note panel and 
initiates the processing phase. 



ProjectSync Advanced Customization Guide 

67 

• Help button - Displays the documentation for the current mode of the note type 
(Add, Edit, or View mode).  ProjectSync displays custom documentation if it 
exists for the note type.  See Customizing Documentation for details. 

• Delete button - Deletes the note being edited.  Displays in Edit mode if the user 
has access rights to delete the note. 

• Show Menu button - Shows the ProjectSync menu and the Quick View frame. 
Displays if the user has opened the Edit or View note panel frame in a separate 
window (and thus the menu and Quick View are not showing). 

• Edit <note type> button - Changes the note panel from View mode to Edit 
mode. Displays in View mode. 

Add Mode 

In the Add mode of a note panel, the controls tag generates Submit and  Help 
buttons. 

Edit Mode 

In the Edit mode of a note panel, the controls tag generates these buttons in the 
order shown: Submit, Delete (if the user has access rights to delete the note), Help, 
and Show Menu (if the menu and Quick View frames are currently hidden). 

View Mode 

In the View mode of a note panel, the controls tag generates these buttons in the 
order shown: Edit  <note type>, Help, and Show Menu (if the menu and Quick View 
frames are currently hidden). 

Use 

Use of the controls substitution is required in all panels. 

Arguments 

None. 

Globals Referenced 

field_values Referenced to determine whether the user is the author of 
the note; this information is passed to the access verify 
command to determine if the user can delete the note. 

NoteId Passed to access verify to determine if the user can 
delete the note. 

NoteSystem Passed to access verify to determine if the user can 
delete the note. 



Note Panel Substitution Tags 

68 

NoteType Passed to access verify to determine if the user can 
delete the note. 

SYNC_User Passed to access verify to determine if the user can 
delete the note. 

Examples 

<TR> 
  <!-- SYNC std_header --> 
  <TD align=center class=CONTROLS> 
    <!-- SYNC controls --> 
  </TD> 
</TR> 

In Add mode, the controls substitution can generate these controls: 

 

In Edit mode, the controls substitution can generate these controls: 

 

In View mode, the controls substitution can generate these controls: 

 

The Edit button includes the name of the note type.   

eval Substitution 
<!-- SYNC eval {<Tcl_script>} --> 

Description 

The eval substitution executes a block of Tcl code from within an HTML note panel 
template.  Use the eval substitution directly in the HTML code instead of having to call 
a Tcl substitution procedure that you create in a .ini initialization driver file. 

The eval substitution behaves the same in all modes of note panels: Add, Edit, and 
View. 

Use 



ProjectSync Advanced Customization Guide 

69 

Use of the eval substitution is optional in panels. 

Arguments 

{<Tcl_script>} A block of Tcl code, enclosed by curly braces ({ }). The 
code runs in its own scope, so any global variables needed 
by the code must be explicitly referenced with a global 
statement.  (See example.) 

Globals Referenced 

None. 

Example 

This following example displays a greeting directly to the user within the note panel: 

<!-- SYNC eval { 
  global SYNC_User 
  puts "<H2>Hello, $SYNC_User.</H2>" 
} --> 

field Substitution 
<!-- SYNC field <field_name> -choices <choice_list> -cols <#> -
editable -readonly -rows <#> -size <#> -style <style> -values 
<value_list> --> 

Description 

The field tag generates a type-in field, pull-down menu, check box, radio buttons, or 
plain text depending on the field_name and the mode of the note panel (Add, Edit, or 
View).  The field_name must be an existing field defined in the note type using the 
ProjectSync Note Type Manager.  ProjectSync determines the graphical element to 
generate based on the property type of the field. 

A field in a View panel or within an access-controlled note type displays as plain text. 
The same field within an Add or Edit panel displays as the graphical element 
corresponding to its property type. To find out the type of element that will be displayed 
for a particular field, determine the field's property type.  For a list of property types and 
their corresponding graphical elements, see ProjectSync User's Guide: Predefined 
Property Types. 

You can determine the property types for specific fields in an existing note type by 
bringing up the ProjectSync Note Type Manager and selecting Modify an existing note 
type.  Select the note type whose fields you want to review.  The required and optional 



Note Panel Substitution Tags 

70 

fields display, including their property types and prompts.  You can insert the prompt 
substitution in your HTML template to display the prompt for a particular field.    

When users view a field in an Add panel, the field displays the default value of the 
property type. Likewise, when users view the field in an Edit panel, the field is initialized 
to the current value for the field. If you want a field to be displayed as read-only text 
within the Edit panel, use the -readonly option. Even if you have not set up a 
ModifyNoteProperty access control for the field, it will display as read-only text. 

By default, the elements that display in pull-down menus and radio buttons reflect the 
property type of the field.  For example, a pull-down menu of property type SyncPriority 
contains choices low, medium, high, and stopper, by default.  You can change the order 
or specify a subset of these choices using the -values option.  You can also change 
the display choices for these values using the -choices option.  If you use the  -
choices option, be sure to make corresponding changes to the Add and Edit modes of 
your note panel. For the -choices option, you do not need to update the View mode. 
 If you use the -values option, be sure to make corresponding changes to the Add, 
 Edit, and View modes of your note panel.  In this case, if you do not update the View 
mode, the read-only value that displays is the original value from the property type 
rather than the new value a user might have specified in Add or Edit mode. 

The field names you supply can correspond to configurable fields that generate complex 
fields such as file attachment fields, link notes fields, transcript fields, CC list fields, and 
keyword fields.  See Note Panel Fields: Configurable Fields for details.  See the 
Examples section below for examples of configurable fields, as well. 

Use 

Use of the field substitution is required for each field you want to include in a note 
panel.  Be careful not to include an editable field twice in your template; otherwise, the 
resulting field value will be unpredictable.  You can include the same field twice in Edit 
mode if one instance of the field is editable and another instance is read-only. 

Arguments 

field_name The name of the field to generate in the note panel. Required for 
each field in note panels.  Include the names of standard fields or 
configurable fields such as CC list fields, transcript fields, linked 
notes fields, file attachment fields, and keyword fields. See the 
Examples section below for examples of fields. 

choice_list Use the -choices option to display alternate choices rather than 
the predefined choices of the field's property type. Optional. 
Applies to choice list and state machine fields, as well as Boolean 
radio button fields. Specify a Tcl list containing the choices.  The 
number of choices must match either the number of choices 



ProjectSync Advanced Customization Guide 

71 

specified for the field's property type definition or the number of 
choices specified in the value_list you supply with the -
values option.  See Example: Displaying New Values for Choice 
Lists. 

-cols <#> For string properties and property types derived from strings (for 
example, the CCList property type), specifies the number of 
columns to display for the generated type-in field. Optional. The 
default value for the number of columns varies, depending on the 
property type.  The unlimited string property type, String, 
generates a type-in field containing 50 columns by default. A 
transcript field generates a type-in field containing 40 columns by 
default. The -cols option is ignored for View mode. 

-editable Used to override the read-only default of View mode. Instead of 
generating a read-only text box, the field substitution with the -
editable option generates the graphical element corresponding 
to the field's Edit mode. Optional. For transcript fields, a read-only 
transcript of previous entries displays, as well as a type-in field for 
entering new text. 

-readonly Used to override the default view of the field in Edit mode. 
Optional. The -readonly option is ignored for modes other than 
Edit. 

-rows <#> For integer, floating point, and unlimited length string properties, 
specifies the number of rows to display for the generated type-in 
field. Optional. The default value for the number of rows varies, 
depending on the property type.  The unlimited string property 
type, String, generates a type-in field containing 10 rows by 
default. A transcript field generates a type-in field containing 8 
rows by default.  The -rows option is ignored for View mode. 

-size <#> For limited length string properties and their derivatives, controls 
the maximum number of characters allowed in a type-in field in 
Add and Edit mode. Optional.  The default value for the string size 
varies, depending on the property type. 

-style For Boolean, state machines, and choice lists, controls the type of 
graphical element generated in Add and Edit modes. Optional. 
 The default elements for each field depend on the property type. 
Ignored for View mode. 

Valid styles for Booleans are: 

• checkbox – For Boolean properties only. Displays a single 
checkbox where the unchecked state represents an off (or 
False) value and the checked state represents an on (or 
True) value. Default object for Boolean property types. 

• toggle – Same as checkbox. 
• radio – Displays a set of radio buttons, one for each 



Note Panel Substitution Tags 

72 

possible value for the property type, arranged vertically.· 
• hradio – Displays a set of radio buttons, one for each 

possible value for the property type, arranged horizontally. 
• vradio – Same as radio. 

Valid styles for state machines and choice lists are: 

• menu – Displays a pull-down menu of all possible choices 
for the property. Default object for state machine and choice 
list property types. 

• select – Same as menu. 

• radio – Displays a set of radio buttons, one for each 
possible value for the property type, arranged vertically.· 

• hradio – Displays a set of radio buttons, one for each 
possible value for the property type, arranged horizontally. 

• vradio – Same as radio. 

value_list Use the -values option to change the order or specify a subset 
of the elements in Boolean, choice list, or state machine fields. 
Optional. Specify a Tcl list containing the values.  The 
value_list defaults to the legal set of values for the property 
type. The value_list  argument is ignored for View mode. See 
Example: Displaying New Values for Choice Lists. 

Globals Referenced 

AllProjectsMap 

AllUsersList 

AllUsersMap 

classes 

DisplayMode 

field_values 

NoteId 

NoteSystem 

NoteType 



ProjectSync Advanced Customization Guide 

73 

ptypes 

reqfields 

SYNC_User 

Examples 

The note type used for the following examples has the fields and associated property 
types shown below. 

Required Fields 

 

Optional Fields 

 

Example: Type-In Field 



Note Panel Substitution Tags 

74 

The Title field shown below has property type String80 and thus generates an 80 
character type-in field in Add and Edit mode.  The substitution shown below is located in 
the HTML Add mode template for the note type: 
/share/panels/NoteAdd/Add<notetype>.html.   

A similar substitution is added for the Edit panel mode in: 
/share/panels/NoteDetail/Edit<notetype>.html. 

<!-- SYNC field Title --> 
  

 

In View mode, the Title field generates a read-only text box.  You can add HTML code 
 to customize the display of the field.  The code shown below specifies a white 
background. The HTML segment shown below is located in the HTML View mode 
template for the note type: /share/panels/NoteDetail/View<notetype>.html. 

  <TD colspan=2 bgcolor=white> 
    <!-- SYNC field Title --> 
  </TD> 

 

Example: Multi-Line Type-In Field 

You can specify the number of rows for a multiple line field using the -rows option. 
 The field's property type must be of the unlimited length string type (String).  The 
following substitution generates the multi-line field shown below in Add mode. 

<!-- SYNC field Resolution -rows 4 --> 

 

The following substitution generates the read-only text box shown below in View mode. 
 The -rows option is not valid in View mode so it is not included; if included for View 
mode, the -rows option is ignored. 

<!-- SYNC field Resolution --> 



ProjectSync Advanced Customization Guide 

75 

 

Example: Check Box Field 

By default, the ShowStop Boolean field generates a check box field in Add mode, as 
shown below.  In Edit mode, the same check box displays with the box checked if the 
current value of the field is true. 

<!-- SYNC field ShowStop --> 

 

In View mode, the ShowStop field generates plain text containing the Boolean value of 
the field: 

 

Example: Radio Button Field 

Radio buttons are supported for Boolean, state machine, and choice list fields. The 
ShowStop Boolean field, with the vradio style applied below, generates vertical radio 
buttons in Add and Edit mode. 

<!-- SYNC field ShowStop -style vradio --> 

 

The Priority field, a state machine of property type SyncPriority, generates a row of 
radio buttons for Add and Edit modes with the radio style shown below.  You specify the 
default value for the field when you create it using the ProjectSync Note Type Manager. 

<!-- SYNC field Priority -style radio --> 

 

Example: Pull-Down Menu 

ProjectSync generates a pull-down menu in Add or Edit mode if a field's property type is 
a state machine or a choice list.  ProjectSync provides predefined property types that 
generate pull-down menus including SyncClass, SyncPriority, SyncState, and 



Note Panel Substitution Tags 

76 

SyncUserList.  See ProjectSync Help: Predefined Property Types to see the choices 
included in the pull-down menus generated for these property types. 

The Priority field shown below is of property type, SyncPriority.  In Add and Edit mode, a 
SyncPriority field generates a pull-down menu with a choice list of low, medium, high, 
and stopper. 

<!-- SYNC field Priority --> 

 

The same substitution in View mode generates a text box that displays the current 
setting for the Priority field: 

 

Example: Customized Pull-Down Menu 

To create custom pull-down menus with your own choices, you must first design a new 
property type that includes the choices.  You can create a property type that is a state 
machine, in which the choices presented to the user depend on the current value of the 
pull-down menu.  Or you can create a property type that is a simple choice list, the order 
of which you define. After you create the new property type, you can add a field of this 
property type to your note type definition.  You can perform both these tasks using the 
ProjectSync Note Type Manager.  See ProjectSync User's Guide: Creating New 
Property Types and ProjectSync Help: Creating Custom Note Types for details. 

The Status field is of a custom property type, StatusValues, which has four choices: Not 
Started, Started, Thwarted, and Done: 

<!-- SYNC field Status --> 

 

Example: Displaying New Values for Choice Lists 



ProjectSync Advanced Customization Guide 

77 

The following example shows how to change the choices in a pull-down menu.  You can 
change the choice list values by updating the note type or you can make changes in 
your HTML note type templates as shown below.  This example changes the values, 
order, and display choices of the Priority field, of property type SyncPriority. 
 SyncPriority has values low, medium, high, and stopper, in that order.  To create a 
subset of these values and change their order, this example uses the -values option. 
 To display new choices for these values, the example uses the -choices option: 

<!-- SYNC field Priority -values {high medium low} 
  -choices {critical serious non-critical} --> 

The pull-down menu that displays in Add and Edit mode reflects these changes: 

 

You can also change the choices that display in Boolean radio button fields.  By default, 
Boolean values display in radio buttons as True and False. 

<!-- SYNC field ShowStop -style vradio -choices {Yes No}  --> 

 

Example: Transcript Field 

The moretext field in the HTML segment below is a transcript field: 

<TR> 
  <TH align=right valign=top> 
    <!-- SYNC prompt moretext --> 
  </TH> 
  <TD> 
    <!-- SYNC field moretext --> 
  </TD> 
</TR> 



Note Panel Substitution Tags 

78 

 

In Edit mode, the moretext transcript substitution generates a transcript of all 
prior entries, annotated with each author and date, followed by a type-in field: 

 

In View mode, the moretext transcript substitution generates a transcript: 

 

You can create a transcript field by either naming the field transcript when you 
create your note type or by mapping the field name to the transcript keyword in the 
note type configuration file (/share/config/<notetype>.conf). The following line 
from the <notetype>.conf file maps the moretext field to the transcript keyword: 

set classes(moretext) transcript 

The moretext field is mapped to transcript, and like all transcript fields, its property 
type is the unlimited String type.  When the moretext field is substituted as shown in 
the HTML segment above, the Add panel generates a type-in field.  In the note type 
definition, the moretext prompt is set to Additional Information; thus, this 
prompt displays beside the type-in field.  As with all transcript fields, radio buttons Allow 
HTML Tags and No HTML Markup Intended follow the field to let the user specify 
whether the transcript includes HTML tags that should be interpreted in the resulting 
text box. 

Example: Link Notes Field 



ProjectSync Advanced Customization Guide 

79 

A link notes field provides an easy way for a user to create hypertext links to existing 
notes on the SyncServer. The linknotes field substitution, shown below in Add mode, 
generates a pull-down menu containing the note types available on the server, a type-in 
field for the Id number of the note, and an Add Link button.  After the user selects the 
note type, enters the Id number, and presses the Add Link button, the note type and Id 
display in the type-in field.  You can use the prompt substitution to display the prompt, 
in this case "Link to Notes:".  The prompt is defined when you create the fields of the 
note type using the ProjectSync Note Type Manager. 

<!-- SYNC field linknotes --> 

 

The link notes field is a configurable field; if you need to create more than one, you do 
so in the <notetype>.conf file.  See Note Panel Fields: Configurable Fields for 
details. 

Following is the link notes field in Edit mode.  The hypertext links display in Edit mode 
so that you can go to the linked notes, as well as enter new links in Edit mode. 

 

Following is the link notes field in View mode: 

 

Example: File Attachment Field 

A file attachment field lets users create hypertext links to a file on a server. The 
fileattach field substitution, shown below in Add mode, generates a type-in field for 
the file links and a Browse button.  Users browse their directories to select a file to be 



Note Panel Substitution Tags 

80 

uploaded to the SyncServer; the resultant link to the file displays in the type-in field. 
 You can use the prompt substitution to display the prompt, in this case "File 
Attachments:".  The prompt is defined when you created the fields of the note type.   

<!-- SYNC field fileattach --> 

 

The link notes field is a configurable field; if you need to create more than one, you do 
so in the <notetype>.conf file. See Note Panel Fields: Configurable Fields for 
details. 

The Edit mode provides a list of file links so that a user can bring up a linked file, as well 
as add a new file attachment.  The Edit mode of a file attachment field also generates a 
check box so that users can delete an attachment. 

 

The View mode provides the list of file links: 

 

Example: Keywords Field 

Another type of configurable field is a Keywords field.  You register keywords using the 
Keyword Manager, available in ProjectSync's Note Type Manager.  The keywords field 
substitution, shown below in Add mode, generates a type-in field for the keywords and a 
Modify button. 

<!-- SYNC field keywords--> 

 

The Modify button displays a Keyword Manager list box that displays the existing 
keywords and their meanings, as well as a check box so that users can select a 
keyword to be added to the type-in field: 



ProjectSync Advanced Customization Guide 

81 

 

Edit mode provides a list of keywords and the  Modify button: 

 

View mode provides a read-only list of keywords: 

 

Example: Read-Only Field 

Use the -readonly option to generate read-only fields using this syntax: 

<!-- SYNC field LastModDt -readonly --> 
.... 
<!-- SYNC field LastModBy -readonly --> 

The read-only fields display as follows: 

 

hiddens Substitution 
<!-- SYNC hiddens --> 

Description 

The hiddens substitution generates a set of hidden parameters necessary for the 
proper operation of the various modes of a panel -- Add, Edit, and View mode.  For 
example, by using hidden substitutions, you can pass parameters from the Add mode of 
a panel to the Process phase of the panel. 

Use 



Note Panel Substitution Tags 

82 

Use of the hiddens substitution is required in all panels. 

Arguments 

None. 

Globals Referenced 

classes 

field_values 

fields 

NoteId 

NoteSystem 

NoteType 

Example 

The following hiddens substitution generates the hidden fields shown below in the 
HTML source code of a note panel: 

<!-- SYNC hiddens --> 

<INPUT type=hidden name=NoteSystem value=SyncNotes> 
<INPUT type=hidden name=panel value=NoteAdd> 
<INPUT type=hidden name=command value=Process> 
<INPUT type=hidden name=NoteType value='Note'> 

See Example: Passing Control and Arguments to Panels in the topic, Implementing 
Panels Using Tcl Panel Scripts for a complete example. 

js_data Substitution 
<!-- SYNC js_data --> 

Description 

The js_data substitution generates a set of javascript data necessary for the proper 
operation of the graphical elements and various modes of a panel -- Add, Edit, and View 
mode. 

Use 



ProjectSync Advanced Customization Guide 

83 

Use of the js_data substitution is required in all panels. 

Arguments 

None. 

Globals Referenced 

AllProjectsList 

AllProjectsMap 

AllUsersList 

classes 

reqfields 

NoteForm Substitution 
<!-- SYNC NoteForm --> 

Description 

The NoteForm substitution generates the proper FORM HTML tag to implement the note 
panel. 

Use 

Use of the NoteForm substitution is required for note panel HTML templates. 

Note: If you are modifying an HTML panel template and your note panel contains a file 
attachment field, you  must include a NoteForm substitution. The NoteForm 
substitution generates an HTML FORM tag with an attribute that ensures the proper 
operation of the file attachment fields. If you add a file attachment field when you create 
your note type using the ProjectSync Note Type Manager, ProjectSync adds the 
NoteForm substitution automatically.  If you are implementing a custom panel that is 
not a ProjectSync note panel or if you want to include your own validate function within 
the FORM tag, you must include your own FORM tag with the enctype attribute shown 
below in bold typeface: 

<FORM name=NoteAddForm action=isynch.dll enctype=multipart/form-
data method=post onSubmit='return Validate(this)'> 



Note Panel Substitution Tags 

84 

Use the NoteForm substitution in all note panels even if your note panel does not 
include a file attachment. 

Arguments 

None. 

Globals Referenced 

None. 

NoteId Substitution 
<!-- SYNC NoteId --> 

Description 

The NoteId substitution retrieves the Id value of the note being displayed or edited. 

Use 

Use of the NoteForm substitution is optional for note panels. 

Arguments 

None. 

Globals Referenced 

NoteId 

Example 

The following substitution generates the Note Id value: 

<CENTER><H2>Note #<!-- SYNC NoteId --></H2></CENTER> 

 

  

notetype Substitution 



ProjectSync Advanced Customization Guide 

85 

<!-- SYNC notetype --> 

Description 

The notetype substitution retrieves the note type of the note being displayed or edited. 

Use 

Use of the notetype substitution is optional for note panels. 

Arguments 

None. 

Globals Referenced 

NoteType 

Example 

The following substitution generates the note type and note Id: 

<CENTER><H2>Note: <!-- SYNC notetype --># 
<!-- SYNC NoteId --></H2></CENTER> 

 

pagetitle Substitution 
<!-- SYNC pagetitle --> 

Description 

The pagetitle substitution returns the display mode and the note type of the note.  If 
the substitution is included in Edit or View mode, it also returns the note ID of the note 
being edited or displayed. 

Use 

Use of the pagetitle substitution is optional for note panels. 

Arguments 

None. 



Note Panel Substitution Tags 

86 

Globals Referenced 

DisplayMode 

NoteType 

NoteId 

Example 

The following substitution in ViewTimeCard.html generates the title below: 

<CENTER><H2><!-- SYNC pagetitle --></H2></CENTER> 

 

project Substitution 
<!-- SYNC project -hidden --> 

<!-- SYNC project -readonly --> 

Description 

The project substitution generates the controls for setting or viewing the project for a 
note. To seed the Project value, see "Note Panel Fields". 

Add and Edit Mode 

The project tag generates a pull-down menu that displays a choice list of the projects 
defined on the SyncServer. If a user edits an existing note, the Project pull-down menu 
displays the current project. 

View Mode 

For View mode, the project tag displays a read-only text box containing the current 
project.  The project name is a hypertext link to the project's data sheet. 

Use 

Use of the project substitution is required in panel HTML templates. 

Arguments 



ProjectSync Advanced Customization Guide 

87 

-readonly Display the Project value as read-only. Optional. 
-hidden Prevents the Project pull-down menu from displaying on the 

generated panel. Optional. 

Globals Referenced 

ProjectName 

DisplayMode 

project 

Examples 

<TR> 
  <!-- SYNC std_header -mapped PROJECT --> 
  <TD> 
    <!-- SYNC project --> 
  </TD> 
</TR> 

In Add or Edit mode, this project substitution generates a pull-down menu containing 
the projects on the SyncServer: 

 

The project substitution displays in View mode as: 

 

prompt Substitution 
<!-- SYNC prompt <field_name> --> 

Description 

The prompt substitution displays the prompt for a field.  You specify the prompt for the 
field when you create it using the ProjectSync Note Type Manager. 

Use 



Note Panel Substitution Tags 

88 

Include the prompt substitution for each field and for each mode of a note type.    

Arguments 

field_name The name of the field whose prompt you wish to display. 

Globals Referenced 

ProjectName 

ProjectConfig 

Example 

The Priority field is defined in its note type as follows: 

 

Thus, the following HTML segment with the prompt substitution generates the prompt 
displayed below. 

<TH align=right> 
  <!-- SYNC prompt Priority --> 
</TH> 

 

scripts Substitution 
<!-- SYNC scripts --> 

Description 

The scripts substitution generates a set of JavaScript data necessary for the proper 
operation of the graphical elements and various modes of a panel -- Add, Edit, and View 
mode. 

Use 

Use of the scripts substitution is required in all panels. 

Arguments 



ProjectSync Advanced Customization Guide 

89 

None. 

Globals Referenced 

DisplayMode 

Example 

<!-- SYNC scripts --> 

std_header Substitution 
<!-- SYNC std_header <head_text> <head_args> -prompt 
<field_name> -mapped <term> -head_color <color> -valign 
<align_value> -hidden --> 

Description 

The std_header substitution inserts a consistent display for a read-only table cell. 
 Generally, you use the std_header substitution to label a field. You can enter your 
own table header as a string or use the -prompt option to access the name of the field 
you specified when you created the note type.  You can also insert a term from a 
ProjectSync string table by using the -mapped option.  See String Table Configuration 
Files for more information. 

Use 

Use of the std_header substitution is optional in panels. 

Arguments 

<head_text> A string of text to display. Optional.  Defaults to “”. 
<head_args> A string containing HTML attribute name/value pairs 

applicable to the table head tag. See an HTML language 
reference for valid table attributes. Optional.  Defaults to “”. 

-prompt 
<field_name> 

Displays the prompt corresponding to the field name from the 
ProjectSync string table. Optional. 

-mapped <term> Displays the text corresponding to the specified term in the 
ProjectSync string table. Optional. 

-head_color 
<color> 

Sets the color of the text displayed. Specify the color using a 
standard color name or its red, green, and blue (RGB) 
components, for example #008080.  See an HTML language 
reference for standard colors and RGB values. 

-valign 
<align_value> 

Controls the vertical alignment of text displayed. Optional. 
Defaults to middle. Valid values are top, middle or bottom. 



Note Panel Substitution Tags 

90 

-readonly Displays the header as read-only. Use the -readonly option 
if you are also using the -readonly option with the project, 
configuration or attachment substitution to display a 
corresponding project, configuration or attachment as read-
only. Optional. 

-hidden Prevents the header from displaying.  Use the -hidden 
option if you are also using the -hidden option with the 
project, configuration or attachment substitution to prevent a 
corresponding project, configuration or attachment from 
displaying. Optional. 

Notes: 

The arguments -readonly and -hidden are mutually exclusive. If you use both 
with one field that will generate an error. 

You should avoid making the Configuration field hidden or readonly while leaving the 
Project field unrestricted and editable, since changes to the Project field would not be 
accurately reflected in the Configuration field. 

Globals Referenced 

None. 

Examples 

In the following example, ProjectSync displays the prompt for the Title field: 

<TR> 
  <!-- SYNC std_header -prompt Title --> 
  <TD> 
    <!-- SYNC field Title --> 
  </TD> 
</TR> 

 

In this example, a new text string is provided for the field's label (corresponding to the 
<head_text> argument): 

<TR> 
  <!-- SYNC std_header "Topic" --> 
  <TD> 
    <!-- SYNC field Subject --> 



ProjectSync Advanced Customization Guide 

91 

  </TD> 
</TR> 

 

 In this example, new colors are specified for the text and the background: 

<!-- SYNC std_header "Topic" -head_color "red" --> 

 

The following example uses an HTML attribute/value pair as the optional <head_args> 
argument to increase the height of  the table cell: 

<!-- SYNC std_header "Topic" "height=80" --> 

 

std_separator Substitution 
<!-- SYNC std_separator <separator_text> -tdclass SEPARATOR -
mapped <term> --> 

Description 

The std_separator substitution generates a separator in the existing ProjectSync 
display style.  Generally, you use the std_separator substitution as a heading for a 
group of related fields.  You can enter your own heading as the separator text or use the 
-mapped option to specify a string already stored in the ProjectSync string table. See 
String Table Configuration Files for more information. The generated separator is a fully 
formatted table row with two columns.  The left column is empty and the right column 
contains the specified text. 

Use 

Use of the std_separator substitution is optional in panels. 

Arguments 

<separator_text> A string of text to display. Optional.  Defaults to “”. 



Note Panel Substitution Tags 

92 

-tdclass 
SEPARATOR 

Specifies how the separator displays by setting the table 
subclass to SEPARATOR.  The default ProjectSync 
cascading style sheet (.css) file defines how this subclass 
displays.  See the default ProjectSync style sheets in the 
<SYNC_DIR>/share/content/css directory. 

-mapped <term> Displays the text corresponding to the specified term in the 
ProjectSync string table. Optional. 

Globals Referenced 

None. 

Example 

The following example shows how to generate a separator: 

<!-- SYNC std_separator "Specification Fields" --> 

 

style Substitution 
<!-- SYNC style --> 

Description 

The style substitution is required for your panel to adhere to the ProjectSync 
cascading style sheets. 

Use 

Use of the style substitution is required in all panels. 

Arguments 

None. 

Globals Referenced 

None. 



ProjectSync Advanced Customization Guide 

93 

Example 

In the example below, the substitutions and tags in bold cause the panel to display 
according to the attributes of the ProjectSync cascading style sheets (located at 
$SYNC_DIR/share/content/css).  ProjectSync adds these substitutions and tags 
automatically when you create a note type: 

<HTML> 
<HEAD> 
  <!-- SYNC charset --> 
  <!-- SYNC style --> 
  <TITLE>%(pagetitle -banner)%</TITLE> 
  <!-- SYNC scripts --> 
  <!-- SYNC js_data --> 
</HEAD> 

<BODY class=NoteTemplate onLoad="onLoadCB()" 
onUnload="onUnloadCB()"> 

<CENTER> 
  <TABLE align=center width=100% cellspacing=0 cellpadding=4 
border=0> 
    <tr><th class="PAGETITLE">%(pagetitle)%</TH></TR> 
  </TABLE> 
  <BR> 
</CENTER> 

<!-- SYNC NoteForm --> 
<!-- SYNC hiddens --> 

<TABLE border=0 cellpadding=5 cellspacing=0 rows=2 
class=LEFTHEADERTBL> 
<!-- SYNC std_separator -tdclass SEPARATOR -mapped OBJ_ATTACH --
> 

<TR> 
<!-- SYNC std_header -mapped PROJECT --> 
  <TD> 
    <!-- SYNC project --> 
  </TD> 
</TR> 

<TR> 
<!-- SYNC std_header -mapped CONFIGURATION --> 
  <TD> 
    <!-- SYNC configuration --> 



Note Panel Substitution Tags 

94 

  </TD> 
</TR> 

<TR> 
<!-- SYNC std_header -valign top -mapped ATTACH_TO --> 
  <TD> 
    <!-- SYNC attachment --> 
  </TD> 
</TR> 

<!-- SYNC std_separator -tdclass SEPARATOR -mapped 
REQUIRED_ATTRS --> 

<TR> 
<!-- SYNC std_header -prompt Title --> 
  <TD> 
    <!-- SYNC field Title --> 
  </TD> 
</TR> 

<TR> 
  <TH align=right  bgcolor=#CCDDD0> 
    <!-- SYNC prompt Project --> 
  </TH> 
  <TD> 
    <!-- SYNC field Project --> 
  </TD> 
</TR> 

... 

... 

... 

<TR> 
<!-- SYNC std_header --> 
  <TD align=center class=CONTROLS> 
    <!-- SYNC controls --> 
  </TD> 
</TR> 
</TABLE> 
</FORM> 
</BODY> 
</HTML> 



95 

Note Panel Global Variables 
Global Variables 
Global variables for ProjectSync are the set of all variables defined at the global scope. 
 The global variables described in this section are available to all note panels. Most of 
these variables are accessible from all panel modes -- Add, Edit, and View modes. 

Each panel declares its own set of global variables required to carry out its functionality. 
In most cases the global variables that one panel sets up have no bearing on the 
operation of another panel; do not modify these global variables directly.  Use note 
panel arguments to pass values to panels.  See Note Panel Arguments for more 
information. 

Tips: 

• To view the value of each global variable, introduce a syntax error in a panel's 
HTML code.  The resulting diagnostic panel displays the values of all global 
variables. 

• Use the var_substitution utility in your scripts or .ini initialization files as a 
shorthand for outputting the value of a global Tcl variable. 

AllModulesList 
The AllModulesList global variable provides a list of all modules. The 
AllModulessList global variable is available in Add and Edit mode, but not in View 
mode. 

Type 

The AllModulesList global variable is a list of [category>]/module names, sorted by 
category first, if applicable, then module name. 

Format 

AllModulesList has the following format: 

{[category]module1 [category]module2 [category]module3 ...} 

Example 

Example: Listing AllModulesList 

Typing the following command in the Edit <notetpe>.ini file: 



Note Panel Global Variables 

96 

“puts $AllModulesList” 

Might product an output such as the following which shows four modules, one of which, 
cpu, is contained in the "chips" category.: 

Apex chips/CPU Phoenix Yuma 

AllProjectsList 
The AllProjectsList global variable provides a list of all top-level projects and their 
attributes, including configuration information. The AllProjectsList global variable 
is available in Add and Edit mode, but not in View mode. 

Type 

The AllProjectsList global variable is a list, sorted by project name. 

Format 

AllProjectsList has the following format: 

{project1 {project1_attributes} project2 {project2_attributes} 
project3 {project3_attributes} ...} 

Each project on the SyncServer appears in the list in this format: 

<project> {Owner <userid> [Configs <{configlist}>]} 

<project> The project name. Required. 
Owner <userid> The Owner identifier is followed by the owner's user ID. 

Required. 
Configs 
<{configlist}> 

The optional Configs identifier is followed by a list of 
configurations in this format: 

{config1 {config1_attributes} config2 
{config2_attributes} ...} 

Examples 

Example: Listing AllProjectsList 

The following substitution, defined in a custom panel initialization file, 
share/panels/NoteDetail/EditTimecard.ini, prints the AllProjectsList 
variable: 



ProjectSync Advanced Customization Guide 

97 

substitution dumpproject {-allprojects} { 
  global project AllProjectsList 

  if {$allprojects == 0} { 
    puts "<B>Project</B>: $ProjectName<BR>" 
  } else { 
    puts "<B>Projects</B>: $AllProjectsList<BR>" 
  } 
} 

The substitution is included in the EditTimecard.html template as follows: 

<TR> 
  <!-- SYNC std_header "Debug:" --> 
  <TD align=center> 
    <!-- SYNC dumpproject -allprojects --> 
  </TD> 
</TR> 

The resulting panel displays: 

 

The AllProjectsList variable lists all the projects on the SyncServer. For example, 
the third project is Triton (formatting added to make list readable): 

Triton {Owner karen Configs { 
  Rel1.0 {Owner karen Description {release 1.0}     
          FetchPreferences Rel1.0} 
  Rel1.1 {Owner karen Description {1.1 release} 
          FetchPreferences Rel1.1 Users {jblaine karen}}}} 

The Triton project has owner karen and two configurations, Rel1.0 and Rel1.1. 

Example: Listing Only the Projects in AllProjectsList 

The following example separates the projects in AllProjectsList from the 
attributes, storing the project names in a list named proj and the attributes (owner and 
optional configurations) in a list named properties.  The substitution then lists just the 
projects: 



Note Panel Global Variables 

98 

substitution listprojects {} { 
  global AllProjectsList 

  puts "Select a project: <br>" 
  foreach {proj properties} $AllProjectsList { 
    puts "Project: $proj<br>" 
  } 
} 

AllProjectsMap 
The AllProjectsMap global variable provides an array containing all top-level 
projects and their attributes, including configuration information. The AllProjectsMap 
global variable is available in Add and Edit mode, but not in View mode. 

Type 

The AllProjectsMap global variable is an array, indexed by project name. 

Format 

The format is identical to the AllProjectsList variable, with the exception that the 
project names are used as the array indices. An array index value contains the project 
attribute list. See AllProjectsList for the contents of the projects list. 

Example 

The following substitution, defined in a custom panel initialization file, 
share/panels/NoteDetail/EditTimecard.ini, prints the attribute list 
corresponding to the current project by indexing the  AllProjectsMap variable: 

substitution listattributes {} { 
  global ProjectName 
  global AllProjectsMap 

  set leafproj [url leaf $project] 
  puts "$leafproj: " 
  puts "$AllProjectsMap($leafproj)<br>" 
} 

The $AllProjectsMap array is keyed by ProjectName.  The $ProjectName global 
variable stores the URL of the project, so the url leaf command is required to access 
just the leaf project name. 

The substitution is included in the EditTimecard.html template as follows: 



ProjectSync Advanced Customization Guide 

99 

<TR> 
  <!-- SYNC std_header "List Project Attributes" --> 
  <TD valign=top> 
    <!-- SYNC listattributes --> 
  </TD> 
</TR> 

The resulting panel displays: 

 

AllUsersList 
The AllUsersList global variable provides a list of all users registered on the 
SyncServer, including their name attributes. 

Type 

The AllUsersList global variable is a list, sorted by user ID. 

Format 

AllUsersList has the following format: 

{<user1> {Name {<User1 Name>}} <user2> {Name {<User2 Name>}} 
<user3> {Name {<User3 Name>}} ...} 

<user> The user's ID. Required. 
Name 
{<User Name>} 

The Name identifier is followed by the user's full name 
contained in a list. 

Example 

The SyncServer has six users registered and stored in AllUsersList: 

{alex {Name {Alessandro Rotolo}} anabel {Name {Anabel Blythe}} 
cdent {Name {Charles Dent}} jboswell {Name {Jean Boswell}} josef 
{Name Josef Schmidt} karen {Name {Karen Green}}} 

AllUsersMap 



Note Panel Global Variables 

100 

The AllUsersMap global variable provides an array containing all users registered on 
the SyncServer, including their name attributes. 

Type 

The AllUsersMap global variable is an array, indexed by user ID. 

Format 

The format is identical to the AllUsersList variable, with the exception that the user 
IDs are used as the array indices. An array index value contains the user's full name. 
See AllUsersList for the syntax of the users list. 

Example 

The following substitution, defined in a custom panel initialization file, 
share/panels/NoteDetail/EditTimecard.ini, prints the complete name of the 
project owner by indexing the  AllUsersMap variable: 

substitution ownername {} { 
  global field_values 
  global AllUsersMap 

  set user $field_values(Owner) 
  puts "$AllUsersMap($user)<BR>" 
} 

The substitution acquires the user's login name by from $field_values global 
variable. The $AllUsersMap array accepts the user's login name and returns the 
user's complete name. 

The substitution is included in the EditTimecard.html template as follows: 

<TR> 
  <!-- SYNC std_header "Owner Name" --> 
  <TD align=center> 
    <!-- SYNC ownername --> 
  </TD> 
</TR> 

The resulting panel displays: 

 

classes 



ProjectSync Advanced Customization Guide 

101 

The classes global variable is an array containing the class corresponding to each 
field (property) on a note. A field’s class determines how it will be rendered and 
formatted in the note panel. A class is similar to the field’s type, but in some cases the 
class is a derivative of a base type.  For example, CC list is a configurable field which is 
a derivative of a String type. 

Type 

The classes global variable is an array, indexed by field name. 

Format 

To determine a field's class, access the classes array as follows: 

$classes(<fieldname>) 

Example 

For diagnostics, the following code is included in a panel initialization file, 
Add<notetype>.ini: 

puts "$classes(ShowStop)<BR>" 
puts "$classes(Author)<BR>" 
puts "$classes(Body)<BR>" 
puts "$classes(DateCreate)<BR>" 
puts "$classes(Id)<BR>" 

The panel displays the following results: 

boolean 
userlist 
transcript 
date 
number 

defvals 
The defvals global variable is an array containing the default value for each field 
(property) on a note. You define or change the default value of a field using the 
ProjectSync Note Type Manager. 

Type 

The defvals global variable is an array, indexed by field name. 

Format 



Note Panel Global Variables 

102 

To determine a field's default value, access the defvals array as follows: 

$defvals(<fieldname>) 

Example 

The following code in a panel initialization driver, Edit<notetype>.ini, defines a 
substitution that displays the Owner field's default value. 

substitution ownerdef {} { 
  global defvals 
  puts "$defvals(Owner)" 
} 

The substitution is invoked in the corresponding Edit<notetype>.html file: 

<TR> 
  <!-- SYNC std_header "Original Owner:" --> 
  <TD> 
    <!-- SYNC ownerdef --> 
  </TD> 
</TR> 

The HTML code generates this field containing the default value for the Owner field: 

 

DisplayMode 
The DisplayMode global variable indicates whether the panel mode is in Add, Edit, or 
View mode. 

Type 

The  DisplayMode global variable is a string. 

Format 

The  DisplayMode global variable contains the string Add, View, or Edit depending 
on the panel mode.  DisplayMode is View by default. 

Example 



ProjectSync Advanced Customization Guide 

103 

The following code checks which display mode is set and creates a customized 
substitution for Edit or View mode.  You can include this code in separate file and 
source the file from the Edit<NoteType>.ini file and the View<NoteType>.ini 
file. 

if {$DisplayMode == "Edit"} { 
  substitution myfield {} { 
    puts "Use the Edit mode to update an existing note." 
  } 
} 

if {$DisplayMode == "View"} { 
  substitution myfield {} { 
    puts "Use the View mode to view an existing note \ 
     in read-only mode." 
  } 
} 

field_values 
The field_values global variable is an array containing the current value for each 
field (property) on a note. 

Type 

The field_values global variable is an array, indexed by field name. 

Format 

To determine a field's value, access the field_values array as follows: 

$field_values(<fieldname>) 

Example 

The following code is included in a panel initialization file, Edit<notetype>.ini: 

puts "$field_values(ShowStop)<BR>" 
puts "$field_values(Author)<BR>" 

The panel displays the following results: 

False 
karen 



Note Panel Global Variables 

104 

fields 
The fields global variable is a list containing all fields (properties) of a note in display 
order. 

Type 

The fields global variable is a list. 

Format 

To list the fields of a note type in display order: 

$fields 

Example 

The following code is included in a panel initialization file, Edit<notetype>.ini: 

puts "$fields<BR>"   

The panel prints a list of the fields of the note type: 

Id DateCreate Author Title Subject WhenReslvd Actions Priority 
Body moretext fileattach ShowStop External State Resolution 
Owner myfield 

NoteId 
The NoteId global variable contains the ID number of the note being viewed or edited. 
 The NoteId variable is set to 0 in Add mode. 

Type 

The NoteId global variable is an integer. 

Format 

To display the ID number: 

$NoteId 

Example 

The following code is included in a panel initialization file, EditYellowSticky.ini: 



ProjectSync Advanced Customization Guide 

105 

puts "Note Id: $NoteId<BR>" 

The panel prints the values of the specified global variable: 

Note Id: 3 

Module Name 
The ModuleName global variable contains the current value of the project set for a note, 
if it is a module. 

Type 

The  ModuleName global variable is a string. 

Format 

The  ModuleName global variable contains the module specified for the note in the 
format: 

sync:///Modules/<module> 

If Note has no Module attachment this variable is empty (“”) 

Example 

The following code in a panel initialization driver, Edit<notetype>.ini, checks for a 
project value. 

if {$ModuleName == "sync:///Modules/Thunder"} { 
  puts "Module $ModuleName is EOL'ed.<BR>" 
} else { 
  puts "Module: $ModuleName<BR>" 
} 

For project Thunder, the following error message displays in the Edit panel: 

Module sync:///Modules/Thunder is EOL'ed. 

For projects other than Thunder, the project displays in the Edit panel: 

Module: sync:///Modules/Asic 

Module Tag 



Note Panel Global Variables 

106 

The ModuleTag global variable contains the current value of the configuration set for a 
note. 

Type 

The  ModuleTag global variable is a string. 

Format 

The ModuleTag global variable contains a valid configuration for the module specified 
for the note in the format: 

sync:///Modules/<module>;<selector> 

For example: 

sync:///Modules/Asic;B1:Gold 

represents the Gold version of the B1 branch. 

If the Module was attached to the Note without any “Tag” selection this variable is empty 
(“”) 

Example 

The following code in a panel initialization driver, Edit<notetype>.ini, checks for a 
configuration value. 

if {$ModuleTag == ""} { 
  puts "Please enter a configuration.<BR>" 
} else { 
  puts "$ModuleTag<BR>" 
} 

If a Module configuration value is set, the configuration value displays in the Edit panel 
for the note type: 

sync:///Modules/Asic;Trunk:Gold 

NoteSystem 
The NoteSystem global variable contains the note system of the note being displayed. 
 Currently, the only supported note system is SyncNotes. 

Type 



ProjectSync Advanced Customization Guide 

107 

The NoteSystem global variable is a string. 

Format 

The NoteSystem variable represents the NoteSystem portion of a note's URL; for 
example, the portion of the URL below shown in bold: 

sync:///Note/SyncNotes/YellowSticky/3 

To display the note system: 

$NoteSystem 

Example 

The following code is included in a panel initialization file, EditYellowSticky.ini: 

puts "Note System: $NoteSystem<BR>" 

The panel prints the value of the specified global variable: 

Note System: SyncNotes 

NoteType 
The NoteType global variable contains the note type of the note being displayed. 

Type 

The NoteType global variable is a string containing one of the valid note types on the 
SyncServer. 

Format 

To display the note type of a note: 

$NoteType 

Access Control 

When used as a note panel argument, access controls are obeyed. For example, if you 
invoke a Full Text Search via the URL 
http://{host}:{port}/scripts/isynch.dll?panel=TextSearch&NoteType=SyncDefect , if the 
user does not have permission to view notes of type SyncDefect, no matches will result. 
Access controls are also applied on a per note basis. In the SyncDefect search 



Note Panel Global Variables 

108 

example, if the end user has permission to access SyncDefect notes in general, but not 
a particular SyncDefect note Id, that note Id will not be among the displayed search 
results, even if it matches the search criteria. 

Example 

The following code is included in a panel initialization file, EditYellowSticky.ini: 

puts "Note Type: $NoteType<BR>" 

The panel prints the values of the specified global variable: 

Note Type: YellowSticky 

NoteURL 
The NoteURL global variable contains the full URL of the note being displayed. 

Type 

The NoteURL global variable is a string. 

Format 

The format of the note URL follows: 

sync:///Note/<NoteSystem>/<NoteType>/<NoteId> 

To display the note URL: 

$NoteURL 

Example 

The following code is included in a panel initialization file, EditYellowSticky.ini: 

puts "Note URL: $NoteURL<BR>"    

The panel prints the values of the specified global variable: 

Note URL: sync:///Note/SyncNotes/YellowSticky/3 

other_attachments 



ProjectSync Advanced Customization Guide 

109 

The other_attachments global variable lists the attachments for the note, excluding 
the project and configuration attachments.  The other_attachments global variable 
applies to Edit and View mode only. 

Type 

The other_attachments global variable is a list. 

Format 

The list of attachments contains the URL of each attachment. 

To display the list of attachments: 

$other_attachments 

Example 

The following code is included in a panel initialization file, EditSyncDefect.ini: 

puts "Other attachments: $other_attachments<BR>" 

The panel prints the list of attachments: 

Other attachments: {sync:///Projects/ASIC1/x.v;1.1} 
{sync:///Projects/Asic1/x.v;} 
{sync:///Projects/Asic1/Add/shift.v;} 

ProjectConfig 
The ProjectConfig global variable contains the current value of the configuration set 
for a note. 

Type 

The  ProjectConfig global variable is a string. 

Format 

The ProjectConfig global variable contains a valid configuration for the project 
specified for the note in the format: 

sync:///Projects/<project>@<config> 

Example 



Note Panel Global Variables 

110 

The following code in a panel initialization driver, Edit<notetype>.ini, checks for a 
configuration value. 

if {$ProjectConfig == ""} { 
  puts "Please enter a configuration.<BR>" 
} else { 
  puts "$ProjectConfig<BR>" 
} 

If a Project configuration value is set, the configuration value displays in the Edit panel 
for the note type: 

sync:///Projects/Asic@Rel2 

ProjectName 
The ProjectName global variable contains the current value of the project set for a 
note. 

Type 

The  ProjectName global variable is a string. 

Format 

The  ProjectName global variable contains the project specified for the note in the 
format: 

sync:///Projects/<project> 

Example 

The following code in a panel initialization driver, Edit<notetype>.ini, checks for a 
project value. 

if {$ProjectName == "sync:///Projects/Thunder"} { 
  puts "Project $ProjectName is EOL'ed.<BR>" 
} else { 
  puts "Project: $ProjectName<BR>" 
} 

For project Thunder, the following error message displays in the Edit panel: 

Project sync:///Projects/Thunder is EOL'ed. 

For projects other than Thunder, the project displays in the Edit panel: 



ProjectSync Advanced Customization Guide 

111 

Project: sync:///Projects/Asic 

ProjectRelease 
The ProjectRelease global variable contains the current value of the configuration 
set for a note. 

Type 

The  ProjectRelease global variable is a string. 

Format 

The ProjectRelease global variable contains a valid release for the project specified 
for the note in the format: 

sync:///Projects/<project>@<release> 

Example 

The following code in a panel initialization driver, Edit<notetype>.ini, checks for a 
configuration value. 

if {$ProjectRelease == ""} { 
  puts "Please enter a release.<BR>" 
} else { 
  puts "$ProjectRelease<BR>" 
} 

If a Project release value is set, the release value displays in the Edit panel for the note 
type: 

sync:///Projects/Asic@Rel2 

prompts 
The prompts global variable is an array containing the prompt values for all fields 
(properties) on a note. You specify prompts for the fields when you create them using 
the ProjectSync Note Type Manager.   

Type 

The prompts global variable is an array, indexed by field name. 

Format 



Note Panel Global Variables 

112 

To access a field's prompt: 

$prompts(<fieldname>) 

Example 

The following code is included in a panel initialization file, Edit<notetype>.ini: 

puts "$prompts(ShowStop)<BR>" 
puts "$prompts(Author)<BR>" 

The panel displays the following results: 

ShowStopper 
Author 

ptypes 
The ptypes global variable is an array containing the property types for all fields 
(properties) on a note. 

Type 

The ptypes global variable is an array, indexed by field name. 

Format 

To access a field's property type: 

$ptypes(<fieldname>) 

Example 

The following code is included in a panel initialization file, 
Edit<notetype>.ini: 

puts "Field ShowStop: $ptypes(ShowStop)<BR>" 
puts "Field Author: $ptypes(Author)<BR>" 
puts "Field Body: $ptypes(Body)<BR>" 
puts "Field DateCreate: $ptypes(DateCreate)<BR>" 
puts "Field Id: $ptypes(Id)<BR>"       

The panel prints a list of the fields and property types of the note type: 

Field ShowStop: Boolean 
Field Author: String80 



ProjectSync Advanced Customization Guide 

113 

Field Body: String 
Field DateCreate: Date 
Field Id: Integer 

reqfields 
The reqfields global variable is an array indicating which fields (properties) are 
required on a note. 

Type 

The reqfields global variable is an array, indexed by field name. 

Format 

To determine whether a field is required: 

$reqfields(<fieldname>) 

If 1 is returned, the field is required.  If 0 is returned, the field is optional. 

Example 

The following code is included in a panel initialization file, Add<notetype>.ini: 

if {$field_values(Title) == "" && $reqfields(Title) == 1} { 
  puts "Please enter a title.<BR>" 
} 

If the Title field is empty, the following message displays in the Add panel: 

Please enter a title. 

SYNC_ClientInfo 
The SYNC_ClientInfo global variable is an array that provides information about the 
user and client accessing the panel. 

Type 

The SYNC_ClientInfo global variable is an array. 

Format 

To access the SYNC_ClientInfo information: 



Note Panel Global Variables 

114 

$SYNC_ClientInfo(parameter) 

where parameter is one of the following: 

AgentName The name of the browser that sent the request, as reported by the 
browser. This encodes information such as browser name, 
version, and  OS. The format differs depending on the browser. 

Locale Time zone information, passed in as the number of minutes to be 
subtracted from GMT. For example, five hours after GMT would be 
represented as 300 (5 times 60). 

IPAddress The IP address of the client. 
UserName The username of the user. This information is also available via 

the SYNC_User environment variable. Use SYNC_User if you only 
need user name information. 

Example 

The following code is included in a panel initialization file, Edit<notetype>.ini: 

puts "Agent: $SYNC_ClientInfo(AgentName)<BR>" 
puts "Locale: $SYNC_ClientInfo(Locale)<BR>" 
puts "IPAddress: $SYNC_ClientInfo(IPAddress)<BR>" 
puts "UserName: $SYNC_ClientInfo(UserName)<BR>"      

The panel displays the following results: 

Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0) 
Locale: 240 
IPAddress: 64.192.76.101 
UserName: karen 

SYNC_Parm 
The SYNC_Parm global variable is an array that contains the parameters passed to a 
panel with their associated values. Note: Instead of directly accessing this array, 
consider using the cgi_arg utility; the values cgi_arg returns are all fully decoded 
and ready for use.   See the the cgi_arg utility topic for details. 

Type 

The SYNC_Parm global variable is an array, indexed by parameter. 

Format 

To access the SYNC_Parm information: 



ProjectSync Advanced Customization Guide 

115 

$SYNC_Parm(parameter) 

where parameter is one of the parameters passed into the panel.  For example, if a 
panel is executed via a panel URL, you can access the parameters as shown below: 

http://<host>:<port>/scripts/isynch.dll?panel=TclScript 
&file=filename&name=Joe&age=30&weight=160 

then in order to access the name, age, and weight, you would use 
$SYNC_Parm(name), $SYNC_Parm(age), and $SYNC_Parm(weight). 

The array values for each argument are fully decoded and ready for use.   

Note: SYNC_Parm does not support multi-valued arguments; to extract values of multi-
valued arguments, use the cgi_arg utility. 

Example 

The following code is included in a panel initialization file, Edit<notetype>.ini: 

puts "Note Type: $SYNC_Parm(NoteType)<BR>" 
puts "Display Mode: $SYNC_Parm(DisplayMode)<BR>" 
puts "Note ID: $SYNC_Parm(NoteId)<BR>" 

The panel displays the following results: 

Note Type: YellowSticky 
Display Mode: Edit 
Note ID: 2 

See Also 

Postprocessing in Panel Initialization Files 

SYNC_Query 
The SYNC_Query global variable contains the unfiltered query string supplied to the 
note panel, with the exception of the panel= portion of the string.  The query values are 
HTML-encoded and must be decoded. To access the decoded parameters and values 
of the query, access the SYNC_Parm variable.  Note: Instead of directly accessing these 
variables, consider using the cgi_arg Tcl utility. 

Type 

The SYNC_Query global variable is a string. 



Note Panel Global Variables 

116 

Format 

To access the query string : 

$SYNC_Query 

Example 

The following code is included in a panel initialization file, Edit<notetype>.ini: 

puts "SYNC_Query: $SYNC_Query<BR>"    

The panel displays the following results: 

SYNC_Query: NoteSystem=SyncNotes&DisplayMode=Edit& 
NoteType=YellowSticky&NoteId=2 

SYNC_User 
The SYNC_User global variable contains the username of the user accessing the 
ProjectSync panel. 

Type 

The SYNC_User global variable is a string. 

Format 

To access the SYNC_User information: 

$SYNC_User 

Example 

The following code is included in a panel initialization file, Edit<notetype>.ini: 

puts "SYNC_User: $SYNC_User<BR>"   

The panel displays the following results: 

SYNC_User: karen 



117 

Note Panel Arguments 
Note Panel Arguments 
Note panel arguments are the arguments supported for the Add, Edit, and View modes 
of panels.  You can pass arguments to panels within the panel URL as described in 
URLs for Loading Panels. 

In the following example, panel and NoteType are panel arguments: 

http://myhost:2647/scripts/isynch.dll?panel=NoteDetail&NoteType
= 
Note&NoteId=1 

You can access these panel arguments in your .ini panel initialization drivers using 
the cgi_arg utility or the SYNC_Parm global variable. 

The following note panel arguments are supported: 

DisplayMode Indicates whether the panel mode is in Add, Edit, or View mode. 
Optional. See Note Panel Global Variables: DisplayMode for more 
information. 

LinkedURLs Lets you supply initial object attachments for a note. These object 
URLs appear in the Attach To field of the note in Add mode. The 
LinkedURLs panel argument is optional, available only in the Add 
mode of note panels. LinkedURLs is a list of DesignSync object 
URLs, each separated by a new line character. The default value for 
LinkedURLs  is "" (no initial attachments). 

For example, you can seed the Attach To field by invoking the Add 
mode of the panel using a panel URL with the LinkedURLs 
argument, for example, 

http://myhost:2647/scripts/isynch.dll? 
panel=NoteAdd&NoteType=TimeCard&LinkedURLs="sync://" 

NoteId The ID number of the note being viewed or edited. Optional. See Note 
Panel Global Variables: NoteId for more information. 

NoteSystem The note system of the note being displayed; currently, the only 
supported note system is SyncNotes. See Note Panel Global 
Variables: NoteSystem for more information. 

NoteType The note type of the note being displayed. Optional. See Note Panel 
Global Variables: NoteType for more information. 

NoteURL The full URL of the note being displayed.  Optional.  See Note Panel 
Global Variables: NoteURL for more information. 



Note Panel Arguments 

118 

panel The name of the panel to execute and display.  Required. For adding 
notes and displaying existing notes, the valid values are “NoteAdd” 
and “NoteDetail” respectively. 

ProjectName Initial Project attachment for the note.  Optional.  Specify the name of 
an existing top-level project. Defaults to “” (no initial project 
attachment). Available in the NoteAdd panel only. 

ProjectConfig Initial Project Configuration attachment for the note. Optional. Specify 
the name of an existing configuration for the project attachment. 
Requires that an initial value for the ProjectName argument be 
supplied. Defaults to “” (no initial configuration attachment). Available 
in the NoteAdd panel only. 

<property 
name> 

Lets you initialize any arbitrary property name to a value. Optional. 
Overrides any default value for a specific property on the note being 
added. The argument name must be a valid property name for the 
note type being added and the value must be a valid value for the 
property type. Available in the NoteAdd panel only. 

 



119 

Tcl Utilities 
call_substitution 
call_substitution <substitution> <arguments> 

Description 

Invoke the call_substitution utility to include a substitution within a Tcl panel 
script or within a custom substitution. The substitutions generally use the Tcl puts 
command to generate output, so you don't need to wrap the call_substitution call 
in a puts call. 

Use 

Use the call_substitution utility in Tcl panel scripts or within substitution 
definitions in .ini initialization drivers.  You can use call_substitution with note 
panels, as well as custom panels. Use of the call_substitution utility is optional. 

Arguments 

<substitution> Specify the name of a substitution, either a predefined 
substitution or one you have defined in a .ini panel 
initialization file. 

<arguments> Specify the arguments required by the substitution. 

Globals Referenced 

None. 

Returns 

Returns the output defined in the substitution. 

Example 

call_substitution field Title 

This invocation in a Tcl panel script has the same effect as including the following 
substitution in a .ini panel initialization file: 

<!-- SYNC field Title --> 

cgi_arg 



Tcl Utilities 

120 

cgi_arg [-multi] <argname> [<defval>] [<varname>] 

Description 

The cgi_arg utility extracts the value of a panel argument for use in either a 
substitution or procedure.  The cgi_arg utility lets you access panel parameters 
without having to access the SYNC_Parm array directly.  The values cgi_arg returns 
are all fully decoded and ready for use. 

Use 

Use the cgi_arg utility in Tcl panel scripts or .ini initialization drivers.  You can use 
cgi_arg with note panels, as well as custom panels. Use of the cgi_arg utility is 
optional. 

Arguments 

-multi Use the -multi option to extract an argument containing multiple 
elements. If -multi is supplied, cgi_arg returns a list, even if 
there is only one value. If a default value (defval) argument is 
specified and needs to be used, it is returned in a list. 

<argname> Specifies the name of the argument whose value is to be extracted 
from the SYNC_Parm array. Required. 

<defval> Specifies a default value to be returned if the argument specified 
(argname) is not present. Defaults to “”.  Optional. 

<varname> Lets you specify a new variable name to contain the value of 
argname. Defaults to the value of argname. Optional. To specify 
the varname argument, you must also specify the defval 
argument. 

Globals Referenced 

SYNC_Parm 

Returns 

No explicit return value. The specified panel argument value is returned to a variable 
whose name is passed by reference. The value returned is fully decoded HTML code. 

Example 

The following URL invokes a panel named StatusResult with parameters name, month, 
projects, and report: 



ProjectSync Advanced Customization Guide 

121 

http://myhost:2647/scripts/isynch.dll?panel=StatusResult 
&name=Marvin Maxwell&month=October&projects=KI64& 
projects=JI87&report=Completed project gh78 

(To see the Status script that generates a URL to invoke the StatusResult panel, see 
Implementing Panels Using Tcl Panels Scripts.) 

The SYNC_Query string generated by the URL follows: 

name=Marvin%20Maxwell&month=October&projects=KI64 
&projects=JI87&report=Completed%20project%20gh78 

Notice that the projects parameter is a multi-valued parameter.  Each separate 
project value is specified with its own instance of the projects parameter. 

The following is the StatusResult.tcl script that displays these parameter values: 

cgi_arg name 
cgi_arg month 
cgi_arg -multi projects 
cgi_arg report 

puts { 
  <html><head><title>StatusResult</title></head> 
} 

call_substitution style 

puts { 
  <body CLASS=StatusResult> 
  <table align="center" width="100%" cellspacing=0 cellpadding=4 
border=0> 
    <tr><th class="PAGETITLE">Status Report</th></tr> 
  </table> 
  <table class=LEFTHEADERTBL> 
} 

puts "<tr><th align=left>NAME:</th><td>$name</td></tr>" 
puts "<tr><th align=left>MONTH:</th><td>$month</td></tr>" 
puts "<tr><th align=left> PROJECTS:</th><td>$projects</td></tr>" 
puts "<tr><th align=left>STATUS:</th><td>$report</td></tr>" 

puts { 
  </table></body></html> 
} 



Tcl Utilities 

122 

Notice that the projects parameter requires the -multi switch to pass multiple 
values. 

Following is the resulting panel: 

 

encodeUrl 
encodeUrl <string> 

Description 

The encodeUrl function encodes a URL, converting non-alphanumeric characters to 
the format %XX, where XX is the ASCII code of the character in hexadecimal. Spaces 
become plus signs.  See URLs for Loading Panels for more information. 

Use 

Use the encodeUrl utility in server-side Tcl scripts including panel scripts and .ini 
initialization drivers.  Use of the encodeUrl utility is optional. 

Arguments 

<string> String to be encoded. 

Globals Referenced 

None. 

Returns 

Encoded string to be included in a URL. 

Example 

The following lines are included in a server-side script: 

set encodedUrl [encodeUrl "name=Roger Smith&month=July"] 
puts "$encodedUrl <br>"   



ProjectSync Advanced Customization Guide 

123 

The resulting string follows: 

name%3dRoger+Smith%26month%3dJuly 

You can then include the string to invoke a panel URL, for example: 

http://myhost:2647/scripts/isynch.dll?panel=StatusResult 
&name%3dRoger+Smith%26month%3dJuly 

htmlResult 
htmlResult [-error <error_message> | 
-warning <warning_message>] [<explanation>] [<args>] 

Description 

You invoke the htmlResult utility within Tcl scripts or panel initialization files to 
generate a standard results message. 

Use 

Use the htmlResult utility within Tcl panels scripts and .ini panel initialization driver 
files such as EditNote.ini.  Use of htmlResult is optional. 

Note: You can invoke the htmlResult utility within a Process initialization driver (for 
example, ProcessNote.ini); however,  the htmlResult utility is not supported 
within the Process_Note_PreSchema and Process_Note_PostSchema  procs that 
you can define in a Process initialization driver.   

Arguments 

-error|-
warning 

Indicates the general condition being reported. Optional. These 
switches control the appearance of the generated result page. If 
–error is specified, the default title reads “Operation Failed” 
and the explanatory table details display in shades of red. The –
warning argument causes the default title to read "Operation 
Successful” and the explanatory table details display in shades 
of yellow . 

-title Controls the content of the single line of explanatory text. 
Optional. The default value is “Operation Successful” (unless the 
–error switch is used).  The -title switch takes precedence 
over the titles specified with the –error and –warning 
switches. 

<explanation> Controls the text of the second column of the explanatory table 
details. Required if -error or –warning are not specified. The 



Tcl Utilities 

124 

first column is always labeled “Action”. 
<args> Lets you add rows to the explanatory table. Optional. Additional 

arguments must be given in pairs: the first being the text of the 
left column of a table row in the explanatory table, the second 
being the right column text for the same row. Each pair of 
arguments defines a new row of information for the explanatory 
table: 

<Row1Column1> <Row1Column2> <Row2Column1> 
<Row2Column2> ... 

If neither the –error or –warning switches are specified, you 
can control the color of a specific row by appending a single or 
double exclamation point to the first argument of that row: 

• A single exclamation point (!) creates a yellow (warning) 
row, for example, "Important!" 

• Double exclamation points (!!) creates a row in red (error) 
color, for example, "Critical!!" 

Globals Referenced 

None. 

Examples 

cgi_arg position 

if {$position == "SysAdmin"} { 

  htmlResult "All system adminstrators redirected here." \ 
  -error "errorcode1" "Data type mismatch" 

  select_template SysAdminFeedback 

} 

The htmlResult invocation displays these results: 

 



ProjectSync Advanced Customization Guide 

125 

select_template 
select_template <template_name> 

Description 

The select_template utility switches control to a different HTML template and .ini 
initialization driver pair. The HTML template you specify can have its own .ini file that 
ProjectSync also processes. When ProjectSync processes the select_template 
expression, it looks for the required <template_name>.html file and for the optional 
<template_name>.ini file. 

If the alternate panel is instead implemented as a Tcl script, use the 
select_tcl_script utility. 

Use 

Use the select_template utility in Tcl panel scripts or .ini initialization drivers. 
 You can use select_template with note panels, as well as custom panels. Use of 
the select_template utility is optional. 

Arguments 

<template_name> Specify the name of the HTML template and .ini 
initialization driver pair to be loaded (without the filename 
extensions). (Required) The  <template_name>.html file 
must exist for the template to be switched. ProjectSync 
searches for this file in the current panel directory (the 
directory containing the Tcl script or .ini file that is invoking 
the select_template utility). 

Globals Referenced 

None. 

Returns 

No explicit return value. ProjectSync loads and executes the template and any .ini 
files associated with the <template_name> argument. 

Example 

The following code is contained in the 
/share/panels/NoteAdd/AddFeedback.ini file: 



Tcl Utilities 

126 

if {$position == "SysAdmin"} { 
  select_template SysAdminFeedback 
} 

ProjectSync loads the SysAdminFeedback.html template, as well as the 
SysAdminFeedback.ini file, if it exists. 

substitution 
substitution <subst_name> <subst_arg_list> <subst_code> 

Description 

All panels can define their own set of substitutions. The substitution utility lets you 
create custom substitution tags with new behaviors from those of the predefined HTML 
substitution tags described in Note Panel Substitution Tags.  If a substitution definition 
for a new tag is defined in a panel's .ini panel initialization file, you can then include 
that substitution tag in the corresponding HTML template file. 

Use 

Use the substitution utility to define custom substitutions in Tcl panel scripts or 
.ini initialization drivers.  To invoke the substitution, either include the substitution tag 
in your panel HTML file (see What Are Substitution Tags?) or call the substitution from a 
Tcl panel script using the call_substitution command.  You can use substitution 
with note panels, as well as custom panels. Use of the substitution utility is 
optional. 

Arguments 

<subst_name> Specifies the name of the substitution tag you are 
generating. Substitution tag names are case insensitive, like 
HTML tags. Required. 

<subst_arg_list> Defines the parameters you must pass to the tag in the 
HTML template. Optional. Specify order-dependent 
parameters as you would for a Tcl proc: 

{required1 required2 -option1 -option2 ...} 

The optional arguments must follow the required arguments. 
You can also provide default values for parameters: 

{{required1 ""} {required2 ""} {-option1 6} 
{-option2 ""}} 

<subst_code> Contains the Tcl code you want executed when ProjectSync 



ProjectSync Advanced Customization Guide 

127 

encounters this tag in the HTML template. To implement the 
HTML constructs you want displayed in the note panel, you 
include puts statements in the subst_code parameter's 
Tcl code.  Required. 

Globals Referenced 

None. 

Returns 

No explicit return value. As ProjectSync parses the custom substitution tag in an HTML 
panel template, it displays the HTML specified in the custom substitution. 

Example 

Example: A Substitution to Generate a Banner 

The following example of a substitution subroutine generates a banner in a note 
panel if the substitution tag is included in the panel's HTML template: 

substitution add-banner {} { 
  puts "<img src=/synccontent/images/bar.gif>" 
} 

The substitution code above is included in the panel initialization (.ini) file. 

In this example, synccontent is an alias for the <SYNC_DIR>/share/content 
directory. (You cannot specify absolute file system paths on the SyncServer.) See 
DesignSync Data Manager Administrator's Guide: SyncServer Aliases for more 
information on SyncServer aliases. 

You include the substitution tag in the panel's HTML template as follows: 

<HTML> 
  ... 
  ... 
<!-- SYNC add-banner --> 
Title <!-- SYNC field Title --> 
  ... 
</HTML> 

Example: A Substitution with Parameters 

The following substitution contained in the note type's panel initialization (.ini) file 
dumps the values of fields and projects.  The substitution illustrates the use of required 



Tcl Utilities 

128 

and optional parameters. The topanel argument is required and the notefields and 
allprojects arguments are optional. 

substitution dumpvars {topanel -notefields -allprojects} { 
global AllProjectsList 

  if {$topanel != 0} { 
    if {$notefields != 0} { 
      puts "<H3>Note fields:</H3>" 
      set field_names \ 
          [note schema -ptypes types "TimeCard"] 
      foreach field $field_names { 
        puts "$field: $types($field)<BR>" 
      } 
    } 
  } 

  if {$allprojects != 0} { 
    puts "<H3>All Projects:</H3>" 
    puts "$AllProjectsList<BR>" 
  } 
} 

You include the substitution tag in the panel's HTML template as follows: 

<TR> 
  <!-- SYNC std_header "Debug:" --> 
    <TD align=center> 
      <!-- SYNC dumpvars 1 -notefields -allprojects --> 
    </TD> 
</TR> 

The results of the dumpvars substitution follow: 



ProjectSync Advanced Customization Guide 

129 

 

Other Utilities 
The following Tcl utilities might also be helpful in your customizations: 

caught_error Use the caught_error utility to signal abnormal 
termination due to an internal error.  Specify a string as 
an argument to caught_error; the top-level template 
processor catches the error and displays the specified 
message string in a diagnostics page. 

include Use the include utility within your Tcl panel script or 
your .ini panel initialization file to include auxiliary 
source files.  Specify the leaf name of the file to be 
included.  ProjectSync searches for file in the most 
custom /share/panels directory, then in the most 
custom /share/tcl directory. 

locate Use the locate stcl command to search the 
DesignSync paths for a specified object, either a file or 
directory. You can find either the first occurrence of the 
object (the default) or all occurrences of the object. 



Tcl Utilities 

130 

quit Use the quit utility to terminate any further processing 
of the current panel.  No error message is displayed. 
 Use quit for normal or abnormal termination, but you 
must display the results before calling quit. You must 
call quit  to break out of .ini panel initialization file 
processing before the substitution processing phase. 

select_tcl_script To explicitly run a Tcl panel script, use 
select_tcl_script.  Like select_template, you 
specify the name of the template: 

select_tcl_script <template_name> 

where template_name is the name of the Tcl file 
without the .tcl extension. 

setDynamicUserListProps Use the setDynamicUserListProps utility to control 
the list of SyncUserList properties that are automatically 
updated on a panel in Add or Edit mode as note 
attachments are made.  Specify an optional list of fields 
-- these are the properties to be considered dynamic 
user list properties. The properties specified must be 
valid properties of the userlist class. The default is an 
empty list, indicating that there are no dynamic user list 
properties. 

setFieldOrder Use the setFieldOrder utility to control the order and 
the set of properties to be included on a note panel.  As 
an argument to setFieldOrder, specify a Tcl list 
containing the properties to be used in the order you 
want. Any properties not in the list are discarded. 

var_substitution Use the var_substitution utility as a shorthand for 
outputting the value of a global Tcl variable using this 
syntax: 

var_substitution <name> {var_name “”} {-
nonempty} {-quoted} 

The optional var_name argument lets you define a 
shorthand alias, to index an array, for example. 

The -nonempty option generates an HTML non-
breakable space (&nbsp;) if the variable's value is empty 
("").  This option is handy for inserting values into tables 
without having to worry about empty strings 

The -quoted option escapes all left angle brackets in 
the output. 



ProjectSync Advanced Customization Guide 

131 

  





133 

Case Study: Design Tool Process Survey 
Design Tool Process Survey 
The following case study describes an online survey implemented as a note panel.  The 
Feedback survey is the type of questionnaire that might be published by an internal 
CAD group to query for tool and process improvements.  This survey could be 
implemented as a panel from scratch or as a note panel.  We chose to implement the 
survey as a note panel.  In this way, we can use the Note Type Manager to create the 
new note type named Feedback and the basic user interface.  Then we can modify the 
HTML and add .ini panel initialization scripts to further customize the panels.   

Because we are implementing the survey as a note, users can complete a survey by 
selecting Add Feedback from the ProjectSync main menu.  (When you create a note 
type, ProjectSync automatically creates an Add <Note Type> entry for the note type in 
the main menu.) 

The case study walks through the design of the Feedback note type and the graphical 
interface panels that implement the survey. 

Develop Paper Prototype of Survey 

Before you begin designing a note type and graphical interface panels, it's a good idea 
to jot down a paper prototype of your design ideas.  The following paper prototype 
shows the fields for the Designer survey, as well as those for the System Administrator 
survey. 

CAE Process and Tools Survey Prototype 

Designer Survey Prototype: 

You could WIN a T-shirt and mug – just complete the survey below and click Submit. 
 The 100th survey entry wins! 

• Position:  Design Lead, Designer, Test Engineer, Systems Administrator 
• If you are a systems administrator, has your group upgraded to OS Version8.0? 

Yes/No 
• If Design Lead, Designer, Test Engineer, the panel includes these fields: 
• HDL Language Pulldown: Verilog/VHDL 
• Other: Type-in field 
• Size of Typical Module # gates 
• Simulation Tool: Pulldown: VQuick/SimQuick/Simmer/NA 
• This tool is effective. Radio button: Strongly agree/Somewhat 

agree/Agree/Somewhat disagree/Strongly disagree 



Case Study: Design Tool Process Survey 

134 

• This tool is easy to use. Radio button: Strongly agree/Somewhat 
agree/Agree/Somewhat disagree/Strongly disagree 

• Synthesis Tool: Pulldown: BuildIt/GateGo/NA 
• This tool is effective. Radio button: Strongly agree/Somewhat 

agree/Agree/Somewhat disagree/Strongly disagree 
• This tool is easy to use. Radio button: Strongly agree/Somewhat 

agree/Agree/Somewhat disagree/Strongly disagree 
• Layout Tool: Pulldown: LayoutMaster/SmartPlacer/GatePlace 
• This tool is effective. Radio button: Strongly agree/Somewhat 

agree/Agree/Somewhat disagree/Strongly disagree 
• This tool is easy to use. Radio button: Strongly agree/Somewhat 

agree/Agree/Somewhat disagree/Strongly disagree 
• Physical Verification Tool: Pulldown: Verify/RightDesign 
• This tool is effective. Radio button: Strongly agree/Somewhat 

agree/Agree/Somewhat disagree/Strongly disagree 
• This tool is easy to use. Radio button: Strongly agree/Somewhat 

agree/Agree/Somewhat disagree/Strongly disagree 
• Configuration Management Tool Pulldown: DesignSync/ReVision 
• This tool is effective. Radio button: Strongly agree/Somewhat 

agree/Agree/Somewhat disagree/Strongly disagree 
• This tool is easy to use. Radio button: Strongly agree/Somewhat 

agree/Agree/Somewhat disagree/Strongly disagree 
• Design Chain Publishing Tool Pulldown: Publisher Suite/PassItOn 
• This tool is effective. Radio button: Strongly agree/Somewhat 

agree/Agree/Somewhat disagree/Strongly disagree 
• This tool is easy to use. Radio button: Strongly agree/Somewhat 

agree/Agree/Somewhat disagree/Strongly disagree 
• Easiest tool to use: Pulldown: 

VQuick/SimQuick/Simmer/BuildIt/GateGo/Verify/RightDesign/ReVision/Publisher 
Suite/DesignSync/PassItOn 

• Most difficult tool to use: Pulldown: 
VQuick/SimQuick/Simmer/BuildIt/GateGo/Verify/Publisher 
Suite/RightDesign/ReVision/DesignSync/PassItOn 

• Please specify the degree to which you agree with the following statements: 
• Our tools are state-of-the-art design tools. Radio button: Strongly 

agree/Somewhat agree/Agree/Somewhat disagree/Strongly disagree 
• I find the tool flow to be straightforward. Radio button: Strongly agree/Somewhat 

agree/Agree/Somewhat disagree/Strongly disagree 
• The hand-off between design and layout is smooth and efficient. Radio button: 

Strongly agree/Somewhat agree/Agree/Somewhat disagree/Strongly disagree 
• The tool flow and processes are well documented. Radio button: Strongly 

agree/Somewhat agree/Agree/Somewhat disagree/Strongly disagree 
• I have a clear line of communication with other groups in the design chain. Radio 

button: Strongly agree/Somewhat agree/Agree/Somewhat disagree/Strongly 
disagree 

• Please describe problems you have had with specific tools. Multi-line type-in field 



ProjectSync Advanced Customization Guide 

135 

• Please describe problems you have had at any point during design flow. Multi-
line type-in field 

System Administrator Survey Prototype: 

If System Administrator, the following fields display: 

• How many hours did it take to install the upgrade the OS: 

Please answer the following questions: 

• The upgrade was straightforward. Radio button: Strongly agree/Somewhat 
agree/Agree/Somewhat disagree/Strongly disagree 

• Our tools are state-of-the-art design tools. Radio button: Strongly 
agree/Somewhat agree/Agree/Somewhat disagree/Strongly disagree 

• I find the tool flow to be straightforward. Radio button: Strongly agree/Somewhat 
agree/Agree/Somewhat disagree/Strongly disagree 

• The hand-off between design and layout is smooth. Radio button: Strongly 
agree/Somewhat agree/Agree/Somewhat disagree/Strongly disagree 

• Iterations between design stages are efficient. Radio button: Strongly 
agree/Somewhat agree/Agree/Somewhat disagree/Strongly disagree 

• I have a clear line of communication with other groups in the design chain. Radio 
button: Strongly agree/Somewhat agree/Agree/Somewhat disagree/Strongly 
disagree 

Develop Property Types 

If your note type requires custom property types, it's a good idea to create the property 
types before you create your note type.  The Feedback note panels require custom pull-
down fields, such as the HDL Language field.  To create a custom property type, you 
bring up the Note Type Manager and select Manage Property Types.  See ProjectSync 
User's Guide: Creating New Property Types.   

For the Feedback note type, we create the following choice list property types: 

Property Name Choice List Values 
HDLLanguage Verilog, VHDL, Other, N/A 
SimTools Vquick, SimQuick, Simmer, Other, N/A 
SynTools BuildIt, GateGo, Other, N/A 
LayoutTools LayoutMaster, SmartPlace, GatePlace, Other, N/A 
PhysVerTools Verify, RightDesign, Other, N/A 
DesMgmtTools DesignSync, ReVision, Other, N/A 
IPReuseTools Publisher Suite, DesignChain, Other, N/A 
AllTools Vquick, SimQuick, Simmer, BuildIt, GateGo, LayoutMaster, 

SmartPlace, GatePlace, Verify, RightDesign, DesignSync, 



Case Study: Design Tool Process Survey 

136 

ReVision, Publisher Suite, DesignChain, Other, N/A 
SurveyResponse Strongly agree, Somewhat agree, Agree, Somewhat disagree, 

Strongly disagree 
Position String (Note: We will be changing this field to a custom 

JavaScript field in a subsequent section, Redirect to System 
Administration Panel.) 

Create Feedback Note Type 

The next step is to create the basic note type for the feedback survey using the Note 
Type Manager.  See ProjectSync Help: Creating Custom Note Types. 

This first pass at creating the feedback user interface provides the survey questions 
only for the designers.  A separate panel will be created later with questions directed 
specifically toward system administrators.   

We add the following properties to the basic Feedback Note Type. 

Field (Property) Field Type 
Property Type) 

Prompt 

Position 
  

String20 Position 
(Note: We will be changing this field 
to a custom JavaScript field in a 
subsequent section, Redirect to 
System Administration Panel.) 

ModSize Integer Size of Typical Module (# gates) 
HDLLang HDLLanguage HDL Language 
HDLOther String20 Other (HDL Language) 
SimTool SimTools Simulation Tool 
SimOther String20 Other (Simulation Tool) 
SimEffect SurveyResponse This simulation tool is effective. 
SimEasy SurveyResponse This simulation tool is easy to use. 
SynTool SynTools Synthesis Tool 
SynOther String20 Other (Synthesis Tool) 
SynEffect SurveyResponse This synthesis tool is effective. 
SynEasy SurveyResponse This synthesis tool is easy to use. 
LayTool LayTools Layout Tool 
LayOther String20 Other (Layout Tool) 
LayEffect SurveyResponse This layout tool is effective. 
LayEasy SurveyResponse This layout tool is easy to use. 
PVTool PVTools Physical Verification Tool 
PVOther String20 Other (Physical Verification Tool) 
PVEffect SurveyResponse This physical verification tool is 

effective. 



ProjectSync Advanced Customization Guide 

137 

PVEasy SurveyResponse This physical verification tool is easy 
to use. 

DMTool DMTools Design Management Tool 
DMOther String20 Other (Design Management Tool) 
DMEffect SurveyResponse This design management tool is 

effective. 
DMEasy SurveyResponse This design management tool is easy 

to use. 
IPTool IPTools IP Reuse Tool 
IPOther String20 Other (IP Reuse Tool ) 
IPEffect SurveyResponse This IP tool is effective. 
IPEasy SurveyResponse This IP tool is easy to use. 
Easiest AllTools The easiest design tool I use is: 
Difficult AllTools The most difficult design tool I use is: 
StateArt SurveyResponse Our tools are state-of-the-art design 

tools. 
ToolFlow SurveyResponse I find the tool flow to be 

straightforward. 
HandOff SurveyResponse The hand-off between design and 

layout is smooth and efficient. 
Documented SurveyResponse The tool flow and processes are well 

documented. 
Commune SurveyResponse I have a clear line of communication 

with other groups in the design chain. 
ToolProbs String Please describe problems you have 

had with specific tools. 
FlowProbs String Please describe problems you have 

had at any point during design flow. 

A portion of the Feedback note type is shown in Add mode below.  The pull-down 
menus in the note type correspond to the property types created in the previous step. 



Case Study: Design Tool Process Survey 

138 

 

Generate HTML Templates 

Once you have used the Note Type Manager to create a basic user interface, you can 
generate the HTML templates if you want to customize the presentation of the panel.  In 
our case, we'll be creating extra panels for the Feedback note type, so we'll use the 
generated HTML Feedback templates as a starting point for our custom panels.  See 
Generating HTML Templates for the steps to generate templates.  For the Feedback 
 note type, we generate the following templates: 

share/panels/NoteAdd/AddFeedback.html 

share/panels/NoteDetail/EditFeedback.html 

share/panels/NoteDetail/ViewFeedback.html 

Modify the AddFeedback Panel 



ProjectSync Advanced Customization Guide 

139 

The AddFeedback panel displays Configuration, Attach To, Title, and Note Text fields 
which are not relevant because our note panel is a survey.  We do not need to track 
these fields for the Feedback notes. 

Remove unnecessary headings and fields: 

We delete the configuration and attachment substitutions from the 
AddFeedback.html file, as well as the Title and Body fields.   We delete the headers 
and prompts associated with these fields, as well. 

Redirect to System Administration Panel 

We will modify the Position field so that it determines if the user surveyed is a System 
Administrator.  If the user is a System Administrator, ProjectSync will display a different 
survey panel.  We will convert the Position field into a radio button containing job titles. 
The button corresponding to "System Administrator" will execute a simple JavaScript 
script that will invoke the URL of the alternate panel, SysAdminFeedback. 

We create the new panel, named SysAdminFeedback.html in the 
/share/panels/NoteAdd directory.  To add new fields, we modify the Feedback 
note type using the Note Type Manager.  Because the SysAdminFeedback panel 
contains some of the same survey questions as the general AddFeedback panel, we 
make a copy of the AddFeedback.html panel and name it 
SysAdminFeedback.html. Then, we add the extra fields and remove unnecessary 
 fields from SysAdminFeedback.html. 

Next, we change the Position field substitution in the AddFeedback.html file sot that it 
redirects to the alternate System Administrator panel.  The original code generated 
during the HTML Generation step is shown below, followed by the new code that 
implements the custom field. 

Position Field Code Generated during HTML Generation 

<TR> 
  <TH align=right><!-- SYNC prompt Position --></TH> 
  <TD> 
    <!-- SYNC field Position --> 
  </TD> 
</TR> 

New Position Field Code that Redirects to SysAdminFeedback Panel 

The following code implements the Position radio button in the AddFeedback.html 
file: 



Case Study: Design Tool Process Survey 

140 

<TR> 
  <TH align=right><!-- SYNC prompt Position --></TH> 
  <TD> 
    <INPUT TYPE=RADIO NAME=Position VALUE="Designer"> 
      Designer 
    <INPUT TYPE=RADIO NAME=Position VALUE="Lead Design"> 
      Lead Design <BR> 
    <INPUT TYPE=RADIO NAME=Position VALUE="Test Engineer"> 
      Test Engineer 
    <INPUT TYPE=RADIO NAME=Position VALUE="System Administrator" 
    onClick='Position_Redirect()'> System Administrator 
    <BR> 
    <B>Note</B>: System Administrators will be redirected 
    <BR> 
    to a different feedback form. 

    <SCRIPT> 
      function Position_Redirect() 
      { 
  location='isynch.dll?panel=NoteAdd&NoteType=Feedback&position=
SysAdmin 

'; 
      } 
    </SCRIPT> 
  </TD> 
</TR> 

The AddFeedback panel now displays as follows. (Not all fields are shown.) 

 

The URL invoked by the Position_Redirect function invokes the AddFeedback 
panel, with a custom parameter named Position set to SysAdmin.   

The radio button displays in the AddFeedback panel as follows: 

 

In order for the System Administration radio button to redirect to the System 
Administration feedback panel, the AddFeedback.ini file uses the 
select_template command to switch from the AddFeedback panel to the 
SysAdminFeedback panel: 

cgi_arg position 



ProjectSync Advanced Customization Guide 

141 

if {$position == "SysAdmin"} { 
  select_template SysAdminFeedback 
} 

Now, when the user clicks on System Administration in the Position radio button, the 
System Administration Feedback panel displays.  (Not all fields are shown.) 

 





143 

Getting Assistance 
Using Help 
ENOVIA Synchronicity DesignSync Data Manager Product Documentation provides 
information you need to use the product effectively. The Online Help is delivered 
through WebHelp® , an HTML-based format. 

Note: 

Use SyncAdmin to change your default Web browser, as specified during DesignSync 
product tools installation.  See SyncAdmin Help for details. 

To bring up the online help from the tool you are using, do one of the following: 

 Select Help => Help Topics from the tool you are using. The help system opens 
in your default browser. The Contents tab displays in the left pane and the 
corresponding help topic displays in the right pane. 

 Click Help on forms. The help system opens to the topic that describes the form. 
 Press the F1 key. The help system opens to the topic that describes the current 

form or window you have open. 

To bring up stand-alone Online Help, do one of the following: 

 Enter the correct URL from your Web browser: 

http://<host>:<port>/syncinc/doc/<docname>/<docname.htm> 

 where <host> and <port> are the SyncServer host and port information. Use this 
server-based invocation when you are not on the same local area network (LAN) 
as the DesignSync installation. 

For example: 

http://<host>:<port>/syncinc/doc/pscustom/pscustom.htm 

http://<host>:<port>/syncinc/doc/DesSync/dessync.htm 

 Enter the following URL from your Web browser: 

file:///$SYNC_DIR/share/content/doc/<docname>/<docname.htm> 

For example: 



Getting Assistance 

144 

file:///$SYNC_DIR/share/content/doc/pscustom/pscustom.htm 

file:///$SYNC_DIR/share/content/doc/DesSync/dessync.htm 

where $SYNC_DIR is the location of the DesignSync installation. Specify the 
value of SYNC_DIR, not the variable itself. Use this invocation when you are on 
the same LAN as the installation. This local invocation may be faster than the 
server-based invocation, does not tie up a server process, and can be used even 
when the SyncServer is unavailable. 

When the Online Help is open, you can find information in several ways: 

• Use the Contents tab to see the help topics organized hierarchically. 
• Use the Index tab to access the keyword index. 
• Use the Search tab to perform a full-text search. 

Within each topic, there are the following navigation buttons: 

• Show and Hide: Clicking these buttons toggles the display of the navigation (left) 
pane of WebHelp, which contains the Contents, Index, and Search tabs. Hiding 
the navigation pane gives more screen real estate to the displayed topic. 
Showing the navigation pane givens you access to the Contents, Index, and 
Search navigation tools. 

• << and >>: Clicking these buttons moves you to the previous or next topic in a 
series within the help system. 

You can also use your browser navigation aids, such as the Back and Forward 
buttons, to navigate the help system. 

  

Getting a Printable Version of Help 
The ProjectSync Advanced Customization Guide is available in book format from the 
ENOVIA Documentation CD or the DSDocumentationPortal_Server installation 
available on the 3ds support website. The content of the book is identical to that of the 
help system. Use the book format when you want to print the documentation, otherwise 
the help format is recommended so you can take advantage of the extensive hyperlinks 
available in the DesignSync Help. 

You must have Adobe® Acrobat® Reader™ Version 8 or later installed to view the 
documentation. You can download Acrobat Reader from the Adobe web site. 

Contacting ENOVIA 



ProjectSync Advanced Customization Guide 

145 

For solutions to technical problems, please use the 3ds web-based support system: 

http://media.3ds.com/support/ 

From the 3ds support website, you can access the Knowledge Base, General Issues, 
Closed Issues, New Product Features and Enhancements, and Q&A's. If you are not 
able to solve your problem using this information, you can submit a Service Request 
(SR) that will be answered by an ENOVIA Synchronicity Support Engineer. 

If you are not a registered user of the 3ds support site, send email to ENOVIA Customer 
Support requesting an account for product support: 

enovia.matrixone.help@3ds.com 

Related Topics 

Using Help 

  





147 

Index 
G 

Global Variables 95 

H 

Help 

contacting ENOVIA 144 

printing 144 

using 143 

HTML 

customizing 40 

generating templates 39 

N 

Note Panel 

arguments 117 

fields 20 

substitution tags 61 

attachment 62 

charset 64 

configuration 65 

controls 66 

eval 68 

field 69 

hiddens 81 

js_data 82 

NoteForm 83 

NoteId 84 

notetype 84 

pagetitle 85 

project 86 

prompt 87 

scripts 88 

std_header 89 

std_separator 91 

style 92 

substitution 126 

Note Types 

configuration files 26 

global variable 107 

P 

Panel Initialization 

coding practices 47 

postprocessing files 49 

Panels 

customizing 29, 36 

global variables 117 



 

148 

ProjectSync 

customizing 1 

global variables 116 

introduction 1 

S 

SyncServer 

global variables 99 

U 

User Profiles 

global variables 99, 116 

 


	ProjectSync Customizations
	Introduction
	Types of ProjectSync Customizations

	ProjectSync Panel Architecture
	Anatomy of ProjectSync Note Types
	Note Type Directories: SW-Defect-1

	Anatomy of ProjectSync Panels
	Panel Modes
	Template and Driver Implementation
	Example: Creating a Custom Template and Driver
	HTML Templates for Note Panel Modes

	Straight Tcl Implementation
	Example: Creating a Custom Tcl Panel Script
	Tcl Scripts for Note Panel Modes


	URLs for Loading Panels
	Panel URL
	Example: Loading a Note Panel in Add Mode
	Example: Loading a Note Panel in View Mode
	Example: Loading a Note Panel in Edit Mode
	Example: Passing Multiple Parameters
	Example: Loading a Command Mode of a Panel

	Precedence of Panel Customization Files
	Precedence of Panel Initialization Driver Files
	Precedence of tcl Scripts
	Precedence of Custom Panels
	Precedence of Global Variables

	Note Panel Fields
	Configurable Fields
	Seeding Fields
	Hidden Fields

	Note Type Configuration Files
	String Table Configuration Files
	Mapping Identifiers Using String Table Files
	Example: Displaying a Space within a Note Type Name
	Example: Updating Field Names


	Customizing Panels
	Customizing Panels
	Customizing Standard ProjectSync Panels
	Creating New Panels

	Securing Custom Panels
	Securing Dialog Panels
	Format Option 1:
	Format Option 2
	Format Option 3

	Securing Actions
	Related Topics

	Panel Gather Phase
	Customizations for the Gather Phase

	Panel Process Phase
	Customizations for the Process Phase

	Customizing Panels: Step by Step

	HTML Panel Templates
	Generating HTML Templates
	Customizing HTML for Panels
	Editing Panel HTML Templates
	Editing HTML Templates Using a WYSIWYG Editor
	Editing HTML Templates Using a Text Editor


	Example: Customizing a New Note Type
	Example: Adding a Column to a Layout


	Panel Initialization Drivers
	Creating Panel Initialization Drivers
	Changing the Prompt String
	Creating New Substitutions
	Selecting Between HTML Templates
	Special Considerations

	Postprocessing in Panel Initialization Files
	PreSchema Processing Procedures
	PostSchema Processing Procedures
	Working with Global Variables in Process Procedures
	Aborting Note Submission


	Tcl Panel Scripts
	Implementing Panels Using Tcl Panels Scripts
	Implementing an HTML Form in a Tcl Script
	Example: Creating HTML Forms in a Tcl Script
	Example: Passing Control and Arguments to Panels
	Example: Using the format Command to Handle HTML Code



	Note Panel Substitution Tags
	What Are Substitution Tags?
	Syntax of Substitution Tags

	attachment Substitution
	Description
	Use
	Arguments
	Globals Referenced
	Examples

	charset Substitution
	Description
	Use
	Arguments
	Globals Referenced
	Example

	configuration Substitution
	Description
	Use
	Arguments
	Globals Referenced
	Examples

	controls Substitution
	Description
	Use
	Arguments
	Globals Referenced
	Examples

	eval Substitution
	Description
	Use
	Arguments
	Globals Referenced
	Example

	field Substitution
	Description
	Use
	Arguments
	Globals Referenced
	Examples

	hiddens Substitution
	Description
	Use
	Arguments
	Globals Referenced
	Example

	js_data Substitution
	Description
	Use
	Arguments
	Globals Referenced

	NoteForm Substitution
	Description
	Use
	Arguments
	Globals Referenced

	NoteId Substitution
	Description
	Use
	Arguments
	Globals Referenced
	Example

	notetype Substitution
	Description
	Use
	Arguments
	Globals Referenced
	Example

	pagetitle Substitution
	Description
	Use
	Arguments
	Globals Referenced
	Example

	project Substitution
	Description
	Use
	Arguments
	Globals Referenced
	Examples

	prompt Substitution
	Description
	Use
	Arguments
	Globals Referenced
	Example

	scripts Substitution
	Description
	Use
	Arguments
	Globals Referenced
	Example

	std_header Substitution
	Description
	Use
	Arguments
	Globals Referenced
	Examples

	std_separator Substitution
	Description
	Use
	Arguments
	Globals Referenced
	Example

	style Substitution
	Description
	Use
	Arguments
	Globals Referenced
	Example


	Note Panel Global Variables
	Global Variables
	AllModulesList
	Type
	Format
	Example

	AllProjectsList
	Type
	Format
	Examples

	AllProjectsMap
	Type
	Format
	Example

	AllUsersList
	Type
	Format
	Example

	AllUsersMap
	Type
	Format
	Example

	classes
	Type
	Format
	Example

	defvals
	Type
	Format
	Example

	DisplayMode
	Type
	Format
	Example

	field_values
	Type
	Format
	Example

	fields
	Type
	Format
	Example

	NoteId
	Type
	Format
	Example

	Module Name
	Type
	Format
	Example

	Module Tag
	Type
	Format
	Example

	NoteSystem
	Type
	Format
	Example

	NoteType
	Type
	Format
	Access Control
	Example

	NoteURL
	Type
	Format
	Example

	other_attachments
	Type
	Format
	Example

	ProjectConfig
	Type
	Format
	Example

	ProjectName
	Type
	Format
	Example

	ProjectRelease
	Type
	Format
	Example

	prompts
	Type
	Format
	Example

	ptypes
	Type
	Format
	Example

	reqfields
	Type
	Format
	Example

	SYNC_ClientInfo
	Type
	Format
	Example

	SYNC_Parm
	Type
	Format
	Example
	See Also


	SYNC_Query
	Type
	Format
	Example

	SYNC_User
	Type
	Format
	Example


	Note Panel Arguments
	Note Panel Arguments

	Tcl Utilities
	call_substitution
	Description
	Use
	Arguments
	Globals Referenced
	Returns
	Example

	cgi_arg
	Description
	Use
	Arguments
	Globals Referenced
	Returns
	Example

	encodeUrl
	Description
	Use
	Arguments
	Globals Referenced
	Returns
	Example

	htmlResult
	Description
	Use
	Arguments
	Globals Referenced
	Examples

	select_template
	Description
	Use
	Arguments
	Globals Referenced
	Returns
	Example

	substitution
	Description
	Use
	Arguments
	Globals Referenced
	Returns
	Example

	Other Utilities

	Case Study: Design Tool Process Survey
	Design Tool Process Survey
	Develop Paper Prototype of Survey
	CAE Process and Tools Survey Prototype

	Develop Property Types
	Create Feedback Note Type
	Generate HTML Templates
	Modify the AddFeedback Panel
	Redirect to System Administration Panel


	Getting Assistance
	Using Help
	Getting a Printable Version of Help
	Contacting ENOVIA

	Index



