
1

ENOVIA DesignSync
User’s Guide

3DEXPERIENCE 2022
©2022 Dassault Systèmes. All rights reserved. 3DEXPERIENCE®, the Compass icon, the 3DS logo, CATIA, SOLIDWORKS, ENOVIA, DELMIA, SIMULIA, GEOVIA, EXALEAD, 3D VIA, BIOVIA, NETVIBES,
IFWE and 3DEXCITE are commercial trademarks or registered trademarks of Dassault Systèmes, a French “société européenne” (Versailles Commercial Register # B 322 306 440), or its subsidiaries in the
United States and/or other countries. All other trademarks are owned by their respective owners. Use of any Dassault Systèmes or its subsidiaries trademarks is subject to their express written approval.

i

Table of Contents

Overview ... 1

Overview .. 1

ENOVIA Synchronicity DesignSync® Data Manager Capability 1

Using ENOVIA Synchronicity DesignSync Data Manager User's Guide
Documentation ... 1

Before Reading this Guide ... 2

Getting Started with DesignSync ... 2

Setting Up Your Work Area .. 2

Modifying Data ... 4

Staying Informed of Project Changes ... 4

What is Revision Control? ... 4

Contacting ENOVIA ... 6

Introduction to Merging .. 6

What Is Merging? ... 6

Merge Conflicts .. 7

Two-Way Merge ... 9

Three-Way Merge .. 9

Merge Edges .. 11

Merge Conflict Editor .. 13

Setting up a Project or Module Workspace ... 19

Accessing a SyncServer with User Authentication .. 19

Setting Up a Work Area for a Project ... 21

Joining a Project Using a Wizard ... 21

Table of Contents

ii

What Is a Project? .. 21

Defining a Public Project .. 23

Displaying Project Properties ... 23

Browsing a Project Vault .. 24

Workspace Wizard ... 24

Joining a Project Step-by-Step .. 45

Specifying the Vault Location for a Design Hierarchy .. 45

Adding a Vault to Bookmarks ... 51

Verifying That a Vault Has Been Set on a Folder ... 51

Browse the Vault for a File or Project ... 51

Viewing the Contents of a Vault ... 51

Populating Your Work Area .. 53

Using a Mirror... 69

Setting Permissions for the Mirror .. 72

Changing the Vault for a Design Hierarchy .. 73

Setting a Workspace Root ... 73

Setting Persistent Populate Views and Filters ... 74

Using DesignSync ... 79

Populating Your Work Area ... 79

Populate Field Descriptions ... 84

Changing the State of Objects in Your Work Area ... 95

Specifying Module Objects for Operations ... 97

Checking Out Design Data .. 100

DesignSync Data Manager User's Guide

iii

Check Out Field Descriptions ... 101

Canceling a Checkout .. 105

Cancel Checkout Field Descriptions .. 107

Checking In Design Data ... 108

Check In Field Descriptions ... 113

Adding a Member to a Module ... 121

Creating Branches ... 124

Make Branch Field Descriptions ... 125

Tagging Versions and Branches .. 127

Tag Naming Conventions ... 127

Tagging Module Snapshots ... 128

DesignSync Objects for Tag .. 129

Tag Field Descriptions ... 131

Unlocking Server Data ... 136

Unlock Field Descriptions ... 137

Working with Exclude Files .. 139

Exclude File Processing ... 139

Exclude File Formatting ... 140

Related Topics ... 141

Adding/Removing Exclusions .. 141

Creating and Maintaining Exclusion Files .. 141

Add Exclusion Using DesignSync Commands ... 142

Remove Exclusion Using DesignSync Commands .. 142

Table of Contents

iv

Related Topics ... 142

Viewing Exclusions .. 142

Related Topics ... 143

Using Revision Control Keywords.. 143

Revision Control Keywords Overview .. 143

Using Revision Control Keywords .. 144

Working with Modules ... 149

Specifying Module Objects for Operations ... 149

Creating a Module ... 152

Creating a New Version of a Module ... 154

Adding a Member to a Module ... 155

Creating a Hierarchical Reference ... 158

Removing a Member from a Module .. 163

Deleting a Hierarchical Reference ... 165

Locking Module Data ... 166

Setting a Workspace Root ... 167

Rolling Back a Module ... 168

Deleting a Module .. 170

Deleting a Module Cache Link ... 174

Delete Field Descriptions ... 175

Resolving Module Structure Conflicts .. 176

Related Topics ... 177

Overlaying Module Data .. 177

DesignSync Data Manager User's Guide

v

Synchronizing Enterprise Developments ... 180

Running the Synchronize command .. 180

See Also ... 181

Reference .. 181

What Is a Module? ... 181

Data Management of Modules ... 185

Operating on Module Data ... 186

Auto-Merging.. 189

Understanding Module Views .. 192

Filtering Module Data ... 196

Module Recursion .. 200

Module Locking .. 204

Module Hierarchy ... 206

Folder Versioning ... 215

Module Branching .. 216

Merging Module Data ... 219

Module Merging ... 224

External Modules ... 228

Module Member Tags .. 230

Edit-In-Place Methodology ... 233

Understanding Smart Module Detection .. 235

Conflict Handling .. 236

Module Version Updating ... 237

Table of Contents

vi

Using a Module Cache ... 238

Working with Files and Directories .. 241

Creating Files .. 241

New File Field Descriptions .. 241

Moving and Renaming Files .. 242

Adding a Member to a Module ... 242

Moving a module member ... 245

Some notes on moving folders ... 245

Using the Moving Modules Members dialog box ... 247

Renaming a module member ... 248

Creating Folders .. 250

New Folder Field Descriptions ... 251

Moving and Renaming Folders .. 252

Removing Objects ... 252

Deleting Design Data ... 252

Deleting Files ... 253

Deleting Folders ... 255

Deleting Server Folders ... 258

Deleting Vaults ... 261

Deleting Versions from a Vault ... 264

Retiring Design Data .. 267

Removing a Member from a Module .. 270

Comparing Files .. 273

DesignSync Data Manager User's Guide

vii

Common Diff Operations ... 273

Advanced Diff Options ... 274

Field Descriptions ... 276

Reading Diff Results .. 280

Display diff-annotated file (revised format) ... 281

Display only the diffs (standard format) .. 281

Display only the diffs (unified format) ... 282

Display only the diffs (syncdiff format) .. 283

Display diff-annotated file ... 284

Display Output in GUI .. 285

Revised Diff Format ... 285

Using Revised Diff Format ... 286

Revised Diff Format Actions ... 287

Related Topics ... 288

Graphical Diff Utility ... 288

Using Graphical Diff format .. 288

Graphical Diff Format Tools ... 289

Displaying Information ... 293

Showing Potential Checkouts .. 293

Identifying Changed Objects .. 293

Displaying Contents of Vault Data ... 295

Contents Field Descriptions ... 296

Displaying Contents of Vault Data ... 298

Table of Contents

viii

Contents Field Descriptions ... 299

Displaying a Module Cache ... 301

Displaying Module Hierarchy ... 302

To display module hierarchy .. 304

Displaying Module Status .. 306

Displaying Module Views ... 309

Displaying Module Where Used .. 309

Running the Where Used command .. 310

Understanding the Where Used command output ... 311

Where Used Actions .. 312

Vault browser object context menu .. 313

Displaying Enterprise Objects .. 313

Compare the Contents of Two Areas ... 314

Compare Workspaces/Selectors Field Descriptions .. 316

Compare the Contents of Two Areas ... 319

Compare Workspaces/Selectors Field Descriptions .. 322

Displaying Version History ... 325

Version History Field Descriptions ... 326

Controlling the Display of Module Information ... 331

Displaying module versions ... 331

Using Display Filters .. 331

Exploring Modules ... 332

Annotate Tool .. 333

DesignSync Data Manager User's Guide

ix

Using Annotate... 333

Annotate Actions .. 335

Highlighting the Annotate results.. 337

Vault Browser Tool .. 340

Vault Browser Overview ... 340

Vault Browser Actions .. 344

Vault Browser Tools ... 346

Filter Interesting Dialog .. 349

Finding Objects in the Vault Browser ... 350

Working in SITaR .. 355

Using SITaR as a SITaR Designer .. 355

The Designer Role ... 355

Creating a Workspace .. 355

Editing a Sub-Module ... 356

Synchronizing a Module with the Baseline ... 356

Submitting a Sub-Module for Integration .. 357

Synchronizing all Sub-Modules with the Baseline .. 357

Branching a Sub-Module .. 358

Using SITaR as a SITaR Integrator ... 359

The Integrator Role .. 359

The Integration Workspace .. 359

Creating an Integration Workspace .. 360

Workflow for Updating the Container Module ... 360

Table of Contents

x

Locating Submitted Modules for Integration ... 361

Selecting Sub-Modules for Integration ... 361

Integrating Selected Changes into the Container Module 362

Testing the Integration Version of the Container Module 362

Locating a Context Module Version ... 363

Recreating the Developer's Workspace ... 363

Releasing a New Baseline ... 364

Branching a Container or Sub-Module ... 364

Configuring SITaR ... 365

SITaR Environment Variables .. 365

Sample SITaR Environment Variable File .. 368

Creating a SITaR Container Module .. 369

Defining and Enabling Module Context .. 370

Creating a SITaR Sub-Module ... 371

Creating an Initial Baseline Release .. 372

Branching a Container or Sub-Module ... 374

Reference .. 374

Overview of SITaR Workflow ... 374

SITaR Module Structure ... 375

Branching in SITaR .. 377

Techniques .. 379

Getting Started with the GUI .. 379

Using the DesignSync GUI .. 379

DesignSync Data Manager User's Guide

xi

Assumed Environment: .. 379

Creating a Work Area ... 380

Creating a Work Area ... 382

Creating File Versions .. 383

Configuration/Release Management .. 386

Working with Files in Your DesignSync Work Area .. 391

Getting Started with the Command Shell ... 391

Using the DesignSync Command Shell ... 392

Assumed Environment ... 392

Creating a Work Area - Putting Files Under Revision Control 393

Creating a Work Area - Joining a Project Already Under Revision Control 395

Creating File Versions .. 397

Configuration/Release Management .. 400

Working with Files in Your DesignSync Work Area .. 405

Tutorials .. 407

Creating Modules and Module Data .. 407

Module Hierarchy: Module Structure .. 407

Creating Module Hierarchy: Overview .. 407

Creating Module Hierarchy: Create the Module ... 408

Creating Module Hierarchy: Add Files and Check In.. 408

Creating Module Hierarchy: Add an HREF to a Module in the Workspace 409

Creating Module Hierarchy: Populate with Dynamic HREF Mode 410

Creating Module Hierarchy: Add an HREF to a Module not in the Workspace 411

Table of Contents

xii

Creating a Peer Structure Module Hierarchy ... 412

Updating Module Hierarchy ... 413

Modifying Module Hierarchy: Overview .. 413

Modifying Module Hierarchy: New "Gold" Version of ALU Created 413

Modifying Module Hierarchy: Chip Team Uses New ALU Version 414

Modifying Module Hierarchy: CPU Team Reverts to Earlier ALU Version 415

Moving a File .. 416

Moving a Folder ... 417

Operating with Module Data .. 418

Operating on a Module ... 418

Operating on a Module's Contents ... 419

Filtering .. 420

Persistent Populate Filter ... 421

Folder-Centric Operations .. 422

Module-Centric Operations on a Module .. 423

Module-Centric Operations on a Subfolder .. 424

Module-Centric Operations on an HREF .. 425

Locking a Module Branch ... 426

Locking Module Content .. 427

Branching a Module ... 428

Merging and Modules .. 429

Auto-Merging Locally Added Files .. 429

Auto-Merging Locally Modified Files .. 430

DesignSync Data Manager User's Guide

xiii

Auto-Merging Locally Modified Files Removed from the Module 431

Auto-Merging Non-Latest Locally Modified Files .. 432

Auto-Merging Locally Modified Files Renamed in the Module 433

Auto-Merging Locally Modified Files with Other Files Renamed in the Module 434

In-Branch Merging of Locally Added Files .. 435

In-Branch Merging of Locally Modified Files .. 436

Step-by-Step Use Cases ... 437

Creating Modules and Module Data ... 437

Updating Module Hierarchy .. 484

Operating with Module Data ... 516

Merging and Modules ... 593

Reference .. 633

Understanding the DesignSync Architecture ... 633

DesignSync Architecture .. 633

What Is a SyncServer? .. 634

Object States.. 634

Object Types .. 636

Object Properties ... 637

URL Syntax .. 645

DesignSync URLs .. 648

Revision Control Status Values .. 649

Vaults, Versions, and Branches ... 651

Introduction to Data Replication ... 652

Table of Contents

xiv

Metadata Overview .. 653

Mirrors .. 655

Understanding the GUI Interface ... 662

Using the Classic DesignSync GUI .. 662

Using the Workspace Structure Browser ... 663

DesignSync Symbols and Icons ... 664

Toolbars and Menus .. 668

Classic Windows and Panes .. 692

Workspace Structure Browser Windows and Views... 702

DesignSync Shells ... 710

DesignSync Command Line Shells .. 710

Comparing the DesignSync Shells ... 711

Invoking a DesignSync Shell .. 712

Command Line Editing ... 714

Working with Command Aliases... 719

Configuring the DesignSync Interface ... 720

Configuring DesignSync ... 720

Controlling Access to Your Local Work Area ... 721

Setting Up a Shared Work Area ... 721

Moving a Work Area ... 723

UNIX Permissions of Work Areas and Vaults .. 726

Command Line Defaults System .. 728

Working with Scripts .. 728

DesignSync Data Manager User's Guide

xv

DesignSync Scripts .. 728

Using DesignSync Commands in OS Shell Scripts .. 728

Creating DesignSync Scripts ... 730

Running Scripts .. 731

Running a Script at Startup .. 732

Improving Efficiency Using Caches and Mirrors .. 733

Mirrors Versus Caches ... 733

What is a File Cache? .. 733

Why Use a File Cache? ... 735

What is a Module Cache? .. 735

Mirroring Overview ... 736

Locking, Branching, and Merging .. 738

What Is Merging? ... 738

Locking and Merging Work Styles .. 739

Selecting Versions and Branches .. 744

Parallel (Multi-Branch) Development .. 763

Working with Legacy Modules ... 784

How DesignSync Handles Legacy Modules ... 784

Upgrading Legacy Modules ... 785

Upgrading DesignSync Vaults ... 791

Managing Legacy Configurations and REFERENCEs ... 795

Collections ... 808

Collections Overview .. 808

Table of Contents

xvi

Displaying Collections .. 809

Cadence Collections .. 810

Cadence Design Objects Overview .. 810

Enabling Cadence Object Recognition ... 812

How DesignSync Recognizes Cadence Data .. 812

How DesignSync Manages Cadence Objects .. 814

Managing Non-Collection Objects .. 815

Custom Type Package Collections .. 816

Custom Type Package Collections Overview .. 816

How DesignSync Recognizes CTP Data ... 817

Integration with ENOVIA Program Central ... 818

Using the ENOVIA Semiconductor Accelerator for DesignSync Central 818

Using the ENOVIA Semiconductor Accelerator for IP Management 818

User Interface .. 819

Performing GUI operations .. 819

Selecting Objects ... 819

Going to a Location .. 819

Navigating the Tree View ... 820

Adding, Editing, and Organizing Bookmarks .. 821

Defining and Modifying Bookmark Properties .. 823

Searching for Text .. 823

Reviewing History .. 824

Using Data Sheets ... 825

DesignSync Data Manager User's Guide

xvii

Setting the Verbosity of the Output Window ... 826

Viewing the Results of an Operation .. 826

Common Interface Topics .. 827

Comment Field ... 827

Exclude Field.. 829

Filter Field .. 830

Force Overwrite of Local Modifications Option ... 831

Href Filter Field... 831

Keys Field .. 832

Local Versions Field ... 832

Module Context Field ... 833

Module Views Field .. 834

Populate Log .. 835

Recursion Option ... 837

Retain Timestamp Field ... 837

Suggested Branches, Versions, and Tags ... 837

Trigger arguments .. 838

Command Invocation ... 838

Command Buttons ... 838

Get Tags/Versions ... 839

Select a path .. 840

Select Module Context ... 841

Select Module Instance ... 842

Table of Contents

xviii

Select Parent Module .. 842

Select Vault URL Browser ... 843

Filter Interesting Dialog .. 843

Related Topics ... 844

Select a Member Descendant ... 845

Related Topics ... 845

Index ... 847

1

Overview

Overview
ENOVIA Synchronicity DesignSync® Data Manager provides a graphical interface to
the revision control operations that DesignSync provides. This helps documents both
the graphical user interface and many of the concepts and working models that
DesignSync supports.

ENOVIA Synchronicity DesignSync® Data Manager Capability

DesignSync provides the major revision control functionality available in DesignSync,
including, among others, the following concepts:

• What is Revision Control?
• DesignSync Architecture
• What Is a Design Configuration?
• What Is a Module?
• Overview of SITaR Workflow
• What Is a Project?
• Parallel (Multi-Branch) Development
• What Is a SyncServer?
• What is Merging?
• Introduction to Data Replication
• Mirroring Overview

and the following major revision control operations:

• Creating a Workspace
• Populating Your Work Area
• Checking out Design Data
• Checking in Design Data
• Adding a Member to a Module
• Creating Branches
• Tagging Versions and Branches
• Retiring Design Data/Removing a Member from a Module
• Creating a Hierarchical Reference

Using ENOVIA Synchronicity DesignSync Data Manager User's
Guide Documentation

This guide is single-sourced in HTML and generated to multiple locations.

• Integrated help - When you press F1 within the DesignSync (DesSync on
UNIX)application or click on the Help button on DesignSync dialog boxes, the

Overview

2

DesignSync Data Manager's User's Guide help appropriate for the location or dialog
opens in your default Web browser.

• DesignSync Documentation - available from the Dassault Systems product group in the
Windows Start menu or on UNIX, by pointing your web browser to
$SYNC_DIR/share/content/doc/index.html

Note: References from the ENOVIA Synchronicity DesignSync Data Manager User's
Guide to the ENOVIA Synchronicity Command Reference guide always link to the ALL
version of the guide, which contain information about all working methodologies for
DesignSync. For more information about the available working methodologies, see
 ENOVIA Synchronicity Command Reference.

Before Reading this Guide

This guide has no prerequisite guides because it contains all the introductory material to
get started with DesignSync. If there is no client installed on your system, you may
need to install the client. The client installation documentation is located in the Program
Directory.

Getting Started with DesignSync
This topic provides instructions to help you set up a work area and get started using
ENOVIA Synchronicity DesignSync® Data Manager to manage your design data.

In the following scenario, assume that your project lead has checked in data for the
project you are working on, creating vaults on a SyncServer. Your project lead provides
you with the DesignSync URL for the project's vault data or the name of the project on
the SyncServer. Your first step is to set up a work area for the project.

Setting Up Your Work Area

You can set up a work area using any of these four methods:

Method 1: Use the DesignSync GUI to manually set up your work area.

1. Using the DesignSync GUI, specify the vault location to associate with your
workspace.

2. If your project lead provided a mirror directory path for the project, use the
setmirror command to associate your workspace with the mirror directory. Use
the Command Shell Window to run commands in the GUI.

3. Fetch data from the vault. Your project lead will have set a default object state,
with that value pre-selected in the Populate dialog box. For example, if the
project has an associated mirror directory, the default setting in the Populate
dialog box will be to populate your workspace with "Links to mirror".

DesignSync Data Manager User's Guide

3

Method 2: Use a DesignSync shell to manually set up your work area.

1. Using a DesignSync Shell, use the setvault command to associate your
workspace with the vault location.

2. If your project lead provided a mirror directory path for the project, use the
setmirror command to associate your workspace with the mirror directory.

3. Use the populate command to fetch data from the vault. Your project lead will
have set a default object state. For example, if the project has an associated
mirror directory, populate will create symbolic links from your workspace to files
in the mirror, as if the -mirror option had been specified on the populate
command line.

Method 3: Use the Workspace Wizard to set up your work area.

1. Invoke the Workspace Wizard.
2. From the Workspace Wizard, you can select, or browse to, the project to join. Or

you can manually type in its DesignSync URL, in the Wizard page from which
you specify a project vault.

3. In a subsequent Wizard page you will specify a workspace.
4. Your project lead will have set a default object state for the kind of data to fetch,

with that value pre-selected in the Wizard page from which you specify an object
state. For example, if the project has an associated mirror directory, the default
setting will be to populate your workspace with "Links to mirror".

5. If "Links to mirror" will be populated, the next Wizard page prompts you to specify
the mirror directory. When you finish setting up with the Wizard, DesignSync
populates your workspace with data from the vault.

Method 4: Set up your work area by joining a project.

1. Select a project.
2. Launch the Workspace Wizard, using Revision Control | Workspace Wizard.

The Wizard launches positioned to the Wizard page in which you specify a
workspace. You will not be prompted to specify the DesignSync URL of the
project. That information is already known, from your having invoked the Wizard
from the project you are joining.

3. Your project lead will have set a default object state for the kind of data to fetch,
with that value pre-selected in the Wizard page from which you specify an object
state. For example, if the project has an associated mirror directory, the default
setting will be to populate your workspace with "Links to mirror".

4. If "Links to mirror" will be populated, the next Wizard page prompts you to specify
the mirror directory. When you finish setting up with the Wizard, DesignSync
populates your workspace with data from the vault.

You now have project data in your workspace. You might want to add a bookmark, to
easily revisit this workspace. You should populate your workspace periodically, to
update your workspace with the project's current data.

Overview

4

Modifying Data

If your team is using the lock model, before modifying a file, you can check out the file
with a lock. Checking out with a lock fetches a local, writable copy of the file and
prevents anyone else from checking in their modifications to the file. You can check out
files using the GUI's Checkout dialog box, or using the co command. You perform a
Checkout based on the files that you already have in your workspace. To see what files
have been added to the project since you last populated your workspace, you can Show
Potential Checkouts using the GUI.

Double-click on a file to open it in your default editor. After you have edited some files,
you can identify modified files in your workspace by running the GUI's Modified Objects
report. From the report's results, you can select objects on which to operate. Right-click
on a file in the report listing to display a context menu. You can show your local
modifications to the file, or compare your locally modified file to the Latest version.

If you decide not to modify a file, you can cancel your checkout either by using the GUI's
Cancel Checkouts dialog box, or by using the cancel command. You can also discard
your local modifications by fetching a new copy of the file into your workspace, as part
of the cancel operation.

When you are ready to check in your changes to the project vault, use the GUI's Check
In dialog box, or the ci command to create a new version of each file that you modified.
The check-in operation also releases the locks on those files that you previously
obtained when you checked out the files.

Staying Informed of Project Changes

To see the revision control history of a managed object, you can view its Data Sheet or
show its Version History.

To receive e-mail notification of design changes to the project resulting from
DesignSync operations or notification of bugs entered against the project, subscribe for
e-mail notification of activity against the project.

What is Revision Control?
Revision control is the ability to freeze the state of an object, such as a file, at various
stages in its development. Each time a file is frozen, a new and distinct version of the
file is created. The existence of the version lets you continue to change the file with the
full confidence that if you make an error, you can always revert to the previous version.
It is also possible to compare the current state of the file to an earlier state, and
maintain a log of what changed with each version. You can also merge changes when
more than one person makes changes to the same design object.

DesignSync Data Manager User's Guide

5

You create a version with the checkin operation and DesignSync stores the version in a
vault. Once in the vault, any person who has access to that vault can retrieve the
version. When using the locking model, only one person at a time should be "officially"
changing the data. When you want to retrieve an object in order to change it, you can
perform a checkout operation with a lock; this gives you an exclusive lock on that object.
An alternative model, called the non-locking or merge model, does not require a lock on
checkout; this checkout is often referred to as a fetch operation. When you complete
your changes, you check the object back in, creating another new version of the data.

At any point in time it might be useful to take a specific version and create a branch
emanating from it. The branch can then have a sequence of versions checked into and
out of it, creating another thread of development for the stored object. A version that is
the root of a new branch is referred to as a branch point version. As an example,
consider a Verilog file that is part of an ASIC design. The ASIC is in verification and a
new revision of the ASIC is in the works. During verification, the team finds it needs to
modify the Verilog file for the original ASIC but not for the new revision of the ASIC; the
team branches the Verilog file. The team makes the changes associated with the first
ASIC on the branch, while the new work occurs on the original thread of development.
The concept of "one person at a time" editing really means "one person at a time, per
branch".

Related Topics

Vaults, Versions, and Branches

Viewing the Contents of a Vault

Object Types

Object States

Specifying the Vault Location

Checking in Design Files

Checking out Design Files

Undoing a Check Out

Populating Your Work Area

Tagging Versions and Branches

Retiring Branches

Deleting Files or Versions from a Design Project

Overview

6

Parallel (Multi-Branch) Development

Contacting ENOVIA
For solutions to technical problems, please use the 3ds web-based support system:

http://media.3ds.com/support/

From the 3ds support website, you can access the Knowledge Base, General Issues,
Closed Issues, New Product Features and Enhancements, and Q&A's. If you are not
able to solve your problem using this information, you can submit a Service Request
(SR) that will be answered by an ENOVIA Synchronicity Support Engineer.

If you are not a registered user of the 3ds support site, send email to ENOVIA Customer
Support requesting an account for product support:

enovia.matrixone.help@3ds.com

Related Topics

Using Help

Introduction to Merging

What Is Merging?

Merging combines changes made on two branches, or within a branch. Branching
without merging has limited usability – two developments streams diverge forever and
can never be reconciled.

There are several important notions related to the general concept of merging that are
equally applicable to file merging and module merging:

Merge Conflicts

Two-Way Merge

Three-Way Merge

Merge Edges

DesignSync Data Manager User's Guide

7

Module merging has additional factors to consider because instead of merging
specific files, you are merging a set of changes. For more information on module
merging, see Merging Module Data.

Related Topics

Merging Module Data

Using the Merging Work Style

Parallel (Multi-Branch) Development

Merge Conflicts

Two-Way Merge

Three-Way Merge

Merge Edges

Merge Conflicts

Whenever you merge, whether the merge is between two versions on the same branch
(see Using the Merging Work Style) or between branches (see Parallel (Multi-Branch)
Development), there may be merge conflicts. Merge conflicts can also arise when
changes in the two branches being merged are incompatible, such as when a file is
renamed to different locations on the two branches. Merge conflicts occur when
different changes were made to the same region of the two versions that are being
merged. DesignSync cannot automatically determine which changes are the correct
ones; you must resolve the conflicts manually.

When working with modules, it is not necessary to resolve all conflicts before creating
the next module version. You can check in, or perform other operations that create new
module versions, as long as the objects being operated on are not the ones that are in
conflict.

Note:

DesignSync records "merge edges" – information about what versions participated in
the merge -- with the new version resulting from the merge. DesignSync uses merge
edges in future calculations of closest common ancestors instead of always going
back to the original ancestor. This capability relieves you from having to resolve the
same merge conflicts during future merges. See Merge Edges for more information.

Resolving Merge Conflicts

Overview

8

 A conflict is presented in a textual or graphical format as two options. You resolve the
conflicts either one or at a time, or collectively by selecting the appropriate version.

DesignSync alerts you to conflicts during the merge. Conflicts are identified in the
Changed Object Browser, by the Status field of the List View and from the ls command.
You can also use the url inconflict command.

When you merge a file, the conflicts are indicated in the file text with a conflict delimiter
(exactly 7 less-than, greater-than, or equal signs starting in column 1) and the version
number to indicate what text is present in each version:

<<<<<<< versionID
Lines from Latest version (same-branch merge) or overlaid
version
Lines from locally modified version
>>>>>>>

DesignSync considers the conflicts resolved when the file no longer contains any of the
conflict delimiters.

To invoke the Conflict Editor, select the Resolve Conflicts action from the context menu
of an object that's identified as In Conflict by the Changed Object Browser. Or select an
in conflict file and run Tools => Resolve Conflicts.

 In the Merge Conflict Editor, the conflicts are indicated by highlighted text.

DesignSync considers the conflicts resolved when the file no longer contains any of the
conflict delimiters. When you resolve a conflict, the Merge Conflict Editor removes the

DesignSync Data Manager User's Guide

9

conflict indicators for you and changes the highlight color to the resolved conflict color,
light pink by default.

Note: The highlighted text uses the color specified for conflict resolution with
SyncAdmin, in the For multi-window Diff viewers/editors section.

Related Topics

Two-Way Merge

Three-Way Merge

Conflict Handling

Identifying Changed Objects

Locking and Merging Work Styles

Merge Conflict Editor

Using the Merging Work Style

Parallel (Multi-Branch) Development

ENOVIA Synchronicity Command Reference: Is

ENOVIA Synchronicity Command Reference: url inconflict

ENOVIA Synchronicity Command Reference: populate

Two-Way Merge

In a two-way merge, differences between two objects are present as merge conflicts.
This is the simplest merge approach, but it can lead to a significant number of conflicts.

For example, suppose one programmer modified one function in a source file while
another programmer modified an unrelated function on a different branch. Two-way
merge will present both modifications as merge conflicts.

Related Topics

Merge Conflicts

Three-Way Merge

Three-Way Merge

Overview

10

A three-way merge is more complicated than a two-way merge. The benefit of a three-
way merge is that it minimizes the number of conflicts requiring resolution, by
automatically resolving some differences.

Let's take the example described in the Two-Way Merge:

Suppose one programmer modified one function in a source file while another
programmer modified an unrelated function on a different branch.

A three-way merge assumes that both objects participating in the merge were derived
from a common earlier version of the object. That common earlier version of the object
is referred to as the base version. There are therefore three versions of the object
participating in the merge; thus the merge is a 3-way merge.

A three-way merge calculates two sets of differences:

• The difference between the base version and the first version
• The difference between the base version and the second version

Differences from these two sets are called intersecting if they involve a common part of
the base object.

In the example above, changes made by the programmers to the two different functions
are non-intersecting changes. Non-intersecting changes are presumed to result from
unrelated improvements made to the base object. They are accepted automatically,
resulting in a merged object with non-intersecting changes from both versions.
Intersecting changes are shown as merge conflicts.

Choosing the Right Base Version

The base version is the version from which both objects participating in the merge were
derived. When merging end points of two branches, a good candidate for a base
version is the closest common branch-point version.

You can derive the closest common branch-point from the dot-numeric representations
of branch names. Find a longest common prefix of two names ending with a dot, and
remove the last dot.

If the resulting string designates a version, then that version is the closest common
branch-point. This is also known as the closest common ancestor.

For example, the longest common prefix of 1.2.2.1.1.8 and 1.2.2.1.3.1 is 1.2.2.1.
Removing the last dot leaves 1.2.2.1, which is a version, and therefore the closest
common branch-point.

If the resulting string designates a branch, then the closest common branch-point will be
the smaller endpoint branch-point version on this branch.

DesignSync Data Manager User's Guide

11

For example, the longest common prefix of 1.2.2.1.1.8 and 1.2.2.3 is 1.2.2. Removing
the last dot leaves 1.2.2, which is a branch. 1.2.2.1 (in 1.2.2.1.1.8) is smaller than
1.2.2.3 (in 1.2.2.3), so the closest common branch-point version is 1.2.2.1.

Related Topics

Merge Conflicts

Two-Way Merge

Merging Module Data

Merge Edges

While the closest common branch-point version is usually a good candidate for the base
version of a 3-way merge, in certain cases it is possible to find a better candidate.

For example, let's say the main development of a product takes place on the Trunk
branch. Versions on the Trunk are periodically tagged (for example, bp-rel33, bp-rel40,
bp-rel41, bp-rel42), and released to customers as major releases. To accommodate bug
fixes, service pack branches are created for each release (rel33sp, rel40sp, rel41sp).

Some versions on service pack branches are tagged as service pack releases
(rel41sp1, re41sp2, rel42sp1).

How should bug fixes from service pack branches be incorporated into the main
development branch? An appealing approach might be to merge a service pack branch
into Trunk each time a service pack is released. This method generates a set of merges
rel41sp->Trunk for every service pack of rel41. What would be the base versions for the
merges? The closest common branch-point for all these merges will be the same, bp-
rel41. But always using bp-rel41 as a base version results in a repetitive resolution of
the same conflicts.

Suppose the fix of bug #12345 was released in rel41sp1, and merging of this fix into the
Trunk resulted in a conflict. In other words, diff(bp-rel41, rel41sp1) and diff(bp-rel41,
Trunk:Latest) intersected. This happened because the Trunk developer stumbled onto
the same bug and fixed it in a different way than the rel41sp1 developer. The resolution
of the merge conflict was to use the fix from rel41sp1.

The conflict reappears when rel41sp2 is later merged onto Trunk. Although the section
of code pertaining to the fix of bug #12345 was not modified on either branch since the
merge, the code fix for bug #12345 still shows as a conflict, because corresponding
differences diff(bp-rel41, rel41sp2) and (bp-rel41, Trunk:Latest) still exist and intersect.

In this case, it is better to choose rel41sp1 as the base version, because then there
would be no differences related to the code fix for bug #12345 between rel41sp1 and

Overview

12

rel41sp2. The conflict would then have been resolved automatically, as in the previous
merge.

As more development is done on two branches, the branches continue to diverge from
each other, making merges more and more difficult. By choosing appropriate base
versions we can completely eliminate this issue. To select the right base version we
need to discuss merge edges.

A merge edge is an edge in a history graph of an object from one participant of a merge
to the merge result. The other participant has a direct edge (it is the parent of the new
version).

For example:

Without merge edges the history graph is simply a tree. With merge edges the history
graph becomes a directed acyclic graph.

Based on merge edges, we can choose the base version for a new merge as the
closest common predecessor of the two versions participating in the merge. The
advantage of this approach is that the base version chosen is much “closer” to these
versions than the closest common branch-point, resulting in fewer differences and
conflicts.

In the above diagram, we merged Trunk:27 and rel41sp1, resolved the conflicts and
checked in the result as Trunk:28. The merge edge is version rel41sp1 (version
1.6.1.6). For the next merge (Trunk:35 to rel41sp2) the previous merge edge (version
1.6.1.6) is used to find the base version rel41sp1, so that none of the conflicts resolved
in the previous merge reappear.

The vhistory command and the Version History report both indicate merge edges.

DesignSync Data Manager User's Guide

13

Related Topics

Merge Conflicts

Two-Way Merge

Three-Way Merge

Merging Module Data

ENOVIA Synchronicity Command Reference: vhistory

Merge Conflict Editor

DesignSync contains a built-in merge conflict editor to assist with conflict resolution.
This utility has the ability to highlight and merge conflicts between the two versions of a
selected file.

There are two ways to open a file in the Merge Conflict Editor:

1. In the Changed Objects Browser, select a file designated as In Conflict. From the
file's context menu, select Resolve Conflicts.

2. Select a text file in the View Pane. The file must be a writeable, merged file
containing conflicts in the local workspace. Select Tools => Resolve Conflicts
to open the Conflict Editor.

The result of the Resolve Conflicts operation is displayed in a new tab labeled Conflict
Editor, in the View Pane.

Using the Merge Conflict Editor

The Resolve Conflicts command results in a new tab labeled Conflict Editor, in the
View Pane. The Conflict Editor shows two files, side-by-side. The file on the left is the
local workspace file that is in conflict. The file on the right side is the vault version with
conflict blocks merged into it. Between the files is a scroll-bar which highlights the
location of the differences in the file. This central bar shows symbolically all differences
in the file as well as the current vertical position of the left and right windows in respect
to the file. The knob on the central bar represents the current left and right visible
windows in relation to the whole file. The colored bands on the knob represent currently
visible diff and conflict blocks. Clicking on the left mouse button with the cursor on the
central bar moves the left and right window content to the corresponding vertical
position.

The left window is the editable local version of the file. You can copy and paste into this
version. When you resolve a conflict in the file, the resolved text, regardless of which

Overview

14

version the resolution came from, displays in the version in the left window. The
resolved text displays in light pink by default.

You can customize the color used for conflicts and resolved conflicts in SyncAdmin, in
the For multi-window Diff viewers/editors section.

Merge Conflict Editor Tools

The Conflict Editor provides a set of tools to help you navigate the information provided
and resolve the merge conflicts. The tools are available both from a Conflict Editor
menu and a set of controls on the top of the Conflict Editor window.

DesignSync Data Manager User's Guide

15

Save the View

Saves the changes made in the left (editable) window to the local workspace file. This
option is only active when you've made a change to the window.

Undo Block

Undo Block undoes all work on a block, restoring the selected block to its initial state.

Cut

Cuts the selected text.

Copy

Copies the selected text.

Paste

Pastes text from the clipboard into the left (editable) window.

Choose Left

The left part of the conflict (possibly modified) is kept; the conflict is marked as resolved.

Choose Right

The right part of the conflict replaces the left part; the conflict is marked as resolved..

Choose Left Above Right

The right part of the conflict is placed below the left part; the conflict is marked as
resolved.

Choose Right Above Left

The right part of the conflict is placed above the left part; the conflict is marked as
resolved.

Choose All Left

Left parts of all unresolved conflicts are used; all conflicts are marked as resolved.

Choose All Right

Right parts of all unresolved conflicts are used; all conflicts are marked as resolved.

Overview

16

Next Conflict

Moves the marked window focus to the next unresolved conflict in the file. If you’re at
the bottom of the file, it may be necessary to get back quickly to the top of the file and
start reviewing conflicts again. To do, use the knob in the central bar. Click at the top of
the central bar to move the knob to the top and scroll the left and right windows to the
top. Then, click in the left or right window to move the conflict “caret” marker. Next and
Previous Conflict now start from that caret point.

Previous Conflict

Moves the marked window focus to the previous unresolved conflict in the file.

Find

See Searching for Text.

Find Next

Advances to the next instance of the text specified in the Find window.

Toggle Line Numbers

By default, the line numbers display on the left side of the each panel. You can select
this option to toggle whether line numbers display.

Toggle Bottom Panel

By default, there is a bottom panel below the line compare windows containing the file
text that shows exactly what the change is, indicating which change is part of which
version. You can select this option to toggle whether this window displays. Even if this
window isn't displayed, the file text window still shows the conflict information.

Toggle Scrollbars Sync

By default, the scrollbar between the two windows keeps the window synchronized with
each other. When you move forward in one window, DesignSync rolls the other window
forward. You can select this option to enable or disable this feature. When the scrollbar
sync is disabled, scrolling in one window does not advance the other window to match
the content.

Full Screen

By default, the Conflict Editor opens in a tab in the View panel. This option allows you to
toggle between that view and a Conflict Editor that takes up the entire screen.

Note: The Full Screen display can be placed in the background to allow you to work in
the DesignSync GUI before returning to the display.

DesignSync Data Manager User's Guide

17

Related Topics

What Is Merging?

Identifying Changed Objects

Merge Conflicts

19

Setting up a Project or Module Workspace

Accessing a SyncServer with User Authentication
Your project leader may have configured your enterprise system or DesignSync server
to require username and password authentication when accessing vault data on a
SyncServer (client vaults never require authentication).

 If the 3DPassport Central Authentication Server (CAS) is enabled at your site, then
DesignSync supports a single-sign on model that allows you to sign in once and use all
the Enterprise tools available to you including all the DesignSync graphical and
command-line clients, the DesignSync Web Interface, ProjectSync, and all your other
3DEXPERIENCE tools.

The first time you log into the server, DesignSync requests your username and
password. The DesignSync GUI presents a dialog box where you must supply your
username and password.

Setting up a Project or Module Workspace

20

The username and password must correspond to the desired login. Options include:

• 3DPassport Central Authentication Service username and password
• DesignSync user profile
• DesignSync-compatible LDAP profile, if the SyncServer is configured to use LDAP

(Lightweight Directory Access Protocol),

See DesignSync Administrator's Guide: What Are User Profiles? for more details. If you
do not know your username or password, contact your project leader.

Note: When connecting to servers using DesignSync user profiles and LDAP profiles,
you will see the realm "SynchronicIty." When connecting to the 3DPassport server, the
realm is "3DPassport."

For 3DPassort login, authentication takes place the first time you log in to any server
using 3DPassport from any client on your system and persists until it expires as defined
by the 3DPassport system administrator.

DesignSync Data Manager User's Guide

21

For other types of logins, the authentication takes place each time you start a new
DesignSync session or access a different server. If you select Save password,
DesignSync stores your password, so in subsequent accesses to the server, you will
not have to enter your username and password. Note that the username and password
must correspond to your DesignSync user profile for that server. If you do not have a
DesignSync user profile, contact your project leader.

Related Topics

ENOVIA Synchronicity Access Control Guide: User Authentication Access Controls

Setting Up a Work Area for a Project
If you are part of a project that your project leader has defined as a Public Project, you
will want to populate a work area with that project's files. Public Projects are displayed in
your Tree View under Projects =>Public Projects.

1. In the Tree View, expand the Projects item, then expand Public Projects.

The Tree view lists the defined projects (if any), and the List View displays each
project name and its description.

2. Select the project for which you want to create a work area.

There may be a delay as DesignSync verifies that the vault for the selected
project is accessible.

3. Launch the workspace wizard, by specifying Revision Control | Workspace
Wizard. The Workspace Wizard is invoked. When launched by the File
=>Workspace Wizard command, the Workspace Wizard asks you a series of
questions to either create a new project or access an existing project. Launching
the Workspace Wizard from the "Setup a work area for this project" command
skips the initial questions and brings you directly to the Select Working Area
dialog box. You continue from this point responding to the questions that the
Workspace Wizard asks you.

Related Topics

What Is a Project?

Workspace Wizard Overview

Joining a Project Using a Wizard

What Is a Project?

Setting up a Project or Module Workspace

22

A DesignSync project is the DesignSync and ProjectSync infrastructure required to
support a real-world design project, such as:

• Who are the team members, and what access rights do they have?
• Where is the vault that stores the project files located, and what cache directory

is used?
• What design methodologies (such as locking versus non-locking file sharing, or

required check-in comments) are enforced?
• What are the project-wide defaults for options such as the default ASCII editor

and HTML browser, whether files are checked out writeable or read-only, and the
default fetch state?

When fully implemented, all of these attributes would be defined by a project leader and
inherited by all team members. Using the SyncAdmin tool, the DesignSync project
leader or LAN administrator can do the following:

• Set LAN-wide preferences such as the default editor, default fetch state,
recognition of collection objects, and so on. You inherit all of these settings, but
can override some of them by using SyncAdmin yourself or through Tools =>
Options within DesignSync.

• Define Public Projects, which consist of the project name, the vault where the
project files are stored, the project's cache directory, and an optional description.

Public Projects provide two benefits:

• They allow different vaults to use different caches. For example, the ASIC1
design project could use a cache called asic1_cache, while the FPGA project
could use a cache called fpga_cache.

• They simplify how team members interact with a project vault. You can do the
following:

o View the properties (definition) of a Public Project.
o Browse the vault of a Public Project.
o Populate a work area with the files of a Public Project.

Notes:

• The default cache directory used for vaults that have not been defined as part of
a Public Project is the cache that was specified during installation (typically
<SYNC_DIR>/../sync_cache) or by the LAN administrator using SyncAdmin.

• Although caching as a means for sharing DesignSync files is not implemented on
Windows platforms (the share option to the check-in, check-out, cancel, and
populate commands are not available), caches are used by DesignSync for other
housekeeping purposes. Therefore, you can define and use Public Projects,
including specifying the cache directory, on Windows.

Related Topics

DesignSync Data Manager User's Guide

23

Defining a Public Project

Displaying Project Properties

Browsing a Project Vault

Setting Up a Work Area for a Project

DesignSync Data Manager Administrator's Guide: The SyncAdmin Tool

Defining a Public Project

Your project leader or LAN administrator uses the SyncAdmin tool to define Public
Projects. See the SyncAdmin help for more information.

Note: You must restart DesignSync to see new Public Projects or changes to existing
Public Projects.

Related Topics

What Is a Project?

DesignSync Data Manager Administrator's Guide: The SyncAdmin Tool

Displaying Project Properties

You can display the definitions of projects that appear under Projects =>Public
Projects in your Tree View as follows:

1. In the Tree View, expand the Projects item, then expand Public Projects.

The Tree view lists the defined projects (if any), and the List View displays each
project name and its description.

2. Select the project whose properties you want to view.

There may be a delay as DesignSync verifies that the vault for the selected
project is accessible.

3. Click the right mouse button.

A popup menu appears. If DesignSync was unable to access the project's vault,
the commands in the popup menu will be grayed out and you cannot continue.

4. Select the Properties command.

Setting up a Project or Module Workspace

24

The Properties dialog box appears, which displays the name, vault, cache, and
description of the project. Note that the fields are not editable. Project leaders
can modify a Public Project definition using the SyncAdmin tool.

Related Topics

What Is a Project?

Viewing and Setting Properties

Browsing a Project Vault

You can browse the vault of a Public Project:

1. In the Tree View, expand the Projects item, then expand Public Projects.

The Tree view lists the defined projects (if any), and the List View displays
each project name and its description.

2. Click the project whose vault you want to browse.

There may be a delay as DesignSync attempts to communicate with the vault.
Assuming the vault is accessible, a green check mark appears next to the project
name and the top-level contents of the vault are displayed in the List View. You can
then expand the project in the Tree View or the folders in the List View to navigate
farther into the vault.

Related Topics

What Is a Project?

Workspace Wizard

Workspace Wizard Overview

The Workspace Wizard helps you join an existing project, create a new project, work
with an existing module, or create a new module.

Note: The Workspace Wizard has a default fetch state of Unlocked copies.

To help you with a task, the Workspace Wizard guides you through a series of dialogs,
gathering information it needs to perform the task; then it performs the task for you.

For example, when creating a new project, the Workspace Wizard creates a new vault,
or data repository, and checks in initial versions of your design files so they can be
accessed by other team members. When joining an existing project, the Workspace

DesignSync Data Manager User's Guide

25

Wizard associates an existing vault with your work area and populates your work area
with the requested versions, typically the latest versions, of files from that vault.

By default, the Workspace Wizard runs when you invoke DesignSync. To disable this
feature, de-select the Show Wizard at startup check box in the Workspace Wizard
dialog box.

You can also invoke the Workspace Wizard from your DesignSync session in any of
these three ways:

• Select Revision Control =>Workspace Wizard from the DesignSync menu.
• On the server, select a vault folder and right-click on the folder to display a popup

menu. From the menu, select Workspace Wizard.

When DesignSync displays the Workspace Wizard dialog box, you select the option
you want and click Next to continue to the next dialog box. Each options leads through
the Workspace Wizard steps.

Using the Workspace Wizard

Setting up a Project or Module Workspace

26

Before you use the Workspace Wizard, you should review the Workspace Wizard
Overview topic.

The Workspace Wizard dialog box (Welcome to DesignSync!) asks you to choose
one of the four following options.

Note: The Workspace Wizard has a default fetch state of Unlocked copies. The fetch
state is set through the SyncAdmin application.

Option and Steps Choose this option when
Join an existing project:

1. Specify the vault of the existing
project

2. Select workspace for an existing
project

3. Specify selector or configuration
4. Specify object state
5. Specify mirror (optional)
6. Final confirmation

The vault structure for a project is
already in place and you have just joined
the team.

Note: Create the desired folder structure
in your workspace before running the
wizard.

Create a new project:

1. Specify a Vault for a New Project
2. Select Workspace
3. Specify Files to Exclude
4. Specify the Object State
5. Specify a Check-In Comment
6. Final Confirmation

You want to create a vault on the server
from files in your workspace.

You want to put this design hierarchy,
including any files it contains, into a vault
accessible by the team members.

Work with an existing module:

1. Select a Module
2. Select a Workspace for the

Module
3. Fetch the Module Hierarchy
4. Final Confirmation

A module already exists and you select
this option to fetch the module to your
workspace.

For example, you join a design team that
uses modules to contain design blocks.
To fetch the module for a design block to
your workspace, select this option.

Create a new module:

1. Specify Information about the
New Module

2. Select Workspace Files for the
New Module

3. Final Confirmation

You want to create a module on the
server from files in your workspace.

For example, you are the design team
leader and your team is using modules
for its design blocks. Your work area
already has the directory containing the
files for the block. You want to put those

DesignSync Data Manager User's Guide

27

files under revision control and create a
module from them. Then team members
can fetch the module to their workspaces
and work with it.

By default, the Workspace Wizard runs when you invoke DesignSync. To disable this
feature, de-select the Show Wizard at startup check box in the Workspace Wizard
dialog box.

Click on the option in the following illustration to see the dialog box for the next
step for that option.

Related Topics

Object States

SyncAdmin Help: Default Fetch States

Joining an existing project

Specify the Vault of the Existing Project

The Select Vault dialog box asks you specify the URL of the vault of the existing
project. You can choose between remote and local vaults.

A remote vault is used when more than one person or an entire development team
(often from diverse geographical locations) needs to share files. In this way any team
member located anywhere can access your vault using the URL of your vault.

A local vault is used when you will not be sharing your design files with other users.
DesignSync then uses the default client-vault location as specified when DesignSync
was installed. Since you typically want to share files with other users, choosing a local
vault is not often a logical choice when joining an existing project.

To specify the existing project you want to join:

1. In the field of Select Vault dialog box, enter the URL of the vault that contains
the project files for which you want to populate your work area. You can enter the
URL in one of three ways:

• Type the URL in the text field.
• Click on the arrow and select from the URLs (if any) that you entered in

previous Wizard invocations. DesignSync stores the 10 most recently
entered URLs.

• Click the Browse Servers button to browse the available public projects
(as defined by your project leader) and SyncServers (as defined in your
site and local SyncServer lists). Click the Browse Local button to select a
local vault on your machine.

Setting up a Project or Module Workspace

28

For example, you might specify:

sync://apollo.spaceco.com:2647/Projects/Sportster

where sync: is the DesignSync protocol for specifying a remote server,
apollo is the server (machine) name, 2647 is the port number that was
specified when the server was configured, Projects is the top-level folder on
the server under which project vaults are located, and Sportster is the top-
level vault folder for the Sportster project. If apollo is on your LAN, you can
simplify the URL to:

>sync://apollo:2647/Projects/Sportster

2. Click Next button to continue to the Select Workspace dialog box.
o If DesignSync alerts you if the specified vault location does not exist, you

need to verify that the URL you entered is correct.
o You may be asked for account information (username/password) to

access the SyncServer.

Notes:

• The default SyncServer port is 2647. You can omit the port specification when
accessing a SyncServer that uses the default port number.

• On Windows machines, there may be a short delay before the next dialog box
appears depending on your drive configuration.

• If you are working in a multi-branch environment, you can optionally specify the
persistent selector list (see the What Are Persistent Selector Lists topic for
details) for the hierarchy by following the vault URL with @<selectorList>. This
URL syntax is equivalent to executing a setselector command following the
setvault command. For example, you could define the persistent selector list to
be "main" as follows:

sync://apollo:2647/Projects/Sportster@main

• DesignSync also supports a syncs protocol for communicating with secure (SSL)
SyncServer ports. In most cases, DesignSync automatically redirects requests to
a cleartext (non-secure) port using the sync protocol to the secure port, if one is
defined. The default DesignSync secure port number is 2679. Your DesignSync
administrator defines what SyncServer ports are available and whether secure
communications are required.

Select Workspace for an Existing Project

The Select Workspace dialog box asks you to choose the work area into which you
want the project files to be put.

DesignSync Data Manager User's Guide

29

To select a workspace for an existing project:

1. In the Workspace field, enter the path to the existing project. You can click
Browse to browse to the correct path.

2. Optionally, in the Bookmark field, enter the bookmark name that will display for
this project from your DesignSync Bookmarks menu.

3. Click Next button to continue to the Specify Selector or Configuration dialog box.

Note: The Workspace Wizard will not let you proceed if you select any of the following
as the directory you want to populate with project files:

• My Computer
• A drive, such as C: (Windows only)
• Your $HOME directory (UNIX only)

Specify Selector or Configuration

The Specify selector or configuration dialog box asks you to specify what versions of
design files you want to be put in your work area. You can specify:

• A branch selector, typically Trunk, which populates the Latest versions from the
specified branch.

• Any other selector, such as a version tag. However, the selector you specify
becomes the persistent selector list for the work area, meaning that the
workspace will always be populated with the matching selector list. In the case
of a version tag, it means it will always be populated with the same tagged
version. If a module is populated with a static version tag, changes in the
workspace cannot be checked in.

• A selector list, in a files-based workspace populates a single selector; the first
valid selector on the list.

• A selector list, in a modules-based workspace uses the last selector as the base
selector for the workspace and overlays all other selectors in the selector list as
described in Module Member Tags.

• A project configuration, as created using ProjectSync, that has been applied to
the project vault you are accessing. See the ProjectSync documentation for
additional information about project configurations.

For information on selector formats and how to specify them, see Selector Formats.

Note: When working with a module selector list, creating a blended environment
containing a main module and one or more Module Snapshots, the selector is applied
recursively to the entire hierarchy, including submodules with the following exceptions:

• External modules
• Legacy modules
• Modules defined with a "static" hierarchical reference

Setting up a Project or Module Workspace

30

• Referenced file vaults.

See Module Member Tags for more information.

To select a workspace for an existing project:

1. Click the arrow to the right of the text field to display a drop-down list of choices.
The list contains:

o Trunk, which is the default branch tag for branch 1.
o The persistent selector for the work area you specified if it is different from

the default of Trunk.
o The selector, if any, that you specified with the @<selectorList> syntax

when you specified the URL of the project vault.
2. Click Next button to continue to Specify the Object State Dialog box.

Specify the Object State of Populated Items

The Specify Object State dialog box asks you what should be placed in your work area
as a result of the check out. The options are:

Option Result
References to versions Leaves DesignSync references to the files in your

work area.
Unlocked copies Leaves copies (replicas) of the files in your work

area, not locked. This is the default selection
unless your project leader has defined a default
fetch state.

Locked copies: Leave files in your work area, locked. Other users
can check the files out from the vault but cannot
check in new versions as long as you have the files
locked.

Links to caches Links to a shared copy of the design object in a
cache directory. This option is available only on
UNIX platforms.

Links to mirror: Links to a shared copy of the design object in a
mirror directory. This option is available only on
UNIX platforms.

To select a specify the object state of populated items:

1. Select one of the object state options.
2. If you chose the Links to mirror option, when you click Next, the Workspace

Wizard takes you to the Specify Mirror Dialog box.

DesignSync Data Manager User's Guide

31

If you chose any other option, when you click Next, the Workspace Wizard takes
you to Finished dialog box. This is where you can confirm or cancel the
commands you have entered the previous dialog boxes.

Specify Mirror

The Specify Mirror dialog box asks you to specify the mirror directory to associate with
this project.

Notes:

• Mirror capability is related to symbolic links which exist only on UNIX systems.
• A mirror directory must have already been set up for the project. See ENOVIA

Synchronicity Command Reference: setmirror for more information.

To specify a mirror:

1. Specify the mirror directory. Enter the directory in the field or You can click
Browse to select the directory. If you have not associated a mirror directory with
your work area, an alert box warns you that you cannot proceed.

2. Click Next, the Workspace Wizard takes you to Finished dialog box. This is
where you can confirm or cancel the commands you have entered the previous
dialog boxes.

Workspace Wizard Confirmation

After gathering information the previous dialog boxes, the Workspace Wizard displays
the Finished dialog box. The Finished dialog displays the commands DesignSync uses
to complete the operation. At this point, you must confirm or cancel the commands you
have entered the previous dialog boxes.

 Click Finish to have DesignSync perform the commands listed in the dialog box.
 Click Cancel to cancel these commands.

Examples of commands you could see in the Finish dialog box:

If you selected Join an existing project from the Workspace Wizard dialog, the
Finished dialog would display commands similar to these:

Setting up a Project or Module Workspace

32

If you selected Create a New Module from the Workspace Wizard dialog, the
Finished dialog would display commands similar to these:

DesignSync Data Manager User's Guide

33

Related Topics

Workspace Wizard Overview

Workspace Wizard Paths

Creating a new project

Specify a Vault for a New Project

The Select Vault dialog box asks you specify the URL of the vault of the new project.
You can choose between remote and local vaults:

A remote vault is used when more than one person or an entire development team
(often from diverse geographical locations) needs to share files. In this way any team
member located anywhere can access your vault using the URL of your vault.

A local vault is used when you will not be sharing your design files with other users.
DesignSync then uses the default client-vault location as specified when DesignSync
was installed. Since you typically want to share files with other users, choosing a local
vault is not often a logical choice when creating a new project.

Setting up a Project or Module Workspace

34

When you specify a vault for a workspace folder, if a workspace root has not already
been set on a folder above the folder location where the vault is being declared, then
DesignSync will automatically designate a workspace root folder according to the
workspace root definition rules. By default this is one level above hierarchically above
the specified folder. The workspace root stores metadata information about the design
objects contained within the folder.

To specify the new project you want to create:

1. In the field of Select Vault dialog box, enter the URL of the vault that contains
the project files for which you want to populate your work area. You can enter the
URL in one of three ways:

• Type the URL in the text field.
• Click on the arrow and select from the URLs (if any) that you entered in

previous Wizard invocations. DesignSync stores the 10 most recently
entered URLs.

• Click the Browse Servers button to browse the available public projects
(as defined by your project leader) and SyncServers (as defined in your
site and local SyncServer lists). Click the Browse Local button to select a
local vault on your machine.

For example, you might specify:

sync://apollo.spaceco.com:2647/Projects/Sportster

where sync: is the DesignSync protocol for specifying a remote server,
apollo is the server (machine) name, 2647 is the port number that was
specified when the server was configured, Projects is the top-level folder on
the server under which project vaults are located, and Sportster is the top-
level vault folder for the Sportster project. If apollo is on your LAN, you can
simplify the URL to:

>sync://apollo:2647/Projects/Sportster

2. Click Next button to continue to the Select Workspace dialog box. Since the
location you specified does not exist yet, an alert box tells you that DesignSync will
create the vault for you.

o If the location you specify does exist, you must confirm that you want to
check in new files into an existing vault.

o You may be asked for account information (username/password) to
access the SyncServer.

Select Workspace for a New Project

The Select Workspace dialog box asks you to choose the work area into which you
want the project files to be put.

DesignSync Data Manager User's Guide

35

Your work area refers to the directory (folder) that represents your project -- that is, the
directory that contains the files you wish to check in so that they will be under revision
control.

To select a workspace for an new project:

1. In the Workspace field, enter the path to the new project. You can click Browse
to browse to the directory that represents your work area.

2. Optionally, in the Bookmark field, enter the bookmark name that will display for
this project from your DesignSync Bookmarks menu.

3. Click Next button to continue to the Specify Exclude Files dialog box.

Note: The Workspace Wizard will not let you proceed if you select any of the following
as the directory you want to populate with project files:

• My Computer
• A drive, such as C: (Windows only)
• Your $HOME directory (UNIX only)

Specify Files to Exclude

The Specify Exclude Files dialog box asks you to specify what files you want to
exclude from being checked into the vault. You can choose items from the display of
drop-down list of choices or add your own wildcards.

The drop-down list contains the categories of files that are often excluded:

These are the wildcards you can use in the Exclude List text box:

Wildcard Representing
? A single character
* A string
A[1-9] A1 through A9

To create a list of excluded from check in files types:

1. Select from the drop-down list each file type you want excluded from check-in. As
you choose, the system adds commas between the items.

Setting up a Project or Module Workspace

36

2. If desired, add your own wildcard exclusions. When you choose to create your
own wildcard file exclusions from the list above, remember that you will have to
add your own commas to separate items on the file exclusions list.

3. Click Next button to continue to Specify the Object State Dialog box.

Specify the Object State of Items Checked In

The Specify Object State dialog box asks you what should be left behind in your work
area when the check in operation completes. The options are:

Option Result
References to
versions

Leaves DesignSync references to the files in your work area.

Unlocked copies Checks file into the vault and a leaves a replica in your work
area.

You can use the file as if you had not checked it in.
However, depending on your work methodology, you may
want to keep a locked copy if you plan on editing the file.

This is the default selection unless your project leader has
defined a default fetch state.

Locked copies Checks in file and immediately checks the file back out into
your work area with a lock.

Others can check the file out from the vault but cannot check
in a new version as long as you have the lock on the files.

Links to caches Links to a shared copy of the design object in a cache
directory. This option is available only on UNIX platforms.

Links to mirror Links to a shared copy of the design object in a mirror
directory. This option is available only on UNIX platforms.

To select a specify the object state of checked in items:

1. Select one of the object state options.
2. Click Next to continue to the Specify a Check-In Comment dialog box.

Specify a Check-In Comment

The Specify Check-In Comment dialog box asks you to specify a comment for the
project you are creating. This comment serves as the initial check-in comment or all
your files when you first place your project files under revision control.

To specify a check in comment for the initial check in of a new project:

DesignSync Data Manager User's Guide

37

1. Click in the comment field.

You can also use your default editor to prepare your comments. Right click in the
client field and select Use Editor from the context menu. When you save and
exit from your editor, your comments will be put in the message box. Quitting
from your editor without saving leaves the message box empty.

2. Create your comment for this project. Note that projects can be defined with a
minimum comment-length requirement and you will need to create a comment is
long enough to meet this requirement.

3. Click Next button to continue to Finished dialog box. This is where you can
confirm or cancel the commands you have entered the previous dialog boxes.

Workspace Wizard Confirmation

After gathering information the previous dialog boxes, the Workspace Wizard displays
the Finished dialog box. The Finished dialog displays the commands DesignSync uses
to complete the operation. At this point, you must confirm or cancel the commands you
have entered the previous dialog boxes.

 Click Finish to have DesignSync perform the commands listed in the dialog box.
 Click Cancel to cancel these commands.

Examples of commands you could see in the Finish dialog box:

If you selected Join an existing project from the Workspace Wizard dialog, the
Finished dialog would display commands similar to these:

Setting up a Project or Module Workspace

38

If you selected Create a New Module from the Workspace Wizard dialog, the
Finished dialog would display commands similar to these:

DesignSync Data Manager User's Guide

39

Related Topics

Workspace Wizard Overview

Workspace Wizard Paths

Working with an existing module

Select a Module

The Select Module dialog box asks you to specify the vault URL and the
configuration/selector for the you want to fetch to your work area.

To select the existing module:

1. In the Specify the URL of the module's vault field, enter the URL of the vault
that contains the existing module. You can enter the URL in one of three ways:

o Type the URL in the text field.
o Click on the arrow and select from the URLs (if any) that you entered in

previous Wizard invocations. DesignSync stores the 10 most recently
entered URLs.

Setting up a Project or Module Workspace

40

o Click the Browse Servers button to browse the available public projects
(as defined by your project leader) and SyncServers (as defined in your
site and local SyncServer lists). Click the Browse Local button to select a
local vault on your machine.

2. If you selected a legacy module in step 1, then second field that is displayed is
named Configuration.

If you selected a current module in step 1, then the second field that is displayed
is named Selector.

You can type name of the selector for the module or the configuration for a
legacy module. You can also accept the pre-filled default.

3. If your project manager has defined module views for your use, you can select a
module view to set as the persistent view for your workspace. Use the down-
arrow on the field to get a list of available views. You can select multiple views by
separating the view names with a comma.

4. Click Next button to continue to the Select a Workspace for the Module dialog
box.

Select a Workspace for the Module

The Select Workspace dialog box asks you to choose the workspace where you want
the module to reside.

To select a workspace for an existing module:

1. In the Workspace field, enter the path to the existing project. You can click
Browse to browse to the correct path.

2. Optionally, in the Bookmark field, enter the bookmark name that will display for
this module from your DesignSync Bookmarks menu.

3. Click Next button to continue to the Fetch the Module Hierarchy dialog box.

Fetch the Module Hierarchy

The Recurse dialog box asks you to specify whether DesignSync should fetch just the
selected module (the default) or fetch the module and each submodule in its hierarchy.

To select a workspace for an existing module:

1. If you want to fetch the files of the entire module hierarchy, check the Get the
module recursively checkbox. By default, the checkbox is unchecked, indicating
that only the files of the selected module are fetched.

2. Click Next button to continue to Finished dialog box. This is where you can
confirm or cancel the commands you have entered the previous dialog boxes.

Workspace Wizard Confirmation

DesignSync Data Manager User's Guide

41

After gathering information the previous dialog boxes, the Workspace Wizard displays
the Finished dialog box. The Finished dialog displays the commands DesignSync uses
to complete the operation. At this point, you must confirm or cancel the commands you
have entered the previous dialog boxes.

 Click Finish to have DesignSync perform the commands listed in the dialog box.
 Click Cancel to cancel these commands.

Examples of commands you could see in the Finish dialog box:

If you selected Join an existing project from the Workspace Wizard dialog, the
Finished dialog would display commands similar to these:

If you selected Create a New Module from the Workspace Wizard dialog, the
Finished dialog would display commands similar to these:

Setting up a Project or Module Workspace

42

Related Topics

Workspace Wizard Overview

Workspace Wizard Paths

Creating a new module

Specify Information about the New Module

The New Module dialog box asks you to provide information about the new you want to
create.

To specify the new module you want to create:

1. In the Server URL field, enter the URL of the SyncServer where the module will
reside. You only need to specify the server name and the port. Use this format:

sync://<host>:<port>

DesignSync Data Manager User's Guide

43

2. In the Module name field, enter the name for the module you want to create. A
module name can not have these characters as part of its name:

~ ! @ # $ % ^ & * () , ; : | ` ' " = [] /

3. In the Comment field, enter the first branch comment.
4. Click Next button to continue to the Select Workspace Files for the New Module.

Select Workspace Files for the New Module

The Select Workspace dialog box asks you to select files that you want to include in
the new module.

To select a workspace for an new module:

1. In the Workspace field, enter the path to the new module. You can click Browse
to select the workspace directory containing the files you want to include in the
module.

2. Optionally, in the Bookmark field, enter the bookmark name that will display for
this module from your DesignSync Bookmarks menu.

3. Optionally, you can choose to include empty directories in the initial creation.
 This allows you to create a framework for the module, even if the data for the
empty directories doesn't exist yet.

Note: Any directories explicitly added to the module must be explicitly
removed if no longer needed. Any directories not explicitly added to the
module are automatically removed from the module when they become
empty.

4. Click Next button to continue to the Finished dialog box. This is where you can
confirm or cancel the commands you have entered the previous dialog boxes.

Workspace Wizard Confirmation

After gathering information the previous dialog boxes, the Workspace Wizard displays
the Finished dialog box. The Finished dialog displays the commands DesignSync uses
to complete the operation. At this point, you must confirm or cancel the commands you
have entered the previous dialog boxes.

 Click Finish to have DesignSync perform the commands listed in the dialog box.
 Click Cancel to cancel these commands.

Examples of commands you could see in the Finish dialog box:

If you selected Join an existing project from the Workspace Wizard dialog, the
Finished dialog would display commands similar to these:

Setting up a Project or Module Workspace

44

If you selected Create a New Module from the Workspace Wizard dialog, the
Finished dialog would display commands similar to these:

DesignSync Data Manager User's Guide

45

Related Topics

Workspace Wizard Overview

Workspace Wizard Paths

Joining a Project Step-by-Step

Specifying the Vault Location for a Design Hierarchy

Before you can check in files for the first time or check out files from an existing vault,
you must associate a vault location with your local work area. Typically, an entire
hierarchy of files and folders that represent a design project would be revision-controlled
under the same top-level vault.

When you specify a vault for a workspace folder, if a workspace root has not already
been set on a folder above the folder location where the vault is being declared, then
DesignSync automatically designates a workspace root folder according to the
workspace root definition rules. By default this is one level above hierarchically above

Setting up a Project or Module Workspace

46

the specified folder. The workspace root stores metadata information about the design
objects contained within the folder.

The Set Vault Association dialog box associates a vault location with a work area. This
command maps a local folder (directory) to a revision-control vault folder (repository).

When working with modules and module objects

The only time you would need to use the Set Vault Association dialog box on a module
workspace is if you have moved a module, such as moving it to a different or server
location. These module objects cannot have a vault association:

• Any subdirectory of a module
• A module root directory
• A module member object
• A module that is in a workspace as a result of a hierarchical reference from

another module (such as a sub-module).

Client Vaults and Server Vaults

Setting the vault association is the first step in placing design data under revision control
or checking out (populating) data that is already managed. Every local folder and file
has a default client vault even if you have not explicitly set the vault.

Client vaults:

• Reside in the location determined during installation of your client.
• Cannot be accessed by other users. Should only used to manage private data.
• Are always identified using a file URL.
• Do not require a workspace root folder.

You must explicitly set the vault for a folder before you can check in objects contained in
the folder. Typically, you use server (remote) vaults, which are managed by
SyncServers, instead of client vaults.

Server vaults:

• Can reside on your local host, but often reside on another host.
• Can be accessed by any user who is authorized to do so.
• Are always identified using a sync: URL.
• Use workspace root folders to store metadata to reduce the amount of

information passed to and from the server during operations and allow for
intelligent data processing.

Notes

DesignSync Data Manager User's Guide

47

• When trying to resolve a selector, DesignSync does not search above the root of
a workspace where a set vault association has been applied. Therefore, when a
folder that has no selector or persistent selector set, DesignSync searches up the
hierarchy stopping at the first folder that has a vault association.

• When resolving multiple selectors specified for a module, DesignSync overlays
the module snapshots in order of appearance within the selector, so the first
snapshot on the list has precedence over any module members with the same
natural path or uuid previously specified.

• Vault settings on subfolders in a work area are affected by the recursive option
when they are populated. Consider using REFERENCEs in sync_project.txt files
to redirect a subfolder to a different vault. See Vault REFERENCEs for Design
Reuse for more information.

• When you specify a new vault in the Modify Vault field, the vault folder is not
created until you check in design data.

• The local folder on which you are setting the vault must already exist.
• You must have write permission for the parent folder of the folder for which you

are setting the vault.
• You need write permission in order for DesignSync to create local metadata

stored in .SYNC directories for the parent folder.
• To facilitate the interaction between DesignSync and ProjectSync, it is

recommended that you specify Projects as the top-level folder.
• Your DesignSync administrator defines what SyncServer ports are available and

whether secure communications are required. See DesignSync Data Manager
Administrator's Guide: Using Secure Communications for more information.

• DesignSync also supports a syncs protocol for communicating with secure (SSL)
SyncServer ports. In most cases, DesignSync automatically redirects requests to
a cleartext (non-secure) port using the sync protocol to the secure port, if one is
defined. The default SyncServer ports are 2679 for the secure port or 2647 for
the cleartext port.

• You can omit the port specification when accessing a SyncServer that uses the
default port number.

To associate a vault with your design hierarchy:

1. Highlight the top-level folder of the hierarchy that you want to place under
revision control. To modify the vault location for a module, highlight the module’s
base directory.

2. From the main menu, select Revision Control =>Set Vault Association. You
can also right-click and select Set Vault Association from the context menu.

3. Enter information or select options as needed from the Set Vault Association
dialog box. See Field and Option Descriptions below for more details. If you will
not be sharing your design data with other users, you can accept the default local
vaults instead of specifying a remote vault.

4. Click OK to confirm.

Click on the fields in the following illustration for information on each field.

Setting up a Project or Module Workspace

48

Field and Option Descriptions

Modify the vault

Note: When the number of characters in the path to the vault exceeds 1024, the
command will fail.

When checked, you can enter the location of new vault for the top-level Module or
DesignSync object or folder. For a client vault, the path is the full, absolute path on your
local machine. For a server vault, the path is relative to the server root as specified
during the SyncServer installation.

By default, if there is no workspace root set, the folder above the specified folder is set
as the workspace root. For more information on defining workspace roots, see
DesignSync Data Manager Administrator's Guide: Workspaces

Click Browse to find known projects and servers. Typically, you will specify a remote
vault location.

A module path should be specified in the following form:

<protocol>://<host>:<port>/[Modules|Projects]/ <path>

An example of a location of a new vault location is:

sync://apollo.spaceco.com:2647/Projects/Sportster

In this example:

DesignSync Data Manager User's Guide

49

Path item Description
sync: DesignSync protocol for specifying a remote server. For a standard

connection use sync as the protocol. For an SSL connection, use
syncs as the protocol.

apollo: Server (machine) name. Specify a full domain name, such as
myhost.myco.com. You can specify just the machine name, which
in this case is apollo) if you are on the same LAN as the SyncServer
host machine, for example:

sync://apollo:2647/Projects/Sportster
2647 Port number that was specified when the server was configured. You

can omit the port specification if the SyncServer is using the default
port of 2647.

Projects Top-level folder on the server under which project vaults are located
Sportster Top-level vault folder for the Sportster project

By default, this option is unchecked.

Note: All Modules must be in the top-level folders in order to be recognized by
DesignSync. It is recommended legacy modules use the top-level folder Projects.

Modify the selector

When checked, you can specify the persistent selector list for the hierarchy by following
the vault URL with ;<selectorList>. For example, to define the persistent selector
list as main you would enter the path something like this:

sync://apollo:2647/Projects/Sportster;main

For non module object, you also can select from a list of available selectors, by
highlighting Get selectors from the pull down. The system retrieves the available
selectors for the project entered in the Modify the vault field.

 For module objects, you can select either Get Branches or Get Tags/Versions.

When unchecked, no selector is set and the default is set to Trunk. If you need to
remove a selector, deselect the Modify the vault option, select the Modify the selector
option, and then delete the selector information.

Apply changes recursively

When checked, recursively clears any vault information that may have been set in
subfolders. When you are setting the vault for the first time, checking this option was no
effect. Check this option if you are changing the vault location for a hierarchy.

Setting up a Project or Module Workspace

50

When not checked, any previously set vault information in subfolders remains.

When you set the vault on a folder, that vault association is stored in the local metadata
for that folder. Each subfolder inherits its vault association from its parent folder; the
vault association is not stored in metadata unless the subfolder has an explicit set vault
association applied to it.

Every versionable object (file or collection) in the hierarchy inherits its vault from the
parent folder, although once a revision-control operation has been performed on the
object, the vault association is stored in that object's metadata. Therefore, anytime you
want to change a vault setting (as opposed to setting the vault for the first time), check
the apply change recursively option. This removes all vault associations that are stored
in metadata, which causes all objects in the hierarchy to inherit their vault associations
from the folder on which the set vault association has been applied.

Note: The -recursive option is not valid for modules and is ignored.

Caution: If a subfolder had an explicit set vault association applied to it such that the
vault information is stored in the folder's local metadata, that vault association is
removed and the subfolder reverts to inheriting its vault association from the parent
folder.

Module context

The field is only enabled for module base folders and contains the module instance
names of the modules based at that folder. These module instance names are listed
alphabetically in the pull-down.

Related Topics

Changing the Vault for a Design Hierarchy

ENOVIA Synchronicity Command Reference: setvault command

ENOVIA Synchronicity Command Reference: setselector

Using Vault REFERENCEs for Design Reuse

ENOVIA Synchronicity Command Reference: populate

ENOVIA Synchronicity Command Reference: unlock

ENOVIA Synchronicity Command Reference: url vault

ENOVIA Synchronicity Command Reference: setselector

DesignSync Data Manager User's Guide

51

Adding a Vault to Bookmarks

In the List View (right pane) of the DesignSync window, right-click an object. Then
select Go =>Go to Vault from the menu.

Click to select the vault and select Bookmark =>Add Bookmark from the menu, or
right-click on the vault and select Add Bookmark.

Verifying That a Vault Has Been Set on a Folder

To verify that a vault has been set on a folder in the working directory, do either of the
following:

• From DesignSync, select the folder of interest, then select File =>Properties.
The Properties dialog box contains the vault information.

• From the command line, use the url vault command.

Related Topics

Revision Control Properties

ENOVIA Synchronicity Command Reference: url vault

Browse the Vault for a File or Project

To browse the vault for a file or project, enter a search path in the Location bar of the
DesignSync window followed by a carriage return. The objects searched for will be
displayed in the Tree View (left pane) of the DesignSync window.

The search path does not need to be complete. You can enter only the name of a
server and port. For example, if you enter the following:

sync://myserver.myco.com:2647

You can then expand the search from that point.

Viewing the Contents of a Vault

You can view the vault folder for your project by selecting the top-level local folder and
clicking the Go to Vault button. You can navigate the vault hierarchy as you navigate
other items in the Tree View to display the folders and vaults that make up the project.

You can also go directly to the vault of specific files or vault folders of specific folders.
Select the local file or folder of interest and do one of the following:

Setting up a Project or Module Workspace

52

• Click the Go to Vault button.
• Select Go =>Go to Vault.
• Right-click the folder or file and select Go to Vault from the pop-up menu.

Notes:

• The folder or file must be part of a project that is under revision control.
Attempting to view the vault of a file or folder that is not under revision control
results in an error.

• A folder will not have a display in the Branch column if the folder belongs to a 5.0
module.

When viewing the vault of a file, you can see the versions of a file, as well as any
branches that may emanate from a version. A version that has branches off it is called a
branch-point version. Note that every managed object has at least one branch: branch
1, or Trunk. When you view the vault, you are viewing branch 1.

The illustration shows the DesignSync window after viewing the top-level vault folder for
the project and then navigating down to top.v;, the vault for the top.v file. Note that
vault names end in a semicolon (;). The List View shows that there are currently three
versions of top.v on the main (Trunk) branch in the vault.

You can double click on a version to display it in your editor. DesignSync fetches a copy
of the version into the local DesignSync cache directory. You may be able to edit the
cached version of the file, but your changes do not affect the version in the vault.

To see the check-in comments for a version, right-click on the version and select
Properties => Version. The Revision Log window appears and displays the check-in
comment. Use the vhistory command to see the entire version history of an object,
including all version logs.

Version 1.2 is branch-point version. Double-clicking on the branch point version displays
the branches emanating from version 1.2. The following illustration shows that two
branches (1.2.1, tagged DevBM, and 1.2.2, tagged Rel2.1) emanate from version 1.2

And double-clicking the 1.2.1 branch displays the versions on that branch:

DesignSync Data Manager User's Guide

53

Related Topics

Vaults, Versions, and Branches

Displaying Version History

ENOVIA Synchronicity Command Reference: vhistory

Populating Your Work Area

If you have just joined a project, you need to use Populate to check out all the objects
from that project into your local working folder. You typically want to populate
recursively, (using the Recursive option) which traverses a vault folder and recreates
the vault folder hierarchy in your work area or traverses a module hierarchy and
recreates the hierarchy in your work area. You can also use the Workspace Wizard to
help you join a project.

The default mode for populate fetches Unlocked copies of objects, unless you have
saved a different object state setting with the Save Settings button, or your project
leader has defined a default fetch state. See Saving the Setting of an Object's State and
SyncAdmin Help: Default Fetch State for information on these two conditions.

After you have initially populated your work area, you need to populate periodically to
update your local files, because the vault might have changed since your previous
populate. For example, another user might have checked in new design objects or new
versions of objects that are already in your work area. Generally, you can perform an
incremental populate for these periodic updates. If you need to change the states of
files in your work area (for example, if you are changing from locked to unlocked files, or
unlocked files to links to the cache), you should perform a full populate. An incremental
populate updates only those local folders whose corresponding vault folders have
changed, which is faster than a full populate operation. DesignSync performs an
 incremental populate by default whenever possible, although it automatically reverts to
a full populate when necessary. See the ENOVIA Synchronicity Command
Reference:populate command description for the circumstances where DesignSync
automatically performs a full populate and for the circumstances where you might
choose to specify a full populate.

You can select these types of data for the populate operation:

Setting up a Project or Module Workspace

54

• A DesignSync folder
• A managed DesignSync (non-module) object
• A module or external module that is already in your workspace (for an update of

your workspace)
• A server module branch or server module version (for an initial populate of a

workspace)
• An href that is already in your workspace

Note: You cannot select an href on the server; to select an href, you must
populate the entire module from the server, or filter the data that is fetched.

Specifying an href for a populate is equivalent to specifying the relevant
submodule directly. By specifying an href, the submodule (and the version to
be fetched) is identified via the parent module. Specifying an href enables
you to fetch a submodule of a module, without necessarily knowing where
that module is sourced from, or what version is appropriate.

You can only specify the hrefs directly in the module being addressed, not in
its submodules. Selecting an href in your workspace as the object to
populate sets the module context accordingly, disabling the Module context
field.

• A module folder that is already in your workspace

Note: You cannot select a module folder on the server; to select a module
folder, you must populate the entire module from the server, or filter the data
that is fetched.

• A module member that is already in your workspace

Note: You cannot select a module member on the server; to select a module
member, you must populate the entire module from the server, or filter the
data that is fetched.

• A legacy module already in your workspace
• A legacy module configuration on the server
• A server module branch and one or more server module snapshots. For

information on creating a blending environment including a main server module
with one or more module snapshots, see Module Snapshots.

Additional Notes:

• You can only select one server object at a time.
• You cannot use the Populate dialog box to populate a specific version of a

module member. The version specification is always associated with the module

DesignSync Data Manager User's Guide

55

and not its members. See Specifying Module Objects for Operations for details.
To populate a specific version of a module member, use the populate command.

Some of the fields in the Populate dialog box are applicable to DesignSync (non-
module) data, and some to module data:

Field in the
Populate dialog
box

Applicable to
DesignSync (non-
module) data

Applicable
to module
data

Populate with
Unlocked copies

yes yes

Populate with
Locked copies

yes yes

Populate with
References to
versions

yes yes

Populate with
Links to cache

yes yes

Populate with
Links to mirror

yes no

Populate with
Locked references

yes yes

Recursive yes yes

Merge with
workspace

yes yes

Populate new
module members

no yes

Replacement
mode

yes yes

Filter no yes

Exclude yes yes

Working directory no yes

Module context no yes

Module Views no yes

Report mode yes yes

Retain timestamp yes yes

Setting up a Project or Module Workspace

56

Unify workspace
state

yes yes

Incremental
populate

yes not
typically

Populate empty
directories

yes no

Href filter no yes

Href mode no yes

Version yes yes

Overlay version in
workspace

yes yes

Keys yes yes

Local Versions no yes

Module Cache
Mode

no yes

Module Cache
Paths

no yes

Trigger Arguments yes yes

To interrupt a populate operation, Click the Stop button. DesignSync completes the
processing of any objects being populated, before stopping the command. See the
ENOVIA Synchronicity Command Reference: interrupt command line topic for more
information.

Click on the fields in the following illustration for information.

DesignSync Data Manager User's Guide

57

Setting up a Project or Module Workspace

58

Populate Field Descriptions

Populate with Unlocked copies

After the operation is over, keep an unlocked copy in your work area. This is the default
unless your project leader has defined a default fetch state.

Because you have relinquished any lock you may have had on the object, someone
else can check the object out from the vault with a lock in order to modify it.

DesignSync Data Manager User's Guide

59

The Unlocked files are checked out in Read Only mode option from the Tools =>
Options => General dialog box determines whether these files are read/write or read-
only.

Populate with Locked copies

After the operation is over, keep a locked copy in your work area. You can continue to
work on the object. Others cannot check in new versions of the object as long as you
have the branch locked. (The copy in your work area is known as an original.) This
option is not available for legacy modules or legacy module configurations. When
operating on 5.0 modules, it is module members that are locked; not whole modules.
Thus, this option is mutually exclusive with the Recursive option, or with a Module
context specified. To lock a module, use the Modules => Lock Branch dialog box, or
the lock command. See Locking Module Data for details.

Populate with References to versions

This option lets you acquire references to the versions you have selected.

Tip: Do not use this option when operating on a collection object. If you use this option,
DesignSync creates a reference in the metadata for the collection object, but member
files are not processed and are not included in the metadata.

Populate with Links to cache

Use this option to link to a shared copy of the design object in a cache directory. This
option is available only on UNIX platforms.

Populate with Links to mirror

Use this option to link to a shared copy of the design object in a mirror directory. This
option is available only on UNIX platforms. This option is not available for module data.

Populate with Locked references

This option lets you acquire a locked reference. If you intend to regenerate the object,
create a locked reference to avoid fetching a copy of the object from the vault. This
option is not available for legacy modules or legacy module configurations. For other
module data, this option is mutually exclusive with the Recursive option, or with a
Module context specified.

Merge with workspace

Select this option if you want to merge the Latest version of an object in the vault with a
locally modified version. This option supports the merging work style where multiple
team members can check out the Latest version of an object for editing. The first team

Setting up a Project or Module Workspace

60

member to check his changes in creates the next version; other team members merge
their local changes with the new Latest version, and then check the merged version in.
To learn how the Merge with workspace option operates on module data, see Merging
Module Data.

If there are no conflicts, then the merge succeeds, leaving you the merged file in your
work area. If there are conflicts, a warning message results. You must edit the merged
file to resolve the conflicts before DesignSync allows you to check in the merged
version. Conflicts are shown as follows:

<<<<<<< local

Lines from locally modified version

=======

Lines from Latest version

>>>>>>> versionID

The conflicts are considered resolved when the file no longer contains any of the conflict
delimiters (7 less-than, greater-than, or equal signs in the first column). The Status
column of the List View and the ls command indicates if a file has unresolved conflicts.

Populate new module members

This option only applies to module data. If selected, the populate operation fetches
objects that are in the vault, but not currently in the workspace (subject to the Filter and
Exclude fields). This is the default behavior. If unselected, the populate operation
updates only objects already in the workspace.

Replacement mode

The Replacement mode determines how the populate operation updates your work
area with the data you are fetching. Specify one of the following update methods:

• Do not replace any objects. For DesignSync data, do not overwrite locally
modified files. Do not remove files that do match the requested version.

For module data, preserve local modifications you made to module members,
and leave intact any module members that are in your work area that are not in
the requested module version.

• This mode causes the least disruption to your work area; however, it may require
you to clean up resulting work area data.

DesignSync Data Manager User's Guide

61

• Replace unmodified objects only. For DesignSync data update unmodified
objects with the current server version and remove any unmodified objects that
are no longer present in the vault, for example, if a file was retired.

Note: Objects that have been retired, but remain in the workspace or were re-
created in the workspace are considered locally modified.

For module data, update module members that have not been locally modified
and that are part of the requested module version. Also remove any unmodified
module members that are not part of the requested module version.

• This mode, which is the default behavior for module data, leaves intact any
module members you have modified in your workspace.

• Force overwrite of modified objects. For DesignSync data, overwrite locally
modified files. Also remove managed objects that do not match the requested
selector.

For module data, replace or remove module members, regardless of whether you
have modified them locally or whether they are part of the requested module
version.

• The intent of this mode is to make the workspace match the data being
requested (subject to the Filter and Exclude fields), as closely as possible.
Unmanaged data is never removed.

This mode removes items that have been added to a module but have not yet
been checked in; their "added" indicator is removed. The data, which is
unmanaged, is not removed. See Adding a Member to a Module for information
adding members to modules.

If there is a conflict with data fetched from another module, that other data is not
removed. See Conflict Handling for details.

If populating a module overlaps with another module already in your workspace,
data from that other module is not removed.

This mode is mutually exclusive with the Merge with workspace option.

The Replacement mode only applies to items that are not filtered out by the Href filter,
Filter or Exclude options.

Filter

See Filter Field.

Exclude

Setting up a Project or Module Workspace

62

See Exclude Field.

Working directory

This field is used when initially populating a workspace with a module from a server.
The Working directory field only applies when a server module is selected as the
object to populate. Specify the path to the directory in your work area where you want
the fetched module to reside. Click Browse to select the work area where you want to
place the module. You can also type the absolute path to the directory.

Note: If you are populating a directory with links to a module cache, the Working
directory must be new (uncreated).

Module context

See Module Context Field.

Module Views

See Module Views Field.

Report mode

For the Report mode, choose the level of information to be reported:

• Brief output: Brief output mode reports the following information:

o Failure messages.
o Warning messages.
o Version of each module processed.
o Creation message for any new hierarchical reference populated as a result of a

recursive module populate.
o Removal message for any hierarchical reference. removed as part of a recursive

module populate.
o Success/failure status.

• Normal output: In addition to the information reported in Brief:

o Informational messages for objects that are successfully updated by the populate
operation.

o Messages for objects excluded from the operation (due to exclusion filters or
explicit exclusions).

o Information about all fetched objects.

• Verbose output: In addition to the information reported in Normal mode:

DesignSync Data Manager User's Guide

63

• Informational message for every object even if it is not updated, for example
objects that are skipped because the version in the workspace is the current
version.

• For module data, also outputs information about all objects that are filtered.

• Errors and Warnings only: Errors and Warnings output mode reports the
following information:

• Failure messages.
• Warning messages.
• Success/failure status messages.

Incremental populate

Perform a fast populate operation by updating only those folders whose corresponding
vault folders have been modified. DesignSync performs an incremental populate by
default whenever possible, although it automatically reverts to a full populate when
necessary.

To change the default populate mode, your DesignSync administrator can use the
SyncAdmin tool, or you can use the Save Settings button to override the default mode.

Note: This option by itself does not cause state changes of objects in your work area
(for example, changing from locked to unlocked objects or unlocked objects to links to
the cache). DesignSync changes the states of updated objects only. Furthermore, for an
incremental populate, DesignSync only processes folders that contain updated objects,
so state changes are not guaranteed. Select Unify workspace state to change the
state of objects in your work area.

When populating a module, if you use the Version field to specify a different
version, DesignSync silently ignores the Incremental option and performs a full
populate of the module.

For incremental populate operations: If you exclude objects during a populate, a
subsequent incremental populate will not necessarily process the folders of the
previously excluded objects. DesignSync does not automatically perform a full populate
in this case. To guarantee that previously excluded objects are fetched, turn off the
Incremental populate check box for the subsequent populate operation.

This option usually is not relevant for module data. However, there are two
circumstances in which you should deselect this option for a full populate of module
data:

• To re-fetch data that was manually removed.

The Unify workspace state option also re-fetches such data, but for missing

Setting up a Project or Module Workspace

64

objects to be considered for the operation, you must deselect the Incremental
populate option.

• To re-fetch objects that are unchanged from the current module version to the
new one, but for which the version in the workspace is incorrect.

For example, let's say there is a module Chip, containing the member alu.v .
You have version 1.4 of the module Chip. The Latest version of the module is
1.5. There is no change to the file alu.v between module Chip versions 1.4
and 1.5; alu.v is version 1.3 in both module versions. However, you actually
have version 1.2 of alu.v, having specifically fetched that file from a previous
Chip module version 1.3. In this case, an incremental populate of the module
would not re-fetch the 1.3 version of alu.v. A full populate is required to re-fetch
the 1.3 version of alu.v.

Unify workspace state

Sets the state of all objects processed, even up-to-date objects, to the specified state
(Unlocked copies, Locked copies, References to versions, Links to cache, Links
to mirror, Locked references) or to the default fetch state if no state option is
specified. See SyncAdmin Help: Defining a Default Fetch State for more information. If
turned off, DesignSync changes the state of only those objects that are not up-to-date.
If checked, DesignSync changes the state of the up-to-date objects, as well.

The Unify workspace state check box:

• Does not change the state of locally modified objects; select the Replacement
Mode setting Force overwrite of modified objects to force a state change and
overwrite the local changes.

• Does not change the state of objects not in the configuration; use the
Replacement Mode setting Force overwrite of modified objects to remove
objects not in the configuration.

• Does not cancel locks. To cancel locks, you can check in the locked files, select
Revision Control =>Cancel Checkout to cancel locks you have acquired, or
select Revision Control =>Unlock to cancel team members' locks.

Note:

The Unify workspace state option is ignored when you lock design objects. If you
check out locked copies or locked references, DesignSync leaves all processed objects
in the requested state.

Populate empty directories

Determines whether empty directories are removed or retained when populating a
directory. Select this option to retain empty directories.

DesignSync Data Manager User's Guide

65

If you do not select this option, the populate operation follows the DesignSync registry
setting for "Populate empty directories". This registry setting is by your DesignSync
administrator using the SyncAdmin tool. By default, this setting is not enabled;
therefore, the populate operation removes empty directories.

This option is not applicable to module data. See Directory Versioning for background.
To prevent specific empty directories from being created by the populate, use the Filter
field.

Href filter

See Href Filter Field

Href mode

The Href mode option lets you specify how hierarchical references should be evaluated
in order to identify the versions of submodules to reference when populating a module
recursively. This field is only available when operating on module data.

Normal mode: Evaluates the selector and fetches the referenced submodules. If
the selector resolves to a static version, by default, the hrefmode is set to 'Static'
for the next level of submodules to be populated. If the selector resolves to a
dynamic version, the selector is resolved dynamically and the hrefmode remains
Normal. For more information, on understanding this behavior, see Module
Hierarchy. For more information on understanding dynamic and static version
selectors, see Selector Formats. This is the default Href mode.

Static mode: Populates the static version of the submodule that was recorded
with the href at the time the parent module's version was created.

Dynamic mode: Evaluates the selector associated with the href to identify the
version of the submodule to populate.

The Href mode option is mutually exclusive with the option to fetch Locked copies.

Version

Specify the version number or tag (or any selector or selector list) of the objects on
which to operate.

For DesignSync folders, this field is set to the folder's persistent selector list by default.
The Version field has a pull-down list containing suggested selectors; see Suggested
Branches, Versions, and Tags for details.

Note: Modules do not support auto-branching, so for module data, the Version
field can not contain the auto() construct.

Setting up a Project or Module Workspace

66

When populating top-level module data, specifying a Module Version value changes
the workspace selector. When populating sub-modules or files-based versions, the
workspace selector does not change, even if the objects are being populated for the first
time. When populating a module with a version selector list, the persistent selector is set
to an environment that can contain module members from different module version. For
more information on blended module member versions, see Module Member Tags. To
set or change the workspace selector for a submodule, use the swap commands. For
more information on swapping submodules, see Edit-In-Place Methodology. To set or
change the workspace selector for files-based objects, see Specifying the Vault
Location for a Design Hierarchy.

Note: If the selected module version is a static selector, such as a specific version
number or tag, any changes to the workspace cannot be checked in.

If the only items selected to populate are module member files in the workspace, and all
of the selected members are members of the same module, the Version field is
replaced by a Module Version field. And, the Module context field will be disabled,
because you are populating the selected member files as they existed in a specific
version of the module.

If a legacy module on a server is selected as the object to populate, the Version field is
replaced by a Configuration field, with a default value of "<Default>" (the default
configuration). You can select a different configuration of the module from the pull-down
list.

If a legacy module configuration on a server is selected as the object to populate, the
Version field is also replaced by a Configuration field. The field's value is set to the
configuration that was selected as the object to populate.

If a legacy module already in your workspace is selected as the object to populate, the
Version field is replaced by a Configuration field. The value of the field defaults to the
currently fetched configuration. You can select a different configuration of the same
module from the pull-down list. If you change the configuration to be populated, the
Recursive option and the Replace unmodified objects only mode are both selected.

Overlay version in workspace

For DesignSync data, if this option is selected, the version specified in the Version field
is used to indicate the version to be overlaid on the work area. Overlaying a version
does not change the current version status as stored in the workspace metadata. The
Overlay version in workspace option is often used in conjunction with the Merge with
workspace option, to merge one branch onto another.

To find out how the Overlay version in workspace option operates on module data,
see Overlaying Module Data.

DesignSync Data Manager User's Guide

67

Keys

See Keys Field.

Module cache mode

This field only applies to module data. A populate operation can link to data in a module
cache instead of fetching data from the server, to help decrease fetch time and save
disk space.

• Link to module cache. (UNIX only) Creates a symbolic link from your
workspace to the base directory of a module in the module cache. This is the
default mode on UNIX platforms.

Note: To use this option, the Working directory must be empty. In order to
guarantee that the workspace is empty, the GUI client requires that the Working
directory not already exist for the initial mcache populate. The command line does
not enforce this, but overwrites any duplicate files in the workspace.

• Copy from the module cache. Copies a module from the module cache to your
work area.

Notes:

o This mode is the default mode on Windows platforms.
o This mode only applies to legacy modules.

• Fetch from the server. Fetches modules from the server.
• This option overrides the default module cache mode registry setting. If the

registry value does not exist, the Module Cache Mode selection defaults to Link
to module cache (UNIX platforms) or to Copy from the module cache
(Windows platforms).

Note: When a link to an mcache is created, the fetch mode, specified by the "Populate
with" option, is ignored and the module is fetched according to Module cache mode
settings.

Module Cache Paths

This field only applies to module data. Use the Module Cache Paths field to specify
paths to the module caches that the populate operation searches, when using a Module
Cache Mode. If your project leader defined a default module cache path (or paths), the
Module Cache Paths field will be preset with that default path (or paths).

Click Browse... to select one or more paths. When a path is selected with the Browse...
pop-up dialog box, the selected path is added to the end of the Module Cache Paths
field.

Setting up a Project or Module Workspace

68

You can also type paths into the Module Cache Paths field. You must specify the
absolute path to each module cache. To specify multiple paths, separate paths with a
comma (,). The paths must exist.

If no Module Cache Paths are specified, the populate operation fetches modules from
the server.

Log populate messages in populate log file

Use this option to log populate messages to a populate log file. The log file provides
easy access to the populate messages to allow for later review. This is particularly
useful for complex populate operations such as merging a module version from another
branch.

Note: If the specified log file already exists, DesignSync will append the results of
this populate operation to the file. If the file cannot be created for any reason,
such as the directory specified does not exist, or you do not have write
permissions to the directory, the populate operation fails.

Trigger Arguments

See Trigger Arguments Field.

Extra command options

List of command line options to pass to the external module change management
system. Any options specified with the Extra Command options field are sent
verbatim, with no processing by the populate command, to the Tcl script that
defines the external module change management system. For more information
on external modules, see External Modules.

Related Topics

Setting Persistent Populate Views and Filters

Understanding Module Views

Merging Module Data

Module Snapshots

Using a Module Cache

How DesignSync Handles Legacy Modules

DesignSync Data Manager User's Guide

69

SyncAdmin Help: Default Fetch State

ENOVIA Synchronicity Command Reference: populate command

ENOVIA Synchronicity Command Reference: ls command

ENOVIA Synchronicity Command Reference: lock command

ENOVIA Synchronicity Command Reference: setselctor command

Recursion option

Filter field

Exclude field

Module context field

Retain timestamp option

Href filter field

Keys field

Local Versions field

Trigger Arguments

Command Invocation

Command Buttons

Using a Mirror

A mirror exactly mimics the data set defined for your project vault. Mirrors provide an
easy way for multiple users to point to the file versions that comprise their project's data.
The file versions in the mirror belong to the configuration defined by the project lead.

Examples

• The configuration might be the Latest version of files on the main Trunk branch.
A mirror for a development branch might be defined to always contain the file
versions on that branch with a specific tag. When the file versions comprising the
configuration change, the mirror directory automatically updates with the new
version.

Setting up a Project or Module Workspace

70

• If Latest versions are being mirrored and a new version of a file is checked into
the vault, the mirror directory updates with this new version. Without mirroring,
users need to frequently update their work areas using the populate command
to reflect the project's current data set.

Mirror directories can be treated in the same way as your DesignSync work areas. For
example, you can use commands such as the url or ls commands on mirror
directories.

Setting Up Your Workspace

Your team leader will have set up a mirror directory for your project. Use the setmirror
command to associate your workspace with the project's mirror directory. The setmirror
command does not have a GUI equivalent. See ENOVIA Synchronicity Command
Reference: setmirror help for more information on this command.

Note: you cannot link to a module mirror from a workspace.

All of the workspace's subdirectories automatically inherit the mirror location set for the
top level of the workspace. You cannot set a different mirror on a subdirectory from that
of its the parent directory.

To determine if your current work area directory is associated with a mirror, use the url
mirror command. See the ENOVIA Synchronicity Command Reference: url mirror help
for more information on this command.

Note: To resolve the mirror location, DesignSync does not search above the root of a
workspace where a setvault has been applied.

So if a setvault has been applied to a folder (/Projects/ASIC/alu) and you apply the
setmirror command at a higher-level folder (for example, /Projects/ASIC), the
setmirror command is ignored at and below the folder where the setvault occurred
(/Projects/ASIC/alu). See ENOVIA Synchronicity Command Reference: setvault help
for more information on this command.

Normally, the path to a mirror is stored exactly as specified by the setmirror command. If
your mirror directory is set to an auto-mounted directory, you can set a registry key for
DesignSync to resolve the path instead.

See DesignSync Data Manager Administrator's Guide: DesignSync Client Commands
Registry Settings for more information.

Changing the Mirror Directory Associated with Your Workspace

If the mirror directory for your project changes, run the setmirror command from the
same directory in which the original setmirror command was run. This command
updates the workspace's mirror association, which is inherited by lower level directories.

DesignSync Data Manager User's Guide

71

To correct existing workspace links to mirror files, run the populate command with
these options:

populate -recursive -mirror -unifystate

This command corrects the links to point to the mirror directory's new location.

Disassociating Your Workspace from a Mirror Directory

If you no longer need to use a mirror directory, you can disassociate your work area
directory from the mirror, by using the setmirror command.

Using the -mirror Option to Commands

Once you have associated your workspace with a mirror directory, use the -mirror
option with populate, ci, co, and cancel commands (or select Keep a link to Latest
(mirror) when performing these operations through the DesignSync GUI). You can also
specify that -mirror be used by default, if your team leader did not set that for your
project. For details, see Object States.

Note: You cannot use the populate -mirror command (or select Keep a link to Latest
(mirror)) to populate a directory containing a module. In addition, the ci command
ignores the -mirror option if you use it when checking in a module.

Having links to files in the mirror directory ensures that you are always referencing the
most up-to-date configuration. However, if other mirror users add files to the mirror, they
are not automatically exposed to your work area. Therefore, you should periodically
populate your work area directory using the populate -mirror command.

Notes:

• When performing the populate -mirror operation, DesignSync creates links only
if no file or link already exists in your work area directory; DesignSync does not
change the state of existing files and links.

To change the state of existing files and links when you populate your working
directory, use the -force or -unifystate option (or select Overwrite local files if
they exist or Unify workspace state in the DesignSync GUI), in addition to the -
mirror option.

Caution: Using the -force option overwrites any locally modified files.

• You cannot use the populate -mirror command to populate a directory containing
a module.

Related Topics

Setting up a Project or Module Workspace

72

DesignSync Data Manager Administrator's Guide: Mirroring Overview

DesignSync Data Manager Administrator's Guide: Mirrors Versus LAN Caches

ENOVIA Synchronicity Command Reference Help: setmirror

ENOVIA Synchronicity Command Reference Help: ci

ENOVIA Synchronicity Command Reference Help: populate

ENOVIA Synchronicity Command Reference Help: co

ENOVIA Synchronicity Command Reference Help cancel

Setting Permissions for the Mirror

All mirror directories must grant full access to the users of the mirror, unless SUID is
being used.

Even though mirrored files are read-only, a user must have write access to the mirror
because the user's process sometimes updates the mirror directory when checking in a
new version. This client write-through always happens when a mirror is set on the
workspace using the setmirror command. . DesignSync checks that the user has
write access to the mirror.

Note: It is possible and highly recommended to enforce the read-only intent of mirror
directories (SUID) and not require that all users have write access. For information on
configuring SUID, see the ENOVIA Synchronicity DesignSync Data Manager Installation
which is located in the Program Directory. For information on locating the Installation,
see Release Information.

DesignSync creates mirror directories with wide-open permissions:

777 -- read/write/execute privileges for owner/group/others

Related Topics

Mirroring Overview

Using a Mirror

Administering Mirrors

DesignSync Data Manager Administrator's Guide: Mirrors versus Cache

DesignSync Data Manager User's Guide

73

Changing the Vault for a Design Hierarchy

To change an existing vault association for a design hierarchy, follow the procedure for
setting the vault initially (Specifying the Vault Location for a Design Hierarchy) with the
Apply changes recursively check box selected. You should select this option when
you have already associated a vault location with a work area and want to change that
association. Selecting this option is equivalent to specifying the -recursive option to the
setvault command.

You can optionally specify the persistent selector list for the hierarchy by following the
vault URL with @<selectorList>. This URL syntax is equivalent to executing a
setselector command following the setvault command.

Selecting the Apply changes recursively option sets the vault on the specified folder
and clears any vault setting for subfolders and files in the hierarchy. Clearing the vault
settings causes subfolders and files to inherit the vault setting for the top-level folder. If
you do not select this option, only the vault associated with the top-level folder is
changed -- the folder is not recursed, so the vault associations for the files and
subfolders are not changed. If you specified a persistent selector list, DesignSync sets
and clears the persistent selector list in the same way it sets and clears the vault for the
hierarchy.

Related Topics

Specifying the Vault Location for a Design Hierarchy

Properties - Revision Control

ENOVIA Synchronicity Command Reference: setvault command

ENOVIA Synchronicity Command Reference: setselector command

Setting a Workspace Root
This command allows you to designate the workspace directory to be used as a storage
area for a set of local metadata information for a collection of design objects. The
 metadata includes information about the design files. Setting a workspace root does
not create DesignSync object metadata. When you create a module, or checkout or
populate files or module based objects, DesignSync stores (or creates) the appropriate
metadata for those design objects and stores the metadata in the workspace root folder.

For modules, after the workspace is created/populated with module data and the
workspace root set, you can refer to a module by the module instance name, rather
than specifying the full module path name.

Setting up a Project or Module Workspace

74

Note: You cannot set a workspace root directory underneath an existing workspace root
directory.

To set a workspace root:

1. Highlight the folder that you want to set as a workspace root.
2. From the main menu, select Revision Control=> Set Root Folder. A

confirmation notice similar to this appears:

3. Click Yes to confirm and No to cancel.

Note: When design data is created or populated with a specified workspace path, the
parent of that workspace path is automatically set as the root if there is not root already
set.

Related Topics

ENOVIA Synchronicity Command Reference: mkmod

ENOVIA Synchronicity Command Reference Help: populate

ENOVIA Synchronicity Command Reference Help: co

ENOVIA Synchronicity Command Reference Help: setvault

Setting Persistent Populate Views and Filters
The Set persistent populate views and filters dialog box is used to apply the views or
create the filters that are applied each time a module is populated. The views and/or
 filters control what is and is not populated into your workspace from the module during
the populate command.

Note: The persistent populate parameters are also set when a module is initially
populated by the command line when the -version, -view, –filter and/or -
hreffilter switches are used with the populate command.

To set persistent settings for future populate commands for a module:

1. Select the workspace module in the List View pane or the Tree view for which
you want to set the persistent views or filters.

DesignSync Data Manager User's Guide

75

2. Select Revision Control => Set Persistent Populate Views and Filters.
3. Enter information or select options as needed from the Set persistent populate

views and filters dialog box.
4. Click OK to confirm.

Click on the fields in the following illustration for information on each field.

Field Descriptions

Module context

Expanding the list-box shows the available module instances for the currently selected
base folder. All available module instances are listed alphabetically in the pull-down.

Setting up a Project or Module Workspace

76

Note: There may only be one module listed.

Modify the view

Select this option when you change the persistent view.

Apply recursively

Apply the view recursively through the workspace module hierarchy. By default, this is
not selected.

 Module views

See the Module Views Field.

Modify the filter

Select this option when you change the filter.

Filter

This field defaults to the current filter setting for the selected workspace module. Enter
the expressions that will include and exclude the module members to be populated into
your workspace during future populate commands. To remove existing filters, delete the
existing text.

Modify the href filter

Select this option when you change the href filter.

Href Filter

This field defaults to the current href filter setting for the selected workspace module.
Enter the simple hierarchical reference expressions that will exclude the hierarchical
references to be populated into your workspace during future populate commands. To
remove existing filters, just delete the existing text.

To use hierarchical href filtering, select Modify the hierarchical href filter. For information
on href filters, see Href and Hierarchical Href Filtering.

Modify the hierarchical href filter

Select this option when you change the hierarchical href filter.

Hierarchical href Filter

DesignSync Data Manager User's Guide

77

This field defaults to the current hierarchical href filter setting for the selected workspace
module. Enter the hierarchical href expressions that will exclude the hierarchical
references to be populated into your workspace during future populate commands. To
remove existing filters, delete the existing text.

Animated Examples

Filtering

Persistent populate filter

Related Topics

Filtering Module Data

Filter Field

Href Filter Field

Module Views Field

ENOVIA Synchronicity Command Reference: populate

ENOVIA Synchronicity Command Reference: setfilter

ENOVIA Synchronicity Command Reference: view

79

Using DesignSync

Populating Your Work Area
If you have just joined a project, you need to use Populate to check out all the objects
from that project into your local working folder. You typically want to populate
recursively, (using the Recursive option) which traverses a vault folder and recreates
the vault folder hierarchy in your work area or traverses a module hierarchy and
recreates the hierarchy in your work area. You can also use the Workspace Wizard to
help you join a project.

The default mode for populate fetches Unlocked copies of objects, unless you have
saved a different object state setting with the Save Settings button, or your project
leader has defined a default fetch state. See Saving the Setting of an Object's State and
SyncAdmin Help: Default Fetch State for information on these two conditions.

After you have initially populated your work area, you need to populate periodically to
update your local files, because the vault might have changed since your previous
populate. For example, another user might have checked in new design objects or new
versions of objects that are already in your work area. Generally, you can perform an
incremental populate for these periodic updates. If you need to change the states of
files in your work area (for example, if you are changing from locked to unlocked files, or
unlocked files to links to the cache), you should perform a full populate. An incremental
populate updates only those local folders whose corresponding vault folders have
changed, which is faster than a full populate operation. DesignSync performs an
 incremental populate by default whenever possible, although it automatically reverts to
a full populate when necessary. See the ENOVIA Synchronicity Command
Reference:populate command description for the circumstances where DesignSync
automatically performs a full populate and for the circumstances where you might
choose to specify a full populate.

You can select these types of data for the populate operation:

• A DesignSync folder
• A managed DesignSync (non-module) object
• A module or external module that is already in your workspace (for an update of

your workspace)
• A server module branch or server module version (for an initial populate of a

workspace)
• An href that is already in your workspace

Note: You cannot select an href on the server; to select an href, you must
populate the entire module from the server, or filter the data that is fetched.

Specifying an href for a populate is equivalent to specifying the relevant

Using DesignSync

80

submodule directly. By specifying an href, the submodule (and the version to
be fetched) is identified via the parent module. Specifying an href enables
you to fetch a submodule of a module, without necessarily knowing where
that module is sourced from, or what version is appropriate.

You can only specify the hrefs directly in the module being addressed, not in
its submodules. Selecting an href in your workspace as the object to
populate sets the module context accordingly, disabling the Module context
field.

• A module folder that is already in your workspace

Note: You cannot select a module folder on the server; to select a module
folder, you must populate the entire module from the server, or filter the data
that is fetched.

• A module member that is already in your workspace

Note: You cannot select a module member on the server; to select a module
member, you must populate the entire module from the server, or filter the
data that is fetched.

• A legacy module already in your workspace
• A legacy module configuration on the server
• A server module branch and one or more server module snapshots. For

information on creating a blending environment including a main server module
with one or more module snapshots, see Module Snapshots.

Additional Notes:

• You can only select one server object at a time.
• You cannot use the Populate dialog box to populate a specific version of a

module member. The version specification is always associated with the module
and not its members. See Specifying Module Objects for Operations for details.
To populate a specific version of a module member, use the populate command.

Some of the fields in the Populate dialog box are applicable to DesignSync (non-
module) data, and some to module data:

Field in the
Populate dialog
box

Applicable to
DesignSync (non-
module) data

Applicable
to module
data

Populate with
Unlocked copies

yes yes

Populate with yes yes

DesignSync Data Manager User's Guide

81

Locked copies

Populate with
References to
versions

yes yes

Populate with
Links to cache

yes yes

Populate with
Links to mirror

yes no

Populate with
Locked references

yes yes

Recursive yes yes

Merge with
workspace

yes yes

Populate new
module members

no yes

Replacement
mode

yes yes

Filter no yes

Exclude yes yes

Working directory no yes

Module context no yes

Module Views no yes

Report mode yes yes

Retain timestamp yes yes

Unify workspace
state

yes yes

Incremental
populate

yes not
typically

Populate empty
directories

yes no

Href filter no yes

Href mode no yes

Version yes yes

Overlay version in yes yes

Using DesignSync

82

workspace

Keys yes yes

Local Versions no yes

Module Cache
Mode

no yes

Module Cache
Paths

no yes

Trigger Arguments yes yes

To interrupt a populate operation, Click the Stop button. DesignSync completes the
processing of any objects being populated, before stopping the command. See the
ENOVIA Synchronicity Command Reference: interrupt command line topic for more
information.

Click on the fields in the following illustration for information.

DesignSync Data Manager User's Guide

83

Using DesignSync

84

Populate Field Descriptions

Populate with Unlocked copies

After the operation is over, keep an unlocked copy in your work area. This is the default
unless your project leader has defined a default fetch state.

Because you have relinquished any lock you may have had on the object, someone
else can check the object out from the vault with a lock in order to modify it.

DesignSync Data Manager User's Guide

85

The Unlocked files are checked out in Read Only mode option from the Tools =>
Options => General dialog box determines whether these files are read/write or read-
only.

Populate with Locked copies

After the operation is over, keep a locked copy in your work area. You can continue to
work on the object. Others cannot check in new versions of the object as long as you
have the branch locked. (The copy in your work area is known as an original.) This
option is not available for legacy modules or legacy module configurations. When
operating on 5.0 modules, it is module members that are locked; not whole modules.
Thus, this option is mutually exclusive with the Recursive option, or with a Module
context specified. To lock a module, use the Modules => Lock Branch dialog box, or
the lock command. See Locking Module Data for details.

Populate with References to versions

This option lets you acquire references to the versions you have selected.

Tip: Do not use this option when operating on a collection object. If you use this option,
DesignSync creates a reference in the metadata for the collection object, but member
files are not processed and are not included in the metadata.

Populate with Links to cache

Use this option to link to a shared copy of the design object in a cache directory. This
option is available only on UNIX platforms.

Populate with Links to mirror

Use this option to link to a shared copy of the design object in a mirror directory. This
option is available only on UNIX platforms. This option is not available for module data.

Populate with Locked references

This option lets you acquire a locked reference. If you intend to regenerate the object,
create a locked reference to avoid fetching a copy of the object from the vault. This
option is not available for legacy modules or legacy module configurations. For other
module data, this option is mutually exclusive with the Recursive option, or with a
Module context specified.

Merge with workspace

Select this option if you want to merge the Latest version of an object in the vault with a
locally modified version. This option supports the merging work style where multiple
team members can check out the Latest version of an object for editing. The first team

Using DesignSync

86

member to check his changes in creates the next version; other team members merge
their local changes with the new Latest version, and then check the merged version in.
To learn how the Merge with workspace option operates on module data, see Merging
Module Data.

If there are no conflicts, then the merge succeeds, leaving you the merged file in your
work area. If there are conflicts, a warning message results. You must edit the merged
file to resolve the conflicts before DesignSync allows you to check in the merged
version. Conflicts are shown as follows:

<<<<<<< local

Lines from locally modified version

=======

Lines from Latest version

>>>>>>> versionID

The conflicts are considered resolved when the file no longer contains any of the conflict
delimiters (7 less-than, greater-than, or equal signs in the first column). The Status
column of the List View and the ls command indicates if a file has unresolved conflicts.

Populate new module members

This option only applies to module data. If selected, the populate operation fetches
objects that are in the vault, but not currently in the workspace (subject to the Filter and
Exclude fields). This is the default behavior. If unselected, the populate operation
updates only objects already in the workspace.

Replacement mode

The Replacement mode determines how the populate operation updates your work
area with the data you are fetching. Specify one of the following update methods:

• Do not replace any objects. For DesignSync data, do not overwrite locally
modified files. Do not remove files that do match the requested version.

For module data, preserve local modifications you made to module members,
and leave intact any module members that are in your work area that are not in
the requested module version.

• This mode causes the least disruption to your work area; however, it may require
you to clean up resulting work area data.

DesignSync Data Manager User's Guide

87

• Replace unmodified objects only. For DesignSync data update unmodified
objects with the current server version and remove any unmodified objects that
are no longer present in the vault, for example, if a file was retired.

Note: Objects that have been retired, but remain in the workspace or were re-
created in the workspace are considered locally modified.

For module data, update module members that have not been locally modified
and that are part of the requested module version. Also remove any unmodified
module members that are not part of the requested module version.

• This mode, which is the default behavior for module data, leaves intact any
module members you have modified in your workspace.

• Force overwrite of modified objects. For DesignSync data, overwrite locally
modified files. Also remove managed objects that do not match the requested
selector.

For module data, replace or remove module members, regardless of whether you
have modified them locally or whether they are part of the requested module
version.

• The intent of this mode is to make the workspace match the data being
requested (subject to the Filter and Exclude fields), as closely as possible.
Unmanaged data is never removed.

This mode removes items that have been added to a module but have not yet
been checked in; their "added" indicator is removed. The data, which is
unmanaged, is not removed. See Adding a Member to a Module for information
adding members to modules.

If there is a conflict with data fetched from another module, that other data is not
removed. See Conflict Handling for details.

If populating a module overlaps with another module already in your workspace,
data from that other module is not removed.

This mode is mutually exclusive with the Merge with workspace option.

The Replacement mode only applies to items that are not filtered out by the Href filter,
Filter or Exclude options.

Filter

See Filter Field.

Exclude

Using DesignSync

88

See Exclude Field.

Working directory

This field is used when initially populating a workspace with a module from a server.
The Working directory field only applies when a server module is selected as the
object to populate. Specify the path to the directory in your work area where you want
the fetched module to reside. Click Browse to select the work area where you want to
place the module. You can also type the absolute path to the directory.

Note: If you are populating a directory with links to a module cache, the Working
directory must be new (uncreated).

Module context

See Module Context Field.

Module Views

See Module Views Field.

Report mode

For the Report mode, choose the level of information to be reported:

• Brief output: Brief output mode reports the following information:

o Failure messages.
o Warning messages.
o Version of each module processed.
o Creation message for any new hierarchical reference populated as a result of a

recursive module populate.
o Removal message for any hierarchical reference. removed as part of a recursive

module populate.
o Success/failure status.

• Normal output: In addition to the information reported in Brief:

o Informational messages for objects that are successfully updated by the populate
operation.

o Messages for objects excluded from the operation (due to exclusion filters or
explicit exclusions).

o Information about all fetched objects.

• Verbose output: In addition to the information reported in Normal mode:

DesignSync Data Manager User's Guide

89

• Informational message for every object even if it is not updated, for example
objects that are skipped because the version in the workspace is the current
version.

• For module data, also outputs information about all objects that are filtered.

• Errors and Warnings only: Errors and Warnings output mode reports the
following information:

• Failure messages.
• Warning messages.
• Success/failure status messages.

Incremental populate

Perform a fast populate operation by updating only those folders whose corresponding
vault folders have been modified. DesignSync performs an incremental populate by
default whenever possible, although it automatically reverts to a full populate when
necessary.

To change the default populate mode, your DesignSync administrator can use the
SyncAdmin tool, or you can use the Save Settings button to override the default mode.

Note: This option by itself does not cause state changes of objects in your work area
(for example, changing from locked to unlocked objects or unlocked objects to links to
the cache). DesignSync changes the states of updated objects only. Furthermore, for an
incremental populate, DesignSync only processes folders that contain updated objects,
so state changes are not guaranteed. Select Unify workspace state to change the
state of objects in your work area.

When populating a module, if you use the Version field to specify a different
version, DesignSync silently ignores the Incremental option and performs a full
populate of the module.

For incremental populate operations: If you exclude objects during a populate, a
subsequent incremental populate will not necessarily process the folders of the
previously excluded objects. DesignSync does not automatically perform a full populate
in this case. To guarantee that previously excluded objects are fetched, turn off the
Incremental populate check box for the subsequent populate operation.

This option usually is not relevant for module data. However, there are two
circumstances in which you should deselect this option for a full populate of module
data:

• To re-fetch data that was manually removed.

The Unify workspace state option also re-fetches such data, but for missing

Using DesignSync

90

objects to be considered for the operation, you must deselect the Incremental
populate option.

• To re-fetch objects that are unchanged from the current module version to the
new one, but for which the version in the workspace is incorrect.

For example, let's say there is a module Chip, containing the member alu.v .
You have version 1.4 of the module Chip. The Latest version of the module is
1.5. There is no change to the file alu.v between module Chip versions 1.4
and 1.5; alu.v is version 1.3 in both module versions. However, you actually
have version 1.2 of alu.v, having specifically fetched that file from a previous
Chip module version 1.3. In this case, an incremental populate of the module
would not re-fetch the 1.3 version of alu.v. A full populate is required to re-fetch
the 1.3 version of alu.v.

Unify workspace state

Sets the state of all objects processed, even up-to-date objects, to the specified state
(Unlocked copies, Locked copies, References to versions, Links to cache, Links
to mirror, Locked references) or to the default fetch state if no state option is
specified. See SyncAdmin Help: Defining a Default Fetch State for more information. If
turned off, DesignSync changes the state of only those objects that are not up-to-date.
If checked, DesignSync changes the state of the up-to-date objects, as well.

The Unify workspace state check box:

• Does not change the state of locally modified objects; select the Replacement
Mode setting Force overwrite of modified objects to force a state change and
overwrite the local changes.

• Does not change the state of objects not in the configuration; use the
Replacement Mode setting Force overwrite of modified objects to remove
objects not in the configuration.

• Does not cancel locks. To cancel locks, you can check in the locked files, select
Revision Control =>Cancel Checkout to cancel locks you have acquired, or
select Revision Control =>Unlock to cancel team members' locks.

Note:

The Unify workspace state option is ignored when you lock design objects. If you
check out locked copies or locked references, DesignSync leaves all processed objects
in the requested state.

Populate empty directories

Determines whether empty directories are removed or retained when populating a
directory. Select this option to retain empty directories.

DesignSync Data Manager User's Guide

91

If you do not select this option, the populate operation follows the DesignSync registry
setting for "Populate empty directories". This registry setting is by your DesignSync
administrator using the SyncAdmin tool. By default, this setting is not enabled;
therefore, the populate operation removes empty directories.

This option is not applicable to module data. See Directory Versioning for background.
To prevent specific empty directories from being created by the populate, use the Filter
field.

Href filter

See Href Filter Field

Href mode

The Href mode option lets you specify how hierarchical references should be evaluated
in order to identify the versions of submodules to reference when populating a module
recursively. This field is only available when operating on module data.

Normal mode: Evaluates the selector and fetches the referenced submodules. If
the selector resolves to a static version, by default, the hrefmode is set to 'Static'
for the next level of submodules to be populated. If the selector resolves to a
dynamic version, the selector is resolved dynamically and the hrefmode remains
Normal. For more information, on understanding this behavior, see Module
Hierarchy. For more information on understanding dynamic and static version
selectors, see Selector Formats. This is the default Href mode.

Static mode: Populates the static version of the submodule that was recorded
with the href at the time the parent module's version was created.

Dynamic mode: Evaluates the selector associated with the href to identify the
version of the submodule to populate.

The Href mode option is mutually exclusive with the option to fetch Locked copies.

Version

Specify the version number or tag (or any selector or selector list) of the objects on
which to operate.

For DesignSync folders, this field is set to the folder's persistent selector list by default.
The Version field has a pull-down list containing suggested selectors; see Suggested
Branches, Versions, and Tags for details.

Note: Modules do not support auto-branching, so for module data, the Version
field can not contain the auto() construct.

Using DesignSync

92

When populating top-level module data, specifying a Module Version value changes
the workspace selector. When populating sub-modules or files-based versions, the
workspace selector does not change, even if the objects are being populated for the first
time. When populating a module with a version selector list, the persistent selector is set
to an environment that can contain module members from different module version. For
more information on blended module member versions, see Module Member Tags. To
set or change the workspace selector for a submodule, use the swap commands. For
more information on swapping submodules, see Edit-In-Place Methodology. To set or
change the workspace selector for files-based objects, see Specifying the Vault
Location for a Design Hierarchy.

Note: If the selected module version is a static selector, such as a specific version
number or tag, any changes to the workspace cannot be checked in.

If the only items selected to populate are module member files in the workspace, and all
of the selected members are members of the same module, the Version field is
replaced by a Module Version field. And, the Module context field will be disabled,
because you are populating the selected member files as they existed in a specific
version of the module.

If a legacy module on a server is selected as the object to populate, the Version field is
replaced by a Configuration field, with a default value of "<Default>" (the default
configuration). You can select a different configuration of the module from the pull-down
list.

If a legacy module configuration on a server is selected as the object to populate, the
Version field is also replaced by a Configuration field. The field's value is set to the
configuration that was selected as the object to populate.

If a legacy module already in your workspace is selected as the object to populate, the
Version field is replaced by a Configuration field. The value of the field defaults to the
currently fetched configuration. You can select a different configuration of the same
module from the pull-down list. If you change the configuration to be populated, the
Recursive option and the Replace unmodified objects only mode are both selected.

Overlay version in workspace

For DesignSync data, if this option is selected, the version specified in the Version field
is used to indicate the version to be overlaid on the work area. Overlaying a version
does not change the current version status as stored in the workspace metadata. The
Overlay version in workspace option is often used in conjunction with the Merge with
workspace option, to merge one branch onto another.

To find out how the Overlay version in workspace option operates on module data,
see Overlaying Module Data.

DesignSync Data Manager User's Guide

93

Keys

See Keys Field.

Module cache mode

This field only applies to module data. A populate operation can link to data in a module
cache instead of fetching data from the server, to help decrease fetch time and save
disk space.

• Link to module cache. (UNIX only) Creates a symbolic link from your
workspace to the base directory of a module in the module cache. This is the
default mode on UNIX platforms.

Note: To use this option, the Working directory must be empty. In order to
guarantee that the workspace is empty, the GUI client requires that the Working
directory not already exist for the initial mcache populate. The command line does
not enforce this, but overwrites any duplicate files in the workspace.

• Copy from the module cache. Copies a module from the module cache to your
work area.

Notes:

o This mode is the default mode on Windows platforms.
o This mode only applies to legacy modules.

• Fetch from the server. Fetches modules from the server.
• This option overrides the default module cache mode registry setting. If the

registry value does not exist, the Module Cache Mode selection defaults to Link
to module cache (UNIX platforms) or to Copy from the module cache
(Windows platforms).

Note: When a link to an mcache is created, the fetch mode, specified by the "Populate
with" option, is ignored and the module is fetched according to Module cache mode
settings.

Module Cache Paths

This field only applies to module data. Use the Module Cache Paths field to specify
paths to the module caches that the populate operation searches, when using a Module
Cache Mode. If your project leader defined a default module cache path (or paths), the
Module Cache Paths field will be preset with that default path (or paths).

Click Browse... to select one or more paths. When a path is selected with the Browse...
pop-up dialog box, the selected path is added to the end of the Module Cache Paths
field.

Using DesignSync

94

You can also type paths into the Module Cache Paths field. You must specify the
absolute path to each module cache. To specify multiple paths, separate paths with a
comma (,). The paths must exist.

If no Module Cache Paths are specified, the populate operation fetches modules from
the server.

Log populate messages in populate log file

Use this option to log populate messages to a populate log file. The log file provides
easy access to the populate messages to allow for later review. This is particularly
useful for complex populate operations such as merging a module version from another
branch.

Note: If the specified log file already exists, DesignSync will append the results of
this populate operation to the file. If the file cannot be created for any reason,
such as the directory specified does not exist, or you do not have write
permissions to the directory, the populate operation fails.

Trigger Arguments

See Trigger Arguments Field.

Extra command options

List of command line options to pass to the external module change management
system. Any options specified with the Extra Command options field are sent
verbatim, with no processing by the populate command, to the Tcl script that
defines the external module change management system. For more information
on external modules, see External Modules.

Related Topics

Setting Persistent Populate Views and Filters

Understanding Module Views

Merging Module Data

Module Snapshots

Using a Module Cache

How DesignSync Handles Legacy Modules

DesignSync Data Manager User's Guide

95

SyncAdmin Help: Default Fetch State

ENOVIA Synchronicity Command Reference: populate command

ENOVIA Synchronicity Command Reference: ls command

ENOVIA Synchronicity Command Reference: lock command

ENOVIA Synchronicity Command Reference: setselctor command

Recursion option

Filter field

Exclude field

Module context field

Retain timestamp option

Href filter field

Keys field

Local Versions field

Trigger Arguments

Command Invocation

Command Buttons

Changing the State of Objects in Your Work Area
By default, populate does not re-fetch file versions that you already have in your
workspace. This is a performance optimization.

For example, let's say you currently have cache links in your workspace to version 1.2
of fileA.txt and version 1.3 of fileB.txt . Version 1.2 is the latest version of
fileA.txt. Version 1.5 is the latest version of fileB.txt . To update your workspace
with the Latest versions of all files, you run:

stcl> populate -recursive -get

Using DesignSync

96

The above command fetches a local copy of version 1.5 of fileB.txt. The
workspace's cache link to version 1.2 of fileA.txt remains unchanged, because you
already have the requested version of fileA.txt in your workspace.

This default behavior is as if the -nounifystate option was specified to populate. For
populate to instead re-fetch versions that you already have in your workspace in the
desired fetch mode, specify the -unifystate option. For example, instead of the populate
command above, you would run:

stcl> populate -recursive -get -unifystate

In addition to fetching a local copy of version 1.5 of fileB.txt, the above command
fetches a local copy of version 1.2 of fileA.txt, replacing the workspace's cache link to
version 1.2 of fileA.txtt .

In order to unify the state of all of the managed objects in the workspace, a full populate
is performed, as if the -full option were specified. A full populate traverses the entire
vault hierarchy associated with the workspace, whereas an incremental populate only
traverses those sub-directories of the workspace's associated vault that have changed
since the workspace was last populated. The -incremental option is the default
populate behavior.

You can set the default populate behavior to -incremental or -full using the
Synchronicity Administrator (SyncAdmin) Command Defaults pane. However,
regardless of whether -incremental is set as the default, specifying -unifystate results
in a full populate. Similarly, even if -incremental is specified on the populate command
line or selected in the Populate GUI, if -unifystate is requested, a full populate is
performed.

You can set -unifystate as the default populate behavior using the Command Defaults
system.

The default behavior of co is -unifystate. If a user is explicitly fetching objects by using
the co command or Checkout GUI, the objects are fetched in the state requested by the
user.

Related Topics

Populating Your Work Area

Checking Out Design Files

SyncAdmin Help: Command Defaults

ENOVIA Synchronicity Command Reference: co

DesignSync Data Manager User's Guide

97

Specifying Module Objects for Operations
When a module is first populated into the workspace, or when you refer to a module in a
server-side command, or when you refer to a module that is not present in the
workspace, you must use the full server module address. However, once a module is
populated into the workspace, you can refer to the module using a much shorter
address.

For example, once a module is populated into the workspace you should be able to
simply specify the module name for any subsequent operation:

dss> populate <module_name>

However, it is important to note that DesignSync supports overlapping modules some of
which may have the same name contained within a single module base directory or
underneath the same workspace root.

For example, it is possible that your workspace root may contain two modules named
Chip (either populated from different servers, or populated as different versions of the
same module). To differentiate between workspace modules of the same name, you
need to address the module using its module instance name.

Module Instance Name

DesignSync uses module instance names to identify each module as it is populated
into the workspace. Set automatically by the server when the module is populated, the
module instance name is guaranteed to be a unique identifier for a module within a
workspace root directory. The module instance name cannot be specified or changed
by the user. The format of the module instance name is:

<module name>%<integer>

For example, if you populate module “Chip” into your workspace, and there are no other
modules named “Chip” present under the workspace root, it will automatically receive
the module instance name “Chip%0”. If another module named “Chip” is subsequently
populated into a directory under the same workspace root, it would receive the module
instance name of “Chip%1”.

The full workspace address of a module in a workspace takes the form:

<module base directory>/<module instance name>

Note: It is important to realize that this is the full unique workspace address. In general,
it is rare that this form of address will need to be used as an argument to a DesignSync
command.

Using DesignSync

98

For example, the module ModA is populated into the module base directory
/home/joe/Modules/subdir and is assigned the module instance name “ModA%0”.
The full workspace address of the module will be:

/home/joe/Modules/subdir/ModA%0

Note: It is the module instance name that is used here, not the module name.

Addressing a Module Object in the Workspace

There are many ways you can address a module in the workspace. DesignSync
commands will accept any of the following, and will attempt to resolve the module name
automatically:

• The module instance name, providing that the current directory is somewhere
below the workspace root directory

• The module name, providing that the current directory is somewhere below the
workspace root directory. Note: This may not be unique if multiple modules were
fetched with the same module name. If a non-unique module name is specified,
an error is reported.

• The full workspace address of the module, which is guaranteed to be unique.
The full workspace address is the preferred method when needing to reference a
module outside the current workspace root.

• The module base directory, although this may not be unique enough to reference
a module, as multiple modules may be fetched into the same base directory. If a
module base directory is given, then all objects under that directory will be
operated on, if the command is operating recursively.

Note: Specifying a module base directory does not actually identify a specific module. A
module base directory is not appropriate for a command that requires a module as an
argument.

Example

Suppose a workspace, /home/joe/Modules, has the following modules populated
into it, all with the same base directory:

Module instance “ModA%0” of module “ModA” from server address
sync://granite:2647/Modules/ModA;

Module instance “ModB%0” of module “ModB” from server address
sync://granite:2647/Modules/ModB;

Module instance “ModB%1” of module “ModB” from server address
sync://onyx:2647/Modules/ModB;

DesignSync Data Manager User's Guide

99

Module instance “ModC%0” of module “ModC” from server address
sync://onyx:2647/Modules/ModC;

Then the following matches apply, assuming the current working directory is anywhere
below the workspace root directory:

dss> <command> ModA
Matches the single module ModA by its module name

dss> <command> ModB%1
Matches the single module ModB%1 by its instance name

dss> <command> ModC
Matches the single module ModC by its module name

dss> <command> ModB
Matches two modules by their module name, and will fail as being ambiguous.

dss> <command> /home/joe/Modules
Matches the base directory, but if it is a directory operation, it will continue and run on
all five modules if running recursively.

dss> <command> Mod*
No match. Wildcards on the command line cannot be used to match modules

dss> <command> /home/ian/Modules/ModB%0
Matches the single module ModB%0 by its full unique workspace address.

dss> select ModA
This selects the module, and a “select –show” then reports
/home/joe/Modules/ModA%0

Addressing Hierarchical References in the Workspace

When a hierarchical reference is created from a module, it is given a name. This name
can be specified by the user when the hierarchical reference is created and must be
unique within the module. If a name is not specified when the hierarchical reference is
created, the name will default to the leaf name of the object that is being referenced.

Since hierarchical references have names, we can now address them within the module
version. This is achieved for commands that accept hierarchical references as
arguments by specifying the hierarchical reference name and a module context:

populate –modulecontext Chip ALU

Using DesignSync

100

The above command would populate the module referenced by the ALU hierarchical
reference of module Chip. Clearly, there is a possible name clash here, as the module
may contain objects or folders called “ALU” as well as the hierarchical reference called
ALU. The hierarchical reference name will take precedence.

Note that wildcard matching is supported when specifying hierarchical reference names
when module context is supplied. For example, the command:

populate –modulecontext Chip AL*

would match the ALU hierarchical reference.

Checking Out Design Data
The Check Out dialog box displays the options for the files and folders (directories) you
selected. You can exclude files and folders by using the Exclude field.

Notes:

• The Populate dialog box can also be used to fetch individual DesignSync objects.
For details, see Populating Your Work Area.

• The Check Out dialog box does not operate on module data. To fetch module
data, use the Populate dialog box, described in Populating Your Work Area.

The default check-out mode is Unlocked copies unless you have saved a different
object state setting with the Save Settings button or your project leader has defined a
default fetch state. See Saving the Setting of an Object's State and SyncAdmin Help:
Default Fetch State for information on these two conditions.

Click the OK button to start the check-out operation. After the check-out operation
completes, the success or failure status for each object appears in the Result column of
the List View.

Click on the fields in the following illustration for information.

DesignSync Data Manager User's Guide

101

Check Out Field Descriptions

Check out Unlocked copies

After the operation is over, keep an unlocked copy in your work area. This is the default
unless your project leader has defined a default fetch state.

Using DesignSync

102

Because you have relinquished any lock you may have had on the file, someone else
can check the file out from the vault with lock in order to modify it.

The Unlocked files are checked out in Read Only mode option from the Tools
=>Options =>General dialog box determines whether these files are read/write or read-
only.

Check out Locked copies

After the operation is over, keep a locked copy in your work area. You can continue to
work on the file. Others cannot check in new versions of the object as long as you have
the branch locked. (The copy in your work area is known as an original.)

Check out References to versions

This option lets you acquire references to the versions you have selected.

Tip: Do not use this option when operating on a collection object. If you use this option,
DesignSync creates a reference in the metadata for the collection object but member
files are not processed and are not included in the metadata.

Check out Links to cache

Use this option to link to a shared copy of the design object in a cache directory. This
option is available only on UNIX platforms.

Check out Links to mirror

Use this option to link to a shared copy of the design object in a mirror directory. This
option is available only on UNIX platforms.

Check out Locked references

This option lets you acquire a locked reference. If you intend to regenerate the object,
create a locked reference to avoid fetching a copy of the object from the vault.

Recurse into folders

Performs the operation on all objects in the selected folder and all subfolders.

This option is not available if there are no selected folders.

Merge with workspace

Select this option if you want to merge the Latest version of a file in the vault with a
locally modified version. This option supports the merging work style (as opposed to the

DesignSync Data Manager User's Guide

103

locking work style) where multiple team members can check out for editing the Latest
version of an object. The first team member to check his changes in creates the next
version; other team members 'merge' their local changes with the new Latest version
and then check the merged version in. However, you can select Check out Locked
copies to perform the merge and lock the branch, effectively combining the locking and
merging work styles. See Locking and Merging Work Styles to learn more about these
work styles.

You can only select this option when you select Check out Unlocked copies or Check
out Locked copies, and you cannot specify any value other than Latest for the
Version Selector. If there are no conflicts, then the merge succeeds, leaving you the
merged file in your work area. If there are conflicts, a warning message results. You
must edit the merged file to resolve the conflicts before DesignSync allows you to check
in the merged version. Conflicts are shown as follows:

<<<<<<< local

Lines from locally modified version

=======

Lines from Latest version

>>>>>>> versionID

The conflicts are considered resolved when the file no longer contains any of the conflict
delimiters (7 less-than, greater-than, or equal signs in the first column). The Status
column of the List View and the ls command indicates if a file has unresolved conflicts.

Unify Workspace State

Sets the state of all objects processed, even up-to-date objects, to the specified state
(Unlocked copies, Locked copies, References to versions, Links to cache, Links
to mirror, Locked references) or to the default fetch state if no state option is
specified. See Defining a Default Fetch State for more information. If turned off,
 DesignSync changes the state of only those objects that are not up-to-date. If checked,
DesignSync changes the state of the up-to-date objects, as well.

The Unify workspace state check box:

• Does not change the state of locally modified objects; select the Force overwrite
of local modifications check box to force a state change and overwrite the local
changes.

• Does not change the state of objects not in the configuration; use the Force
overwrite of local modifications check box to remove objects not in the
configuration.

Using DesignSync

104

• Does not cancel locks. To remove locks, you can either check in the locked files,
select Revision Control =>Cancel Checkout to cancel locks you have
acquired, or select Revision Control =>Unlock to cancel team members' locks.

Note:

The Unify workspace state option is ignored when you lock design objects. If you
check out locked copies or locked references, DesignSync leaves all processed objects
in the requested state.

Version

Specify the version number or tag (or any selector or selector list) of the files on which
to operate.

This field is empty by default, which means the persistent selector list for each object is
used to determine the version to check out.

The Version field has a pull-down list containing suggested selectors; see Suggested
Branches, Versions, and Tags for details.

Overlay Version in Workspace

If the overlay check box is checked, the version specified in the Version Selector field is
used to indicate the version to be overlaid on the work area. Overlaying a version does
not change the current version status as stored in the metadata. Overlay is often used
in conjunction with the Merge with Local Copy Check Box to merge one branch onto
another.

Related Topics

Checking in Design Files

Changing the State of Objects in Your Work Area

Operating on Cadence Data

ENOVIA Synchronicity Command Reference: co command

SyncAdmin Help: Default Fetch State

ENOVIA Synchronicity Command Reference: ls

Force overwrite of local modifications option

Exclude field

DesignSync Data Manager User's Guide

105

Comment field

Retain timestamp option

Keys field

Local Versions field

Trigger Arguments

Command Invocation

Command Buttons

Canceling a Checkout
If you check out an object for editing (with a lock) and then change your mind about
creating a new version, you can undo (cancel) the checkout with the Cancel Checkout
dialog box. When you cancel a checkout, an unlocked copy of the object remains in
your work area unless your project leader has defined a default fetch state. You can
also request a different object state if you use the cancel command. If you have made
changes to the object prior to canceling the checkout, you cannot change the object
state, thereby overwriting your local modifications, unless you specify the -force
option to the cancel command.

This command only cancels a checkout performed by you. Use the Unlock dialog box
to unlock an object that is locked by another user.

Note: You cannot cancel a checkout on a module member that has been moved or
removed in the workspace.

You can select these workspace items for the cancel operation:

• A DesignSync folder
• A managed DesignSync (non-module) object
• A module base folder
• A module folder
• A module member

Note: To release the lock on a module branch, use the Unlock dialog box.

Some of the fields in the Cancel Checkout dialog box are applicable to DesignSync
(non-module) data, and some to module data:

Field in the Cancel
dialog box

Applicable to DesignSync
(non-module) data

Applicable to
module data

Using DesignSync

106

Leave behind Unlocked
copies

yes yes

Leave behind References
to versions

yes yes

Leave behind Links to
cache

yes yes

Leave behind Links to
mirror

yes no

Recurse into folders yes yes

Force overwrite of local
modifications

yes yes

Exclude yes yes

Module context no yes

Retain timestamp yes yes

Filter no yes

Href filter no yes

Trigger Arguments yes yes

To interrupt a recursive cancel operation, click the Stop button. DesignSync completes
the processing of the current objects being cancelled, before stopping the command.
See the ENOVIA Synchronicity Command Reference: interrupt command line topic for
more information.

Click on the fields in the following illustration for information.

DesignSync Data Manager User's Guide

107

Cancel Checkout Field Descriptions

Leave behind Unlocked copies

After the operation is over, keep an unlocked copy in your work area. This is the default
unless your project leader has defined a default fetch state.

Because you have relinquished any lock you may have had on the file, someone else
can check the file out from the vault with lock in order to modify it.

The SyncAdmin setting Check out read only when not locking on the General tab
determines whether these files are read/write or read-only.

Leave behind References to versions

This option lets you acquire references to the versions you have selected.

Using DesignSync

108

Tip: Do not use this option when operating on a collection object. If you use this option,
DesignSync creates a reference in the metadata for the collection object but member
files are not processed and are not included in the metadata.

Leave behind Links to cache

Use this option to link to a shared copy of the design object in a cache directory. This
option is available only on UNIX platforms.

Leave behind Links to mirror

Use this option to link to a shared copy of the design object in a mirror directory. This
option is available only on UNIX platforms. This option is not available for module data.

Related Topics

ENOVIA Synchronicity Command Reference: cancel

Unlocking Server Data

Operating on Cadence Data

Recursion option

Force overwrite of local modifications option

Exclude field

Module context field

Filter field

Retain timestamp option

Href filter field

Trigger Arguments

Command Invocation

Command Buttons

Checking In Design Data

DesignSync Data Manager User's Guide

109

The Check In dialog box displays the options for checking in the files and folders
(directories) you selected. You can exclude files and folders by using the Exclude field.

The default check-in mode is Unlocked copies unless you have saved a different
object state setting with the Save Settings button or your project leader has defined a
default fetch state. See Saving the Setting of an Object's State and Defining a Default
Fetch State for information on these two conditions.

Notes:

• Some files may be pre-excluded from checkin by matching a pattern specified in
an exclude file. For more information on exclude files, see Working with Exclude
Files.

• For DesignSync data, the check-in operation requires that your work area folder
be associated with a DesignSync vault. Otherwise, the operation will fail. Usually,
you need to set up the vault association only once, as the first step in placing
design data under revision control or before you do an initial populate of the work
area. For information on setting the vault association, see the Specifying the
Vault Location for a Design Hierarchy. For information on how to tell if the work
area is associated with a vault, see Verifying That a Vault Has Been Set on a
Folder.

• For collections that have local versions, the check-in operation usually does not
change the set of local versions in your workspace. However, there is an
exception to this behavior. The check-in operation changes the set of local
versions in your workspace when the originally fetched state of the object was
Cache or Mirror. In this case, the check-in operation replaces files linked to the
cache or mirror with physical copies.

• For module data, if there are workspace changes to a module that were not
committed with the checkin (because the changed files were not selected to
check in), the module will still be considered locally modified following a
successful checkin. The version number of the module in the workspace will be
incremented to reflect the new version of the module that was created by the
checkin.

• For module data, if there is a newer version of the module in the vault, and the
option to Allow version skipping is not selected, then auto-merging may occur.

You can select these types of workspace data for the checkin operation:

• A DesignSync folder
• A managed DesignSync object
• An unmanaged object
• A module – The checkin creates a new version of the module. Any modified

member files are checked in. Any objects in an "Added", "Removed", or "Moved"
state are also checked in. The module must be populated with a dynamic
selector in order to check in any changes.

Using DesignSync

110

• A module folder – The checkin creates a new version of the module. Only the
selected objects are considered, when determining what member files participate
in the checkin. The module must be populated with a dynamic selector in order to
check in any changes.

Note: When the Allow check in of new items option is used with the Module
context option on a module folder, the operation runs in a folder-recursive
manner, checking in any unmanaged non-folder objects in the folder and any
subfolders.

• A module member – The checkin creates a new version of the module. Only the
selected objects are considered, when determining what member files participate
in the checkin. The module must be populated with a dynamic selector in order to
check in any changes.

Some of the fields in the Check In dialog box are applicable to DesignSync (non-
module) data, and some to module data:

Field in the Check In dialog
box

Applicable to File-
Based Data

Applicable to module
data

Leave behind Unlocked
copies

yes yes

Leave behind Locked copies yes yes

Leave behind References to
versions

yes yes

Leave behind Links to cache yes yes

Leave behind Links to mirror yes no

Allow check in of new items yes yes

Recurse into folders yes yes

Force check in yes yes

Perform dry run only yes yes

Retry on Module checkin
failure

no yes

Record href versions no yes

Only process locked objects yes yes

Exclude yes yes

Filter no yes

Module context no yes

DesignSync Data Manager User's Guide

111

Href filter no yes

Comment yes yes

Retain timestamp yes yes

Allow version skipping yes yes

Branch yes yes

Keys yes yes

DataType yes (New objects only) yes

Trigger Arguments yes yes

To interrupt a checkin operation, Click the Stop button. DesignSync completes the
processing of any objects being checked in, before stopping the command. See the
ENOVIA Synchronicity Command Reference: interrupt command line topic for more
information.

Click on the fields in the following illustration for information.

Using DesignSync

112

DesignSync Data Manager User's Guide

113

Check In Field Descriptions

Leave behind Unlocked copies

After the operation is over, keep an unlocked copy in your work area. This is the default
unless your project leader has defined a default fetch state.

Because you have relinquished any lock you may have had on the file, someone else
can check the file out from the vault with lock in order to modify it.

The Unlocked files are checked out in Read Only mode option from the Tools
=>Options =>General dialog box determines whether these files are read/write or read-
only.

Using DesignSync

114

Leave behind Locked copies

After the operation is over, keep a locked copy in your work area. You can continue to
work on the file. Others cannot check in new versions of the object as long as you have
the branch locked. (The copy in your work area is known as an original.)

Leave behind References to versions

After a file is checked into the vault, a reference is left behind in your work area. A
reference does not have a corresponding file on the file system, but does have
DesignSync metadata.

Tip: Do not use this option when operating on a collection object. If you use this option,
DesignSync creates a reference in the metadata for the collection object but member
files are not processed and are not included in the metadata.

Leave behind Links to cache

Use this option to link to a shared copy of the design object in a cache directory. This
option is available only on UNIX platforms.

Leave behind Links to mirror

Use this option to link to a shared copy of the design object in a mirror directory. This
option is available only on UNIX platforms. This option is not available for module data.

Allow check in of new items

You must select this option if you are checking in an object that has never been
checked in before or, in the case of module data, was neither checked in before, nor
added to a module. When you check in the object, DesignSync creates a vault for it.
This is the vault from which subsequent versions of the object are checked in and out.
Once the vault has been created for the object, you do not need to select this option
during checkins.

Note that selecting this option also lets you check an object onto a retired branch. The
branch is unretired and a new version of the object is created. The retire information is
removed from the object history.

If the unmanaged object is being checked in to a module, then smart module detection
can be used to determine which module to which the objects are added by using the
<Auto-Detect> module context option. You can alternatively specify a Module context
by selecting a possible module target from the module context drop-down list. For
information on how DesignSync determines the target module for checkin, see
Understanding Smart Module Detection.

DesignSync Data Manager User's Guide

115

When checking in a folder object to a module, DesignSync automatically performs the
operation recursively in a folder-centric way, checking in any unmanaged objects into
the target module(s).

Note: By default. the Module context option is <Auto-detect> which will attempt to
identify the desired module. If no module can be uniquely identified as correct, the
command returns a relevant error message.

You may check in unmanaged objects to a new branch using the Branch option for
DesignSync vault objects only. You cannot check in unmanaged objects to a new
module branch; you must first them Add them to the module. For more information, see
the Branch option.

Files excluded from view by exclude files are not displayed by the DesignSync GUI and
are not available for checking in from the GUI. For more information on exclude files,
see Working with Exclude Files.

If Allow version skipping is selected, and a module member has been removed
between the currently fetched module version and the Latest module version, then
specifying to Allow check in of new items will cause the removed member object to be
added back to the module. The version of the member object that is added back into the
module is the version that is currently in the workspace. If the version in the workspace
has been modified, then a new version of the added back in member object is created.

For example, suppose you have version 1.4 of the Chip module, and version 1.3 of the
module member file tmp.txt. The Latest version of Chip is 1.6. Version 1.6 of the Chip
module does not contain tmp.txt, because tmp.txt was removed from the module. (See
Removing a Member from a Module for details.) Using Allow version skipping with
Allow check in of new items will add the tmp.txt object back into the module, in the
module version 1.7 created with your checkin. You could also add the tmp.txt object
back into the module by adding the tmp.txt object (see Adding a Member to a Module
for details), then checking in with Allow version skipping, without having to Allow
check in of new items.

Note: When checking in module data, you cannot specify the Recursive or Branch
options with the Allow check in of new items option.

Force check in

If you check out a file, make no changes to it, and then attempt to check it in,
DesignSync informs you that it will not check the file in. If you want to check the file in
anyway, you must select this check box. The file will be checked in and a new version
created that is identical to the version already in the vault.

Using DesignSync

116

Note that you must have a local copy of the file in your working directory for a new
version to be created. A new version is not created if the object does not exist or is a
reference.

In most cases, not being allowed to check in an unchanged file is reasonable. One
reason you may wish to use this option is to keep version numbers synchronized.

Perform dry run only

Select this option to indicate that DesignSync is to treat the operation as a trial run
without actually checking in design objects. For module data, module hierarchy
processing is included in the output.

This option helps detect whether there are problems that might prevent the checkin from
succeeding. Because file and vault states are not changed, a successful dry run does
not guarantee a successful checkin. Errors that can be detected without state changes,
such as a vault or branch not existing, merge conflicts, or a branch being locked by
another user, are reported. Errors such as permissions or access rights violations are
not reported by a dry run. Note that a dry run checkin is significantly faster than a
normal checkin.

Retry on module checkin failure

Select this option to enable retry for a module checkin failure.

DesignSync will retry to check in a module when there is a communication failure or, if
 retryOnModuleCiFailureHook type client trigger is set, when the conditions set by the
trigger are met.

For more information on the retryOnModuleCiFailureHook, see Module Checkin Retry
on Failure Trigger Hook.

Note: During a communication failure, DesignSync uses the
ModuleFailureRetryAttempts and ModuleFailureRetryInterval registry settings to
determine how many retries to attempt before failing the checkin.

Record href versions

Specifies how to process the static hierarchical references associated with the module.

• Auto - Processes the static hrefs based on the type of checkin performed. If the
checkin is performed on a module and Recursive is selected, DesignSync
captures the currently populated versions of the module's hierarchically
referenced sub-modules, and records those as part of the next module version,
updating the static hierarchical references. If the checkin is performed on a file or
folder within a module or a module is specified, but the Recursive option is not,

DesignSync Data Manager User's Guide

117

the selected module members are checked in, but the hierarchical references are
ignored (not updated) (Default)

• On - When this option is selected and a module is checked in (either an entire
module or any of its contents), DesignSync captures the currently populated
versions of the module's hierarchically referenced sub-modules, and records
those as part of the next module version, updating the static hierarchical
references.

• Off - When this option is not selected and a module is checked in, the module
members are checked in, but the hierarchical references are ignored (not
updated). This is particularly useful if you have out-of-date submodules, or
submodule changes that are not ready to be checked in.

This option is ignored for non-module data.

Only process locked objects

Specifies whether to check in all modified objects in the workspace or only targeted
files. Changes that are targeted (or locked) are:

• Locked DesignSync vault files or module members.
• Objects that have been added to a module.
• Module members that have been renamed or removed since the last module checkin.

Only process locked objects is mutually exclusive with the Allow checkin of new
objects options.

Exclude

See Exclude Field.

Filter

See Filter Field.

Module context

See Module Context Field.

Report mode

For the Report mode, choose the level of information to be reported:

• Brief output: Brief output mode reports the following information:

o Failure messages.
o Warning messages.

Using DesignSync

118

o Informational messages concerning the level of the hierarchy being processed.
o Success/failure status.

• Normal output: (Default) In addition to the information reported in Brief mode,
output normal mode reports:

o Informational messages for updated objects.
o Information about all objects processed.

• Verbose output: In addition to the information reported in Normal mode:
• Informational message for every object examined but not updated.
• Information about all filtered objects.

• Errors and Warnings only: Errors and Warnings output mode reports the
following information:

• Failure messages.
• Warning messages.
• Success/failure status messages.

Href filter

See Href Filter Field

Comment

See Comment Field

Allow version skipping

By default, this option does not appear in the Check In dialog box. For the Allow
version skipping option appear, the option must be set in the Sync Administrator
application. See SyncAdmin's SyncAdmin Help: Command Options for more
information.

This option allows you to create a new version, even if the new version is not derived
from the Latest version. This happens if your modifications were to a non-Latest
version. The new version skips over changes made in intermediate versions, which is
why the option is hidden by default.

You typically need to specify Allow version skipping when you check into a branch
other than the current branch of the data in your workspace, by using the Branch field.

For modules, the -skip option operates on the module members, but not on module
structural changes. When you select -skip the objects that are being considered for
checkin will replace any version checked in after your workspace was populated. If your
workspace contains structural changes, such as moved or removed objects ,and they

DesignSync Data Manager User's Guide

119

are not the same as the latest version on the server, you cannot use the -skip option to
check in those changes.

 For example, you have a module containing version 1.2 of file.txt. You modify your local
copy of file.txt. Meanwhile, a later version of the module has been checked in,
containing version 1.3 of file.txt. Using the Allow version skipping option skips over
the changes in version 1.3 of file.txt and checks in your version as version 1.4. If you
were to run a version history with the module manifest option, it would show that version
1.4 of file.txt is based on version 1.2, not version 1.3.

 If there are structural changes to the module versions between when the workspace
was populated and when the workspace module changes are checked in, such as
objects, including hierarchical references, added, moved or removed, the changes are
incorporated if there are no change conflicts. If a removed file was updated, for
example, this creates a change conflict and you must explicitly re-add the file with the
Allow checkin of new items option.

Tag

Tags the object version or module version on the server with the specified tag name.

For module objects, all objects are evaluated before the checkin begins. If the objects
cannot be tagged, for example if the user does not have access to add a tag or because
the tag exists and is immutable, the entire checkin fails.

For other DesignSync objects, if the user does not have access to add a tag, the object
is checked in without a tag.

 For more information on the access control for the tag command, see ENOVIA
Synchronicity Access Control Guide: Access Controls for Tagging. For more information
on branch and version tags, see Tagging Versions and Branches.

Notes:

• If both a tag and a comment are specified for a module version or branch
checkin, the comment is also used as the tag comment.

• You cannot tag modules stored on DesignSync server versions prior to 5.1.

Branch

Specify a branch in the Branch field to check in to a branch other than the one from
which you checked the object out. The Branch field has a pull-down menu from which
you can query for existing branches. See Suggested Branches, Versions, and Tags for
details.

Using DesignSync

120

Note: The Branch field accepts a branch tag, a version tag, a single auto-branch
selector tag, or a branch numeric. It does not accept a selector or selector list. To
branch a module, you must specify a branch tag that does not already exist.

When branching a module, you must create a new branch. You cannot specify an
existing branch. The module branch checkin creates the new module branch version
with the following module member objects:

• Added objects that have not been checked in yet.
• Modified objects belonging to the specified module.
• Unmodified objects belonging to the specified module.
• Objects that are part of the module on the server, but have not been populated into the

workspace.
• Objects in the workspace that were removed on the server in a later module version.

Note: The module member version in the workspace is always considered the desired
version for the ci -branch operation. If you have older member versions in the
workspace, those will become the Latest version on the new branch.

When you check a module into the new branch, DesignSync automatically modifies the
workspace selector to the Latest version of the new branch tag (<Branch>:Latest).

The Branch option, when specified with a module, is mutually exclusive with Recursive
and Allow check in of new items.

Keys

See Keys Field.

Datatype

Specify the data type for any module object or any new vault object being checked in.

• Auto-detect uses a built-in algorithm to determine whether the object contains
only ASCII text or a binary file. (Default)

• ASCII creates the new object with a vault data type of ascii.
• Binary creates the new object with a vault data type of binary. Binary objects

cannot be merged, they can only be replaced. ZIP vaults are always checked in
using binary mode, regardless of whether the vault's data type is designated as
ascii.

Note: To change the data type of an existing vault object, use the url setprop
command. For more information, see ENOVIA Synchronicity Command Reference: url
setprop. For module objects, you can set the data type when you check in a new
module version.

DesignSync Data Manager User's Guide

121

Trigger Arguments

See Trigger Arguments Field.

Related Topics

ENOVIA Synchronicity Command Reference: ci Command

Checking out Design Files

Operating on Cadence Data

Recursion option

Exclude field

Filter field

Module context field

Comment field

Retain timestamp option

Keys field

Href filter field

Trigger Arguments

Command Invocation

Command Buttons

Adding a Member to a Module
The Add to Module dialog box adds highlighted objects to a local module in your
workspace. The objects must be within the scope of the base directory of the target
module and the module must be populated with a dynamic selector. The objects can be
files, directories, or collection objects. The locally added objects are checked into the
module version that is created by your next checkin. See Checking In Design Data for
more information.

• If the highlighted objects are all files, and the module context can be uniquely
determined, the files are added without invoking the Add to Module dialog box.
These results are shown in the output window.

Using DesignSync

122

• If smart module detection cannot determine the target module, the Select Module
Context dialog box is displayed. Once the module context is selected, the results
are shown in the output window.

• If the highlighted object contains one or more folder objects, the Add to Module
dialog displays.

For information about how smart module detection determines the target module, see
Understanding Smart Module Detection.

Files excluded from view by exclude files are not displayed by the DesignSync GUI and
are not available to Add from the GUI. For more information on exclude files, see
Working with Exclude Files.

To add to a member with Add to Module dialog box:

1. From the main menu, select Modules => Add Member or you can select the
button from the Module Toolbar. You can also select this command from the

context menu.
2. The Add to Member dialog box appears. Select options as needed.
3. Click OK.

Click on the fields in the following illustration for information.

Add recursively

For a folder, whether to add only the folder or also recursively add the folder's contents.
Note that folders themselves can be module members. If you checked the Add empty
directories option, adding a folder without content results in an empty folder as a module
member.

DesignSync Data Manager User's Guide

123

By default, the option to Add recursively is not selected.

Add empty directories

This option is used with Add recursively. When adding members recursively, any
folder that contains files is added to the module. The Add empty directories option
specifies whether directories without content are added to the module.

For example, let's say you're recursively adding "dirA" to a module. "dirA" contains files,
and an empty subdirectory "dirB". The option to Add empty directories controls
whether the empty directory "dirA/dirB" is added.

Filter

Allows you to include or exclude module objects by entering one or more extended
glob-style expressions to identify an exact subset of module objects on which to perform
the add.

The default for this field is empty.

Module Context

Expanding the list-box shows the available workspace module instances for the
currently selected object or objects, including an automatically calculated <Auto-detect>
"module context.". All available workspace module instances are listed alphabetically in
the pull-down following the calculated <Auto-detect>.

Note: If you select <Auto-detect>, and the DesignSync system cannot determine the
appropriate module, the command fails with an appropriate error.

Report type

From the pull-down, select the level of information you want to display in the output
window:

Brief output: Lists errors generated when adding objects to the local module, and
success/failure count.

Normal output: Lists all objects added to the local module, success/failure count,
and beginning and ending messages for the add operation. This is the default
output mode.

Verbose output: In addition to the information listed for the Normal output mode,
lists:

o Skipped objects that are already members of the module.

Using DesignSync

124

o Skipped objects that are already members of a different module.
o Skipped objects that are filtered.
o Status messages as each folder is processed.

Errors and Warnings only: Lists errors generated when adding objects to the
local module, and success/failure count.

Related Topics

Directory Versioning

ENOVIA Synchronicity Command Reference: add

Filter field

Module context field

Command Invocation

Command Buttons

Context Menu

Creating Branches
When there is a need for a new branch, a single person, typically a release engineer or
project manager, uses the Make Branch dialog box to branch all design objects at the
same time. Users can then create a new work area for the new branch.

You can select these types of data for the branch operation:

• A DesignSync folder
• A managed DesignSync (non-module) object
• A module version (server only)

Note: When a module is branched, the first version on that branch is created
immediately, with the content of the module version from which the branch was created.

Some of the fields in the Make Branch dialog box are applicable to DesignSync (non-
module) data, and some to module versions:

Field in the Make
Branch dialog box

Applicable to DesignSync
(non-module) data

Applicable to
module versions

Branch Name yes yes

DesignSync Data Manager User's Guide

125

Recurse into folders yes no

Version yes no

Exclude yes no

Comment no yes

To interrupt a recursive branch operation, click the Stop button. DesignSync completes
the processing of the current objects being branched, before stopping the command.
See the ENOVIA Synchronicity Command Reference: interrupt command line topic for
more information.

Click on the fields in the following illustration for information.

Make Branch Field Descriptions

Branch Name

Enter a branch tag name here that is easily understood - for example, "Rel2.1", "ready
_for _simulation", "current_demo", "Golden".

Branch names:

• Can contain letters, numbers, underscores (_), periods (.), hyphens (-), and
forward slashes (/). All other characters, including white space, are prohibited.

Using DesignSync

126

• Cannot start with a number and consist solely of numbers and embedded periods
(for example, 5, 1.5, or 44.33.22), because there would be ambiguity between
the tag name and version/branch dot-numeric identifiers.

• Cannot be any of the following reserved, case-insensitive keywords: Latest,
LatestFetchable, VaultLatest, VaultDate, After, VaultAfter, Current, Date, Auto,
Base, Next, Prev, Previous, Noon, Orig, Original, Upcoming, SyncBud,
SyncBranch, SyncDeleted. Also, avoid using tag names starting with "Sync"
(case-insensitive), because this prefix space is reserved for any additional
system-defined keywords created in the future.

• DesignSync vaults and legacy modules have an additional restriction: branch
names cannot end in --R.

Note: Referring to a branch by its branch number is not recommended. DesignSync
requires that a branch tag be associated with a branch when it is created. A branch can
have more than one branch tag.

Recurse into folders

For a DesignSync folder, recursively operate on its contents. The set of objects
operated on may be reduced by use of the Exclude field. By default, only the contents of
the selected folder are operated on. This option, and the Exclude field, are not
applicable to module data.

Version

Specify the version number or tag (or any selector or selector list) of the files on which
to operate.

The Version field has a pull-down menu containing suggested selectors; see
Suggested Branches, Versions, and Tags for details.

The Version field is active only if you have selected a vault object prior to selecting
Make Branch. To select a vault object, you can select the local object and then Go To
Vault. See Viewing the Contents of a Vault for more information.

Note:This field is not applicable to module data.

Related Topics

Parallel (Multi-Branch) Development

Other Branch Operations

Exclude field

Comment field

DesignSync Data Manager User's Guide

127

Command Invocation

Command Buttons

ENOVIA Synchronicity Command Reference: mkbranch

Tagging Versions and Branches
Tagging is the application of a symbolic name, called a tag, to a version or a branch.
Tags can only be applied to objects that are under revision control.

You might identify a set of related file versions that work together by assigning the same
tag to them -- for example, " runnable", "Alpha", or " ready_for_simulation". In a multi-
branch environment (see the Parallel Development topic), you use branch tags to reflect
the purpose of the branch -- for example, "rel2.1", " devFeatureX", or " platSolaris". In a
single-branch environment, you probably will not be tagging branches but will just work
on Trunk, the default tag for branch 1.

A list of tags can be created and displayed from the drop-down menu of the Tag dialog.
 See SyncAdmin Help: Tags for more information.

The tag operation tags versions or branches of objects in the vault, not the local copies
of objects in your work area. Although tags reside on object versions in the vault, the tag
operation uses the object versions in your work area to determine the versions to tag in
the vault.

Note: Applying a tag that already exists on the specified version or branch is considered
a successful operation.

If you want to tag an unmanaged object or a locally modified object (whether locked or
not) in your work area, you must first check in your changes to create a new version of
the object in the vault. Then you can tag that version. If you do not check in a locally
modified object before you use the tag command, the tag operation fails for that object
and does not tag any version of it in the vault. This is the default behavior of the tag
operation.

If you want to tag the version in the vault from which a locally modified object was
derived (instead of tagging the new version that contains your changes), you can select
the Tag modified objects check box. You might use this option, for example, if you
have modified objects in your work area and you want to take a "snapshot" of them as
they were before you made the changes.

Tag Naming Conventions

Branch tags and version tags share the same name space. To distinguish version
selectors from branch selectors, you append :<versiontag> to the branch name; for

Using DesignSync

128

example, Gold:Latest is a valid branch selector. You can leave off the Latest
keyword as shorthand; for example, Gold: is equivalent to Gold:Latest. The
selector Trunk is also a valid branch selector. Trunk is a shorthand selector for
Trunk:Latest.

You cannot assign the same tag name to both a version and a branch of the same
object. For example, a file called top.v cannot have both a version tagged Gold and a
branch tagged Gold. However, top.v can have a version tagged Gold while another
file, alu.v, can have a branch tagged Gold.

Consider adopting a consistent naming convention for branch and version tags to
reduce confusion. For example, you might have a policy that branch tags always begin
with an initial uppercase letter (Rel2.1, for example) whereas version tags do not
(gold, for example).

Tagging Module Snapshots

Module snapshots are module versions created on module snapshot branches that
include a fixed set of module members. Using the Tag command, you can add,
remove, or change the member versions contained in the module snapshot. This is the
only way to change the content of a module snapshot. You cannot modify the files
directly or add or delete them using Checkin, Add, or Delete. When you modify the
member versions contained in the module snapshot, you create a new revision on the
module snapshot branch containing those changes. This allows you to preserve the
manifest of each module snapshot version so it can be recreated if needed.

To add, remove or change the member version contained in a module snapshot:

1. Select the module member(s) to add or update in the module snapshot.
2. Launch the Tag dialog box.
3. Select the desired options including the following:

• If you are adding or replacing module members Select Add a Tag.
• If you are removing module members select Delete a Tag.
• If you are changing the version of the module member in the snapshot, select the

Replace existing tags option.
• For all module snapshot operations, select Tag module members.

If you need to remove the tag on a module snapshot, for example to reuse it elsewhere,
you can remove the tag from the module version on the snapshot branch. This removes
the tag from the module snapshot, but the snapshot branch remains meaning that users
can still populate the snapshot using the snapshot branch name.

To remove the tag on a module version snapshot:

DesignSync Data Manager User's Guide

129

1. Select the module instance in the workspace or the module name on the server.
2. Launch the Tag dialog box.
3. Select the desired options including the following:

• Delete a Tag.
• Immutable (fixed)

DesignSync Objects for Tag

You can select these types of data for the tag operation:

• A DesignSync folder
• A managed DesignSync (non-module) object
• A module version
• A module branch (server only)
• A module member as part of Module Snapshots

Some of the fields in the Tag dialog box are applicable to DesignSync (non-module)
data, and some to module data:

Field in the Tag
dialog box

Applicable to
DesignSync
(non-module) data

Applicable
to
module
data

Add a tag yes yes

Delete a tag yes yes

Recurse into
folders/ Recurse
module hierarchy

yes yes

Replace existing
tags

yes yes

Tag modified
objects

yes no

Tag yes yes

Tag version or
branch

yes yes

Mutability no yes

Version/Branch yes no

Using DesignSync

130

Module Context no yes

Filter yes yes

Exclude yes no

Comment no yes

Trigger Arguments yes no

To interrupt a recursive tag operation, click the Stop button. DesignSync completes the
processing of the current objects being tagged, before stopping the command. See the
ENOVIA Synchronicity Command Reference: interrupt command line topic for more
information.

Click on the fields in the following illustration for information.

DesignSync Data Manager User's Guide

131

Tag Field Descriptions

Add a tag

Select this option to add a tag.

Delete a tag

Using DesignSync

132

Select this option to delete a tag. Because a tag can exist on only one version of a file at
a time, the Tag version or branch field is ignored when you delete a tag.

Recurse into folders/Recurse module hierarchy

For a DesignSync folder, recursively operate on its contents. The set of objects
operated on may be reduced by use of the Exclude field or the Filter Field. By default,
only the contents of the selected folder are operated on. For module members, this
option recurses into folders but does not traverse the module hierarchy.

For a DesignSync module instance, recursively operate on the module hierarchy.

Note: The module version being tagged is the server version. Any modifications in the
workspace, for example, if an older version of the hierarchy is present in the workspace,
are ignored. The hierarchical references that the tag command follows are the ones
that are checked in as part of the module version on the server.

Replace existing tags

Move a tag to the version or branch specified in the Version/Branch field, even if that
tag is already in use on another version or branch. For example, suppose that at the
end of every week you want to select the latest files that produce a good demo and tag
them "current_demo". To reuse the "current_demo" tag in this way, you must check the
Replace existing tags check box.

By default (if you do not select Replace existing tags), a tag operation fails if the tag is
already in use, because a tag can be attached to only one version or branch of an
object at a time. Note that you can move a tag from a branch to a version or a version to
a branch. DesignSync provides a warning message when you do so.

Note: If you specify a comment, the tag operation replaces the comment with the new
comment. If you do not specify a comment, the operation removes the previous
comment associated with tag.

Tag

Enter a tag name here that is easily understood - for example, "Rel2.1", "ready _for
_simulation", "current_demo", "Golden".

Tag names:

• Can contain letters, numbers, underscores (_), periods (.), hyphens (-), and
forward slashes (/). All other characters, including white space, are prohibited.
Note: The Connected Software and Connected Semiconductor apps do not
support the use of forward slash (/) in Tag names.

DesignSync Data Manager User's Guide

133

• Cannot start with a number and consist solely of numbers and embedded periods
(for example, 5, 1.5, or 44.33.22), because there would be ambiguity between
the tag name and version/branch dot-numeric identifiers.

• Cannot be any of the following reserved, case-insensitive keywords: Latest,
LatestFetchable, VaultLatest, VaultDate, After, VaultAfter, Current, Date, Auto,
Base, Next, Prev, Previous, Noon, Orig, Original, Upcoming, SyncBud,
SyncBranch, SyncDeleted. Also, avoid using tag names beginning with "Sync"
(case-insensitive); this prefix is reserved for new system keywords.

• DesignSync vaults and legacy modules have an additional
restriction: tag names cannot end in --R.

Selecting the down arrow allows you get a list of known tags and selectors. Selecting
the Get Tags/Version options, if available, launches the Get Tags/Versions dialog.

Tag version or branch

Specify which version or branch of the object to tag. These options change depending
on the objects selected so you may not see all the options for every object.

• To tag the version of the object in the vault that is the same as the one you have
in your work area, select Tag version in workspace.

• To tag the module members and create or update a module version on a module
snapshot branch, select Tag module members.

• To tag an object version in the vault different from the one in your work area,
select Tag specified version and specify the version number or name in the
Version/Branch field.

• To tag a specific branch of an object, select Tag specified branch and specify
the branch name in the Version/Branch field.

Mutability

This field only pertains to modules. The field is ignored when other types of objects are
tagged.

When a tag is added, the new tag is marked as Immutable (fixed) or Mutable
(movable). A mutable tag can be replaced or deleted. To replace or delete an
immutable tag, Immutable (fixed) must be selected. The default Mutability selection is
Mutable (movable).

This is not relevant for module snapshot tagging. Module snapshot tagging always
creates a content frozen branch (immutable content) with the ability to add and remove
hierarchical references and move, add, or delete tags from the members (mutable tags
and references.)

Version/Branch

Using DesignSync

134

Specify the version or branch of the objects to tag. If you selected the Tag specified
version option, you must specify a version selector or selector list. If you selected the
Tag specified branch option, you must specify a single branch tag, a single version
tag, a single auto-branch selector tag, or a branch numeric, but not a selector or
selector list.

The Version/Branch field has a pull-down menu from which you can query for existing
versions and branches. See Suggested Branches, Versions, and Tags for details.

Note: This field is not applicable to module data or module snapshots.

Module context

See Module Context Field.

Exclude

See Exclude Field.

Filter

See Filter Field.

Report Mode

For the Report mode, choose the level of information to be reported:

• Brief output: Brief output mode reports the following information:

o Objects that were not tagged (for example, locally modified objects, if you
did not specify the -modified option).

o Objects skipped by the tag operation because it created a new
configuration map.

o A count of successes and failures for the tag operation.

Note: This count is output only if you are using the stcl/stclc command
shell.

• Normal output: In addition to the information reported in Brief:

o lists objects that were successfully tagged. (Default)

• Verbose output: In addition to the information reported in Normal mode:
• a skip notice for any objects excluded by the -filter or -exclude options.

Comment

DesignSync Data Manager User's Guide

135

See Comment Field.

Tag modified objects

For modified DesignSync objects in your work area, tag the version in the vault that you
fetched to your work area. You might use this option, for example, if you have modified
objects in your work area and you want to take a "snapshot" of them as they were
before you made the changes.

If you do not specify this option, when the tag operation encounters a locally modified
object, the operation displays an error for the object and does not tag any version of that
object in the vault.

Note: This option affects modified objects only. If a work area object is unmodified, the
tag operation tags the version in the vault that matches the one in your work area.

This option is not applicable to module branches, module versions, and module
snapshot branches. It is applicable to module members within an existing module
snapshot or when creating a module snapshot.

Related Topics

What is a Design Configuration?

What Are Selectors?

Module Snapshots

Operating on Cadence Data

ENOVIA Synchronicity Command Reference: tag Command

SyncAdmin Help: Tags

 Filter Field

Exclude field

Comment field

Module Context Field

Trigger Arguments

Command Invocation

Using DesignSync

136

Command Buttons

Unlocking Server Data
If you check out a file with a lock and then decide that you do not need to edit the file,
you can cancel your check out using the Cancelling a Checkout dialog box or the
cancel command. In cases where you need to unlock a branch that someone else has
locked or when you no longer have the file that you checked out in your work area, use
the Unlock dialog box or the unlock command. The following table summarizes when
you should use Cancel or Unlock.

Description Cancel (workspace object) Unlock (server object)
You hold the lock on an object
is in your workspace. X

You hold the lock on object not
in your workspace X

Someone else holds the lock on
an object in your workspace. X

Someone else holds the lock on
an object not in your
workspace.

 X

Being able to remove a lock held by another user is an unusual operation. If this
capability is not an acceptable policy for your project, you (as the administrator or
project leader) can disallow this capability. See the ENOVIA Synchronicity Access
Control Guide for more information.

For module data, Cancel is typically used to release the lock on a module member. To
release the lock on a module branch, Unlock must be used. If a module folder in your
workspace is selected, and module member locks are released as part of the unlock
operation, module member locks in the workspace are also canceled.

You can select these types of data for the unlock operation:

• A DesignSync folder, branch or version (server only)
• A module branch or version (server only)
• A module member (server only)
• A module folder

Note: You can select multiple objects to unlock within a single unlock operation.

Some of the fields in the Unlock dialog box are applicable to DesignSync (non-module)
data, and some to module data:

DesignSync Data Manager User's Guide

137

Field in the
Unlock dialog
box

Applicable to
DesignSync
(non-module) data

Applicable
to
module
data

Recurse into
folders

yes yes

Branch yes yes

Exclude yes yes

Module context no yes

Filter no yes

Trigger Arguments yes yes

To interrupt a recursive unlock operation, click the Stop button. DesignSync completes
the processing of the current objects being unlocked, before stopping the command.
See the ENOVIA Synchronicity Command Reference: interrupt command line topic for
more information.

Click on the fields in the following illustration for information.

Unlock Field Descriptions

Using DesignSync

138

Recurse into folders

For a DesignSync folder, recursively operate on its contents. The set of objects
operated on may be reduced by use of the Exclude field. By default, only the contents of
the selected folder are operated on.

For a module folder, recursively operate on its contents. The Module context field
determines the set of objects operated on. The set of objects operated on may be
further reduced by use of the Exclude field and the Filter field. By default, only the
contents of the selected folder are operated on.

This option is ignored when a module is selected. The unlock operation does not
descend through hierarchical references.

Branch

Specify the branch(es) to unlock in this field. If you do not specify one or more
branches, DesignSync unlocks the branch indicated by the selector of your working
area. The Branch field has a pull-down menu from which you can query for existing
branches. See Suggested Branches, Versions, and Tags for details.

Notes:

• The Branch field accepts branch tags, version tags, a single auto-branch
selector tag, or branch numerics. It does not accept a selector list.

• You can only specify a single branch using the pull-down menu. To select
multiple branches, select the desired branches before invoking the unlock
command.

• If you have selected multiple server branches to unlock, you cannot specify
any other object types within the same command. If other objects are
selected with the same command, the command returns an error and does
not perform the unlock.

Related Topics

Cancelling a Check Out

Operating on Cadence Data

ENOVIA Synchronicity Command Reference: unlock

ENOVIA Synchronicity Command Reference: cancel

Exclude field

Module context field

DesignSync Data Manager User's Guide

139

Filter field

Trigger Arguments

Command Invocation

Command Buttons

Working with Exclude Files
DesignSync features a few different methods for excluding files from revision control
operations. Exclude files allow you to exclude unmanaged files from revision control
operations. Exclude files are set on a per-directory basis.

Exclude File Processing

Exclude files contain glob-style patterns which are processed in the order they appear
within the file. Exclude files are cumulative beginning with the root folder .syncexclude
files being processed first, and following down the directory tree to the lowest applicable
level.

Syncexclude files always begin with .syncexclude, but can contain an extension. Within
a folder, if there is more than one exclude file, the files are processed in alphabetical
order. If there is a .syncexclude file, with no suffix, it will be processed last.

Exclude File Processing Order

Using DesignSync

140

Exclude File Formatting

The exclude file is a plain text file that uses glob-style pattern match expressions. You
can exclude patterns and include patterns within the file. You may include comments
lines beginning with a #.

 Specify the pattern in one of the following forms:

 -<pattern>

 +<pattern>

 When you use the "-<pattern>" form, you exclude objects that match the specified
pattern at the folder level. Using the "-/<pattern>" will match objects at the folder
level and for any subfolders. When you use the "+<pattern>" you create an exception to
a previously excluded pattern. An example of using an exclude with an exception might
be excluding all .doc files unless they're in the documentation subdirectory.

Using Exclude and Include in the Exclude Files

DesignSync Data Manager User's Guide

141

 So in this example, the base-level .syncexclude, has a line to exclude all doc files.
 This file is processed first, as shown in the image. In the Doc directory, however, .doc
files are accepted, and doc temp files ending with ~ and .mif are excluded. The doc
directory and any subfolders of the doc directory would allow .doc files to be included in
revision control operations.

Related Topics

Adding/Removing Exclusions

Viewing Exclusions

Exclude Field

Filter Field

Adding a Member to a Module

Checking in Design Data

Adding/Removing Exclusions
DesignSync features several ways to add and remove exclusions to a workspace folder.

Creating and Maintaining Exclusion Files

One of the simplest ways to create and maintain an exclusion file is to create or open
the file in a text editor and type in your selections. This provides the optimal control
over file naming, and processing order.

1. Create or open the file in the text editor of your choice.
2. Type the desired exclude patterns in the order that you would like them

processed, or add new entries in the appropriate processing order. This allows
you to create exclude and include filters that operate correctly within the folder,
for example:
-".../*.txt"
+readme.txt

Using DesignSync

142

Would provide the instruction to filter all .txt files from revision control operations,
except for any files with the name readme.txt. So garbage.txt, would be
excluded, but readme.txt would be included.

3. Remove any exclusions that are no longer needed.
4. Save the file The file is immediately available for use.

Add Exclusion Using DesignSync Commands

Another way to add an exclusion is to use the DesignSync Add Exclusion command
available from the Revision Control menu. Select an object to exclude, for example.
garbage.txt, and click the Add Exclusion command, or select Add Exclusion from the
context menu. The exclusion pattern is automatically added to all .syncexclude* files
within the folder. If no .syncexclude* file exists in the folder, DesignSync creates the file
".syncexclude" and adds the exclusion to it.

DesignSync also features an exclude add command which can be typed at the
command line. For more information, see the ENOVIA Synchronicity Command
Reference: exclude add command.

Remove Exclusion Using DesignSync Commands

The DesignSync Remove Exclusion command is available from the Revision Control
menu. Select an object that you wish to remove or except from the exception list, and
select the Remove Exclusion command from the Revision Control menu or the
context menu. If the pattern exactly matches an existing pattern in any of the
.syncexclude files within the folder, the exception is removed and a plus exception is
added to the file so that the file is not excluded by a higher-level exclusion. If the
pattern doesn't match an existing exception, no exception is removed, but the plus
exemption is added to the file.

DesignSync also features an exclude remove command which can be typed at the
command line. For more information, see the ENOVIA Synchronicity Command
Reference: exclude remove command.

Related Topics

Working with Exclude Files

Viewing Exclusions

Viewing Exclusions
DesignSync allows you to view all the exclusions applicable in a workspace folder. The
Exclusions view panel shows the list of all exclusions applicable to the specified folder.

DesignSync Data Manager User's Guide

143

 This mean it traverses from the selected folder back to the workspace root, examining
all .syncexclude* files and organizing the output by precedence.

The Exclusions view pane shows the file that contains the exception and the exception
rule in the order the rules are applied.

This example was launched from the Chip-Zn32/Doc workspace and shows that there
are two .syncexclude file (both named .syncexclude) one at the higher level excluding
all files with the .doc file extension and one, within the doc directory, including all .files
with a .doc extension.

Related Topics

Working with Exclude Files

Adding/Removing Exclusions

Synchronicity Command Reference: exclude list

Using Revision Control Keywords

Revision Control Keywords Overview

The revision control engine used by DesignSync is RCE. DesignSync lets you use RCE
revision control keywords (sometimes referred to as keys for brevity) in your design
files. By including keywords in your files, you can access revision information (such as
revision number, author, and comment log), which is stored in the RCE archive that
underlies your DesignSync vault.

Using DesignSync

144

Use keywords with text files only, not binary files.

The following are the revision control keywords. The keywords are case sensitive.

Keywords Expansion Contents
$Aliases$ List of tag names of the version.

$Author$ Who checked the version in.

$Date$ The date and time the version was checked in. For
modules and module members, the time is stored in GMT.
 For DesignSync objects, the time is stored in the server's
local time.

$Header$ Concatenation of Source, Revision, Date, Author, and
Locker

Id Concatenation of RCSfile, Revision, Date, Author, and
Locker

$KeysEnd$ Not expanded, and stops further expansion of keys

$Locker$ Who has locked this version (empty if not locked)

Log The full name of the archive file (Source) followed by the
comment log

$RCSfile$ The name of the archive file, without the path

$Revision$ The version number

$Source$ The full name of the archive file, including the path

Related Topics

Using Revision Control Keywords

Using Revision Control Keywords

You use revision control keywords by inserting them in your files, typically within
comments to keep programs that operate on your files from interpreting the keywords.
Keywords are delimited by preceding and trailing dollar signs ($). There cannot be a
space between a keyword and its dollar-sign delimiters. The keywords are case
sensitive.

Keywords are expanded (also known as keyword substitution) based on the version of
the file that you are checking out. Because the keyword expansion usually changes the
length of the file, keywords should only be used with files whose format is position
independent, such as text files.

DesignSync Data Manager User's Guide

145

You can control keyword expansion from DesignSync using options to the check-in,
check-out, and populate commands. For example, you can choose not to expand
keyword values when you check out a file, or you can remove keys from a file.

Note: Revision control keyword expansion is not supported for:

• files belonging to collections
• the initial checkin of module data from "mkmod -checkin"

The following is an example of keywords in a file before expansion. Note that the
keywords appear within comment delimiters, in this case /* and */, such as a C file.

/*
* $Aliases$
* $Author$
* $Date$
* $Header$
* Id
* $Locker$
* Log
*
* $RCSfile$
* $Revision$
* $Source$
* $KeysEnd$
* Id
*/

By default, keywords are expanded when you check out a file. The following is an
example of keyword expansion:

/*
* $Aliases: Key-Example $
* $Author: jjh $
* $Date: Thur Jul 4 11:47:20 1997 $
* $Header: /rca/archive/src/test.c.rca 1.1 Thu Jul 4 11:47:20
1997 jjh Stable $
* $Id: test.c.rca 1.1 Thu Jul 4 11:47:20 1997 jjh Stable $
* $Locker: $
* $Log: test.c.rca $
*
* Revision: 1.1 Thu Jul 4 11:47:20 1997 jjh
* Initial revision
*
* $RCSfile: test.c.rca $
* $Revision: 1.1 $
* $Source: /rca/archive/src/test.c.rca $

Using DesignSync

146

* $KeysEnd$
* Id
*/

Notes:

• The Log keyword, when expanded, permanently adds log information to your
file -- later collapsing the keyword leaves the log information in your file. Existing
log messages are not replaced. Instead, the new log information is inserted each
time the keyword is expanded. Log is useful for accumulating a complete
change log in a source file, but can result in differences or conflicts when doing
merges or file comparisons. Log is the only keyword with this behavior.

• When a keyword expansion spans multiple lines, the comment delimiter at the
beginning of the line is repeated on subsequent lines. Therefore, make sure that
the resulting syntax is valid. For example, in a C file, do not specify:

/* Log */

The resulting expansion has invalid comment syntax:

 /* $Log: top.f.rca $
 /*
 /* Revision: 1.6 Thu Feb 26 09:12:07 1998 Goss
 /* *** Fixed defect 1445. *** */

Whereas if you specify:

 /*
 * Log
 */

The resulting expansion is valid:

 /*
 * $Log: top.f.rca $
 *
 * Revision: 1.6 Thu Feb 26 09:12:07 1998 Goss
 * *** Fixed defect 1445. ***
 */

Related Topics

DesignSync Data Manager Administrator's Guide: Turning Off Keyword Expansion

Checking In Design Files

Checking Out Design Files

DesignSync Data Manager User's Guide

147

Populating Your Work Area

ENOVIA Synchronicity Command Reference: ci

ENOVIA Synchronicity Command Reference: co

ENOVIA Synchronicity Command Reference: populate

149

Working with Modules

Specifying Module Objects for Operations
When a module is first populated into the workspace, or when you refer to a module in a
server-side command, or when you refer to a module that is not present in the
workspace, you must use the full server module address. However, once a module is
populated into the workspace, you can refer to the module using a much shorter
address.

For example, once a module is populated into the workspace you should be able to
simply specify the module name for any subsequent operation:

dss> populate <module_name>

However, it is important to note that DesignSync supports overlapping modules some of
which may have the same name contained within a single module base directory or
underneath the same workspace root.

For example, it is possible that your workspace root may contain two modules named
Chip (either populated from different servers, or populated as different versions of the
same module). To differentiate between workspace modules of the same name, you
need to address the module using its module instance name.

Module Instance Name

DesignSync uses module instance names to identify each module as it is populated
into the workspace. Set automatically by the server when the module is populated, the
module instance name is guaranteed to be a unique identifier for a module within a
workspace root directory. The module instance name cannot be specified or changed
by the user. The format of the module instance name is:

<module name>%<integer>

For example, if you populate module “Chip” into your workspace, and there are no other
modules named “Chip” present under the workspace root, it will automatically receive
the module instance name “Chip%0”. If another module named “Chip” is subsequently
populated into a directory under the same workspace root, it would receive the module
instance name of “Chip%1”.

The full workspace address of a module in a workspace takes the form:

<module base directory>/<module instance name>

Working with Modules

150

Note: It is important to realize that this is the full unique workspace address. In general,
it is rare that this form of address will need to be used as an argument to a DesignSync
command.

For example, the module ModA is populated into the module base directory
/home/joe/Modules/subdir and is assigned the module instance name “ModA%0”.
The full workspace address of the module will be:

/home/joe/Modules/subdir/ModA%0

Note: It is the module instance name that is used here, not the module name.

Addressing a Module Object in the Workspace

There are many ways you can address a module in the workspace. DesignSync
commands will accept any of the following, and will attempt to resolve the module name
automatically:

• The module instance name, providing that the current directory is somewhere
below the workspace root directory

• The module name, providing that the current directory is somewhere below the
workspace root directory. Note: This may not be unique if multiple modules were
fetched with the same module name. If a non-unique module name is specified,
an error is reported.

• The full workspace address of the module, which is guaranteed to be unique.
The full workspace address is the preferred method when needing to reference a
module outside the current workspace root.

• The module base directory, although this may not be unique enough to reference
a module, as multiple modules may be fetched into the same base directory. If a
module base directory is given, then all objects under that directory will be
operated on, if the command is operating recursively.

Note: Specifying a module base directory does not actually identify a specific module. A
module base directory is not appropriate for a command that requires a module as an
argument.

Example

Suppose a workspace, /home/joe/Modules, has the following modules populated
into it, all with the same base directory:

Module instance “ModA%0” of module “ModA” from server address
sync://granite:2647/Modules/ModA;

Module instance “ModB%0” of module “ModB” from server address
sync://granite:2647/Modules/ModB;

DesignSync Data Manager User's Guide

151

Module instance “ModB%1” of module “ModB” from server address
sync://onyx:2647/Modules/ModB;

Module instance “ModC%0” of module “ModC” from server address
sync://onyx:2647/Modules/ModC;

Then the following matches apply, assuming the current working directory is anywhere
below the workspace root directory:

dss> <command> ModA
Matches the single module ModA by its module name

dss> <command> ModB%1
Matches the single module ModB%1 by its instance name

dss> <command> ModC
Matches the single module ModC by its module name

dss> <command> ModB
Matches two modules by their module name, and will fail as being ambiguous.

dss> <command> /home/joe/Modules
Matches the base directory, but if it is a directory operation, it will continue and run on
all five modules if running recursively.

dss> <command> Mod*
No match. Wildcards on the command line cannot be used to match modules

dss> <command> /home/ian/Modules/ModB%0
Matches the single module ModB%0 by its full unique workspace address.

dss> select ModA
This selects the module, and a “select –show” then reports
/home/joe/Modules/ModA%0

Addressing Hierarchical References in the Workspace

When a hierarchical reference is created from a module, it is given a name. This name
can be specified by the user when the hierarchical reference is created and must be
unique within the module. If a name is not specified when the hierarchical reference is
created, the name will default to the leaf name of the object that is being referenced.

Since hierarchical references have names, we can now address them within the module
version. This is achieved for commands that accept hierarchical references as
arguments by specifying the hierarchical reference name and a module context:

Working with Modules

152

populate –modulecontext Chip ALU

The above command would populate the module referenced by the ALU hierarchical
reference of module Chip. Clearly, there is a possible name clash here, as the module
may contain objects or folders called “ALU” as well as the hierarchical reference called
ALU. The hierarchical reference name will take precedence.

Note that wildcard matching is supported when specifying hierarchical reference names
when module context is supplied. For example, the command:

populate –modulecontext Chip AL*

would match the ALU hierarchical reference.

Creating a Module
The Create a new module dialog box is used to create a new module . You can create a
module when:

• The "/Modules" node is selected on a server.
• A category node is selected on a server.
• A folder is selected in a your workspace.

Note: These types of folders cannot be used to create a module:

o A managed workspace folder
o A base folder of a legacy module

When a workspace folder is selected, that folder is initialized as the module's base
directory. You can then add objects to the module (see Adding a Member to a Module)
so that an initial checkin can be performed. See Checking In Design Data for more
details.

To create a module:

1. From the main menu, select Modules => New Module or select the button
from the Modules toolbar. You can also select New Module from the context
menu on the Modules node or from a category node.

2. The Create a new module dialog box appears. Select options as needed.
3. Click OK.

Click on the fields in the following illustration for information.

DesignSync Data Manager User's Guide

153

Name

The name of the new module. See URL Syntax for a list of illegal characters.

Server path

The server URL and category path for the new module, in the form:

sync://<host>:[<port>]/Modules/[<category>]

The <category> is optional, and may be a path, such as /Project1/mymods. A
module category is similar to a path to a DesignSync project or vault. The term category
is used to indicate that this is a virtual path, rather than a physical path. And that its use
is intended to categorize modules.

If a server node is selected, the value of the Server path is set to the URL of the
selected object. As shown in the example, in order to specify a category path, you must
add the category as part of the Module name.

If a workspace folder is selected, the Server path must be specified. You can type in a
URL, or use the Browse... button to navigate to and select the Modules node on a
server, or a category folder below the Modules node.

Related Topics

ENOVIA Synchronicity Command Reference: mkmod

The Module Toolbar

Working with Modules

154

Comment field

Command Invocation

Command Buttons

Creating a New Version of a Module
A user creates a new version of a module by checking in their modifications to the
module. Local modifications may include added data. See Adding a Member to a
Module for details.

A new version of a module is also created when a user:

• Restructures the data within the module (see Renaming a Module Member for
details)

• Removes data from the module (see Removing a Member from a Module for
details)

• Adds a hierarchical reference to the module (see Creating a Hierarchical
Reference for details)

• Removes a hierarchical reference from the module (see Deleting a Hierarchical
Reference for details)

Branch locks are not removed upon checkin. For example, suppose that you lock the
Trunk branch of the module Chip. (See Locking Module Data for details.) Later, you
check in either the entire Chip module, or some portion of the Chip module. The branch
lock remains in place, until it is removed by an unlock operation. (See Unlocking Server
Data for details.) This enables you to perform multiple operations that modify the
module, while retaining the branch lock on the module.

Any amount of data can be added to a module at once, resulting in a single checkin
attempt. However, either the entire checkin will succeed, or the entire checkin will fail.
I.e. Checkin of a module is an atomic operation. A new version of a module is only
created if the entire checkin operation succeeds.

By default, after a failed atomic checkin, a subsequent checkin attempt will utilize
information previously sent to the server. This optimizes the amount of data that needs
to be transferred to the server, with the retry effectively continuing from where the
previous try failed. For details, see Checking In Design Data.

The exception is mkmod -checkin, which is a performance optimization for first time
checkin of large amounts of data, and is not an atomic operation. In a mkmod -
checkin operation, any files that fail to checkin are left as is, while those files that do
checkin become part of the module. Any files which fail to checkin can be added to the
workspace module, and checked in as the next module version.

DesignSync Data Manager User's Guide

155

Adding a Member to a Module
The Add to Module dialog box adds highlighted objects to a local module in your
workspace. The objects must be within the scope of the base directory of the target
module and the module must be populated with a dynamic selector. The objects can be
files, directories, or collection objects. The locally added objects are checked into the
module version that is created by your next checkin. See Checking In Design Data for
more information.

• If the highlighted objects are all files, and the module context can be uniquely
determined, the files are added without invoking the Add to Module dialog box.
These results are shown in the output window.

• If smart module detection cannot determine the target module, the Select Module
Context dialog box is displayed. Once the module context is selected, the results
are shown in the output window.

• If the highlighted object contains one or more folder objects, the Add to Module
dialog displays.

For information about how smart module detection determines the target module, see
Understanding Smart Module Detection.

Files excluded from view by exclude files are not displayed by the DesignSync GUI and
are not available to Add from the GUI. For more information on exclude files, see
Working with Exclude Files.

To add to a member with Add to Module dialog box:

1. From the main menu, select Modules => Add Member or you can select the
button from the Module Toolbar. You can also select this command from the

context menu.
2. The Add to Member dialog box appears. Select options as needed.
3. Click OK.

Click on the fields in the following illustration for information.

Working with Modules

156

Add recursively

For a folder, whether to add only the folder or also recursively add the folder's contents.
Note that folders themselves can be module members. If you checked the Add empty
directories option, adding a folder without content results in an empty folder as a module
member.

By default, the option to Add recursively is not selected.

Add empty directories

This option is used with Add recursively. When adding members recursively, any
folder that contains files is added to the module. The Add empty directories option
specifies whether directories without content are added to the module.

For example, let's say you're recursively adding "dirA" to a module. "dirA" contains files,
and an empty subdirectory "dirB". The option to Add empty directories controls
whether the empty directory "dirA/dirB" is added.

Filter

Allows you to include or exclude module objects by entering one or more extended
glob-style expressions to identify an exact subset of module objects on which to perform
the add.

The default for this field is empty.

Module Context

DesignSync Data Manager User's Guide

157

Expanding the list-box shows the available workspace module instances for the
currently selected object or objects, including an automatically calculated <Auto-detect>
"module context.". All available workspace module instances are listed alphabetically in
the pull-down following the calculated <Auto-detect>.

Note: If you select <Auto-detect>, and the DesignSync system cannot determine the
appropriate module, the command fails with an appropriate error.

Report type

From the pull-down, select the level of information you want to display in the output
window:

Brief output: Lists errors generated when adding objects to the local module, and
success/failure count.

Normal output: Lists all objects added to the local module, success/failure count,
and beginning and ending messages for the add operation. This is the default
output mode.

Verbose output: In addition to the information listed for the Normal output mode,
lists:

o Skipped objects that are already members of the module.
o Skipped objects that are already members of a different module.
o Skipped objects that are filtered.
o Status messages as each folder is processed.

Errors and Warnings only: Lists errors generated when adding objects to the
local module, and success/failure count.

Related Topics

Directory Versioning

ENOVIA Synchronicity Command Reference: add

Filter field

Module context field

Command Invocation

Command Buttons

Context Menu

Working with Modules

158

Creating a Hierarchical Reference
The Create a hierarchical reference dialog box is used to create a new hierarchical
reference from an upper-level module to any of the following objects:

• A module
• An external module
• A legacy module or legacy module configuration
• A DesignSync vault folder
• An IP Gear deliverable

You can create a hierarchical reference when a module version node (server) or 5.0
module base folder (client) is selected. When you create a hierarchical reference, a new
module version is created.

Notes:

You can not create a hierarchical reference from a legacy module or a legacy module
configuration.

Hierarchical references to most targets are validated at the time the href is created.
 That means the following conditions must be met before you can create an hierarchical
reference:

• The items you want must already exist. You may only create hierarchical
references between objects that already exist.

• The servers that hosts the modules must be available.

The exception to this rule is external modules. External modules are validated only
during a populate operation. This means that neither the objects being referenced nor
the server containing the objects need to be available at the time the href is created.

Hierarchical references in module snapshot versions can be changed after module
snapshot creation. When a new hierarchical reference is added to a module snapshot,
a new module version is created on the snapshot branch. For more information about
module snapshots, see Module Snapshots.

To create a hierarchical reference:

1. From the main menu, select Modules => Add Href or select the button
from the Module Toolbar.

2. The Create a hierarchical reference dialog box appears. Select options as
needed.

3. Click OK.

Click on the fields in the following illustration for information.

DesignSync Data Manager User's Guide

159

Field Descriptions

Referenced target

Enter the referenced target or use the Browse button to select the module, IPGear
deliverable, or vault folder to which you want to add a reference. Remember that:

• If the selected node is a server module version, the referenced target can not be
a client module instance.

• If the selected node is a 5.0 module base folder, the reference target can not be
a 5.0 base folder. The module instance must be specified. References must be
modules and not folders.

• The referenced target can not be the base folder of a legacy module.
• You can not use the Browse button to find IPGear deliverable URLs or external

modules URLs. You must enter manually enter the URL in the Referenced
Target field.

The format for entering the URL manually is:

• Module (specified by server)

sync[s]://<host>[:<port>]/Modules/[<Category>/...]<Module_Name>

<host> is the SyncServer on which the module resides.

<port> is the SyncServer port number.

Working with Modules

160

Modules is the container for modules on the server.

<Category> is the optional category path to the module.

<Module_Name> is the name of the module.

• Module or legacy module configuration (specified by workspace instance)

<Module_Name>%<Instance_num>

<Module_Name> is the name of the module.

<Instance_num> is the instance number assigned to the module.

• External module

sync[s]:///ExternalModule/<external_type>/<external_data>

ExternalModule is a constant that identifies this URL as an external module
URL.

<external-type> is the name of the external module procedure.

<external-data> contains the parameters and options to pass to the
procedure.

• Legacy module configuration or DesignSync vault (specified by server)

sync[s]://<host>[:<port>]/<vaultPath>

<host> is the SyncServer on which the module resides.

<port> is the SyncServer port number.

<vault_Path> identifies the path to the legacy module configuration or
DesignSync vault.

• IP Gear deliverable

sync[s]://<host>[:<port>]/Deliverable/<ID>

<host> is the SyncServer on which the module resides.

<port> is the SyncServer port number.

Deliverable is a constant that indicates this is an IP Gear reference.

DesignSync Data Manager User's Guide

161

<ID> is the deliverable ID number.

By default, this field is empty.

Additional Notes

o If the “Referenced Target” is an external module, IPGear deliverable, or vault
directory, the selector field must remain empty.

o You can not specify a reference target to a legacy module configuration by
specifying its vault URL and a selector.

Name

This field needs a legal value entered.

If you have already selected a referenced target, the last segment of the URL becomes
the default name .

If you select a node that is a version 5.0 module base folder and the referenced target is
that of a workspace module identifier which includes an instance number, the module
instance name is stripped off the hierarchical reference name.

There are some characters that are reserved for DesignSync and cannot be used in the
name of an href. For the list of reserved characters, see URL Syntax: Reserved
characters.

Selector

Name of the selector for the referenced target. Depending on what you have entered in
other fields, this field may be pre-filled. For example:

• When the object in the Referenced Target field is a server module, the selector
field is set to Trunk:Latest.

• When the object in the Referenced Target field is a server module branch or
version, the selector is set to match. For example, if the version was selected
from a node is described by a tag, the selector uses the tag name and branches
such as tagname:Latest.

• When the object in the Referenced Target field is a server legacy module, the
selector is set to <default>.

• When the object in the Referenced Target field is a server legacy module
configuration, the selector is set to the configuration name.

• When the selected node is a version 5.0 module base folder and the referenced
target is a client module instance, the selector field is set to the selector of the
referenced module.

Working with Modules

162

Caution: If you manually change the value in this field, the value is not replaced
afterwards by information generated by changes in other fields.

Note: External modules, legacy modules, and IP Gear references do not take a
selector value.

Relative Path

This field is optional.

Depending on what you have entered in other fields, this field may be pre-filled.
Captures the relative path from the module to the sub-module when the module
hierarchy is fetched.

• When the object in the referenced target field is server module version, the leaf
name of the target is entered into relative path field

• When the selector field contains the 5.0 module base folder and the referenced
target field is a workspace module identifier, the relative path between the two
base directories is calculated by the system.

Do not populate submodule

When checked, the submodule is not included in a recursive populate of the parent
module. When not checked, a recursive populate of the parent module does include the
sub-module. The default is not checked.

Module Context

The field is only enabled for module base folders and contains the module instance
names of the modules based at that folder. These module instance names are listed
alphabetically in the pull-down.

Related Topics

The Module Toolbar

ENOVIA Synchronicity Command Reference: addhref

ENOVIA Synchronicity Command Reference: hcm_release

ENOVIA Synchronicity Command Reference: rmhref

ENOVIA Synchronicity Command Reference: showhrefs

ENOVIA Synchronicity Command Reference: showstatus

DesignSync Data Manager User's Guide

163

Removing a Member from a Module
The Remove from module dialog box is used to remove the selected module members
from a module. You may commit the change, as well as any other module changes, to
the module at the next module checkin, or you can immediately creates a new module
version without the selected module member. You can use this dialog box when:

• Current module members (files/folders) are selected in the client work area.
• Current module members (files/folders) are selected on the server and all

members belong to the same module version, which must be the latest version
on a server module branch.

• Current module base folders are selected in the client work area when the folder
is also a regular module folder of another module.

• The module in the workspace was populated in dynamic mode and changes can
be checked in.

Note

Removing module members/folders that have not been fetched into the workspace is
not supported by the GUI.

To remove a member from a module:

1. Select the member(s).
2. From the main menu, select Modules => Remove Member or select the

button from the Module Toolbar.
3. The Remove from module dialog box appears. Select options as needed.
4. Click OK.

Click on the fields in the following illustration for information.

Working with Modules

164

Remove Recursively

This option is not available when a server object is selected

When checked, the selected folder is removed as well as all module objects in the folder
and all subfolders. When not checked, the selected folder is removed only if the folder is
empty. The default for this option is unchecked.

Keep objects in workspace

This option is not available when remove is done directly on a server object.

When checked, the local copies of the removed objects are left in the workspace as
unmanaged objects. When unchecked, the local copies of the selected objects become
DesignSync references, with the Status "Locally Removed". The default for this option is
unchecked.

Force removal of modified objects

This option is not available when remove is done directly on a server object

When checked, the selected object is removed even if the object in the workspace is not
the same as the last checked in version of the object or is locked. If you are removing
objects that were added to a module, but never checked in, you choose this option to
remove the objects.

When unchecked, the selected object is not removed if it is locked or not identical to the
last checked in version or added to the module but never checked in.

DesignSync Data Manager User's Guide

165

The default for this option is unchecked.

Apply changes locally first; commit with next checkin

This option is not available when remove is done directly on a server object

When checked, the selected object(s) is marked for removal during the next module
check in. Unless the Keep_Objects_in_Workspace option is selected, the object
remains in the workspace as a DesignSync reference, with the Status "Locally
Removed". The object remains on the server until the change is committed during the
next checkin. (Default)

When not checked, DesignSync immediately creates a new module version on the
server with the selected objects removed.

 Note: Objects in the Add state are always immediately removed from the Add state. No
new module version is created.

Filter

Allows you to include or exclude module objects by entering one or more extended
glob-style expressions to identify an exact subset of module objects on which to perform
the remove. For more information, see Filter Field.

The default for this field is empty.

Module Context

This option is only available when the selection set includes one or more client side
folders. You can select from the available module instances. The choices are listed in
alphabetical order. For more information, see Module Context Field.

The default for this field is empty.

Related Topics

The Module Toolbar

Filter Field

ENOVIA Synchronicity Command Reference: remove

Deleting a Hierarchical Reference
You can delete a hierarchical reference (href) from either from your local work area or
from the server.

Working with Modules

166

Hierarchical references in module snapshot versions can be removed after module
snapshot creation. When a hierarchical reference is removed from a module snapshot,
a new module version is created on the snapshot branch. For more information about
module snapshots, see Module Snapshots.

Note: If you are removing a hierarchical reference from the workspace, the workspace
must be populated with a dynamic module version.

To delete a hierarchical reference:

1. Highlight the href you want to delete in either the List View pane or the Tree view.
2. Select File =>Delete, or press the Delete key, to bring up the Delete dialog. On

the server, you can also select a server module, right-click and select Delete
from the context menu.

3. There are no options to select from the Delete dialog box for a href. Click OK to
delete the file. You are prompted to confirm the deletion.

Important: If you remove the hierarchical reference

 in your workspace, you must repopulate the workspace to see the change.

Related Topics

Deleting Design Data

ENOVIA Synchronicity Command Reference: addhref command

ENOVIA Synchronicity Command Reference: rmhref command

Locking Module Data
The Lock module branch dialog box is used to lock a module version on a specified
module branch. Locking the branch is useful when creating new branches, creating or
deleting tags, or adding to, deleting from, or copying a module's metadata. By locking
the module version, you insure that no one else can alter the data while you make your
changes.

The Lock module dialog box is available when a module-base directory is selected in
the client work area or a module branch is selected on the server.

Notes:

• You can not lock a module version on the server.
• If a module branch contains members that are themselves locked, then you can

only lock that branch if you are the lock owner for all those locked members.

DesignSync Data Manager User's Guide

167

To lock a module branch:

1. Highlight the module version or module-base directory you want to lock.
2. From the main menu, select Modules => Lock branch. You can also select

 Lock branch from the context menu.
3. The Lock module branch dialog box appears. Select options as needed.
4. Click OK.

Click on the fields in the following illustration for information.

Field Descriptions

Module context

Expanding the list-box shows the available module instances for the currently
highlighted base directory. All available module instances are listed alphabetically in the
pull-down. Note: There may only be one module listed.

Comment

Enter the comment information you want other users to know about this locked branch.
 The default entry is blank. You can use context menu commands to cut, copy, paste,
select all, previous comments, and open your default text editor.

Animated Examples

• Locking a module branch
• Locking module content

Setting a Workspace Root

Working with Modules

168

This command allows you to designate the workspace directory to be used as a storage
area for a set of local metadata information for a collection of design objects. The
 metadata includes information about the design files. Setting a workspace root does
not create DesignSync object metadata. When you create a module, or checkout or
populate files or module based objects, DesignSync stores (or creates) the appropriate
metadata for those design objects and stores the metadata in the workspace root folder.

For modules, after the workspace is created/populated with module data and the
workspace root set, you can refer to a module by the module instance name, rather
than specifying the full module path name.

Note: You cannot set a workspace root directory underneath an existing workspace root
directory.

To set a workspace root:

1. Highlight the folder that you want to set as a workspace root.
2. From the main menu, select Revision Control=> Set Root Folder. A

confirmation notice similar to this appears:

3. Click Yes to confirm and No to cancel.

Note: When design data is created or populated with a specified workspace path, the
parent of that workspace path is automatically set as the root if there is not root already
set.

Related Topics

ENOVIA Synchronicity Command Reference: mkmod

ENOVIA Synchronicity Command Reference Help: populate

ENOVIA Synchronicity Command Reference Help: co

ENOVIA Synchronicity Command Reference Help: setvault

Rolling Back a Module
If module changes are made that are not appropriate or correct, you can "roll back" the
module to the last good version. Module rollback restores a previous module version by

DesignSync Data Manager User's Guide

169

creating a new module version containing the identical information as the rollback
version. All versions between the rollback versions are retained in the server vault.

When a module is rolled back, the module version increments, but all module members
contained in the module version return to the versions contained in the original module
version. When a modified version of a module member is checked in, DesignSync
allocates an appropriate version number such as the next number available sequentially
or a branched version number. This maintains the integrity of each checked in module
member version and allows any module version to be restored at any time.

The rollback reinstates the module exactly as it was, removing any structural changes to
the module. The following table lists the type of structural changes possible, and the
result of those changes when rolling back the module version to before the change was
made.

Type of structural change Rollback operation
Removed file or collection File or collection is added back to the

module as a module member.
Removed folder If the folder was explicitly added in the

module version being rolled back to, and
was removed in a later version, then the
folder is restored to an explicitly added
state.

If the folder was implicitly present in the
rollback version due to the presence of
members within it, and in a later version
was either explicitly added or was
removed (by removing all the members
within it), then the folder is restored to
the implicitly added state because it
contains module members.

Renamed or moved file or collection The file or collection reverts to the name,
location, and version of the object active
in the rollback version.

Added file or collection File or collection is removed from the
module. To add the object back to the
module, use checkin with the Allow
Checkin of New Items and Allow Version
Skipping (ci -new -skip) options
selected.

Removed hierarchical reference The hierarchical reference is restored to
the module.

Note: DesignSync performs no
consistency checking to verify that the

Working with Modules

170

reference is still valid.
Added hierarchical reference The hierarchical reference is removed

from the module. You can recreate the
reference. For information on creating
hierarchical references, see Creating a
Hierarchical Reference.

Related Topics

ENOVIA Synchronicity Command Reference Help: rollback command

Deleting a Module
You can delete a module from either from your local work area or from the server. You
cannot delete a legacy module in the workspace, however, you can delete the module
base directory for that module. A module cache can only be deleted from the
workspace. Deleting the module on the server does not remove the corresponding
mcache or any links to the mcache.

Deleting a module or module cache in your workspace will only remove the module from
the workspace. It does not affect the server. If you delete a module from the server it
does not affect your work area. If the module was fetched into a work area, and the
module it was fetched from was deleted, the files remain in your work area.

Notes

• The deletion of a module on the server is not recursive; it does not follow the
hierarchical references of the module and delete the referenced modules. To
remove an entire module hierarchy, you must remove each module separately.
 You can delete an entire module hierarchy in your workspace.

• The deletion of a module does not remove hierarchical references to the deleted
module and for pre-V5.0 releases configurations of the deleted module.

• If you delete a legacy module without removing the vault and the module resides
in the /Projects folder, the module and its configurations will still appear in
ProjectSync as a ProjectSync project.

To delete a module:

1. Select the module you want to delete in the List View pane or the Tree view. To
delete a workspace module, select the module instance.

2. Select File =>Delete, or press the Delete key, to bring up the Delete dialog. On
the server, you can also select a server module, right-click and select Delete
from the context menu.

3. Select options as needed.
4. Click OK to delete the module. You are prompted to confirm the deletion.

DesignSync Data Manager User's Guide

171

Click on the fields in the following illustration for information on each field.

Field and Option Descriptions

Delete the selected objects/Delete all the contents of a module recursively

Delete the specified module and all modules in the hierarchy beneath it. This is a
workspace only operation. You cannot delete the module hierarchy from the server.

Allow deletion of tagged vault object, locked objects and modified objects

Working with Modules

172

This option is only available when deleting a module from your workspace and indicates
whether locked or modified objects can be deleted from the workspace. It is not
applicable to module caches.

If this option is not specified, and there are locked or modified objects in the workspace,
then such objects will be left and the module itself will not be deleted from the
workspace. The unlocked/unmodified objects will still be deleted from the workspace.

Retain vault information

This option applies to legacy modules on the server. You cannot remove a legacy
module from the workspace. Specifies whether the vault folder in which the module
contents reside should be removed.

Remove notes after detaching

This option is only available when deleting server legacy modules or server modules.

If checked, deletes all the notes that were attached to the deleted module if the notes
have no ties to any other live projects such as in ProjectSync.

Remove vault associated with module

This option is not applicable to module deletion.

Keep objects in workspace

Specifies whether to keep the module member data in the workspace after the module
has been removed. This option is only applicable when deleting a workspace module.

When this option is not selected, DesignSync removes all module data, including
 module members and DesignSync metadata, from the workspace. (Default)

When this option is selected, DesignSync removes only the module metadata; it does
not remove the module members. If the module members are links from a cache
(populated in -share mode), the server copies the files locally and removes the links.

This option is mutually exclusive with Remove unmanaged data.

Scrub module versions

This option is only applicable when deleting a module version on the server.

Remove unmanaged data

DesignSync Data Manager User's Guide

173

Specifies whether the operation should remove or retain any unmanaged files within the
workspace module directory structure.

When this option is not selected, DesignSync does not attempt to remove any
unmanaged data and any folders containing unmanaged data remain after the operation
completes. (Default)

When this option is selected, DesignSync attempts to remove any unmanaged data
within the module directory structure after the module is removed. If the folder(s)
containing unmanaged data is not removed (for example, the folder also belongs to
another module, or the target module is not removed), then the unmanaged data
contained within the folder is also not removed..

IMPORTANT: The module delete operation does not list the removed unmanaged
objects nor does it include them in the success/failure count. Any folders that become
empty as a result of removing unmanaged objects are also silently removed.

This option is only valid for workspace module arguments and is mutually exclusive with
Keep objects in workspace.

Report mode

For the Report mode, choose the level of information to be reported:

• Brief output/Errors and Warnings only: Brief and Errors and Warnings mode
reports the following information:

o Failure messages.
o Warning messages.
o Success/failure status.

• Normal output: In addition to the information reported in Brief:

o The path of each module removed..

• Verbose output: In addition to the information reported in Normal mode:
• Information status messages for each stage of module removal.

Trigger Arguments

See Trigger Arguments.

Extra command options

List of command line options to pass to the external module change management
system. Any options specified with the Extra Command options field are sent verbatim,

Working with Modules

174

with no processing by the populate command, to the Tcl script that defines the external
module change management system. For more information on external modules, see
External Modules.

Related Topics

Deleting a Module Cache Link

ENOVIA Synchronicity Command Reference: rmmod

Deleting a Module Cache Link
You can delete mcache links from your local work area. This does not affect the module
cache itself, or the module on the server.

Select the module cache link you want to delete in the Tree View or List View panes.
Select File => Delete, or press the Delete key, to bring up the Delete dialog. Click OK
to delete the folder containing the module cache links. You are prompted to confirm the
deletion.

Click on the fields in the following illustration for information.

DesignSync Data Manager User's Guide

175

Delete Field Descriptions

Delete the selected objects/Delete all the contents of a module recursively

This field is not applicable to mcache links. If selected, it is silently ignored.

Module Context

This field is not applicable for mcache links. The module context is implicit.

Allow deletion of tagged vault objects, locked objects, and modified objects

This field is not applicable to deletion of module cache links. If selected, it is silently
ignored.

Retain vault information

The option to Retain vault information is not applicable to the deletion of module
cache links.

Remove notes after detaching

This field is not applicable to module cache links.

Remove vault associated with module

This field is not applicable to module cache links.

Keep objects in workspace

This field is not applicable to module cache links.

Scrub module versions

This option is only applicable when deleting a module version on the server.

Remove unmanaged data

This option is not applicable to mcache links.

Report mode

For the Report mode, choose the level of information to be reported:

• Brief output/Errors and Warnings only: Brief and Errors and Warnings mode
reports the following information:

Working with Modules

176

o Failure messages.
o Warning messages.
o Success/failure status.

• Normal output: In addition to the information reported in Brief:

o The path of each module removed..

• Verbose output: In addition to the information reported in Normal mode:
• Information status messages for each stage of module removal.

Trigger Arguments

See Trigger Arguments.

Extra command options

This option is not applicable to module cache data.

Related Topics

Deleting Design Data

Using a Module Cache

ENOVIA Synchronicity Command Reference: rmfolder

Resolving Module Structure Conflicts
 When the structure of a module has changed both on the server and locally, this can
result in a structure conflict. For more information on recognizing when you have a
structure conflict, see Conflict Handling.

To Resolve a Structure Conflict:

1. Choose which version is correct.
2. If the structure in the workspace is correct, and you have content changes as

well, copy the content changes to a temporary directory. If the structure on the
server is correct, you can change the member in the workspace to match the
server version to resolve the conflict. A merge may be required to merge the
content.

3. Populate the workspace using the Replace mode: Force Overwrite of modified
objects. (populate -force).

4. If you copied changes to a temporary location, move them back into your
workspace.

5. Make any additional changes you want to check in.

DesignSync Data Manager User's Guide

177

6. Check in your changes normally.

Related Topics

Conflict Handling

Populating Your Work Area

ENOVIA Synchronicity Command Reference: populate command

Overlaying Module Data
You may want to overlay member files from a module version that is a different module
version than the one already in your workspace.

Overlaying a module version will:

• Fetch the member files of the requested module version
• Replace the equivalent member files in your workspace
• Retain the current fetched version information of the member files

The status of the workspace member files that were overlaid will be "locally modified".

Note that merging is not involved. There are no conflicts, because conflicts only pertain
to merging. This is also different than creating a composite workspace with members
from different module version, as is done with Module Member Tags.

You can overlay across branches:

populate –overlay <branch>:Latest

The populate command above will fetch objects from the specified <branch>, and
overlay them onto the equivalent objects in the workspace.

How hrefs are handled

Any hrefs on the branch version that do not exactly match an href in the workspace
version will be reported as a failure. No attempt to overlay hrefs is made. Details of a
failed href are reported. From the output, you can easily determine the addhref and
rmhref commands needed, if you want the href from the branch version.

Working with Modules

178

Similarly, an href on the branch version that does not exist in the workspace version is
reported as a failure, with details of the href output.

Note that hrefs cannot simply be changed or added to a workspace, because any href
change results in a new module version. (See Creating a New Version of a Module for
details.) Populate fetches data from the vault – it does not create new vault data.

Examples

The examples below describe several cross-branch overlay scenarios. As background,
you will need to understand natural paths and unique identifiers.

Object present on branch and workspace, with the same natural path

Object present on branch and workspace, with different natural paths

Object present on branch but not in workspace version

Object present on branch and workspace, with the same natural path

In this case, a unique identifier exists in the branch version and the workspace version,
with the same natural path.

The branch version object is fetched into the workspace, replacing the object already in
the workspace. The fetched version number is that of the workspace module version.
The status of the object in the workspace will be "locally modified".

However, if there is an unmanaged object in the workspace, or an object from another
module, that is using the same natural path, then the fetch will fail.

Object present on branch and workspace, with different natural paths

In this case, a unique identifier exists in the branch version and the workspace version,
with different natural paths.

The branch version object is fetched into the workspace, using the workspace version's
path. Note that overlaying an object does not change the object's natural path. The
overlay applies to the file contents.

The output from the populate command will include the workspace path used for the
fetch.

Object present on branch but not in workspace version

In this case, a unique identifier exists in the branch version that is not in the workspace
version.

DesignSync Data Manager User's Guide

179

The branch version object is fetched into the workspace, and added to the module, so
that it is a candidate for the next check-in. The ls command will report the object as
"Added".

However, if there is an unmanaged object, or an object from a different module, at the
natural path in the workspace, then the fetch will fail.

If the workspace module version contains a different object at the same natural path,
(i.e. there is a different unique identifier in the workspace version that has the same
natural path), then the branch version object will still replace the workspace object. The
unique identifier of the workspace object is retained. This results in the contents of one
unique identifier replacing the contents of a different unique identifier.

It is possible for the situations above to occur during the same populate. For example,
suppose all three of these conditions are met:

• The workspace version contains an object with unique identifier 1111 at natural
path file1.txt

• The branch version contains the object with unique identifier 1111 at natural path
file2.txt

• The branch version contains the object with unique identifier 2222 at natural path
file1.txt

Under the previous rules, both of the branch version objects would be brought to the
workspace at natural path file1.txt. The first object fetched causes the workspace object
to be locally modified.

If the -force option to the populate command is used, both branch version objects
will be fetched, with the object that was fetched second replacing the (locally modified)
object that was fetched first.

If the –force option is not used, then the object that is fetched first will remain in the
workspace. The second fetch attempt will fail, because the workspace object is locally
modified.

Related Topics

Merging Module Data

ENOVIA Synchronicity Command Reference: populate

ENOVIA Synchronicity Command Reference: addhref

ENOVIA Synchronicity Command Reference: rmhref

ENOVIA Synchronicity Command Reference: ls

Working with Modules

180

Synchronizing Enterprise Developments
When objects that are part of an enterprise system are created, modified, or removed in
DesignSync, you can manually synchronize those changes with the Enterprise system.
DesignSync auto provides the ability to automatically synchronize Enterprise
Developments. For more information about configuring automatic synchronization, see
the DesignSync Administrator's Guide: Site Options.

The Synchronize action is available when anyone of the following objects is highlighted
on the server:

• Module branch object on the server
• Module version object on the server

Running the Synchronize command

Modules =>Enterprise =>Synchronize opens the Synchronize dialog box. Click OK
to launch the action.

Click on the fields in the following illustration for information.

Tag

Dropdown list of the tags associated with the selected object. If there is only one tag,
only one tag appears in the list. The first tag in the list is selected by default. .

Hierarchy Expansion Depth

Indicates how many levels of the module hierarchy to send to the remote server hosting
the associated Enterprise Design system:

DesignSync Data Manager User's Guide

181

• None - Synchronizes only the specified module version; does not synchronize any
hierarchical references. This may result in an incomplete hierarchy on the server.

• One - Synchronizes the first level of the module hierarchy, but do not traverse the
hierarchy. This option minimizes the risk of an out-of-date hierarchy adding the potential
performance impact of updating the entire hierarchy. (Default)

• All - Synchronizes recursively through the entire hierarchy for each module version. This
option provides the most complete update information to the server, but can be
performance intensive. Hierarchical references to non-moduleobjects are considered
"leaf" objects and DesignSync does not attempt to continue traversal through thatobject
or configuration.

Report mode

For the Report mode, choose the level of information to be reported:

• Brief output - outputs the status of the running command, command results, and
errors.

• Normal output - outputs the information contained in the Brief output and
information about the enterprise versions being created. (Default),

• Verbose output - There is currently no difference between the verbose and
normal reports.

 Note: The report information is also passed to the ENOVIA server.

Perform dry run only

Select this option to indicate that DesignSync is to treat the operation as a trial run
without actually checking in design objects.

This option helps detect whether there are problems that might prevent the
synchronization from succeeding.

See Also

 Enterprise DesignSync Administration User's Guide.

Reference

What Is a Module?

Modules can be thought of as building blocks of a project. A project can be broken down
into related chunks of work. Each chunk of work can be any size and of any kind of
data. The project is formed by connecting the chunks of work together. Each chunk of
work is a module. Modules are connected by hierarchical references (hrefs).

Working with Modules

182

Let's take DesignSync itself as an example. If each of the products within DesignSync
has its own dedicated team of people, the DesignSync lead creates DesignSync as a
top-level module, consisting only of hierarchical references to submodules for each of
the products.

The product leads of the products then define the module hierarchy for their products.
For example, the SyncServer module might contain subdirectories for libraries, source
code, and documentation.

DesignSync Data Manager User's Guide

183

The ProjectSync module also has code and documentation subdirectories:

Working with Modules

184

Let's say the documentation team is a shared resource for all products, with a few of the
writers working on both SyncServer and ProjectSync. A writer might fetch both the
DesignSync and ProjectSync modules into the same workspace,
/home/karen/work/DesignSync, as shown in the example below. Note that top-
level "DesignSync" and "ProjectSync" directories are not created. The data within those
modules is fetched, resulting in this workspace structure:

Although not shown in the above diagram, each of the directories contains
subdirectories.

Since both the SyncServer and ProjectSync modules contain doc subdirectories, the
doc workspace directories will contain data from both of the DesignSync and
ProjectSync modules. These are referred to as overlapping modules, because they
share a common base directory.

The doc writer did not need to fetch all of the content of the SyncServer and
ProjectSync modules. She could have fetched only data pertaining to the
documentation. See Filtering Module Data and Recursion.

Users define the content of a module and how modules are structured (see Module
Hierarchy). Every item within a module is a member of that module (a module member).
Users work with modules and their data by using DesignSync commands. See
Operating on Module Data.

DesignSync automatically manages modules by creating a new version of a module
every time the module is modified.

A module is modified when a user:

• Checks in data that was added to the module (using the add command followed
by the ci command)

• Restructures the data within the module (by using the mvmember command)
• Removes data from the module (using the remove command)
• Adds a hierarchical reference to the module (using the addhref command)
• Removes a hierarchical reference from the module (using the rmhref command)

The topic Data Management of Modules explains how module data is managed.

DesignSync Data Manager User's Guide

185

Directories, not only their content, are part of a module's data (module members).
Consequently, DesignSync automatically manages directories belonging to a module.
See Directory Versioning.

Atomic Checkin and Recovery

You can add any amount of data to a module at once, resulting in a single check-in
attempt. However, either the entire checkin succeeds, or the entire checkin fails;
checkin of a module is an atomic operation. A new version of a module is created only if
the entire check-in operation succeeds.

By default, after a failed atomic checkin, a subsequent check-in attempt utilizes
information previously sent to the server. This optimizes the amount of data that needs
to be transferred to the server, with the retry effectively continuing from where the
previous try failed. For details, see ENOVIA Synchronicity Command Reference: ci for
more information on the -resume option.

Related Topics

ENOVIA Synchronicity Command Reference: add

ENOVIA Synchronicity Command Reference: ci

ENOVIA Synchronicity Command Reference: mvmember

ENOVIA Synchronicity Command Reference: remove

ENOVIA Synchronicity Command Reference: addhref

ENOVIA Synchronicity Command Reference: rmhref

Data Management of Modules

The topic Vaults, Versions and Branches explains how objects under data management
are version-controlled. As an object's development progresses, new versions are
created, such as versions 1.1, 1.2, and 1.3 of an object, on the default Trunk branch
(branch 1). You can branch an object, with parallel development of the object taking
place on the side branch, for example, versions 1.1.1.1, 1.1.1.2, and 1.1.1.3 on the
branch 1.1.1.

When working with module data, the module object is version-controlled; module
members are not independently version-controlled. The software's internal data
management of module members is transparent to users of the software.

Working with Modules

186

Creating a module (using the mkmod command) creates version 1.1 of that module,
without any module content. To create module content, use the add command to add
files and directories to the module. Then use the ci command to check in the files and
directories to the module. The checkin creates version 1.2 of the module. The files and
directories are now members of the module.

When changes to the module content occur, DesignSync creates new versions of the
module. See What Is a Module? for operations that cause a new version of a module to
be created. As with ordinary DesignSync data, you can branch a module so that parallel
development of the module can take place on the side branch.

Related Topics

Module Locking

Module Branching

Module Merging

ENOVIA Synchronicity Command Reference: add

ENOVIA Synchronicity Command Reference: ci

ENOVIA Synchronicity Command Reference:mkmod

Operating on Module Data

You can run DesignSync commands on modules or on the contents of a module (a
module's members). Let's use the ProjectSync module in What Is a Module? as an
example:

DesignSync Data Manager User's Guide

187

ProjectSync is a top-level module with subdirectories for its code and documentation.

Let's add a module to the module hierarchy for the JRE (Java Runtime Environment):

Both the SyncServer and ProjectSync use the JRE, so both the SyncServer and
ProjectSync modules have hierarchical references to the JRE module which were
added using the addhref command.

Fetching the ProjectSync module hierarchy into the workspace directory,
 /home/deb/work/ProjectSync, results in this structure:

Working with Modules

188

Although not shown in the above diagram, there are subdirectories and files below the
doc and tcl directories. Note that a "JRE" directory was not created. DesignSync
followed the reference to the JRE module, and fetched the content of the JRE module.

/home/deb/work/ProjectSync is the base directory of the ProjectSync module.

You can run commands that operate on module data on:

• A module, such as all data belonging to the ProjectSync module (all data in the
doc and tcl subdirectories -- not the *.jar and *.exe files belonging to the
referenced JRE module)

• Individual module members, such as the JRE module's *.jar and *.exe files
• Workspace folders within a base directory, such as the tcl subdirectory in the

/home/deb/work/ProjectSync base directory

Operations can be module-centric or folder-centric. See the Module Recursion topic for
details.

Notes:

• The co command does not apply to modules or module members; use
populate to fetch modules and module members.

• To tag module data, specify the module's location on the server. Also, you can
tag only modules, not individual module members.

Animated Examples

• Operating on a module
• Operating on a module's contents

Related Topics

Filtering Module Data

Module Locking

Module Branching

Module Merging

DesignSync Data Manager User's Guide

189

ENOVIA Synchronicity Command Reference: modules

ENOVIA Synchronicity Command Reference:addhref

ENOVIA Synchronicity Command Reference:co

ENOVIA Synchronicity Command Reference:tag

Auto-Merging

You can check-in from a non-Latest module version, without having to merge first if the
objects you modified have not been updated on the server. This is achieved by an auto-
merge check-in. This functionality applies to any operation that creates a new module
version, such as Renaming a Module Member, or Creating a Hierarchical Reference.

The auto-merge capability may be disabled for all module data on a server, forcing a
strict policy to check-in only from Latest. For details, see SyncAdmin's Modules Options.

Auto-merging can only be used to update a module when the objects modified locally
are identical to the objects they replace on the server. If there is a change to the object
on the server, you must either perform a merge to incorporate the changes into your
workspace, or use the skip option with the checkin operation to update the server. Note
that auto-merging happens at the file level. The contents of files are not automatically
merged. Auto-merge will not overwrite changes that other users have made to the
module.

The -skip option to the ci command can be used to skip over changes that were
made in subsequent module versions. The -skip option is applied to individual module
members. To disallow the use of the -skip option, your project leader can define a
client trigger.

When an auto-merge occurs, the fetched version number of the module is not updated
at the end of the operation. This is because there may be changes in intermediate
versions of the module, that are not reflected in the workspace.

Output from the ci command includes details of an auto-merge.

Similarly, structural changes that result in a new version of a module, such as adding or
removing href's, or renaming member files, do not require that your workspace have the
Latest version of a module.

Note: The automerge functionality is not valid for the following operations:

• Adding a file to a module - because the file did not exist in the previous version of
the module, it must be explicitly added (add) or checked in with the Allow
Checkin of New Items option (ci -new).

Working with Modules

190

• Removing a file from a module - Removing a file from a module (remove)
immediately creates a new module version without the removed module member.
 Therefore this operation never requires an auto-merge.

Examples

The examples below all begin with version 1.4 of the module Chip in your workspace.
Version 1.4 consists of the files: file1, file2 and file3.

Latest version 1.5 of the module contains a new version of file1. You modified file2
and file3.

Module version 1.5 contains a new version of file2. Module version 1.6 contains a
new version of file3. You modified file1 and file2.

Module version 1.5 contains the new file file4. You created and added file4.

Module version 1.5 renamed file1 to file4. You modified file2.

Module version 1.5 renamed file1 to file4. You modified file1.

Module version 1.5 does not contain file1. You modified file1.

Latest version 1.5 of the module contains a new version of file1. You modified file2 and file3.

The check-in proceeds, because none of the files you modified were altered in later
versions of the module. The new module version 1.6 is created, containing the updated
file2 and file3 from your workspace, as well as the file1 from the module version 1.5.

The fetched version number of the module in your workspace is not updated, remaining
at version 1.4. This is because the workspace version does not have all of the changes
that were made in intermediate versions. The status of file2 and file3, as reported by ls
–report S, is “Out-of-sync”. The module status, as reported by showstatus, is
“Needs Update”.

View an animated illustration of this example.

Module version 1.5 contains a new version of file2. Module version 1.6 contains a new version of file3. You modified file1 and file2.

The check-in fails, with an error message such as:

file2: Error: Newer version exists in vault

This is because your change to file2 conflicts with the new version of that file that was
introduced in version 1.5. File content is not automatically merged.

You should populate –merge the module, to merge in the later changes.

DesignSync Data Manager User's Guide

191

View an animated illustration of this example.

Module version 1.5 contains the new file file4. You created and added file4.

Your local copy of file4 is in the "Added" state, from having run the add command.

The check-in fails, with an error message such as:

file4: Error: New object already exists in vault

The two file4 files are different, so the error cannot be resolved by merging. Instead,
either:

• remove the other file4 from the module, using the remove command; or
• rename the other file4 in the module, using the mvmember command; or
• rename the file4 in your workspace, using the mvmember command; or
• delete the file4 in your workspace, using the rmfile command, if your local

file4 is not needed.

View an animated illustration of this example.

Module version 1.5 renamed file1 to file4. You modified file2.

The check-in proceeds, because there is no overlap in the changes. Your modified file2
gets checked into the new module version 1.6. As with the first example, the fetched
version number of the module in your workspace is not updated. The workspace still
has version 1.4 of the module. Also, file1 remains in your workspace, since the changes
in version 1.5 have not been fetched. A subsequent populate is required, to reflect the
rename of file1 to file4.

View an animated illustration of this example.

Module version 1.5 renamed file1 to file4. You modified file1.

The check-in fails, with an error message such as:

file1: Failed: Object has been moved

You can either manually accept the change, by using populate -merge to merge
with the new module version. Or run mvmember directly on the server module, to move
the file1 member back to its original path.

View an animated illustration of this example.

Module version 1.5 does not contain file1. You modified file1.

The check-in fails, with an error message such as:

Working with Modules

192

file1: Failed: Object does not exist in Latest version of
module

Because file1 is not in the Latest version of the module, you are attempting to check-in
a new file. This requires that the -new option to the ci command be used.

Or, you can use the add command, to re-add the object, and then perform the ci. The
ls command will report the object as "Added".

View an animated illustration of this example.

Related Topics

Modules Options

Adding a member to a module

Removing a file from a module

Renaming a Module Member

Creating a Hierarchical Reference.

ENOVIA Synchronicity Command Reference: add

ENOVIA Synchronicity Command Reference: remove

ENOVIA Synchronicity Command Reference: mvmember

ENOVIA Synchronicity Command Reference: rmfile

ENOVIA Synchronicity Command Reference: ci

Understanding Module Views

A design environment frequently includes modules with thousands of member files and
many sub-modules. In most cases, you only need access to a subset of this data. Your
DesignSync administrator or project leader can define sets of filtering rules to create a
particular view of the module that only includes the files you need. This module view is
stored on the DesignSync server for convenient repeated use. You can then apply one
or more of the module views when populating a workspace on the client.

Let's use the SyncServer module hierarchy in What Is a Module? as an example. The
SyncServer module has subdirectories for libraries, source code, and documentation:

DesignSync Data Manager User's Guide

193

Drilling down a little into the module, shows us a multiple application development
environment.

The administrator or project leader creates a definition consisting of filters and hreffilters
and uploads them to server as a named module view. In this example, there are many
logical users including the dsvs programming team, and the dsclipse programming

Working with Modules

194

team. To support these users, the administrator can create the module views: DSVS,
DSclipse.

In our example, these views contain the complete copies of the specific application
directory and the lib directory.

The contents of a single view is the initial view data set. When you populate more
than one view into your workspace, for example if you are on both the DSVS and
DSclipse development teams, you populate the union of two view initial data sets, or an
aggregate view data set:

DesignSync Data Manager User's Guide

195

After the candidate members of the view being populated are identified, DesignSync
applies filters or hreffilters that have been set with the Filter (-filter), Exclude (-exclude),
or Href filter (-hreffilter) options. The final dataset populated into the workspace after all
views and filter have been applied is called the filtered view.

Modules Views in a Module Hierarchy

If your project uses a module hierarchy, the DesignSync administrator or project
manager can use the same named view in all the modules and submodules that contain
the necessary files for a complete work environment. When the project hierarchy has
been set up for module views, you can populate recursively to recursively populate the
hierarchy containing the desired view into your system.

Note: If any module in the module hierarchy does not contain the named view, the
populate will fetch the entire module. Thus, using our example above, if the library files
were not contained within the SyncServer module, but were instead a separate
submodule called lib, the administrator could create the DSVS and DSclipse views
within the lib module to identify the specific library files that project needs, or by not
creating the views, allow the user to populate the entire lib module.

Related Topics

Working with Modules

196

Filtering Module Data

Module Hierarchy

Populating Your Work Area

ENOVIA Synchroncity DesignSync Data Manager Administrator's Guide: Overview of
Module Views

ENOVIA Synchroncity DesignSync Data Manager Administrator's Guide: Creating
Module View Definitions

Filtering Module Data

You can narrow operations on modules to a subset of the module's data. Let's use the
SyncServer module hierarchy in What Is a Module? as an example. The SyncServer
module has subdirectories for libraries, source code, and documentation:

DesignSync Data Manager User's Guide

197

The "doc" directory consists of *.htm files and an "images" directory containing *.gif
and *.vsd files.

A SyncServer writer does not need to fetch the entire contents of the "doc" directory.
Instead, the writer can fetch only the "images" directory. This results in the workspace
structure:

Note that the /home/barbg/work/SyncServer workspace directory was created by
the user. The doc subdirectory in the workspace was created by the fetch. No files
directly below the doc subdirectory were fetched, because the user specified that only
files in the doc/image directory be fetched.

The writer can further narrow module operations to filenames matching a specified
pattern, such as *.vsd files in the image directory.

You can exclude or include data by using the -filter option to commands such as
populate. By default, the -filter option excludes data. To operate only on certain
data, you need to first exclude all data, then include specific data, by using the "- and
"+" designators to the -filter option. See the command documentation for
descriptions and examples of the -filter option.

Continuing the SyncServer example, the release engineer for SyncServer adds the files
INSTALL.txt and ReadMe.txt to the SyncServer module (by using the add and ci
commands). The DesignSync documentation is no longer isolated to the doc
subdirectory.

To fetch all documentation files pertaining to DesignSync, a DesignSync writer needs to
fetch the *.txt files in the DesignSync module and the DesignSync module's entire
doc subdirectory. This results in the workspace structure:

Working with Modules

198

Note that the /home/barbg/work/SyncServer workspace directory was created by
the user. The doc subdirectory in the workspace was created by the fetch.

You can also filter module data by excluding the hierarchical references followed by
recursive operations. (Hierarchical references can only be excluded from operations --
there is no include inverse.)

To demonstrate, let's add two modules to the module hierarchy. The two modules are
"JRE" (for the Java Runtime Environment) and "db" (for the database engine). After
adding those two modules by using the addhref command, the DesignSync module
hierarchy is:

DesignSync Data Manager User's Guide

199

A developer who wants to work on the Java libraries needs the java data in the lib
subdirectory of the SyncServer module and the referenced JRE module. To do so, the
developer uses the populate command, specifying that the lib/*java data be
included (using the -filter option discussed above), and specifying that the
referenced db module be excluded (using the -hreffilter option). See the
command documentation for descriptions and examples of the -hreffilter option.

The populate results in the workspace structure:

Working with Modules

200

Note that the user created the /home/jim/work/SyncServer workspace directory.
The lib directory and its contents were created by the fetch. Note that a "JRE"
directory was not created. DesignSync followed the reference to the JRE module and
fetched the content of the JRE module.

Operations can be module-centric or folder-centric. See the Module Recursion topic for
details.

Animated Examples

• Filtering

• Persistent populate filter

Related Topics

Operating on Module Data

Setting Persistent Populate Filters

ENOVIA Synchronicity Command Reference: setfilter

ENOVIA Synchronicity Command Reference: populate

ENOVIA Synchronicity Command Reference: add

ENOVIA Synchronicity Command Reference: ci

ENOVIA Synchronicity Command Reference:addhref

Module Recursion

DesignSync Data Manager User's Guide

201

Operations can operate on an entire module hierarchy, a single module, a folder within
a module, or a submodule that's referenced by a module. Let's use the SyncServer
module hierarchy in Filtering Module Data as an example. The SyncServer module
contains directories with data, and hierarchical references (hrefs) to the JRE and db
modules:

By default, populate is not recursive; populate fetches only the module's data, resulting
in the workspace structure:

Working with Modules

202

Note that the user created the /home/simon/work/SyncServer workspace
directory.

A module is considered a single object. A populate of a single module fetches all of the
module's members, except for hierarchical references. Because the operation is not
recursive, DesignSync does not follow hierarchical references.

When using populate with the -recursive option, the entire SyncServer module
hierarchy is fetched, resulting in the workspace structure of:

Note that the user created the /home/ian/work/SyncServer workspace directory.
Because the -recursive option was specified, DesignSync followed the referenced
JRE and db modules and fetched their data.

Note: For information about which module versions are populated when a module
hierarchy is recursively into a workspace, see Module Hierarchy.

Operations can handle modules (module-centric) or workspace directories (folder-
centric).

Module-Centric Operations

 Operations are module-centric if they operate on:

DesignSync Data Manager User's Guide

203

• An individual module's content, such as the entire content of the
/home/simon/work/SyncServer workspace shown above

• An entire module hierarchy, such as the entire content of the
/home/ian/work/SyncServer workspace shown above

• A subfolder of a specific module, such as the lib subdirectory in either of the
/home/simon/work/SyncServer or /home/simon/work/SyncServer
workspaces shown above

You can specify a referenced module as the object of a module-centric operation.
Referenced modules are described in the topic Module Hierarchy.

Folder-Centric Operations

To illustrate folder-centric operations, let's return to the DesignSync example in What Is
a Module?. Both the SyncServer and ProjectSync submodules contain a "doc" directory,
which has *.htm files and an "image" subdirectory (with *.vsd and *.gif files). The
top-level DesignSync module contains *.txt files. A documentation writer working on
both SyncServer and ProjectSync fetches into their workspace only files pertaining to
the documentation (as described in Filtering Module Data).

 DesignSync fetches both the SyncServer and ProjectSync modules into the same
workspace, /home/barbg/work/DesignSync, in the example below. Note that top-
level "DesignSync" and "ProjectSync" directories are not created. It is the data within
those modules that is fetched, resulting in this workspace structure:

Since both the SyncServer and ProjectSync modules contain doc subdirectories, the
doc workspace directories will contain data from both of the SyncServer and
ProjectSync modules. These are referred to as overlapping modules, because they
share a common base directory.

A folder-centric operation operates on a workspace directory, ignoring module
boundaries. The workspace directory can belong to multiple modules. For example, the

Working with Modules

204

doc and images directories in the /home/barbg/work/DesignSync workspace
shown above belong to both the SyncServer module and the ProjectSync module.

Animated Examples

• Module-centric operations on a module
• Folder-centric operations
• Module-centric operations on a sub-folder
• Module-centric operations on hierarchical references

Related Topics

Module Hierarchy

Populating Your Work Area

ENOVIA Synchronicity Command Reference: populate

Module Locking

A module is managed by DesignSync, with a new version of a module created when the
content of the module is modified. (See What Is a Module? for details.) By default,
DesignSync creates all versions on the Trunk branch. You can branch modules (see
Module Branching), with new versions of the module created on the branch on which
you are working.

It is a branch of a module that is locked, not an entire module. You can also lock module
content. Let's use the SyncServer module hierarchy in What Is a Module? as an
example. The SyncServer module contains directories, with data in those directories:

DesignSync Data Manager User's Guide

205

A user can lock the branch of a module, thus reserving the right to create the next
version of the module. In this example, that means only the user who locked the
SyncServer module's branch can create a new version of the SyncServer module on
that branch.

Let's say the user marci locks the Trunk branch (branch 1) of the SyncServer module
(by using the lock command). No one else can modify the content of the SyncServer
module (on the Trunk branch) until marci releases the lock (for example, by using the
unlock command).

If a branch of a module is not locked, users can lock items within the module (by using
the populate command with the -lock option). For example, documentation writer
karen can lock *.htm files in the doc directory of the SyncServer module, while
developer jim locks files in the lib directory's java subdirectory. When karen checks
in her locked and modified files, she creates a new version of the SyncServer module.
Likewise, when jim checks in his changes, he creates a new version of the SyncServer
module. Note that karen having checked in her changes first did not prevent jim from
checking in his changes. That is because of auto-merging.

Locking a module member file reserves the right to modify, move, or remove the
member file. Only the user who locked a member file can make changes to that

Working with Modules

206

member file (either its modification, removal from the module, or move within the
module). Another user might check in modifications to other unlocked member files,
thus creating a new module version, as long as the modifications do not affect the
locked member file.

When a new version of the module results from a change made to the member file that
was locked, the lock on the member file is not released. This is so the user can continue
to work on the member file, without having to reobtain the lock. The user who locked a
member file can release the lock, by using the cancel command.

Animated Examples

• Locking a module branch
• Locking module content

Related Topics

ENOVIA Synchronicity Command Reference: lock

ENOVIA Synchronicity Command Reference: unlock

ENOVIA Synchronicity Command Reference: populate

 ENOVIA Synchronicity Command Reference:cancel

Module Hierarchy

A design hierarchy is comprised of modules, with the modules connected through
hierarchical references (hrefs). The href connecting two modules indicates which
module references the other. To illustrate, let's use the DesignSync module hierarchy,
from earlier examples in this document:

DesignSync Data Manager User's Guide

207

All of the arrows in the above diagram represent hierarchical references, which were
added by using the addhref command. The arrow direction indicates that the href is
from one module to another module. You can also remove hierarchical references by
using the rmhref command.

An href from a module is considered to be a member of that module. As with any
change to a module's contents, a change to a module's hierarchical references (either
adding an href or removing an href) creates a new version of the module.

Fetching only the DesignSync module fetches only its content, *.txt member files.
Following the DesignSync hrefs (by specifying the -recursive option to the populate

Working with Modules

208

command) also fetches the content of the SyncServer, DS DFII, and ProjectSync
modules, and the content of their referenced db and JRE modules.

A developer working on both SyncServer and ProjectSync (and not on other products in
DesignSync recursively fetches the DesignSync and ProjectSync modules into the
same workspace, /home/mahesh/work/DesignSync, in the example below. Note
that DesignSync does not create top-level "SyncServer" and "ProjectSync" directories,
but fetches the data within those modules, resulting in this workspace structure:

Note that if the user who added an href had specified a relative path (by using the -
relpath option to the addhref command), the referenced module's data would have
been fetched into a subdirectory relative to path in the workspace.

For example, if the href from the SyncServer module to the db module had been added
with the -relpath value, database, the fetch would have created a database
directory below /home/mahesh/work/DesignSync, containing the db module's
*.cpp and *.h files.

If the href from the SyncServer module to the db module had been added with the -
relpath value src, the db module's *.cpp and *.h files would have been fetched
into the src directory. The /home/mahesh/work/DesignSync workspace's src
directory would then have data from both the SyncServer and db modules.

Operations in the /home/mahesh/work/DesignSync workspace can be either
module-centric or folder-centric. See the Module Recursion topic for details.

Understanding how href modes and module recursion build your data hierarchy

When you populate a workspace, there are three different modes to specify how
hierarchical references should be evaluated in order to identify the versions of
submodules to reference when populating a module recursively. These href modes are
"normal," "dynamic," and "static."

Note: To understand how a module hierarchy is constructed and processed, it is helpful
to understand that selectors can be either dynamic, meaning that they might change, for
example, Trunk:Latest will always point to the latest version on the Trunk branch, which

DesignSync Data Manager User's Guide

209

changes each time a checkin is performed; or static, meaning that the version indicated
will always be the same, for example a version number. For information on
understanding selectors, see Selector Formats.

When your href is initially created, DesignSync saves the following information about
the version referenced:

• the selector used to refer to the submodule.
• the numeric version of the referenced submodule at the time the href was

created or updated.

So, for example, using the initial example above, to create a reference from the
DesignSync top level module to the V6 branch of the ProjectSync module, the reference
might look like this:

DesignSync stores:

• the selector information, in this case V6:Latest
• and the specific (static) version number that corresponds to the module version

at the time the href was created, in this case 1.1.7.1.1.31

Understanding Href Mode Traversal

DesignSync always resolves the selector of the topmost module when fetching a
module hierarchy to the workspace. When populating recursively, the href mode by
default is normal. This mode causes DesignSync to resolve the selector of each
hierarchical reference and fetch the referenced version of the submodule. If the selector
is a static version; for example, a version ID or a version tag, then the hrefmode from
that point forward changes to always follow the static version in each subsequent href in
the submodule’s module hierarchy. If the selector is a dynamic selector, for example a
branch selector, then the hrefmode stays in normal mode and the same process is
repeated for the next level of submodules. So, for example, using this hierarchy:

Working with Modules

210

Populating recursively with“–hrefmode normal”

Populating the DesignSync module with hrefmode normal first resolves the Gold
selector of the top-level module, DesignSync, then resolves the V6:Latest selector
in the href to the ProjectSync module. It fetches the latest version on the V6
branch of the ProjectSync module, which may be later than version 1.1.7.1.1.31.
Since the V6:Latest selector is a branch selector, which is dynamic, the hrefmode
stays in normal mode. Populate then processes the href to the JRE module. It
resolves the Gold selector for JRE and references the appropriate version of that
module. The Gold selector may reference a different version than the stored static
version, 1.1.1.27. Because the Gold selector is a version tag, which is a static
selector, the hrefmode now switches to static. Populate then uses the static
version information in the href to fetch version 1.13 to the BIN module as shown in
the following image:

Note: In the previous example, development has continued on the ProjectSync
module and those development updates are reflected in the example resulting in a
different hierarchy than the one originally captured at the time the hrefs were
created.

If you were to explicitly populate the JRE submodule, DesignSync would begin
with JRE as the top level module and resolve the href to BIN in normal mode,
rather than static mode as shown above. Assuming development has continued
on the BIN module, the resulting hierarchy could look something like this:

DesignSync Data Manager User's Guide

211

Populating with “-hrefmode static”

Using the static hrefmode when populating always forces the hrefs to use the
static version information stored in each href. For example, using our existing data
hierarchy, after fetching the DesignSync module, the 1.1.7.1.1.31 version of the
ProjectSync module is fetched regardless of what is the latest version on the
ProjectSync module’s V6: branch. Likewise, the 1.1.1.27 version of the JRE
module is fetched regardless of what version the Gold selector in the href
resolves. Finally, the 1.13 version of the BIN module is fetched. This results in a
module hierarchy that looks like this:

Note: When you populate a workspace with a static hierarchical reference, you
cannot check in any changes made in the workspace. Actively developing
workspaces must be populated in dynamic mode so the checkin will be able to
update the workspace with the new dynamic version after checkin.

Populating with “-hrefmode dynamic”

Using the dynamic hrefmode when populating always forces the hrefs to use the
selector that’s stored in each href. In the above example, each of the 3 hrefs have
their selectors resolved to determine which version of the ProjectSync, JRE, and
BIN submodules are fetched. Assuming development has continued on the
ProjectSync and BIN submodules as described in the Populating with "-hrefmode
normal" section, the resulting hierarchy populated would look like this:

Working with Modules

212

An Alternate Method of Module Hierarchy Traversal

DesignSync also supports a different working methodology which examines the
selector used to populate the top-level module in a hierarchy and always uses the
selector to determine what hrefmode to use to operate on the rest of the module
hierarchy. This methodology is defined by going into SyncAdmin and enabling
"Change traversal mode with static selector on top level module" option in
SyncAdmin.

This methodology produces a controlled hierarchy that always evaluates the
selectors the same way regardless of the entry point in the hierarchy in which
populate has run. So, continuing to our example module hierarchy would result in
this:

The selector used to fetch the DesignSync module is a static version selector named
Gold. If hrefmode "normal" is used for populate and the alternate methodology is in use,
then the hrefmode will switch to static immediately after populating the topmost
DesignSync module. Thus, the static version of all 3 hrefs are followed to fetch the
ProjectSync, JRE, and BIN modules. Without the methodology set, as discussed above,
the hrefmode won't switch from “normal” to “static” until after the href to JRE is followed
(because the href selector to JRE was a static version).

If the selector used to fetch the DesignSync module was dynamic in nature, for
example, a branch tag like Trunk:Latest,and hrefmode normal is in use, the hierarchical
traversal stays in normal mode resulting in the same hierarchy described in Populating
with“–hrefmode normal.”

If you were to populate the JRE module recursively, instead of using normal mode for
that selector, it would recognize that the submodule, BIN, should be populated statically
as a referenced submodule and populate the static version of BIN, if needed.

DesignSync Data Manager User's Guide

213

Important: Using this methodology, if the selector used for the topmost module is a
static selector (i.e., version ID or version tag), then the hrefmode switches immediately
to static when processing the rest of the module hierarchy. This produces a controlled
hierarchy that always evaluates the selectors the same way regardless of the entry
point in the hierarchy in which populate has run.

Animated Examples

• Creating module hierarchy
• Creating a peer structure module hierarchy
• Modifying module hierarchy

Hrefs and Hierarchical Href Filtering

When building a data hierarchy in your workspace, you may choose to populate
hierarchical references selectively, excluding hierarchical references that are
unnecessary locally, or perhaps duplicated within the hierarchy.

You can filter an href in two ways:

• simple href filter
• hierarchical href filter

You can specify any number of href or hierarchial href filters to the populate operation.

Note: You can only specify a hierarchical filter during an initial populate. You can specify
a simple hierarchical filter during any populate, but it will not persist. If you need to
change the persistent simple or hierarchical hreffilter on an existing workspace, you
must use Setting Persistent Populate Views and Filters or the setfilter command.

Simple Href Filtering

A simple href filter filters at any level of the hierarchy. To expand on our previous
example:

If you specify "JRE" to the -hreffilter option of populate, it will omit populating the JRE
href wherever it is it referenced, and any submodules beneath JRE, such as BIN
pictured in the image above, will also not be populated.

Working with Modules

214

Hierarchical Href Filtering

A hierarchical href filter filters at a specified level of a hierarchy, for using our initial
example, you see that two modules in the hierarchy refer to the same submodules:

DesignSync Data Manager User's Guide

215

Rather than populate two copies of the JRE module, one as a submodule to SyncServer
and the other as a submodule to ProjectSync, the user can use a hierarchial href filter to
filter out one of the JRE submodules. In this example, if the user was working primarily
in the ProjectSync module, she could filter out the duplicate module from the
SyncServer module by specifying "SyncServer/JRE" as the value of the Href filter option
during the populate.

Notes:

• To avoid populating hierarchical references unilaterally, populate without the Recursive
option selected.

• Href filtering is always exclusion based, unlike the standard Filter option which can be
used to both exclude or include objects.

Related Topics

ENOVIA Synchronicity Command Reference:addhref

ENOVIA Synchronicity Command Reference:rmhref

ENOVIA Synchronicity Command Reference:populate

Folder Versioning

Conceptually, folder (or directory) versioning preserves the state of a folder, such that
the folder's structure and file content at that moment can always be retrieved.

A folder, like a file, is a module member. A folder can be:

• Added to a module (by using the add command followed by the ci command)
• Removed from a module (by using the remove command)
• Moved within a module (by using the mvmember command)

Any of the above actions cause a new version of the module to be created.
Consequently, you can always retrieve the state of a folder (its structure and content),
based on the version number (or version tag) of the module to which the directory
belongs.

Note that when a folder is moved in a module, all of the contents of that folder are also
moved. Similarly, when a folder is removed from a module, all of the contents of that
folder are also removed.

Working with Modules

216

The mvmember operation changes the natural path of an object, from this module
version forward only.

Animated Examples

• Moving a file
• Moving a folder

Related Topics

Data Management of Modules

ENOVIA Synchronicity Command Reference: add

ENOVIA Synchronicity Command Reference: ci

ENOVIA Synchronicity Command Reference:remove

ENOVIA Synchronicity Command Reference: mvmember

Module Branching

When working with module data, it is a module object that is version-controlled. For
background, see Data Management of Modules. As with ordinary DesignSync data, a
module can be branched.

A module always has a branch 1 (the default Trunk branch) and an initial version 1.1
on branch 1. (Version 1.1 of the module results from creating the module, using the
mkmod command.) New versions of the module are created as the module's content
changes. See What Is a Module? for details.

A side branch can originate from any version of a module. The content of the module
version from which the side branch originates is used as the content of the initial module
version on the new side branch.

For example, let's say there are versions 1.1, 1.2, and 1.3 of the module Top. Version
1.1 of the Top module does not have any content (version 1.1 resulted from mkmod).

Version 1.2 of the Top module contains:

DesignSync Data Manager User's Guide

217

Version 1.3 of the Top module contains:

Working with Modules

218

Note that although all of the files shown in module version 1.2 are also shown in module
version 1.3, the content of those files might differ between the two module versions.

Using the mkbranch command on version 1.2 of the Top module creates:

• Branch 1.2.1 of the Top module
• Version 1.2.1.2 of the Top module

The initial version (1.2.1.2) on the new branch (1.2.1) has the same content as the
module version from which the side branch originated:

DesignSync Data Manager User's Guide

219

The initial version on the new branch also contains the hierarchical references that are
in the version from which it was branched.

Animated Examples

Branching a module

Related Topics

Module Merging

ENOVIA Synchronicity Command Reference: mkmod

ENOVIA Synchronicity Command Reference: mkbranch

Merging Module Data

Merging combines changes made within a branch. General concepts pertaining to
merging are described in these topics:

Working with Modules

220

• Merge Conflicts • Three-Way Merge

• Two-Way Merge • Merge Edges

In the above topics, examples of merging text files are used to illustrate their concepts.
The concepts are applicable to both file merging and module merging. These additional
concepts pertain to just module merging:

• Module Merge Edges • Merge Types and Forms

• Unique Identifiers • In-branch_Merging

• Module Structural Changes • Cross-Branch Merging

Module Merge Edges

The Merge Edges topic shows how merge edges are created and used. When merging
module data, merge edges are created for individual member objects. This helps with
further merges (of the member file contents) at a later date. These merge edges take
part in the individual file merges of the members.

Merge edges for the module are automatically created the merge is a in-branch merge
and the entire module is the merge candidate. The merge edge is created when a
check-in of the entire module is performed, and if an auto-merge does not take place
upon check-in. In other words, the merge edge is only created if the workspace version
at the time of the check-in is the Latest version on the branch. Module-level merge
edges help with later re-merges of the module.

Merge edges for the module can be manually created after the changes resulting from a
cross-branch merge have been checked in. To create a merge edge, use the mkedge
command. If the merge edge is no longer valid or needed, you can remove it with the
rmedge command.

Unique Identifiers

Every object and folder in the vault of a module is assigned a unique identifier. These
unique identifiers are used within the module's versions. There is a mapping from the
unique identifier to a natural path. The natural path is the path where that object is
placed under the module base directory. The natural path can change from one module
version to another, as a result of using the mvmember command. Changing the natural
path in this manner does not change the object's unique identifier.

Module Structural Changes

DesignSync Data Manager User's Guide

221

A module typically consists of many directories and files. A module can also refer to its
sub-modules by using hrefs. We refer to a set of directories, files, and hrefs as a module
structure. Users can modify a module's structure by adding, moving, and removing
directories and files, and by adding, and removing hrefs. Versions of a module can
therefore have different module structures, with module merging involving the merging
of structural changes.

Merge Types and Forms

There are two primary types of merging that take place in the module environment. Both
use the -merge option to the populate command:

Merging of file contents

For example, let's say you modified version 1.4 of file.txt in module version 1.8.
Someone else checked in version 1.5 of file.txt as part of module version 1.9. You want
to merge their changes to file.txt with your changes.

Module member file content will be merged, similar to when merging non-module
managed files. The diff command can be used to compare individual objects from
different module versions. Also see Comparing Modules, for how to compare the
contents of different module versions.

Merging of structural changes

For example, suppose that on your development branch, a file that was originally
populated with path /dir/a, was renamed (by using the mvmember command), to be
populated at /dir/b. You want to merge that change onto your development branch.

An object that was renamed in the module version being fetched will be fetched into a
new position in the workspace (/dir/c in this example). Any local modifications to the file
at the old position in the workspace (/dir/b in this case) are merged into the fetched file
(/dir/c), and the old file (/dir/b) removed.

As another example, let's say an object is removed from a module (by using the
remove command), so that it is not in the module version that is being fetched. The
merge operation will remove the object from the workspace. This may require the -
force option to the populate command, if the workspace object is locally modified.

In-Branch Merging

Merging a module version within a branch is performed using the populate –merge
command. This fetches the version of the module associated with the module selector,
and merges into that any changes in the workspace files. After the merge, the
workspace has the module version associated with the module selector, with some
members modified.

Working with Modules

222

Examples

Let's say you have version 1.2 of module ROM in your workspace, from using the
selector Trunk:Latest . You modified the files verilog/rom.v and DOC/Rom.doc, and
want to merge in the changes that are in the Latest version of the module. The Latest
version of the ROM module is 1.3. Version 1.3 contains a new version of verilog/rom.v.
DOC/ROM.doc has not changed in the Latest version.

You run:

populate –merge ROM

Without the -merge option, the populate would fail on the verilog/rom.v object, because
the object is modified. With the -merge option, your changes to verilog/rom.v are
merged into the file being fetched. If there are conflicting changes, those are reported in
the output from populate. After resolving any conflicts, you can check-in your
modifications, creating version 1.4 of the ROM module. Version 1.4 contains new
versions of both verilog/rom.v and DOC/RAM.doc. You now have the Latest version of
ROM, version 1.4, in your workspace. This is demonstrated in this animated illustration.

Next, someone else creates the file verilog/rom_sub.v, and checks it into the ROM
module, creating version 1.5 of ROM. In your workspace, you also create a file named
verilog/rom_sub.v. The verilog/rom_sub.v is either unmanaged, or in the "Added" state,
from your having used the add command. You also created a local file named
verilog/rom2.v. verilog/rom2.v is in the "Added" state, from your having used add.

Attempting to populate -merge fails on the verilog/rom_sub.v file. You delete the
local verilog/rom_sub.v file, after which a populate -merge succeeds. The
verilog/rom2.v file is not a member of the module version being merged, so remains in
the "Added" state. A subsequent check-in creates version 1.6 of the ROM module, with
the added verilog/rom2.v file. You now have the Latest version of ROM, version 1.6, in
your workspace. This is demonstrated in this animated illustration.

Cross-Branch Merging

Merging a module version from a different branch is performed using the populate –
merge -overlay <selector>[...] command. This fetches the version of the module
specified by overlay selector(s) and merges those into the workspace. Unlike In-Branch
Merging, cross-branch merging does not automatically accept most structural changes
into the new version of the module. Because of the complexity of the module merge
across branches, you must review the changes and determine whether to accept them.
Structural changes are processed as follows:

• Removed objects - If an object is present in the local workspace, but has been
removed on the merge version, it is marked with a ci_remove property to indicate
that it was removed from the branch. If you want to remove it from the merged

DesignSync Data Manager User's Guide

223

module version, you must manually remove the file from the workspace before
creating the new module.

• Removed objects - If an object is present in the local workspace, but has been
removed on the merge version, it is marked with a ci_remove property to indicate
that it was removed from the branch. If you want to remove it from the merged
module version, you must manually remove the file from the workspace before
creating the new module.

• Added objects - If an object is present in the merge version, but not in local
workspace, it is added to the module and is checked into the module when the
next checkin operation on the module or the module member is performed.

Note: This is the only automatic operation performed by the cross-branch module
merge.

• Renamed objects - If an object has a different natural path, meaning that it was
moved or renamed, the module member in the workspace retains the same
name or location in the workspace, and a metadata property is added to the
object to indicate the new path name. To determine what files have been moved,
review the populate status information, log file, or run the ls command with the -
merge rename option. To see the name of the object on the merge branch,
review the populate command output, log file, or Miscellaneous property listed
on the Properties page for the object.

Note: If a file marked as renamed is subsequently renamed again, or removed
from the module, the metadata property indicating that the file was renamed by
merge may persist. To clear the property, perform the mvmember or remove
command on the workspace object, or manually clear the property using the url
rmprop command.

• Added or Removed hierarchical references - Hierarchical reference changes
cannot be merged. You must manually adjust your hierarchical references.

Working with Modules

224

After the merge, the workspace has the module version associated with the workspace,
with some members modified. To incorporate the changes, check in the module to
create a new module version.

Related Topics

Module Merging

Auto-Merging Check-in

Overlaying Module Data

Module Objects Properties

ENOVIA Synchronicity Command Reference: populate

ENOVIA Synchronicity Command Reference: diff

ENOVIA Synchronicity Command Reference: add

ENOVIA Synchronicity Command Reference: remove

ENOVIA Synchronicity Command Reference: mvmember

ENOVIA Synchronicity Command Reference: lock

ENOVIA Synchronicity Command Reference: rmfile

ENOVIA Synchronicity Command Reference: ci

ENOVIA Synchronicity Command Reference: unlock

ENOVIA Synchronicity Command Reference: ls

ENOVIA Synchronicity Command Reference: url rmprop

ENOVIA Synchronicity Command Reference: mkedge

ENOVIA Synchronicity Command Reference: rmedge

Module Merging

When working with module data, it is a module object that is version-controlled. For
background, see Data Management of Modules. The contents of each version are the
files, folders. and hrefs that make up that version. As with ordinary DesignSync data, a
module can be branched.

DesignSync Data Manager User's Guide

225

Module branching is used to allow a parallel development of several variants of a
module. There are three situations where merging is needed:

• You have a non-Latest version of a module in your workspace, and you want to
check in your local changes to the module. This requires auto-merging.

• You want to merge a module version of the same branch as that of your
workspace into your workspace. This is in-branch merging.

• You want to overlay a version of the module from a different branch, over the
module version that is in your workspace. This is cross-branch overlaying.

• You want to merge a version of the module from a different branch as that of
your workspace into your workspace. This is cross-branch merging.

Auto-Merging

In this scenario, you want to ci your local modifications to a module. The module
version fetched into your workspace is not the Latest version on the target branch.
You do not want to always specify the –skip option, as that would skip over changes
that were made to the same files that you are checking in. The ci can proceed, if there
is no overlap between the objects that are participating in the checkin, and the changes
between the version that was fetched into your workspace and the Latest version of
the module. This capability is auto-merging.

In other words, as long as you are working independently from others, on different
objects, you can still check in even though someone else has created a new module
version with their own independent changes. Note that this auto-merging happens at the
file level; the contents of files are not automatically merged.

Auto-merging also applies to other commands that can create a new module version:
mvmember, remove, addhref, and rmhref. These commands are also allowed, if there
is no overlap between the objects being operated on and the changes between the
current and latest versions.

When an auto-merge operation occurs, the version number of the module in your
workspace is not updated, since there might be changes in the intermediate versions
that are not reflected in your workspace copy of the module. A subsequent populate is
required to update the version number of the module in your workspace.

For further details, see Auto-Merging.

In-Branch Merging

You merge a module version within a branch using the -merge option to the populate
command. In-branch merging fetches the version of the module associated with the
module selector, and merges into that any changes in the files in your workspace,
leaving the workspace with the fetched module version, but with some members
modified.

Working with Modules

226

For example, let's say you're working with the module Chip, using the selector
Trunk:Latest, and you have version 1.5 in your workspace. You have modified the
files tmp.txt and verilog.v, and want to merge in the changes that are in the
Latest version of the module.

The Latest version of the Chip module is 1.6. Version 1.6 contains a new version of
verilog.v, but no newer version of tmp.txt. If you were to simply populate:

populate Chip

the populate would fail on the verilog.v object, because the object is modified.

If you instead merge:

populate –merge Chip

DesignSync merges your changes to verilog.v into the verilog.v file being
fetched into your workspace.

If there is a file in your workspace that is either unmanaged or added with the add
command, and that file has also been added to the version of the module you are
merging with, a conflict occurs. In this case, an error is reported for that file, similar to an
attempt to populate without -merge when a file is modified.

If there is a file in your workspace that you added with add and that file is not a member
of the merged module version, that file remains in an “Added” state; it will be added to
the module by your next ci to that module.

For further details, see In-Branch Merging.

Cross-Branch Overlaying

When data is overlaid across branches, DesignSync fetches objects from the requested
branch, and overlays them onto the existing equivalent objects. There is no merging.

The command used for performing cross-branch overlay is:

populate –overlay <branch:Latest>

In this case, there can be no conflicts, as a conflict is, by definition, related to a merge.

For further details, see Overlaying Module Data.

Cross-Branch Merging

DesignSync Data Manager User's Guide

227

When data is merged across branches, DesignSync fetches the objects from the
requested branch and merges them with the equivalent objects from the branch already
loaded in your workspace. You merge two module versions from different versions
using the -merge -overlay options to the populate command. Cross-branch
merging fetches the specified version of the module, and merges it into your workspace
over the existing equivalent objects. The workspace is still associated with the same
module branch as before the merge.

For example, let's say you're working with the module Chip, and you have the
Trunk:Latest version, version 1.5 in your workspace. Independently, you have a set
of changes in a branched release that you want to integrate into the Trunk branch.

The branched release of the Chip module is Rel2:Latest. If you've modified the files as
followed:

• Edited verilog.v
• Removed tmp.txt
• Added Chip.doc

 You run the following command to merge your module into your current workspace.

populate –merge -overlay Rel2:Latest

DesignSync performs the following actions:

• Merges your changes to verilog.v into the verilog.v file being fetched into
your workspace.

• Creates Chip.doc in your workspace in the added state so it automatically checks
in when you check in the module. If you had an unmanaged copy of Chip.doc in
your workspace, or used add to add the file to the module, a conflict occurs and
DesignSync identifies the conflict to allow you to determine which version of
Chip.doc you want to keep in the workspace.

• Identifies in the output message that tmp.txt was removed in the branch module
and marks the tmp.txt file as removed in the metadata. This allows you to
determine whether you want to remove the file, or leave it in the module. If you
want to remove the file, you must manually remove it from the workspace version
and check in the module. This removes the file from the module version on the
server.

If there is a file in your workspace that you added with add and that file is not a member
of the merged module version, that file remains in an “Added” state; it will be added to
the module by your next ci to that module.

Related Topics

Module Branching

Working with Modules

228

Merging Module Data

ENOVIA Synchronicity Command Reference: ci

ENOVIA Synchronicity Command Reference: mvmember

ENOVIA Synchronicity Command Reference: remove

ENOVIA Synchronicity Command Reference: addhref

ENOVIA Synchronicity Command Reference: rmhref

ENOVIA Synchronicity Command Reference: populate

ENOVIA Synchronicity Command Reference: add

External Modules

DesignSync supports the ability to create a hierarchical reference from a DesignSync
module to an external module. An external module is an object or collection of objects
managed by another code management system exposed as a module through
DesignSync. Using external modules allows you to manage code dependencies
between module objects in DesignSync and files checked in to other code management
systems.

Using external modules in a design hierarchy

The external module must be part of a module hierarchy. You cannot create an
external module as a top-level module. The external module must be a leaf on the
module hierarchy. DesignSync can only populate the external module itself. The
external module may have not have references to sub-modules. The external module
cannot overlap with any other module data. It can only contain objects from one external
module. To illustrate, let's look at a module hierarchy the includes an external module.

DesignSync Data Manager User's Guide

229

In this example, the DesignSync module CPU depends on code managed by another
team that uses a different code management system. The DesignSync administrator
creates a Tcl script which is placed on the SyncServer containing the information
needed to connect to the external code management system and extract the information
using the correct options for the external system. The Project lead creates a hierarchical
reference to the external module which uses the Tcl script to create a module manifest
on the server that stores information about the objects that are part of the RAM external
module.

When the workspace is populated recursively, the RAM external module is populated
like any other module, according to the settings defined in the Tcl script containing the
definition of the external module and the settings selected by populate. Practically, this
means you can apply properties, such as a filter, either as part of the hierarchical
reference or as part of the populate.

This flexibility allows the Project lead to exclude or include only specific files that the
team will need, and, if specific team members wish to apply additional filtering, they can
do so in the populate.

Once an external module has been populated, other commands can be available to
operate on the external module data. External modules supports the DesignSync
command-line commands:

• Populate
• Tag
• Showstatus
• Showhref
• ls
• Enterprise Synchronization
• Swap Replace/Restore
• Rmmod

Note: The DesignSync commands that are extended to work with external modules
must have access to commands from the external CM system. This measn that the
external CM system commands must be installed on any user’s machine that runs
DesignSync commands that in turn work on external module data.

Creating External Modules

 Within a standard DesignSync module, you create a hierarchical reference that refers
to an external module. The external module reference contains a pointer to a Tcl script
that provides the information about the external code management system that allows
DesignSync to use those objects. For information about creating the Tcl script, see the
DesignSync Administrator's Guide: Defining the External Modules Interface.

Working with Modules

230

After creating the href to the external module, you populate it exactly as you would any
other href, by specifying the href name argument to populate or populating the parent
module with the -recursive option.

Viewing the Contents and Status of External Modules

DesignSync supports viewing the contents, status, and hierarchical reference status of
external modules. Performing these operations will show you how the external module
available in DesignSync differs from the source module in its different code
management system.

The user runs the DesignSync command with a list of desired options, specified with -
xtras to the external code management system. The external module in the workspace
contains a pointer to a Tcl script that provides the information about the source for the
external module.

Related topics

Module Hierarchy

Creating Module Hierarchy: Overview

Creating a Hierarchical Reference

Populating Your Work Area

DesignSync Administrator's Guide: Overview of External Modules

 DesignSync Administrator's Guide: Defining the External Modules Interface

Module Member Tags

Module member tags (sometimes called, "snapshots," in the documentation for clarity)
are a collection of versionable module members that are tagged from a workspace.
When you tag a set of member versions in a workspace, you create a new module
member tag branch on the server. Using a branch allows you to maintain a snapshot as
a versionable object, updating tags and hierarchical references as needed.

Module member tags allow you to capture a subset of a module workspace at any given
moment in time, and recreate it. This can be useful to preserve a specific set of files for
testing or releasing that set of files without interrupting the normal development
workflow.

DesignSync Data Manager User's Guide

231

When you create a module member tags by tagging the desired module members,
DesignSync creates a special tagged branch for the module. When you create the
snapshot, you provide a tag name; the module branch is created with the name
SNAPSHOT_<tag_name>. The specific module member tag version is <tag_name>.

Operations on tagged module member tagged versions are always workspace-centric.
This means the operations occur on the objects loaded in the workspace. If a folder is
specified with recursion, the operation traverses the folder.

The module member tag operations are atomic with respect to the server. In order to
execute the tag operation, all objects within a module must be processed successfully.
 If any object fails the entire operation fails for that module. For example, if you tag
module members in your workspace belonging to different modules and you do not
have tag access for one of the modules or module members, the tag fails for that
module only. The other modules, assuming no other errors within them, are updated
successfully.

The module member tag operations are not atomic with respect to the workspace. For
example, if you have a moved, removed, or added a file that has not been checked in, it
does not cause the entire tag operation to fail. You receive an error message for any
individual workspace object that failed, and the operation itself succeeds.

Hierarchical references within module member tagged versions must be manually
added or removed. DesignSync does not automatically include hierarchical references
already in the workspace in a new tagged version, nor does it update hierarchical
references in the module member tagged version when it is versioned by adding or
removing tags. After the module member tagged version has been created, you can add
the desired hierarchical references to the module member tagged version, and update,
remove, or add new hierarchical references as needed.

Operations that can create a module version with structural or content changes, such as
add, remove, checkin, mvmember, rollback, and populate with the -lock
option, are not allowed with on a module member tagged branch. These tagged
module member versions are intended to be used as is, with content frozen. The only
operations allowed are Creating a Hierarchical Reference, Deleting a Hierarchical
Reference, and Tagging operations (adding, removing, or moving tag names on module
members). This allows you to create the perfect, immutable, test or release version.

Populating Module Member Tagged Versions

After the module member tag has been created, you can populate the version into a
local workspace for viewing, testing, or integrating into other work.

When you populate a module member tagged version as a fixed workspace for viewing
or testing, you use the snapshot tag as a selector. This can be either the full snapshot
branch and version name or the simple tag name. When you populate a snapshot

Working with Modules

232

module, you can update tags on module members or hrefs within your workspace, but
cannot checkin any content or other structural changes to the module members or the
module.

When you populate a module member tag to integrate with other work, you typically
populate with a comma separated list of selector list ending with the default selector.
This populates from the default selector list first and replaces any matching objects with
the member objects from the selected versions.

This results in a workspace that uses the default or main selector as the base and the
destination for any checkins, but some or all of the module member objects from the
snapshot workspaces. For example using the following version to populate:

 Beta,Alpha,Trunk:Latest

The Populate command creates a module manifest from the main selector,
Trunk:Latest, and layers that with the contents of the Alpha blend, and then the Beta
blend. The final manifest is then sent to the client. The server uses the natural path of
the objects and the uuid to determine which module members to replace.

When hierarchical references are populated non-recursively as part of the operation, the
hierarchical reference versions come from the main selector list, not from the specified
module snapshots.

When the hierarchical references are populated recursively during the initial populate
the module members within the populated submodules also inherit the selector list. If
hierarchical references are not populated recursively during the initial populate, they will
not overlay member items from the selector list on subsequent populates; they will only
contain the objects from the main selector. You can set or change the selector
recursively by Populating Your Work Area with the selector list as the Version option (or
using populate -version) to specify the selector list) or using Set Vault
Association.

Notes:

• If the main selector list is a snapshot branch, you will not be able to check in any
changes from the workspace.

• When populating a selector list, the module member objects in the specified snapshot are
populated instead of the objects from the main selector. Populate will never attempt to
merge the members. If you want to merge data from a module snapshot into your
workspace, you should populate your snapshot with the Merge_with_workspace and
Overlay_version_in_workspace options into a workspace that has the default selector
defined as the desired destination for checkin.

• Any hierarchical references that are defined as a static module version indicated by the
selector on the href will not inherit from the selector list, even if the initial populate was
recursive through the module hierarchy.

DesignSync Data Manager User's Guide

233

Related Topics

Populating Your Work Area

Tagging Versions and Branches

Creating a Hierarchical Reference

Deleting a Hierarchical Reference

Selector Formats

Specifying the Vault Location for a Design Hierarchy

Edit-In-Place Methodology

A module version that has been populated by an href can be manually replaced by
another module version, using the swap commands. This is analogous to allowing a
brick to be removed from a wall and replaced (in the same location) with a different
version of the same brick. A primary use of this edit-in-place methodology is to replace
a statically fetched sub-module within a baseline (i.e. static) module hierarchy with the
latest version on a branch so that the sub-module can be developed within a baseline
framework.

 The swap capabilities:

• Change the selector of a sub-module already present in the workspace and re-
populate it using the new selector.

• Avoid reverting the sub-module via a recursive populate of a parent module.

This results in a workspace in which a sub-module can be replaced with a different
version of the same module and developed/tested within the surrounding framework of
other modules that define a released hierarchy.

swap replace replaces the version of a module in the workspace with a different version
of the same module. The replace operation updates the selector and href mode, and
calls populate recursively to replace one version of a workspace module with another
version of the same module. The populate operation uses all persistent populate
controls (such as filters).

swap show shows the currently swapped module versions in the workspace. This
information is useful when an end user needs to know what modules have been
updated for development and test.

Working with Modules

234

swap restore restores a previously swapped module to the version defined by a parent
module in the workspace. The restore operation calls populate recursively using all
persistent populate controls (such as filters).

populate of a swapped sub-module

The swap replace and swap restore commands always perform a full recursive
populate, applying the full mode to the entire hierarchy of the swapped module. The
populate operation uses the selector and hrefmode specified to the swap replace
command, rather than using the selector and hrefmode determined by the parent. The
edit-in-place methodology changes the selector and href mode as necessary to ensure
that the desired sub-module versions are replaced in the workspace. Persistent settings
(such as filters) associated with the original module version will be applied to the new
swapped module version.

Note: Normal href mode for the swap commands uses the value of the Change
traversal mode with static selector on top level module setting.

If all of these conditions are met:

1. the module being swapped is an mcache link or the swap replace/restore
command is issued in -force mode.

2. the default mcache mode is to link to modules in the module cache
3. the specified selector is static
4. the modified selector resolves to a module version found in a module cache

Then the populate operation will replace the existing mcache link or file copies with a
new link pointing to the new version of the module.

Note: The populate command can replace fetched module instances with mcache links
if the -force option is used and all other conditions are met.

If the selector of a fetched module instance is modified the populate command will not
replace the existing module instance with an mcache link even if all other conditions for
mcache linking are met. Instead, the populate command will refetch the module
instance using the modified selector.

When populate is run in verbose mode, its output indicates when the selector of a
swapped sub-module is being used.

ci of a swapped sub-module

The ci command will not checkin a module with a static selector. For a recursive
operation, the ci command will continue following the module hierarchy in the
workspace looking for modules that can be checked in (e.g. swapped modules with
dynamic selectors).

DesignSync Data Manager User's Guide

235

During a recursive ci, the href from a current parent module version to a swapped
module is carried over to the new parent module version without change. I.e., The href
to a swapped module is not updated. The purpose of swapping a module is to develop
and test it within a module framework, not capture new versions of the parent module
that reflect a static hierarchy containing the swapped module versions. Whoever is
responsible for integration will capture new versions of the parent module.

The output from ci indicates when modules are not checked in because they have static
selectors. The output also indicates when hrefs are not updated because their selectors
do not match the actual selector of the sub-module in the workspace.

Related Topics

Module Hierarchy

Understanding Smart Module Detection

DesignSync features the ability to identify the module to which a new object should be
added or checked in without forcing the user to explicitly specify the target module.

Identifying the module target

The DesignSync smart module detection algorithm identifies the target module by the
following rules:

1. If there is only a single workspace module populated into the workspace at or above the
object being added, that module is identified as the only possible target module.

2. If there are multiple workspaces modules above the object being added, but the folder
containing the object is a member of only a single module either explicitly, by having
been added to the module, or implicitly, by only containing objects belonging to a single
module, that module is identified as the only possible target.

3. If there are multiple workspace modules above the object being added and the containing
folder contains objects belonging to multiple modules, all the workspace modules are
candidate module. If the user has defined a moduleSelectionHook, it is used within a
client trigger to determine the workspace. If there is no moduleSelectionHook defined,
smart module detection fails and the operation fails with an appropriate error message.

Related Topics

Adding a Member to a Module

Checking in Design Data

Working with Modules

236

ENOVIA Synchronicity DesignSync Data Manager Administrator's Guide: Module
Selection Hook

Conflict Handling

Because DesignSync provides a client/server environment, it is possible that conflicts
can arrive between the version locally and the version checked into the server. This
topic shows you how to identify module conflicts both at the structure level and on
individual members.

Module Structure Conflict Handling

Module Member Conflict Handling

Module Structure Conflict Handling

 When the structure of a module has changed both on the server and locally, this can
result in a structure conflict. A structure conflict can be seen by including report modes
for both server and workspace in your view (this is the default value of the Status
column in the GUI) or by running the ls command with both

In this example, the file, regs6.v has been independently renamed (moved) on both the
server and the workspace.

The ls command output when specified with report modes including workspace (-
report +D) and server (-report +S) status shows the same information.

 regs6.v 10/17/2011 13:35 Moved Needs Merge [Moved] 1.1

To find out the new object path on the server, you can use the Vault Browser or the
Version History with the module manifest mode selected, or the vhistory command
with the -report Q option.

When you have a module structure conflict, you can resolve it by forcing an overwrite of
modified changes in your workspace or by forcing a checkin of your workspace. For
more information, see Resolving Module Structure Conflicts.

DesignSync Data Manager User's Guide

237

Module Member Conflict Handling

Because modules can overlap in a workspace, it is possible that a populate will try to
fetch a file, and find that there is a file from another module already in the target
workspace address. For example, let's say modules Chip and ALU are both fetched to
the module base directory basedir. Both contain the file README.txt. When the
second module is fetched, it will find that there is already a README.txt from the other
module. This issue is referred to as a populate conflict.

A populate conflict is handled as follows; the first module to populate a file will win.
Subsequent populates of other modules with conflicting objects will lead to the
conflicting object being reported as a failure to fetch, thereby increasing the failure count
of the populate.

Related Topics

Populating Your Work Area

Merge Conflicts

Merging Module Data

Overlaying Module Data

ENOVIA Synchronicity Command Reference:populate

Module Version Updating

The fetched version number is the version number of an object that is in your
workspace. If a new version of a module is being fetched, the fetched version number is
updated at the end of a successful populate command. If the command is not
completely successful, then the fetched version number is not updated.

Other scenarios to consider are:

• If a member could not be fetched because it is already in the workspace, and is
modified, then the fetch of that member fails. Consequently, the overall operation
fails, and the module's fetched version number is not updated.

• If a member is skipped due to:
o the -filter option
o the -exclude option
o the -nonew option

then that member is not fetched. Therefore, the workspace does not contain the
full module version, so its fetched version number is not updated.

Working with Modules

238

• If a member is due for removal from the workspace (because the new module
version being fetched does not contain it), and:

•
o the module member (that is due for removal) is modified in the workspace
o the -force option is not used

then that member is unaffected. After the fetch attempt, the workspace has the
complete contents of the module, (plus the member that was not removed), so the
module's fetched version number is updated.

Not having the Latest version of a module as the fetched version is not necessarily a
problem, The auto-merge system ensures that subsequent check-ins can still proceed.
However, a potential downstream effect is that the showstatus command will continue
to show the module as Needs Update, until a successful populate is performed, fetching
the Latest version.

Related Topics

Populating Your Work Area

Auto-Merging

Merging Module Data

ENOVIA Synchronicity Command Reference: populate

ENOVIA Synchronicity Command Reference: showstatus

Using a Module Cache

As a performance optimization, your team leader may fetch modules into a module
cache on the LAN, for you to link to. This is faster than your fetching data from a server.
On UNIX, the use of symbolic links also saves disk space. The link is created to the
base directory of the requested module version in the module cache. On Windows,
symbolic links are not supported.

When you fetch module data using the Populate dialog box or populate command, you
can opt to link to a module in the module cache. You can also specify the module cache
paths to search for the module data. If the requested module version is not found in the
module cache, DesignSync fetches the module from the server.

Your team leader might have defined default module cache paths and a default module
cache mode. You can override these values by setting your own default values. See
DesignSync Data Manager Administrator's Guide: Module Options for more information.

DesignSync Data Manager User's Guide

239

Since the copy mode for an mcache is ignored for modules, your team lead should fetch
the modules from the server into the mcache using the share mode. This forces the
module contents to get fetched into the DesignSync cache (different from an mcache).

Symlinks are created in the mcache to point to these files in the DesignSync cache. If
you subsequently use the copy mode for mcaches to get full copies of the module
contents from the mcache instead of the server), the '-mcachemode copy' switch is
ignored. The populate operation uses the default 'from local' copy mode to fetch the files
from the DesignSync cache.

When the module cache is created, it is assigned a workspace instance to allow to the
creator to manage it like any other module in their workspace.

When users create links to the module cache, a symbolic link to the base directory of
the module in the mcache is created. This link is assigned a module instance and can
be managed like any other module in the workspace. The link has the object type "Link
to Mcache."

Related topics

What is a Module Cache?

Displaying Module Cache

DesignSync Data Manager Administrator's Guide: Setting Up a Module Cache

ENOVIA Synchronicity Command Reference: populate

241

Working with Files and Directories

Creating Files
You can create new files. Files can only be created locally; you cannot create files on
the SyncServer.

Select File => New => File to bring up the New File dialog. Click OK to create the new
file.

On Windows, the editor associated with the file is invoked, with the file open in the
editor. If there is no editor associated with the file's type, the default editor is used. If you
need to change the default editor used by DesignSync, you would change it the
SyncAdmin Tool. See SyncAdmin Help: General Options for more information.

Click on the fields in the following illustration for information.

New File Field Descriptions

Current Folder

This field is not editable. It shows the folder from which the New File dialog was
invoked.

New File

Enter the name of the file you want to create. You can specify:

• The file name or a relative path to create the file relative to the Current Folder
• An absolute path

Related Topics

Deleting Files

Working with Files and Directories

242

Moving and Renaming Files
You can move and rename local files, both managed and unmanaged, using the mvfile
command. The DesignSync graphical interface does not support moving and renaming
files.

Related Topics

ENOVIA Synchronicity Command Reference : mvfile Command

Moving and Renaming Folders

Adding a Member to a Module
The Add to Module dialog box adds highlighted objects to a local module in your
workspace. The objects must be within the scope of the base directory of the target
module and the module must be populated with a dynamic selector. The objects can be
files, directories, or collection objects. The locally added objects are checked into the
module version that is created by your next checkin. See Checking In Design Data for
more information.

• If the highlighted objects are all files, and the module context can be uniquely
determined, the files are added without invoking the Add to Module dialog box.
These results are shown in the output window.

• If smart module detection cannot determine the target module, the Select Module
Context dialog box is displayed. Once the module context is selected, the results
are shown in the output window.

• If the highlighted object contains one or more folder objects, the Add to Module
dialog displays.

For information about how smart module detection determines the target module, see
Understanding Smart Module Detection.

Files excluded from view by exclude files are not displayed by the DesignSync GUI and
are not available to Add from the GUI. For more information on exclude files, see
Working with Exclude Files.

To add to a member with Add to Module dialog box:

1. From the main menu, select Modules => Add Member or you can select the
button from the Module Toolbar. You can also select this command from the

context menu.
2. The Add to Member dialog box appears. Select options as needed.
3. Click OK.

DesignSync Data Manager User's Guide

243

Click on the fields in the following illustration for information.

Add recursively

For a folder, whether to add only the folder or also recursively add the folder's contents.
Note that folders themselves can be module members. If you checked the Add empty
directories option, adding a folder without content results in an empty folder as a module
member.

By default, the option to Add recursively is not selected.

Add empty directories

This option is used with Add recursively. When adding members recursively, any
folder that contains files is added to the module. The Add empty directories option
specifies whether directories without content are added to the module.

For example, let's say you're recursively adding "dirA" to a module. "dirA" contains files,
and an empty subdirectory "dirB". The option to Add empty directories controls
whether the empty directory "dirA/dirB" is added.

Filter

Allows you to include or exclude module objects by entering one or more extended
glob-style expressions to identify an exact subset of module objects on which to perform
the add.

The default for this field is empty.

Working with Files and Directories

244

Module Context

Expanding the list-box shows the available workspace module instances for the
currently selected object or objects, including an automatically calculated <Auto-detect>
"module context.". All available workspace module instances are listed alphabetically in
the pull-down following the calculated <Auto-detect>.

Note: If you select <Auto-detect>, and the DesignSync system cannot determine the
appropriate module, the command fails with an appropriate error.

Report type

From the pull-down, select the level of information you want to display in the output
window:

Brief output: Lists errors generated when adding objects to the local module, and
success/failure count.

Normal output: Lists all objects added to the local module, success/failure count,
and beginning and ending messages for the add operation. This is the default
output mode.

Verbose output: In addition to the information listed for the Normal output mode,
lists:

o Skipped objects that are already members of the module.
o Skipped objects that are already members of a different module.
o Skipped objects that are filtered.
o Status messages as each folder is processed.

Errors and Warnings only: Lists errors generated when adding objects to the
local module, and success/failure count.

Related Topics

Directory Versioning

ENOVIA Synchronicity Command Reference: add

Filter field

Module context field

Command Invocation

Command Buttons

DesignSync Data Manager User's Guide

245

Context Menu

Moving a module member
You can move module members using the Move modules members dialog box when:

• One or more current module members or module folders are selected in the
client work area or on the server.

• A module base folder in the client work area can be selected if it is also a module
member folder for another module.

Note: Unless all the selected objects are members of the same module in the
workspace or the same module version on the server, you can not invoke the Move
module members dialog box.

When moving a workspace member, you must be working with the Latest version of the
member present in the workspace. You can modify your copy of the object and move
the object before checking the object back in. By default, the Move Member command
does not check in the modified object, it only changes the path or object name of the
specified object in the workspace. When you perform the next checkin operation, the
specified object is renamed on the server and any content modifications are checked in.

 Note: If you deselect the Apply changes locally first; commit with next checkin option
the module version created with the when you run the Move Member command does
not have the local content modifications. If you select the Apply changes locally first;
commit with next checkin option (default), the module version created with the
checkin operation has both the name change and the updated content.

 You cannot move an object that another user has locked. If you move an object you
have locked, you retain the lock after the move has completed.

 When you move objects that have been added to the workspace but not checked in,
the workspace members are renamed and remain in the added state to be processed
during the next checkin.

Some notes on moving folders

Moving module folders on the server

The Move module members dialog box is used to move module folders on the server.
When a folder is moved on the server, the contents of the folder move with it. However,
the following objects do not move with the folder:

• Any module members locked by another user.
• Any non-versioned objects in the workspace.

Working with Files and Directories

246

If all the contents of a folder are moved, the folder is removed from the server, and if the
module is populated with the -force option, it is also removed from the workspace.

Moving module folders in the workspace

The Move module members dialog box is used to move a workspace folder. When the
workspace folder moves, the following happens:

• The contents within the folder (files or collection objects) are moved to the
specified location in the workspace. If the Apply changes locally first; commit
with next checkin is not selected, the folder contents are moved on the server
immediately and DesignSync creates a new module version. Otherwise changes
are included in the module version created during the next checkin.

• The folder is removed from the workspace, if it was not explicitly added. The
folder is does not move to the new location.

To move a module member:

1. Select the member.
2. From the main menu, select Modules => Move Member or select the

button from the Modules toolbar. The Move module members dialog box
appears.

3. Select options as needed.
4. Click OK.

Click on the fields in the following illustration for information.

New path

Select the new path for the module member(s) or use the Browse button to select the
path.

DesignSync Data Manager User's Guide

247

• If the selected objects were from the workspace, the browse button invokes a
browser rooted at the base directory for the module context selected.

• If the selected objects were on the server or rooted at the module version, there
is a new folder button on the browse dialog to allow you to create a new folder.

• The browser selection is restricted to folders.
• If a relative path is specified, it is relative to the module base folder on the client

and the top of the module on the server; it is not relative to the selected object(s).

Note: If the selected objects are locked by other users, the move will fail.

Module Context

This option is only available when the selected objects reside on the client. Expanding
the list-box shows the available module instances for the currently selected module
members. All available module instances for the current selected base folder are listed
alphabetically in the pull-down.

Note: There may only be one module listed. If the selected object is a module base
folder, all modules based at this folder are selectable from the list-box.

Apply changes locally first; commit with next checkin

This option is not available when the move operation is done directly on a server object

When checked, the selected object(s) is marked to be moved during the next module
check in. (Default)

When not checked, DesignSync immediately creates a new module version on the
server with the selected objects moved.

Related Topics

The Module Toolbar

Renaming a Module Member

ENOVIA Synchronicity Command Reference: populate

ENOVIA Synchronicity Command Reference: mvmember

Using the Moving Modules Members dialog box
While you use the same Move module members dialog box to move or renaming a
module member, the information you enter for each mode is a little different. If you are
moving the location of a module member, see Moving a module member.

Working with Files and Directories

248

If you are renaming a module member, use the instructions below.

Renaming a module member

You can rename module members using the Move modules members dialog box when:

• One or more module members or folders are selected in the client work area or
on the server.

• A module base folder in the client work area if it is also a module member folder
for another module

Note: Unless all the selected objects are members of the same module in the
workspace or the same module version on the server, you can not invoke the Move
module members dialog box.

Things to remember about renaming:

• A module context is required to both limit what is renamed and to make it clear
what is being renamed.

• Renaming an object in the workspace, by default, does not update the server
object until the change is committed by performing a Check in on the module. For
more information, see Apply changes locally first; commit with next checkin.

• Renaming a specified a server object directly does not affect any workspaces
containing the moved object until that workspace is updated.

• Renaming a folder automatically means renaming all the members in that folder.
 Renaming affects that whole directory cone.

• Items which have been previously added to a module but not checked in may
also be renamed, and remain in the added state. When all items in a rename
meet this criteria, no new module version is created, since the only changes are
in the workspace

Renaming folders on the server

The Move module members dialog box is used to rename module folders on the server.
When a folder is renamed on the server, the contents of the folder follow it. However,
the following objects do not follow within the folder:

• Any module members locked by another user.
• Any non-versioned objects in the folder in the workspace.

If all the contents of a folder are renamed, the previous folder name is removed from the
server, and if the module is populated with the -force option, the previous folder name
is also removed from the workspace.

Renaming folders in the workspace

DesignSync Data Manager User's Guide

249

The Move module members dialog box is used to rename a workspace folder. When
the workspace module folder is renamed, the following happens:

• The contents within the module folder (files or collection objects) are renamed.
• The previous folder is removed from the workspace.

To rename a member from a module:

1. Select the member.
2. From the main menu, select Modules => Move Member or select the

button from the Modules toolbar.
3. Select options as needed.
4. Click OK.

Click on the fields in the following illustration for information.

New path

Enter the new path name for the module member(s) or use the Browse button to select
the new path name.

• If the selected objects were from the workspace, the browse button invokes a
browser rooted at the base directory for the module context selected.

• If the selected objects were on the server or rooted at the module version, there
is a new folder button on the browse dialog to allow you to create a new folder.

• The browser selection is restricted to folders.
• If a relative path is specified, it is relative to the module base folder on the client

and the top of the module on the server; it is not relative to the selected object(s).

Note: If the selected objects are locked by other users, the rename will fail.

Module Context

Working with Files and Directories

250

This option is only available when the selected objects reside on the client. All the
available module instances for the currently selected module members are listed
alphabetically in the pull-down.

Note: There may only be one module listed if the selected object is a module base
folder.

Apply changes locally first; commit with next checkin

This option is not available when a rename operation is done directly on a server object.

When checked, the selected object(s) is marked to be renamed in the workspace
immediately and on the server during the next module check in. (Default)

When not checked, DesignSync immediately creates a new module version in on the
server with the selected objects renamed and immediately renames the selected
objects in the workspace.

Related Topics

The Module Toolbar

Moving a module member

ENOVIA Synchronicity Command Reference: populate

ENOVIA Synchronicity Command Reference: mvmember

Creating Folders
You can create new folders, either locally or on the SyncServer. To create a folder:

1. Navigate to the folder or SyncServer location in which you want to create a new
folder. A folder you specify with a relative path name will be created relative to
your current folder.

2. Select File =>New =>Folder to bring up the New Folder dialog box.
3. Enter the name of the folder you want to create. You can specify:

• The folder name or a relative path to create the folder relative to Current
Folder.

• For a local folder, an absolute path.
• On a SyncServer, a sync: URL

4. Click OK to create the new folder.

A success or error message is displayed in the Output Window.

DesignSync Data Manager User's Guide

251

Notes:

• The permissions of the new folder are inherited from the parent folder.
• When creating local folders, you must have write privileges for the parent

directory.
• DesignSync creates whatever folders are needed to create the specified path.

This behavior is similar to UNIX's mkdir -p command.
• You can restrict the ability to create server-side folders (sync: protocol). See the

Access Control Guide for details.

Click on the fields in the following illustration for information.

New Folder Field Descriptions

Current Folder

This field is not editable. It shows the folder from which the New Folder dialog was
invoked.

New Folder

Enter the name of the folder you want to create. You can specify:

• The folder name or a relative path to create the folder relative to Current Folder.
• For a local folder, an absolute path.
• On a SyncServer, a sync: URL.

Related Topics

Deleting Local Folders

Deleting Server Folders

Working with Files and Directories

252

ENOVIA Synchronicity Command Reference: mkfolder Command

Command Invocation

Command Buttons

Trigger Arguments

Moving and Renaming Folders
You can move and rename local folders, whether the folder is associated with a vault or
not, using the mvfolder command. The DesignSync graphical interface does not
support moving and renaming folders.

Related Topics

ENOVIA Synchronicity Command Reference: mvfolder Command

Moving and Renaming Design Files

Removing Objects

Deleting Design Data

You can delete the following objects from DesignSync:

• Local Files
• Local Folders
• Versions from a vault
• Vaults
• Server Folders
• Modules
• Hierarchical References
• Module Cache (mcache) Links

In addition, there are DesignSync command-line commands for each of these object
types (rmfile, rmfolder, rmversion, rmvault, rmmod, rmhref).

To delete a branch, use the purge command.

Related topics

ENOVIA Synchronicity Command Reference: rmfile

ENOVIA Synchronicity Command Reference: rmfolder

DesignSync Data Manager User's Guide

253

ENOVIA Synchronicity Command Reference: rmversion

ENOVIA Synchronicity Command Reference: rmvault

ENOVIA Synchronicity Command Reference: rmmod

ENOVIA Synchronicity Command Reference: rmhref

ENOVIA Synchronicity Command Reference: purge

Deleting Files

You can delete files from your local work area (whether revision controlled or not). You
cannot delete a member of a collection

Select the file you want to delete in the List View pane. Multiple files can be selected.
Select File => Delete, or press the Delete key, to bring up the Delete dialog. Click OK
to delete the file. You will be prompted to confirm the deletion.

Click on the fields in the following illustration for information.

Working with Files and Directories

254

Delete Field Descriptions

Delete the selected objects/Delete all contents of a folder recursively

This field is not applicable to file deletion.

Allow deletion of tagged vault objects, locked objects and modified objects

This field is not applicable to file deletion.

Retain vault information

This field is not applicable to file deletion.

DesignSync Data Manager User's Guide

255

Remove notes after detaching

This field is not applicable to file deletion.

Remove vault associated with module

This field is not applicable to file deletion.

Keep objects in workspace

This option is only applicable to module deletion.

Scrub module versions

This option is only applicable when deleting a module version on the server.

Remove unmanaged data

This option is only applicable to module deletion.

Report mode

This option is only applicable to module deletion.

Trigger Arguments

See Trigger Arguments.

Extra command options

This option is only applicable to module deletion.

Related Topics

Deleting Design Data

ENOVIA Synchronicity Command Reference: rmfile

Deleting Folders

You can delete folders from your local work area whether their contents are revision
controlled or not. You cannot delete your current folder or any parent of your current
folder.

Working with Files and Directories

256

Select the folder you want to delete in the Tree View or List View panes. Multiple folders
can be selected. Select File => Delete, or press the Delete key, to bring up the Delete
dialog. Click OK to delete the folder. You will be prompted to confirm the deletion.

Click on the fields in the following illustration for information.

Delete Field Descriptions

Delete the selected objects/Delete all contents of a folder recursively

By default, you cannot delete a folder unless it is empty. When the recursive option is
chosen, delete the specified folder and all folders in the hierarchy beneath it. The

DesignSync Data Manager User's Guide

257

contents of the folders are also deleted, similar to the UNIX command rm -rf. Use this
option with caution.

Allow deletion of a tagged vault options, locked objects and modified objects

This field is not applicable to deletion of a local folder.

Retain vault information

The option to Retain vault information is not applicable to the deletion of local folders.
Selecting or de-selecting the option does not affect the operation.

Remove notes after detaching

This field is not applicable to folder deletion.

Remove vault associated with module

This field is not applicable to folder deletion.

Keep objects in workspace

This option is only applicable to module deletion.

Scrub module versions

This option is only applicable when deleting a module version on the server.

Remove unmanaged data

This option is only applicable to module deletion.

Report mode

This option is only applicable to module deletion.

Trigger Arguments

See Trigger Arguments.

Extra command options

This option is only applicable to module deletion.

Related Topics

Working with Files and Directories

258

Deleting Design Data

Creating Folders

ENOVIA Synchronicity Command Reference: rmfolder

Deleting Server Folders

A folder on the server, and the vault data contained in the folder, can be deleted. By
default, the ability to delete server data is restricted. See the ENOVIA Synchronicity
Access Control Guide for details.

From your workspace, select Go => Go to Vault to identify the vault folder to be
deleted. Or navigate to its server location. Select the vault folder in the Tree View or List
View panes. Multiple vault folders can be selected.

Select File =>Delete, or press the Delete key. You will be prompted to confirm the
deletion.

Click on the fields in the following illustration for information.

DesignSync Data Manager User's Guide

259

Delete Field Descriptions

Delete the selected objects/Delete all contents of a folder recursively

Delete the specified folder and all folders in the hierarchy beneath it. The contents of the
folders are also deleted, similar to the UNIX command rm -rf. Use this option with
caution. All vaults in the specified folder are deleted, regardless of whether a branch is
locked, or whether there are tagged versions. By default, you cannot delete a folder
unless it is empty.

Allow deletion of a tagged vault options, locked objects and modified objects

Working with Files and Directories

260

This field is not applicable to vault folder deletion. When the option to Delete all the
contents of a folder is selected, all vaults in the specified folder are deleted, regardless
of whether a branch is locked, or whether there are tagged versions.

Retain vault information

Retain the version number of the last version in the vault. This is the default behavior,
so that version numbers are not reused if a vault of the same name is later created.

Remove notes after detaching

This field is not applicable to server folder deletion.

Remove vault associated with module

This field is not applicable to server folder deletion.

Keep objects in workspace

This option is only applicable to module deletion.

Scrub module versions

This option is only applicable when deleting a module version on the server.

Remove unmanaged data

This option is only applicable to module deletion.

Report mode

This option is only applicable to module deletion.

Trigger Arguments

See Trigger Arguments.

Extra command options

This option is only applicable to module deletion.

Related Topics

Deleting Design Data

Deleting Vaults

DesignSync Data Manager User's Guide

261

Deleting Versions of a Design Object

ENOVIA Synchronicity Command Reference: rmfolder

Trigger Arguments

Command Invocation

Deleting Vaults

Deleting a vault removes all versions of a design object from the SyncServer (but does
not remove any corresponding file in your local work area) and should therefore be used
with caution. If there is a design object that is no longer part of your project, consider
retiring the object instead of deleting the object's vault. You can unretire a retired object,
but you cannot recover a deleted vault.

By default, the ability to delete server data is restricted. See the ENOVIA Synchronicity
Access Control Guide for details.

From your workspace, select Go => Go to Vault to identify the vault to be deleted. Or
navigate to its server location. Select the vault in the Tree View or List View panes.
Multiple vaults can be selected.

Select File =>Delete, or press the Delete key. You will be prompted to confirm the
deletion.

Click on the fields in the following illustration for information.

Working with Files and Directories

262

Delete Field Descriptions

Delete all the contents of a folder/Delete all contents of a folder recursively

This field is not applicable to vault deletion.

Allow deletion of tagged vault objects, locked objects and modified objects

Lets you delete a vault that has tagged versions or a locked branch. Use this option with
caution:

• A tagged version may be a necessary part of a configuration.

DesignSync Data Manager User's Guide

263

• A locked branch typically indicates someone is editing the design object and
therefore the design object is still active.

Retain vault information

Retain the version number of the last version in the vault. This is the default behavior,
so that version numbers are not reused if a vault of the same name is later created.

Remove notes after detaching

This field is not applicable to vault deletion.

Remove vault associated with module

This field is not applicable to vault deletion.

Keep objects in workspace

This option is only applicable to module deletion.

Scrub module versions

This option is only applicable when deleting a module version on the server.

Remove unmanaged data

This option is only applicable to module deletion.

Report mode

This option is only applicable to module deletion.

Trigger Arguments

See Trigger Arguments.

Extra command options

This option is only applicable to module deletion.

Related Topics

Deleting Design Data

Deleting Versions from a Vault

Working with Files and Directories

264

Retiring Branches

ENOVIA Synchronicity Command Reference: rmvault

Trigger Arguments

Command Invocation

Command Buttons

Deleting Versions from a Vault

DesignSync allows you to delete versions of an object from the vault. Deleting a version
does not remove any corresponding file in your local work area.

You cannot delete:

• The first version of an object on any branch (for example, 1.1, 1.1.1.1, 1.3.2.1,
and so on).

• A branch-point version (for example, if 1.2.1 is a branch, you cannot delete
version 1.2).

• The Latest version on a locked branch (for example, if someone checks out
version 1.3 with a lock, you cannot delete version 1.3 from the vault until the lock
is released).

Note: You cannot recover a deleted version, so delete versions with caution. Before
deleting versions from the vault, you may want to verify with your project team that the
versions can be safely deleted.

You can clean up the vault by deleting old versions of objects using the purge
command. This command deletes a range of versions of an object on a single branch in
the vault.

You can use the purge command on files, objects, or folders. The command also
provides options that let you delete all versions of an object except the last <n> number
of versions or delete all versions created before a specified date.

To delete vault versions using the DesignSync graphical interface:

1. From your workspace, select Go => Go to Vault to identify the vault whose
versions are to be deleted. Or navigate to the vault's location on the server.
Select the vault versions in the Tree View or List View panes.

2. Select File =>Delete, or press the Delete key. You will be prompted to confirm
the deletion.

DesignSync Data Manager User's Guide

265

Click on the fields in the following illustration for
information.

Delete Field Descriptions

Delete the selected objects/Delete all contents of a folder recursively

This field is not applicable to version deletion.

Allow deletion of tagged vault objects, locked objects and modified objects

Deletes tagged versions from the vault. Use this option with caution, because deleting a
tagged version changes (possibly damaging) a configuration. The "locked vault" aspect
of the field name is not applicable to version deletion.

Working with Files and Directories

266

Retain vault information

This field is not applicable to version deletion.

Remove notes after detaching

This field is not applicable to version deletion.

Remove vault associated with module

This field is not applicable to version deletion.

Keep objects in workspace

This option is only applicable to module deletion.

Scrub module versions

Searches for and removes orphaned module members; module member versions no
longer referenced by any module versions. By default, this option is not selected.

Remove unmanaged data

This option is only applicable to module deletion.

Report mode

This option is only applicable to module deletion.

Trigger Arguments

See Trigger Arguments.

Extra command options

This option is only applicable to module deletion.

Related Topics

Deleting Design Objects

ENOVIA Synchronicity Command Reference: rmversion Command

ENOVIA Synchronicity Command Reference: purge Command

Trigger Arguments

DesignSync Data Manager User's Guide

267

Command Invocation

Retiring Design Data

If a design object is obsolete or no longer part of the design project, you can retire the
object's branch. If you work on objects that reside on a single development branch (the
default Trunk branch), retiring the sole branch of an object retires the object.

The retire and unretire operations only apply to managed DesignSync objects. The
Retire dialog box is not active when a folder is selected, or when module data is
selected. For module data, if your intention is for a selector to no longer resolve to a
branch, remove the relevant branch tag from the module.

Retiring a branch prevents the branch from participating in future populate operations
and prevents new versions from inadvertently being created on the branch. Users must
specify the checkin of new items, which will unretire the branch.

When you retire an object branch, DesignSync preserves the following information
about the retire operations.

• Date of the retire
• Time of the retire
• Username of the user who performed the retire

This information is displayed in the version history of the branch. If the branch is then
unretired, the retire information is removed. When you display the version history of an
unretired object, there is no record maintained of the branch having been retired.

Tip: If you want to preserve information about the retire, you can check in the unretired
file with a comment detailing the retire history.

Suppose that you populate your work area with files A, B, and C from the Trunk branch.
Further along in development, file B is no longer needed. So you retire its Trunk branch.
When you or other team members populate your work area again, the populate
operation does not copy file B to your work area.

You may want to inform your team before you retire a file's branch in case someone
wishes to continue using the file. ProjectSync's Email Notification can be used for the
communication. Ask your team leader to review the RevisionControl Notes Overview.

The Status column of the List View in DesignSync GUI and the ls command both
indicate if the current branch of an object in your work area is retired. You can also
display the Version History of an object, to determine whether a branch of an object is
retired.

Working with Files and Directories

268

If you decide that a retired object needs to be active again, you can use the Retire
dialog box to unretire the object's branch.

Note: Retired files show up in the list generated by Show Potential Checkouts as
italicized items

Click on the fields in the following illustration for information.

Retire Field Descriptions

Operation

The Retire dialog box lets you retire or unretire the selected object's branch. Select the
option for the action you want to perform:

• Retire the selected objects. Prevent the selected branch from participating in
future populate operations. Prevent the creation of new versions on the branch,
unless the new option is specified for the checkin operation.

• Unretire the selected objects. Let the selected branch once again participate in
populate operations. Allow the creation of new versions on the branch.

DesignSync Data Manager User's Guide

269

Recurse into folders

For a DesignSync folder, recursively operate on its contents. By default, only the
contents of the selected folder are operated on. This option does not apply to module
data.

Local Area

How you want DesignSync to handle the object in your work area after its branch has
been retired:

• Delete objects in workspace. If you have not modified the object, DesignSync
deletes the object from your work area. (If you have modified the object in your
work area, DesignSync keeps the object in your work area.) This option is the
default.

• Keep objects in local workspace. The object remains in your work area.
However, if your workspace contains a symbolic link to a copy of the object in the
mirror, the option to Keep objects in local workspace is not available. That is
because if the mirror directory is for Latest file versions, the retired object is
automatically removed from the mirror.

• Ignore workspace; retire specified branch in vault. The object in your work
area is not affected. You must specify the branch to retire, in the Branch field.

Branch

This option is used in conjunction with Ignore workspace; retire specified branch in
the vault to retire a branch other than the branch of the objects in your work area.

The Branch field has a pull-down menu from which you can query for existing
branches. See Suggested Branches, Versions, and Tags for details.

Note: The Branch field accepts a branch tag, a version tag, a single auto-branch
selector tag, or a branch numeric. It does not accept a selector list.

Unlock locked branches; delete modified files

Unlock locked branches prior to retiring them. Also, if you selected Delete objects in
workspace, your local copy of the object will be deleted, even if you have modified the
local object. To keep your local objects, select Keep objects in workspace.

Note: Use this option with caution; it removes the lock even if it is held by someone
else.

Related Topics

Deleting Files or Versions from a Design Project

Working with Files and Directories

270

Operating on Cadence Data

ENOVIA Synchronicity Command Reference: retire Command

Trigger Arguments

Command Invocation

Command Buttons

Removing a Member from a Module

The Remove from module dialog box is used to remove the selected module members
from a module. You may commit the change, as well as any other module changes, to
the module at the next module checkin, or you can immediately creates a new module
version without the selected module member. You can use this dialog box when:

• Current module members (files/folders) are selected in the client work area.
• Current module members (files/folders) are selected on the server and all

members belong to the same module version, which must be the latest version
on a server module branch.

• Current module base folders are selected in the client work area when the folder
is also a regular module folder of another module.

• The module in the workspace was populated in dynamic mode and changes can
be checked in.

Note

Removing module members/folders that have not been fetched into the workspace is
not supported by the GUI.

To remove a member from a module:

1. Select the member(s).
2. From the main menu, select Modules => Remove Member or select the

button from the Module Toolbar.
3. The Remove from module dialog box appears. Select options as needed.
4. Click OK.

Click on the fields in the following illustration for information.

DesignSync Data Manager User's Guide

271

Remove Recursively

This option is not available when a server object is selected

When checked, the selected folder is removed as well as all module objects in the folder
and all subfolders. When not checked, the selected folder is removed only if the folder is
empty. The default for this option is unchecked.

Keep objects in workspace

This option is not available when remove is done directly on a server object.

When checked, the local copies of the removed objects are left in the workspace as
unmanaged objects. When unchecked, the local copies of the selected objects become
DesignSync references, with the Status "Locally Removed". The default for this option is
unchecked.

Force removal of modified objects

This option is not available when remove is done directly on a server object

When checked, the selected object is removed even if the object in the workspace is not
the same as the last checked in version of the object or is locked. If you are removing
objects that were added to a module, but never checked in, you choose this option to
remove the objects.

When unchecked, the selected object is not removed if it is locked or not identical to the
last checked in version or added to the module but never checked in.

Working with Files and Directories

272

The default for this option is unchecked.

Apply changes locally first; commit with next checkin

This option is not available when remove is done directly on a server object

When checked, the selected object(s) is marked for removal during the next module
check in. Unless the Keep_Objects_in_Workspace option is selected, the object
remains in the workspace as a DesignSync reference, with the Status "Locally
Removed". The object remains on the server until the change is committed during the
next checkin. (Default)

When not checked, DesignSync immediately creates a new module version on the
server with the selected objects removed.

 Note: Objects in the Add state are always immediately removed from the Add state. No
new module version is created.

Filter

Allows you to include or exclude module objects by entering one or more extended
glob-style expressions to identify an exact subset of module objects on which to perform
the remove. For more information, see Filter Field.

The default for this field is empty.

Module Context

This option is only available when the selection set includes one or more client side
folders. You can select from the available module instances. The choices are listed in
alphabetical order. For more information, see Module Context Field.

The default for this field is empty.

Related Topics

The Module Toolbar

Filter Field

ENOVIA Synchronicity Command Reference: remove

273

Comparing Files

Common Diff Operations
The diff operations provided in the Tools => Compare Files menu provide the most
common file comparison operations. They do not display a dialog; instead they
immediately perform the comparison operation using default settings for all options and
display the results in the view pane.

Note: DesignSync also allows you to compare workspaces and configurations with the
Compare tool available from Tools => Reports => Compare.

The following common diff operations are available:

• Show Local Modifications compares the selected object in your work area with
the original version that you checked out. This report shows changes made in
your work area since the object was checked out. This is a 2-way diff operation,
so the Revised Diff Format option may be used. You can select Revised format
as the Display Option in the Advanced Diff dialog, or set Revised as the default
Diff Format via SyncAdmin.

• Compare to Latest performs a 3-way diff comparing the selected object in your
work area with the current version in the vault, using the original version in the
vault as the common ancestor. This report can be used to show the results that
occur if a Checkout operation with the Merge with workspace option (co -
merge) is performed, including any conflicts that occur.

• Compare Original to Latest compares the original version of the selected object
in your work area with the latest version in the vault. This report shows changes
made to the vault by others since the object was checked out. This is a 2-way diff
operation, so the Revised Diff Format option may be used. You can select
Revised format as the Display Option in the Advanced Diff dialog, or set Revised
as the default Diff Format via SyncAdmin.

• Compare to Previous Version compares the currently selected version of the
object in your work area or on your server with the last checked in version of the
object. If the selected object is the first version on a branch, the previous version
is the last content change prior to the branch. If the selected object is a module
member, the previous version is the previous version of the selected module
member, not necessarily the previous module version. If the compared objects
contain merge edges, they are included in the comparison. This is a 2-way diff
operation, so the Revised Diff Format option may be used. You can select
Revised format as the Display Option in the Advanced Diff dialog, or set Revised
as the default Diff Format via SyncAdmin.

• Compare 2 Files compares the two selected objects. You can use this report to
compare two files or two versions of the same file. Depending on the default

Comparing Files

274

settings, if two versions of a file are selected, this report may attempt to identify a
common ancestor for a 3-way diff. If two different files are selected, then this
performs a 2-way diff, in which case the Revised Diff Format option may be used.
You can select Revised format as the Display Option in the Advanced Diff dialog,
or set Revised as the default Diff Format via SyncAdmin.

The default settings used by the common diff operations can be modified by selecting
options in the Advanced Diff dialog box and pressing the Save Settings button.

See Reading Diff Results for information on interpreting diff output.

Related Topics

Advanced Diff Options

Graphical Diff Utility

Identifying Changed Objects

SyncAdmin Help: diff Format

SyncAdmin Help: Customizing Diff Output

ENOVIA Synchronicity Command Reference: diff

ENOVIA Synchronicity Command Reference: co

Advanced Diff Options
Advanced Diff is a tool for displaying the differences between two files or two versions
of the same file. You can compare the two files directly (a 2-way comparison) or against
a common ancestor (3-way comparison). When comparing ASCII (text) files, Advanced
Diff provides detailed difference and conflict information.

To access the complete set of options for comparing files, select
Tools => Compare Files => Advanced Diff.

Version-Extended Naming

When invoking Advanced Diff from DesignSync, you can specify the files you want to
compare using version-extended filenames, which consist of the filename, followed by a
semicolon (;), followed by a version number or tag. For example, alu.v;1.2 is version 1.2
of alu.v, and alu.v;golden is the version that is tagged 'golden'. You can also use the
following reserved tags:

DesignSync Data Manager User's Guide

275

Orig The version in the vault from which your local version originated; for example,
alu.v;Orig.

Latest The most recent version in the vault; for example, alu.v;Latest. Often Latest and
Orig are the same version. For example, you fetch alu.v;1.4, which is the most recent
version in the vault. Version 1.4 is both Latest and Orig. If your teammate then checks
in version 1.5, Orig is still version 1.4, but Latest is now version 1.5.

Notes:

• For modules, you can specify version extended filenames to the local
workspace version, but not to the server version, using the sync URL.
For example: alu.v;1.2 is a valid construct, but
sync://srv2.ABCo.com:2647/Modules/ALU/alu.v;1.2 is not. To specify a
module member that is not loaded into your workspace, use the Module
context field to select the module, then specify the file as a simple version
extended file reference: /alu.v;1.2.

• When specifying a module version, you can specify whether the version
refers to the module member version or the module version of the desired
object by using the Use module version comparison option.

DesignSync interprets these version-extended filenames and fetches files from the vault
as needed, placing them in your DesignSync cache. These cached files are used
exclusively by the graphical Diff utility, if you have one; DesignSync users will not get
links to these files if they populate from the cache.

Click the fields in the following illustration for information.

Comparing Files

276

Click OK to execute the Advanced Diff command. The results are displayed in the Diff
View window, unless you selected the Display output in GUI option.

Notes

Click Save Settings to set the current settings as the default for the Advanced Diff
dialog. The Comparison Options set in the Advanced Diff dialog and saved via Save
Settings applies to subsequent Advanced Diff invocations, to all common diff
operations invoked via Tools => Reports => Compare, and via actions from the
Changed Object Browser.

If two objects are selected when the Tools => Compare Files => Advanced Diff menu
option is chosen, the comparison mode is initially set to Compare 2 Files/Versions;
otherwise, it is initially set to the default setting defined in Show local modifications.

Field Descriptions

Files to Compare

DesignSync Data Manager User's Guide

277

Specify one or two files depending on the type of comparison you want to perform. If
you choose to compare 2 files or versions in the Comparison Mode, enter the URLs of
the objects to compare in the File A and File B fields.

Optionally, you may specify a common ancestor. If you specify a common ancestor,
a 3-way diff is performed. For example, if you specify the following:

File A file:///home/aurora/projects/alu/sym12.dat;exper1

File B file:///home/aurora/projects/alu/sym12.dat;release17

Com. Anc. file:///home/aurora/projects/alu/sym12.dat;golden

the exper1 and release17 versions of the given file are compared using the
golden version as the common ancestor.

Instead of specifying a common ancestor, you can select Calculate Common
Ancestor, and the common ancestor will be determined, using the object's branch
and merge history. If no common ancestor can be determined, a 2-way diff is
performed. For example, if you select Calculate Common Ancestor and specify
the following:

File A file:///home/aurora/projects/alu/sym12.dat;1.12.1.5

File B file:///home/aurora/projects/alu/sym12.dat;1.17

a 3-way diff will be performed using version 1.12 as a common ancestor (unless a
merge has created a more recent common ancestor).

If you are comparing files that are not present in the workspace, you may use the sync
URL to specify a non-module object. If you are specifying a module member that is not
in the workspace, use the Module context field to specify the module, and the Files to
compare field to specify the member's natural path, name and version.

Note: The Select File to Compare browser does not display DesignSync references.

Module Context

Specify the module context. You can specify a module instance or the sync URL to the
module. If you are specifying a module member that is not located in the workspace,
the module context uniquely identifies the source module.

In some cases, DesignSync will calculate the default module context for you.

• If the objects being compared are both located on the server and within the same
module, the default is the module name on the server.

Comparing Files

278

• If there is only one object specified, or one object is in the workspace, while the
other object is on the server, the module context field automatically fills with the
server object version.

Comparison Mode

Specify one of the following types of comparison:

• Compare 2 files/version allows you to compare any two objects or versions of
an object.

• Show local modifications compares the object in your work area with the
original that was checked out, showing you the changes made in your work area.

• Compare to latest in vault compares the original version of an object with the
latest version in the vault; showing changes made by others since you checked
the object out.

• Compare original to latest compares the object in your work area with the
current version in the vault, using the original as a common ancestor.

Comparison Options

Select from the following comparison options:

• Use module versions: Select this option to use module versions rather then
module member versions when comparing two files/versions.

• Ignore case: Select this option for case-insensitive comparisons.
• Ignore RCE keys: Determines whether differences in RCE keyword values are

ignored. RCE keywords are tokens (such as $Revision: 1.32 $,
$AUTHOR$, LOG) that you can add to your files to provide revision
information (such as revision number, author, and comment log). If you select
this option, DesignSync hides the keyword values (collapses the keywords) prior
to comparing the files. For example:

First line of File A:

$Id: Advanced_Diff.htm.rca 1.32 Wed Dec 30 06:37:31 2015
FYL Experimental $ $ $ $ $ $ $ Exp $

First line of File B:

$Id: Advanced_Diff.htm.rca 1.32 Wed Dec 30 06:37:31 2015
FYL Experimental $ $ $ $ $ $ $ Exp$

Advanced Diff reports the difference unless you select the Ignore RCE keys
option, in which case Advanced Diff collapses each line to: $Id:
Advanced_Diff.htm.rca 1.32 Wed Dec 30 06:37:31 2015 FYL
Experimental $ Advanced_Diff.htm.rca 1.25 Wed Aug 17

DesignSync Data Manager User's Guide

279

07:32:07 2011 mhopkins Experimental $ Advanced_Diff.htm.rca
1.24 Tue Aug 9 10:59:15 2011 mhopkins Experimental $
Advanced_Diff.htm.rca 1.23 Mon Mar 14 19:27:46 2011 e88
Experimental $ Advanced_Diff.htm.rca 1.21 Thu Jan 27
08:33:25 2011 mhopkins Experimental $ Advanced_Diff.htm.rca
1.20 Thu May 13 13:02:19 2010 mhopkins Experimental $ 1.10
Thu May 12 12:07:30 2005 mmf Experimental $.

Differences in keyword usage and placement are always reported. For example:

 First line of File A:

$Id: Advanced_Diff.htm.rca 1.32 Wed Dec 30 06:37:31 2015 FYL
Experimental $ $ $ $ $ $ $ $

First line of File B:

$Author: FYL $

Advanced Diff reports the difference irrespective of the Ignore RCE keys setting
because the keywords themselves, not just the keyword values, are different.

Notes:

o LOG when expanded, permanently adds log information to your files.
The Ignore RCE keys option does not hide these log messages prior to
performing a comparison. Advanced Diff may flag differences or conflicts
(if log information has been edited by hand) in your files. Creating first
version on the Trunk branch, in the new DevSuite doc vault location, with
the content of the docmain:Latest files from the old doc vault location. is
the only keyword with this behavior.

o Advanced Diff honors the $KeysEnd$ keyword -- any expanded keywords
after $KeysEnd$ are compared fully and literally.

• Ignore leading/trailing white space: Determines whether white space (spaces,
tabs) differences at the beginning or end of a line are ignored. For example, if a
line in one file starts with a tab character whereas the same line in the other file
starts with a space, Advanced Diff ignores the difference if you select this option.

• Ignore changes in white space amount: Determines whether differences in
white space within a line are ignored. For example, if a line in one file has three
spaces between two words whereas the same line in the other file has only one
space, Advanced Diff ignores the difference if you select this option.

• Perform binary comparison: Performs the comparison in binary mode. When
comparing files in binary mode, Advanced Diff only reports whether the files are
identical or different. No other comparison options are available in binary mode.

Display Options

Comparing Files

280

The Display Options determines how the results of a diff operation are displayed. The
Display Options field in the Advanced Diff dialog, when saved via Save Settings, only
affect subsequent invocations of the Advanced Diff dialog. It does not influence the
common diff operations. The result of the common diff operations are all controlled by
SyncAdmin’s Diff Format settings.

You can choose one of the following display options:

• Display diff-annotated file (revised format) uses a DesignSync-specific diff
output format to display the complete file with annotations indicating both the
change and the change type (addition, deletion, modification). This format is only
valid for a 2-way diff, such as Show local modifications. You can also create a
2-way diff comparison by invoking Compare 2 files/versions when no common
ancestor is defined, by selecting separate files. For more information on the
revised format, see Revised Diff Format.

• Display only the diffs (standard format) uses the standard UNIX output format
to display only lines that have been added, removed, or changed.

• Display only the diffs (unified format) uses the gnu unified output format to
display both lines that are the same and lines that have changed.

• Display only the diffs (syncdiff format) uses a DesignSync-specific diff output
format to display only lines that have been added, removed, or changed.

• Display diff-annotated file displays both lines that are the same in both files
and lines that have changed.

• Display output in GUI displays the results using either the built-in DesignSync
graphical diff tool, or a user-defined external graphical Diff tool. For more
information on graphical Diff tools, see Graphical Diff Utility.

Results are displayed in the Diff View tab page of the main DesignSync panel. If an
external graphical Diff tool is registered a separate window is created for the diff output.

See Reading Diff Results for examples of the different types of output.

Related Topics

Common Diff Operations

Identifying Changed Objects

Reading Diff Results

ENOVIA Synchronicity Command Reference: diff

Reading Diff Results

DesignSync Data Manager User's Guide

281

The format of your diff results is determined by your Display Options selection on the
Advanced Diff panel. (See Advanced Diff Options for details.) The output from the
different types of diff operations is described in the following sections:

Display diff-annotated file (revised format)

Display only the diffs (standard format)

Display only the diffs (unified format)

Display only the diffs (syncdiff format)

Display diff-annotated file

Display output in GUI

Display diff-annotated file (revised format)

This format shows the complete file with annotated lines that have been added,
removed, or changed. This view displays in a new tab, Diff, in the View Pane area of the
DesignSync GUI. In this view, you see line numbers for each line in the file and
graphical elements indicating where changes occur and what those changes are. This
format is used for 2-way diffs, with the diff results displaying in a single window viewer.

For more information on the Revised diff format, see Revised Diff Format.

Display only the diffs (standard format)

This format shows lines that have been added, removed, or changed in standard UNIX
output format.

In this view, you see the line numbers where changes occurred in the original file, the
type of change, the line numbers in the edited file, and the text of the change. The type
of change is indicated as follows:

a - An addition.

d - A deletion.

c - A change.

For example, the view pane might display output like the following:

5a6
> sample/dflop0 type="cell"
7d7

Comparing Files

282

< sample/dflop2 type="cell"
8a9
> sample/dflop4 type="cell"
12c13
< sample/fflop type="cell"

> sample/fflop0 type="cell"

The first section shows lines that were added, as indicated by the a between the line
numbers. In the edited file, one new line, 6, was added following line 5 in the original
file. The > indicates an added line, followed by the text of the addition.

The second section shows a line that was deleted, as indicated by the d between the
line numbers. In the edited file, one line was deleted after line 7 in the original file. This
deletion became line 7 in the new file (because of the line added as line 6). The <
indicates a line that was removed, followed by the text of the deletion.

The third section shows that a line was changed. In the original file, the line was 12; it is
now line 13 of the edited file. The text above the three-dash line is the original text; the
text below the line is the edited text.

Display only the diffs (unified format)

This format shows lines that have changed using the GNU unified output format. The
edited lines are presented in the context of the sections of the files where they appear.

In this view, the original file is preceded by three dashes (---); the edited file is
preceded by three pluses (+++). The line enclosed in ampersands (@@) indicates the
changed sections of the two files. The first range of line numbers shows the affected
section of the original file; the second range shows the affected section of the edited file.

In the main body of the code, lines common to both files begin with a space character.
The lines that differ begin with one of the following characters:

+ Indicates a line added to this position.

- Indicates a line removed from this position.

For example, the view pane might display output like the following:

sync://zen.our_company.com:2647/Projects/smallLib/FFlops.Cat;1.1
+++ file:///c|/Projects/smallLib/FFlops.Cat
@@ -3,13 +3,14 @@
 sample/dffpc_ type="cell"
 sample/dffpp_c_ type="cell"

DesignSync Data Manager User's Guide

283

 sample/dflop type="cell"
+sample/dflop0 type="cell"
 sample/dflop1 type="cell"
-sample/dflop2 type="cell"
 sample/dflop3 type="cell"
+sample/dflop4 type="cell"
 sample/dl type="cell"
 sample/dla type="cell"
 sample/dlc_ type="cell"
-sample/fflop type="cell"
+sample/fflop0 type="cell"
 sample/fflop1 type="cell"
 sample/fflop2 type="cell"
 sample/fflop3 type="cell"

The + characters at the beginnings of lines 4 and 8 indicate lines that were added in
your edited file. The - at the beginning of line 6 indicates a line that was removed. Lines
12 and 13 show a line that was changed; the original line is preceded by a - character
and the change in the edited file is indicated by the + character.

Display only the diffs (syncdiff format)

This format shows lines that have been added, removed, or changed in the syncdiff
format.

In this view, the original file is file A; the edited file is file B. The information above the
dashed line (====) tells you what type of change was made and the original line
number. The corresponding information below the dashed line gives you the text of the
change and the new line number.

The lines that differ begin with one of the following characters:

+ Indicates an added line.

- Indicates a deleted line.

< and > indicate a changed line.

For example, the view pane might display output like the following:

Comparing: (A, B)
 (A)
sync://zen.our_company.com:2647/Projects/smallLib/FFlops.Cat;1.1
 (B) file:///c|/Projects/smallLib/FFlops.Cat
Added (B6)
==================

Comparing Files

284

 B5 + sample/dflop0 type="cell"
Deleted (A7)
==================
 A6 - sample/dflop2 type="cell"
Added (B9)
==================
 B8 + sample/dflop4 type="cell"
Changed (A12, B13)
==================
 A11 < sample/fflop type="cell"

 B12 > sample/fflop0 type="cell"

The first change is a line that was added. In file B, this line becomes line 6. Below the
dashed line are the original line number (B5) and the text of the added line. The second
change is a line that was removed. In file A, this line originally followed line 7. Below the
dashed line are the new line number and the text of the deleted line. The final section
shows a changed line. In file A, the line was 11 and is shown as removed (<); in file B
the line is now 12 and is shown as added (>).

Display diff-annotated file

This format shows all the lines in both the original file and the edited file. The first
column shows the line numbers in the original file; the second column shows the line
numbers in the edited file.

The lines that differ begin with one of the following characters:

+ Indicates an added line.

- Indicates a deleted line.

< and > indicate a changed line.

For example, the view pane might display output like the following:

1 1 TDMCHECKPOINT="1.0"
2 2 sample/dffp type="cell"
3 3 sample/dffpc_ type="cell"
4 4 sample/dffpp_c_ type="cell"
5 5 sample/dflop type="cell"
6 + sample/dflop0 type="cell"
6 7 sample/dflop1 type="cell"
7 - sample/dflop2 type="cell"
8 8 sample/dflop3 type="cell"
9 + sample/dflop4 type="cell"

DesignSync Data Manager User's Guide

285

9 10 sample/dl type="cell"
10 11 sample/dla type="cell"
11 12 sample/dlc_ type="cell"
12 < sample/fflop type="cell"
13 > sample/fflop0 type="cell"
13 14 sample/fflop1 type="cell"
14 15 sample/fflop2 type="cell"
15 16 sample/fflop3 type="cell"

The + characters at the beginnings of lines 6 and 9 in the edited file indicate lines that
were added in the edited file. The - at the beginning of line 7 indicates a line that was
removed in the edited file. Lines 12 and 13 show a line that was changed; the original
line is preceded by a < character and the change in the edited file is indicated by the >
character.

When you use diff-annotated output, you can click the right mouse button on the view
pane to display a context menu with the following choices:

• Previous Diff scrolls to the previous group of added, deleted, or changed lines.
• Next Diff scrolls to the next group of added, deleted, or changed lines.
• Previous Conflict scrolls to the previous group of lines in conflict. This menu

choice is available only with 3-way diffs.
• Next Conflict scrolls to the next group of lines in conflict. This menu choice is

available only with 3-way diffs.
• Diff Properties displays the Customize Diff dialog box.

Display Output in GUI

This format shows changes graphically using either the built-in DesignSync graphical
diff tool, or a user-defined external graphical Diff tool. Diffs that display in a multiple
window viewer use this display mode. For more information on graphical Diff tools, see
Graphical Diff Utility.

Related Topics

Advanced Diff Options

Common Diff Operations

Graphical Diff Utility

Revised Diff Format
Revised Diff format is used when a 2-way diff is performed, typically via Show Local
Modifications from the Changed Objects Browser or Tools => Compare Files. The

Comparing Files

286

Revised Diff output format shows a unified file containing all the Diffs marked for review.
The Diff results are displayed in a new text tab labeled Diff, in the View Pane.

For the Revised Diff format to be used, set Revised Diff as the default diff format via
SyncAdmin's Diff Format. Or, select the Revised Diff format in the Display Options field
of the Advanced Diff form.

The Revised Diff format is only used when a 2-way diff is performed, such as for Show
Local Modifications. Even if Revised Diff is set as the default Diff Format, if a 3-way
diff is performed, such as Compare to Latest, then the diff results will be displayed
using the 3-way Annotated Diff format.

Using Revised Diff Format

The Revised Diff Format displays the following types of changes:

• Additions
• Deletions
• Changes between the selected files

Line Numbers First Version

This column shows the line numbers from the first file version participating in the diff.
 When there is added text (text that appears in the second file version, but not the first
version), this column is blank. .

DesignSync Data Manager User's Guide

287

Line Numbers Second Version

This column shows the line numbers from the second file version participating in the diff.
 When there is deleted text (text that appears in the first file version, but not the second
version), this column is blank. .

Change type

This column shows the type of change represented in the files.

• + shows that the line was added to the file.
• - shows that the line was removed from the file.
• < shows the "old" version of a changed line (from the first version).
• > shows the "new" version of the changed line (from the second version).

Diff results

This section shows a composite of the text from the files being compared, meaning that
includes text from both file versions. Changed, Added, and Deleted text are indicated
by the colors specified in the SyncAdmin GUI Diff settings in the For 2-way Diffs
(single window) section. Deleted lines are also indicated with strike-through formatting
on the text.

Revised Diff Format Actions

Next Diff

This option moves the window focus to next marked Diff in the file.

Previous Diff

This option moves marked window focus to the previous marked Diff in the file.

Next Conflict

This option is never enabled when the Revised Diff format is generated, because
Revised Diff is a result format for 2-way diffs only. Conflicts cannot arise in a 2-way diff
operation, so are never shown in the Revised Diff results.

Previous Conflict

This option is never enabled when the Revised Diff format is generated, because
Revised Diff is a result format for 2-way diffs only. Conflicts cannot arise in a 2-way diff
operation, so are never shown in the Revised Diff results.

Find

Comparing Files

288

See Searching for Text.

Related Topics

Reading Diff Results

Advanced Diff

Identifying Changed Objects

Graphical Diff Utility
DesignSync contains a built-in graphical diff utility which can be used for file comparison
and conflict resolution. This utility has the ability to highlight diffs and conflicts between
the two versions of a selected file.

DesignSync also provides the ability to plug-in an additional Diff utility for file
comparisons. Historically this has been used for a graphical Diff Utility. DesignSync
provides a built-in graphical Diff utility, but users who are already comfortable with a
specific Diff utility may prefer to configure DesignSync to use that tool. You configure
your DesignSync client to use an external graphical Diff utility with a set of registry
keys. For more information, see DesignSync Data Manager Administrator's User's
Guide: DesignSync diff Display Registry Settings. The rest of this topic focuses on the
built-in graphical Diff Utility.

There are three ways to invoke graphical diff viewers:

1. Run the Changed Objects Browser on a workspace folder. Select one of the
objects in the Changed tab, bring up its context menu, and invoke the common
diff operation that is listed on the context menu. SyncAdmin's Diff Format must
be set to the default Use graphical diff tool for the built-in diff viewers to be
used.

2. Select a text file in the View Pane and invoke a common diff operation from the
Tools => Compare Files menu. SyncAdmin's Diff Format must be set to the
default Use graphical diff tool for the built-in diff viewers to be used.

3. Select a text file in the View Pane and invoke Tools => Compare Files =>
Advanced Diff . In the Advanced Diff dialog, set the Display Options field to
Display output in GUI.

The result of the diff operation is displayed in a new text tab labeled Diff.

Using Graphical Diff format

The Diff results in a new text tab labeled Diff, in the View Pane. The Graphical Diff
format shows both files, side-by-side, with the first file version on the left and the second

DesignSync Data Manager User's Guide

289

file version on the right. Between the files is a scroll-bar which highlights the location of
the differences in the file. This central bar shows symbolically all differences in the file
as well as the current vertical position of the left and right windows in respect to the file.
The knob on the central bar represents the current left and right visible windows in
relation to the whole file. The colored bands on the knob represent currently visible diff
and conflict blocks. Clicking on the left mouse button with the cursor on the central bar
moves the left and right window content to the corresponding vertical position.

You can customize the colors that indicate what type of change you are viewing using
SyncAdmin, in the For multi-window Diff viewers/editors section. By default, added
lines are shown with light green background and changed lines are shown with yellow
background.

Notes

• When files are compared using the common ancestor option (a 3-way diff), if a line
from the common ancestor has been changed in one version and deleted in
another, the viewer shows the change present in second file, not the first. For
example, if the line has changed in the first file and was removed in the second file,
it is shown as removed in the Diff view.

• The empty lines filled with dark grey cannot be changed by the user. These lines
are used to pad the smaller side of a block, so that the comparable file content stays
in sync.

Graphical Diff Format Tools

Comparing Files

290

The graphical diff tool provides a set of actions to help you navigate the information
provided in the graphical diff. The tools are available both from a Diff Viewer menu and
a set of controls on the top of the Diff window.

Next Diff

This option moves the window focus to next marked Diff in the file.

Previous Diff

This option moves marked window focus to the previous marked Diff in the file.

Next Conflict

This option moves the marked window focus to the next unresolved conflict in the file.
This allows you to focus your attention on not what changed in the file, but where the
conflicts are between the versions so you can resolve them. If there are no conflicts in
the file, or you are at the last conflict in the file this option is grey and unclickable. To
resolve conflicts, use the Conflict Editor.

Previous Conflict

This option moves the marked window focus to the previous unresolved conflict in the
file. This allows you to focus your attention on not what changed in the file, but where
the conflicts are between the versions so you can resolve them. If there are no conflicts
in the file, or you are at the first conflict in the file, this option is grey and unclickable. To
resolve conflicts, use the Conflict Editor.

Find

See Searching for Text.

DesignSync Data Manager User's Guide

291

Find Next

Advances to the next instance of the text specified in the Find window.

Toggle Line Numbers

By default, the line numbers display on the left side of the each panel. You can select
this option to toggle whether line numbers display.

Toggle Bottom Panel

By default, there is a bottom panel below the compare window that shows exactly what
the change is, indicating which change is part of which version. The L and R labels in
this window designate the Left and Right diff windows. You can select this option to
toggle whether this window displays. Even if this window isn't displayed the GUI
windows still show the Diff information.

Toggle Scrollbars Sync

By default, the scrollbar between the two windows keeps the windows synchronized
with each other. When you move forward in one window, DesignSync rolls the other
window forward. You can select this option to enable or disable this feature. When the
scrollbar sync is disabled, scrolling in one window does not advance the other window
to match the content.

Full Screen

By default, the Diff display opens in a tab in the View panel. This option allows you to
toggle between that view and a Diff view that takes up the entire screen.

Note: The Full Screen display can be placed in the background to allow you to work in
the DesignSync GUI before returning to the display.

Related Topics

Advanced Diff

Identifying Changed Objects

293

Displaying Information

Showing Potential Checkouts
Sometimes, when you are working on a project, another user will check in new files into
the vault. Often, you will use populate to keep your work area fully synchronized with
the vault. However, in some circumstances you may want to only checkout some of the
newly added files. The menu choice Revision Control => Show Potential Checkouts
makes it easy to do this.

If you are viewing your work area in the List View, and you click Revision Control =>
Show Potential Checkouts, the List View is updated to include all of the objects that
exist in the vault but not in the work area. Files and collections are described in the
Type column as "Potential Checkout"; folders are described as "Potential Checkout
Folder."

Checking out a potential folder creates a corresponding local folder in your workspace,
as if you had used the mkfolder command. You can browse into the new workspace
folder and perform revision control operations on it. For example, you can Show
Potential Checkouts for the folder or populate it.

Once these objects are displayed in the List View, you can select them and choose the
Revision Control => Check Out menu choice to check them out into your work area.
Potential checkouts are only displayed in the List View until the List View is next
refreshed by any operation.

Notes:

• The Show Potential Checkouts menu choice operates on the object selected in
the Tree View, regardless of the active selection.

• Check Out is the only operation permitted on possible checkout objects.
• Show Potential Checkouts is not applicable to module data.

Related Topics

Checking out Design Files

ENOVIA Synchronicity Command Reference: mkfolder

ENOVIA Synchronicity Command Reference: populate

Identifying Changed Objects
You can identify objects that you have modified in your work area by selecting Tools =>
Reports => Changed Objects. The Changed Objects report is also available from the

Displaying Information

294

context menu when a folder is selected in the Tree View or List View. When you select
this report, DesignSync performs a recursive search to find all managed objects that are
changed in the specified folder and its subdirectories. The folder that the report starts
from does not have to be the root of a work area. It can be any folder, even a folder that
is above a workspace root directory.

When the search completes, DesignSync displays the changed objects in a directory
tree structure, in a Changed tab. The root of the tree is the directory where you started
the search. Subdirectories are shown only if those subdirectories contain modified or
unmanaged objects. Using the context menu for folders, you can expand and collapse
the displayed contents. Objects that have been changed are displayed under the
directory in which they are located. The type of change is indicted by a change icon next
to the file name. Structural changes will be identified with labels to the right of the
filename identifying the structural change, such as "Moved Locally" or "Moved on
Server".

Click on the buttons in the following illustration for information.

You can select objects in the display and operate on them through the menu or toolbar
selections. You can also right-click on any object in the display to see a context menu
showing common revision control operations used from this view.

For example, you select a Needs Merge object and right-click to select Compare to
Latest. By default this displays differences in a Diff tab, using a 3-way Diff Viewer. You
could select an In Conflict object and right-click to select Resolve Conflicts. This opens
a Merge Conflict Editor which you use to resolve the conflicts.

If you select a folder and perform an operation recursively, it will operate on the folder's
entire contents, as though you had selected the folder from the List View. The Changed
tab's display is automatically updated when its selected files or folders are operated on.

Modified

DesignSync Data Manager User's Guide

295

This button toggles the display to show or hide objects that have been locally modified.
A new DesignSync session will use the button's last setting.

Needs Update

This button toggles the display to show or hide objects with a more current version on
the server. A new DesignSync session will use the button's last setting.

Needs Merge

This button toggles the display to show or hide objects that require a merge (both local
and server objects have been modified since the last workspace populate). A new
DesignSync session will use the button's last setting.

In Conflict

This button toggles the display to show or hide objects that have been merged and now
contain unresolved conflicts. A new DesignSync session will use the button's last
setting.

Unmanaged

This button toggles the display to show or hide unmanaged objects in the workspace.
Some files may be pre-excluded from checkin by matching a pattern specified in an
exclude file. Excluded files do not display with the unmanaged objects. For more
information on exclude files, see Working with Exclude Files. A new DesignSync
session will use the button's last setting.

Related Topics

Graphical Diff Utility

Merge Conflict Editor

Populating Your Work Area

Displaying Contents of Vault Data
The Contents report lists data belonging to either a DesignSync configuration or to a
module. The report is available when any of these objects are selected:

• a workspace folder associated with a DesignSync vault
• a server folder
• a module folder (within the context of a module)
• a module
• a module branch

Displaying Information

296

• a module version (if the report is run for a module version, the data items
comprising that module version are shown)

Tools => Reports => Contents opens the Contents dialog box. Click OK to display
the results in a new text tab labeled Contents, in the View Pane.

Click on the fields in the following illustration for information.

Contents Field Descriptions

Show versions

DesignSync Data Manager User's Guide

297

Show the version numbers of the objects reported. If the report is run on a module
version, the member version numbers for the data items in a module version are
reported.

Report names

Specify how the name of each object within a directory is shown:

• File names only - Show only the object name; present its parent directory as an
absolute path (default)

• Relative paths - Show the path to the object as relative to where the command
was started

• Full paths - Show the absolute path to the object

Selector

Identify which version of an object to report.

For a DesignSync folder, select Get selectors to display configurations of the
associated workspace vault. Choose any selector except Date() and VaultDate(). If a
selector is not specified, the current selector is used for a workspace folder, and
Trunk:Latest used for a server folder.

For a module, if a selector is not specified, the current selector is used for a workspace
module, and Trunk:Latest used for a server module.

Module views

See Module views field.

Report verbosity

The level of additional information reported:

Normal output: Include header information and progress lines. This is the default
output mode.

Verbose output: For DesignSync folders, include information about configuration
mappings.

Href mode

When reporting on a module recursively, how hierarchical references should be
evaluated. This field is only available when reporting on module data. If a workspace
module is being reported on, and a Selector is not specified, then the hierarchy in the
workspace is followed. In that case, the Href mode is ignored.

Displaying Information

298

Normal mode: Uses the Change traversal mode with static selector on top
level module set in SyncAdmin to determine how hrefs are followed. If a
reference resolves to a static version, the hrefmode is set to 'static' for the next
level of submodules to be populated. (Default)

Static mode: Report on the static version of the sub-module that was recorded
with the href at the time the parent module's version was created.

Dynamic mode: Evaluate the Selector to identify the version of the sub-module
to report on.

Related Topics

ENOVIA Synchronicity Command Reference: contents Command

Recursion option

Exclude field

Filter field

Module context field

Hreffilter field

Command Invocation

Command Buttons

Displaying Contents of Vault Data
The Contents report lists data belonging to either a DesignSync configuration or to a
module. The report is available when any of these objects are selected:

• a workspace folder associated with a DesignSync vault
• a server folder
• a module folder (within the context of a module)
• a module
• a module branch
• a module version (if the report is run for a module version, the data items

comprising that module version are shown)

Tools => Reports => Contents opens the Contents dialog box. Click OK to display
the results in a new text tab labeled Contents, in the View Pane.

Click on the fields in the following illustration for information.

DesignSync Data Manager User's Guide

299

Contents Field Descriptions

Show versions

Show the version numbers of the objects reported. If the report is run on a module
version, the member version numbers for the data items in a module version are
reported.

Report names

Specify how the name of each object within a directory is shown:

Displaying Information

300

• File names only - Show only the object name; present its parent directory as an
absolute path (default)

• Relative paths - Show the path to the object as relative to where the command
was started

• Full paths - Show the absolute path to the object

Selector

Identify which version of an object to report.

For a DesignSync folder, select Get selectors to display configurations of the
associated workspace vault. Choose any selector except Date() and VaultDate(). If a
selector is not specified, the current selector is used for a workspace folder, and
Trunk:Latest used for a server folder.

For a module, if a selector is not specified, the current selector is used for a workspace
module, and Trunk:Latest used for a server module.

Module views

See Module views field.

Report verbosity

The level of additional information reported:

Normal output: Include header information and progress lines. This is the default
output mode.

Verbose output: For DesignSync folders, include information about configuration
mappings.

Href mode

When reporting on a module recursively, how hierarchical references should be
evaluated. This field is only available when reporting on module data. If a workspace
module is being reported on, and a Selector is not specified, then the hierarchy in the
workspace is followed. In that case, the Href mode is ignored.

Normal mode: Uses the Change traversal mode with static selector on top
level module set in SyncAdmin to determine how hrefs are followed. If a
reference resolves to a static version, the hrefmode is set to 'static' for the next
level of submodules to be populated. (Default)

Static mode: Report on the static version of the sub-module that was recorded
with the href at the time the parent module's version was created.

DesignSync Data Manager User's Guide

301

Dynamic mode: Evaluate the Selector to identify the version of the sub-module
to report on.

Related Topics

ENOVIA Synchronicity Command Reference: contents Command

Recursion option

Exclude field

Filter field

Module context field

Hreffilter field

Command Invocation

Command Buttons

Displaying a Module Cache
The show module cache functionality in the DesignSync GUI helps you to determine
whether or not a module is already in an module cache (mcache) before you:

• Fetch the module into it
• Removing the module from it.

To show the contents of a module cache:

1. From the main menu, highlight the module.
2. Select Modules => Show => Module Cache. The Show contents of module

caches dialog box displays

.
3. The module cache path is pre-filled in with the value of the default module cache

path as defined by your project lead. You can accept this path, you can enter a

Displaying Information

302

different module caches path, or you can click Browse to browse to the correct
path.

Note: The paths must exist. If this field contains an empty string, an error is
displayed.

4. Click OK. The results from the Show a Module Cache command is displayed in a
new text tab labeled Module Cache in the list view.

Displaying Module Hierarchy
The Show Module Hierarchy command is available when anyone of the following
objects is highlighted:

• Legacy module configuration
• Legacy module alias
• Legacy module release
• Module version on server
• Legacy module base directory

DesignSync Data Manager User's Guide

303

• A 5.0 module base directory in client work area

The results from the Show Module Hierarchy command is displayed in a new text tab
labeled Module Hierarchy in the list view pane.

When viewing the hierarchy of 5.0 module, you can choose one of three display options
from buttons at the bottom of the Module Hierarchy tab. These are:

• Normal mode: The behavior in normal mode is dependant on whether the
registry setting "Change traversal mode with static selector on top level module"
is enabled or disabled. If the traversal mode is disabled (default), the top level
module is evaluated according to the selector; if the selector is dynamic, it is
evaluated dynamically, if the selector is static, it is evaluated statically.
Subsequent levels in the hierarchy are evaluated statically. If the traversal mode
is enabled, all levels are evaluated statically. For more information setting the
traversal mode, see the ENOVIA Synchronicity DesignSync Data Manager
Administrator's Guide: Modules. For more information on understanding the
module hierarchy, see Module Hierarchy.

Displaying Information

304

• Static mode: The static version is the version that was recorded at the time each
hierarchical reference was created from a parent module to a sub-module

• Dynamic mode: The dynamic version is that version that shows of the module’s
hierarchical references are displayed for all levels of the hierarchy. Selectors
associated with all hierarchical references are evaluated individually to identify
the version to be displayed.

The default display is Normal mode. This command is available from the context menu
when a node highlighted is in the module hierarchy tree. These options are not
applicable for legacy modules.

To display module hierarchy

1. Highlight the node for which you want to see the module hierarchy. You can see
Module Hierarchy for these legacy module objects:

• Server Side – Module Alias
• Server Side – Module Release
• Server Side – Module Configuration
• Client Workspace – Configuration Base

For legacy modules, you can highlight either Server side – Module Version or
Client Workspace – Module base objects.

2. From the main menu, select Modules => Show => Module Hierarchy.

Results

For legacy objects:

• The text displayed for a configuration shows both the module name and the
configuration name such as module@config.

• When it is a default configuration, module@<Default> displays.
• DesignSync vault nodes displays the vault name.
• IP Gear Deliverables displays the Deliverable Number. Mouse-overs on the

nodes in the module hierarchy tree display the full object URL.

DesignSync Data Manager User's Guide

305

For current objects:

Note: If current module contains hierarchical references to a legacy module, the
Module Hierarchy tab displays the information on the objects as described above for
legacy objects.

• The top level node in the hierarchy displays in the version filter format that is
currently selected in the GUI.

• For sub-modules, the text for a module version displays both the module name
and the module version number or the module tag name depending on which
mode is used when the hierarchy is browsed and the type of the displayed
hierarchical reference.

• For a static hierarchical reference, the module name and version displays.
• For dynamic hierarchical references, the tag name displays. In cases where the

hierarchical reference was created by using a selector list, the module name and
resolving tag also displays.

• For a DesignSync vault, the vault name displays.
• For an IP Gear deliverable, the Deliverable Number displays.

Mouse-overs on the nodes in the module hierarchy tree display the full object URL.

Displaying Information

306

When you are browsing from a module base folder in the workspace, and there are
multiple modules based at the folder, the Select Module Context dialog appears so you
can select the module on which to show the hierarchy.

Related Topics

Module Hierarchy

Context menu

Module Context Field

Displaying Module Status
The Show status dialog is available when a legacy module configuration or current
module-base node (tree or list view) is selected in the client work area. The results from
the show status command is displayed in a new text tab labeled

Module Status.

The Module Status tab displays:

• Updated module versions for dynamic hierarchical references.
• New hierarchical references.
• New module members in the modules.
• Old module members removed from the module.
• Removed or added hierarchical references or legacy modules.

DesignSync Data Manager User's Guide

307

To show the status of a module:

1. From the main menu, highlight the module.
2. Select Modules => Show => Module Status.
3. Select options as needed.
4. Click OK.

Click on the fields in the following illustration for information.

Show object status

When checked, the status of each object in the workspace is compared with the server
module. This status displays in the Module Status tab.

When not checked, only the status of the module and the status of its hierarchical
references displays in the Module Status tab.

By default, this option is unchecked.

Show release status

This option is only available when a legacy module base directory is selected in the
client work area.

When checked, a recursive report will stop at released modules These items are not
displayed on the Module Status tab:

• a release
• an alias

Displaying Information

308

• an IP Gear deliverable
• a vault folder residing on a server without modules support
• a reference that does not exist locally

By default, this option is unchecked.

Note: To display the current status of the hierarchical references of releases in your
work area, both the Show release status option and the Show object status option
must be selected. Otherwise, the status of hierarchical references of releases is
always listed as up-to-date.

Show href status

When checked, the hierarchical references are verified to determine if the reported
status is current. When not checked, the hierarchical references are not verified.

By default, this option is unchecked.

Recurse into references

When checked, the Module Status tab displays the status for the specified module and
all referenced modules.

Note: Hierarchical references that point to IP Gear deliverables, servers that do not
support modules, aliases, or references are only displayed if that item exists locally.

When not checked, the Module Status tab displays the status for the specified module
only.

By default, this option is unchecked.

Module context

This field is available when a non legacy module base folder is selected. The list box
has the available module instances for the base folder listed in alphabetical order.

Report type

Select the type of report from the pull down list to be displayed on the Module Status
tab. The default choice is Normal output. There are four report modes:

• Brief output – Displays a summary and lists hierarchical references that are out-
of-date. Lists file status for files that are out-of-date. Also displays a table of
conflicts if conflicts exist between the expected submodule and the actual
submodule.

DesignSync Data Manager User's Guide

309

• Normal output – Displays the status of the hierarchical references and file status
for the module. Displays a table of conflicts if conflicts exist between the
expected submodule and the actual submodule.

• Summary output – Displays the target and base directory of the module, the
status of each module, and the overall status of the module in the workspace.
Also displays a table of conflicts if conflicts exist between the expected
submodule and the actual submodule.

• Verbose output – Displays the status of the hierarchical reference, additional
information about whether the hierarchical references need updating, and file
status for the module. Also displays a table of conflicts if conflicts exist between
the expected submodule and the actual submodule.

 Note: You can set the -report normal mode to report on the "needs update" status of
hierarchical references with the ShowHrefsNeedCheckinStatus registry key. For
more information on setting the registry key, see the DesignSync Administrator's Guide.

Displaying Module Views
When you select a module view, you can open it by double-clicking it or selecting Show
| Modules Views from the Modules menu in order to view the definition.

The definition displays in a Module View Panel in the View Pane.

When more than one view definition is appropriate, DesignSync displays a chooser
window to allow you select the module to view.

Select the desired module view and press OK, or Cancel to exit the chooser window
and cancel the display of a module view definition.

Displaying Module Where Used

Displaying Information

310

The Module Where Used report displays a list of modules containing a hierarchical
references to the specified DesignSync object. This allows you to easily identify which
modules contain a particular referenced object version. This functionality is particularly
useful when a defect is identified in a referenced object and you want to trace it and see
what versions of the software contained that code.

The Module Where Used report is available when anyone of the following objects is
highlighted on the server:

• Module or Module version(s) on server
• Legacy module configuration(s)
• Legacy module alias(es)
• Legacy module release(s)
• Legacy module base directory
• Vault folder

Running the Where Used command

Modules =>Show =>Where Used opens the Where Used dialog box. Click OK to
display the results in a new text tab labeled Where Used, in the View Pane.

Click on the fields in the following illustration for information.

Starting Selectors (comma-separated)/Starting configurations (comma-separated)

Specify a comma-separated list of desired version numbers, selectors, or
configurations. If you have a module, vault folder, or legacy module selected, this field
is populated with the default selector (Trunk:Latest for modules and vault folders and
<Default> for legacy modules). If you select one or more specific versions or
configurations, the field is populated with those version and is not editable.

Notes:

DesignSync Data Manager User's Guide

311

• If the selector field is empty when the command is submitted, DesignSync automatically
uses the default selector.

• The title of the field changes depending on the type of selected object. When a module
configuration is selected, the field title is Starting configurations (comma-separated),
otherwise the field title is Starting Selectors (comma-separated).

Show which versions

Specify a filter to control the information received using the drop down list options:

• All, tags shown - Displays all tags and all reference locations, including
references that are not tagged. (Default)

• All, tags not shown - Displays all reference locations, but does not display tag
information.

• Only with immutable tags - Displays only reference locations tagged with an
immutable tag and the name of the immutable tag.

Note: Using the Only with immutable tags option may not display all versions
in which an immutable tag is used. The where used command automatically
filters the display from the starting point until it reaches the last immutable tag in
a reference tree.

• Only with version tags - Displays any reference location that has a version tag
and the name of the tag.

Find recursively

Determines whether to show the locations in which the version is explicitly referenced,
or show all modules in which the version is implicitly or explicitly referenced. An explicit
reference exists when there is a direct reference link between the module and the
target. An implicit reference exists when the module and target are not directly
connected, but within the module's hierarchy exists a reference to the target. For
example: if the Chip module references the Gold version of the ALU module, and the
Gold version of the ALU module references the Gold version of the ROM module, the
Chip module contains an implicit reference to the ROM module and an explicit reference
to the ALU module.

If selected, the command output shows both implicit and explicit references to the
specified version. If not selected, the output shows only explicit references. (Default)

Understanding the Where Used command output

The Where Used output is displayed in the Where Used tab in the View pane.

The selected object is the first object in the Where Used list. If it is referenced by a
module an Expand/Collapse button allows you follow the references.

Displaying Information

312

Tags, if included, appear in a comma-separated list within square brackets
([versiontag, branchtag:, immutableversion*]) after the module version name.
Branch tags are indicated by a trailing colon (:) Immutable tags are indicated with a
trailing asterisk (*).

The following example has the following options set, All, tags shown and Recursive.
The example traces where the ROM version tagged "Final" is used.

Where Used Actions

You can select one or more objects in the vault browser and launch the context menu to
perform DesignSync operations directly on the selected objects.

Click on the fields in the following illustration for information.

DesignSync Data Manager User's Guide

313

Vault browser object context menu

Action/Option Result
Expand/Collapse Expands or collapses the selected module version.
Expand All Expands or collapses all the module versions.
Visit Switches to the List View and displays the object versions on

the server.
Vault Browser Opens the vault browser view with the selected object as the

initial object version.
Module Hierarchy Opens the module hierarchy view for the selected module

version.
Data Sheet Opens the data sheet for the object.
Show Object Opens the object revisions on an enterprise server associated

with a DesignSync module object in the default web browser.
Tag Tags the selected module version.
Properties Opens the properties pages for the object.

Displaying Enterprise Objects
This command shows the object revisions on an enterprise server associated with a
DesignSync module object in the default web browser. This provides a quick method to
update information on an enterprise object, for example, a defect, immediately after
checking in the related code.

This command is active when a user selects one of the following module objects:

• Workspace module instance
• Server module branch
• Server module version

Displaying Information

314

The Enterprise object is associated with the DesignSync server using the SyncAdmin
interface. For more information on configuring Enterprise server associations, see the
DesignSync Administrator's Guide: ENOVIA Servers.

Compare the Contents of Two Areas
The Compare report compares the contents of two areas.

The report is available when any of these objects are selected:

• a workspace folder associated with a DesignSync vault
• a server folder
• a module folder (within the context of a module)
• a module

You may also invoke the Compare dialog without first selecting any objects. The objects
to compare are then selected on the dialog itself.

Notes:

• The contents of a module version can be compared against the contents of
another version of the same module, or against a workspace that contains a
version of that module.

• In comparing collections, the compare operation compares only collections and
not collection members.

• To display differences between files, DesignSync provides Diff tools available
from Tools =>Compare Files and Tools =>Compare Files =>Advanced Diff.

• If you have moved module members in the workspace, they will appear twice in
the compare output, once in their original location and once in their new location
with "First only" and "Second only" status values.

Tools =>Reports =>Compare opens the Compare dialog box. Click OK to display the
comparison results in a new text tab labeled Compare, in the View Pane.

Click on the fields in the following illustration for information.

DesignSync Data Manager User's Guide

315

Displaying Information

316

Compare Workspaces/Selectors Field Descriptions

Operation

Choose from four options:

• Compare workspace to vault
• Compare workspace to another path
• Compare workspace to a selector
• Compare two selectors of a workspace's vault

Workspace Path

Enter the workspace path you want to use in the Compare action. Click Browse... to
display the Select Path dialog and choose your workspace.

Alternate Path

This option is available when you select the "Compare workspace to another path"
Operation. Enter the path you want to use for comparison. Click Browse... to display
the Select Path dialog and choose your workspace.

First Selector

This option is available when you select the "Compare workspace to a selector"
Operation. Enter the selector you want to use for the comparison. For a DesignSync
folder, select Get selectors to display configurations of the associated workspace vault.
Choose any selector except Date() and VaultDate().

Second Selector

This option is available when you select the "Compare two selectors of a workspace's
vault" Operation. Enter the second selector you want to use for the comparison. For a
DesignSync folder, select Get selectors to display configurations of the associated
workspace vault. Choose any selector except Date() and VaultDate().

Module views

See Module Views Field.

Filters

See Filters Field.

First module context

DesignSync Data Manager User's Guide

317

This option is available when you select a single module base folder to compare. The
module instance names based at the module base folder specified in the Workspace
Path field are listed. A first module context is required, when comparing a single
module base folder.

Second module context

This option is available when you select two module base folders to compare. The
module instance names based at the module base folder specified in the Alternate
Path field are listed. When comparing two module base folders, the First module
context and Second module context are both optional. Selecting the empty entry
results in a folder centric comparison; the module base folders are used for the
comparison. Selecting a module context results in a module centric comparison; the
selected module contexts are used for the comparison.

Apply Recursively

See Recursive Option.

Show history

Report the checkin comment and other details for the version history back to the
common ancestor of the two versions reported.

Show objects that are the same

Report items that are the same version, in addition to items that are different.

Show object paths

Specify how the name of each object within a directory is shown. If selected, show the
path to the object as relative to where the command was started. If not selected, show
only the object name, and present the object's parent directory as an absolute path.
Showing only the object name is the default.

Exclude

See Exclude Field.

Href Filter

See Href Filter Field.

First href mode

Displaying Information

318

This option is available when you select the "Compare workspace to a selector"
Operation. When reporting on a module recursively, this field specifies how hierarchical
references should be evaluated. This field is only available when reporting on module
data. If a workspace module is being reported on, and a Selector is not specified, then
the hierarchy in the workspace is followed. In that case, the Href mode is ignored.

Normal mode: Uses the Change traversal mode with static selector on top
level module set in SyncAdmin to determine how hrefs are followed. If a
reference resolves to a static version, the hrefmode is set to 'static' for the next
level of submodules to be populated. (Default)

Static mode: Report on the static version of the sub-module that was recorded
with the href at the time the parent module's version was created.

Dynamic mode: Evaluate the Selector to identify the version of the sub-module
to report on.

Second href mode

This option is available when you select the "Compare two selectors of a workspace's
vault" Operation. When reporting on a module recursively, this field specifies how
hierarchical references should be evaluated. This field is only available when reporting
on module data. If a workspace module is being reported on, and a Selector is not
specified, then the hierarchy in the workspace is followed. In that case, the Href mode
is ignored.

Normal mode: Uses the Change traversal mode with static selector on top
level module set in SyncAdmin to determine how hrefs are followed. If a
reference resolves to a static version, the hrefmode is set to 'static' for the next
level of submodules to be populated. (Default)

Static mode: Report on the static version of the sub-module that was recorded
with the href at the time the parent module's version was created.

Dynamic mode: Evaluate the Selector to identify the version of the sub-module
to report on.

Report verbosity

The level of additional information reported:

Brief output: Include header information and progress lines. Directories that
contain only items in one of the areas being compared, or for which all items in the
two areas being compared are identical, are not expanded to show their contents.

DesignSync Data Manager User's Guide

319

Normal output: Expand directories that would be skipped in Brief output mode,
because they are present in one of the areas being compared, or because all
items in the two areas being compared are identical. This is the default output
mode.

Verbose output: For DesignSync folders, include information about configuration
mappings.

Related Topics

ENOVIA Synchronicity Command Reference: compare Command

Filter field

Module Views_Field

Module context field

Recursion option

Exclude field

Href filter field

Command Invocation

Command Buttons

Compare the Contents of Two Areas
The Compare report compares the contents of two areas.

The report is available when any of these objects are selected:

• a workspace folder associated with a DesignSync vault
• a server folder
• a module folder (within the context of a module)
• a module

You may also invoke the Compare dialog without first selecting any objects. The objects
to compare are then selected on the dialog itself.

Notes:

Displaying Information

320

• The contents of a module version can be compared against the contents of
another version of the same module, or against a workspace that contains a
version of that module.

• In comparing collections, the compare operation compares only collections and
not collection members.

• To display differences between files, DesignSync provides Diff tools available
from Tools =>Compare Files and Tools =>Compare Files =>Advanced Diff.

• If you have moved module members in the workspace, they will appear twice in
the compare output, once in their original location and once in their new location
with "First only" and "Second only" status values.

Tools =>Reports =>Compare opens the Compare dialog box. Click OK to display the
comparison results in a new text tab labeled Compare, in the View Pane.

Click on the fields in the following illustration for information.

DesignSync Data Manager User's Guide

321

Displaying Information

322

Compare Workspaces/Selectors Field Descriptions

Operation

Choose from four options:

• Compare workspace to vault
• Compare workspace to another path
• Compare workspace to a selector
• Compare two selectors of a workspace's vault

Workspace Path

Enter the workspace path you want to use in the Compare action. Click Browse... to
display the Select Path dialog and choose your workspace.

Alternate Path

This option is available when you select the "Compare workspace to another path"
Operation. Enter the path you want to use for comparison. Click Browse... to display
the Select Path dialog and choose your workspace.

First Selector

This option is available when you select the "Compare workspace to a selector"
Operation. Enter the selector you want to use for the comparison. For a DesignSync
folder, select Get selectors to display configurations of the associated workspace vault.
Choose any selector except Date() and VaultDate().

Second Selector

This option is available when you select the "Compare two selectors of a workspace's
vault" Operation. Enter the second selector you want to use for the comparison. For a
DesignSync folder, select Get selectors to display configurations of the associated
workspace vault. Choose any selector except Date() and VaultDate().

Module views

See Module Views Field.

Filters

See Filters Field.

First module context

DesignSync Data Manager User's Guide

323

This option is available when you select a single module base folder to compare. The
module instance names based at the module base folder specified in the Workspace
Path field are listed. A first module context is required, when comparing a single
module base folder.

Second module context

This option is available when you select two module base folders to compare. The
module instance names based at the module base folder specified in the Alternate
Path field are listed. When comparing two module base folders, the First module
context and Second module context are both optional. Selecting the empty entry
results in a folder centric comparison; the module base folders are used for the
comparison. Selecting a module context results in a module centric comparison; the
selected module contexts are used for the comparison.

Apply Recursively

See Recursive Option.

Show history

Report the checkin comment and other details for the version history back to the
common ancestor of the two versions reported.

Show objects that are the same

Report items that are the same version, in addition to items that are different.

Show object paths

Specify how the name of each object within a directory is shown. If selected, show the
path to the object as relative to where the command was started. If not selected, show
only the object name, and present the object's parent directory as an absolute path.
Showing only the object name is the default.

Exclude

See Exclude Field.

Href Filter

See Href Filter Field.

First href mode

Displaying Information

324

This option is available when you select the "Compare workspace to a selector"
Operation. When reporting on a module recursively, this field specifies how hierarchical
references should be evaluated. This field is only available when reporting on module
data. If a workspace module is being reported on, and a Selector is not specified, then
the hierarchy in the workspace is followed. In that case, the Href mode is ignored.

Normal mode: Uses the Change traversal mode with static selector on top
level module set in SyncAdmin to determine how hrefs are followed. If a
reference resolves to a static version, the hrefmode is set to 'static' for the next
level of submodules to be populated. (Default)

Static mode: Report on the static version of the sub-module that was recorded
with the href at the time the parent module's version was created.

Dynamic mode: Evaluate the Selector to identify the version of the sub-module
to report on.

Second href mode

This option is available when you select the "Compare two selectors of a workspace's
vault" Operation. When reporting on a module recursively, this field specifies how
hierarchical references should be evaluated. This field is only available when reporting
on module data. If a workspace module is being reported on, and a Selector is not
specified, then the hierarchy in the workspace is followed. In that case, the Href mode
is ignored.

Normal mode: Uses the Change traversal mode with static selector on top
level module set in SyncAdmin to determine how hrefs are followed. If a
reference resolves to a static version, the hrefmode is set to 'static' for the next
level of submodules to be populated. (Default)

Static mode: Report on the static version of the sub-module that was recorded
with the href at the time the parent module's version was created.

Dynamic mode: Evaluate the Selector to identify the version of the sub-module
to report on.

Report verbosity

The level of additional information reported:

Brief output: Include header information and progress lines. Directories that
contain only items in one of the areas being compared, or for which all items in the
two areas being compared are identical, are not expanded to show their contents.

DesignSync Data Manager User's Guide

325

Normal output: Expand directories that would be skipped in Brief output mode,
because they are present in one of the areas being compared, or because all
items in the two areas being compared are identical. This is the default output
mode.

Verbose output: For DesignSync folders, include information about configuration
mappings.

Related Topics

ENOVIA Synchronicity Command Reference: compare Command

Filter field

Module Views_Field

Module context field

Recursion option

Exclude field

Href filter field

Command Invocation

Command Buttons

Displaying Version History
The Version History report displays version history for managed objects. If the history
report is run from a workspace, local status is also reported.

Tools =>Reports =>Version History opens the Version History dialog box. This
report is available when files, folders or the base directory of a module is selected in a
local workspace. The report is also available when a server object is selected (vaults,
versions, branches, modules, module versions, or module branches).

Click OK to display the results in a new text tab labeled Version History, in the View
Pane.

Click on the fields in the following illustration for information.

Displaying Information

326

Version History Field Descriptions

Show history for

DesignSync Data Manager User's Guide

327

The default setting shows the history of the Current branch (the branch of the object
that is in the workspace). You can also show the history for All branches of the object,
or of a specific branch (This branch).

To select the history of a particular branch, select "Show history for This branch". The
field below becomes active and you can type the branch name or click the pull-down
menu to select a branch.

Report recursively

Whether to descend through sub-folders of the starting folder, or only report on the
objects in the selected folder. This option is available for local folders or server (non-
module) folders. The option is unchecked by default.

Exclude filter

See Exclude Filter.

Module context

Specifies the module context. Use this option to identify a module member that is not in
the workspace or to restrict the report to module versions that affect any of the
members specified on the command line.

Report mode

The type of information that will be reported. The choices Brief, Normal, and Verbose
represent defined reports. Selecting one of these defined reports automatically enables
all of the report options that comprise the selected mode. Report options not in the
selected mode are automatically disabled. The Normal report mode is selected by
default. Select the Custom report mode to specify your own combination of report
options.

Show object name

Show the workspace path to the object, or to the vault URL.

Show vault URL

Show the vault URL associated with a workspace object.

Show current version

Show the version currently in the workspace.

Show fetched state

Displaying Information

328

Show the fetched state in the workspace.

Show tags

Show branch and version tags. Immutable tags are shown with "(immutable)"
appended.

Show tag comments

Show the comments associated with version and branch tags. Tag comments are only
available for module data.

Show creation dates

Show a version's creation date.

Show derived version

Show the numerical parent version. This maintains the continuity between versions for
merge and rollback operations.

Note: If a merge, skip,rollback or overlay operation occurs to create this version, the
referenced version is shown as "Merged from" version.

Show version author

Show a version's author.

Show merged from

Show the version used to create the from current version when the current version was
created as the result of a rollback, merge, skip, or overlay operation requiring an
alternate parent version.

Show check in comment

Show a version's check in comments, and any checkout comments. For DesignSync
objects, checkout comments are only visible from the workspace in which the checkout
occurred. For module objects, the branch lock comment is visible to all users.

Show retired state

Show whether a branch is retired, the username of the user who retired the file, and the
date and time of the retire. This is not applicable to module data, so is not reported for
module data.

DesignSync Data Manager User's Guide

329

Note: You must also select the Display Branch entries in order to view the retired
information.

Show locked by

Show the lock owner of a locked branch. For DesignSync objects, also show the
"version -> upcoming version" information.

Show separators

Show separators between items and versions.

Show tagged module versions

Show module version that have tags,even if a module member being queried version
has not been changed in that module version.

Show deleted module versions

Show module version that were purged or deleted.

Show size

Show the size of the object version in KB.

Note: Collections and module versions, both of which contain more than one object,
display with a size of zero.

Show module manifest

For a module, show the manifest of changes in each version. For a module member,
show only the changes to that member.

Show version/branch numbers

Show the version number for versions, and the branch number for branches. For
branches, indicate whether any versions exist on the branch.

Display branch entries

Show information for branch objects.

Display version entries

Show information for version objects.

Displaying Information

330

Ignore untagged entries

Do not show entries that have no tags.

Reverse display order

Show the versions/branches in reverse numeric order.

Represent graphically

Show a graphical representation of the version history, as a text graph.

Maximum tags reported

The maximum number of tags shown for any object. You can select a value from the
pull-down list, or type in a positive integer. By default, all tags are shown. This option is
only available when Show tags is selected.

Number of ancestor versions to report

How many versions back to report. By default, all versions on a branch are reported.
You can select a value from the pull-down list, or type in a positive integer. Specifying
the number of ancestor versions to report sets the Descendant branch depth value to
0.This option is only available when Show history for Current branch or This branch is
selected.

Number of ancestor branches to report

How many branches back to report. By default, only versions on the specified branch
are reported. You can select a value from the pull-down list, or type in a positive integer.
Specifying the number of ancestor branches to report sets the Descendant branch
depth value to 0. This option is only available when Show history for Current branch or
This branch is selected.

Descendant branch depth

The number of levels of descendant branches to report, from the starting branch. By
default, the report is limited to the starting branch (a value of 0). You can select a value
from the pull-down list, or type in a positive integer. Specifying a descendant branch
depth sets the Number of ancestor versions to report and the Number of ancestor
branches to report to all.

Related Topics

ENOVIA Synchronicity Command Reference: vhistory Command

DesignSync Data Manager User's Guide

331

Exclude field

Command Invocation

Command Buttons

Controlling the Display of Module Information

Displaying module versions

By default, the last 50 versions on a module branch are shown. The maximum number
of versions displayed is configurable. For details, see SyncAdmin Help: Modules
Options.

Using Display Filters

The Display Filters dialog box is used to set filters that control what is displayed in the
tree and list view.

1. From the main menu, select View => Display Filters.
2. Select options as needed.
3. Click OK.

Click on the fields in the following illustration for information.

Display Filter Field Descriptions

Module branch filter

Enter or select the module branch filter. Valid values can be any glob-style patterns, <All
Branches>, or <Tagged Branches>. The pull down list contains the two default values
and the last five glob-style pattern values used.

Displaying Information

332

When viewing modules on a server, the branches shown in the tree and list view are
filtered to only show branches that have any tag that matches the filter. The default
choice is <Tagged Branches>.

Show module branches of the following sub-types

Select the object sub-type by which to filter branches when browsing the server. You
must have at least one branch sub- type selected.

Module version filter

Enter or select the module version filter. Valid values can be any glob-style patterns,
<All Versions>, or <Tagged Versions>. The pull down list contains the two default
values and the last five glob-style pattern values used.

When viewing modules on a server, the versions shown in the tree and list view are
filtered to only show versions that have any tag that matches the filter. The default
choice is <All Versions>.

Related Topics

Tagging Versions and Branches

ENOVIA Synchronicity Command Reference: tag Command

SyncAdmin Help: Modules Options

SyncAdmin Help: Tags

Exploring Modules
The Modules Explorer is headed by the Module Roots folder node. DesignSync adds a
module workspace root node to the Modules Explorer:

• When you navigate to a folder in the Tree View that contains at least one workspace
module root.

• When you select a client-side module base directory from the Bookmarks menu.
• When you enter a url in the Location field to navigate to a client-side module base

directory.

These module roots remain in the Modules Explorer until you exit the GUI.

DesignSync Data Manager User's Guide

333

Expanding a module root in the Tree View reveals all of the module instances included
in the module root directory. Expanding a module instance reveals all the folders that
are members of that module instance.

When you select a module instance in the Tree View, the List View displays the module
members and hierarchy that belong to that module instance.

To specify a module workspace root node to always include in the Modules
Explorer:

1. In the Tree view, highlight the module root to include.
2. Select Modules | Add Initial Module Root.

To remove a module workspace root node from the Modules Explorer:

1. In the Tree view, highlight the module root to remove.
2. Select Modules | Remove Initial Module Root.

Note: If you select a module object in a subsequent session, the module root will
be added to the Modules Explorer for the duration of that session.

Annotate Tool

Using Annotate

The Annotate tool provided in the Tools => Annotate menu graphically displays the
selected text file object annotated with the following information:

• Last-modified version.
• Author credited with the changes.
• Date the modification was checked in.

The Annotate results in a new text tab labeled Annotate, in the View Pane.

To open a file in annotate:

1. Select a text file in the View Pane. The file can be in the local workspace, or a
server-side version.

2. Select Tools | Annotate to open the Annotate dialog box.

The result of the Annotate operation is displayed in a new text tab labeled
Annotate.

Displaying Information

334

3. Optionally use the Annotate tools to locate or highlight information in the
Annotate tab.

Click on the fields in the following illustration for information.

Version

Type the version selector of a file to display.

If no version is specified, DesignSync uses the version loaded in the workspace.
(Default)

A non-module DesignSync file object can take any valid single selector. A module
member must be specified by the module member version number.

From Version

Specifies the selector of the first version to consider when creating the annotated
document. The versions included in the annotation begin with the specified version and
end with the version that resolves to the selector specified with the From Version
option. The specified selector must resolve to a version on a path from the annotated
version to the vault root.

 Notes:

• When referring to a module member by version number, use the module version
number.

• If neither the Versions Back nor the From Version option is specified, the
annotate includes the entire object history, beginning with the vault root. (Default)

Versions Back

DesignSync Data Manager User's Guide

335

Specifies the number of versions to consider when creating the annotated document.
The versions included in the annotation begin with the specified version and each
version is processed until the specified number of versions back is reached, then the
annotated file is generated.

Note: If neither the Versions Back nor the From Version option is specified, the
annotate includes the entire object history, beginning with the vault root. (Default)

Ignore leading/trailing whitespace

Determines whether white space (spaces, tabs) differences at the beginning or end of a
line are ignored. Select this option to ignore leading and trailing whitespaces. Leave
this option unselected to treat leading and trailing whitespace changes as significant.
(Default)

For example, if the most recent change to a line was to replace multiple spaces with a
single tab, selecting this option ignores that change and uses the last textual change (or
in-line whitespace change) to determine the last modification information.

Related Topics

Annotate Actions

Highlighting the Annotate Results

Common Diff Operations

Annotate Actions

Annotate Actions

Annotate provides some tools to allow you to locate information in the annotated file.
While you're in the Annotated tab, you can launch the context menu to perform
DesignSync operations directly on the selected object or to find strings within the file, or
highlight certain information.

Click on the fields in the following illustration for information.

Displaying Information

336

Action/Option Result

Copy Copies the selected text into the paste buffer. You can select text
with the mouse or use Select All to select the full contents of the
window.

Note: You cannot paste into the Annotate tab. It is read only. You
can save the annotated file and edit it.

Select All Select all the text in the Annotate tab.

Find Enter a search string to locate particular text within the Annotate
tab.

Find Next Finds the next instance of the search string specified for Find.

Save Saves the annotated version of the selected file to the file name
you specify. Conventionally, annotated files should be saved with
the .ann extension, which, by default is excluded from DesignSync
checkin operations.

Visit Switches to the List view and displays the object version containing
the selected line. This option is only active if one line is selected.

Properties Opens the properties pages for the selected version. This option is
only active if one line is selected.

Highlight Opens the Highlight dialog box.
Previous
Highlight

Moves your focus in the Annotate window to the previous cluster of
highlighted text.

Next
Highlight

Moves your focus in the Annotate window to the next cluster of
highlighted text.

Related Topics

DesignSync Data Manager User's Guide

337

Using Annotate

Highlighting the Annotate Results

Highlighting the Annotate results

You can highlight key information in the annotated file to allow you to easily locate
important changes. Using the highlight option, you can track different conditions,
changing the text color or the background color to easily locate key information in the
file. For example, if you have a regression and you've identified the file responsible, you
can use a date or version selector to isolate the information that changed in the file.

You can highlight based on any the following information:

• By date
• By version
• By author

Note: You may select as many of the same type of change as you like, but you may
only select one type of change to apply at a time. For example, you could highlight
changes by three different authors with different colors, but you cannot specify a version
to highlight as well.

Click on the fields in the following illustration for information.

Displaying Information

338

DesignSync Data Manager User's Guide

339

Highlight

• No Highlighting

Select this to remove any already set highlight conditions. (Default)

• Highlight changes by author

Select this to apply highlight conditions by username of the version author.

• Highlight changes after date/time

Select this to apply highlight conditions by date or time AFTER the selected
date or time.

• Highlight changes by version/branch

Select this to apply highlight conditions by version or branch name or
numeric.

Use black background

Sets the Annotate tab window to white text on a black background, instead of the
default black text on a white background. You can also set the background color
of lines that meet particular conditions, by selecting the color in the conditions list.

Conditions list

• Highlight changes by author

Displaying Information

340

Type username(s) of the author(s) to highlight and the highlight color
options.

• Highlight changes after date/time

Type date(s). Any lines after the selected date are highlighted with the
selected highlight color options. To select a period between two dates, select
the color options you want for the start date and no color settings for the end
date. The date can be specified in any valid format for a date specified as a
DesignSync selector.

• Highlight changes by version/branch

Type the version or branch selector to highlight. You can use a tag or a
numeric version of branch number.

• & Sub

Select this option to include any lines changed in the sub-branches of the
selected branch or version in the highlight condition.

Vault Browser Tool

Vault Browser Overview

The Vault Browser tool provided in the Tools => Vault Browser menu graphically
displays the genealogy of a DesignSync object by displaying branches and versions as
objects. The Vault Browser also provides easy access to the important operations on
object versions, such as viewing the content of a version or comparing the content of
two versions.

The Vault Browser history graph is created when the Vault Browser command is run.
 The history is not automatically updated with any changes made while you're viewing
the history.

Notes:

For module objects,you can examine the entire module as a single object or
examine an individual module member. If you select a workspace module base
directory that contains multiple modules, you are prompted to select the module
context.

DesignSync Data Manager User's Guide

341

For non-module vault objects, each object must be separately examined in the
vault browser. You cannot examine a group of vault objects, such as a legacy
configuration, or a set of tagged objects, in a single operation.

When working with modules, the vault browser includes both module merge edges
and module member merge edges. You can specify a display color for these
objects in the Vault Browser options page in SyncAdmin.

The Vault Browser Window opens in a new text tab labeled Vault Browser in the View
Pane.

Objects Viewable in the Vault Browser

The Vault Browser can be invoked after selecting any of the following objects:

• Workspace file under revision control (either file-based or a module member)
• Workspace module instance
• Workspace module member
• Server-side file vault
• Server-side file branch
• Server-side file version
• Server-side module vault
• Server-side module branch
• Server-side module version
• Server-side module member

Note: For module members, only module versions that contain a change (content or
structural) to the specified member are shown in Show All Nodes graph. To view other
objects, including module instances, show all versions and branches.

The Vault Browser window

The Vault Browser window shows the history of the selected object by showing each
version sequentially. It opens with the Vault Browser window centered on the initial
object version, the version from which the browser is invoked. Use the horizontal and
vertical scroll-bars to move around in the Vault Browser window. To change the zoom
level, use the Vault Browser Tools.

Click on the fields in the following illustration for information.

Displaying Information

342

Object SyncURL

The object SyncURL for the object always appears in the top bar of the Vault Browser
window. This URL refers to the vault object itself, not to a specific object version. If the
SyncURL is longer than the size of the Vault Browser window, the top bar becomes
scrollable.

For file-based vault objects, the URL is the sync URL of the object, without the version
number, for example: sync://data2.ABCo.com:2647/Projects/Chip/chip.c

For modules objects, the URL is the server-side sync URL of the module, for example:

sync://data2.ABCo.com:2647/Modules/Chip

For module member vault, the URL is the sever-side sync URL of the module and the
natural path of the member, for example:

sync://data2.ABCo.com:2647/Modules/Chip;chip.c

Branch object

The initial version on each branch, or the branch point version, is represented by a blue
rectangle that includes the following information:

DesignSync Data Manager User's Guide

343

• Branch name
• Branch tags

If you mouse-over the branch object, you can always see the following additional
information:

• Branch numeric

Version object

Each version is represented by a yellow rectangle that includes the following
information:

• Branch name and version number
• Version author
• Branch tags
• Comment
• Number of branches connected from a particular version (Branch-point version

only)

Note: When you shrink the display, not all the fields may show.

If you mouse-over the version object, you can always see the following additional
information:

• Version numeric
• Creation date and time

Initial object version

The version of the object selected when you launch the vault browser is shown in a
green rectangle. It displays all the information available for a Version object.

Selected object

If you select an object, or multiple objects, in the object browser, the selected objects
turn blue-grey. You can launch the context menu to perform DesignSync operations
directly on objects selected in the vault browser.

Related Topics

Vault Browser Actions

Vault Browser Tools

Finding Objects

Displaying Information

344

Vault Browser Actions

You can select one or more objects in the vault browser and launch the context menu to
perform DesignSync operations directly on the selected objects.

Click on the fields in the following illustration for information.

Vault browser object context menu

Action/Option Result
Open Opens the selected object in the default editor.
Visit Switches to the List View and displays the object versions on the

server. You may only select a single object for this option.

DesignSync Data Manager User's Guide

345

Jump Moves your focus to within the vault browser. You may only select
a single object for this option.

• Forward - moves your focus to the Latest child of the object
selected. This may be the last version on a branch or the
last branch emanating from a version.

• Backward - moves your focus to the parent of the object
selected. This is the initial object version on the selected
branch. By repeatedly jumping backward the user will
traverse the path between any object and the root of the
history tree.

• Merged From - moves your focus to the “merged from”
version of the selected object. This option is only active
when the object selected was created by an operation that
created a merge edge; for example, skip, rollback, or merge.

• Merged To - moves your focus to the "merged to" version of
the selected object. This option is only active when another
object was created from this object by an operation that
created a merge edge; for example skip, rollback, or merge.

• Ancestor - moves your focus to the “ancestor” version of a
3-way merge. This option is only active when the object
selected was created by an operation that created a merge
edge; for example, skip, rollback, or merge.

• Member Ancestor moves your focus to the module version
containing the parent of the selected member version.
(Module Member version only)

• Member Descendents moves your focus to the module
version containing descendents of the selected member
version. If there is more than one descendent for a
member,you can select which descendent to view from the
Select a Member Descendant dialog. (Module Member
version only)

Note: When you jump, the object you jump to becomes the new
selected object.

Show Click to add or remove highlight features for the specified show
option.

• Member Where Used - highlights all the module versions in
which member version is used.

• Member Genealogy - adds arrows for ancestors and
descendants of the member allowing you to track the
genealogy of the module member.

• Clear - all highlighting and arrows

Displaying Information

346

Populate Launches the populate dialog. You may only select a single object
for this option.

Data Sheet Opens the data sheet for the object. You may only select a single
object for this option.

Annotate Launches the annotate tool on the object. You may only select a
single object for this option.

Properties Opens the properties pages for the object. You may only select a
single object for this option.

Compare Compares two selected module versions. You must select two files
for this option.

Compare to
Previous
Version

Compares the content (diff) of the selected version with the
previous file version in the vault. You must select a single file or
module member for this command.

Advanced
Diff

Launches the Advanced Diff dialog box. You must select two files
for this option.

Related Topics

Vault Browser Overview

Vault Browser Tools

Finding Objects in the Vault Browser

Vault Browser Tools

The vault browser provides a set of navigation tools to help you navigate the information
provided in the vault browser. The tools are available both from a Vault Browser menu,
after the Vault Browser has been invoked, and a set of controls on the right side of the
Vault Browser window.

Click on the fields in the following illustration for information.

DesignSync Data Manager User's Guide

347

 iop[]

Action/Option Result

Select Click to select objects, such as branches and versions, in the vault
browser window. To select an item, click on the item, or press and
hold the left mouse button and draw a rectangle that includes all
the objects you want to select.

Tip: You can also select multiple objects by pressing the CTRL key
while clicking the left mouse button over the desired objects.

Hand Click to navigate within the vault browser window by clicking within
the window and dragging a cursor to the desired section of the
vault tree.

Zoom to
Region

Click to select a region to zoom in on, by drawing a rectangle that
becomes the focus point of the view.

Zoom In Click to zoom in on vault browser window. The center point
remains the same.

Zoom Out Click to zoom out on vault browser window. The center point
remains the same.

Zoom to Fit Click to adjust the graph to fit in the window.

Normal Size Click to adjust the graph to the original viewing size.

Displaying Information

348

Full Screen Click to open the history in a separate full-sized window. To close
the window, click the Full Screen button again or press ESC. The
same options are available in full-screen mode as in-line mode.

Show
Interesting

Click to toggle the graph visibility mode. In the “interesting” mode
only the following objects are shown:

• Tagged versions.

• Tagged branches.

• Branches, which include at least one version.

• Branch point versions.

• Endpoint versions of merge edges.

• The initial object version selected when you invoked the
vault browser.

• Versions created by other users.

• Snapshot branches.

The objects displayed in the Show Interesting Node mode can be
configured by using “Filter Interesting Objects."

Filter
Interesting
Objects

Click to select which interesting items you want displayed in the
vault browser. The options vary depending on the type of object
selected. For more information, see Filter Interesting Objects.

Find Invokes the Find dialog box.

Find Next Click next to advance to the next version that matches the last
criteria in the Find dialog box. It searches down the version history.

Jump Moves your focus to within the vault browser. For information on
the specific Jump options, see Vault Browser Actions.

Show Click to add or remove highlight features for the specified show
option. For information on the specific Show options, see Vault
Browser Actions.

Related Topics

DesignSync Data Manager User's Guide

349

Vault Browser Overview

Vault Browser Actions

Filter Interesting Dialog

Using the Filter interesting objects option allows you to control which objects are
displayed when using the Vault Browser with the Show Interesting mode selected.
Checking any option removes a version from the Vault Browser display if they do not
meet any other inclusion criteria.

Note: Versions or branches excluded by selecting filter conditions are shown if there is
a visible sub-graph rooted at that version or branch.

The filter interesting dialog changes depending on what type of object you have
selected in the vault browser. The following illustrations shows file-based vaults,
modules vaults, and module member vaults.

Click on the fields in the following illustrations for information.

Displaying Information

350

Untagged Versions

Check to remove any versions that are not explicitly tagged from the vault browser
display.

Version not created by me

Check to remove any versions that were not created by the user who is running the
vault browser.

Snapshot branches

Check to remove any versions that are on a snapshot branch. This is applicable only to
module and module member versions.

Member not changed

Check to remove any versions that are unmodified. This is only applicable to module
member versions.

Related Topics

Vault Browser Tools

Finding Objects in the Vault Browser

The vault browser allows you to search the object versions by comments, tag selector,
author, or branch/version number.

Notes:

• If Show Interesting is selected, the find is filtered to search only those objects.
• Find always finds the first appearance of the element being searched for. To find

subsequent versions matching the selected search, use the Find Next button.

DesignSync Data Manager User's Guide

351

Click on the fields in the following illustration for information.

Displaying Information

352

Find what text

Enter the text to search for. DesignSync searches the comments field for the versions to
find the matching string. The text in the comment must be an exact match for the text
typed into the Find dialog.

By default, Find what text is no case-sensitive.

Match case

Select this check box to enable case-sensitivity for the text search.

DesignSync Data Manager User's Guide

353

Find tag

Select the tag to search for from the list. The tag list contains all the branch and version
tags that have historically applied to the selected object.

Find author

Select the username of the author to search for from the list. The list contains all the
authors that have historically created new versions of the selected object.

Find Numeric Name

Enter the numeric version identifier of the branch or version. This is a quick way to
locate a desired numeric version in a vault browser report containing a lot of versions.

Note: This must be an exact match. It does not select partial matches or allow
wildcards, for example, 1.2.11 (branch selector) will not match the versions on that
branch (1.2.11.1, 1.2.11.2, etc.)

Apply to member branches or versions

This is active when browsing a module member vault. It allows the user to choose which
numeric names, modules or members are used for searching.

Related Topics

Vault Browser Overview

Vault Browser Tools

355

Working in SITaR

Using SITaR as a SITaR Designer

The Designer Role

Designers work on the design files within the project sub-modules. Design workspaces
start with a baseline release of all of the sub-modules.

• Designers use the sitr update command to make individual sub-modules editable
within their design workspace, leaving the other sub-modules at the baseline.

• Designers working on a specific sub-module coordinate their work to create a
version of the sub-module that is ready to for submittal as part of the new
baseline.

• Designers test their sub-module work in progress versus the existing baseline
versions of the other sub-modules, or they can selectively fetch specific versions
of other sub-modules for testing.

When the lead Designer responsible for a sub-module believes that it is ready, they
submit it for integration.

Note: SITaR can be configured to preserve the exact module hierarchical structure, or
context, that the submodule is submitted. For information on configuring SITaR to
preserve context, see Defining and Enabling Module Context.

Related Topics

Creating a Workspace

Changing a Sub-Module

Synchronizing a Module with the Baseline

Submitting a Sub-Module for Integration

Synchronizing all Sub_Modules with the Baseline

ENOVIA Synchronicity Command Reference: sitr update

ENOVIA Synchronicity Command Reference: sitr submit

Creating a Workspace

To use a design in the SITaR workflow, a designer must use the sitr populate command
to fetch the design into his workspace. The design is represented as a module

Working in SITaR

356

hierarchy. The top-level or container module name and the path into which it will be
fetched are defined by the SITaR environment variables.

 Note: You must have already created the directory to store the designer workspace and
the name must match the name specified in the SITaR environment variables.

stcl> sitr populate

The sitr populate commands fetches the baseline version of the design.

Note: Before beginning to use SITaR, a designer must define a set of SITaR
environment variables that control the behavior of the SITaR commands. For more
information, see SITaR Environment Variables.

Related Topics

ENOVIA Synchronicity Command Reference: sitr populate

Editing a Sub-Module

Once the design has been fetched a designer may begin development on one or more
of the sub-modules contained in the design. When developing a sub-module, you must
change it to a “development” state using the sitr update command.

stcl> sitr update <ModuleName>

The sitr update command above will fetch the latest version of the specified sub-module
from the appropriate branch into the workspace, replacing the sub-module version
previously fetched as part of the baseline. The contents of the fetched sub-module may
now be modified as desired. When modifications are complete, use the DesignSync ci
command to check them in and create a new version of the sub-module.

Related Topics

ENOVIA Synchronicity Command Reference: sitr update

ENOVIA Synchronicity Command Reference: populate

Synchronizing a Module with the Baseline

While development work is done on one sub-module, releases of other sub-modules
may be submitted and successfully integrated into new baseline releases. The sitr
populate command can be used to pick up any new baseline releases of sub-modules
that are not in the “development” state of a designer’s workspace, without affecting any
development work.

DesignSync Data Manager User's Guide

357

stcl> sitr populate

Related Topics

ENOVIA Synchronicity Command Reference: sitr populate

Submitting a Sub-Module for Integration

When all changes to a sub-module have been checked in and the new sub-module
version is ready to share with the design team, the sitr submit command is used to tag
the sub-module version and inform the SITaR integrators that it is ready for integration.

Note: If development work on a sub-module is being done in more than one workspace,
you must check-in all of the local changes, and populate all of the checked-in changes
from other workspaces prior to running sitr submit.

stcl> sitr submit <WorkspaceDir>

The command above will apply DesignSync tag to the latest version of the Trunk branch
of the specified sub-module. SITaR has a default naming convention for sub-module
tags. The convention takes the form “vX.Y” where X is a major release number and Y is
a minor release number. Each time a sub-module is submitted for integration, SITaR
automatically increments the minor release number and applies the tag to the latest
version on the Trunk branch of the sub-module.

IMPORTANT: When the developer submits a module, he can capture all developer
workspace information, such as any replaced submodule versions, and save it in a
"context" module which can be used by the integrator to reproduce the submodule and
determine if there are there are incompatibilities introduced by other modules. If saving
the context module is enabled, the developer should simply submit the module as usual.
 For more information on setting up the context module, see Defining and Enabling
Module Context. For information about how the integrator populates a module with the
module context, see Recreating the Developer's Workspace.

For more information on SITaR version numbers, see the ENOVIA Synchronicity
Command Reference: sitr submit help.

Related Topics

ENOVIA Synchronicity Command Reference: sitr submit

Synchronizing all Sub-Modules with the Baseline

Once the designer has submitted the submodule, the integrator is responsible for
integrating the new version of the sub-module into the design, testing and releasing a
new version of the baseline, if needed.

Working in SITaR

358

After a baseline containing the submitted version of the sub-module has been released,
the sub-module designers have two options:

1. Continue development of the Trunk: files in the existing sub-module workspaces,
and update all of the other sub-modules to the new baseline using the sitr
populate command. This allows designers to fetch baseline changes to sub-
modules that are not currently under development in their workspace without
affecting the sub-modules that are under development. For more information, see
Synchronizing a Module with the Baseline.

2. Update all of the sub-modules in their workspaces to match the new baseline.

The –force option to the sitr populate command tells it to “force” the current
baseline into a workspace, including replacing all sub-modules that are under
development work with their current baseline versions.

stcl> sitr populate –force

If, after forcing the current baseline into a workspace, a designer wants to
continue development work on specific sub-modules, the sub-modules should be
placed in the “development” state using the sitr update command as described in
Changing a Sub-Module.

Related Topics

Changing a Sub-Module

Synchronizing a Module with the Baseline

ENOVIA Synchronicity Command Reference: sitr update

ENOVIA Synchronicity Command Reference: sitr populate

Branching a Sub-Module

The Designer role can use the sitr mkbranch command to create a sub-module
branch from any sub-module version.

The sitr mkbranch command can perform the following actions:

• Create a branch from any sub-module version. You can specify the version by
sync URL, workspace directory, or workspace module instance name.

• Update your local workspace with the new branch version.
• Change the local workspace selector to point to the new branch.

The format for the sitr mkbranch command is:

DesignSync Data Manager User's Guide

359

stcl> sitr mkbranch [-populate] <BranchName> <Module>

Related Topics

Branching in SITaR

Parallel (Multi-Branch) Development

ENOVIA Synchronicity Command Reference: sitr mkbranch command

Using SITaR as a SITaR Integrator

The Integrator Role

Integrators maintain the container module. The integration workspaces contain the
Latest version of the container module on the specified branch (Trunk: by default).

• Integrators use the sitr lookup command to find module versions that are
candidates for integration into the next baseline, including versions of sub-
modules submitted for consideration by the designers.

• Integrators use the sitr select and sitr integrate commands to manipulate the sub-
module hrefs associated with the Trunk:Latest version of the container module,
and to create a container module version that is a candidate for the next
baseline.

• Integrators run tests within the integration workspace to insure that the versions
of the sub-modules in the candidate version of the container module function
properly together.

• If the sub-module versions do not function properly, the Integrators report their
findings to the designers. The designers can modify the sub-modules causing the
problem and submit new versions, or the integrators can choose different
versions of the sub-modules and continue testing.

• Integrators can recreate a developer workspace, which may be using a different
set of submodules than the official integration, to assist in testing.

When the integrators are satisfied with the test results, they release a new baseline
version of the container module.

The Integration Workspace

An Integration workspace is used to integrate, test, and release new baselines of the
container module. Integration workspaces are inherently different than design
workspaces.

Working in SITaR

360

Within design workspaces, designers populate the baseline version of the project, and
then perform the development work on the Trunk:Latest versions of individual sub-
modules.

Within the integration workspaces, integrators manipulate the Trunk:Latest version of
the container module, but do not modify the contents of any individual sub-modules.
Any sub-module changes must be made in the design workspaces and submitted to the
integrator.

Creating an Integration Workspace

To use a design using the SITaR workflow, integrators use the sitr populate command
to fetch the Trunk:Latest version of the container module into their workspaces.

stcl> sitr populate

Notes:

• Before beginning to use SITaR, a designer must define a set of SITaR environment
variables that control the behavior of the SITaR commands. For more information, see
SITaR Environment Variables.

• When the designer captures the module context when submitting a module, the integrator
can populate a workspace with the full context information using the standard
DesignSync populate command. For more information, see Recreating the Developer's
Workspace.

Related Topics

ENOVIA Synchronicity Command Reference: sitr populate

Workflow for Updating the Container Module

The typical flow for an SITaR integrator is:

1. Locate modules versions to be considered for integration into the container
module.

2. Select module versions to add or remove from the container module.

Note: You select the changes individually, but you can integrate multiple
selections with a single integration command.

3. Integrate the selected changes into the Trunk:Latest version of the container
module.

4. Test the Trunk:Latest version of the container.
5. If the tests fail, repeat the select/integrate/test process.
6. If the tests pass, Release a new baseline version of the container module.

DesignSync Data Manager User's Guide

361

Related Topics

Locating Submitted Modules for Integration

Selecting Sub-Modules for Integration

Integrating Selected Changes into the Container Module

Testing the Integration Version of the Container Module

Releasing a New Baseline

Locating Submitted Modules for Integration

The sitr lookup command displays versions of the existing container sub-modules that
have been created submitted (or tagged) since the time that the most recent baseline
release was created.

stcl> sitr lookup

The sitr lookup command can also be used to look up the tagged module history of a
specified module, or to look up all tagged module version since a specified date and
time. For more information, see the ENOVIA Synchronicity Command Reference: sitr
lookup command.

Note: The lookup command searches across all modules residing on servers defined in
the sync_servers.txt file.

Related Topics

DesignSync Data Manager Administrator's Guide: SyncServer List Files

ENOVIA Synchronicity Command Reference: sitr lookup

Selecting Sub-Modules for Integration

The sitr select command targets tagged module versions for addition to or deletion from
the container module. The module is added to the default relative path location
specified by the sitr_relpath environment variable, unless the -relpath option is used to
select a different relpath. If a sub-module already exists in the relpath selected, the old
sub-module is targeted for deletion during the next integration.

stcl> sitr select <module>@<version>

Working in SITaR

362

stcl> sitr select -delete <module>@<version>

Note: When using overlapping modules, If you try to add a module to a relpath that
already contains a module, you must specify the module using the -name option. For
more information on specifying options to sitr select, see the ENOVIA Synchronicity
Command Reference: sitr select.

For a list of the current selected changes, specifying ‘sitr select’ with no arguments:

stcl> sitr select

Note: at any time you can clear all of the selected changes by either exiting
DesignSync, or by using the –clear option to sitr select:

stcl> sitr select –clear

Tip: The sitr update command assumes all editing is done on the Trunk branch,
however SITaR allows integrators to select any tagged version of a sub-module,
including versions that are on a non-Trunk: branch. To provide a stable workflow, you
should avoid integrating non-Trunk: versions of a sub-module into the container. If you
decide to integrate a non-Trunk version however, you should only be do it if there are
no plans to change the contents of the associated sub-modules for the project.

Related Topics

ENOVIA Synchronicity Command Reference: sitr select

Integrating Selected Changes into the Container Module

After the changes for integration have been selected, you integrate them into the
Trunk:Latest version of the container by using the sitr integrate command. Then you
populate the new contents of the container into the integration workspace.

stcl> sitr integrate

Related Topics

ENOVIA Synchronicity Command Reference: sitr integrate

Testing the Integration Version of the Container Module

DesignSync Data Manager User's Guide

363

The sitr integrate command updates the Trunk:Latest version of the container, but does
not release a new baseline. The SITaR workflow assumes that after the sitr integrate
command is used to create the new Trunk:Latest version of the container into an
integration workspace, the Integrator will run tests on the contents of the workspace to
ensure that everything functions properly together.

If there are problems with the sub-modules being integrated, the integrators can either
contact the appropriate designers to have them update and submit new versions of the
problem sub-modules, or re-execute the sitr select/sitr integrate process to try different
combinations of different versions of the sub-modules to attempt to create a version of
the container module that passes the tests.

Locating a Context Module Version

SITaR stores the module context information in a separate module, called a context
module, which is associated on a per-client basis with SITaR enviromment variables.
 Each member version in the context module is associated with a specific SITaR
submittal.

In order for the integrator to know which SITAR submittal to populate should they need
to test against a copy of the developer's workspace, SITaR includes a lookup command.
 The SITaR context command allows the integrator to either list all the module members
along with the submittal version information or the context module version associated
with a specified submittal.

stcl> sitr context -allconfigs | -release <release>
<SITR_Submodule_Name>

 For more information, see the ENOVIA Synchronicity Command Reference: sitr context
command.

Recreating the Developer's Workspace

The integrator may want to recreate a developer workspace to view the differences
between the environment the developer worked in; for example, if the developer is
working with an older or a pre-release copy of the module that has not been integrated
into the baseline being tested by the integrator.

Recreating the Developer's Workspace:

1. Determine which submittal version of the submodule is of interest using the sitr
context command:
‘sitr context –release <releaseName> <SubModuleName>’

Working in SITaR

364

The command returns a tcl list. Within the TCL list is a sitr_url property containing
the SYNC URL for context module version. the sitr_modified_modules value
contains a list of the next level dynamic selectors containing local modifications.

2. Create a new workspace populated with the URL obtained from the sitr_context
command. Use the standard DesignSync populate command, not the sitr populate
command.

 ‘populate –recursive –hrefmode static<sitr_ul>

This populates the workspace in static mode to fetch the versions of the modules
that were present in the developer's workspace at the time.

Note:You should not perform attempt to modify or checkin this workspace. In
order to make and check in modifications, either use the usual integration
workspace, or repopulate this workspace in -href dynamic mode.

Releasing a New Baseline

Once the new Trunk:Latest version of the container module passes all necessary tests,
the Integrator can establish a new baseline using the sitr release command. Creating a
new release of the baseline increments the version tag associated with the current
baseline release and applies the new tag to the Trunk:Latest version of the container
module. It also updates the baseline tag defined by the SITaR environment variables to
the appropriate version of the container module so developers can populate their
workspaces with the latest baseline.

stlc> sitr release

Note: For more information on SITaR version tags, see the ENOVIA Synchronicity
Command Reference: sitr submit command help.

Related Topics

Synchronizing all Sub-Modules with the Baseline

ENOVIA Synchronicity Command Reference: sitr release

Branching a Container or Sub-Module

The Integrator can use the sitr mkbranch command to branch either a container
module or sub-module.

The sitr mkbranch command can perform the following actions:

DesignSync Data Manager User's Guide

365

• Create a branch from the specified container or sub-module version. You can
specify the version by sync URL, workspace directory, or workspace module
instance name.

• Update your local workspace with the new branch version.
• Change the local workspace selector to point to the new branch.
• Integrate the newly created sub-module into the container module.

The format for the sitr mkbranch command is:

stcl> sitr mkbranch [-populate] [-integrate] <BranchName>
<Module>

Related Topics

Branching in SITaR

Parallel (Multi-Branch) Development

ENOVIA Synchronicity Command Reference: sitr mkbranch command

Configuring SITaR

SITaR Environment Variables

SITaR uses environment variables to simplify the SITaR command options by defining
default behaviors and roles.

Most of the SITaR commands cannot run if the SITaR environment variables are not
defined.

The SITaR environment variables are:

sitr_alias
Defines the name of the tag used by SITaR to define the latest qualified ‘baseline’ release
of the container module, for example:

export sitr_alias=baseline

sitr_automcache

Determines whether automatic mcaching is on or off. By default automcaching is
on. To disable automcache, set the value to 0. If the scripted mirror functionality
is used to maintain the mcache, turning off sitr_automcache provides a
performance enhancement to sitr populate.

An example of disabling the environment variable is:

Working in SITaR

366

export sitr_automcache=0

sitr_branch
Defines the default branch of the container module. This default is used by the sitr
integrator for the sitr integrate and sitr release commands. If the variable is not defined,
"Trunk" is used as the default branch.
An example of setting the environment variable is:

export sitr_branch=rel2.6

sitr_container
Defines the name of the container module for the project, for example:

export sitr_container=projxContainer

Note: This documentation uses ‘ projxContainer’ as the name of the container
project to be unambiguous about which module is the container module. In
practice, the container module can have any desired name.

sitr_context_required

Indicates whether the module context information is captured during a submit
type action.

There are two possible values:

• 0 (zero) - Indicates that the module context information is not gathering during
submit and release operations. This means that you may not be able to recreate the
workspace conditions exactly, for example, if, during test failure, you want to
recreate the test in the workspace to see why it worked before integration.

• 1 (one) - Indicates that the module context information is preserved when the
workspace is submitted. This means that should there be a need, for example,
during a test failure, the integrator could exactly reproduce the development
workspace that submitted the change. (Default)

sitr_context_module
If the sitr_context_required variable is enabled (sitr_context_required=1), this variable
must be set to a valid module to store the context for submit and release actions within
sitr. Note: Do not specify a selector for the module. To specify a branch selector, use the
sitr_context_branch variable.

sitr_context_branch
If the sitr_context_required variable is enabled, this variable can be set to a branch
selector. The branch selector, in conjunction with the sitr_context_module defines the
module and branch information for the module used to store submittal context
information. If no branch is specified, sitr uses the default Trunk: branch.

sitr_integrator_update

DesignSync Data Manager User's Guide

367

Indicates whether the integrator is allowed to run the "sitr update" command. Ordinarily
the user must have a Design role, to be allowed to run the "sitr update" command.

There are two possible values:

• 0 (zero) - Indicates that the integrator is not allowed to run the "sitr update"
command. (Default)

• 1 (one) - Indicates that the integrator is allowed to run the "sitr update"
command.

sitr_min_comment
Indicates whether a minimum comment is required by any sitr command that has a -
comment option.

• 0 (zero) or no variable - indicates that no minimum comment is required.
• 1 (one) or greater - indicates the minimum comment length required

sitr_relpath

Defines the default relationship between the container module workspace directory
(defined by sitr_workdir), and the base directory of each sub module.

There are two possible values for sitr_relpath:

• Cone - Indicates that the default directory structure is hierarchical. Each of the sub
modules is placed in a sub directory of the sitr_workdir, for example:

If you have sub modules named “ ALU” and “memory” their default relative
paths are: ./ ALU and ./memory, and, given sitr_workdir=~/ Workpaces/
projxContainer, their base directories are:

~/Workspaces/ projxContainer/ ALU

~/Workspaces/ projxContainer/memory

• Peer - Indicates that the default directory structure is flat. Each of the sub modules
is placed in directories parallel to sitr_workdir, For example:

If you have sub-modules “ ALU” and “memory”, their relative paths are ../
ALU and ../memory, and, given sitr_workdir=~/Workspaces/
projxContainer, their base directories are:

~/Workspaces/ ALU

Working in SITaR

368

~/Workspaces/memory

 An example of setting the environment variable is:

export sitr_relpath=Cone

sitr_role
Defines the SITaR role for the user. There are 2 possible values:

• Design - Users modifying the individual sub modules
• Integrate - Users defining and maintaining the container module

An example of setting the environment variable is:

export sitr_role=Design

sitr_server
Defines the URL for of the server hosting the container module, for example:

export sitr_server=sync://syncServer1:2647

Note: The ‘ sitr_server’ is the first server searched by the ‘ sitr lookup’ and ‘ sitr
select’ commands, and the default server used by the ‘ sitr mkmod’ command.

sitr_workdir
Defines the workspace directory of the container module, for example:

export sitr_workdir=~/Workspaces/ projxContainer

Note: The examples above show setting the environments on UNIX in bourne shell (
sh).

Tip: Create project specific setup files that define the SITaR environment variables.
 Users can then “source” the appropriate project setup file prior to executing any SITaR
commands. This reduces setup time, minimizes the possibility of user error, and
guarantees that all users are using a controlled environment defined for them.

Related Topics

Sample SITaR Environment Variable File

ENOVIA Synchronicity Command Reference: sitr env

Sample SITaR Environment Variable File

DesignSync Data Manager User's Guide

369

This example shows a SITaR environment variable file for the Designer team. This
example assumes a UNIX csh environment.

setenv sitr_role Design

setenv sitr_container projxContainer

setenv sitr_alias baseline

setenv sitr_automcache 0

setenv sitr_server sync://syncServer1:2647

setenv sitr_workdir ~/Workspaces/projxContainer

setenv sitr_relpath Cone

setenv sitr_min_comment 10

setenv sitr_context_required 1

setenv sitr_context_module
sync://syncServer1:2647/Modules/Context/projxContext

setenv sitr_context_branch Trunk

Related Topics

SITaR Environment Variables

Creating a SITaR Container Module

The SITaR container modules "contain" the sub modules that make up the design.
 Usually, the container module only has hrefs to sub modules. All design files should
reside within the sub modules and not within the container module.

To create a container module you:

1. Set up the SITaR environment variables as described in the SITaR Environment
Variables topics.

2. Execute the sitr mkmod command with the –top option

sitr mkmod –top

Working in SITaR

370

The SITaR environment variables are used to create the specified SITaR container
module on the specified SITaR server.

After the SITaR container module has been created, the individual sub modules can be
created and/or integrated in to the container module.

Related Topics

Creating a SITaR Sub-Module

ENOVIA Synchronicity Command Reference: sitr mkmod

Defining and Enabling Module Context

SITaR has the capability to recreate the developer workspace exactly, for example if a
different submodule is used to replace the expected submodule, by saving the module
context in a separate module at the same time the developer's module is submitted.
Once the context module is defined, and context preservation is enabled, the developer
automatically updates the context module with every submittal -- there is no additional
action required by the developer.

Then, if needed, the integrators can populate their workspace as described Recreating
the Developer's Workspace.

Tip: For ease of deployment, this procedure is going to recommend creating a SITaR
environment script that can be sourced by the .login or shell initialization script (.profile,
.cshrc etc.). You are not required to set your variables this way, but the variables
included in this procedure must be set in order to enable module context preservation.
For best practices, a site should maintain two versions of the script, one for developers
and one for integrators; setting all of the SITaR environment variables for the
appropriate user environment.

Defining Module Context:

1. Create or modify the SITaR environment script to include the context variables.
 To enable module context preservation, you must set:

• sitr_context_required to 1 to enable module context
preservation.

• sitr_context_module to the server URL for the module that
will hold the context information. This module is a module ONLY
to store the module context information. It is not the top module
in your SITaR configuration, or any submodule in the
architecture..

DesignSync Data Manager User's Guide

371

You can optionally set:

sitr_context_branch to store the branch name. If no branch
name is selected, the Trunk branch is the default.

Note: Do not specify the branch with a : identifier.

2. Save the SITaR environment script to a memorable name such as .sitr_developer
or .sitr.context.

3. Source the environment script within the default .login or shell initialization script
(.cshrc, .profile, etc., so that it is available to your entire team:
source ~/.sitr_developer

4. Distribute the script to your users.

Creating a SITaR Sub-Module

All design work should reside inside the sub modules of a SITaR project. The SITaR
sub-modules are created with the sitr mkmod command.

stcl> sitr mkmod -name <Module>

When the sitr mkmod command creates a sub module, it tags the Trunk:Latest version
of the module as v1.1, and submits it for integration. If the module does not already
exist, the v1.1 module version tagged is empty.

Note: You may need to populate your workspace to see the module.

Examples of using the sitr mkmod command

The ‘sitr mkmod’ command can be used to:

• Create a new/empty module on the default SITaR server.

sitr mkmod –name ALU

• Create a new/empty module on a server that is not the default SITaR server.

Exp: sitr mkmod –vaultpath
sync://syncServer2:2647/Modules/ALU2

• Define an existing module as a SITaR module.

sitr mkmod –vaultpath
sync://syncServer2:2647/Modules/OLD_ALU

Related Topics

SITaR Environment Variables

Working in SITaR

372

Creating a SITaR Container Module

ENOVIA Synchronicity Command Reference: sitr mkmod

ENOVIA Synchronicity Command Reference: sitr env

Creating an Initial Baseline Release

After the container module and desired sub modules have been created, an integrator
should create the initial baseline release of the project to release to the designers. This
allows them to begin working in a SITaR workflow environment.

To create the initial baseline release:

1. Define all the SITaR environment variables for the integrator as described in SITaR
Environment Variables.

2. Use the ‘sitr select’ command to select all of the versions of the sub modules being
added to the container.

3. Use the ‘sitr integrate’ command to integrate the selected sub modules into the
Trunk: version of the container module, and populate the Trunk: version into their
integration workspace.

4. Run any necessary tests on the Trunk: version of the container.

5. Use the ‘sitr release’ command to release the v1.1 version of the container.

Example of creating a baseline configuration:

You are the integrator of the projx project and you want the initial baseline release of
projx to have 3 sub modules:

projx - To contain the top level design files for projx

ALU - To contain the ALU design files

memory - To contain the memory design files.

You have used ‘sitr mkmod’ to create the initial release of both the projx and ALU sub
modules, and you are using the v1.5 version of the memory module.

You have defined a cone structure for your SITaR environment. Your workspace
directories should look like this:

~/Workspaces/projxContainer/projx

DesignSync Data Manager User's Guide

373

~/Workspaces/projxContainer/ALU

~/Workspaces/projxContainer/memory

Within DesignSync, select the appropriate module versions for addition into the
projxContainer module at the default relative path of each sub module:

stcl> sitr select projx@v1.1

stcl> sitr select ALU@v1.1

stcl> sitr select memory@v1.5

Note: If you are unsure what modules are available to be integrated, use the sitr lookup
command.

Integrate the above selections into the Trunk: version of the projxContainer module, and
populate this version into the integration workspace.

stcl> sitr integrate

Test the Trunk: version of the projxContainer module, if necessary. Create the v1.1
release of the projxContainer module, and tag it as the ‘baseline’ release.

stcl> sitr release

The baseline release is now ready to be used by the designers in a development environment.

Related Topics

SITaR Environment Variables

Creating a SITaR Container Module

Creating a SITaR Sub-Module

ENOVIA Synchronicity Command Reference: sitr lookup

ENOVIA Synchronicity Command Reference: sitr select

ENOVIA Synchronicity Command Reference: sitr integrate

ENOVIA Synchronicity Command Reference: sitr release

Working in SITaR

374

Branching a Container or Sub-Module

The Integrator can use the sitr mkbranch command to branch either a container
module or sub-module.

The sitr mkbranch command can perform the following actions:

• Create a branch from the specified container or sub-module version. You can
specify the version by sync URL, workspace directory, or workspace module
instance name.

• Update your local workspace with the new branch version.
• Change the local workspace selector to point to the new branch.
• Integrate the newly created sub-module into the container module.

The format for the sitr mkbranch command is:

stcl> sitr mkbranch [-populate] [-integrate] <BranchName>
<Module>

Related Topics

Branching in SITaR

Parallel (Multi-Branch) Development

ENOVIA Synchronicity Command Reference: sitr mkbranch command

Reference

Overview of SITaR Workflow

SITaR (Submit, Integrate, Test, and Release) is a simple workflow for projects that
consist of multiple blocks, or modules, developed by several contributors. The workflow
is based upon the concept of two distinct project roles:

• Designers contribute to the development of blocks or modules.
• Integrators verify the stability of the blocks or modules, and assemble them into

functional packages from which designers continue to develop. This provides a
qualified and stable baseline for development work.

By working from a qualified baseline, a designer is able to develop a module within a
known, trusted environment. When module development has reached the point where a
new version should be available to the entire design team, the Designer submits (the ‘S’
in SITaR) the new version of the module for integration.

DesignSync Data Manager User's Guide

375

At this point the Integrator may chose to integrate (the ‘I’ in SITaR) the new module
version into the design. The integration process may include several new module
versions submitted by any number of contributors. The integrator tests (the ‘T’ in SITaR)
the new module versions within the overall design to ensure that everything functions
together. When satisfied with the test results, the Integrator creates a new release (the
‘R’ in SITaR) of the design. This release then becomes the new baseline from which
module development continues.

Designer and Integration Workspaces

Integration workspaces and Design workspaces should be kept separate. Design work
should never be done inside an Integration workspace. Integrators who sometimes do
Design work should maintain separate Integration and Design workspaces.

Because Integration workspaces are used to do testing prior to release of a new
baseline, it is imperative that contents of the workspace exactly matches what will be
released as the baseline. If Design work is being done within an Integration workspace,
it is possible for the tests to pass, due to the presence of the Trunk: version of a sub-
module in the workspace that is not currently part of the Trunk: version of the container
module, and therefore will not be part of the baseline to be created.

Related Topics

SITaR Module Structure

The Designer Role

The Integrator Role

SITaR Module Structure

Working in SITaR

376

SITaR provides a simple use model, with a two levels of hierarchy. A project is
partitioned into a “Container Module” and a number of connected sub-modules. All of
the design work resides in the sub-modules. Hierarchical references (hrefs) within the
container module bind the sub-modules together into a functioning system.

Using DesignSync as an example, DesignSync itself is composed of components (sub-
modules) that together become the DesignSync product. The DesignSync lead creates
DesignSync as a container module, consisting only of hierarchical references to
submodules for each of the products.

Note: SiTAR does support overlapping modules within a single module base directory,
although this example does not show that configuration.

Designing and Implementing Your Module Structure

When beginning a SITaR project, you must design your module structure. This includes
determining how to partition the design into a number of sub-modules. Usually the
project is broken along functional lines. For design data management, however, it is
useful to also consider the number of people that will be working on each of the sub-
modules. If the team working on an individual sub-module is too large, or does not

DesignSync Data Manager User's Guide

377

communicate well, efficient management of the changes to the design can become a
burden.

Ideally, there will be a small number of designers assigned to any given sub-module.
Keeping the design teams small helps facilitate communication, and minimizes design
conflicts that can arise when multiple people are modifying the same design
concurrently.

SITaR helps facilitate concurrent design of the top-level project, but the sub-module
design teams must handle the concurrent design process within any given sub-module.

Related Topics

Overview of SITaR Workflow

Branching in SITaR

SITaR (Submit, Integrate, Test, and Release) supports parallel (Muti-branch)
development for the container module and sub-modules in the SITaR methodology.

The Designers can branch any sub-module.

The Integrator can branch the container module, a sub-module, or link a sub-module on
any branch to the container module.

Related Topics

Parallel (Multi-Branch) Development

Branching a Sub-Module (Develop role)

Branching a Container or Sub-Module (Integrate role)

ENOVIA Synchronicity Command Reference: sitr mkbranch command

379

Techniques

Getting Started with the GUI

Using the DesignSync GUI

This document provides instructions to help you create a work area and quickly get
started using DesignSync to manage your design data.

Assumed Environment:

(UNIX platform, locking work style)

The instructions in this document assume that:

• You are working in a UNIX environment.
• The DesignSync tools have been installed.
• To use DesignSync, you invoke the DesignSync GUI (DesSync) and use it to

perform revision control operations.
• In your environment:

o You have set the SYNC_DIR variable. (This environment variable defines
the path to your DesignSync installation directory; you need to set this
variable before running DesignSync.)

o The PATH variable includes $SYNC_DIR/bin so that the operating system
can find the DesSync executable.

This document uses a scenario to illustrate the steps you use to get started. In the
scenario:

• You are a designer working on a project called ASIC.
• On a DesignSync server (also called a SyncServer) your project leader or

DesignSync tools administrator has created a SyncServer folder where you can
put your design data for your ASIC project. The SyncServer has the <host
name>:<port> of ca-srvr.Acompany.com:2647 (a remote vault). The URL for
the Projects folder is: sync://ca-srvr.Acompany.com:2647/Projects.

• Your project team follows the locking work style where you always check out
with a lock an object that you plan to edit. Other team members can fetch (check
out without a lock) the object, but no one else should make changes while you
hold the lock.

• Your project leader has set up a project directory with subdirectories for the
project team members. The project directory has the UNIX hierarchy:

Techniques

380

/data/devel/ASIC/users
user1 user2 user3 . .

• Your user directory is /data/devel/ASIC/users/user3.

Creating a Work Area

Suppose you are a designer and you have developed an ALU design. Now you are
ready to place your design files under revision control, so you can share them with the
other members of your project team.

To put your files under revision control and share them with team members, you first
must associate your local top-level design directory with a SyncServer folder (also
called a vault folder). Then you check in your files to the vault.

Once you check in your files, the design directory you associated with the vault folder
becomes your DesignSync work area. A work area is a directory hierarchy that reflects
the data hierarchy in the vault. A work area is also the location from which you check file
versions into and out of the vault. You are the only user accessing your work area, and
you have full control over the files and files versions that exist there.

Task 1: Associate your local directory with the SyncServer folder and check in
files.

To put your files under revision control, you can use the DesignSync Workspace
Wizard. The Wizard helps you perform two tasks: associate your local directory with the
vault and check in files.

1. Invoke DesignSync. (From your UNIX shell, enter DesSync.)

The DesignSync main window appears and then the Workspace Wizard.
(If the Workspace Wizard does not appear, select Revision Control =>
Workspace Wizard.)

2. Click Create a new project (I have files that I want to put under revision control,
creating a new project vault). Then click Next.

3. In the Select Vault dialog, type the URL of the project where you will place your
files or select one from the pull-down list. Then click Next.
The URL specifies the sync protocol plus the SyncServer name and port number
and then the vault folder. For example, you might enter:
sync://ca-srvr.ACompany.com:2647/Projects/ASIC/alu8

(In certain cases, DesignSync displays a SyncSecurity dialog. Enter your user
name and password as defined in the ProjectSync User's Profile. Then click OK.)

DesignSync Data Manager User's Guide

381

Note: The SyncServer folder does not have to exist for you to specify it. For
example, suppose the ASIC folder exists on the SyncServer but there is no alu8
subfolder. When you specify a vault folder that does not exist (alu8),
DesignSync displays a warning so you can make sure that your vault path is
correct and then creates the vault folder when you check in design data.

4. In the Select Workspace dialog, select the top level directory for the files you
want to put under revision control (alu8) and click Next.

If the Wizard does not display the directory, click Browse to set another
directory.

Optional: Type the name of a bookmark in the Bookmark field for future
reference.

5. In the Exclude Files dialog, specify the names or file types of files you do not
want to place under revision control. Then click Next.

For example, suppose you do not want to put under revision control temporary files,
log files, certain files you used in an experiment, or files with notes to yourself. Your
specification might be: temp,*.log,experiment1.*,notes.txt.

6. In the Specify Object State dialog, in answer to the question "What should be
left behind when the checkin completes?", select Unlocked copies. Then click Next.
7. In the Specify Check-In Comment dialog, type a comment about the files you
are checking in. Then click Next.
8. In the Finished dialog, click Finish.

The Workspace Wizard:

• Creates the alu8 vault folder on the SyncServer and associates it with (ca-
srvr.ACompany.com:2647/Projects/ASIC/alu8) with your project work
area directory (/data/devel/ASIC/users/user3/alu8).

• Sets the persistent selector list for the work area. This list specifies the version or
branch a revision control command operates on when no version or branch is
explicitly specified for the operation (through the Version Selector field or the -
version and -branch options to commands).

• Checks in the files to the vault (the SyncServer folder you specified)
• Fetches copies of those files from the vault to your workspace.

The files are now under DesignSync revision control. To access these new files in the
vault, other team members need to use DesignSync to repopulate their work areas.

Tip: Repopulate your work area periodically to keep it up-to-date, reflecting the most
recent versions and any new files added to the vault. When you use populate to update
your work area, DesignSync performs an incremental populate operation. An

Techniques

382

incremental populate is a kind of fast populate operation which fetches copies of only
the vault folders that have changed.

Creating a Work Area

To join the development effort for a project, you first must create and populate a work
area in your user directory. A work area is a directory hierarchy that reflects the data
hierarchy in the vault. A work area is also the location from which you check file
versions into and out of the vault. You are the only user accessing your work area, and
you have full control over the files and file versions that exist there.

Task 1: Create and populate your work area folder

To create and populate your work area, you can use the DesignSync Workspace
Wizard. The Wizard helps you perform two tasks: associate your work area with the
vault and populate your work area with files from the project.

1. Invoke DesignSync. (From your UNIX shell, enter DesSync.)

The DesignSync main window appears and then the Workspace Wizard.
(If the Workspace Wizard does not appear, select Revision Control =>
Workspace Wizard.)

2. Click Join an existing project (I want to create a new workspace by
populating files from an existing project vault). Then click Next.

o In the Select Vault dialog, type the URL of the project you want to join or select
one from the pull-down list. Then click Next.
The URL specifies the sync protocol plus the SyncServer name and port number
and then the vault folder. For example, you might enter:
sync://ca-srvr.ACompany.com:2647/Projects/ASIC

(In certain cases, DesignSync displays a SyncSecurity dialog. Enter your user
name and password as defined in the ProjectSync User's Profile. Then click OK.)

4. In the Select Workspace dialog, select the directory to be the top level directory
for the work area and click Next.

If the directory does not exist, you can create it by clicking Browse and creating
a new folder. To set up your work area for the ASIC project files for example,
under the /data/devel/ASIC/users/user3 directory you might create the
Latest subdirectory. Then you would select the Latest directory and click
Next.

Optional: Type the name of a bookmark in the Bookmark field for future reference.

DesignSync Data Manager User's Guide

383

5. In the Specify Selector or Configuration dialog, specify the branch or version
of design files you want to be put in your work area. Then click Next.

o If your environment does not use branches, you can accept the default
selector of Trunk. (Trunk is the default branch tag for branch 1, the default
branch.) DesignSync fetches the Latest version of files on the Trunk
branch.

o If your development environment uses branches, type the branch
selector for your project's files (for example Rel4:Latest).

6. In the Specify Object State dialog, in answer to the question "In what state
should the objects be populated?", select Unlocked copies.
7. In the Specify the Mirror dialog, select the mirror directory. If you are not using a
mirror model, click Next.
8. In the Finished dialog, click Finish.

The Workspace Wizard:

• Associates the vault folder (ca-
srvr.ACompany.com:2647/Projects/ASIC) with your project work area
directory (Latest).

• Sets the persistent selector list for the work area. This list specifies the version or
branch a revision control command operates on when no version or branch is
explicitly specified for the operation (through the Version Selector field or the -
version and -branch options to commands).

• Fetches copies of project files from the vault.

Tip: Repopulate your work area periodically to keep it up-to-date, reflecting the most
recent versions and any new files added to the vault. When you use populate to update
your work area, DesignSync performs an incremental populate. An incremental
populate is a kind of fast populate operation which fetches copies of only the vault
folders that have changed.

Creating File Versions

As you go about your daily design tasks, you'll need to make modifications to the design data
files. You make all of these modifications in your private work area to files that you have
checked out of the vault. When you're ready to share your modifications with other users, you
can check your files into the SyncServer vault, where other users can access them.

Task 2: Checking out a file for editing

To make changes and create a new version, you should first check out the file with a
lock. When you check out the file with a lock, DesignSync fetches a copy of the file to
your work area and sets the permissions to read-write. Then it locks the file in the vault,
so that only you, the user holding the lock, can check in a newer version of the file.

Techniques

384

To check out a file with a lock:

1. In DesignSync, click the file you want to check out (for example, decoder.v).

To select more than one file in a folder, press Ctrl and click each file.

2. Select Revision Control => Check Out.
3. In the Check Out dialog:

o Click Locked Copies.
o Type a comment if you want. (A comment usually is not required for a

checkout and you can always add a comment when you check in the file.)
4. Click OK.

After checking out a file to your work area, you can invoke an editor appropriate for the
file and make changes.

Tip: To "undo" a checkout when you have a file locked but have decided not to make
changes, select Revision Control => Cancel Checkout. See Task 4: Releasing a lock
on a file.

To check out with a lock all files in a folder and all of its subfolders:

Suppose you want to check out for edit not only all the files in the top folder but also all
of the files in its decoder, alu, and register subfolders (a recursive checkout). All
you have to do is select the top folder and perform a check-out operation:

1. In the DesignSync window, select the folder that contains the files and subfolders
you want to check out (top).

To select more than one folder, press Ctrl and click each folder.

2. Select Revision Control => Check Out.
3. In the Check Out dialog:

o Click Unlocked Copies.
o Type a comment, if you want. (A comment is not required for a checkout.

You can always add a comment when you check in the file.)
4. Click Check Out.

DesignSync checks out all the files in the top folder, in all its subfolders, in all
their subfolders, and so on down through the hierarchy. DesignSync performs
this type of checkout (the equivalent of the co -recursive command) by default
when you perform a check-out operation from the DesignSync GUI. (To see the
command options DesignSync uses, look at the command display box at the
bottom of the Check Out dialog.)

Task 3: Checking in a file

DesignSync Data Manager User's Guide

385

Once you have made changes to a file, you need to check in the file to create a new
version in the vault and to make it available to other team members.

1. In the DesignSync main window, select the file you want to check in (for
example, decoder.v).

To select more than one file in a folder, press Ctrl and click each file.

2. Select Revision Control => Check In.
3. In the Check In dialog:

o Click Unlocked copies.
o Type a comment, if you want. (It is a good idea to include a comment

explaining the changes you made. In addition, your project leader may
have set up access controls that require a check-in comment of a certain
length.)

4. Click OK.

• If you checked out a file for editing (by selecting the Locked copies option) but
did not change it, the check-in operation creates no new version. Instead, it
releases the lock and marks the file as read-only in your work area.

To check in a folder of files:

If you checked out for edit many files in a work area, you can perform a blanket checkin
to check them all in at once. This blanket checkin checks in all files that have been
modified. Suppose, for example, that you want to check in all files in the top folder and
in its decoder, alu, and register subfolders

1. In the DesignSync main window, select the folder that contains the files and
subfolders that you want to check in (for example, top).

2. Select Revision Control => Check In.
3. In the Check In dialog:

o Click Unlocked copies.
o Type a comment, if you want. (It is a good idea to include a comment

explaining the changes you made. In addition, your project leader may
have set up access controls that require a check-in comment of a certain
length.)

4. Click OK..

DesignSync inspects all files in the top folder and its subfolders and checks in
any files that were modified. DesignSync performs this type of checkin (the
equivalent of the ci -recursive command) by default when you perform a check
in from the GUI. (To see the commands DesignSync uses, look at the command
display box at the bottom of the Check In dialog.)

Task 4: Releasing a lock

Techniques

386

Suppose another team member notifies you that she needs to make changes to
decoder.v, a design file that you have checked out with a lock. To release the lock on
the file and make it available for others to edit, you can either:

• Check in the file (Revision Control => Check In), which releases the lock and
puts a copy of the modified file into the vault. (In most situations, this is the action
you'll probably want to take.)

• Cancel the check-out operation you performed on that file (Revision Control =>
Cancel Checkout). This option effectively performs an "un"checkout operation
on the file you checked out with a lock: it releases the lock and (if your project
leader defined a default fetch state of share) keeps a copy of the file in the
directory.

To cancel a checkout (and release the lock) on a file:

1. In the DesignSync main window, select the file (for example, decoder.v). To
select more than one file in a folder, in the DesignSync main window, press Ctrl
and click each file.

2. Select Revision Control => Cancel Checkout.

Some points about how the Cancel Checkout option works:

• It cancels only a checkout that you performed. To unlock a file that is locked
by another user, select Revision Control = > Unlock.

• If you have modified the file and want to keep your changes, check in the
file. See Task 3: Checking in a file.

• If you select a folder the DesignSync GUI and then select Cancel Checkout,
DesignSync cancels the checkout on all of the files in the folder and in all of its
subfolders.

Configuration/Release Management

When you have in your work area a set of design files that meet some requirement,
you'll want to mark this file set for future reference. For example, when the design
passes simulation, you might want to mark the current versions of your design files as
"passing". You can mark files by selecting the Revision Control => Tag. (The set of
files that share a common tag is sometimes called a configuration.) You can also use
the Tag selection to retrieve specific file versions when creating a work area in the
future.

Note: This section describes working with DesignSync design configurations. SITaR
configurations use a similar concept, which is described in Overview of SITaR
Workflow. ProjectSync has a different concept of a configuration. For information, see
ProjectSync Help: What Are Configurations?

DesignSync Data Manager User's Guide

387

Task 5: Creating a design configuration/release

To create a design configuration, first select the items (files or folders) you want to have in the
configuration; then select Revision Control => Tag. However, before you perform the tag
operation, you should check any modified files into the vault and update your work area with a
populate operation.

Before you tag:

• Check in files that you have modified.
• The tag operation attaches a tag (a text string) to a specific file version. However,

DesignSync attaches tags only to file versions in the vault, not to local copies of
files. For this reason, before you perform a Tag operation, check in any files that
are locally modified or checked out with a lock in your work area.

If you do not check in locally modified objects before you use the tag command,
the tag operation displays an error message for each locally modified object and
does not tag any version of those objects in the vault. This is the default behavior
of the tag operation. For example, suppose you check out decoder.v (version
1.3) with a lock and modify it. If you try to tag the modified version, DesignSync
displays an error message. To have the tag added to your modified version, you
need to first check in decoder.v. DesignSync then creates version
decoder.v;1.4 in the vault. When you add a tag to the file, DesignSync tags
version 1.4.

• Make sure your work area is up-to-date.

Although tags reside on file versions in the vault, the version of the file in your
work area determines the version that DesignSync tags in the vault. Usually, your
work area will contain all the versions you want to tag, especially if you have
been simulating or verifying with a set of design files. But it may not. Your design
files may not be copies of the latest checked in files. If you want your work area
to remain current, it may be necessary to populate prior to simulating or verifying.

To tag one or more files:

Suppose you want to tag several files in your work area with the string of passing:

1. In the DesignSync main window, select the files you want to tag.
To select more than one file, press Ctrl and click each file.

2. Select Revision Control => Tag.
3. Click Add a tag.
4. In the Tag: field, type the tag name (for example, passing).
5. Click Tag version in workspace.
6. Click OK.

Techniques

388

To tag all file versions in a folder and all its subfolders within your work area:

Suppose you want to tag all the files in the top folder of your work area with the string
of passing and also have the tag applied to all files in its decoder, alu, and
register subfolders:

1. In the DesignSync main window, select the folder (top) you want to tag.
To select more than one folder, press Ctrl and click each folder.

2. Select Revision Control => Tag.
3. Click Add a tag.
4. Click Recurse into folders.
5. In the Tag: field, type the tag name (for example, passing).
6. Click Tag version in workspace.
7. Click OK.

DesignSync tags all the files in the top folder and in all its subfolders.

If you change a file later and want to mark the new file version with an existing
tag, you can use the Replace existing tags option of the Tag dialog to move the tag to
the new version.

For example, suppose you tag a set of files with the tag passing. Later you change the
decoder.v file to correct an error in the header and check in the file, creating a new
version (1.2, for example). This new version, of course, does not have the tag. To
move the tag to the version 1.2:

1. Select the decoder.v file and select Revision Control => Tag.
2. Click Add a tag.
3. Click Replace existing tags.
4. In the Tag: field, type the tag name, type the name of the existing tag (in this

example, passing) you want to move to the new version of decoder.v.
5. Click Tag version in workspace.
6. Click OK.

Notes:

• This example of the tag operation does not specify a version with the file name.
Checking in the file first created a new version in the vault and updated the work
area. From the version in the work area, DesignSync determines the version to
tag in the vault.

• This tag operation is the equivalent of the tag -replace command.

You can also specify the file version to which DesignSync attaches the tag, rather
than letting the version in the workspace determine the version to be tagged. Use the
Tag specified version option of the Tag dialog. For example:

DesignSync Data Manager User's Guide

389

1. Select the decoder.v file and select Revision Control => Tag.
2. Click Add a tag.
3. In the Tag: field, type initial_vers.
4. Click Tag specified version.
5. In the Version/Branch: field, type version you want to tag, for example, 1.1.

Alternately, you can display a list of versions and choose the one you want to
tag. Click on the down arrow and select Get versions/tags. In the Get
Tags/Versions dialog, select a branch (most often it will be Current branch).
Then select Get versions and the specific version you want.

6. Click OK.

This capability to tag a file version can be quite useful, considering that the tag string
can be a version parameter. One use is to create a new configuration based on a
previous configuration. For example:

1. Select the folder that contains the objects you want to tag and then select
Revision Control => Tag.

2. Click Add a tag.
3. In the Tag: field, type relB.
4. Click Tag specified version.
5. In the Version/Branch field, type relA, where relA is an existing version.
6. Click OK.

DesignSync applies the tag RelB to file versions that have the RelA tag attached.

To remove a tag string from a file, use the Delete a tag option of the Tag dialog:

1. Select the decoder.v file and select Revision Control => Tag.
2. Click Delete a tag.
3. In the Tag: field, type the tag you want to delete, for example, temp_tag1.
4. Click OK.

This tag operation deletes the temp_tag1 tag from the decoder.v file. (This tag
operation is the equivalent of the tag -delete command.)

To remove a tag string from all files in a folder and in all its subfolders, select the
folder and use the Delete a tag option of the Tag dialog:

1. Select the top folder and select Revision Control => Tag.
2. Click Delete a tag.
3. Click Recurse into folders.
4. In the Tag: field, type the tag you want to delete, for example, temp_tag1.
5. Click OK..

Techniques

390

This tag operation deletes the temp_tag1 tag from files in the top folder and all its
subfolders. (This tag operation is the equivalent of the tag -delete -recursive
command.)

Task 6: Creating a work area based on a configuration/release

The operations that fetch a file version to a work area (populate, checkout) have a
Version field where you can specify the version to be fetched.

While you can use the version selector to retrieve a specific numeric version, such as
1.5, the real power is in using a tag string as the version selector. For example, let's say
you want to create a new work area that holds certain ASIC files--those that have been
tagged with the RelA tag.

To create a work area based on a configuration:

1. In the DesignSync main window, select your user directory for the project
(/data/devel/ASIC/users/user3).

2. Select File => New => Folder and create a new top level folder (ASIC2) for this
configuration.

3. Select the top level folder you just created (RelA).
4. Select Revision Control => Set Vault Association.
5. In the Modify the Vault field, type the URL of the vault folder that contains the

files you want to use as the basis for your new work area (in our example,
sync://ca-srvr.Acompany.com:2647/Projects/ASIC).

6. In the Modify the Selector field, type the tag name you want to use to populate
the new work area (RelA).

7. Click OK.
8. Select Revision Control = > Populate
9. Click Unlocked copies.
10. Click Recurse into folders if not already selected.
11. Click Incremental populate, if not already selected.
12. Click OK.
• Specifying a tag name for Version causes the populate operation to fetch into

your work area file versions that have the specified tag (in our example, RelA).
The operation does not remove any file versions that do not have the RelA tag.
In your RelA work area, you can create any new files you want. However, these
new files will not have any tag unless you attach one with a tag operation.

• The Recurse into folders option causes DesignSync to populate not just the
current folder (RelA) but all its subfolders, recreating the vault folder hierarchy in
your work area.

To delete from your work area all file versions that are not part of a specified
configuration (that is, not tagged with a specified string), perform a populate
operation, selecting the Force overwrite of local modifications option. For example,

DesignSync Data Manager User's Guide

391

after DesignSync performs the following populate operation, only files tagged with the
RelC_proposed tag exist in the your work area:

1. In the DesignSync main window, click the folder you want to update.
2. Check that the vault association between your work area folder and the vault

folder has been set appropriately. Select File => Properties and click the
Revision Control tab. (For our example, the vault that the RelA work area is
associated with should be sync://ca-
srvr.Acompany.com:2647/Projects/ASIC.)

3. Select Revision Control => Populate.
4. Click these options:

o Unlocked copies
o Recurse into folders
o Force overwrite of local modifications

5. Click Advanced and in the Version field, type RelC_proposed.
6. Click OK.

WARNING: The Force overwrite of local modifications option deletes from your work
area any file versions that are not tagged with the specified string, including any files
that are checked out for edit or locally modified. Use this option with care. However, this
option does not affect unmanaged files (files that are not under DesignSync revision
control) in your work area.

Working with Files in Your DesignSync Work Area

Although directories and files in your work area may look the same as your other UNIX
directories and files, your work area contains information (metadata) that DesignSync
uses to manage objects under its revision control. To ensure that DesignSync can track
file versions and perform revision control operations successfully, always use
DesignSync to create, delete, rename, and move directories and files in your work
area.

• To create a directory within your work area, in the DesignSync main window,
select File => New => Folder (mkfolder command).

• To delete directories or files within your work area, in the DesignSync main
window, select the folder or file and then select File => Delete (rmfolder and
rmfile commands).

• To rename or move directories or files within your work area, use the
DesignSync mvfolder and mvfile commands.

Getting Started with the Command Shell

Techniques

392

Using the DesignSync Command Shell

This document provides instructions to help you create a work area and quickly get
started using DesignSync to manage your design data.

Assumed Environment

(UNIX platform, dssc or stcl command shell, shared cache, locking work style)

The instructions in this document assume that:

• You are working in a UNIX environment.
• The DesignSync tools have been installed.
• To use DesignSync, you invoke the DesignSync command shell (dssc) and use

DesignSync commands. (You can also use the stcl command shell.)
• In your environment:

o You have set the SYNC_DIR variable. (This environment variable defines
the path to your DesignSync installation directory; you need to set this
variable before running DesignSync.)

o The PATH variable includes $SYNC_DIR/bin so that the operating system
can find the dssc executable.

This document uses a scenario to illustrate the steps you use to get started. In the
scenario:

• You are a designer working on a project called ASIC.
• On a DesignSync server (also called a SyncServer) your project leader or

DesignSync tools administrator has created a SyncServer folder where you can
put your ASIC design files. The SyncServer has the <host name>:<port> of ca-
srvr.Acompany.com:2647 (a remote vault). The URL for the Projects folder
is: sync://ca-srvr.Acompany.com:2647/Projects.

• Your project leader has set up a shared cache on the Local Area Network (LAN)
that holds copies of each version of all the project's files. Project members
reference these files in the cache instead of storing copies of files in their own
work areas.

• Your project team follows the locking work style where you always check out
with a lock an object that you plan to edit. Other team members can fetch (check
out without a lock) the object, but no one else should make changes while you
hold the lock.

• Your project leader has set up a user directory with subdirectories for the project
team members. The directory has the UNIX hierarchy:

/data/devel/ASIC/users
user1 user2 user3 . .

DesignSync Data Manager User's Guide

393

• Your user directory is /data/devel/ASIC/users/user3.

Creating a Work Area - Putting Files Under Revision Control

Suppose you are a designer who has developed a design for an ALU. You are ready to
place your design files under revision control, so that you can share them with the other
members of your project team.

To put your files under revision control and share them with team members, you first
must associate your local top-level design directory with a SyncServer folder (also
called a vault folder). Then you check in your files to the vault.

Once you check in your files, the design directory you associated with the vault folder
becomes your DesignSync work area. A work area is a directory hierarchy that reflects
the data hierarchy in the vault. A work area is also the location from which you check file
versions into and out of the vault. You are the only user accessing your work area, and
you have full control over the files and files versions that exist there.

Task 1: Associate your work area directory with the vault (SyncServer folder).

Before you can put your design files under revision control, your alu8 directory needs
to be associated with a SyncServer folder. To make the association, use the dssc or
stclc command setvault.

To associate your work area with a SyncServer folder:

1. Invoke the DesignSync command shell. (At the UNIX prompt, enter dssc.)
2. Use the DesignSync cd command to change directory to the top level directory

for the files you want to put under revision control.
3. Use the DesignSync setvault command to associate your directory with a

corresponding SyncServer folder for your project. The SyncServer folder is
specified with a URL that uses the sync protocol plus the SyncServer name and
port number and then the vault folder (sync://ca-
srvr.Acompany.com:2647/Projects/ASIC/alu8).

Note: The SyncServer folder does not have to exist for you to specify it. For
example, suppose the ASIC folder exists on the SyncServer but there is no alu8
subfolder. When you specify a vault folder that does not exist (alu8),
DesignSync displays a warning so you can make sure that your vault path is
correct and then creates the vault folder when you check in design data.

%dssc
dss> cd /data/devel/ASIC/users/user3/alu8
dss> setvault sync://ca-

Techniques

394

srvr.Acompany.com:2647/Projects/ASIC/alu8 .
dss> exit
%

Task 2: Check in your files.

The next step is to perform the initial checkin of your ALU design files into the
SyncServer vault folder.

To check in of all files in the alu8 folder and all of its subfolders:

1. In your work area, change directory to the top-level directory containing the files
you want to check in.

2. Use the DesignSync command ci to check in the files. It is a good idea to include
a comment (with the -comment option) explaining the changes you made. In
addition, your project leader may have set up access controls that require a
check-in comment of a certain length.

dss> cd /data/devel/ASIC/users/user3/ASIC/alu8
dss> ci -comment "8-bit ALU" -new -share -recursive
/data/devel/ASIC/users/user3/ASIC/alu8
dss> exit
%

• The -new option causes DesignSync to create a new version (1.1) of each file on
a new branch (1).

• The -recursive option causes DesignSync to check in all of the files in the ASIC
folder and in all of its subfolders, recreating your work area ASIC directory in the
vault folder. To check in recursively, you must specify the -recursive option;
otherwise DesignSync checks in the files in the current folder only.

• You use the -share option when your project has a shared (LAN) cache. This
option causes the ci command to fetch copies of files into the project's shared
(LAN) cache, not into your own work area. Instead, your work area contains links
to the files in the cache. The checkin command fetches files into the cache only if
they are not already there. For this reason, using ci -share is the fastest method
for creating a work area and makes efficient use of disk space for your team.

Note: If your project leader has set up a default fetch state of share, you do not
need to use the -share option. DesignSync automatically includes it with the
populate, co, ci, and cancel commands.

Other team members will see the files you placed under revision control when they
populate their work areas.

Tip: You also should populate your work area periodically to keep it up to date,
reflecting the most recent versions and new files in the vault. To update your work area,
use the populate command.

DesignSync Data Manager User's Guide

395

By default, the populate command performs a fast populate operation using the -
incremental option. This option causes the populate command to fetch copies of only
the vault folders that have changed.

Now you are ready to check files out and in, creating new file versions.

Creating a Work Area - Joining a Project Already Under Revision
Control

To join the development effort for a project, you first must create and populate a work area in
your user directory. A work area is a directory hierarchy that reflects the data hierarchy in the
vault. A work area is also the location from which you check file versions into and out of the
vault. You are the only user accessing your work area, and you have full control over the files
and file versions that exist there.

Task 1: Associate your work area folder with a SyncServer folder.

Your work area folder needs to be associated with a SyncServer folder. To make the association,
use the dssc or stclc command setvault.

To associate your work area with a SyncServer folder:

1. Invoke the DesignSync command shell. (At the UNIX prompt, enter dssc.)
2. Use the DesignSync cd command to change directory to your user directory for

the project.
3. Use the DesignSync mkfolder command to create a new folder (Latest) for the

project files you plan to work on. This is the root (top level) folder of your work
area. (A folder is a directory that is under DesignSync revision control.)

4. Use the DesignSync cd command to change directory to the top level folder you
just created.

5. Use the DesignSync setvault command to associate the SyncServer folder (ca-
srvr.ACompany.com:2647/Projects/ASIC) with your project work area
folder (/data/devel/ASIC/users/user3/Latest). The SyncServer folder
is specified with a URL that uses the sync protocol plus the SyncServer name
and port number and then the vault folder (sync://ca-
srvr.Acompany.com:2647/Projects/ASIC).

% dssc
dss> cd /data/devel/ASIC/users/user3
dss> mkfolder Latest
dss> cd Latest
dss> setvault sync://ca-srvr.Acompany.com:2647/Projects/ASIC .
dss> exit
%

Techniques

396

Task 2: Populate the work area with project data

The next step is to fill your work area folder structure with directories and files that
already have been checked in to the SyncServer for this project. The most common
approach is to get a copy of the most recent version of every file by using the populate
command.

To populate your work area with copies of the data and files in the vault:

1. Change directory to the folder you created to hold your project files.
2. Use the DesignSync populate command to fill your work area folder with copies

of all project directories and files.

% dssc
dss> cd /data/devel/ASIC/users/user3/Latest
dss> populate -recursive -share
dss> exit
%

• You can abbreviate command words, if you choose. For example:

% dssc pop -rec

• The -recursive option causes DesignSync to populate not just the current folder
(Latest) but all its subfolders, recreating the vault folder hierarchy in your work
area. To populate recursively, you must specify the -recursive option; otherwise
DesignSync populates just the current folder.

• You use the -share option to populate your work area when your project has a
shared file cache. This option causes the populate command to fetch copies of
files into the project's shared file cache, not into your own work area. Instead,
your work area contains links to the files in the cache. The populate command
fetches files into the cache only if they are not already there. For this reason,
using populate -share is the fastest method for creating a work area and makes
efficient use of disk space for your team.

Note: If your project leader has set up a default fetch state of share, you do not
need to use the -share option. DesignSync automatically includes it with the
populate, co, ci, and cancel commands.

Tip: Repopulate your work area periodically to keep it up-to-date, reflecting the most
recent versions and any new files added to the vault. To update your work area, use the
populate command.

By default, the populate command performs a fast populate operation using the -
incremental option. This option causes the populate command to fetch copies of only
the vault folders that have changed.

DesignSync Data Manager User's Guide

397

Now you are ready to check files out and in, creating new file versions.

Creating File Versions

As you go about your daily design tasks, you'll need to make modifications to the design
data files. You make all of these modifications in your private work area to files that you
have checked out with a lock from the vault . When you're ready to share your
modifications with other users, you can check your files into the SyncServer vault,
where other users can access them.

Task 3: Checking out a file for editing

To make changes and create a new version, you should first check out the file with a
lock. When you check out the file with a lock, DesignSync fetches a copy of the file to
your work area and sets the permissions to read-write. Then it locks the file in the vault,
so that only you, the user holding the lock, can check in a newer version of the file.

To check out a file with a lock:

1. In your work area, change your directory to the folder that contains the file you
want to check out.

2. Use the DesignSync command co -lock to check out the file with a
lock.

% dssc
dss> cd /data/devel/ASIC/users/user3/Latest/top/decoder
dss> co -nocomment -lock decoder.v
dss> exit
%

Use the -nocomment option when you want to check the file out without describing
your intended changes. You can still add a comment (with the -comment option) when
you check in the file.

After checking out a file to your work area, you can invoke an editor appropriate for the
file and make changes.

Tip: To "undo" a checkout when you have a file locked but have decided not to make
changes, use the cancel command. See Task 5: Releasing a lock on a file.

To check out with a lock all files in one folder:

1. In your work area, change your directory to the folder that contains the files you
want to check out.

Techniques

398

2. Use the DesignSync command co -lock and a wildcard (*).

% dssc
dss> cd /data/devel/ASIC/users/user3/Latest/top/decoder
dss> co -nocomment -lock *
dss> exit
%

This command checks out all of the files in the decoder folder of the ASIC project.

To check out with a lock all files in a folder and all of its subfolders:

Suppose you want to check out for edit not only all the files in the top folder but also all
of the files in its decoder, alu, and register subfolders. You use the -recursive
option in addition to the co -lock command:

1. In your work area, change directory to the folder higher up in the hierarchy. For
example, if you are working in the /users/user3/Latest/top folder, change
directory to the Latest folder.

2. Use the DesignSync command co -lock -recursive to check out the files.

% dssc
dss> pwd
/data/devel/ASIC/users/user3/Latest/top
dss> cd /data/devel/ASIC/users/user3/Latest
dss> co -recursive -lock top
dss> exit
%

The -recursive option causes DesignSync to check out all files in the top folder, in all
its subfolders, in all their subfolders, and so on down through the hierarchy.

Task 4: Checking in a file

Once you have made changes to a file, you need to check in the file to create a new
version in the vault and to make it available to other team members.

To check in a file:

1. In your work area, change your directory to the folder that contains the file you
want to check in.

2. Use the DesignSync ci command to check in the file to the vault. It is a good idea
to include a comment (with the -comment option) explaining the changes you
made. In addition, your project leader may have set up access controls that
require a check-in comment of a certain length.

DesignSync Data Manager User's Guide

399

% dssc
dss> cd /data/devel/ASIC/users/user3/Latest/top/decoder
dss> ci -comment "added power-up state vector" -share decoder.v
dss> exit
%

• If you checked out a file for editing (using the co -lock command) but did not
change it, the check-in operation creates no new version. Instead, it releases the
lock and marks the file as read-only in your work area.

• The -share option causes the check-in operation to put a copy of the changed
file into the shared cache (instead of your work area) and create a link in your
work area to the file version in the cache.

To check in all files in a folder and all of its subfolders (a "blanket" checkin):

If you checked out for edit many files in a work area, you can perform a blanket checkin
from a folder higher up in the hierarchy. This blanket operation checks in all files that
have been modified.

1. In your work area, change directory to the folder higher up in the hierarchy. For
example, if you are working in the
/data/devel/ASIC/users/user3/Latest/top folder, change directory to
the Latest folder.

2. Use the DesignSync command ci -recursive to check in the files. It is a good
idea to include a comment (with the -comment option) explaining the changes
you made. In addition, your project leader may have set up access controls that
require a check-in comment of a certain length.

% dssc
dss> pwd
/data/devel/ASIC/users/user3/Latest/top
dss> cd /data/devel/ASIC/users/user3/Latest
dss> ci -comment "extensive changes for reset" -share -recursive
top
dss> exit
%

The -recursive option causes DesignSync to inspect all files in the top folder and its
subfolders in your work area and check in any files that were modified.

Task 5: Releasing a lock

Suppose another team member notifies you that she needs to make changes to
decoder.v, a design file that you have checked out with a lock. To release the lock on
the file and make it available for others to edit, you can either:

Techniques

400

• Check in the file with the ci command, which releases the lock and puts a copy of
the modified file into the vault. (In most situations, this is the action you'll probably
want to take.)

• Cancel the check-out operation you performed on that file by using the cancel
command. This command effectively performs an "un"checkout operation on the
file you checked out with a lock: it releases the lock and, when used with the -
share option, keeps a copy of the file in the cache directory.

To cancel a checkout (and release the lock) on a file:

1. Make sure you are in the folder containing the file.
2. Use the DesignSync cancel command to release the lock.

% dssc
dss> cd /data/devel/ASIC/users/user3/Latest/top/decoder
dss> cancel -share decoder.v
dss> exit
%

Some points about how the cancel command works:

• It cancels only a checkout that you performed. To unlock a file that is locked
by another user, use the unlock command.

• If you have modified the file but you do not want to keep your changes, use
cancel -force. This command cancels your checkout and replaces the locally
modified file with a valid version from the vault.

• If you have modified the file and want to keep your changes, check in the file
with the ci command. See Task 4: Checking in a file.

Configuration/Release Management

When you have in your work area a set of design files that meet some requirement,
you'll want to mark this file set for future reference. For example, when the design
passes simulation, you might want to mark the current versions of your design files as
"passing". You can mark files with the DesignSync tag command. (The set of files that
share a common tag is sometimes called a configuration.) You can also use the tag
command to retrieve specific file versions when creating a work area in the future.

Note: This section describes working with DesignSync design configurations. SITaR
configurations use a similar concept, which is described in Overview of SITaR
Workflow. ProjectSync has a different concept of a configuration. For information, see
ProjectSync Help: What Are Configurations?

Task 6: Creating a design configuration/release

DesignSync Data Manager User's Guide

401

To create a design configuration, first select the items (files or folders) you want to have in the
configuration; then use the tag command. However, before you perform the tag operation, you
should check any modified files into the vault and update your work area using the populate
command.

Before you tag:

• Check in files that you have modified.
• The tag command attaches a tag (a text string) to a specific file version.

However, DesignSync attaches tags only to file versions in the vault, not to local
copies of files. For this reason, before you use the tag command, check in any
files that are locally modified or checked out with a lock in your work area.

If you do not check in locally modified objects before you use the tag command,
the tag operation displays an error message for each locally modified object and
does not tag any version of those objects in the vault. This is the default behavior
of the tag operation. For example, suppose you check out decoder.v (version
1.3) with a lock and modify it. If you try to tag the modified version, DesignSync
displays an error message. To have the tag added to your modified version, you
need to first check in decoder.v. DesignSync then creates version
decoder.v;1.4 in the vault. When you add a tag to the file, DesignSync tags
version 1.4.

• Make sure your work area is up-to-date.

Although tags reside on file versions in the vault, the version of the file in your
work area determines the version that DesignSync tags in the vault. Usually, your
work area will contain all the versions you want to tag, especially if you have
been simulating or verifying with a set of design files. But it may not. Your design
files may not be copies of the latest checked in files. If you want your work area
to remain current, it may be necessary to populate prior to simulating or verifying.

To tag all file versions in a folder and all its subfolders within your work area:

Suppose you want to tag all the files in the top folder of your work area with the string
passing and also have the tag applied to all files in its decoder, alu, and register
subfolders (recursive behavior):

1. In your work area, change directory to the folder that contains the files and
subdirectories with files you want to tag.

2. Use the DesignSync command tag -recursive to tag all the files in that folder
(top) and all the files in its subfolders.

% dssc
dss> cd /data/devel/ASIC/users/user3/Latest/top
dss> tag -recursive passing .

Techniques

402

dss> exit
%

If you change a file later and want to mark the new file version with an existing
tag, you can use the tag -replace command to move the tag to the new version.

For example, suppose you tag a set of files with the tag passing. Later you change the
decoder.v file to correct an error in the header and check in the file, creating a new
version. The new version, of course, does not have the tag. To move the tag to the new
version, you use the tag -replace command and specify the file's name.

% dssc
dss> cd /data/devel/ASIC/users/user3/Latest/top/decoder
dss> ci -share -com "corrected error in header" decoder.v
dss> tag -replace passing decoder.v
dss> exit
%

Note: This example of the tag command does not specify a version with the file name.
Checking in the file first created a new version in the vault and updated the work area.
From the version in the work area, DesignSync determines the version to tag in the
vault.

You can also specify the file version to which DesignSync attaches the tag, rather than letting
the version in the work area determine the version to be tagged. Use the -version option. For
example:

% dssc
dss> cd /data/devel/ASIC/users/user3/Latest/top/decoder
dss> tag -version 1.1 initial_vers decoder.v
dss> exit
%

This example attaches the tag initial_vers to version 1.1 of the decoder.v file.

This capability to tag a file version can be quite useful, considering that the tag string
can be a version parameter. One use is to create a new configuration based on a
previous configuration. For example:

% dssc
dss> cd /data/devel/ASIC/users/user3/Latest
dss> tag -version RelA RelB -recursive .
dss> exit
%

DesignSync Data Manager User's Guide

403

This command operates on all files in the Latest folder and all its subfolders and
applies the tag RelB to all file versions that have the RelA tag attached. Then you can
use the tag -replace command to move the RelB tag to different file versions as you
identify differences between the RelA and RelB configurations.

To remove a tag string from a single file, use the tag -delete command. For
example:

% dssc
dss> cd /data/devel/ASIC/users/user3/Latest/top/decoder
dss> tag -delete temp_tag1 decoder.v
dss> exit
%

To remove a tag string from all files in a folder and in all its subfolders, use the
tag -delete -recursive command. For example:

% dssc
dss> cd /data/devel/ASIC/users/user3/Latest/top
dss> tag -delete temp_tag1 -recursive .
dss> exit
%

This tag command deletes the temp_tag1 tag from files in the top folder and all its
subfolders.

Task 7: Creating a work area based on a configuration/release

The commands that fetch a file version to a work area (populate, co) accept a -version
option where you can specify the version to be fetched.

While you can use the -version option to retrieve a specific numeric version, such as
1.5, the real power is in using a tag string as the version specifier. For example,
suppose you want to create a new work area that holds ASIC files that have been
tagged with the RelA tag.

To create a work area based on a configuration:

1. Change directory to your user directory for the project
(/data/devel/ASIC/users/user3).

2. Use the DesignSync mkfolder command to create a new folder (RelA) for this
configuration.

3. Change directory to the top level folder you just created (RelA).
4. Use the DesignSync setvault command to associate the SyncServer folder

(sync://ca-srvr.Acompany.com:2647/Projects/ASIC) with your new
work area folder (RelA).

Techniques

404

5. Change directory to the RelA folder in the new work area.
6. Use the DesignSync command populate -share -recursive command with the -

version option to fill your new work area folder with links to the cache for all file
versions that have the RelA tag.
(As always, the -share option causes the populate command to populate the
shared cache and create links from your work area to the cache.)

% dssc
dss> cd /data/devel/ASIC/users/user3
dss> mkfolder RelA
dss> cd RelA
dss> setvault sync://ca-srvr.Acompany.com:2647/Projects/ASIC .
dss> populate -share -recursive -version RelA
dss> exit
%

Note: This command sequence creates a new work area
(/data/devel/ASIC/users/user3/RelA) and populates it with copies of only those
ASIC files in the vault that have a tag of RelA. In your RelA work area, you can create
any new files you want. However, these new files will not have any tag unless you
attach one with the tag command.

The populate -version <tagname> command fetches into your work area file versions
that have the specified tag (in our example, RelA). The command does not remove any
file versions that do not have the RelA tag.

You can also use the tag and populate -version <tagname> command to add
existing files to your new work area. Suppose you modify some files in the first work
area you created (/data/devel/ASIC/users/user3/Latest) and then decide that
you want to include the changes in your new workarea (RelA). To put copies of the
changed files in your new work area, you:

1. Check in the modified files to the vault.
2. Tag each modified file in the old work area (Latest) with the tag string

MyChanges.
3. Change directory to your new workarea

/data/devel/ASIC/users/user3/RelA.
4. Use the populate -version command to fetch copies of the tagged files into

RelA.

For example:

% dssc
dss> pwd
/data/devel/ASIC/users/user3/Latest/top/decoder
dss> tag MyChanges decoder.v decoder.gv

DesignSync Data Manager User's Guide

405

dss> cd /data/devel/ASIC/users/user3/RelA
dss> populate -share -recursive -version MyChanges
dss>exit
%

The resulting work area contains the RelA release plus all file versions tagged with
MyChanges.

To delete from your work area all file versions that are not part of a specified
configuration (not tagged with a specified string), use the DesignSync command
populate -force. For example, after DesignSync executes the following commands,
only files tagged with the RelC_proposed tag exist in the your work area:

% dssc
dss> cd /data/devel/ASIC/users/user3/RelA
dss> populate -share -force -recursive -version RelC_proposed
dss> exit
%

WARNING: The -force option deletes from your work area any file versions that are not
tagged with the specified string, including any files that are checked out for edit or
locally modified. Use this option with care. However, the -force option does not
affect unmanaged files (files that are not under DesignSync revision control) in your
work area.

Working with Files in Your DesignSync Work Area

Although directories and files in your work area may look the same as your other UNIX
directories and files, your work area contains information (metadata) that DesignSync
uses to manage objects under its revision control. To ensure that DesignSync can track
file versions and perform revision control operations successfully, always use
DesignSync commands to create, delete, rename, and move directories and files
in your work area.

• To create a directory within your work area, use the mkfolder command.
• To delete directories or files within your work area, use the rmfolder and

rmfile commands.
• To rename or move directories or files within your work area, use the

mvfolder and mvfile commands.

407

Tutorials

Creating Modules and Module Data

Module Hierarchy: Module Structure

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Server MD" refers to the server metadata. Read an overview
of module hierarchy.

View the individual steps.

Creating Module Hierarchy: Overview

The animated examples below should be reviewed in the order they are listed. Each
animated topic has a hyperlink to step-by-step illustrations. View the module structure
that is used in all of the examples below.

1. Create the Module

Tutorials

408

2. Add Files and Check In
3. Add an HREF to a Module in the Workspace
4. Populate with Dynamic HREF Mode
5. Add an HREF to a Module not in the Workspace

Read an overview of module hierarchy.

Creating Module Hierarchy: Create the Module

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Workspace LMD" refers to the local metadata. "Server MD"
refers to the server metadata. Read an overview of module hierarchy.

View the individual steps.

View the module structure used in this example.

View the subsequent example of creating module hierarchy: Add Files and Check In

Creating Module Hierarchy: Add Files and Check In

DesignSync Data Manager User's Guide

409

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Workspace LMD" refers to the local metadata. "Server MD"
refers to the server metadata. Read an overview of module hierarchy.

View the individual steps.

View the module structure used in this example.

View the subsequent example of creating module hierarchy: Add an HREF to a Module
in the Workspace

Creating Module Hierarchy: Add an HREF to a Module in the
Workspace

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Workspace LMD" refers to the local metadata. "Server MD"
refers to the server metadata. Read an overview of module hierarchy.

Tutorials

410

View the individual steps.

View the module structure used in this example.

View the subsequent example of creating module hierarchy: Populate with Dynamic
HREF Mode

Creating Module Hierarchy: Populate with Dynamic HREF Mode

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Workspace LMD" refers to the local metadata. "Server MD"
refers to the server metadata. Read an overview of module hierarchy.

DesignSync Data Manager User's Guide

411

View the individual steps.

View the module structure used in this example.

View the subsequent example of creating module hierarchy: Add an HREF to a Module
not in the Workspace

Creating Module Hierarchy: Add an HREF to a Module not in the
Workspace

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Workspace LMD" refers to the local metadata. "Server MD"
refers to the server metadata. Read an overview of module hierarchy.

Tutorials

412

View the individual steps.

View the module structure used in this example.

View the subsequent example of creating module hierarchy: Creating a Peer Structure
Module Hierarchy.

Creating a Peer Structure Module Hierarchy

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Server MD" refers to the server metadata. Read an overview
of module hierarchy.

DesignSync Data Manager User's Guide

413

View the individual steps.

Updating Module Hierarchy

Modifying Module Hierarchy: Overview

The animated examples below should be reviewed in the order they are listed. Each
animated topic has a hyperlink to step-by-step illustrations. View the module structure
that is used in all of the examples below.

1. The ALU team develops a new "Gold" version of their module.
2. Chip team members use the new version of the ALU module..
3. The CPU team reverts to an earlier version of the ALU module.

Read an overview of module hierarchy.

Modifying Module Hierarchy: New "Gold" Version of ALU Created

Tutorials

414

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Workspace LMD" refers to the local metadata. "Server MD"
refers to the server metadata. Read an overview of module hierarchy.

The ALU team has developed a new "Gold" version of their module, with new features.
The "Gold" version is intended to replace all earlier versions. The new "Gold" version is
version 1.6.1.2 of the ALU module. The new "Gold" ALU version uses a private version
of the RAM module. The private version of the RAM module is different than the general
version of the RAM module used previously by both ALU and CPU (in the "Creating
Module Hierarchy" use cases).

View the individual steps.

View the module structure used in this example.

View the subsequent example of modifying module hierarchy: Chip team members use
the new ALU version

Modifying Module Hierarchy: Chip Team Uses New ALU Version

DesignSync Data Manager User's Guide

415

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Workspace LMD" refers to the local metadata. "Server MD"
refers to the server metadata. Read an overview of module hierarchy.

View the individual steps.

View the module structure used in this example.

View the subsequent example of modifying module hierarchy: The CPU team reverts to
an earlier version of ALU.

Modifying Module Hierarchy: CPU Team Reverts to Earlier ALU
Version

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Workspace LMD" refers to the local metadata. "Server MD"
refers to the server metadata. Read an overview of module hierarchy.

Tutorials

416

The CPU team performs tests with the "Gold" version of ALU. The CPU team decides
that the new ALU features are not required, and come at the cost of a larger floor plan.
The CPU team reverts to the "RelA" version of the ALU.

View the individual steps.

View the module structure used in this example.

Moving a File

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Workspace LMD" refers to the local metadata. "Server MD"
refers to the server metadata. Read an overview of directory versioning.

DesignSync Data Manager User's Guide

417

View the individual steps.

View an animated example of moving a folder.

Moving a Folder

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Workspace LMD" refers to the local metadata. "Server MD"
refers to the server metadata. Read an overview of directory versioning.

Tutorials

418

View the individual steps.

View an animated example of moving a file.

Operating with Module Data

Operating on a Module

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Workspace LMD" refers to the local metadata. Read an
overview of operating on module data.

DesignSync Data Manager User's Guide

419

View the individual steps.

View an animated example of operating on a module's contents.

Operating on a Module's Contents

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Workspace LMD" refers to the local metadata. Read an
overview of operating on module data.

Tutorials

420

View the individual steps.

View an animated example of operating on a module.

Filtering

The animated illustration below will continually repeat, advancing a step every 5
seconds. Read an overview of filtering module data.

DesignSync Data Manager User's Guide

421

View the individual steps.

View an animated example of a persistent populate filter.

Persistent Populate Filter

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Workspace LMD" refers to the local metadata. Read an
overview of filtering module data.

Tutorials

422

View the individual steps.

View an animated example of filtering.

Folder-Centric Operations

The animated illustration below will continually repeat, advancing a step every 5
seconds. Read an overview of module recursion.

DesignSync Data Manager User's Guide

423

View the individual steps.

View an animated example of module-centric operations on a module.

View an animated example of module-centric operations on a sub-folder.

View an animated example of module-centric operations on hierarchical references.

Module-Centric Operations on a Module

The animated illustration below will continually repeat, advancing a step every 5
seconds. Read an overview of module recursion.

Tutorials

424

View the individual steps.

View an animated example of module-centric operations on a sub-folder.

View an animated example of module-centric operations on hierarchical references.

View an animated example of folder-centric operations.

Module-Centric Operations on a Subfolder

The animated illustration below will continually repeat, advancing a step every 5
seconds. Read an overview of module recursion.

DesignSync Data Manager User's Guide

425

View the individual steps.

View an animated example of module-centric operations on a module.

View an animated example of module-centric operations on hierarchical references.

View an animated example of folder-centric operations.

Module-Centric Operations on an HREF

The animated illustration below will continually repeat, advancing a step every 5
seconds. Read an overview of module recursion.

Tutorials

426

View the individual steps.

View an animated example of module-centric operations on a module.

View an animated example of folder-centric operations.

View an animated example of module-centric operations on a sub-folder.

Locking a Module Branch

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Workspace LMD" refers to the local metadata. "Server MD"
refers to the server metadata. Read an overview of module locking.

DesignSync Data Manager User's Guide

427

View the individual steps.

View an animated example of locking module content.

Locking Module Content

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Workspace LMD" refers to the local metadata. "Server MD"
refers to the server metadata. Read an overview of module locking.

Tutorials

428

View the individual steps.

View an animated example of locking a module branch.

Branching a Module

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, the RAM team is producing a new version of the RAM
module, with an "automatic undo" feature. The new version is created as a side-branch
of version 1.4. "Workspace LMD" refers to the local metadata. "Server MD" refers to the
server metadata. Read an overview of module branching.

DesignSync Data Manager User's Guide

429

View the individual steps.

Merging and Modules

Auto-Merging Locally Added Files

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Workspace LMD" refers to the local metadata. "Server MD"
refers to the server metadata. Read a description of this use case.

Tutorials

430

View the individual steps.

Auto-Merging Locally Modified Files

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Workspace LMD" refers to the local metadata. "Server MD"
refers to the server metadata. Read a description of this use case.

DesignSync Data Manager User's Guide

431

View the individual steps.

Auto-Merging Locally Modified Files Removed from the Module

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Workspace LMD" refers to the local metadata. "Server MD"
refers to the server metadata. Read a description of this use case.

Tutorials

432

View the individual steps.

Auto-Merging Non-Latest Locally Modified Files

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Workspace LMD" refers to the local metadata. "Server MD"
refers to the server metadata. Read a description of this use case.

DesignSync Data Manager User's Guide

433

View the individual steps.

Auto-Merging Locally Modified Files Renamed in the Module

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Workspace LMD" refers to the local metadata. "Server MD"
refers to the server metadata. Read a description of this use case.

Tutorials

434

View the individual steps.

Auto-Merging Locally Modified Files with Other Files Renamed in
the Module

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Workspace LMD" refers to the local metadata. "Server MD"
refers to the server metadata. Read a description of this use case.

DesignSync Data Manager User's Guide

435

View the individual steps.

In-Branch Merging of Locally Added Files

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Workspace LMD" refers to the local metadata. "Server MD"
refers to the server metadata. Read a description of this use case.

Tutorials

436

View the individual steps.

In-Branch Merging of Locally Modified Files

The animated illustration below will continually repeat, advancing a step every 5
seconds. In this use case, "Workspace LMD" refers to the local metadata. "Server MD"
refers to the server metadata. Read a description of this use case.

DesignSync Data Manager User's Guide

437

View the individual steps.

Step-by-Step Use Cases

Creating Modules and Module Data

Module Hierarchy: Module Structure

Step 1: Module Structure

In this use case, "Server MD" refers to the server metadata. Read an overview of
module hierarchy.

Tutorials

438

View the next step.

Step 2: Module Structure

In this use case, "Server MD" refers to the server metadata. Read an overview of
module hierarchy.

DesignSync Data Manager User's Guide

439

View the next step.

Step 3: Module Structure

In this use case, "Server MD" refers to the server metadata. Read an overview of
module hierarchy.

Tutorials

440

View the next step.

Step 4: Module Structure

In this use case, "Server MD" refers to the server metadata. Read an overview of
module hierarchy.

DesignSync Data Manager User's Guide

441

Creating Module Hierarchy: Create the Module

Step 1: Create the Module

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

Tutorials

442

View the next step.

Step 2: Create the Module

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

DesignSync Data Manager User's Guide

443

View the next step.

Step 3: Create the Module

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

Tutorials

444

View the next step.

Step 4: Create the Module

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

DesignSync Data Manager User's Guide

445

View the next step.

Step 5: Create the Module

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

Tutorials

446

View the next step.

Step 6: Create the Module

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

DesignSync Data Manager User's Guide

447

View the next step.

Step 7: Create the Module

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

Tutorials

448

View the next step.

Step 8: Create the Module

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

DesignSync Data Manager User's Guide

449

View the next step.

Step 9: Create the Module

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

Tutorials

450

Creating Module Hierarchy: Add Files and Check In

Step 1: Add Files and Check In

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

DesignSync Data Manager User's Guide

451

View the next step.

Step 2: Add Files and Check In

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

Tutorials

452

View the next step.

Step 3: Add Files and Check In

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

DesignSync Data Manager User's Guide

453

View the next step.

Step 4: Add Files and Check In

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

Tutorials

454

View the next step.

Step 5: Add Files and Check In

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

DesignSync Data Manager User's Guide

455

View the next step.

Step 6: Add Files and Check In

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

Tutorials

456

View the next step.

Step 7: Add Files and Check In

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

DesignSync Data Manager User's Guide

457

View the next step.

Step 8: Add Files and Check In

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

Tutorials

458

View the next step.

Step 9: Add Files and Check In

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

DesignSync Data Manager User's Guide

459

Creating Module Hierarchy: Add an HREF to a Module in the Workspace

Step 1: Add an HREF to a Module in the Workspace

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

Tutorials

460

View the next step.

Step 2: Add an HREF to a Module in the Workspace

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

DesignSync Data Manager User's Guide

461

View the next step.

Step 3: Add an HREF to a Module in the Workspace

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

Tutorials

462

View the next step.

Step 4: Add an HREF to a Module in the Workspace

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

DesignSync Data Manager User's Guide

463

View the next step.

Step 5: Add an HREF to a Module in the Workspace

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

Tutorials

464

View the next step.

Step 6: Add an HREF to a Module in the Workspace

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

DesignSync Data Manager User's Guide

465

View the next step.

Step 7: Add an HREF to a Module in the Workspace

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

Tutorials

466

View the next step.

Step 8: Add an HREF to a Module in the Workspace

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

DesignSync Data Manager User's Guide

467

Creating Module Hierarchy: Populate with Dynamic HREF Mode

Step 1: Populate with Dynamic HREF Mode

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

Tutorials

468

View the next step.

Step 2: Populate with Dynamic HREF Mode

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

DesignSync Data Manager User's Guide

469

View the next step.

Step 3: Populate with Dynamic HREF Mode

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

Tutorials

470

View the next step.

Step 4: Populate with Dynamic HREF Mode

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

DesignSync Data Manager User's Guide

471

View the next step.

Step 5: Populate with Dynamic HREF Mode

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

Tutorials

472

View the next step.

Step 6: Populate with Dynamic HREF Mode

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

DesignSync Data Manager User's Guide

473

View the next step.

Step 7: Populate with Dynamic HREF Mode

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

Tutorials

474

Creating Module Hierarchy: Add an HREF to a Module not in the Workspace

Step 1: Add an HREF to a Module not in the Workspace

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

DesignSync Data Manager User's Guide

475

View the next step.

Step 2: Add an HREF to a Module not in the Workspace

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

Tutorials

476

View the next step.

Step 3: Add an HREF to a Module not in the Workspace

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

DesignSync Data Manager User's Guide

477

View the next step.

Step 4: Add an HREF to a Module not in the Workspace

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

Tutorials

478

View the next step.

Step 5: Add an HREF to a Module not in the Workspace

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

DesignSync Data Manager User's Guide

479

Creating a Peer Structure Module Hierarchy

Step 1: Creating a Peer Structure Module Hierarchy

In this use case, "Server MD" refers to the server metadata. Read an overview of
module hierarchy.

Tutorials

480

View the next step.

Step 2: Creating a Peer Structure Module Hierarchy

In this use case, "Server MD" refers to the server metadata. Read an overview of
module hierarchy.

DesignSync Data Manager User's Guide

481

View the next step.

Step 3: Creating a Peer Structure Module Hierarchy

In this use case, "Server MD" refers to the server metadata. Read an overview of
module hierarchy.

Tutorials

482

View the next step.

Step 4: Creating a Peer Structure Module Hierarchy

In this use case, "Server MD" refers to the server metadata. Read an overview of
module hierarchy.

DesignSync Data Manager User's Guide

483

View the next step.

Step 5: Creating a Peer Structure Module Hierarchy

In this use case, "Server MD" refers to the server metadata. Read an overview of
module hierarchy.

Tutorials

484

Updating Module Hierarchy

Modifying Module Hierarchy: New "Gold" Version of ALU Created

Step 1: New "Gold" Version of ALU Created

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

The ALU team has developed a new "Gold" version of their module, with new features.
The "Gold" version is intended to replace all earlier versions. The new "Gold" version is
version 1.6.1.2 of the ALU module. The new "Gold" ALU version uses a private version
of the RAM module. The private version of the RAM module is different than the general
version of the RAM module used previously by both ALU and CPU (in the "Creating
Module Hierarchy" use cases).

DesignSync Data Manager User's Guide

485

View the next step.

Step 2: New "Gold" Version of ALU Created

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

The ALU team has developed a new "Gold" version of their module, with new features.
The "Gold" version is intended to replace all earlier versions. The new "Gold" version is
version 1.6.1.2 of the ALU module. The new "Gold" ALU version uses a private version
of the RAM module. The private version of the RAM module is different than the general
version of the RAM module used previously by both ALU and CPU (in the "Creating
Module Hierarchy" use cases).

Tutorials

486

View the next step.

Step 3: New "Gold" Version of ALU Created

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

The ALU team has developed a new "Gold" version of their module, with new features.
The "Gold" version is intended to replace all earlier versions. The new "Gold" version is
version 1.6.1.2 of the ALU module. The new "Gold" ALU version uses a private version
of the RAM module. The private version of the RAM module is different than the general
version of the RAM module used previously by both ALU and CPU (in the "Creating
Module Hierarchy" use cases).

DesignSync Data Manager User's Guide

487

View the next step.

Step 4: New "Gold" Version of ALU Created

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

The ALU team has developed a new "Gold" version of their module, with new features.
The "Gold" version is intended to replace all earlier versions. The new "Gold" version is
version 1.6.1.2 of the ALU module. The new "Gold" ALU version uses a private version
of the RAM module. The private version of the RAM module is different than the general
version of the RAM module used previously by both ALU and CPU (in the "Creating
Module Hierarchy" use cases).

Tutorials

488

View the next step.

Step 5: New "Gold" Version of ALU Created

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

The ALU team has developed a new "Gold" version of their module, with new features.
The "Gold" version is intended to replace all earlier versions. The new "Gold" version is
version 1.6.1.2 of the ALU module. The new "Gold" ALU version uses a private version
of the RAM module. The private version of the RAM module is different than the general
version of the RAM module used previously by both ALU and CPU (in the "Creating
Module Hierarchy" use cases).

DesignSync Data Manager User's Guide

489

Modifying Module Hierarchy: Chip Team Uses New ALU Version

Step 1: Chip Team Uses New ALU Version

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

Tutorials

490

View the next step.

Step 2: Chip Team Uses New ALU Version

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

DesignSync Data Manager User's Guide

491

View the next step.

Step 3: Chip Team Uses New ALU Version

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

Tutorials

492

View the next step.

Step 4: Chip Team Uses New ALU Version

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

DesignSync Data Manager User's Guide

493

View the next step.

Step 5: Chip Team Uses New ALU Version

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

Tutorials

494

View the next step.

Step 6: Chip Team Uses New ALU Version

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

DesignSync Data Manager User's Guide

495

View the next step.

Step 7: Chip Team Uses New ALU Version

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

Tutorials

496

View the next step.

Step 8: Chip Team Uses New ALU Version

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

DesignSync Data Manager User's Guide

497

View the next step.

Step 9: Chip Team Uses New ALU Version

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

Tutorials

498

Modifying Module Hierarchy: CPU Team Reverts to Earlier ALU Version

Step 1: CPU Team Reverts to Earlier ALU Version

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

The CPU team performs tests with the "Gold" version of ALU. The CPU team decides
that the new ALU features are not required, and come at the cost of a larger floor plan.
The CPU team reverts to the "RelA" version of the ALU.

DesignSync Data Manager User's Guide

499

View the next step.

Step 2: CPU Team Reverts to Earlier ALU Version

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

The CPU team performs tests with the "Gold" version of ALU. The CPU team decides
that the new ALU features are not required, and come at the cost of a larger floor plan.
The CPU team reverts to the "RelA" version of the ALU.

Tutorials

500

View the next step.

Step 3: CPU Team Reverts to Earlier ALU Version

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

The CPU team performs tests with the "Gold" version of ALU. The CPU team decides
that the new ALU features are not required, and come at the cost of a larger floor plan.
The CPU team reverts to the "RelA" version of the ALU.

DesignSync Data Manager User's Guide

501

View the next step.

Step 4: CPU Team Reverts to Earlier ALU Version

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

The CPU team performs tests with the "Gold" version of ALU. The CPU team decides
that the new ALU features are not required, and come at the cost of a larger floor plan.
The CPU team reverts to the "RelA" version of the ALU.

Tutorials

502

View the next step.

Step 5: CPU Team Reverts to Earlier ALU Version

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

The CPU team performs tests with the "Gold" version of ALU. The CPU team decides
that the new ALU features are not required, and come at the cost of a larger floor plan.
The CPU team reverts to the "RelA" version of the ALU.

DesignSync Data Manager User's Guide

503

View the next step.

Step 6: CPU Team Reverts to Earlier ALU Version

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module hierarchy. View the module structure
that is used in this example.

The CPU team performs tests with the "Gold" version of ALU. The CPU team decides
that the new ALU features are not required, and come at the cost of a larger floor plan.
The CPU team reverts to the "RelA" version of the ALU.

Tutorials

504

Moving a File

Step 1: Moving a File

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of directory versioning.

DesignSync Data Manager User's Guide

505

View the next step.

Step 2: Moving a File

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of directory versioning.

Tutorials

506

View the next step.

Step 3: Moving a File

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of directory versioning.

DesignSync Data Manager User's Guide

507

View the next step.

Step 4: Moving a File

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of directory versioning.

Tutorials

508

View the next step.

Step 5: Moving a File

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of directory versioning.

DesignSync Data Manager User's Guide

509

View the next step.

Step 6: Moving a File

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of directory versioning.

Tutorials

510

Moving a Folder

Step 1: Moving a Folder

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of directory versioning.

DesignSync Data Manager User's Guide

511

View the next step.

Step 2: Moving a Folder

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of directory versioning.

Tutorials

512

View the next step.

Step 3: Moving a Folder

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of directory versioning.

DesignSync Data Manager User's Guide

513

View the next step.

Step 4: Moving a Folder

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of directory versioning.

Tutorials

514

View the next step.

Step 5: Moving a Folder

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of directory versioning.

DesignSync Data Manager User's Guide

515

View the next step.

Step 6: Moving a Folder

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of directory versioning.

Tutorials

516

Operating with Module Data

Operating on a Module

Step 1: Operating on a Module

In this use case, "Workspace LMD" refers to the local metadata. Read an overview of
operating on module data.

DesignSync Data Manager User's Guide

517

View the next step.

Step 2: Operating on a Module

In this use case, "Workspace LMD" refers to the local metadata. Read an overview of
operating on module data.

Tutorials

518

View the next step.

Step 3: Operating on a Module

In this use case, "Workspace LMD" refers to the local metadata. Read an overview of
operating on module data.

DesignSync Data Manager User's Guide

519

View the next step.

Step 4: Operating on a Module

In this use case, "Workspace LMD" refers to the local metadata. Read an overview of
operating on module data.

Tutorials

520

View the next step.

Step 5: Operating on a Module

In this use case, "Workspace LMD" refers to the local metadata. Read an overview of
operating on module data.

DesignSync Data Manager User's Guide

521

View the next step.

Step 6: Operating on a Module

In this use case, "Workspace LMD" refers to the local metadata. Read an overview of
operating on module data.

Tutorials

522

View the next step.

Step 7: Operating on a Module

In this use case, "Workspace LMD" refers to the local metadata. Read an overview of
operating on module data.

DesignSync Data Manager User's Guide

523

View the next step.

Step 8: Operating on a Module

In this use case, "Workspace LMD" refers to the local metadata. Read an overview of
operating on module data.

Tutorials

524

Operating on a Module's Contents

Step 1: Operating on a Module's Contents

In this use case, "Workspace LMD" refers to the local metadata. Read an overview of
operating on module data.

DesignSync Data Manager User's Guide

525

View the next step.

Step 2: Operating on a Module's Contents

In this use case, "Workspace LMD" refers to the local metadata. Read an overview of
operating on module data.

Tutorials

526

View the next step.

Step 3: Operating on a Module's Contents

In this use case, "Workspace LMD" refers to the local metadata. Read an overview of
operating on module data.

DesignSync Data Manager User's Guide

527

View the next step.

Step 4: Operating on a Module's Contents

In this use case, "Workspace LMD" refers to the local metadata. Read an overview of
operating on module data.

Tutorials

528

View the next step.

Step 5: Operating on a Module's Contents

In this use case, "Workspace LMD" refers to the local metadata. Read an overview of
operating on module data.

DesignSync Data Manager User's Guide

529

View the next step.

Step 6: Operating on a Module's Contents

In this use case, "Workspace LMD" refers to the local metadata. Read an overview of
operating on module data.

Tutorials

530

View the next step.

Step 7: Operating on a Module's Contents

In this use case, "Workspace LMD" refers to the local metadata. Read an overview of
operating on module data.

DesignSync Data Manager User's Guide

531

Filtering

Step 1: Filtering

Read an overview of filtering module data.

Tutorials

532

View the next step.

Step 2: Filtering

Read an overview of filtering module data.

DesignSync Data Manager User's Guide

533

View the next step.

Step 3: Filtering

Read an overview of filtering module data.

Tutorials

534

View the next step.

Step 4: Filtering

Read an overview of filtering module data.

DesignSync Data Manager User's Guide

535

View the next step.

Step 5: Filtering

Read an overview of filtering module data.

Tutorials

536

View the next step.

Step 6: Filtering

Read an overview of filtering module data.

DesignSync Data Manager User's Guide

537

View the next step.

Step 7: Filtering

Read an overview of filtering module data.

Tutorials

538

View the next step.

Step 8: Filtering

Read an overview of filtering module data.

DesignSync Data Manager User's Guide

539

View the next step.

Step 9: Filtering

Read an overview of filtering module data.

Tutorials

540

View the next step.

Step 10: Filtering

Read an overview of filtering module data.

DesignSync Data Manager User's Guide

541

View the next step.

Step 11: Filtering

Read an overview of filtering module data.

Tutorials

542

View the next step.

Step 12: Filtering

Read an overview of filtering module data.

DesignSync Data Manager User's Guide

543

Persistent Populate Filter

Step 1: Persistent Populate Filter

In this use case, "Workspace LMD" refers to the local metadata. Read an overview of
filtering module data.

Tutorials

544

View the next step.

Step 2: Persistent Populate Filter

In this use case, "Workspace LMD" refers to the local metadata. Read an overview of
filtering module data.

DesignSync Data Manager User's Guide

545

View the next step.

Step 3: Persistent Populate Filter

In this use case, "Workspace LMD" refers to the local metadata. Read an overview of
filtering module data.

Tutorials

546

View the next step.

Step 4: Persistent Populate Filter

In this use case, "Workspace LMD" refers to the local metadata. Read an overview of
filtering module data.

DesignSync Data Manager User's Guide

547

View the next step.

Step 5: Persistent Populate Filter

In this use case, "Workspace LMD" refers to the local metadata. Read an overview of
filtering module data.

Tutorials

548

View the next step.

Step 6: Persistent Populate Filter

In this use case, "Workspace LMD" refers to the local metadata. Read an overview of
filtering module data.

DesignSync Data Manager User's Guide

549

View the next step.

Step 7: Persistent Populate Filter

In this use case, "Workspace LMD" refers to the local metadata. Read an overview of
filtering module data.

Tutorials

550

Folder-Centric Operations

Step 1: Folder-Centric Operations

Read an overview of module recursion.

DesignSync Data Manager User's Guide

551

View the next step.

Step 2: Folder-Centric Operations

Read an overview of module recursion.

Tutorials

552

View the next step.

Step 3: Folder-Centric Operations

Read an overview of module recursion.

DesignSync Data Manager User's Guide

553

View the next step.

Step 4: Folder-Centric Operations

Read an overview of module recursion.

Tutorials

554

View the next step.

Step 5: Folder-Centric Operations

Read an overview of module recursion.

DesignSync Data Manager User's Guide

555

Module-Centric Operations on a Module

Step 1: Module-Centric Operations on a Module

Read an overview of module recursion.

Tutorials

556

View the next step.

Step 2: Module-Centric Operations on a Module

Read an overview of module recursion.

DesignSync Data Manager User's Guide

557

View the next step.

Step 3: Module-Centric Operations on a Module

Read an overview of module recursion.

Tutorials

558

Module-Centric Operations on a Subfolder

Step 1: Module-Centric Operations on a Subfolder

Read an overview of module recursion.

DesignSync Data Manager User's Guide

559

View the next step.

Step 2: Module-Centric Operations on a Subfolder

Read an overview of module recursion.

Tutorials

560

View the next step.

Step 3: Module Centric Operations on a Subfolder

Read an overview of module recursion.

DesignSync Data Manager User's Guide

561

View the next step.

Step 4: Module-Centric Operations on a Subfolder

Read an overview of module recursion.

Tutorials

562

View the next step.

Step 5: Module-Centric Operations on a Subfolder

Read an overview of module recursion.

DesignSync Data Manager User's Guide

563

Module-Centric Operations on an HREF

Step 1: Module-Centric Operations on an HREF

Read an overview of module recursion.

Tutorials

564

View the next step.

Step 2: Module-Centric Operations on an HREF

Read an overview of module recursion.

DesignSync Data Manager User's Guide

565

View the next step.

Step 3: Module-Centric Operations on an HREF

Read an overview of module recursion.

Tutorials

566

View the next step.

Step 4: Module-Centric Operations on an HREF

Read an overview of module recursion.

DesignSync Data Manager User's Guide

567

View the next step.

Step 5: Module-Centric Operations on an HREF

Read an overview of module recursion.

Tutorials

568

Locking a Module Branch

Step 1: Locking a Module Branch

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module locking.

DesignSync Data Manager User's Guide

569

View the next step.

Step 2: Locking a Module Branch

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module locking.

Tutorials

570

View the next step.

Step 3: Locking a Module Branch

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module locking.

DesignSync Data Manager User's Guide

571

View the next step.

Step 4: Locking a Module Branch

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module locking.

Tutorials

572

View the next step.

Step 5: Locking a Module Branch

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module locking.

DesignSync Data Manager User's Guide

573

View the next step.

Step 6: Locking a Module Branch

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module locking.

Tutorials

574

View the next step.

Step 7: Locking a Module Branch

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module locking.

DesignSync Data Manager User's Guide

575

Locking Module Content

Step 1: Locking Module Content

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module locking.

Tutorials

576

View the next step.

Step 2: Locking Module Content

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module locking.

DesignSync Data Manager User's Guide

577

View the next step

Step 3: Locking Module Content

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module locking.

Tutorials

578

View the next step

Step 4: Locking Module Content

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module locking.

DesignSync Data Manager User's Guide

579

View the next step

Step 5: Locking Module Content

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module locking.

Tutorials

580

View the next step

Step 6: Locking Module Content

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module locking.

DesignSync Data Manager User's Guide

581

View the next step

Step 7: Locking Module Content

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module locking.

Tutorials

582

View the next step

Step 8: Locking Module Content

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module locking.

DesignSync Data Manager User's Guide

583

View the next step

Step 9: Locking Module Content

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module locking.

Tutorials

584

View the next step

Step 10: Locking Module Content

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module locking.

DesignSync Data Manager User's Guide

585

View the next step

Step 11: Locking Module Content

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module locking.

Tutorials

586

View the next step

Step 12: Locking Module Content

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read an overview of module locking.

DesignSync Data Manager User's Guide

587

Branching a Module

Step 1: Branching a Module

In this use case, the RAM team is producing a new version of the RAM module, with an
"automatic undo" feature. The new version is created as a side-branch of version 1.4.
"Workspace LMD" refers to the local metadata. "Server MD" refers to the server
metadata. Read an overview of module branching.

Tutorials

588

View the next step.

Step 2: Branching a Module

In this use case, the RAM team is producing a new version of the RAM module, with an
"automatic undo" feature. The new version is created as a side-branch of version 1.4.
"Workspace LMD" refers to the local metadata. "Server MD" refers to the server
metadata. Read an overview of module branching.

DesignSync Data Manager User's Guide

589

View the next step

Step 3: Branching a Module

In this use case, the RAM team is producing a new version of the RAM module, with an
"automatic undo" feature. The new version is created as a side-branch of version 1.4.
"Workspace LMD" refers to the local metadata. "Server MD" refers to the server
metadata. Read an overview of module branching.

Tutorials

590

View the next step

Step 4: Branching a Module

In this use case, the RAM team is producing a new version of the RAM module, with an
"automatic undo" feature. The new version is created as a side-branch of version 1.4.
"Workspace LMD" refers to the local metadata. "Server MD" refers to the server
metadata. Read an overview of module branching.

DesignSync Data Manager User's Guide

591

View the next step

Step 5: Branching a Module

In this use case, the RAM team is producing a new version of the RAM module, with an
"automatic undo" feature. The new version is created as a side-branch of version 1.4.
"Workspace LMD" refers to the local metadata. "Server MD" refers to the server
metadata. Read an overview of module branching.

Tutorials

592

View the next step

Step 6: Branching a Module

In this use case, the RAM team is producing a new version of the RAM module, with an
"automatic undo" feature. The new version is created as a side-branch of version 1.4.
"Workspace LMD" refers to the local metadata. "Server MD" refers to the server
metadata. Read an overview of module branching.

DesignSync Data Manager User's Guide

593

Merging and Modules

Auto-Merging Locally Added Files

Step 1: Auto-Merging Locally Added Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

Tutorials

594

View the next step.

Step 2: Auto-Merging Locally Added Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

DesignSync Data Manager User's Guide

595

View the next step.

Step 3: Auto-Merging Locally Added Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

Tutorials

596

View the next step.

Step 4: Auto-Merging Locally Added Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

DesignSync Data Manager User's Guide

597

Auto-Merging Locally Modified Files

Step 1: Auto-Merging Locally Modified Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

Tutorials

598

View the next step.

Step 2: Auto-Merging Locally Modified Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

DesignSync Data Manager User's Guide

599

View the next step.

Step 3: Auto-Merging Locally Modified Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

Tutorials

600

View the next step.

Step 4: Auto-Merging Locally Modified Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

DesignSync Data Manager User's Guide

601

View the next step.

Step 5: Auto-Merging Locally Modified Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

Tutorials

602

View the next step.

Step 6: Auto-Merging Locally Modified Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

DesignSync Data Manager User's Guide

603

Auto-Merging Locally Modified Files Removed from the Module

Step 1: Auto-Merging Locally Modified Files Removed from the Module

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

Tutorials

604

View the next step.

Step 2: Auto-Merging Locally Modified Files Removed from the Module

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

DesignSync Data Manager User's Guide

605

View the next step

Step 3: Auto-Merging Locally Modified Files Removed from the Module

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

Tutorials

606

View the next step

Step 4: Auto-Merging Locally Modified Files Removed from the Module

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

DesignSync Data Manager User's Guide

607

View the next step

Step 5: Auto-Merging Locally Modified Files Removed from the Module

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

Tutorials

608

Auto-Merging Non-Latest Locally Modified Files

Step 1: Auto-Merging Non-Latest Locally Modified Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

DesignSync Data Manager User's Guide

609

View the next step.

Step 2: Auto-Merging Non-Latest Locally Modified Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

Tutorials

610

View the next step.

Step 3: Auto-Merging Non-Latest Locally Modified Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

DesignSync Data Manager User's Guide

611

View the next step.

Step 4: Auto-Merging Non-Latest Locally Modified Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

Tutorials

612

Auto-Merging Locally Modified Files Renamed in the Module

Step 1: Auto-Merging Locally Modified Files Renamed in the Module

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

DesignSync Data Manager User's Guide

613

View the next step.

Step 2: Auto-Merging Locally Modified Files Renamed in the Module

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

Tutorials

614

View the next step

Step 3: Auto-Merging Locally Modified Files Renamed in the Module

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

DesignSync Data Manager User's Guide

615

View the next step

Step 4: Auto-Merging Locally Modified Files Renamed in the Module

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

Tutorials

616

Auto-Merging Locally Modified Files with Other Files Renamed in the Module

Step 1: Auto-Merging Locally Modified Files with Other Files Renamed in the Module

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

DesignSync Data Manager User's Guide

617

View the next step.

Step 2: Auto-Merging Locally Modified Files with Other Files Renamed in the Module

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

Tutorials

618

View the next step

Step 3: Auto-Merging Locally Modified Files with Other Files Renamed in the Module

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

DesignSync Data Manager User's Guide

619

View the next step

Step 4: Auto-Merging Locally Modified Files with Other Files Renamed in the Module

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

Tutorials

620

In-Branch Merging of Locally Added Files

Step 1: In-Branch Merging of Locally Added Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

DesignSync Data Manager User's Guide

621

View the next step.

Step 2: In-Branch Merging of Locally Added Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

Tutorials

622

View the next step.

Step 3: In-Branch Merging of Locally Added Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

DesignSync Data Manager User's Guide

623

View the next step.

Step 4: In-Branch Merging of Locally Added Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

Tutorials

624

View the next step.

Step 5: In-Branch Merging of Locally Added Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

DesignSync Data Manager User's Guide

625

View the next step.

Step 6: In-Branch Merging of Locally Added Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

Tutorials

626

In-Branch Merging of Locally Modified Files

Step 1: In-Branch Merging of Locally Modified Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

DesignSync Data Manager User's Guide

627

View the next step.

Step 2: In-Branch Merging of Locally Modified Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

Tutorials

628

View the next step.

Step 3: In-Branch Merging of Locally Modified Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

DesignSync Data Manager User's Guide

629

View the next step.

Step 4: In-Branch Merging of Locally Modified Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

Tutorials

630

View the next step.

Step 5: In-Branch Merging of Locally Modified Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

DesignSync Data Manager User's Guide

631

View the next step.

Step 6: In-Branch Merging of Locally Modified Files

In this use case, "Workspace LMD" refers to the local metadata. "Server MD" refers to
the server metadata. Read a description of this use case.

Tutorials

632

633

Reference

Understanding the DesignSync Architecture

DesignSync Architecture

DesignSync is a client/server groupware application similar in architecture to WWW
browsers and the servers with which they communicate. DesignSync servers, known
as SyncServers, manage shared information, control access to design files, and
perform administrative functions such as user authentication and user privilege
validation. For installations where many or all of the users are on the same LAN with a
cross-mounted file system, it may be possible to increase performance through the use
of a LAN cache. Also, DesignSync mirrors provide another mechanism for sharing files.

Like WWW servers and browsers, a DesignSync client can communicate with any
number of SyncServers, anywhere on a LAN, WAN, or the Internet.

When you request a revision-control operation, the request is passed to the server,
where the operation takes place. Once requested, server operations will complete,
even when the connection between the client and the server is disconnected before the
server has sent confirmation to the client.

While most of the information about a revision-controlled project is stored on the
SyncServer, some data is local to the client. This client-side metadata is stored in
.SYNC folders that reside in the parent folder of any local DesignSync-associated
object.

Reference

634

CAUTION: DesignSync manages these .SYNC metadata folders; do not directly
manipulate these folders or their contents.

Related Topics

What Is a SyncServer?

What is a LAN Cache?

Metadata Overview

DesignSync Data Manager Administrator's Guide: Mirroring Overview

DesignSync Data Manager Administrator's Guide: Access Control Overview

What Is a SyncServer?

DesignSync is a client/server groupware application similar in architecture to WWW
browsers and the servers with which they communicate. DesignSync servers, known as
SyncServers, manage shared information, control access to design files, and perform
administrative functions such as user authentication and user privilege validation.

Related Topics

Accessing a SyncServer: User Authentication

DesignSync Data Manager Administrator's Guide: SyncServer List Files

Object States

You can populate or check out design files into your local workspace in one of five
states: locked, unlocked, reference, locked reference, link to the cache, or link to the
mirror. You can have any mix of states in the same folder. What state or states you
want your files in depends on your design methodology.

State Description
Locked A locked object is the original object. When you create a new object,

such as a file, the object also is the original.

When you check out a file with lock, your work area contains the
specified version of the original file.

Unlocked An unlocked object is a replica of another object. Replication is
different from the normal copying process. A "copy," in the usual
sense, is an independent object; it is not associated with the object

DesignSync Data Manager User's Guide

635

from which it was copied. An unlocked copy, on the other hand,
retains an association with the original from which it was copied.

When you check out a file without lock, your work area contains a
replica of the file.

Reference A reference is an object that is not physically present, but instead
points to another object. Although no physical files correspond to a
reference, DesignSync metadata keeps track of the revision-control
information for the reference. Just as with unlocked copies, the object
that the reference points to is the original.

When you check an object into the vault and choose to retain a
reference in your work area, DesignSync metadata maintains a
connection between your working area and the object in the vault.

You also can create a locked reference to ensure that the referenced
object cannot be updated by another user.

Link (UNIX
only)

A link can be either a hard link or a symbolic link to another object.
Links are useful when you want to easily access a file without having
a copy in your work area - for example, when the file is very large.
Links are available only on UNIX systems.

You can have links to a shared cache or to a mirror directory.

Note: The link icon is used for any link in your work area, whether the
link is a DesignSync-created link to the cache or mirror or a link to a
file or folder that DesignSync did not create. Use the Type field in the
List View to determine the revision-control state of a link.

Your project leader can specify the state objects in your work area should be in when
they are not being edited (the fetch state). See the DesignSync Data Manager
Administrator's Guide: Default Fetch State for more information.

Saving the Setting of an Object's State

You can have DesignSync save the object state settings you specify. During a checkin,
checkout, or populate operation, take these steps:

1. In the Check In, Check Out, or Populate dialog box, specify the object state you
want.

2. Click Save Settings.

Then each time you bring up that dialog box, DesignSync displays the object state as
selected. This is the default behavior, even when default fetch state has been defined.

Reference

636

You can also set a default fetch state, which will apply to both command line operations
and the DesignSync GUI. For details, see DesignSync Data Manager Administrator's
Guide: Default Fetch State.

Related Topics

DesignSync Data Manager Administrator's Guide: How DesignSync Handles
Symbolic Links

DesignSync Data Manager Administrator's Guide: Default Fetch State

Object Types

The term object most often refers to file system objects such as files or folders
(directories). The term object can also be used in a more general sense - for example,
to refer to any object identifiable by an Internet Uniform Resource Locator (URL).

The following types of objects are commonly used in DesignSync:

Object Type Description
Branch A thread of development that emanated from a version. The

branch itself typically contains versions.

Branch point
version

A version which is the root of a branch from which other
versions emanate.

Category Provides a means of organizing modules. Specify a virtual path
category to group related modules. For example, if you work
with two different types of projects, Chip design and CPU
design, you can create two categories /Chip and /CPU to store
the different modules for each type of project. These paths do
not map to actual paths on the server.

Collection A group of files treated by DesignSync as a single versionable
object.

File File system file.

Folder File system directory.

Hierarchical
Reference

A reference, or connection, from an upper-level module to any
of the following object types: a submodule, branch or version, a
legacy submodule configuration, a DesignSync vault, or an IP
Gear deliverable.

IP Gear
deliverable

A package of data that has been uploaded and associated with
an IP Gear Catalog Component.

Module A collection of managed objects that together make up a single

DesignSync Data Manager User's Guide

637

entity.

View A named set of rules that defines what module members are
filtered in a module workspace. By using a module view,
DesignSync administrators can provide a set of common filters
available to all members of a project or group.

Module Cache A folder containing a shared copy of a module.

Link to Mcache A symbolic link that points to the base directory of the module in
the module cache.

Cache A symbolic link that point to a file cache object.

Cache-hardlinked A hard link reference that points to a file cache object.

External Module A reference to an external module.

Vault Contains files you have checked in and their versions; also
contains branches. Vault is also used to mean the default vault
associated with a folder (directory).

Version An immutable snapshot of a file at a particular point in time.

Object Properties

Viewing and Setting Properties

The Properties dialog box lets you view and set properties for a selected object. You
select the object whose properties you want to view, then can either:

• Select File =>Properties.
• Click the Properties button.
• Right-click on the object and select Properties from the context pop-up menu.

The information available from the Properties dialog box depends on the type of object
you have selected. You can also select multiple objects, but typically less meaningful
information is displayed when multiple objects are selected.

Depending on the object selected, one or more of these tabs could display:

• The General tab provides general information.
• The Revision Control tab shows revision status.
• The Modules tab shows module information.
• The Version tab that shows version status.
• The Tag shows all of the branch tags, and all of the version tags, that are

associated with the object.
• The Collection tab displays the collection members.

Reference

638

You can also display properties for Public Projects that have been defined for you.

General Properties

The General tab of the Properties dialog box provides general information about an
object that you have selected.

Note: When displayed, the only field you can edit is the Description field, where you
can enter a description of the object. Any description you enter here is separate from
comments associated with revision control operations such as checkin and checkout. It
is not propagated to the vault and is only associated with the local file. Other users who
access the object from a shared workspace can view this description. Also, this
description does not apply to any Potential Checkouts since they do not exist in the
workspace.

For managed objects, you can enter revision notes in the Description text box. The
notes in the Log, if any, also appear in the object's data sheet. The Log is a workspace
for you to build check-in comments. When you check out an object, the Log for that
object is seeded with your check-out comment. You can add to and edit the Log any
number of times while you have the object checked out. When you check in the object,
the comment you specify with the check-in command, if any, is appended to the Log to
form the complete check-in comment. Therefore, to check in an object without any
comment, clear the Log prior to the check-in command. Note that the content of the Log
does not contribute to the minimum comment-length requirement, if any. Following the
check-in, DesignSync clears the contents of the Log.

Note: When viewing the General tab for hierarchical references, you see the following
notation for URL: <path>/<ModuleName>#<HierarchicalReferenceName>.

Related Topics

Revision Control Properties

Module Object Properties

DesignSync Data Manager User's Guide

639

Version Properties

Tag Properties

Displaying Project Properties

Viewing and Setting Properties

Revision Control Properties

The Revision Control tab of the Properties dialog box provides revision-control
information about an object that you have selected. The information available depends
on the object or objects you have selected.

When viewing the properties of a folder, you can initially set the vault location for the
folder or change the vault location already associated with the folder. If you cannot see
the entire vault location, place your cursor in the field and move it to the right.

Related Topics

ENOVIA Synchronicity Command Reference Help: setvault command

Specifying the Vault Location for a Design Hierarchy

Changing the Vault for a Design Hierarchy

Reference

640

General Properties

Module Object Properties

Version Properties

Module Object Properties

Version Properties

Tag Properties

Module Objects Properties

The Modules tab of the Properties dialog box provides revision-control information
about modules and modules objects. The information available depends on the object
you selected and whether it was selected from the client or the server. You can display
module object properties for the following module object types:

Href Node (Server) Module Node (Server)
Legacy Configuration Node (Server) Module Version Node (Server)
Legacy Href Node (Server) Modules Node (Server)
Legacy Module Base Node (Client) Module Base Node (Client)
Legacy Module Node (Server) Module Href Node (Client)
Legacy Modules Node (Server) Module File Member Node (Client and

Server)
Module Branch Node (Server) Module Folder Member Node (Client and

Server)
Module Instance Node (Client)

The Modules tab on the Properties dialog box provides the following information, as
appropriate:

DesignSync Data Manager User's Guide

641

Action/Option Result
Server URL The module's address on the server.

Module Type The type of object selected: module, mcacheinst or external.

Root Directory The location of the workspace root directory on the client.

Selector The identifying expression used to fetch the module.

Version
Number

The module's numeric identifier on the server.

Tags The module's user-designated identifiers.

Href Mode The mode associated with the module's hierarchical reference
that was used to fetch the module: normal, static or dynamic.

Parents If the module is hierarchically references from other modules, the
names of those modules.

Filter A specified expression used to identify the exact subset of module
members on which the command will operate.

Href Filter A specified expression used to exclude hierarchical references
that will be followed when operating on a module recursively.

Related Topics

General Properties

Reference

642

Revision Control Properties

Displaying Collections

Displaying Project Properties

Version Properties

Tag Properties

Version Properties

The Version tab of the Properties dialog box provides the author and revision log
information about an object that you have selected in the vault.

Related Topics

General Properties

RevisionControl Properties

Module Object Properties

Tag Properties

Displaying Project Properties

Viewing and Setting Properties

Tags Properties

The Tags tab of the Properties dialog box shows all of the branch tags, and all of the
version tags, that are associated with the object.

DesignSync Data Manager User's Guide

643

If the tag name is too long, you can mouse over to the column splitter and expand the
tag name field by grabbing and then moving the column splitter indicator.

Related Topics

General Properties

RevisionControl Properties

Module Object Properties

Version Properties

Displaying Project Properties

Viewing and Setting Properties

Collection Properties

The Collection tab of the Properties dialog box provides a list of the members of a
collection. The Collection tab appears when the properties of a View object are
displayed.

Reference

644

Collection Properties Field Descriptions

Members

The list of members present in the view. The list displays the full workspace path of the
view members.

Update Members

Refreshes the list of members.

Related Topics

Collections Overview

Displaying Collections

Collection Member Properties

Collection Member Properties

The Collection Member tab of the Properties dialog box provides the workspace
address of the collection to which the specified member belongs.

DesignSync Data Manager User's Guide

645

Related Topics

Collections Overview

Displaying Collections

Collection Properties

URL Syntax

The table below shows examples of URL syntax for various types of objects you can
access through the SyncServer. The portion host:port represents the server's ip
address:port number or symbolic DNS address:port number.

The ellipses (...) in the URLs represent the path to the object (file, module, folder, vault,
version, branch, or branch-point version) being accessed, which should include a
leading slash.

Object
Type

URL

File file://.../file_name

Example:

file:///home/bob/work/mod1/block

Reference

646

Folder file://.../folder_name

sync://host:port/.../folder_name

Example:

file:///home/bob/work/mod1

sync://linus.appco.com:2647/Projects/gemini/block1

Module sync://host:port/Modules/[category/...]module_name

Example:

sync://linus.appco.com:2647/Modules/ProjectA/ChipModules/ ALU

Module
in the
Modules
View

For a module instance:

module://module_instance_name/full_path_to_module_base_directory/

For a module root:

module:///full_path_to_module_root_directory/

Examples:

module://ALU%0/c|/Workspace/Chip1/ALU

module:///c|/Workspace/Chip1

Module
Version

sync://host:port/Modules/[category/...]module_name;version

Example:

sync://linus.appco.com:2647/Modules/ProjectA/ChipModules/ ALU;1.4.1

Version sync://host:port/.../vault_name;[branchtag:]version

Examples:

sync://linus.appco.com:2647/Projects/gemini/block1/top.v;1.3

sync://linus.appco.com:2647/Projects/gemini/block1/top.v;Gold:Latest

Branch-
Point

sync://host:port/.../vault_name;1.1

DesignSync Data Manager User's Guide

647

Version Example:

sync://linus.appco.com:2647/Projects/gemini/block1/top.v;1.3

Branch sync://host:port/.../vault_name;1.1.1

Example:

sync://linus.appco.com:2647/Projects/gemini/block1/top.v;1.3.1

External
Module

sync:///ExternalModule/<external-type>/<external-data>

Tip: You can differentiate between a branch numeric and a version numeric by counting
the number of segments. A version numeric has an even number of segments like 1.1
or 1.2.1.3. A branch numeric has an odd number like 1.1.1 or 1.2.13.4.

Reserved Characters

DesignSync object names, including (but not limited to) file-based design objects,
collections, module, and category names may only contain printable characters and
cannot contain a space, or any of the following symbols:

~ ! ? @ # $ % ^ & * () , ; : | ` ' " = [] / \ < >

Because these symbols are used for specific purposes in URLs, generated mirror
names, and datasheets, and are illegal for modules, you should avoid using them in
other DesignSync elements as well to minimize confusion.

Reference

648

Using SyncAdmin, you, or the system or site administrator can restrict the natural path
of the object so that neither the object itself, or any folders in the object path can contain
these symbols. For more information, see Exclude Lists in the DesignSync Data
Manager Administrator's Guide.

Reserved File Extensions

Do not use the following strings in your URL names, as either files or directory
components:

1. .sgc
.sync

These strings are reserved for use by DesignSync's Custom Type System. See the
DesignSync Custom Type System Programmer's Guide: Custom Type System for more
information.

DesignSync URLs

URLs (Uniform Resource Locators) give you a way to identify every object in the
computing world. The URL of an object specifies what computer the object is on, where
the object is on that computer, and how to access it.

Most URLs you see on the World Wide Web begin with the string http. This string
represents the protocol portion of the URL. The protocol tells the server receiving the
request how to process the URL -- in this case a request for an HTML page residing
somewhere on the server's file system.

Instead of the http protocol, DesignSync uses a special protocol, sync, to allow it to
instruct a SyncServer how to distinguish and handle requests for information. Using the
sync protocol, DesignSync can address objects such as directories or files, anywhere
on the Internet, by specifying a URL with either of the following formats:

sync://IPAddress:portnum/path_to_object

sync://host.domain:portnum/path_to_object

For example:

sync://208.196.5.5:2647/Projects/SCSI_Proj

or

sync://host.mycompany.com:2647/Projects/SCSI_Proj

or if you are on the same LAN as "host":

DesignSync Data Manager User's Guide

649

sync://host:2647/Projects/SCSI_Proj

The default SyncServer port number is 2647. You can omit the port specification if the
SyncServer is using this default port number.

All objects can be referenced in the DesignSync clients, and by the DesignSync server
as a URL -- not only remote objects, but also objects on the local file system of the
computer where you are running the DesignSync client. You address a local object with
the file protocol, as in the following:

file:///directory_path/file_name

Note:

DesignSync also supports a syncs protocol for communicating with secure (SSL)
SyncServer ports. In most cases, DesignSync automatically redirects requests to a
cleartext (non-secure) port using the sync protocol to the secure port, if one is defined.
The default DesignSync secure port number is 2679. Your DesignSync administrator
defines what SyncServer ports are available and whether secure communications are
required. See Overview of Secure Communications for more information.

Related Topics

URL Syntax

DesignSync Data Manager Administrator's Guide: Using Secure Communications

Revision Control Status Values

In the List View Pane, the revision-control status of the objects are listed under status
columns.

Notes:

• For collections of data, the Status is reported only for the collection object, and not its
member files.

• For module hierarchies with the persistent populate href mode of normal, the DesignSync
interface uses the Change traversal mode with static selector on top level module set
in SyncAdmin to determine which module version is expected in the workspace. For
more information, see the Module Hierarchy topic.

Values Description
Up-to-date File is currently the correct version for the selector, or that the

module member version matches the correct version for the
module selector.

Locally Modified File has been edited since it was fetched and a more recent

Reference

650

version has not been checked into the branch, or that an add has
been performed on a module member that has not been checked
into the module.

Needs Merge
[<change>]

File has been locally modified and the version is not correct for
the current selector.

For modules, an additional value indicating the type of change
may appear in brackets [] after the Needs Merge status value:

• <Version number> - the version of the member in the
module version.

• Moved - the module member has a different natural path
than the one expected by the module version.

• Removed - the module member is not in the module
version.

• <Version number>,Moved - the module member is both a
different version and located at a different natural path than
the module version.

Needs Update
[<change>]

Indicates that you have an incorrect version on the given branch.

For modules, an additional value indicating the type of change
may appear in brackets [] after the Needs Update status value:

• <Version number> - the version of the member in the
module version.

• Moved - the module member has a different natural path
than the one expected by the module version.

• Removed - the module member is not in the module
version.

• <Version number>,Moved - the module member is both a
different version and located at a different natural path than
the module version.

Unresolved
Conflicts

Indicates that a merge of versions has resulted in conflicts.

Added Indicates that the object has been added to the module, but has
not been checked in.

Added By
Merge, Needs
Checkin

Indicates that the file was introduced to the work area by a merge
or overlay operation and does not exist on the current branch.
When you check in the file, the branch is created automatically.

Locally Moved Module member has moved in the workspace.

Note: Moved members display with this status even if they have
also had their contents modified. There is no separate indication
that the contents have changed.

DesignSync Data Manager User's Guide

651

Locally
Removed

Module member has been removed from the module.

Remove for
merge

An object present in the workspace was removed, either by being
removed from the module or by being retired on the branch being
merged into the workspace.

Absent Indicates an object that is unexpectedly absent from the
workspace. Typically an object is listed as 'Absent' if it was
deleted from the workspace using operating system commands,
leaving behind the local metadata.

Unknown Indicates that the version of the file in the workspace cannot be
determined from the local metadata. An object can be Unknown
when:

• The object has been modified locally but is not derived
from the version in the vault. For example, when you
remove an object and then recreate it. In this case, you can
check in the object using the -skip option.

• A reference has been retired and then the selector is
changed. If you retire an object (without -keep), both the
object and its metadata are removed from the local
workspace.

• A setselector operation then creates a metadata entry, but
without a version number.

• A broken network connection interrupts the check in of a
new object. When the client loses its connection, the check
in to the server can succeed, but the client may not receive
results back from the server. This situation leaves
managed files in the local workspace that do not have
corresponding metadata.

[Retired] This is not a state of its own; rather it is a prefix to one of the other
states. Indicates that the current branch is retired. For example,
the status column might contain:

[Retired] Locally Modified

Because the [Retired] status is a prefix to other status terms,
sorting causes retired items to be grouped either at the beginning
or end of the listing, independent of the items' local state.

Related Topics

DesignSync Symbols and Icons

Vaults, Versions, and Branches

Reference

652

A vault is an object that holds versions of other objects, such as files. For example, if
you create a new file and check it in, the checked in file would be identified as version
1.1 in the vault. If you check out 1.1, make changes to it, and check it back in, you
create version 1.2. If you check out 1.2, make changes to it, and check it back in, you
create version 1.3, and so on. Vault names always end in a semicolon (;), for example:
top.v; is the vault for top.v.

A vault also holds any branches that may be derived from versions of a file, as well as
the versions on those branches. Branches allow for parallel development, where
multiple design activities on the same design files take place simultaneously.

Folders (directories) are not revision controlled and therefore are not stored in a vault.
However, a folder has a default vault associated with it that specifies the vault used, by
default, for files within the folder. Using this principle, people often refer to the vault
associated with the top-level folder of a revision-controlled project as "The Vault Folder",
or simply "The Vault" for the project.

Branches and vaults have owners associated with them. Ownership is important for
controlling access to design objects through operating-system protections and
DesignSync access controls. For example, the ability to delete a vault can be access-
controlled based on the owner of the vault. The owner of a vault is defined as the owner
of the design object's main branch. By default, the owner of a branch is the creator of
the initial version of the branch unless a different owner has been specified with the
setowner command. See the ENOVIA Synchronicity Command Reference: setowner
command for more details.

Related Topics

Viewing the Contents of a Vault

DesignSync Data Manager Administrator's Guide: Access Control Overview

Parallel (Multi-Branch) Development

Introduction to Data Replication

Members of a project team often need read-only access to the same data. DesignSync
users on UNIX all have access to the same data, with that data maintained in a
common area by DesignSync. If users each fetch local copies of the same data into
their own work areas, your project team will require additional disk space per user and
additional time for the data to be transferred from the server. Instead, your team can
share common data in a cache or a mirror directory.

When users do need their own local copies of data, DesignSync attempts to copy the
requested file version from a file cache or a mirror directory. If the requested file version

DesignSync Data Manager User's Guide

653

does not exist in a file cache or a mirror directory, DesignSync fetches the data from the
server.

For module data, UNIX users can link to modules in a module cache in addition to
linking to file versions in the DesignSync file cache. When linking to file versions in the
file cache, the –share option is used with the module operation. Depending on the
system setup, either hard links or symbolic links are created to the module member
version. When linking to a module cache, only one symbolic link is used to link the
workspace module base directory to the base directory of this module in the module
cache. Both of these methods provide linking to files across the LAN instead of
transferring data from the server to optimize performance. Using UNIX links also save
disk space.

Legacy modules can be linked to, or copied from, a module cache.

Note: Because of the way links are handled, mirrors, caches, and module caches are
not currently supported on Windows.

Related topics

Using a Module Cache

DesignSync Data Manager Administrator's Guide: Mirrors Versus Caches

DesignSync Data Manager Administrator's Guide: Fetching Files from the Mirror or
Cache

DesignSync Data Manager Administrator's Guide:Setting up a Module Cache

Metadata Overview

When you place objects under revision control, DesignSync manages the objects both
in the vault (typically on a server) and in your local (client) work area. Information about
the objects that DesignSync manages is called metadata. DesignSync maintains both
server-side and local metadata. You view the metadata indirectly using the DesignSync
graphical interface or DesignSync shells.

Server-side metadata is accessible by all users who have access to the vault, and
includes information such as:

• The branches and versions available for a module or an object
• A branch's lock and retired status
• A branch's tags
• A version's tags and log (check-in/check-out comments)

Reference

654

Local metadata is accessible by you, and it may or may not be accessible to other users
based on your preferred work style. Local metadata is designed to optimize the
performance and disk utilization of common operations and includes information such
as:

• The module instance name.
• The state of an object in your local work area (reference, copy, locked copy, link

to cache or mirror)
• The object's vault, branch, and version
• The timestamp when you fetched the object
• The persistent selector list
• The version last merged with the object

Local metadata is stored in the workspace module root directory and in .SYNC
directories on your local file system.

CAUTION: DesignSync manages these metadata directories; do not directly
manipulate these directories or their contents.

Local metadata

DesignSync stores the metadata information in the workspace module directory. You
must have write access to the module root directory.

Note: If your intent is not to share a work area, you should structure your local hierarchy
so that multiple users are not required to write into the same module root directory.

If the workspace is shared, DesignSync clients on UNIX platforms must have their UNIX
umask set so that the module root directory is created with write access granted to
others in the same UNIX group.

Notes:

• Problems you might experience reading or writing metadata (reported as errors
by DesignSync) are typically due to protection or locking issues.

• If two users attempt to perform revision control operations in the same directory,
DesignSync forces the second user to wait until the first is complete -- two users
cannot modify the metadata at the same time. The second user can interrupt the
operation if the wait is too long. For more information, see the ENOVIA
Synchronicity Command Reference Help Interrupt (Control-c) section of the
Command Reference.

Related Topics

Controlling Access to Your Local Work Area

DesignSync Data Manager User's Guide

655

Setting Up a Shared Workspace

DesignSync Data Manager Administrator's Guide: Troubleshooting Metadata Errors

Mirrors

Mirroring Overview

A mirror exactly mimics the data set defined for your project vault. Mirrors provide an
easy way for multiple users to point to the file versions that comprise their project's data.
The file versions in the mirror belong to the configuration defined by the project lead.
For example, the configuration could be the Latest version of files on the main Trunk
branch. A mirror for a development branch may be defined to always contain the file
versions on that branch with a specific tag. When the file versions comprising the
configuration change, for example, if Latest versions are being mirrored and a new
version of a file is checked into the vault, the mirror directory is automatically updated
with the new version. Without mirroring, users would need to frequently update their
work areas using the populate command to reflect the project's current data set. You
can find where vault data is being mirrored, and the status of those mirrors. (See the
Related Topics below.)

The setmirror command associates a workspace with a mirror directory. A mirror will
always have accurate metadata because any action that writes to a mirror directory
updates the local metadata in the mirror directory. When you use the setmirror
command to associate a mirror directory, checking in an object will:

• create the new version in the vault,
• update the file in the associated mirror associated, and then
• update the metadata.

Mirror can be updated and administered automatically. See the section Administering
Mirrors for details. As of Version 4.2, the legacy Remote Mirror Assurance package is
no longer supported.

Mirror Attributes

• All actions that write to a mirror directory will update the local metadata in the
mirror directory. When looking at a workspace that has objects in the mirror state,
a combination of the workspace’s and the mirror directory’s local metadata will be
used to determine the correct version of the objects. This allows you to use the
ls or url command on objects in the workspace to show the correct state of the
object.

• Mirrors support all defined configurations.
• When a check-in occurs from a client, it creates a new version in the vault,

returns control back to the client, and the client writes the object into the mirror
and updates the local metadata in the mirror directory.

Reference

656

• A mirror write through will occur for all fetch states. Regardless of the fetch state,
if a mirror write through is done, then the metadata is updated to reflect what was
written to the mirror directory.

• No other commands, with or without the -mirror option, write through to the
mirror. Commands like populate -mirror and cancel -mirror do not
write to the mirror directory. However, the co -mirror command writes through
to the mirror directory if the correct up-to-date version is not already in the mirror.
Most commands only create links from a workspace to the files in the mirror
directory.

As a DesignSync administrator, you can:

• Set up a mirror directory and navigate through this mirror knowing that everything
is being kept up-to-date.

• Set up your environment (from that LAN where the check-ins occur) to write
through to your mirror when checking a new version into the server. You do not
have to wait for the mirror update process to update the mirror.

Restrictions

• Because mirroring is implemented with UNIX links, mirrors are not supported on
Windows platforms.

• The mirror directory and the users accessing it must be on the same LAN.
• Only one process can write to the mirror subdirectory at a time. The system

ensures that when you check in a new version, there will be a lock on the mirror
subdirectory. The lock is held for the duration of the client check-in from the
workspace subdirectory. The system will display a "waiting on metadata lock"
message while the system processes the workspace. This may cause a delay if
someone is checking in a large amount of objects or large files.

• Mirrors for modules cannot be linked to from a workspace. A module cache
should be used instead.

Related Topics

General Mirror Topics:

Mirrors Versus Caches

Using a Mirror

ENOVIA Synchronicity Command Reference: mirror wheremirrored

Mirror Administration Topics:

Administering Mirrors

Finding Mirrored Data

DesignSync Data Manager User's Guide

657

Using a Mirror

A mirror exactly mimics the data set defined for your project vault. Mirrors provide an
easy way for multiple users to point to the file versions that comprise their project's data.
The file versions in the mirror belong to the configuration defined by the project lead.

Examples

• The configuration might be the Latest version of files on the main Trunk branch.
A mirror for a development branch might be defined to always contain the file
versions on that branch with a specific tag. When the file versions comprising the
configuration change, the mirror directory automatically updates with the new
version.

• If Latest versions are being mirrored and a new version of a file is checked into
the vault, the mirror directory updates with this new version. Without mirroring,
users need to frequently update their work areas using the populate command
to reflect the project's current data set.

Mirror directories can be treated in the same way as your DesignSync work areas. For
example, you can use commands such as the url or ls commands on mirror
directories.

Setting Up Your Workspace

Your team leader will have set up a mirror directory for your project. Use the setmirror
command to associate your workspace with the project's mirror directory. The setmirror
command does not have a GUI equivalent. See ENOVIA Synchronicity Command
Reference: setmirror help for more information on this command.

Note: you cannot link to a module mirror from a workspace.

All of the workspace's subdirectories automatically inherit the mirror location set for the
top level of the workspace. You cannot set a different mirror on a subdirectory from that
of its the parent directory.

To determine if your current work area directory is associated with a mirror, use the url
mirror command. See the ENOVIA Synchronicity Command Reference: url mirror help
for more information on this command.

Note: To resolve the mirror location, DesignSync does not search above the root of a
workspace where a setvault has been applied.

Reference

658

So if a setvault has been applied to a folder (/Projects/ASIC/alu) and you apply the
setmirror command at a higher-level folder (for example, /Projects/ASIC), the
setmirror command is ignored at and below the folder where the setvault occurred
(/Projects/ASIC/alu). See ENOVIA Synchronicity Command Reference: setvault help
for more information on this command.

Normally, the path to a mirror is stored exactly as specified by the setmirror command. If
your mirror directory is set to an auto-mounted directory, you can set a registry key for
DesignSync to resolve the path instead.

See DesignSync Data Manager Administrator's Guide: DesignSync Client Commands
Registry Settings for more information.

Changing the Mirror Directory Associated with Your Workspace

If the mirror directory for your project changes, run the setmirror command from the
same directory in which the original setmirror command was run. This command
updates the workspace's mirror association, which is inherited by lower level directories.

To correct existing workspace links to mirror files, run the populate command with
these options:

populate -recursive -mirror -unifystate

This command corrects the links to point to the mirror directory's new location.

Disassociating Your Workspace from a Mirror Directory

If you no longer need to use a mirror directory, you can disassociate your work area
directory from the mirror, by using the setmirror command.

Using the -mirror Option to Commands

Once you have associated your workspace with a mirror directory, use the -mirror
option with populate, ci, co, and cancel commands (or select Keep a link to Latest
(mirror) when performing these operations through the DesignSync GUI). You can also
specify that -mirror be used by default, if your team leader did not set that for your
project. For details, see Object States.

Note: You cannot use the populate -mirror command (or select Keep a link to Latest
(mirror)) to populate a directory containing a module. In addition, the ci command
ignores the -mirror option if you use it when checking in a module.

Having links to files in the mirror directory ensures that you are always referencing the
most up-to-date configuration. However, if other mirror users add files to the mirror, they
are not automatically exposed to your work area. Therefore, you should periodically
populate your work area directory using the populate -mirror command.

DesignSync Data Manager User's Guide

659

Notes:

• When performing the populate -mirror operation, DesignSync creates links only
if no file or link already exists in your work area directory; DesignSync does not
change the state of existing files and links.

To change the state of existing files and links when you populate your working
directory, use the -force or -unifystate option (or select Overwrite local files if
they exist or Unify workspace state in the DesignSync GUI), in addition to the -
mirror option.

Caution: Using the -force option overwrites any locally modified files.

• You cannot use the populate -mirror command to populate a directory containing
a module.

Related Topics

DesignSync Data Manager Administrator's Guide: Mirroring Overview

DesignSync Data Manager Administrator's Guide: Mirrors Versus LAN Caches

ENOVIA Synchronicity Command Reference Help: setmirror

ENOVIA Synchronicity Command Reference Help: ci

ENOVIA Synchronicity Command Reference Help: populate

ENOVIA Synchronicity Command Reference Help: co

ENOVIA Synchronicity Command Reference Help cancel

Architecture of the Mirror System

The flow diagram below shows how mirror directories are automatically updated,
reacting to a change in the vault being mirrored. Descriptions of the steps follow.

Reference

660

1. A DesignSync client operation, from any site, is issued that will modify the vault
data being mirrored. For example, a ci command is run, of a locally modified
managed object.

2. A new file version is created in the Repository Server's vault.
3. The Repository Server updates its transaction log with the new version

information, recording the change in vault content as vault log entries.

DesignSync Data Manager User's Guide

661

4. The Mirror Push Daemon on the Repository Server reads the transaction log via
the Tcl interface, for the "change set".

5. The Mirror Push Daemon pushes the change set via rstcl to each Mirror
Administration Server. Only the changes relevant to the mirrors being managed
by a particular Mirror Administration Server are pushed to that Mirror
Administration Server.

6. The Mirror Administration Server writes the changes to its transaction log as
mirror log entries, and then returns control back to the Mirror Push Daemon.
From the successful return of the Mirror Administration Server, the Mirror Push
Daemon knows that the Mirror Administration Server has received the changes.

7. The Mirror Administration Daemon reads the change set from the mirror's
transaction log via the Tcl interface.

8. The Mirror Administration Daemon spawns a Mirror Update Process for each
affected mirror that needs to be updated.

9. The mirror directories are updated. When mirroring a non-legacy module, a
populate will always be performed, regardless of the DesignSync client command
used to modify the module. When mirroring a legacy module or a DesignSync
vault, if the originating DesignSync client command was a ci, then each Mirror
Update Process performs a co to fetch the new versions that belong in the mirror.
If the originating DesignSync client command was some other operation (such as
tag, mvfolder, retire, etc.) then each Mirror Update Process performs a populate,
to update the mirror. populate is also run by each Mirror Update process if the
originating DesignSync client command was a ci that produced new versions of
many files. For more information, see the DesignSync Data Manager
Administrator's Guide: Registry Settings for a Mirror Administration Server for
more information.

Administering Mirrors

DesignSync uses a method for managing mirrors introduced in the 4.1 release of
Developer Suite. All DesignSync mirror servers must be minimally running version 4.1
to work properly with this version of DesignSync. If you are setting up mirrors on a pre-
4.1 installation, refer to documentation from that release.

You can set up the following types of DesignSync mirrors:

• Standard mirror – Fetches design objects directly from the repository server.

• Primary mirror – Fetches design objects directly from the repository server and
serves them to secondary mirrors. A primary mirror must be on a UNIX host that
supports hard links. This is not supported for non-legacy modules.

• Secondary mirror – Fetches design objects from a primary mirror instead of
directly from the repository server. This is not supported for non-legacy modules.

Secondary mirrors help reduce network traffic at the repository server. A
secondary mirror communicates with the Repository Server to determine what

Reference

662

objects need to be updated in the mirror. The secondary mirror fetches the
updated contents from the primary mirror instead of from the Repository Server.

Mirrors are managed by a SyncServer. You can use ProjectSync to create and
administer two types of DesignSync mirror servers:

• Mirror Administration Server (MAS) – - The SyncServer at a mirror site that
manages the mirrors. When objects change in a repository associated with an
MAS, the MAS is notified and then updates its affected mirrors. You can create
mirrors only on servers with an MAS.

• Repository Server (RS) – - The SyncServer that manages a repository (vault)
that is mirrored at one or more mirror sites.

You use the ProjectSync GUI to set up Repository Servers and Mirror Administration
Servers and to create and edit mirrors. See ProjectSync Help: Mirror Overview for
details on how to set up your mirror servers and your mirrors.

You also can use the mirror commands to work with mirrors. See the mirror command
descriptions in the ENOVIA Synchronicity Command Reference for details.

Note: As of Version 4.2, Remote Mirror Assurance package and local mirrors are no
longer supported.

Related Topics

Mirroring Overview

Using a Mirror

Using a Module Cache

DesignSync Data Manager Administrator's Guide: Administering Mirrors

DesignSync Data Manager Administrator's Guide: Mirrors Versus Caches

DesignSync Data Manager Administrator's Guide:Fetching Files from the Mirror or
Cache

DesignSync Data Manager Administrator's Guide:Setting up a Module Cache

DesignSync Data Manager Administrator's Guide: Setting Up a Mirror Server

Understanding the GUI Interface

Using the Classic DesignSync GUI

DesignSync Data Manager User's Guide

663

There are many elements to the DesignSync graphical user interface (GUI). Click on the
label for each region in the following illustration to go to a topic that describes that part
of the DesignSync GUI.

In addition to the classic DesignSync GUI, DesignSync provides an integrated browser
for examining the workspace structure of modules, and several command-line
interfaces. See DesignSync Command-Line Shells for more information.

Using the Workspace Structure Browser

There are many elements within a module that can be hard to visualize. DesignSync
provides the Workspace Structure Browser graphical user interface for maintaining and
understanding your module hierarchy. The Workspace Structure Browser allows you to:

• Clearly display a module’s hierarchy and relate that hierarchy to how it appears
in the directory structure.

• Distinctly depict swapped, overriding, and conflicted module instances and how
they relate to the other modules in the hierarchy.

• Provide a clear indication of each module instance’s status and how that status
propagates to its parents.

• Assist the user with guidance of what to do next.

Reference

664

The workspace browser interface is composed of tabbed views that combine to give you
a fuller picture of your module workspace and hierarchy. You can have as many or as
view of these provided views as desired.

This image shows the default positioning of the views in the Workspace Structure
Browser.

DesignSync Symbols and Icons

Informational Symbols

These symbols provide information about DesignSync activities.

"In process" symbols indicate that the selected folder is being
processed. (The hourglass cursor also indicates processing, but
these symbols tell you specifically which objects are being
processed.)

Failed attempt to connect to a server.

Informational message.

DesignSync Data Manager User's Guide

665

File or folder is excluded from the operation you have selected.

The operation is not allowed on the object you selected. This might
appear, for example, if access controls have been defined.

The server referenced by a project or SyncServers file is accessible.

A collection object is not properly defined. DesignSync cannot
determine the collection's members.

Object Icons

These icons identify objects in a DesignSync workspace. They may be in either the
Tree View Pane or the List View Pane.

The Internet
The root of all objects in the DesignSync universe. Available
under this top-level icon are: SyncServers, My Computer,
Projects, and Bookmarks.

My Computer
The root of the local file system. On a Windows system,
expansion of the icon shows icons representing hard drives,
removable drives, and so on, as well as the hierarchies under
them. (Note: Sort order is case sensitive. Capital letters are
sorted before lower case letters.)

On a UNIX system, expansion shows the mount points that
you have chosen to display. The default mount point is the
location represented by the $HOME environment variable.

Reference

666

Projects

A list of DesignSync projects that have been defined.
Currently, only Public Projects is available under Projectsl.
Public Projects lists the projects that have been defined by
your site administrator or project leader. Click on a project,
then use the right-mouse button to display the popup menu:

• Properties displays the properties (name, vault and
cache location, and description) of the project.

SyncServers
A list of available SyncServers and vaults that have been
defined for you. Expansion of the icon shows three folders: My
Servers (personally defined servers/vaults), Site Servers
(site-defined servers/vaults), and Enterprise Servers
(enterprise-defined servers/vaults). See the SyncServer List
Files topic for more information.

Closed folder.

Open folder

Closed module base directory (Folder Explorer)

Open module base directory (Folder Explorer)

Closed Module Roots container (Module Explorer)

Open Module Roots container (Module Explorer)

Closed module root (Module Explorer)

Open Module root (Module Explorer)

Module instance (List view, displayed when you click a module
base directory).

Default workspace object icon. If the system running the client
has defined icons for different file types, you will see those
icons instead of this one.

Hierarchical reference.

DesignSync Data Manager User's Guide

667

Revision Control Object Icons

These icons identify objects in a DesignSync server vault.

Vault, not open.

Vault, open.

A version of a file in a vault.

DesignSync vault branch.

Branch-point version.

Module branch.

Module version.

Module member.

Hierarchical reference.

Lock Symbols

These symbols provide information about the lock status of DesignSync objects in the
workspace. These symbols only appear in the List View Pane.

Closed lock, meaning that the branch for that version is locked.

Open lock, meaning that the branch for that version is unlocked.

Modified closed lock, meaning that you have modified the object
 since you checked it out with a lock.

Modified open lock, meaning you have modified an object that you
have not checked out with a lock.

Locked by user, meaning that the object has been locked by
someone other than you.

Modified locked by user, meaning the object has been locked by
someone other than you, and you have locally modified your copy of
the object.

Note: Module members moved in the workspace are always considered modified until
the next module version is created on checkin. For more information, see Moving a
module member.

Reference

668

State Overlay Symbols

These symbols provide additional information about an object and appear with the
object icon.

A reference is an object that is not physically present, but instead
points to another object. Although there are no physical files
corresponding to a reference, there is DesignSync metadata that
keeps track of the revision-control information for the reference. Just
as with replicas, the object that the reference points to is called its
original.

A replica is a copy of another object. The replication process is
different from the normal copying process. A "copy," in the usual
sense, is an independent object; it does not "remember" the object
from which it was copied. A replica, on the other hand, does
remember the object from which it was copied.

In some situations you want to be able to easily access a file without
having a copy of it in your work area, especially if the file is very
large. This is where a link is useful. A link, or symbolic link, is visible
in your local work area (for example, by the ls command), but the
file it represents is not actually there. Links are available only on
UNIX systems.

DesignSync uses links to implement two sharing methodologies:
caches and mirrors.

Toolbars and Menus

Using Toolbars

A toolbar is a set of tools represented by icon buttons that are grouped together into an
area on the main window of an application. In the DesignSync GUI, there are two main
toolbars:

• The Main Toolbar is a group of the most frequently used operations. You can
customize the toolbar by selecting Tools =>Options =>GUI Customization
=>Main Toolbar.

• The Module Toolbar is a group of the frequently used module operations. You
can customize the toolbar by selecting Tools =>Options =>GUI Customization
=>Module Toolbar.

A brief explanation of each button in a toolbar pops up when you move the mouse
pointer over that button (commonly known as a tool tip). In addition to the tool tip, a

DesignSync Data Manager User's Guide

669

slightly longer description appears in the status region at the bottom of the DesignSync
window.

A toolbar can be either docked or floating. A toolbar is docked when it is attached to
one side of the DesignSync window. You can dock a toolbar below the Location Bar (or
below the Menu Bar if the Location bar is not displayed) or to the left, right, or bottom
edge of the DesignSync window. When you drag a toolbar to the edge of the
DesignSync window, the toolbar outline snaps into place along the length of the window
edge.

A toolbar is floating when it is an independent window that is not attached to the
DesignSync window. To change the shape of a floating toolbar, move the cursor over
any edge until it changes to a double-headed arrow, and then drag the edge of the
toolbar.

To move a toolbar, click and hold the left mouse button within the toolbar but not on an
icon, then drag the toolbar. If the toolbar is floating, you can also grab the title bar.

Note: On UNIX, you cannot dock a floating toolbar by dragging the title bar. You must
position the cursor within the window but not over an icon.

Main Menu Toolbar

The Main Menu Toolbar provides access to DesignSync commands. Clicking on an
item in the Main Menu produces a drop-down menu containing menu choices. Menu
choices either execute immediately, lead you to further choices, or invoke dialog boxes.
For example, if you:

• Select a menu choice with ellipses (...), a dialog box displays. For example, if you
choose Revision Control => Check In . . ., the Check In dialog box appears.

• Select a menu choice without ellipses or right arrows, such as Go Up One
Level, the command executes immediately.

• Select an item with a right arrow, you are lead to further choices, such Tools =>
 Reports leads you to a list of the available reporting tools.

The standard Main Menu Toolbar contains these choices:

• File • Revision Control

• Edit • Modules

• View • Tools

• Go • Help

Reference

670

• Bookmarks

Click on the menus in the following illustration to go to the topic describing that
menu:

Module Toolbar

By default the Module Toolbar appears under the Main toolbar. You can customize the
Module Toolbar to appear:

• On the side of the main toolbar, when your display window is wide enough.
• On either the left side, right side, or bottom of the DesignSync GUI window.
• As a free floating tool bar that you can move to where you want it.

You can choose to display or hide this too bar from the View menu. The Module Toolbar
displays these items by default:

See SyncAdmin Help: Customizing the Module Toolbar for more details.

Toolbar Item Description

This toggle button shows or hides hierarchical
references for workspace listing of modules or module
version contents on the server. When hierarchical
references are hidden, the hierarchical references button
looks like this:

This toggle button shows or hides module members on
the server. When modules members are hidden, the
modules members button looks like this:

DesignSync Data Manager User's Guide

671

This toggle button that shows or hides module deltas on
the server. When module deltas are hidden, the modules
delta button looks like this:

This pull-down list allows you to filter module branches
displayed. Choices are:

o <All Branches>
o <Tagged Branches>
o One of the last five 5 glob expressions as defined

in the module branch filter field in the Display
Filters dialog box

This pull-down list allows you to filter versions displayed.
Choices are:

o <Tagged Versions>
o <All Versions>
o One of the last five 5 glob expressions as defined

in the module version filter field in the Display
Filters dialog box

 This button invokes the Add to Module dialog box.

 This button invokes the Remove from module dialog
box.

 This button invokes the Move modules member dialog
box.

 This button invokes the Create a hierarchical reference
dialog box.

 This button invokes the Create new module dialog box.

 The button adds the Module Hierarchy tab to the display
window.

Related Topics

Renaming a Module Member

Reference

672

Creating a Hierarchical Reference

Displaying Module Hierarchy

Creating a New Module

Removing a Member from a Module

Display Filters

Context Toolbar

Type topic text here.

File Menu

The File menu contains the commands that are most relevant to file and folder
management. Some of the actions available from the File menu are also available by
selecting a file or a folder and right-clicking to display the context menu.

The following actions can be selected from the File menu:

Action Result
New=>File Invokes the New File dialog box.
New=>Folder Invokes the New Folder dialog box.
Open Opens a session with your default editor and opens the selected

file, or opens the selected project so you can view or edit its
properties. Your default editor is determined by a registry setting in
one of the DesignSync client registry files. You can override the

DesignSync Data Manager User's Guide

673

installation- or site-wide default editor using the SyncAdmin tool.

You can select and open as many files as you choose, but you will
be prompted for confirmation if you selected more than four files to
open simultaneously.

Note: If you are using the DesignSync Windows client and you use
any application other than the default ASCII editor, DesignSync will
not automatically recognize local modifications.

Delete Deletes any of the following selected objects:

• A file from your working directory. You cannot delete a file
that is a member of a collection object.

• An empty folder, either local or on the SyncServer.
• A version from a vault.

Save Saves information displayed in the View Pane such as a data sheet.
You can choose the file name and directory from the dialog box.
Collection objects and DesignSync references are not shown. The
Save menu item is active for DesSync's Output Region, Text views
and HTML views.

Print Allows you to print information displayed in the View Pane such as a
data sheet. You can also highlight text in a View Pane and send it to
a printer. If you are using the Windows platform, you can also print a
file that you have selected in the List View.

Page Setup Controls the print parameters of your default printer.
Properties Invokes the Properties dialog box where you can view or edit the

various properties of the selected object. The Properties dialog box
will only display when you select one file, folder or module instance
in the list or tree view.

Data Sheet Displays the data sheet for the selected object in a new tabbed view
in the View Pane.

New Window Creates a new instance of DesignSync; the same way you would
create a new window in a browser.

Close
Window

Closes the current DesignSync window and exits DesignSync if this
is the only DesignSync window.

Exit
DesignSync

Closes all DesignSync windows and exits DesignSync. If there is
more than one DesignSync window currently open, a confirmation
box appears and you must confirm the operation. You can also exit
DesignSync using the exit command from the command bar. See
ENOVIA Synchronicity Command Reference Help: Exit for more
information.

Edit Menu

Reference

674

The Edit menu choices allow you to cut, copy, paste, select, and search the text that
displays in text output windows such as Data Sheet output, or the output window at the
bottom of the screen.

All of the options (except for Find) also work on the text in the location bar at the top of
the screen.

View Menu

The View menu contains the commands that control what objects are displayed in the
List View. Some of these commands can also be added as Toolbar options to the Main
or Module Toolbar.

DesignSync Data Manager User's Guide

675

The following actions or options can be selected from the View Menu:

Action/Option Result
Main Toolbar When checked, the Main Toolbar displays. When not checked, the

Main Toolbar is hidden.
Module
Toolbar

When checked, the Module Toolbar displays. When not checked,
the Modules Toolbar is hidden.

Location Bar When checked, the Location Toolbar displays. When not checked,
the Modules Toolbar is hidden.

Status Bar When checked, the Status Toolbar displays. When not checked,
the Status Toolbar is hidden.

Reference

676

Refresh Verifies the selected object's current properties and updates the
DesignSync display.

In the case of container objects (folders, vaults, branches), the
child objects are also refreshed.

Some DesignSync operations do not update the display
automatically because of performance constraints. To ensure that
your display is up-to-date, you should refresh an object before
operating on it, particularly if the object is shared with other users
as they may have changed the state of an object.

You can control how often the List View is refreshed by selecting
Tools =>Options =>GUI Options. Enter the amount of minutes in
the Automatically Refresh after so many minutes field. See the
SyncAdmin Help: Options topic for more information.

Excluded
Objects

When checked, the Exclude Objects displays in the View Pane.
When not checked, the Excluded Objects are hidden.

Hierarchical
References

When checked, hierarchical references for workspace listing of
modules or module version contents on the server are displayed.
When not checked, hierarchical references are hidden.

Module
Members on
Server

When checked, module members on the server are displayed.
When unchecked, the modules members on the server are hidden.

Module
Deltas on
Server

When checked, module deltas are displayed. When unchecked, the
module deltas are hidden.

Display
Filters

Invokes the Display Filters dialog box.

Close View Closes the current view displayed in the View Pane.

Close Other
Views

Closes all views except the one you are currently viewing and the
List View.

Cascade Displays the Desktop View windows as cascaded in the View
Pane.

Tile Displays the Desktop View windows as tiled in the View Pane.

Desktop Sets the View Pane to multiple windows that can be moved around
a desktop

Tabbed View Sets the View Pane to a series of tabbed view with only one view
visible at any time.

DesignSync Data Manager User's Guide

677

Related Topic

SyncAdmin Help: Customizing the View Pane

Go Menu

The Go menu helps you to quickly navigate to a folder or a location. At the bottom of the
Go menu is the recently visited list. This list shows up to the last ten (10) locations
that have been visited. Select any one of these locations and DesignSync goes to that
location.

The following actions or options can be selected from the Go Menu:

Action/Option Result

Back Moves you to the previously selected location in the tree view. You
can click Back again to move to the prior location. Up to seven
locations are remembered.

Forward Reverses the effect of the last Back operation. You can use Back
and Forward to quickly move among several locations.

Up 1 Level Moves you to the parent folder of the current object. In many
cases, this moves you up one folder (directory) level from your
current location. Also, the Up One Level button lets you move up
the vault hierarchy.

Go to Invokes the Go to Location dialog box allowing you to enter a path

Reference

678

Location to the file or folder. At this dialog box, you can enter the folder's
path or URL in the location field or click Browse Local to navigate
to a file or folder on your local machine.

By clicking the pull-down arrow to the right of the text field, you can
view and select previously visited locations from the location
history.

Go to Vault If the selected object is a module, module member, or hierarchical
reference in a module; under revision control; and a vault for it
exists, this command displays the module version containing the
selected object.

If the selected object is a folder (directory), and a vault for it exists,
this command displays the contents of the vault where the selected
folder is stored.

If the selected object is any other type of object, the command
displays the versions of the object and the version tags associated
with the object.

Note: This command uses the selector associated with the
workspace to display the appropriate branch.

Go to
Configuration

This option is supported for legacy modules only.

Brings you to the configuration definition on the server for the
highlighted object in the workspace.

Go to
Ancestor

When a server module branch node is highlighted, invoking the Go
to Ancestor command brings you to the ancestor branch point
version for the branch selected. You can then browse back through
the ancestry of any given version.

Notes:

• If the desired ancestor is not visible due to the current
display filter mode, you will see a dialog box telling you this
information.

• This action will not be available when branch 1 is selected.
• To see descendant information, you will have to get the

version history for the given module version.

Go to
Reference

When an hierarchical reference is selected on the client or server,
invoking the Go to Reference command brings you to the object
referenced by the hierarchical reference.

On the client, the referenced object must already be present in the

DesignSync Data Manager User's Guide

679

workspace for the command to complete.

In the Modules view, selecting an hierarchical reference and
invoking the Go to Reference command brings you to the object
referenced in the Module Explorer.

Go to
Module's
Parent

If there is a hierarchical reference pointing from one module to
another, selecting the target module and invoking the Go to
Module's Parent command brings you to the parent module (the
module with the hierarchical reference member).

If the selected module has than one parent, a dialog box with the
list of applicable target parent objects is displayed.

Go to Module
Explorer

When working in the Folder view, selecting a module, or a folder
that is a member of a module, and invoking the Go to Module
Explorer command jumps to the object's representation in the
Module Explorer which shows a module-centric perspective of the
object.

If the selected item is a member of more than one module, a dialog
box with the list of applicable modules is displayed. For more
information on the Modules Explorer, see Exploring Modules.

Go to Folder
Explorer

When working in the Modules Explorer, selecting a module, or a
folder that is a member of a module, and invoking the Go to Folder
Explorer command jumps to the object's representation in the
Folder Explorer which shows a folder-centric perspective of the
object.

History Displays the history dialog box that has a table of all locations
visited over the last 30 days as well as the date and time at which
each location was last visited. See Reviewing History for more
information on this command.

Bookmarks Menu

The Bookmarks menu lets you add, edit or select bookmarks. Creating a bookmark lets
you quickly access modules, directories (folders), vaults, or objects that you access
frequently. A list of created bookmarks appears under the Bookmarks commands.

Reference

680

The following actions can be selected from the Bookmarks Menu:

Action Result

Add
Bookmark

Adds the highlighted object to the bottom the bookmarks menu. See
Adding, Editing, and Organizing Bookmarks for more information.

Edit Invokes the Edit Bookmarks dialog box. See Adding, Editing, and
Organizing Bookmarks for more information.

Related Topic

Defining and Modifying Bookmark Properties

Revision Control Menu

The Revision Control menu contains the commands that are most relevant to revision
control operations. Some of the actions available from the Revision Control menu are
also available by selecting a file or a folder and right-clicking to display the context
menu.

DesignSync Data Manager User's Guide

681

Once you have highlighted a file or folder, the following actions or options can be
selected from the Revision control menu:

Action/Option Result
Check In Invokes the Check in Dialog box. See Checking In Design Files

for more information.
Check Out Invokes the Check Out Dialog box. See Checking Out Design

Files for more information.
Populate Invokes the Populate Dialog box. See Populating Your Work

Area for more information.

Workspace
Wizard

Invokes the Workspace Wizard. See Invoking the Workspace
Wizard for more information.

Clear Results Clears the results of the previous action. As part of a Clear
Result command, the Result Column and the Summary Bar
disappear. See Clearing Results for more information.

Set Vault
Association

Invokes the Set Vault Association Dialog box. See Specifying the
Vault Location for a Design Hierarchy for more information.

Reference

682

Set Persistent
Populate filters

Invokes the Set Persistent populate filters Dialog box. See
Setting Persistent Populate Filters for more information.

Show Potential
Checkouts

The List View is updated to include all of the objects that exist in
the vault but not in the work area. In the Type column, files and
collections are shown as Potential Checkout. Folders are shown
as Potential Checkout Folder. See Showing Potential Checkouts
for more information

Set Root Folder Sets the specified directory as a workspace root directory. See
Setting a Workspace Root for more information.

Tag Invokes the Tag dialog box. See Tagging Versions and Branches
for more information.

Make Branch Invokes the Make Branch dialog box. See Creating Branches for
more information.

Cancel
Checkouts

Invokes the Cancel Checkout dialog box. See Canceling a
Checkout for more information.

Unlock Invokes the Unlock dialog box. See Unlocking files for more
information.

Retire Invokes the Retire dialog box. See Retiring Design Data for more
information.

Add Exclusion Adds the selected element(s) an exclusion to all the
.syncexclude files in the parent folder of the selected object. If
there is not .syncexclude file in the parent folder, DesignSync
creates it automatically and adds the exclusion.

Remove
Exclusion

Removes the selected element(s) from all the .syncexclude files
in the parent folder of the selected object and adds a +exclusion
to prevent the element from being excluded by a higher-level
.syncexclude file.

List Exclusions Lists the exclusions from the selected folder and above, thus
showing the full hierarchy of exclusions that will be applied to
objects in the selected folder in the order that they will be applied.
 See Viewing Exclusions for more information.

Modules Menu

The Module menu contains the commands that are most relevant to module operations.
Some of the actions available from the modules menu are also available by selecting a
file or a folder and right-clicking to display the context menu. Also many of these menu
items are available on the Module Toolbar.

DesignSync Data Manager User's Guide

683

Once you have highlighted a file or folder, the following actions or options can be
selected from the Modules menu:

Action/Option Result
Set Root Folder Sets the root folder. See Setting a Module root for more

information.
New Module Invokes the Create a new module dialog box. See Creating a

Module for more information.
Add Href Invokes the Create a hierarchical reference dialog box. See

Creating a Hierarchical Reference for more information.

Add Member Invokes the Add to Member dialog box. See Adding a Member
to a Module for more information.

Remove Member Invokes the Remove from module dialog box. See Removing a
Member from a Module for more information.

Move Member Invokes the Move module members dialog box which allows
you to move or rename module members. See Moving a
module member or Renaming a Module Member for more
information.

Lock Branch Invokes the Lock module branch dialog box. See Locking
Module Data for more information.

Reference

684

Add Initial
Module Root

If the name of the module root is not in the saved list of module
roots, this adds it there.

Remove Initial
Module Root

If the name of the module root is in the saved list of module
roots, this deletes it.

Show Display a menu with these choices:

• Module Hierarchy
• Module Where Used
• Module Status
• Module Cache
• Module Views

See these topics for more information.
Enterprise Displays a menu with these choices:

Show Object

Synchronize

Workspace Structure Menu

The Workspace Structure menu contains the commands that launch and assist with
working in the Workspace Structure browser.

Once you have highlighted a workspace module, the following actions or options can be
selected from the Workspace Structure menu:

Action/Option Result

Show in Workspace Structure Context Launches the workspace structure context with
the focus on the selected module.

DesignSync Data Manager User's Guide

685

Restore Context Resets the workspace structure context to the
initial view that the context was launched in.

Show View

The workspace structure context features four
views that provide additional information about
the module and how best to work with the
module.
Module Hierarchy
Properties
Design Assistant
Workspace Navigator

Switch Context

Switches your DesignSync client view between:
Classic - Using the Classic DesignSync GUI.
Workspace Structure - Using the Workspace
Structure Browser.

Context Menu

The Context menu pops up when you right-click on an object in the DesignSync View
Pane. You can use the selections on this menu to perform most of the common
revision-control operations.

Clicking Edit opens the selected file using your default editor or to open the selected
project so you can view or edit its properties. If you make changes using the default
ASCII editor, local modifications are recognized automatically.

Note: If you are using the DesignSync Windows client and you use any application
other than the default ASCII editor, DesignSync will not automatically recognize local
modifications.

View as Text displays the contents of the file as text using your default editor. You can
change the default ASCII editor using the SyncAdmin tool.

Location Bar

The Location Bar displays the path or URL of the object that you are viewing in the
DesignSync window. To go directly to a folder (client-side or server-side), enter the
folder's path or URL in the Location Bar. You can also view and select previously
visited locations from the location history by clicking the pull-down arrow to the right of
the text field.

Reference

686

DesignSync updates the Location Bar as you navigate using the Tree View or List View.
However, these locations are not stored in the location history unless you press Enter
while a location is displayed in the Location Bar.

DesignSync does not update the Location Bar when you navigate from the Command
Bar using the scd (or cd) command. The Location Bar is always synchronized with the
Tree and List Views, and navigating from the Command Bar does not update the Tree
and List Views.

File Name and Path Name Completion

While in the Location Bar, you can press the <Tab> key for file name or path name
completion.

Note: When entering text in the location bar for file/path name completion, remember
that the DesignSync application is case sensitive when it comes to the characters
entered. A lower case " y" entered will not complete file or path names that with start
with a capital "Y".

In the example below, if you entered Sy in the location bar and then you pressed the
<Tab> key, you would get a small pop up list with SyncAdmin and SysAdmin to
choose from since there are two folders that start with "Sy".

DesignSync Data Manager User's Guide

687

In the example below, if you entered M in the location bar and then you pressed the
<Tab> key, you would get a file complete because there is only one folder that starts
with M.

Reference

688

Related Topics

Going to a Location

Go Menu

ENOVIA Synchronicity Command Reference Help:scd

ENOVIA Synchronicity Command Reference Help:cd

Tools Menu

The Tools Menu contains the list of command and utilities to help you maintain and
manage your DesignSync application.

DesignSync Data Manager User's Guide

689

The following actions or options can be selected from the Tool Menu:

Action/Option Result

Stop Interrupts or cancel an operation. If you interrupt a command
operating on multiple files, the command completes its operation
on the current file before stopping. Generally, you cannot stop or
interrupt operations that complete immediately.

There is also an icon () for Stop on the toolbar.
Tcl Mode Toggles the command line mode between dss mode (unchecked)

and stcl mode (checked). The default mode is dss. The current
mode is displayed on the status bar below the command shell
window.

You can also right-click in the status bar to choose between dss or
stcl mode.

Compare
Files

Gives you the following options to compare files:

• Show Local Modifications – Compares the highlighted
object in your work area with the original version that you
checked out. This report shows changes made in your work
area since the object was checked out.

• Compare to Latest – Performs a 3-way diff comparing the
highlighted object in your work area with the current version
in the vault, using the original version in the vault as the
common ancestor

• Compare Original to Latest – compares the original
version of the highlighted object with the latest version in the

Reference

690

vault. This report shows changes made to the vault by
others since the object was checked out.

• Compare to Previous Version - compares the selected
version with the previous version in the vault. If this object is
the first object on the branch, it compares with the last
version before the branch operation. For module members,
it compares with the previous member version of the file.

• Compare 2 Files – Two files have to be highlighted to have
the option available. Compares the two files and displays the
comparison.

• Advanced Diff – Invokes the Advanced Diff dialog box. See
Advanced Diff Options for more information.

See Common Diff Operations for more information on the first four
options.

Resolve
Conflicts

Helps you resolve conflicts when changes to the same lines in a file
have been made by multiple users in multiple workspaces. This
menu choice is only enabled when you have performed a merge
update into your local workspace, and these updates conflict with
your local changes.

Reports Gives you four Report options to compare files:

• Version History – Invokes the Version History dialog box.
The results of the Version History dialog box displays status
information and version history for local objects. See
Displaying Version History for more information.

• Changed Objects – performs a recursive search of a folder
to find all managed changed objects in that workspace or its
subdirectories. See Identifying Changed Objects for more
information.
Note: This option used to be called Modified Objects.

• Contents – Invokes the Contents dialog box. See
Displaying Contents of Vault Data for more information.
When the command is committed by pressing OK,
DesignSync returns a list of the vault data.

• Compare – Invokes the Compare Workspace/Selectors
dialog box. See Compare the Contents of Two Areas for
more information. When the command is committed by
pressing OK, DesignSync returns a comparison of the
contents of two areas.

Vault
Browser

Invokes a graphical representation of the branch and revision
history of a managed file.

Annotate Invokes a line-by-line annotation of a managed text file, pre-
pending each line in the file with the version in which it was

DesignSync Data Manager User's Guide

691

introduced, or last changed; the username of the user who made
the change; and the date.

ProjectSync Launches a new window with the installed version of ProjectSync
associated with your workspace.

Options Invokes the SyncAdmin tool. See the DesignSync Data Manager
Administrator's Guide system for more information.

Diagnostics Invokes the DesignSync Diagnostics dialog box. See the
DesignSync Data Manager Administrator's Guide: DesignSync
Environment for more information. When the command is
committed by pressing OK, DesignSync displays diagnostic
information that can help you troubleshoot a problem with your
DesignSync environment.

Help Menu

The Help menu gives you access to the help for the application as well as important
information such as summary of new features and contact information.

The following actions or options can be selected from the Help Menu:

Action/Option Result

DesignSync
Help

Invokes the DesignSync help system.

What's New In the List View window, displays a summary of new DesignSync
features. You can choose to show the summary at startup.

About
DesignSync

Displays the DesignSync version and ENOVIA contact information.

Related Topic

Hints for Using help

Special keystroke operations

Reference

692

The following special keystroke operations are not attached to any menu choices:

Key Operation
F2 Initiates editing in place in a table or tree.
Alt-F2 Toggle tab/desktop in view pane.
F6 Toggle focus between panes of a splitter bar.
Shift-F6 Set keyboard focus to a splitter bar, so that it can be moved

with the arrow keys.
F10 Set keyboard focus to the menu bar.

Classic Windows and Panes

View Pane

The View pane displays one or more views showing information about the objects being
operated on. The List View, which shows the contents of the folders selected in the Tree
View, is always visible. Some menu choices, such as File =>Data Sheet, will cause
other views to appear.

The view pane can take on two forms:

• In the tabbed view, only one view is visible at a time. At the bottom of the view
pane are a list of tabs representing the available views; you can switch to a view
by clicking on a tab. (If the List View is the only available view, the tabs are not
displayed.)

You can also click the right mouse button on the tabs to display a context menu
with the following options:

o Close the view (not available for the List View).
o Close all other views except the current view (and the List View).
o Switch to desktop view.

o In the desktop view, each view appears as a window that can be moved around
a desktop. Each window has a frame with buttons to maximize, minimize, and
close the window. You can also click the right mouse button on an empty space
in the desktop to display a context menu with the following options:

o Cascade the windows (arrange them in an overlapping manner).
o Tile the windows (arrange them in a non-overlapping manner).
o Switch to tabbed view.

DesignSync Data Manager User's Guide

693

You can switch to the tabbed view by selecting the View =>Tabbed View menu choice.
You can switch to the desktop view by selecting the View => Desktop menu choice.
You can also toggle between the two views by pressing the Alt-F2 key.

You can operate on items inside the view pane by selecting them and choosing from the
menu bar, or right-clicking and displaying the context menu.

Related Topics

DesignSync Symbols and Icons

Modules Explorer

The Modules Explorer provides a different paradigm for working with modules data in
your workspace.

A file system-centric structure of the data may show member files from different
modules in a single folder along with any unmanaged files. The Modules Explorer
shows a module-centric structure of the module members belonging to a specific
module instance in the workspace. The Modules Explorer is displayed in the Tree view
under the Module Roots "folder" (revealed when My Computer is expanded). Unless
you have added an initial module root from the Modules menu, the Modules Explorer is
empty when you log on to the DesignSync GUI.

Related Topics

Tree View Pane

List View Pane

Exploring Modules

Tree View Pane

Use the Tree View (left pane) to browse any of the following:

• Folders on your local client system (My Computer)
• Module instances you have created in your workspaces.

• In the Folder View, these are contained in the module base directory

(represented by the icon).

• In the Modules view, these are represented by the icon.

• Module roots
•

Reference

694

• In the Modules view, these are represented by the icon. All known

roots are kept within the Module roots container, represented by the
 icon.

• Available servers (SyncServers)
• Projects

From the Tree View, you can perform the following actions:

• To expand a collapsed item, left click the plus sign (+) or double click on the item.
• To collapse an expanded item, left click the minus sign (-) or double click on the

item.
• To select an item, left click on the item. The contents of the item are displayed in

the List View pane.
• To operate on an item, right click on the item and choose an operation from the

context menu.

• Note: A CD drive will display a folder icon if there is no CD in the drive bay.

Gray folders have not been directly traversed to get to a subfolder. In the picture
above, the HTMLHelp subfolder folder was reached by selecting a bookmark.
Hovering the cursor over a gray folder displays the following message in the

DesignSync Data Manager User's Guide

695

Status Bar: "You have not visited this node. The node will be automatically
refreshed if you visit it."

For information on adding a sync server to the sync server list, sync_servers.txt,
see SyncServer List Files in the DesignSync Data Manager Administrator's
Guide.

Related Topics

DesignSync Symbols and Icons

List View Pane

The List View (right pane) gives you a list view of an object that you have selected from
the Tree View (left pane). The title of the pane is updated to display the path of the
selected object.

The List View has several columns that provide information about the displayed objects,
such as the object name, revision-control status, and version. The columns provide the
same information that is available from the ls command. You can click on the column
headings to sort the displayed objects based on that column. See ENOVIA
Synchronicity Command Reference Help: ls command for more information.

Files excluded from view by exclude files are not displayed by the DesignSync GUI. For
more information on exclude files, see Working with Exclude Files.

From the List View, you can do the following:

• To select an item, left click on the item (use the Ctrl and Shift keys to select
multiple items).

• To view or edit a file, double click on the file.
• To expand a folder, double click on the folder.
• To operate on an item, right click on the item and choose an operation from the

popup menu.
• To close all of the views except your present view, right click on the List View tab

and select Close Other Views.
• To switch from a tabbed view to a Desktop view, right click on the List View tab

and select Desktop.

You can choose whether to keep the command shell window synchronized with the tree
and list views by selecting Tools =>Options =>GUI Options =>Options.

You can specify how frequently information should be refreshed by selecting Tools
=>Options =>GUI Options =>Options. See the SyncAdmin Help: GUI Options topic
for more information.

Reference

696

You can control which columns display by selecting Tools =>Options =>GUI Options
=>Columns. See the SyncAdmin Help: Customize Columns topic for more information.

You can also resize and change the order of the columns in the List View:

• Click and drag the separator bar to the right of a column header to resize the
column.

• Click the column header and drag it to a new position.
• Mouse-over the column header to display tips in the Status bar.

If the display for the Branch and Version Tags fields are truncated due to length,
double-click the file in the Branch or Version Tags column (or press F2) to switch to a
list box view.

You can customize the look and feel of the List View by selecting Tools =>Options
=>GUI Options =>Display. See the SyncAdmin Help: Customize Display topic for more
information. The following table provides a description of each column that could display
in the list view.

Note: The available options may change depending on what objects you're viewing.

Column Name Description
Branch The branch tags of a managed object's current branch, or

the persistent selector list for a folder. For example, where
an object has two branch tags, the column displays:

Trunk,RelA

Notes:

• If the folder belongs to a module, this column is blank.
 If the folder belongs to a legacy module, it contains
the current branch tags or selector list.

• The Branch column displays the branch tags of a
managed object's current branch, or the persistent
selector list for a folder. In cases where a managed
object's persistent selector list is different from the
parent folder's persistent selector list, the Branch
column for the managed object also displays (!). For
example:

(!) Trunk,RelA

• The persistent selector lists can disagree if the
setselector command has been applied to the
managed object. See the ENOVIA Synchronicity

DesignSync Data Manager User's Guide

697

Command Reference Help: setselector for more
information. Synchronicity does not recommend
setting the persistent selector list on individual
objects, because populate operations do not obey
per-object persistent selector lists

• Unmanaged items that have a selector individually set
in a manner which is different than the parent folder
show the -> symbol and the item's selector, in
addition to the (!) symbol.

• If the Branch value exceeds 250 characters, the value
is truncated as indicated by four periods (....). Select
an object's displayed branch tags and then double-
click or press the [F2] key to display a list of all branch
tags on the object.

Cache URL The URL location of the cache.

Description
(Project/Sync
Server)

The description of the ProjectSync project.

Locker The username of the locker, or is blank if the object is not
locked. In addition to the name of the locker, this column
displays an asterisk (*) if the object is locked in this location,
or displays no asterisk if locked elsewhere. For example:

Jeff* shows that the file is locked in this location by user
Jeff

Jeff shows that the file is locked elsewhere by user Jeff

Note: The asterisk lets you sort first by locking user, then by
local or remote locks (*).

Member of Lists the a name of the module or modules in which this
object is a member.

Modified/
Modified Time

The time the file was last modified.

Name The name of the object.

Project URL The URL location of the ProjectSync project.

Referenced
Target

This field is only displayed when the item is a hierarchical
reference.

Size The size of the object, in bytes. For collection objects, the

Reference

698

Size column displays the total number of member files in the
collection. Sizes of server-side files are not available to your
DesignSync client and will be displayed as ""-"

Status The revision-control status of the object. See Status Types
for more information.

Type The object type: File, Folder, Referenced File, Link to File,
Link to Folder, Hard-Link, Cached File, Mirrored File, Module
Branch, (Module) View, Module Member, Module Folder,
and vendor-specific object types. Vendor specific object
types include Cadence or Synopsys libraries, cells, and cell
views, and custom collection objects.

SubType The object subtype: Normal, Release, Snapshot. This field
viewable when browsing module branches on the server and
indicates the branch type. Release branches are immutable
and Snapshot branches are content immutable. See Module
Snapshots.

Version The current version number of the object and upcoming
version if object is locked or auto-branched. For example:

1.3

1.7->1.8

The version may also indicate Reference to: 1.3 if the
item is a reference. Similar output is presented for Mirror and
Share links.

Tags The tags currently on this object's version. This column lists
tags in the order of Most-Recent to Oldest (the reverse order
of when the tags were added).

Note: If the Tags column value exceeds 250 characters, the
value is truncated as indicated by four periods (....). Select
an object's displayed version tags and then double-click or
press the [F2] key to display a list of all version tags on the
object.

For modules, this field displays the "tags of interest" which
includes the following:

• The comma separated tag list in the showtags
property for the Module instance.

• The comma separated tag list defined in the
AlwaysShowTags registry key.

DesignSync Data Manager User's Guide

699

• Any additional overlayed selectors defined for the
workspace. For more information on overlayed
selectors, see Module Member Tags.

For more information on defining tags to display in the
registry or information on viewing the value of the showtags
property, see ENOVIA Synchronicity DesignSync Data
Manager Administrator's Guide: Modules Registry Settings.

Related Topics

DesignSync Symbols and Icons

Output Window

The Output Window, located above the Results Summary window, displays any output
produced by commands typed into the Command Shell window and by some graphical
operations.

You can drag and drop single lines from the Output Window into the Command Shell
Window, You may need to edit the line to remove prefix characters. Right-clicking in the
Output Window displays this menu:

from which you can:

• Select and find text in the output
• Clear the output
• Toggle between dss and Tcl (stcl) modes
• SyncAdmin Help: Customize the Command Bar

Results Display

As soon as an operation begins, the Result Column appears in the List View, and
displays the outcomes of the revision control operations.

For example, while populating a project, the Result Column might display:

Reference

700

At the completion of the populate operation, the Result Bar shows:

In this populate operation, 2 updated files were fetched into your work area, none of the
files failed to populate, and 878 files were unchanged. The number at the right side of
the column, # 880, indicates the total number of files affected by the operation.

Clicking the Clear Results button removes the Result Column from the List View's
display.

Command Shell Window

The Command Shell Window is the command bar where you type in commands – as
opposed to executing commands through menu selections or Tool Bar buttons:

Experienced users sometimes prefer typing in a command rather than using the
graphical interface. There are two command-line modes that you can select from the
Options button:

• dss (DesignSync shell) – the default shell
• stcl (Synchronicity Tcl) – provides access to all DesignSync commands and

the Tcl environment

DesignSync displays either dss> or stcl> in the status area in the lower-left corner of
the DesignSync window to indicate which mode you are in. Note that unlike the dss and
stcl shells, the dss and stcl modes from the graphical interface do not communicate with
syncd. In this way, the command bar from the graphical interface is more like the dssc
and stclc shells.

You can also select previously entered commands by using the up and down arrow
keys or clicking the drop-down arrow to the right of the command line.

You can select the prompt displayed for the command shell window:

• Enter the prompt -url command to display the current directory as the prompt.
• Enter the prompt -default command to display the dss> prompt. This setting

is the default.

DesignSync Data Manager User's Guide

701

You can choose whether to keep the command shell window synchronized with the tree
and list views by selecting Tools =>Options =>GUI Options =>Options. See
SyncAdmin Help: GUI Options topic for more information.

Right-clicking in the Command Shell Window displays the context sensitive menu
shown in the Output Window topic.

You can also execute command-line commands from a DesignSync shell instead of
from the graphical interface. DesignSync command-line shells, and the Command Shell
window, use the command line defaults system.

Command Line Completion

In the command bar, press the <Tab> key for command line completion. Pressing the
<Tab> key displays a pop up box with matching recent commands, from which you can
select a command to run. In the example below, when you enter the character c in the
command bar and then press <Tab> key, you get a list of all commands that start with
the letter c.

Note: When entering text in the location bar for file/path name completion, remember
that the DesignSync application is case sensitive when it comes to the characters
entered. A lower case " y" entered will not complete file or path names that with start
with a capital "Y".

Related Topics

DesignSync Command-Line Shells

Command Line Defaults System

ENOVIA Synchronicity Command Reference: Command defaults

Status Bar

Reference

702

The status bar displays status messages during DesignSync operations and also allows
you to set display options.

Right-click in the status bar to toggle between dss and Tcl mode. The default mode is
dss. To change it to Tcl (stcl) mode, select Tools =>Tcl Mode. A check mark next to
Tcl Mode means you are in stcl mode; otherwise, you are in dss mode. DesignSync
displays the mode (DSS or STCL) in the status area next to the command shell window.

You can also right-click on the icons on the right side of the status area to toggle
between options such as:

• Toggle between dss and Tcl mode
• Toggle between various display modes for the View Pane including: Show

Excluded Objects, Show Hierarchical References, and others.

Related Topics

DesignSync Command-Line Shells

Workspace Structure Browser Windows and Views

Workspace Navigator

The Workspace Navigator view in the Workspace Structure Browser context shows the
layout of module instances and their hierarchies in the file system, beginning with the
user's workspace root directory. For Modules and sub-modules, it also shows selector,
version, and status information. For hierarchical references to other object types, such
as IP, file-based vaults, external modules, or legacy modules, it shows the equivalent
workspace directory with no status information.

Click on the fields in the following illustration for information.

DesignSync Data Manager User's Guide

703

Workspace Navigator View Descriptions

Workspace Navigator View

The Workspace Navigator view displays the workspace structure on the local disk,
beginning from the workspace root and continuing through the local disk structure.
 Modules that are not populated in the workspace are not visible in the Workspace
Navigator pane. The display reflects the way the module is populated. If the module is
populated in peer-structure, you will see all the hierarchically linked modules in a peer
structure. This example is a cone structure with a top-level module populated at the
workspace module root, and sub-modules and hiearchically referenced file-based vaults
populated beneath it.

If you select an object in the Workspace Navigator view, you can launch the context
menu to perform object-specific Workspace Navigator View Actions.

Filter

Reference

704

If a workspace root has multiple top-level module instances, the workspace navigator
shows multiple module hierarchies in the workspace or can be adjusted to filter only the
module hierarchy of interest.

• Show all - Show all modules beneath the workspace root.
• Filtered: - Show only the hierarchy related to the module selected when the

Workspace Structure Browser was launched or the specified module of interest,
if a module of interest was specified. The interface displays the workspace
instance name of the selected module so you always know what module are you
viewing.

Related Topics

Using the Workspace Structure Browser

Workspace Navigator View Actions

Module Hierarchy

Properties

Design Assistant

Workspace Navigator View Actions

The specific actions available for a selected option in the Workspace Navigator depends
on the type of object being selected. Now all actions are available for all types of
objects.

Click on the fields in the following illustration for information.

DesignSync Data Manager User's Guide

705

Action/Option Applicable
To:

Result

Collapse/Expand Folder Expands or collapses the folder being viewed.
Expand All Folder Expand all folders beneath the selected folder.
Set as Module of
Interest

Module
External
Module

Set the selected module or external module as
the object of interest. All operations in the
Workspace Structure Browser revolve around the
selected module of interest. When you Restore
Context, the context will center around the
module selected as the module of interest.

Populate Module
External
Module

Launches the populate dialog.

Check in Module Checks in the specified module.
Tag Module

External
Module

Tags the specified module or external module.

Go to Location Module
External
Module
Cached
Module
File-based
Vault
Folder

Switch to Classic Context viewing the selected
object in the workspace, with the object selected
in the Tree View Pane.and the module members
of the objects displayed in the List View Pane.

Go to Vault Module
File-based
Vault
Folder

Switch to Classic Context viewing the selected
object on the server, with the module version
selected in the Tree View Pane.and the module
members of the version displayed in the List View
Pane.

Note: This command uses the selector
associated with the workspace to display the
appropriate branch.

Changed
Objects

Module
Folder

Launches the Changed Objects Report with the
selected object as tree root for the changed
object report.

Related Topics

Using the Workspace Structure Browser

Workspace Navigator View

Reference

706

Module Hierarchy View

The Module Hierarchy view in the Workspace Structure Browser context shows
graphically the module hierarchy of the module of interest. If the workspace structure
browser was not launched with a module selected (for instance, if you had a folder
selected), there is no default module of interest, and you must designate a module as
the module of interest in order to view the module hierarchy. The module hierarchy is
based on the server view of the module, showing the hierarchical references between
the modules. This view shows all hierarchical references of the module, regardless of
whether the complete module is populated in the workspace.

Click on the fields in the following illustration for information.

Module Hierarchy View Descriptions

Module Hierarchy View

DesignSync Data Manager User's Guide

707

The Module Hierarchy pane displays the module structure, beginning from the module
of interest, and following the hierarchy. Modules that are not populated in the
workspace are displayed with a square box as shown above. The display reflects the
way the module is defined.

If you select an object in the Module Hierarchy view, you can launch the context menu
to perform object-specific Module Hierarchy View Actions.

Filter

The filter can used to focus the module hierarchy display according to the following
module statuses:

• Normal - show all modules that are populated normally.
• In Conflict - shows conflicting hierarchical references; multiple references to

different versions of the same module. When this option is not selected,
conflicting hrefs are not highlighted.

• Overridden - shows both the populated and the overridden hierarchical
references. When this option is not selected, the hrefs that are overridden by
other hrefs are not displayed.

• Swapped - shows the workspace version of modules that are swapped. When
this option is not selected, the version displayed is indicated by the hierarchical
reference, not the workspace version.

• Present - Shows the modules populated in the workspace.
• Not Present - Shows the modules not populated in the workspace.

Related Topics

Using the Workspace Structure Browser

Workspace Navigator View

Properties View

Design Assistant View

Module Hierarchy View Actions

The specific actions available for a selected option in the Workspace Navigator depends
on the type of object being selected. Now all actions are available for all types of
objects.

Click on the fields in the following illustration for information.

Reference

708

Note: All actions are inactive for hierarchically referenced objects that are not populated
in the workspace.

Action/Option Applicable
To:

Result

Collapse/Expand Module Expands or collapses the selected module. A
module can only be expanded or collapsed if it
has children.

Expand All Module Expand all levels of hierarchy for the selected
module.

Populate Module
External
Module

Launches the populate dialog.

Check in Module Checks in the specified module.
Tag Module

External
Module

Tags the specified module or external module.

Go to Location Module
External
Module
Cached
Module
File-based
Vault

Switch to Classic Context viewing the selected
object in the workspace, with the object selected
in the Tree View Pane.and the module members
of the objects displayed in the List View Pane.

Go to Vault Module
File-based
Vault

Switch to Classic Context viewing the selected
object on the server, with the module version
selected in the Tree View Pane.and the module

DesignSync Data Manager User's Guide

709

members of the version displayed in the List View
Pane.

Note: This command uses the selector
associated with the workspace to display the
appropriate branch.

Changed
Objects

Module
File-based
Vault

Launches the Changed Objects Report with the
selected object as tree root for the changed
object report.

Related Topics

Using the Workspace Structure Browser

Workspace Navigator View

Module Hierarchy View

Properties View

Design Assistant View

Properties View

Properties view displays information about a selected object such as a module, folder,
version, or vault. To display the object properties, select an object in either the
Workspace Navigator View or the Module Hierarchy View.

The information that is displayed depends on the object you selected. For example, for
a module, the properties include: the module instance name, the base directory, Server
URL, filters, href filters, views, href mode, module type, parents, module root, selector,
module status, module swap status, version, tags, top-module status (whether the
module is a top-module). For a file-based vault, the properties include: the directory
name, vault URL, configuration type, path, and selector.

Related Topics

Using the Workspace Structure Browser

Workspace Navigator View

Module Hierarchy View

Design Assistant View

Design Assistant View

Reference

710

The Design Assistant monitors the selected objects in the workspace browser and
determines the state of the selected object and what possible actions can be taken and
why those actions are applicable. For example, the Design Assistant can provide
guidance to resolving conflicting hierarchical references, determining whether your
module is current or out-of-date, providing information about how to update your hrefs,
etc.

If the state of an object is unknown, the Design Assistant will display a warning
explaining the unknown status and providing suggestions for locating and fixing the
problem.

The Design Assistant is intended as a starting point for diagnosing the work required to
bring your workspace to an "up-to-date" status.

Related Topics

Workspace Navigator View

Module Hierarchy View

Properties View

DesignSync Shells

DesignSync Command Line Shells

In addition to DesSync, the DesignSync graphical user interface, DesignSync has four
command-line client shells: dss (DesignSync shell), dssc (concurrent dss), stcl
(Synchronicity Tcl), and stclc (concurrent stcl). You might use a command-line shell
instead of the graphical interface if you:

• Are more comfortable with command-line interfaces
• Need to perform operations not available from the graphical interface
• Do not want to incur the overhead of running a graphical interface
• Want to create scripts to automate tasks or to perform operations in batch mode

Note that DesSync's command bar provides both Tcl and non-Tcl command-line modes
so that you can perform command-line operations from the graphical interface.

Related Topics

Comparing the DesignSync Shells

Invoking a DesignSync Shell

Using DesignSync Commands in OS Shell Scripts

DesignSync Data Manager User's Guide

711

Creating DesignSync Scripts

Command Line Defaults System

Command Line Editing

ENOVIA Synchronicity Command Reference Help

Comparing the DesignSync Shells

The primary differences of the four command-line clients are outlined below:

Shell Uses syncd Includes Tcl
dss yes no

dssc no no

stcl yes yes

stclc no yes

See ENOVIA Synchronicity Command Reference Help for more information on these
command line clients.

syncd versus no syncd

The dss and stcl clients communicate with a DesignSync server (SyncServer) through
syncd. The syncd process can manage multiple dss/stcl requests per user, allowing one
user to run parallel dss/stcl sessions. However, syncd handles requests serially, which
can cause operations from one dss/stcl session to be blocked while operations from
another session execute. It is therefore recommended that you use the concurrent
shells: dssc and stclc. The dssc and stclc clients do not use syncd; they communicate
directly with a SyncServer. The dssc and stclc clients also have the advantage of
supporting more robust command-line editing than the dss and stcl shells. See
Command-Line Editing for details. The stcl shell also does not support DesignSync
command abbreviations as do the dss/dssc/stclc shells.

The only advantage of dss/stcl over dssc/stclc is that dss/stcl start-up time when a
syncd is already running is less than dssc/stclc start-up time. If you frequently run
DesignSync commands from your OS shell using the form:

% dssc <command>

% stclc -e "<command>"

instead of staying within the shell, consider using dss/stcl.

Reference

712

Tcl versus no Tcl

The stcl and stclc clients include Tcl, a powerful interpreted command language that
provides programming constructs (such as variables, conditionals, and loops) in
addition to all the DesignSync commands available from dss/dssc. Use the stcl/stclc
shells when you need the scripting constructs of Tcl; otherwise, use dssc/dssc, which
provide a simpler command environment. With stcl/stclc:

• You must use double quotes around objects that contain a semicolon (;), such as
vaults, branches, and versions. The semicolon is the Tcl (and therefore stcl/stclc)
command separator.

• You must specify the -exp option to execute a DesignSync command from the
OS shell. Because stclc is primarily a scripting shell, an argument specified
without -exp is assumed a script. With dss/dssc, the syntax for specifying a
single command is simpler.

For more information on Tcl, including documentation for Tcl commands, visit the Tcl
Web page:

http://www.tcltk.com

You can determine the version of Tcl included in your DesignSync installation's stcl
interpreter by using the Tcl info tclversion and info patchlevel commands
within an stcl/stclc client shell.

Related Topics

DesignSync Command Line Shells

Invoking a DesignSync Shell

Command Line Editing

ENOVIA Synchronicity Command Reference Help: dss Command

ENOVIA Synchronicity Command Reference Help: dssc Command

ENOVIA Synchronicity Command Reference Help: stcl Command

ENOVIA Synchronicity Command Reference Help: stclc Command

Invoking a DesignSync Shell

To invoke a DesignSync command-line shell, type one of the following commands from
your UNIX or Windows shell:

DesignSync Data Manager User's Guide

713

dss

dssc

stcl

stclc

On Windows platforms, you can also invoke DesignSync shells from the Windows Start
menu.

For dss and dssc, your prompt changes to dss> to indicate that you are in the dss/dssc
shell. For stcl/stclc, the prompt is stcl>. You can now enter any of DesignSync's
command-line commands, and if you are in an stcl/stclc shell, you can also use any Tcl
construct.

The following example shows the invocation of dssc from a UNIX shell:

% dssc
dss>

To exit any DesignSync shell, type exit.

dss> exit
%

You can also enter DesignSync commands directly from the UNIX or Windows shell
without remaining in the DesignSync shell. This capability is useful for executing
occasional DesignSync commands, and for embedding DesignSync commands in OS
shell scripts. To execute DesignSync commands without remaining in the shell, prefix
the DesignSync command with dss or dssc -- for example:

% dssc ls sync://myserver.myco.com:2647/Projects
<output from the DesignSync ls command>
%

For the stcl/stclc shells, you prefix the DesignSync or Tcl commands with stcl or stclc,
and you must use the -exp option to indicate that you are executing a command, not
running a script -- for example:

% stclc -exp "ls sync://myserver.myco.com:2647/Projects"
<output from the DesignSync ls command>
%

Note:

Reference

714

The dss and stcl shells require a syncd daemon process. If syncd is not already
running, it starts up automatically a few seconds after dss or stcl is invoked. You can
also start syncd manually from a UNIX or Windows shell by using the syncdadmin
command with the start argument. "syncdadmin start" starts syncd only if syncd is not
already running -- only one syncd process can be running for a given user on a given
machine.

Related Topics

DesignSync Command-Line Shells

Comparing the DesignSync Shells

Command-Line Editing

Using DesignSync Commands in OS Shell Scripts

Creating DesignSync Scripts

Running Scripts

ENOVIA Synchronicity Command Reference Help

Command Line Editing

Command-line editing including key shortcuts, command completion, and filename
completion are supported for some DesignSync client shells. The same command-line
editing support is provided for both Windows and UNIX clients; however, the command-
line editing support varies depending upon the DesignSync client: stcl, stclc, dss, or
dssc.

Note: The DesignSync GUI (DesSync) has a built-in command line interface with it's
own shortcuts and element completion. For information on the GUI command line, see
Command Shell Window.

The following table lists the types of command-line editing support for each of these
clients.

Type of
Editing

stclc
Shell

dssc
Shell stcl Shell dss Shell

control key
shortcuts Supported Supported

Adopts key
bindings of
platform

Adopts key
bindings of
platform

arrow key Supported Supported Adopts key Adopts key

DesignSync Data Manager User's Guide

715

shortcuts bindings of
platform

bindings of
platform

command
abbreviations Supported Supported Not Supported Supported

command
completion Supported Supported Not Supported Not Supported

filename
completion Supported Supported Not Supported Not Supported

Tcl history
command and
'!' expansion

Supported Not
Supported Not Supported Not Supported

Key Bindings

The following table describes the key bindings supported for the stclc and dssc shells.

Behavior Control Keys Special Keys
Forward one character Control-f Right arrow

Back one character Control-b Left arrow

Beginning of line Control-a Home (only supported
for Windows platforms)

End of line Control-e End (only supported for
Windows platforms)

Kill rest of line Control-k

Kill line Control-u Esc

Note: The Esc key
instead invokes vi
command mode if your
<EDITOR> environment
variable is set to vi or
your ~/.inputrc file
contains the line 'set
editing-mode vi'.
 Note also that the
DesignSync GUI default
editor setting does not
affect the behavior of
the Esc key.

Reference

716

Delete character Control-d

(Deletes character to
the right of cursor)
Note: Control-d exits
shell if entered on an
empty line.

Delete

(Deletes character to
the left of cursor)
Note: Control-d exits
shell if entered on an
empty line.

Previous command from
command history

Control-p Up arrow

Next command from
command history

Control-n Down arrow

Exit stclc/dssc shell Control-d

Command and Filename Completion

The stclc and dssc shells support command and filename completion.

Note: Filename completion is supported for files, folders, and module workspace
instance names because filename completion uses local file system objects. Filename
completion is not supported for other DesignSync object types, such as Cadence view
objects, DesignSync references, and server-side objects such as vaults or modules.

To use command and filename completion:

1. Type a partial command and press the <Tab> key.
2. If the command is unique, the command displays and you can enter options

using option completion:

To view a list of the command's options, press '-' and then the <Tab> key. To
complete a partial option, press '-' followed by the partial option and the Tab key.
 If the partial option is unique, the option displays. If the partial option is not
unique, choose from the options listed by typing to the next unique character and
pressing the <Tab> key.

Note: Option completion is supported for DesignSync commands, not for
general Tcl commands.

3. If there are multiple matches for a command completion, select a command from
the list of matched commands displayed by typing to the next unique character
and pressing the <Tab> key again.

4. If your command line includes a filename, you can use filename completion:

Type the partial filename and press the Tab key. If the partial filename is unique,
the filename displays. If the partial filename is not unique, select a filename from

DesignSync Data Manager User's Guide

717

the list of matched filenames displayed by typing to the next unique character
and pressing the <Tab> key again.

5. Once you have completed the command line using command, option, or filename
completion, you can edit the command line if necessary, then press Enter to
invoke the command.

If no matches are found for command, option, or filename completion, the message "(no
matches)" displays.

Examples of Command, Option, and Filename Completion

If you type The completion is
pu<Tab> puts

rm<Tab> rmfile rmfolder
rmvault rmversion

rmfi<Tab> rmfile

ci -r<Tab> recursive reference retain

ci -rec<Tab> ci -recursive

ls <Tab> .SYNC Sub x.v

ls S<Tab> ls Sub

notetype <Tab> create delete
getdescription rename

Command History

The stclc and dssc shells save a history of up to 100 commands so that you can select
a previous command using one of these methods:

• To view previous commands, select Control-p or the Up arrow repeatedly until
you see the command you wish to reinvoke. To invoke the command, press
Enter. You can also edit the command line before reinvoking the command.

• To move forward through the command history after viewing previous
commands, select Control-n or the Down arrow.

• In an stclc shell, you can use the Tcl history command to list the command
history. Each command is preceded by a number. To reinvoke a command,
type !# where # is the number of the command. To reinvoke a command, you
can also type !substring where substring is an abbreviation of a previous
command.

Reference

718

The command history is saved between sessions, so you can use these commands to
navigate through the command history of your last session.

Command History Search

In addition to moving forward and backward through command history, you can search
the command history for previous commands:

1. Select Control-r to enter incremental search mode.

Incremental search mode is indicated by a '?' prompt.

2. Select from the following choices and enter the selection at the '?' prompt to
search command history:

A character Characters you type are added to the search string
displayed to the left of the '?' prompt. As you type, the
command history is searched for the current search string.
 If a match is found, the match displays to the right of the
prompt. If no match is found, the area to the right of the
prompt remains empty.

Enter Invoke the command found by the incremental search
mechanism and return to normal mode.

Esc Terminate the search and return to normal mode.

Control-r Set the direction of the search to reverse mode and
continue searching. Repeat Control-r to find multiple
previous commands that match the search string.

Control-s Set the direction of the search to forward mode and
continue searching. Repeat Control-s to find multiple
following commands that match the search string. Note:
Control-s is only applicable if you have already entered
reverse mode using Control-r.

Backspace To delete characters in the current search string, press the
Backspace key. As you delete characters, the command
history is searched for the current search string. Note: If
you delete all of the characters in the search string, the
search is set to the end of command history. If you are in
forward mode (set using Control-s), no matches can be
found because you are at the end of command history.

Related Topics

DesignSync Command Line Shells

DesignSync Data Manager User's Guide

719

Comparing the DesignSync Shells

Using DesignSync Commands in OS Shell Scripts

Creating DesignSync Scripts

Working with Command Aliases

You can create DesignSync command aliases, either from the command line or within
scripts, to define your own DesignSync commands. For example, you can create an
alias as follows:

dss> alias -args 1 go scd $1 && ls

Once defined, typing go with a folder argument has the effect of entering the command
scd <folder> followed by ls. You cannot use the alias command to redefine the
behavior of built-in DesignSync commands. For example, you could not have specified
scd instead of go in this example.

Arguments to an alias are substituted for the $1 through $n placeholders in the alias
definition. In stcl mode, you must surround the argument placeholders with curly braces
to ensure that they are not interpreted as Tcl variables. For example:

stcl> alias -args 1 go scd {$1} && ls

Alias definitions remember the mode, dss or stcl, in which they were defined. For
example, if while in stcl mode you create an alias containing Tcl constructs, the alias will
always execute in stcl mode even if you change to dss mode. The following alias
contains Tcl constructs and demonstrates some of the details of stcl syntax:

alias -args 1 -- checkin if \[file exists \$1 \] \{ci -new -noc
\$1 \}

Things to note in this example:

• The -- option ensures that the -new and -noc checkin options are not treated as
options to the alias command.

• Backslashes are required for [and] to prevent the expression from being
interpreted during alias definition.

• Backslashes are required for { and } to avoid substitution of the second $1
placeholder.

• There must be a space after both occurrences of \$1, otherwise the alias
command sees "$1]" (or "$1}"), which it does not recognize as $1, so no
substitution takes place.

Other variations of the alias command include:

Reference

720

• alias -delete <alias_name>

Deletes the alias.

• alias -temporary <alias_name> <alias_definition>

Creates the alias, but does not store it permanently. If you exit DesignSync and
come back, the alias is no longer defined.

• alias -list

Lists all available aliases.

Related Topics

ENOVIA Synchronicity Command Reference Help: alias command

Configuring the DesignSync Interface

Configuring DesignSync

The DesignSync Administrator (SyncAdmin) tool is a graphical user interface that lets
users easily configure the DesignSync client for individual use. See the ENOVIA
Synchronicity Administrator (SyncAdmin) Help for more information on the SyncAdmin
tool. The SyncAdmin tool is part of the DesignSync software distribution and is available
on both UNIX and Windows platforms.

 To start SyncAdmin on Windows:

Start =>Programs =>ENOVIA Synchronicity DesignSync V6R2011x =>
SyncAdmin

 To start SyncAdmin on UNIX:

% SyncAdmin

SyncAdmin maintains your user preferences in a registry file.

Note: In order for changes made to your user registry file to take effect, you must restart
your DesignSync client (exit and restart your DesSync, dssc, or stclc session, or if you
are using dss or stcl, use the syncdadmin command to restart syncd). An alternative to
restarting the DesignSync client is to use the sregistry reset command to re-read the
registry files.

The DesignSync GUI's Tools =>Options menu invokes SyncAdmin, which you can use
to set additional preferences pertaining to the DesignSync GUI.

DesignSync Data Manager User's Guide

721

You can also use environment variables to configure your DesignSync environment.

Related Topics

Command Line Defaults System

DesignSync Data Manager Administrator's Guide: Using Environment Variables

ENOVIA Synchronicity Command Reference Help: syncdadmin command

ENOVIA Synchronicity Command Reference Help: sregistry reset

Controlling Access to Your Local Work Area

Depending on the sharing methodology employed on your project, you may or may not
want other users to be able to browse or even modify DesignSync objects in your work
area. Access is based on two factors:

• The ability of other users to obtain the proper metadata lock
• Your operating system directory and file protections

For other users to browse objects in your work area, they must obtain a read lock on the
associated metadata (.SYNC) directory. The ability to obtain a read or write lock on a
file depends on the type of permissions set when the file is created. How DesignSync
creates files depends on the operating system platform on which it runs:

• On the Windows platform, DesignSync creates files with open permissions. This
level of permission lets anyone obtain metadata locks.

• On UNIX platforms, DesignSync creates files with permissions based on your
umask. If users want to modify your work area, they must obtain a write lock,
and therefore your umask must allow write access.

Once the proper lock is obtained, the directory- and file-level protections determine what
access users have to objects in your local work area.

Related Topics

Metadata Overview

Setting Up a Shared Workspace

Setting Up a Shared Work Area

Note: Setting up a shared work area is a task that a UNIX system administrator
performs.

Reference

722

To set up a shared work area you first must set up the team's UNIX environment for
sharing by setting appropriate UNIX permissions.

DesignSync follows UNIX permissions such that:

• If User1 has UNIX permission to read User2's files, then User1 sees User2's
managed objects as being under revision control.

• If User1 has UNIX write permissions for User2's files, then user1 can perform
revision control operations on User2's managed objects.

You can set up a shared work area for either of the following situations:

• Individual users can still lock objects for revision control operations.

Shared work area can be set up such that locks are on an individual basis. In this
model, individual users can lock objects for revision control operations. Also, only the
UNIX owner of a file can checkout files with a lock (co -lock) to modify them and
subsequently perform check in or cancel operations. The other team members who
share the same work area have only read permissions and cannot perform any
revision control operations mentioned above.

• Locks are shared; individuals can switch lock ownership.

Shared work area can be set up such that locks are shared and individuals can switch
lock ownership. In this model,user1 can checked out a file with a lock (co -lock),
user2 can edit the file, then switch the ownership of the lock to User2 and check in
the object.

To set up a shared work area where locks can be applied on an individual basis:

As system administrator, take the following steps:

1. Set up the work area so that members of a team have write permission into the
same work area.

For example, on the work area directory, use the UNIX change mode command
(chmod -R 775). This command sets the permissions to let the owner and the
group read, write, and execute files but denies write permission for others.

2. Set each team member's user mask by adding a umask entry to each member's
.cshrc file.

For example, to each user's .cshrc file add umask 002. This setting specifies that
files be created with read and write permission for the owner and group but turns
off write permission for others.

DesignSync Data Manager User's Guide

723

To set up a shared work area where locks are shared:

As system or DesignSync administrator, take the following steps:

1. Start SyncAdmin and choose Change 'Site' settings.
2. Click the Client Triggers tab and create a client-side trigger. Define the trigger to:

• Fire when a team member performs a checkout command (co)
• Fire when a lock is present on the object (isLock 1)
• Fire after the object is checked out (postObject)
• Run a script that changes the object's permissions from the default (644,

which is rw-r--r--) to 664 (rw-rw-r---)

When you enable the trigger, the next restart of a DesignSync client loads the
trigger for the client. The trigger is then available to all users within the
installation.

If User1 checks out an object with a lock, the trigger fires. The trigger runs the
commands, which change the object's permissions. User2 then has UNIX
permission to edit the object that User1 checked out.

3. Change the access control restriction on the switchlocker command to allow
users access to the command.

The switchlocker command changes the current owner of a lock on an object.
The default AccessControl files included with DesignSync deny access to this
command for all users. However, as a system or DesignSync administrator, you
can modify the AccessControl file to allow users to access to the command. For
more information, see DesignSync Action Definitions.

For example, suppose you modify the AccessControl file to allow lock switching
among team members. If User1 checks out the file with a lock, User2 can use the
switchlocker command to change an object's lock owner from User1 to User2.
User 2 can then check in the modified file.

See the ENOVIA Synchronicity Command Reference Help: switchlocker
command for more information and examples of its use.

Related Topics

Controlling Access to Your Local Work Area

Moving a Work Area

There may be situations in which you want to relocate the project data of a work area to
another UNIX file structure location.

Reference

724

Note: Moving a module work area is not recommended. To use a different module
work area, check in any modified files or locked files using the existing work area, then
populate the new work area. If there are unmanaged files in the original work area, you
can copy or move them to the new location. For more information on creating a work
area see, Populating Your Work Area.

You may want to move an existing work area to a new work area, but you want to
preserve the work area's association with the vault. Or you may want to move a work
area, set up an association with another server/vault, and perhaps create new project
data.

In either situation, you use the DesignSync setvault command after you relocate the
work area.

The Role of setvault in Moving a Work Area

The setvault command associates a single directory with a vault location. DesignSync
stores this assignment as an entry in the file ../.SYNC/Contents. For example,
suppose you have the following directory structure:

db/

db/pci/

db/pci/rtl/

db/pci/rtl/pci.v

db/pci/rtl/pcicntl.v

If you run the setvault command on the db/pci directory, DesignSync stores the vault
association information in the file db/.SYNC/Contents.

When files are passed to and from the vault, DesignSync stores the association of a file
with a vault in the ../.SYNC/Contents file. However, DesignSync does not associate
a subdirectory with the vault unless you run the setvault command directly on that
subdirectory. So in the example directory structure, the subdirectory db/pci/rtl/ is
not associated with the vault by a ../.SYNC/Contents entry until you run the
setvault command on the db/pci/rtl/ subdirectory.

Note: If setvault is not run on a subdirectory, the subdirectory's vault association is
inherited from its parent.

See the ENOVIA Synchronicity Command Reference Help: setvault command for
information on the syntax and options of this command.

DesignSync Data Manager User's Guide

725

Moving a Work Area Yet Preserving Its Vault Association

Because the .SYNC/Contents file for your work area resides at the level above your
work area in the hierarchy, the file does not get moved with the work area directories
and files. To move a work area, yet preserve its association with the vault:

• Move the top-level work area directory. (Only the top-level directory needs to be
moved; the rest of the hierarchy follows the top-level directory, thus preserving
the current structure of the work area.)

• Recreate the top-level .SYNC/Contents entry by associating the relocated work
area with the vault.

Caution: To avoid corrupting metadata, you should never edit .SYNC/ directory
contents by hand, .

For example, suppose you move all files and directories of our example work area from
the location db/pci to a new UNIX file structure location, projects/pci. The vault
association for the pci work area, however, does not get moved, because it is stored in
the file db/.SYNC/Contents, which resides at a level higher than the pci/ directory.
Without this file in the new location, the pci/ directory has no server/vault association.
In addition, all the subdirectories have no association with the vault, since they inherit it
from the pci/ directory.

The only exception is where setvault has been run on a subdirectory to explicitly set up
an association between that subdirectory and the vault.

To associate the work area in the new location with the same vault as the old work area:

1. Change directory to the work area root directory (the pci/ directory in our
example).

2. From this directory, execute the DesignSync command setvault and specify the
URL of the vault. For example:

dss> setvault
sync://adagio.myco.com:2647/Projects/Sportster .

DesignSync creates the .SYNC/Contents file at the level above the work area
work directory (projects/.SYNC/Contents in our example).

Moving a Work Area and Creating New Project Data

When you move a work area, the files in the work area are still associated with the old
server/vault location. To associate the relocated work area with a different vault, use the
DesignSync setvault command with the -recursive option. Using the -recursive option
causes the setvault operation to modify the server/vault association value for all files in
the hierarchy as well as for the root directory. Then when the files are used in a transfer

Reference

726

to or from the new server/vault location, they have their association set to follow that
chosen at the root directory.

To move a work area and make a new vault association:

1. Move the top-level work area directory. (Only the top-level directory needs to be
moved; the rest of the hierarchy follows the top-level directory, thus preserving
the current structure of the work area.)

2. Change directory to the work area root directory (the pci/ directory in our
example).

3. Use the DesignSync setvault command with the -recursive option and specify
the URL of the vault. For example:

dss> setvault -rec
sync://adagio.myco.com:2647/Projects/Sportster .

DesignSync associates the relocated work area with the new server/vault. Now
you can check in new project data.

Related Topics

Metadata Overview

Setting Up a Shared Workspace

UNIX Permissions of Work Areas and Vaults

When populating a workspace, all subfolders inherit the parent folder's UNIX
permissions.

When an object is fetched -lock, the object is always writable by the file's UNIX owner.
All other workspace UNIX permissions, of both locked and local file copies, depend on:

• Your umask setting
• Whether the workspace is shared
• The default preference for how local (unlocked) copies of files are fetched into

the workspace
• The UNIX permissions on the vault file
• Cache and mirror UNIX permissions

These factors are explained below.

How your umask Affects Local Permissions

DesignSync Data Manager User's Guide

727

Your UNIX umask controls whether read and execute permissions for UNIX group and
UNIX everyone are set, when a file is fetched into your workspace. The UNIX write bit is
never set for UNIX group or UNIX everyone, regardless of your umask.

How Shared Workspaces Affect Local File Permissions

Users' umask settings must allow others in their UNIX group to access shared data. The
shared work area must also be created with the appropriate UNIX directory
permissions. If users are to share DesignSync locks, additional set up steps are
required, such as setting the UNIX write bit for the UNIX group. See Setting Up a
Shared Work Area for details.

How the Default Fetch Preference Affects Fetched Copies

If the DesignSync client's default fetch preference is to "fetch read-only", the file's UNIX
owner cannot write to unlocked copies that are fetched. If the default fetch preference
is not "fetch read-only", The file's UNIX owner will be able to write to unlocked copies
that are fetched. For more information on how to modify the default behavior, see
DesignSync Data Manager Administrator's Guide: General Options.

How UNIX Permissions on Vault Files are Managed

UNIX permissions on vault files are always read-only. They are never writable, not even
for the server owner. The UNIX read and execute permissions for UNIX owner, group
and everyone are set every time a new file version is checked in. When a new file
version is checked in, the UNIX read and execute permissions of the local workspace
file being checked in are applied to the vault file. The UNIX read and execute
permissions on a vault file reflect the UNIX read and execute permissions of the last
version checked in, from the workspace in which that last version was checked in.

When a file is fetched from the vault, the workspace file's UNIX read and execute
permissions are set to those of the vault. A user's umask can cause the fetched file's
UNIX permissions to be further restricted, but a user's umask cannot cause more open
UNIX permissions on the fetched file. For example, if a vault file does not have execute
permissions for UNIX everyone, when the file is fetched, the workspace file will not have
execute permissions for UNIX everyone, regardless of the user's umask.

How Cache and Mirror UNIX Permissions Affect Local File Permissions

The default -from local performance optimization copies files from a LAN cache or
mirror directory into your workspace, instead of fetching the file from the server. If the
cache or mirror environment was not set up correctly, the local file copies fetched into
the cache or mirror will have incorrect UNIX permissions. Consequently, if you use the -
from local option to copy the cache file or mirror file into your workspace, the file will
also have incorrect UNIX permissions. See DesignSync Data Manager Administrator's
Guide: Fetching Files from the Mirror or Cache for details.

Reference

728

Command Line Defaults System

The command line defaults system only pertains to the command line interface.
Underlying commands that are automatically invoked by the DesignSync GUI's dialog
boxes, reports, etc., do not use the command line defaults system. The Save Settings
button in DesignSync GUI dialog boxes does not interact with the command line
defaults system.

The DesignSync GUI's Command Shell Window, into which a user types commands,
does use the command line defaults system. For an overview of the command line
defaults system, see the ENOVIA Synchronicity Command Reference Help: command
defaults command line topic.

Related Topic

Command Shell Window

Working with Scripts

DesignSync Scripts

You can include DesignSync commands in scripts that you invoke from any of the
DesignSync clients or from your operating system. The following sections focus on
creating and running scripts containing DesignSync commands:

• Using DesignSync Commands in OS Shell Scripts
• Creating DesignSync Scripts
• Running Scripts
• Running a Script at Startup

You can also use DesignSync commands in Tcl scripts by using the stcl language, a
combination of DesignSync, ProjectSync, and Tcl commands. If your scripts are Tcl
scripts that include DesignSync or ProjectSync commands, see the ENOVIA
Synchronicity stcl Programmer's Guide for guidance in developing, setting up, and
running both client and server stcl scripts.

Using DesignSync Commands in OS Shell Scripts

You can embed DesignSync and Tcl commands in operating-system (OS) shell scripts.
For single commands, include the line as though you were invoking it directly from the
OS shell. In the following example, the c-shell script called lockNotify.csh takes a
directory and your user name as arguments, searches for all files locked by you, then
sends you an email with the list of locked files:

DesignSync Data Manager User's Guide

729

#!/bin/csh
set dir=$1
set user=$2

Find files locked by the user in the specified directory

dssc ls -recursive -path -locked $dir | grep $user >
/tmp/$user.list

Notify the user

mail -s "Reminder: You have locked files" $user <
/tmp/$user.list

Note that all the commands in this script are OS commands except for ls, which is the
DesignSync ls command and must therefore be preceded by dssc. You could then run
this script from your OS shell:

% lockNotify.csh . goss

If you have a block of DesignSync or Tcl commands that you want to include in your
script, you can enter the DesignSync shell, issue several commands, then exit from the
shell, as shown:

#!/bin/csh

- Go to the local working directory
- Specify which files to check-in and tag
- Check in selected files from the local working directory
to the shared cache. Links are created from
the work area to the files in the cache.
- Tag these files, which will be used by test engineers,
moving
the tag from a previous version if necessary
dssc<<EOF
scd $HOME/synth
select hdl*
ci -comment "ready for testing" -share
tag -replace ready_for_testing
exit
EOF

Related Topics

DesignSync Command-Line Shells

Invoking a DesignSync Shell

Reference

730

Creating DesignSync Scripts

Creating DesignSync Scripts

You can create scripts containing DesignSync commands in two ways:

• By hand, using any text editor. The following is an example of a scripts created
by hand:

Go to the local working directory
scd $HOME/ synth

Specify which files to check-in and tag

select hdl*

Check in selected files from the local working directory
to the shared cache. This creates links from the working
directory to the files in the cache.

ci -comment "ready for testing" -share

• #
Tag these files, which will be used by test engineers
Move the tag from a previous version if necessary

tag -replace ready_for_testing

Exit dssc

exit

• Using DesignSync's logging capability to create a log file of a DesignSync
session that you can later run to reproduce the session. The DesignSync log
command controls logging options, including the name and location of the log
file, and whether just commands are logged or also command output (which is
commented out in the log file). Project leaders can set up site-side logging
preferences from the SyncAdmin tool.

If you want to also include Tcl commands in your scripts, see the ENOVIA Synchronicity
stcl Programmer's Guide.

Related Topics

DesignSync Data Manager User's Guide

731

DesignSync Command-Line Shells

Using DesignSync Commands in OS Shell Scripts

Running Scripts

ENOVIA Synchronicity Command Reference: log Command

Running Scripts

You can run a DesignSync script in several ways:

• From any DesignSync shell, use the run command:

dss> run <filename>

If the extension of the file is .tcl, the script is run in stcl mode regardless of your
current shell. Otherwise, the script is run as a dss script (no Tcl constructs
allowed).

If you do not specify a path for the script file, DesignSync looks in the default log
directory. By default, the default log directory is the directory from which you
invoked DesignSync. You can change the default log directory by using either of
the following DesignSync command-line commands:

dss> run -defaultdir <path>
dss> log -defaultdir <path>

Note that project leaders can set up site-side logging preferences from the
SyncAdmin tool.

• From an stcl or stclc shell, you can use the Tcl source command to run your
script. Running the script with source or run has the same effect.

stcl> source <filename>

• From your OS shell, use stcl or stclc without the -exp option to run the script:

% stclc <filename>

• DesignSync can run a script automatically when you invoke a DesignSync client.
See Running a Script at Startup.

Reference

732

Note:

To run server-side scripts -- scripts that reside on and are executed by a SyncServer as
opposed to a DesignSync client -- use the rstcl command.

Related Topics

DesignSync Command-Line Shells

Creating DesignSync Scripts

Running a Script at Startup

ENOVIA Synchronicity Command Reference Help: run Command

ENOVIA Synchronicity Command Reference Help: rstcl Command

ENOVIA Synchronicity stcl Programmer's Guide

Running a Script at Startup

You can have DesignSync run a startup script when you invoke any DesignSync client.
In SyncAdmin, select General =>Startup to specify a startup script. The script can
contain DesignSync and Tcl commands. By default, the script is named dsinit.dss,
but you can choose any name and path for the script. DesignSync interprets the
specified script file as a dss script unless the file has a .tcl extension, in which case
DesignSync interprets it as an stcl script. If you do not specify a path for the script,
DesignSync searches for the script in these directories in the following order:

1. $SYNC_USER_CFGDIR (by default, resolves to <HOME>/.synchronicity on
UNIX and %AppData%\Synchronicity on Windows)

2. $SYNC_SITE_CUSTOM (resolves to <SYNC_CUSTOM_DIR>/site by default)
3. $SYNC_ENT_CUSTOM (resolves to <SYNC_CUSTOM_DIR>/enterprise by

default)

DesignSync searches for the script in the $SYNC_SITE_CUSTOM directory only if the
$SYNC_USER_CFGDIR directory does not contain the script.

Examples of tasks you might include in a startup script are:

• scd to a particular directory
• Perform an incremental populate (so you always have the latest versions of files)

DesignSync Data Manager User's Guide

733

Your system administrator or project leader can also prepare startup scripts for
DesignSync to source at startup. In this way, your site or project team can share the
same aliases. See Autoloading Tcl Procedures for more information.

Related Topics

DesignSync Data Manager Administrator's Guide: Startup Options

DesignSync Command-Line Shells

Running Scripts

Creating DesignSync Scripts

DesignSync Data Manager Administrator's Guide: Autoloading Tcl Procedures

DesignSync Data Manager Administrator's Guide: Using Environment Variables

Improving Efficiency Using Caches and Mirrors

Mirrors Versus Caches

Mirrors and caches are discussed in the DesignSync Data Manager Administrator's
Guide, in the topic Mirrors Versus Caches.

What is a File Cache?

DesignSync provides the ability for engineers located in widely dispersed locations to
access design data stored in a central vault. In large projects, engineers within one
location are typically grouped together on a local area network (LAN). In the illustration,
users 1, 2, 3, and 4 all work on the same project, checking design data into and out of
the vault. Users 1 and 2 are on a common LAN, as are users 3 and 4. At various
milestones along the way, a golden configuration can be defined in the vault by
assigning a tag (such as "Gold") to a collection of file versions that work together
satisfactorily. Each LAN can periodically populate its golden area with the golden
configuration.

Reference

734

A cache reduces the amount of file duplication among the users on a LAN. A cache
comes into use, for example, when you issue a check out command with the -share
option (populate, check-in, check-out, and cancel operations all have share options).
The object you are checking out is put into the file cache, if it is not already there
because of a previous check out. The object is not put into your own work area. Instead,
a symbolic link or hard link to it is put into your working directory, visible through the
UNIX ls command.

Notes:

• Objects in the cache have DesignSync-generated filenames. DesignSync
manages the cached files, so you do not need to deal with these meaningless
names. However, the links in your work area to the files in the cache use these
meaningless names, for example:

$ ls -l top.v

top.v -> /home/tgoss/sync_cache/s64/s64a06945af4f7c9b-1.1-
982002979-f216a783154b31cc

For more information about these cache link files, see How DesignSync
Manages Caches.

• If your team is using a cache methodology, your project leader may have defined
a default fetch state of 'share'. This default fetch state eliminates the need for
specifying the -share option each time you perform a revision-control operation.

• Because caching is implemented using links, only UNIX systems can take
advantage of this capability.

Related Topics

DesignSync Data Manager User's Guide

735

Why Use a File Cache?

DesignSync Data Manager Administrator's Guide: Setting up a LAN Cache

DesignSync Data Manager Administrator's Guide: Mirrors Versus LAN Caches

Why Use a File Cache?

The purpose of using a cache is to save both disk space on the LAN and to save time
for individual fetches of updated files.

A cache is useful when, for example, the members of a team populate their simulation
directories. Each user first designates the server vault location that is to act as the
source for the simulation data by using the setvault command. Then, when the first
user issues a populate -recursive -share command, the vault folder hierarchy is
copied to the cache directory and the links are created in the user's simulation directory
that point to the corresponding cache files. The cache file names are encoded in a way
that allows the client to decrypt the source vault location from which the file originated.
For populate operations that are subsequently executed by other users, the client does
not copy any file to the cache that is already present. It must only establish a link to the
existing file.

After a user's simulation directory is populated with links to the cache, any files that
need to be individually modified by the user can be checked out with the -lock option.
This operation will check out a copy of the file from the server vault into the user's
simulation directory and then delete the link to the cache copy. Now the user can make
modifications to the real file to diverge the simulation behavior from that produced by
the standard vault simulation. However, the bulk of the directory tree is still shared in a
read-only mode with the other project members. The cache copy of a file is removed
automatically when the final user removes the last link.

Related Topics

What is a LAN Cache?

What is a Module Cache?

A module cache (mcache) can be thought of as a shared workspace. The DesignSync
administrator or Project manger can create module caches to contain the common
tools, modules, resource libraries, SITaR baselines, etc. required by the entire
development team. By populating a module cache link into their workspaces, they
populate a single DesignSync object, rather than the full contents of the module.

For UNIX workspaces, which link to the module in the mcache, this reduces populate
time, load on the SyncServer, and saves disk space. For Windows workspaces, which

Reference

736

do not link to a module cache, but can copy from the cache, it reduces load on the
SyncServer during the populate and updates.

A project leader fetches modules into a module cache, preferably in "share" mode, to
utilize DesignSync's file caching. When users populate module data, they can specify,
using the Module Cache Mode option, whether to link to modules in the module cache,
copy the files from the module cache to their local system, or fetch modules from the
server. When the module cache is populated, it is assigned an instance name. This
allows the team leader to maintain the module cache as any other module. The default
module cache path, and the default module cache mode, can be defined in the registry
by the team leader or by an individual user.

When users populate module cache links, the symbolic link created is identified as a
"Link to mcache" object type and assigned a module instance to allow the user to
maintain the mcache link as any other module.

Module caches that contain non-legacy modules must designate the topmost directory
of the module cache as a workspace root directory. Use the 'setroot' command to define
the topmost directory as a root and then proceed to populate the DesignSync modules
into the module cache.

Legacy modules can be linked to, or copied from, a module cache. The module cache
mode of "copy" only applies to legacy modules. Attempting to copy a non-legacy
module from a module cache fetches the module from the server.

Related topics

Using a Module Cache

Procedure for Creating a Module Cache Link

DesignSync Data Manager Administrator's Guide: Procedure for setting up a
Module Cache

DesignSync Data Manager Administrator's Guide: Module Options

Mirroring Overview

A mirror exactly mimics the data set defined for your project vault. Mirrors provide an
easy way for multiple users to point to the file versions that comprise their project's data.
The file versions in the mirror belong to the configuration defined by the project lead.
For example, the configuration could be the Latest version of files on the main Trunk
branch. A mirror for a development branch may be defined to always contain the file
versions on that branch with a specific tag. When the file versions comprising the
configuration change, for example, if Latest versions are being mirrored and a new
version of a file is checked into the vault, the mirror directory is automatically updated

DesignSync Data Manager User's Guide

737

with the new version. Without mirroring, users would need to frequently update their
work areas using the populate command to reflect the project's current data set. You
can find where vault data is being mirrored, and the status of those mirrors. (See the
Related Topics below.)

The setmirror command associates a workspace with a mirror directory. A mirror will
always have accurate metadata because any action that writes to a mirror directory
updates the local metadata in the mirror directory. When you use the setmirror
command to associate a mirror directory, checking in an object will:

• create the new version in the vault,
• update the file in the associated mirror associated, and then
• update the metadata.

Mirror can be updated and administered automatically. See the section Administering
Mirrors for details. As of Version 4.2, the legacy Remote Mirror Assurance package is
no longer supported.

Mirror Attributes

• All actions that write to a mirror directory will update the local metadata in the
mirror directory. When looking at a workspace that has objects in the mirror state,
a combination of the workspace’s and the mirror directory’s local metadata will be
used to determine the correct version of the objects. This allows you to use the
ls or url command on objects in the workspace to show the correct state of the
object.

• Mirrors support all defined configurations.
• When a check-in occurs from a client, it creates a new version in the vault,

returns control back to the client, and the client writes the object into the mirror
and updates the local metadata in the mirror directory.

• A mirror write through will occur for all fetch states. Regardless of the fetch state,
if a mirror write through is done, then the metadata is updated to reflect what was
written to the mirror directory.

• No other commands, with or without the -mirror option, write through to the
mirror. Commands like populate -mirror and cancel -mirror do not
write to the mirror directory. However, the co -mirror command writes through
to the mirror directory if the correct up-to-date version is not already in the mirror.
Most commands only create links from a workspace to the files in the mirror
directory.

As a DesignSync administrator, you can:

• Set up a mirror directory and navigate through this mirror knowing that everything
is being kept up-to-date.

Reference

738

• Set up your environment (from that LAN where the check-ins occur) to write
through to your mirror when checking a new version into the server. You do not
have to wait for the mirror update process to update the mirror.

Restrictions

• Because mirroring is implemented with UNIX links, mirrors are not supported on
Windows platforms.

• The mirror directory and the users accessing it must be on the same LAN.
• Only one process can write to the mirror subdirectory at a time. The system

ensures that when you check in a new version, there will be a lock on the mirror
subdirectory. The lock is held for the duration of the client check-in from the
workspace subdirectory. The system will display a "waiting on metadata lock"
message while the system processes the workspace. This may cause a delay if
someone is checking in a large amount of objects or large files.

• Mirrors for modules cannot be linked to from a workspace. A module cache
should be used instead.

Related Topics

General Mirror Topics:

Mirrors Versus Caches

Using a Mirror

ENOVIA Synchronicity Command Reference: mirror wheremirrored

Mirror Administration Topics:

Administering Mirrors

Finding Mirrored Data

Locking, Branching, and Merging

What Is Merging?

Merging combines changes made on two branches, or within a branch. Branching
without merging has limited usability – two developments streams diverge forever and
can never be reconciled.

DesignSync Data Manager User's Guide

739

There are several important notions related to the general concept of merging that are
equally applicable to file merging and module merging:

Merge Conflicts

Two-Way Merge

Three-Way Merge

Merge Edges

Module merging has additional factors to consider because instead of merging
specific files, you are merging a set of changes. For more information on module
merging, see Merging Module Data.

Related Topics

Merging Module Data

Using the Merging Work Style

Parallel (Multi-Branch) Development

Merge Conflicts

Two-Way Merge

Three-Way Merge

Merge Edges

Locking and Merging Work Styles

Locking and Merging Work Styles

DesignSync supports the two common design-management (DM) work styles: locking
and merging (non-locking).

• Locking Style

With the locking style, you always check out with a lock an object that you plan to
edit. DesignSync locks the branch associated with the version you are checking
out, prohibiting other team members from creating new versions on that branch.
You, the holder of the lock, reserve the right to create the next version on that
branch. Other team members can fetch (check out without a lock) the object, but
no one else should make changes while you hold the lock.

Reference

740

For example, Barbara checks out with a lock version 1.3 (the Latest version) of a
file. Jack then tries to check out with a lock the same file, but the checkout fails
and DesignSync reports that the file is already locked. Jack contacts Barbara to
let her know that he needs to edit the file. Barbara finishes her changes and
checks the file in, creating version 1.4. Jack can now check out version 1.4 with a
lock, make his changes, then check in the file to create version 1.5.

Note that in multibranch environments, each branch of an object can be
independently locked and unlocked. Therefore, different team members can
modify the same object on different branches even when using the locking work
style.

• Merging Style

With the merging style, more than one person can fetch the same object with the
intention of editing the object. The first person to check the object back in creates
the next version. The other person must first merge the changes from this new
Latest version into his or her local copy, manually resolve any merge conflicts,
then check in the merged object.

For example, Barbara and Jack both check out version 1.3 (the Latest version) of
a file. Jack checks in his changes first, creating version 1.4. To check in her
changes, Barbara must first merge the new Latest version (1.4) into the modified
version in her work area. She manually resolves any conflicts between her
changes and Jack's changes. She then checks the merged version in, creating
version 1.5.

Note that DesignSync also supports merging across branches. See Parallel
(Multi-Branch) Development for information.

Which work style is appropriate for your team depends on various factors:

• Comfort with design management

Teams new to design management often use the locking style. The locking style
avoids merges, which can be intimidating to novice users. As projects get bigger
and teams gain more experience, teams tend to shift to the merging style to
facilitate extensive sharing of files.

• Frequency of sharing objects

Cases where there is typically one team member modifying a given object at a
time are well suited to the locking style. If multiple users commonly want to
simultaneously modify a given object, then the merging style is appropriate.

• Data format

DesignSync Data Manager User's Guide

741

• Merges require that design data be ASCII (text), as opposed to binary. If your
team is managing binary data, you must use the locking work style, at least for
the binary data.

DesignSync also lets you mix the two work styles, although doing so is not generally
recommended. For example, your team is using the merging style, but you check out
with a lock an object that you want no one else to modify.

Related Topics

Using the Locking Work Style

Using the Merging Work Style

Using the Locking Work Style

The following operations define the locking work style:

• To check out an object for editing, lock the object:
o From the Check Out dialog box, select Locked copies.
o From the Populate dialog box, select Locked copies
o When using the co or populate commands, use the -lock option.

• To check in an object while continuing making changes, retain the lock:
o From the Check In dialog box, select Locked copies.
o When using the ci command, use the -lock option.

• To cancel your check out when you have an object locked but have decided not
to make changes, select Revision Control => Cancel Checkout or use the
cancel command. Note that to control the state of the object (local copy, link to
the cache, link to the mirror, reference) after the checkout, you must use the
cancel command; canceling from the graphical interface always uses your
default fetch state if defined, otherwise leaves a local copy.

• To remove a lock held by another user, select Revision Control => Unlock or
use the unlock command. Note that removing another user's lock is not a typical
operation and one that is often access controlled. Consult your team leader.

• If you have already made changes to an object, you can still obtain a lock for the
object by using the co command with the -lock option. DesignSync lets you
acquire the lock without fetching the object and overwriting your work. If another
user has checked in changes to the object or has acquired a lock on the object,
DesignSync does not let you lock the object. You can also obtain the lock by
using the Check Out dialog box and selecting Locked copies.

• If you regularly regenerate a large file but you want to lock the file before
regenerating, you can save time by using co with the -lock and -reference
options. You save time because DesignSync creates a reference to the file
instead of fetching the previously generated file. You can also obtain a locked
reference by using the Check Out dialog box and selecting Locked references.

• To find out where an object is locked, you can use the showlocks command.

Reference

742

Your project leader can use access controls to enforce a locking style by limiting check-
in operations to locked objects. See the ENOVIA Synchronicity Access Control Guide:
Access Control Scripting for a sample script to enforce a locking model. The ability to
perform a merge can also be restricted; see the access control definition.

Related Topics

Locking and Merging Work Styles

Using the Merging Work Style

ENOVIA Synchronicity Command Reference: co

ENOVIA Synchronicity Command Reference: populate

ENOVIA Synchronicity Command Reference: ci

ENOVIA Synchronicity Command Reference: cancel

ENOVIA Synchronicity Command Reference: unlock

Merge Conflicts

Whenever you merge, whether the merge is between two versions on the same branch
(see Using the Merging Work Style) or between branches (see Parallel (Multi-Branch)
Development), there may be merge conflicts. Merge conflicts can also arise when
changes in the two branches being merged are incompatible, such as when a file is
renamed to different locations on the two branches. Merge conflicts occur when
different changes were made to the same region of the two versions that are being
merged. DesignSync cannot automatically determine which changes are the correct
ones; you must resolve the conflicts manually.

When working with modules, it is not necessary to resolve all conflicts before creating
the next module version. You can check in, or perform other operations that create new
module versions, as long as the objects being operated on are not the ones that are in
conflict.

Note:

DesignSync records "merge edges" – information about what versions participated in
the merge -- with the new version resulting from the merge. DesignSync uses merge
edges in future calculations of closest common ancestors instead of always going
back to the original ancestor. This capability relieves you from having to resolve the
same merge conflicts during future merges. See Merge Edges for more information.

Resolving Merge Conflicts

DesignSync Data Manager User's Guide

743

 A conflict is presented in a textual or graphical format as two options. You resolve the
conflicts either one or at a time, or collectively by selecting the appropriate version.

DesignSync alerts you to conflicts during the merge. Conflicts are identified in the
Changed Object Browser, by the Status field of the List View and from the ls command.
You can also use the url inconflict command.

When you merge a file, the conflicts are indicated in the file text with a conflict delimiter
(exactly 7 less-than, greater-than, or equal signs starting in column 1) and the version
number to indicate what text is present in each version:

<<<<<<< versionID
Lines from Latest version (same-branch merge) or overlaid
version
Lines from locally modified version
>>>>>>>

DesignSync considers the conflicts resolved when the file no longer contains any of the
conflict delimiters.

To invoke the Conflict Editor, select the Resolve Conflicts action from the context menu
of an object that's identified as In Conflict by the Changed Object Browser. Or select an
in conflict file and run Tools => Resolve Conflicts.

 In the Merge Conflict Editor, the conflicts are indicated by highlighted text.

DesignSync considers the conflicts resolved when the file no longer contains any of the
conflict delimiters. When you resolve a conflict, the Merge Conflict Editor removes the

Reference

744

conflict indicators for you and changes the highlight color to the resolved conflict color,
light pink by default.

Note: The highlighted text uses the color specified for conflict resolution with
SyncAdmin, in the For multi-window Diff viewers/editors section.

Related Topics

Two-Way Merge

Three-Way Merge

Conflict Handling

Identifying Changed Objects

Locking and Merging Work Styles

Merge Conflict Editor

Using the Merging Work Style

Parallel (Multi-Branch) Development

ENOVIA Synchronicity Command Reference: Is

ENOVIA Synchronicity Command Reference: url inconflict

ENOVIA Synchronicity Command Reference: populate

Selecting Versions and Branches

Selecting Versions and Branches

Some revision-control operations, such as checkout and populate, operate on versions
of design objects (files or collections). Other operations, such as checkin and retire,
operate on branches. One operation, tagging, can operate on both versions and
branches. How DesignSync determines what version or branch to operate on varies by
operation but can include the following:

• The current branch or version of the object in your work area

For operations such as retiring, unlocking, and tagging design objects, the default
behavior is to operate on the current version or branch of objects in your work
area.

DesignSync Data Manager User's Guide

745

• The branch or version you explicitly specify using a selector or selector list

Many command-line commands have a -branch or -version option so that you
can specify the branch or version on which to operate. The DesignSync graphical
user interface (GUI) lets you specify a branch or version using Version and
Branch fields where appropriate. For example, the Check Out, and Populate
and Tag dialog boxes have Version fields. The Check In, Unlock, Retire, and
Tag dialog boxes have Branch fields.

• The branch or version identified by the object's persistent selector list
• Every object has a persistent selector - a selector or selector list that is stored in

local metadata (or inherited from the parent folder) and is used by some
commands in the absence of an explicit branch or version selector list. By
default, the persistent selector list is Trunk (shorthand for Trunk:Latest), which is
the default tag name for branch 1. Check-in, check-out, populate, and import
operations obey the persistent selector.

Note:

Using CONFIG statements in sync_project.txt files, you can map a configuration
to a single selector or a selector list. See Using Vault References for Design Reuse for
more information.

Specifying Branches and Versions Using Fields or Vault URLs

Some DesignSync commands (for example, mkbranch, retire, tag, and unlock)
provide two ways to specify a particular version or branch for the command to operate
on:

• Use the Branch or Version fields (or -branch or -version command-line
options). For example:

stcl> tag -recursive alpha -version baseline ASIC/top/alu

DesignSync tags all objects that have the baseline version tag in the alu
folder and all its subfolders.

stcl> unlock -branch RelA:Latest -recursive
 sync://apollo:2647/Projects/Sportster/code

DesignSync unlocks branch RelA:Latest for all objects in the code folder and
all its subfolders.

• Specify a branch or version selector with the object's URL.

Reference

746

dss> retire
"sync://apollo:2647/Projects/Sportster/top/top.v;Main:Lates
t"

DesignSync retires the version of top.v that has the branch selector
Main:Latest. Note: Enclose the vault URL between quotation marks (") in the
stcl shell if the string contains a semicolon (;).

If you enter a value in the Branch or Version field (or use a -branch or -version
option) and you specify a vault object URL that includes a branch or version selector,
the vault object URL selector takes precedence. For example, suppose you enter:

stcl> tag -version alpha beta
 "sync://apollo:2647/Projects/ASIC/top/top.v;1.2"

DesignSync ignores the alpha version selector and tags version 1.2 of top.v.

Related Topics

What Are Selectors?

What Are Selector Lists?

What Are Persistent Selector Lists

Selector Formats

What Are Selectors?

A selector is an expression that identifies a branch and version of a managed object.
For example, the version selector 'gold', the branch selector 'Rel2:Latest', the version
number '1.4', and the reserved keyword 'Latest' are all selectors.

Static Selectors Versus Dynamic Selectors

Static selectors denote a set of objects whose contents are fixed. These fixed objects
might constitute a 'release' of the group of objects. Static selectors include version
selectors such as gold and branch selectors with fixed versions, such as Rel2:gold.
The objects denoted by a static selector do not change with subsequent checkins.
Changes made to module workspaces populated with a static selector cannot be
checked in.

Dynamic selectors denote a set of objects whose contents are not fixed. A branch
selector such as Rel2:Latest is a dynamic selector because the objects denoted by
the selector change; a new Latest version is created on the Rel2 branch with each
subsequent checkin.

DesignSync Data Manager User's Guide

747

How Branch and Version Selectors Are Resolved

Branch tags and version tags share the same name space. To distinguish version
selectors from branch selectors, you append :<versiontag> to the branch name; for
example, Gold:Latest is a valid branch selector. You can leave off the Latest
keyword as shorthand; for example, Gold: is equivalent to Gold:Latest. The
selector Trunk is also a valid branch selector. Trunk is a shorthand selector for
Trunk:Latest.

You cannot assign the same tag name to both a version and a branch of the same
object. For example, a file called top.v cannot have both a version tagged Gold and a
branch tagged Gold. However, top.v can have a version tagged Gold while another
file, alu.v, can have a branch tagged Gold.

Consider adopting a consistent naming convention for branch and version tags to
reduce confusion. For example, you might have a policy that branch tags always begin
with an initial uppercase letter (Rel2.1, for example) whereas version tags do not
(gold, for example).

If the selector identifies a version, DesignSync resolves the selector to both the object's
version number and branch number. For example, if version 1.2.1.3 is tagged Gold,
DesignSync resolves Gold as both version 1.2.1.3 and branch 1.2.1. A version selector
only resolves if the object has a version tag of the same name; it does not resolve if the
tag is a branch tag.

If the selector identifies a branch, DesignSync resolves the selector to both that branch
and the Latest version on that branch. If branch 1.2.4 has branch tag Rel2, DesignSync
resolves Rel2:Latest as both branch 1.2.4 and the Latest version on that branch
(say, 1.2.4.5). This behavior is important because some commands (such as Check
Out) operate on a version, some (such as Check In) operate on a branch, and others
(such as Tag) operate on either a version or branch. If the tag cannot be resolved as a
branch, DesignSync searches for a version of the same name, determines which
branch the version is on, and resolves to the Latest version on that branch. For
example, suppose an object, netlist.txt, has a version tagged beta on its 1.2.4
branch. If the selector is beta , DesignSync first searches for a beta branch. Finding
no beta branch, DesignSync searches for a beta version. DesignSync finds the beta
version, determines its branch, 1.2.4, and resolves to the Latest version on the 1.2.4
branch.

A selector can also specify both a branch and a version, for example Rel2:gold. This
selector resolves if there is a branch Rel2 and if a version tagged gold exists on the
Rel2 branch.

Reference

748

A selector might not match any branch or version of a given object. For example, a file
may not have a branch or version tagged Gold. Because selectors can fail, it is
common to specify selector lists.

Note: To resolve a selector, DesignSync does not search above the root of a
workspace where a setvault has been applied. Thus, if a folder has no selector or
persistent selector set, DesignSync searches up the hierarchy only as far as the
first folder that has a vault association.

Related Topics

Selecting Versions and Branches

What Are Selector Lists?

What Are Persistent Selector Lists

Selector Formats

What Are Selector Lists?

You can combine selectors into a selector list, a comma-separated list of selectors.
Selector lists are processed differently for module workspaces than they are for files-
based workspaces. This topic discusses how files-based selector lists are processed.
 Selector lists for files-based workspaces resolve to a single selector. Selector lists for
module-based workspace combine selectors to create a composite, or blended
workspace. For more information on module-based selector list processing, see
Module Member Tags.

No white space between items is allowed. Examples of selector lists are:

gold,silver,bronze,Trunk:Latest

auto(Test),Main:Latest

Dev2.1:Latest,Rel2.1:Latest,Trunk

Selector lists are used by commands that fetch objects (co, populate, and import).
They provide a search order for identifying and retrieving versions. DesignSync
operates on each element of a selector list in the same way it operates on an individual
selector. If the first selector in the list does not resolve to a version, then DesignSync
looks at the next selector in the list. The first matching version is used. The command
fails if none of the selectors in the list resolves to a version. In the case of tags,
DesignSync first looks for a branch with the specified tag, and if found, resolves to the
Latest version on that branch. Otherwise, DesignSync looks for a version with that tag.

DesignSync Data Manager User's Guide

749

For example, if you want to populate with "the most stable configuration", you might
define your selector list as green,yellow,red,Trunk, where your team's
development methodology is to use version tags of green, yellow, and red to
indicate decreasing levels of stability. With this selector list, DesignSync retrieves the
first of the following versions it locates:

1. The version tagged green.
2. The version tagged yellow.
3. The version tagged red.
4. The Latest version on the branch tagged Trunk. Trunk (shorthand for

Trunk:Latest) is the default tag name for branch 1.

If your team is using a branching methodology and you want to populate with "the most
stable configuration", you might define your selector list instead as
Green:Latest,Yellow:Latest,Red:Latest,Trunk. With this selector list,
DesignSync retrieves the first of the following versions it locates:

1. The Latest version on the branch tagged Green.
2. The Latest version on the same branch as the version tagged Green.
3. The Latest version on the branch tagged Yellow.
4. The Latest version on the same branch as the version tagged Yellow.
5. The Latest version on the branch tagged Red.
6. The Latest version on the same branch as the version tagged Red.
7. The Latest version on the branch tagged Trunk.

Selector lists are a powerful mechanism, but can also add complexity. To avoid
accidental checkins to unintended branches when you have complicated selector lists,
the 'ci' and 'co -lock' commands consider only the first selector in a selector list. If the
first selector resolves to a branch, the operation continues, otherwise the operation fails.

Note: Using CONFIG statements in sync_project.txt files, you can map a
configuration to a single selector or a selector list. See Using Vault References
for Design Reuse for information.

Related Topics

Selecting Versions and Branches

What Are Selectors?

What Are Persistent Selector Lists

Selector Formats

What Are Persistent Selector Lists

Reference

750

Some operations (check in, check out, populate, and import) support persistent selector
lists. Persistent selector lists specify what branch or version a command operates on in
the absence of an explicit branch or version selector list (Version or Branch fields in
the graphical interface, -version or -branch command-line options). Commands that do
not obey the persistent selector list typically operate on the current version or current
branch of the object in your work area.

You explicitly set the persistent selector list, typically on an entire work area, using the
setselector command. You can also set the selector at the same time you set the vault
with the setvault command. DesignSync also sets the persistent selector list in the
following cases:

• When populating a module with the –version option, DesignSync sets the
persistent selector to specified version.

• When populating a configuration-mapped folder. This behavior is a performance
optimization. See the populate help topic for details.

• When populating or checking out with the -overlay option and an object exists on
the overlay branch but not on the branch being overlaid (the work area branch).
DesignSync may augment the object's persistent selector list with the Auto()
selector so that the object is automatically branched when checked in. See the -
overlay option to the populate or co command for details.

A persistent selector list is stored in an object's local metadata, or it is inherited from its
parent folder. If a persistent selector list has not been defined, the default is "Trunk".

Notes:

• Selector lists are not supported if you map configurations using REFERENCEs in
sync_project.txt files.

• Selector lists are processed differently for module workspaces than files based
workspaces. for more information, see What Are Selector Lists?.

Related Topics

Selecting Versions and Branches

What Are Selectors?

What Are Selector Lists?

Selector Formats

ENOVIA Synchronicity Command Reference: setselector

ENOVIA Synchronicity Command Reference: setvault

ENOVIA Synchronicity Command Reference: populate

DesignSync Data Manager User's Guide

751

ENOVIA Synchronicity Command Reference: co

Selector Formats

All DesignSync revision control operations use selectors to determine what version of
an object to operate on. The selector can specify the branch of the object, the version of
the object on the branch, or both.

Additionally, each workspace has a persistent selector that determines which version,
by default, is populated into the workspace. You set the persistent selector for the
workspace during the populate of your work area, or by explicitly setting the persistent
selector.

There are two types of selectors: static and dynamic.

• Static selectors always resolve to a fixed version and the version they resolve to does not
change. Changes to objects in static selector workspaces cannot be checked in.

• A dynamic selector refers to a version that can change. Changes to objects in dynamic
selector workspaces can be checked in.

A selector can have one of several formats:

Selector Type Description
<number> A branch or version number. Branch and

version numbers are also known as "dot
numerics". Using branch or version
numbers as selectors is typically less
convenient than using tags or date-based
selectors.

A version <number> selector is a static
selector; the objects denoted by the
version <number> selector are fixed. A
branch <number> selector is a dynamic
selector; the objects denoted by the
branch <number> selector change upon
subsequent checkins.

Examples

Version <number> selectors: 1.1, 1.3.2.3

Branch <number> selectors: 1, 1.3.4,
1.1.1

Reference

752

<versiontag> A version selector. If you specify a version
selector, DesignSync resolves the selector
to both the object's version number and
branch number. For more details, see
What Are Selectors: How Branch and
Version Selectors Are Resolved.

A <versiontag> selector is a static
selector; the objects denoted by the
<versiontag> selector are fixed.

A given tag name might be applied to a
branch or to a version (but never both at
the same time for the same object).
 Branch selectors use the syntax
<branchtag>:<versiontag>, for
example, Rel2:Latest, to differentiate
them from version selectors.

If you specify a version selector during the
check-in of a new object, the object is
created, by default, on the Trunk branch.
 If you instead intend to check the object
into a different branch, be sure to specify
a branch selector rather than a version
selector.

Examples

gold

alpha

DesignSync Data Manager User's Guide

753

<branchtag>:Latest A branch selector that specifies the most
recent version on the branch. A given tag
name might be applied to a branch or to a
version (but never both at the same time
for the same object). To specify a branch
selector, append :<versiontag>, in this
case, :Latest, to the branch tag name,
for example, Rel2.1:Latest. You can
leave off the Latest keyword as
shorthand. For example, Rel2.1: is
equivalent to Rel2.1:Latest.

A <branchtag>:Latest (or
<branchtag>:) selector is a dynamic
 selector; the objects denoted by this
selector change upon subsequent
checkins.

If <branchtag> cannot be resolved as a
branch tag, DesignSync searches for a
version tag of that name and resolves to
the Latest version on that version's
branch. For more details, see What Are
Selectors: How Branch and Version
Selectors Are Resolved.

The tag Trunk (shorthand for
Trunk:Latest) has special significance;
it is the default tag name for branch 1.

See Using Latest and Date() Selectors for
more details.

Examples

Trunk - Branch 1 default (shorthand for
Trunk:Latest)

Rel2.1:Latest - Branch selector of
most recent Rel2.1 version

Rel2.1: - Shorthand for Rel2.1:Latest

Reference

754

<branchtag>:<versiontag> A specific version on a specific branch.
The <branchtag> and <versiontag>
values are themselves selectors. This
format is often used with Date() and
Latest selectors to identify a version on a
particular branch.

To specify a specific branch and version,
the selector must contain both the branch
and version. :<versiontag> is illegal.
<branchtag>: resolves to the Latest
version on the specified branch.

A selector such as Trunk:gold is valid
and indicates a version tagged gold only
if it is on a branch called Trunk;
otherwise, the selector fails.

A selector of the form Gold:Latest looks
for a branch tagged Gold, and if found,
fetches the Latest version on that branch.
If a Gold branch is not found, DesignSync
looks for a version tagged Gold, and if
found, retrieves the Latest version on the
branch that the Gold version is on.
Selectors of the form
Gold:Date(<date>) behave similarly.
See Using Latest and Date() Selectors for
more details.

Unlike the dynamic
<branchtag>:Latest selector, a
<branchtag>:<versiontag> selector
is a static selector; the objects denoted by
the <branchtag>:<versiontag>
selector are fixed.

Examples

Rel2:alpha

Trunk:Date(yesterday)

DesignSync Data Manager User's Guide

755

<branchtag>:Date(<date>) The most recent version on the specified
branch that was created on or before the
specified date. The Date keyword is case
insensitive.

A <branchtag>:Date(<date>)
selector is a static selector; the versions
closest to the date do not change.

Note: If the Date selector resolves to a
date in the future, the selector is
equivalent to Latest and the selector is
dynamic until the future date is reached, at
which point the version becomes fixed and
the selector is static.

You specify the Date selector as follows:
<branchtag>:Date(<date>) where
<branchtag> is a branch tag. If
<branchtag> cannot be resolved as a
branch tag, DesignSync searches for a
version tag of that name and resolves to
the most recent version created on or
before the specified date on that version's
branch.

See the Date Formats for details on how to
specify dates. See Using Latest and
Date() Selectors for more information
about specifying date selectors.

Examples

Trunk:Date(yesterday) - Resolves to
the last version checked in yesterday on
the Trunk branch

gold:date(4/11/00)- If no branch is
named gold, but there is a version
selector gold, DesignSync resolves this
selector to the last version checked in on
or before 4/11/00 on the branch
containing the gold version

Rel2:Date(today) - Resolves to the

Reference

756

last version checked in today on the Rel2
branch

DesignSync Data Manager User's Guide

757

VaultDate(<date>) The most recent version on any branch
that was created on or before the specified
date. The VaultDate keyword is case
insensitive. Like the Date selector, the
VaultDate specification can accept a
branch tag, in the format:

<branchtag>:VaultDate(<date>)

where <branchtag>: is optional.

See Date Formats for details on how to
specify dates.

A VaultDate(<date>) selector is
typically a static selector; the objects
denoted by this selector, once determined
by the date, do not change.

Note: If the VaultDate selector resolves
to a date in the future, the selector is
equivalent to Latest and the selector is
dynamic until the future date is reached, at
which point the version becomes fixed and
the selector is static.

Examples

VaultDate(yesterday)

VaultDate(4/11/00)

Rel40:VaultDate(today)

Reference

758

Auto(<tag>) Used for auto-branching, which creates
branches on an as-needed basis as
opposed to branching an entire project.
This methodology is useful for "what if"
scenarios. In general, Auto(<tag>) is
equivalent to just <tag>. The 'Auto' is
significant only for operations that can
create branches (ci, co -lock, populate -
lock). The Auto keyword is case
insensitive. An Auto(<tag>) selector is a
dynamic selector.

Examples

Auto(Dev)

auto(Rel2.1_p1)

Notes:

• The value supplied to the auto-
branch selector must be a branch or
version name, not a branch
selector. Auto(Golden:) and
Auto(Golden:Latest) are illegal
selectors.

• The current version is always the
branch-point version when Auto()
creates a new branch.

• If present, Auto(<tag>) must be
the first selector in a selector list.

DesignSync Data Manager User's Guide

759

<tag>,[<tag>,....]<tag> When a list of selectors is specified, the
operation processing varies depending on
whether it is operating in a module or files-
based vault.

When the selector list is processed for a
module, the last tag selector is designated
as the main selector and module members
matching the tags are overlayed
sequentially beginning with the next-to-last
selector and finishing with the first selector
on the line. For more information on
working with a module using a selector list,
see Module Member Tags.

When the selector list is processed for a
files-based fault, the operation is
performed with the objects that match the
first matching tag, until all the selectors
have been processed.. This is used for
integrating a fixed set of module members
into an editable development environment.

Using the selector list can recurse through
a directory hierarchy according to the
command it is used with, however it does
not recurse through a static href, or a
hierarchical reference to a legacy module,
external module, or file based vault. The
selector list is silently ignored when
applied recursively to these sub-module
types.

If you use a selector list during an initial
populate, the module manifest defined by
the selector is used as the persistent
selector for the workspace.

To change the persistent selector,
populate with the desired new selector.

Using Latest and Date() Selectors

• <branchtag>:Latest is equivalent to
<branchtag>:Date(<a_date_in_the_future>).

Reference

760

• When used with the setselector command or as part of a selector list argument
(more than one selector) to the -version option, Latest and Date() must be
qualified with a branch:

<branchtag>:Latest

<branchtag>:Date(<date>)

• For backward compatibility, DesignSync supports selectors of the form
<version_number>:Latest and <version_number>:Date(<date>).
DesignSync uses the branch of the specified version, and then applies the
Latest or Date() selector. For example, 1.2:Latest resolves to 1:Latest,
and 1.3.2.1:Date(yesterday) resolves to 1.3.2:Date(yesterday).

• When used as the only selector to a -version option, DesignSync augments
the selector with the persistent selector list. For example, if the persistent
selector list is Gold:,Trunk and you specify co -version Latest, the
selector list used for the operation is Gold:Latest,Trunk:Latest; the
persistent selector list remains Gold:,Trunk after the operation.

Exception: When you check in an object whose branch you have locked (having done
a checkout or populate with the -lock option), the date selector augments the current
branch, not the persistent selector list. You typically want to remain working on the
locked branch even if the persistent selector list has changed.

These restrictions are required to avoid ambiguity about which branch a Latest or
Date() selector applies to.

Related Topics

Selecting Versions and Branches

What Are Selectors?

What Are Selector Lists?

What Are Persistent Selector Lists

Date Formats

ENOVIA Synchronicity Command Reference: setselector

Date Formats

This section describes how you can specify dates when using Date(<date>) and
VaultDate(<date>) selectors. DesignSync uses a public-domain date parser that
supports a wide range of date and time specifications. The parser is the same one used

DesignSync Data Manager User's Guide

761

by the Gnu family of tools. Visit a Gnu website for a complete specification. This section
documents the more common formats.

Note: If the date specification contains spaces, you must surround the entire selector
list with double quotes. For example: "Gold: Date(last tuesday),Trunk"

Year

You can specify the year using 2 or 4 digits. DesignSync interprets 2-digit year
specifications between 00 and 69, inclusive, as 2000 to 2069, and specifications
between 70 and 99, inclusive, as 1970 to 1999. If you omit the year, the default is the
current year.

Month

You can specify the month as a number (1 through 12), or using the following names
and abbreviations:

January Jan Jan.
February Feb Feb.
March Mar Mar.
April Apr Apr.
May May May.
June Jun Jun.
July Jul Jul.
August Aug Aug.
September Sep Sep. Sept Sept.
October Oct Oct.
November Nov Nov.
December Dec Dec.

Note that September is the only month for which a 4-letter abbreviation is valid.

If you omit the month, the default is the current month.

Day

You can specify days of the week in full or with abbreviations:

Sunday Sun Sun.
Monday Mon Mon.
Tuesday Tue Tue. Tues Tues.
Wednesday Wed Wed. Wednes Wednes.
Thursday Thu Thu. Thurs Thurs.
Friday Fri Fri.
Saturday Sat Sat.

Reference

762

You can add words such as "last" or "next" before a day of the week to specify a date
other than the nearest day of the same name. For example:

Thursday -- Specifies the most recent past Thursday, or today, if today is Thursday.

next Thursday -- Specifies one week after the most recent Thursday (includes the
current day if today is Thursday).

last Thursday -- Specifies one week before the most recent Thursday (includes the
current day if today is Thursday).

If you omit the day, the default is the current day.

Note that a comma after a day of the week item is ignored.

Time

You specify the time of the day as hour:minute:second, where hour is a number
between 0 and 23, minute is a number between 0 and 59, and second is a number
between 0 and 59.

Any portion not specified defaults to "0", so a date specification of 03/04/00 defaults to a
time of 00:00:00, which is the start of the day (end of the previous day).

Examples

All of the following examples specify the same calendar date:

Note:

The preferred order in the U.S. may be ambiguous compared to other countries usage
of DD-MM-YY if the number of either the month or the day is less than 10. For example,
a date such as 9/12/00 means September 12, 2000 in the U.S. but December 9, 2000 in
many other countries.

2000-09-24 ISO 8601.

00-09-24 00 indicates year 2000.

00-9-24 Leading zeros are not required. For example,
"9" is equivalent to "09".

09/24/00 U.S. preferred order. See previous note.

24-sep-00 Three-letter month abbreviations are allowed.

24sep00 Hyphen and slashes are not required
delimiters.

DesignSync Data Manager User's Guide

763

23 sep 00 Spaces are permitted, but the entire selector
list must be placed within double quotes.

20:02:00 2 minutes after 20 (8pm, local time).

20:02 2 minutes after 20 (8pm, local time), zero
seconds implied.

8:02pm 2 minutes after 8pm, local time.

20:02-0500 2 minutes after 8pm Eastern U.S. Time. The
time is Eastern U.S. time because -0500
means 5 hours behind UTC (Coordinated
Universal Time, also known as Greenwich
Mean Time).

01/24/00 20:02 2 minutes after 8pm on January 24th 2000.
Contains spaces, so the entire selector list
must be placed within double quotes.

Related Topics

Selecting Versions and Branches

What Are Selectors?

Selector Formats

Parallel (Multi-Branch) Development

Using the Merging Work Style

The following operations define the merging work style:

• To check out an object for editing, fetch an unlocked copy:
o From the Populate dialog box, select Unlocked copies.
o From the Check Out dialog box, select Unlocked copies.
o When using the co or populate commands, use the -get option.

• To check in your changes:

•
1. Determine whether you must first merge. The Status column in the List

View or from the ls -report status command displays "Needs Merge" if a
newer version of the object has been checked in, in which case you must
merge. If no merge is required, go to step 4.

2. Perform a merge:
o From the Check Out dialog box, select Unlocked copies and

Merge with workspace.

Reference

764

o From the Populate dialog box, select Unlocked copies and Merge
with workspace.

o When using the co or populate commands, use the -merge
option.

3. Resolve merge conflicts, if any.
4. Check in the merged object using the Check In dialog box or ci command

selecting whichever state option you want, except lock.

Your project leader can use access controls to enforce a merging style by denying all
check-out operations that request a lock. See the access controls documentation for
additional information, particularly the access control definition.

Related Topics

Locking and Merging Work Styles

Using the Locking Work Style

ENOVIA Synchronicity Command Reference: co

ENOVIA Synchronicity Command Reference: populate

ENOVIA Synchronicity Command Reference: ci

ENOVIA Synchronicity Command Reference: ls

Parallel (Multi-Branch) Development

Design processes, for both software and hardware projects, are complex. There are
typically many places where tasks can be performed in parallel. DesignSync uses the
design management features of branching and merging to implement parallel design
processes. Parallel development, when properly managed, can result in:

• Increased quality by isolating new feature development
• Increased productivity by increasing the bandwidth of a design team and

allowing multiple tasks to be managed on multiple branches
• Increased flexibility by allowing decomposition and experimentation of features

separate from the main line of development

Branches can have different purposes depending on your project's development
methodology:

• Feature Branch

Each new project feature is isolated on its own branch, minimizing the risk of the
feature negatively impacting other parts of the design. This approach assumes
that you are starting from a stable, high-quality branch (baseline). As features

DesignSync Data Manager User's Guide

765

mature, they are merged back into the baseline. It may make sense to group
several related features on the same branch, reducing the number of branches
needed for the project. See Feature or Subproject Branches for an example of a
feature branch lifecycle.

• Release Branch

Each branch is associated with a release milestone. For example, as the 2.1
version of a product nears its release, a branch is created off the main
development branch. Final bug fixes and qualification can take place on the 2.1
branch as new development for a follow-on release takes place on the main
branch. Two styles of release branching can be used: central main and
cascading main. In the central main approach, all side branches eventually
merge back to the main branch. In the cascading main approach, a side branch
can itself become the main development branch.

• Policy Branch

A policy branch supports a new design policy, such as a new tool or a new
version of an existing tool being incorporated into the design flow. The new policy
or methodology is developed on a side branch so as not to disrupt other
development on the main branch. When the policy has been implemented, the
policy branch becomes the main development branch. See Policy Branches for
an example of a policy branch lifecycle. SITaR, the Submit, Integrate, Test and
Release methodology, uses this development style. For more information on
SITaR, see Overview of SITaR Workflow.

• Variant Branch

A variant branch supports the investigation of different approaches to the same
design. Work done on one variant does not affect other variants. The variant
branches never merge. Instead, the variants are developed in parallel until a
variant is no longer needed, at which time the variant branch is abandoned.

• Platform Branch

A platform branch supports a specific hardware platform or a process technology.
For a software project, this model would facilitate porting the source code to
multiple platforms. In chip design, this model might apply to supporting multiple
process technologies for the same design.

Creating branches is a simple process. When the branches are in use, however, managing
multiple active branches can be difficult. Study your design process and determine where parallel
development might benefit you. You should clearly weigh the costs in time and effort of
adopting a parallel design process:

Reference

766

• Up-front design, training, and resources

A project manager must define the branching structures and nomenclature to
assist in the naming of branches. The project manager must communicate clearly
the branch structure, and designers must be trained in the design process to
avoid making changes on the wrong branch.

• Process maturity

If your design team has not defined its processes, it is difficult to suddenly
mandate a highly structured parallel development process. A parallel design
process is refined over many projects. The tools used for parallel development
need to conform to your design process; the tool should not dictate a design
process that you must follow.

• Branch management and administration

Dedicated project managers are often required to monitor the number of
branches and avoid unnecessary and confusing branch creation, to create and
merge branches, and to mentor users about the design process.

Related Topics

Creating Branches

Other Branch Operations

Feature or Subproject Branches

Policy Branches

Autobranching: Exploring "What If" Scenarios

Merging Module Data

Methods for Creating Branches

DesignSync recommends and supports two methods for creating branches: project
branching and autobranching.

Project branching, also known as formal or explicit branching, involves creating a new
branch for every object in a project. When there is a need for a new branch, a single
person, typically a release engineer or project manager, uses the mkbranch command
to branch all design objects at the same time. If you are using the GUI, use the
 Revision Control => Make Branch dialog. Users can then create a new work area for
the new branch. Project branching is typically used to implement the branch types
discussed in the Parallel Development topic.

DesignSync Data Manager User's Guide

767

Autobranching, also known as informal or implicit branching, involves creating a new
branch for individual objects on an as-needed basis. Autobranching is typically used by
a single or small group of developers who need to try "what if" scenarios, where the life
of the branch is known to be limited and will affect only a small portion of the objects in
the project. Autobranching in implemented by individual developers using the
Auto(<branchTag>) selector. When the developer checks in or checks out with a lock
an object, a new branch is created if the branch does not already exist. If the branch
already exists, then operations take place on that auto-created branch. See
Autobranching:Exploring "What If" Scenarios.

The following diagram shows a file that has several branches with versions on each
branch:

DesignSync does not limit you to one branch off a given version. For example,
cpu.vhd version 1.2 has two branches off it.

Note that referring to a branch by its branch number is not recommended. DesignSync
requires that a branch tag be associated with a branch when it is created, whether using
mkbranch or Auto(). Use branch tags to identify branches. A branch can have more
than one branch tag.

Related Topics

Parallel (Multi-Branch) Development

Other Branch Operations

Other Branch Operations

In addition to creating branches, DesignSync supports the following branch operations:

Reference

768

• To view what branches an objects has, use Go to Vault from the graphical
interface or the vhistory command.

• To add, move, or delete branch tags, use the tag command.
• To lock a branch, check the branch out with a lock using Check Out or Populate

from the graphical interface or the co or populate command.
• To merge two versions on the same branch, check out the Latest version of an

object with the merge option using Check Out or Populate from the graphical
interface or the co or populate command. See the Using the Merging Work Style
topic for details.

• To merge across branches, use the co or populate command with the -merge
and -overlay options.

• To unlock a branch you have locked in your work area due to a check-out
operation, use Check In from the graphical interface or the ci command to check
in your changes and release the lock, or use Cancel Checkout from the graphical
interface or the cancel command to cancel your checkout. To unlock a branch
locked by another user or locked by you when you no longer have the object in
your work area, use Unlock from the graphical interface or the unlock command.

• To retire a non-module branch, use Retire from the graphical interface or the
retire command. You cannot retire a module branch. Retiring obsolete
branches discourages users from making change to files on the branch. You can
also make the branch harder to access by removing the branch tags as
described in Tagging Versions and Branches from the graphical inferace or the
tag command.

• To create or remove merge edges used when a module is merged across
branches, use the mkedge or rmedge commands.

• To discourage changes to a non-module branch (not a module version, branch,
or member) that's become obsolete, you can use the retire command to retire the
DesignSync branch or use the tag command to remove all the branch tags from
the branch.

• To completely remove a non-module branch (not a module version, branch or
member), use the purge command.

Note: DesignSync does not support deleting or retiring module branches.

Related Topics

ENOVIA Synchronicity Command Reference: vhistory

ENOVIA Synchronicity Command Reference: tag

ENOVIA Synchronicity Command Reference: co

ENOVIA Synchronicity Command Reference: populate

ENOVIA Synchronicity Command Reference: ci

DesignSync Data Manager User's Guide

769

ENOVIA Synchronicity Command Reference: ls

ENOVIA Synchronicity Command Reference: cancel

ENOVIA Synchronicity Command Reference: unlock

ENOVIA Synchronicity Command Reference: retire

ENOVIA Synchronicity Command Reference: purge

Example Branching Scenarios

Feature or Subproject Branches

Feature or subproject (a set of related features) branches are used for feature isolation.
The main development branch, or baseline, remains relatively stable as each feature or
subproject is developed on a separate branch. When a feature is complete, or at least
stable, the feature branch is merged back to the baseline. Multiple feature branches
may be active in parallel, but are isolated from each other in order to simplify the
development cycle for each feature.

In this diagram, features A and B are developed on separate side branches of the main
project baseline. Development on the main baseline continues, mostly for bug fixes or
minor features that will not compromise the stability of the baseline. Development for
feature C started later than features A and B, but also takes places on a separate
branch. The dots (red if viewed online) in the diagram show where each feature is
merged back into the baseline once that feature's isolated development and testing is
completed. After the merge, testing on the baseline evaluates the compatibility of the
feature with the rest of the baseline. Changes necessary to correct post-merge
problems with the feature are performed on the baseline.

Isolating features from the main baseline makes it easy to abandon a feature that is no
longer desired or that will not be completed in time for the next product release. You do
not merge from the feature branch to the baseline until the feature's future is certain.

The lifecycle of a feature branch is:

1. The project manager creates the branch.

Reference

770

2. The team members create work areas for the feature branch and begin their
development.

3. When the feature is completed, the project manager collapses the feature branch
back into the baseline.

4. Team members begin working on another branch in a different work area.

Creating a Feature Branch (Project Manager)

Creating a feature branch is typically the role for a single project manager or release
engineer.

1. Create a work area for the main baseline if you do not already have one. For
example, if the project vault is
sync://myhost.mycom.com/Projects/Xproject,

the baseline is the Trunk branch, and the local work area you want to create is

/home/relmgr/Projects/Xproject/Trunk

dss> scd /home/relmgr/Projects/Xproject

dss> mkfolder Trunk

dss> scd Trunk

dss> setvault
sync://myhost.mycom.com/Projects/Xproject@Trunk .

The @Trunk syntax is a shortcut for the setselector command to set the
persistent selector list for the work area. Trunk (shorthand for Trunk:Latest) is
DesignSync's default persistent selector list, so unless a different persistent
selector list has been defined on a parent folder, the @Trunk can be omitted in
this example. However, if your baseline is any branch other than Trunk, you must
set the persistent selector list.

The directory structure of having branch directories (Trunk) under project
directories (Xproject) under some top-level projects directory (Projects) is only
one of many possible hierarchies. Another reasonable organization is to have
project directories under branch directories. This organization might facilitate
branch-related operations that span projects.

2. Create DesignSync references to the versions from the baseline from which the
feature branch will be created. DesignSync references do not exist on disk, so do
not require the transfer of data. For example, if you are branching from the Latest
versions on Trunk:

DesignSync Data Manager User's Guide

771

dss> populate -recursive -reference

The populate command obeys the work area's persistent selector list and
populates from Trunk, and by default DesignSync fetches the Latest versions. If
you are branching from versions other than Latest, use the -version option to
the populate command to specify a selector such as a version tag or Date()
selector.

3. Tag the branch-point versions. While not required, tagging the branch points can
be valuable for later troubleshooting activities. Use a meaningful tag name, such
as appending "-bp" (branch point) to the name of the branch you are creating.
For example, if you are creating two branches, devA and devB, you would apply
two branch tags:

dss> tag -recursive devA-bp .

dss> tag -recursive devB-bp .

4. Create the branches:

dss> mkbranch -recursive devA .

dss> mkbranch -recursive devB .

Working on the New Branch (Team Members)

Once the project manager creates the feature branch, team members can set up work
areas and begin working on the new branch. For example, team members working on
feature A create a work area for the devA branch:

1. Create a new work area for the devA branch:

dss> scd /home/goss/Projects/Xproject

dss> mkfolder devA

dss> scd devA

dss> setvault
sync://myhost.mycom.com/Projects/Xproject@devA:Latest .

By setting the persistent selector list (@devA:Latest) on the devA folder,
populate, check-in, and check-out operations will take place on branch devA
automatically. Notice that to specify a branch selector, you append the version to
the branch tag name, in this case the branch tag is devA to which you append
:Latest.

Reference

772

2. Populate the new work area:

dss> populate -get -recursive

DesignSync fetches the Latest versions from devA. If no new version of a given
object has been created on the devA branch, then DesignSync fetches the
branch-point version from the baseline (Trunk).

3. You can now check out, make edits, and check in files to develop feature A. On
any given branch, the team can use the locking or merging work style. For
example, the team uses the merging work style. You want to make changes to
top.v, so you fetch the Latest version, make changes, merge in changes made
by another team member, resolve any merge conflicts, then check in the merged
version:

dss> co -get -comment "Addressing defect #4545" top.v

[Edit the file.]

dss> ci -keep top.v

[The checkin fails because someone has checked in a newer
version.]

dss> co -merge top.v

[Resolve any merge conflicts.]

dss> ci -keep top.v

You should also periodically populate to pick up changes made by other team
members working on the devA branch. If you are using the locking model, then
run:

populate -get -recursive

If you are using the merge model, then run:

populate -merge -recursive

4. Changes made to other branches do not affect the branch you are working on.
However, there may be times when you want to pick up an important change from
another branch. In such cases, you can merge individual files or groups of files into your
work area. For example, if a developer fixes a problem in the file alu.vhd on the Trunk
branch, and that bug fix is needed for feature A development, then you can merge that
file into the feature A development stream. From the devA work area:

DesignSync Data Manager User's Guide

773

dss> co -merge -overlay Trunk alu.vhd

[Resolve any merge conflicts]

dss> ci -comment "Picked up fix from Trunk" alu.vhd

Other team members working on the devA branch will pick up the fix the next
time they populate or check out alu.vhd. These types of individual merges may
need to be coordinated through a team leader.

Collapsing the Feature Branch (Project Manager)

When the feature branch has reached a level of maturity where it no longer makes
sense to maintain a separate branch, the project manager can merge from the feature
branch to the baseline.

1. Alert all users of the feature branch (devA) that the merge is taking place and
have them check in their final changes.

2. Restrict checkins for the duration of the merge operation. Having activity on
either branch complicates the process. To restrict checkins, define an access
control:

access allow Checkin only users $ProjectManager

Remember to have the SyncServer re-read the access-control files (access
reset) after defining this new access control.

3. Update the Trunk work area with the Latest versions of design files:

dss> scd /home/relmgr/Projects/Xproject/Trunk

dss> populate -get -recursive

4. Tag the merge-point versions on the baseline. As with tagging the branch-point
versions, this step is optional but recommended. Use a meaningful tag name,
such as appending "-mp" (merge point) to the branch name:

dss> tag -recursive devA-mp .

5. Perform an overlay merge from the feature branch (devA) to the baseline
(Trunk):

dss> populate -recursive -merge -overlay devA:Latest

Reference

774

The merge can produce new files from the devA branch that did not exist on
Trunk, files that merge without conflicts, and files where you need to resolve
merge conflicts manually.

6. Resolve any merge conflicts.
7. Check in the merged results:

dss> ci -recursive -comment "Merged from devA" .

Any object that was introduced on the feature branch (did not exist on the
baseline prior to the merge) is automatically branched so that the object can be
checked into the baseline.

8. For completeness, you may want to tag the final versions on the devA branch to
indicate the versions that participated in the merge:

stcl> tag -recursive -version devA final [url vault .]

This command tags the Latest versions on the devA branch. As you would
expect, the command fails for any object in your Trunk work area that does not
have a devA branch.
Note: To use the programming variable, you must be in stcl mode.

9. Optionally, for non-module objects, retire the feature branch to prevent accidental
checkins to the branch and indicate that the branch is no longer active:

dss> retire -recursive -branch devA *

10. Run regression tests or any other checks to ensure that the baseline is stable
and ready for development to continue. Fix any problems that are identified on
baseline branch (Trunk).

11. Re-open the vault by removing the access control statement that denied
checkins (and remember access reset).

Starting Work on a Different Branch (Team Members)

Once the feature branch is no longer active, team members should start working on a
different branch -- the baseline branch or another feature branch. Developers should
leave the feature-branch work area intact and create a new work area for future
development. DesignSync supports re-using work areas (setselector -recursive
to change the persistent selector list, then populate with a new configuration), but doing
so introduces risks such as losing files that were never checked into a branch, or
checking into the wrong branch. If disk space is a concern, consider archiving
(compressed tar files or tape backups) and deleting old work areas.

Related Topics

DesignSync Data Manager User's Guide

775

Parallel (Multi-Branch) Development

ENOVIA Synchronicity Command Reference: setselector

ENOVIA Synchronicity Command Reference: populate

ENOVIA Synchronicity Command Reference: retire

Policy Branches

This section describes the lifecycle of a policy branch, which is most effective when
introducing major changes in a design flow. This policy change could be moving to a
new compiler for a software project, changing to a new vendor of cell libraries in an
ASIC project, introducing a new simulation tool and syntax, or a design overhaul. A
designated team works on a branch in order not to interfere with continued development
on the main branch. Once the new policy branch is well defined and stable, it becomes
the main development branch.

The lifecycle of a policy branch is similar to that of a feature branch. The primary
difference is that the policy branch eventually becomes the main development branch,
whereas the feature branch is merged back to the main branch.

The lifecycle of a policy branch is:

1. The project manager creates the branch.
2. The team members create work areas for the policy branch and begin their

development.
3. When the policy change has been implemented and the policy branch is stable,

the project manager merges the old baseline into the new policy branch.
4. All team members continue development on the new baseline.

Creating a Policy Branch (Project Manager)

Creating a policy branch is typically the role for a single project manager or release
engineer.

1. Create a work area for the main baseline if you do not already have one. For
example, if the project vault is

Reference

776

sync://myhost.mycom.com/Projects/Xproject, the baseline is the
Trunk branch, and the local work area you want to create is
/home/relmgr/Projects/Xproject/Trunk:

dss> scd /home/relmgr/Projects/Xproject

dss> mkfolder Trunk

dss> scd Trunk

dss> setvault
sync://myhost.mycom.com/Projects/Xproject@Trunk .

The @Trunk syntax is a shortcut for the setselector command to set the
persistent selector list for the work area. Trunk (shorthand for branch
Trunk:Latest) is DesignSync's default persistent selector list, so unless a
different persistent selector list has been defined on a parent folder, the @Trunk
can be omitted in this example. However, if your baseline is any branch other
than Trunk, you must set the persistent selector list.

The directory structure of having branch directories (Trunk) under project
directories (Xproject) under some top-level projects directory (Projects) is only
one of many possible hierarchies. Another reasonable organization is to have
project directories under branch directories. This organization might facilitate
branch-related operations that span projects.

2. Update your work area to contain the versions from the baseline from which the
policy branch will be created. For example, if you are branching from the Latest
versions on Trunk:

dss> populate -recursive -get

The populate command obeys the work area's persistent selector list so
populates from the Trunk branch, and by default fetches the Latest versions. If
you are branching from versions other than Latest, use the -version option to
the populate command specify a selector such as a version tag or Date()
selector.

3. Tag the branch-point versions. While not required, tagging the branch points can
be valuable for later troubleshooting activities. Use a meaningful tag name, such
as appending "-bp" (branch point) to the name of the branch you are creating.
For example, if the policy branch is NewCompiler:

dss> tag -recursive NewCompiler-bp .

4. Create the branch:

DesignSync Data Manager User's Guide

777

dss> mkbranch -recursive NewCompiler .

Working on the New Branch (Team Members)

Once the project manager creates the policy branch, team members involved in the
policy development can set up work areas and begin working on the new branch.

1. Create a new work area for the NewCompiler branch:

dss> scd /home/goss/Projects/Xproject

dss> mkfolder NewCompiler

dss> scd NewCompiler

dss> setvault
sync://myhost.mycom.com/Projects/Xproject@NewCompiler:Lates
t .

By setting the persistent selector list (@NewCompiler:Latest) on the
NewCompiler folder, populate, check-in, and check-out operations will take place
on branch NewCompiler automatically. Notice that to specify a branch selector,
you append the version to the branch tag name, in this case the branch tag is
NewCompiler to which you append :Latest.

2. Populate the new work area:

dss> populate -get -recursive

DesignSync fetches the Latest versions from NewCompiler. If no new version of
a given object has been created on the NewCompiler branch, then DesignSync
fetches the branch-point version from the baseline (Trunk).

3. You can now check out, make edits, and check in files to develop the new policy.
On any given branch, the team can use the locking or merging work style. For
example, the team uses the merging work style. You want to make changes to
top.v, so you fetch the Latest version, make changes, merge in changes made
by another team member, resolve any merge conflicts, then check in the merged
version:

dss> co -get -comment "Addressing defect #4545" top.v

[Edit the file.]

dss> ci -keep top.v

Reference

778

[The checkin fails because someone has checked in a newer
version.]

dss> co -merge top.v

[Resolve any merge conflicts.]

dss> ci -keep top.v

You should also periodically populate to pick up changes made by other team
members working on the NewCompiler branch.

4. Changes made to other branches do not affect the branch you are working on.
However, there may be times when you want to pick up an important change
from another branch. In such cases, you can merge individual files or groups of
files into your work area. For example, if a developer fixes a problem in the file
alu.vhd on the Trunk branch, and that bug fix is needed for the new compiler
work, then you can merge that file into the NewCompiler branch. From the
NewCompiler work area:

dss> co -merge -overlay Trunk alu.vhd

[Resolve any merge conflicts]

dss> ci -comment "Picked up fix from Trunk" alu.vhd

Other team members working on the NewCompiler branch will pick up the fix the
next time they populate or check out alu.vhd. These types of individual merges
may need to be coordinated through a team leader.

Switching to the New Baseline (Project Manager)

When the policy development is complete or at least stable, the project manager
merges the old baseline into the policy branch so that the policy branch becomes the
new baseline.

1. Alert all users that the merge is taking place and have them check in their final
changes to both Trunk and NewCompiler.

2. Restrict checkins for the duration of the merge operation. Having activity on
either branch complicates the process. To restrict checkins, define an access
control:

access allow Checkin only users $ProjectManager

Remember to have the SyncServer re-read the access-control files (access
reset) after defining this new access control.

DesignSync Data Manager User's Guide

779

3. Update the NewCompiler work area with the Latest versions of design files:

dss> scd /home/relmgr/Projects/Xproject/NewCompiler

dss> populate -get -recursive

4. Tag the merge-point versions on the NewCompiler branch. As with tagging the
branch-point versions, this step is optional but recommended. Use a meaningful
tag name, such as appending "-mp" (merge point) to the branch name:

dss> tag -recursive NewCompiler-mp .

5. Perform an overlay merge from the old baseline (Trunk) to the policy branch
(NewCompiler).

dss> populate -recursive -merge -overlay Trunk

The merge can produce new files from Trunk that did not exist when
NewCompiler was branched, files that merge without conflicts, and files where
you need to resolve merge conflicts manually.

6. Resolve any merge conflicts. Because NewCompiler will be the baseline going
forward, merge conflicts are generally resolved in favor of the changes on the
NewCompiler branch.

7. Check in the merged results:

dss> ci -recursive -comment "Merged from Trunk" .

Any object that was introduced on the baseline after the policy branch was
created (did not exist on the policy branch prior to the merge) is automatically
branched so that the object can be checked into the policy branch.

8. For completeness, you may want to tag the final versions on the Trunk branch to
indicate the versions that participated in the merge:

dss> tag -recursive -version Trunk final .

This command tags the Latest versions on the Trunk branch. As you would
expect, the command fails for any object in your NewCompiler work area that
does not have a Trunk branch.

9. Going forward, NewCompiler is the main baseline, so you might consider
applying a new branch tag to the old Trunk and moving the Trunk branch tag to
the NewCompiler branch.

dss> tag -recursive TrunkPriorToNewCompiler -branch Trunk .

Reference

780

dss> tag -recursive -replace Trunk -branch NewCompiler .

10. Optionally retire the old baseline branch to prevent accidental checkins to the
branch and to generally flag the branch as no longer active:

dss> retire -branch TrunkPriorToNewCompiler *

Note that the retire command does not have a recursive option, so you must
execute this command in every folder in the hierarchy, or create a script to
traverse the hierarchy for you.

11. Run regression tests or any other checks to ensure that the new baseline is
stable and ready for development to continue. Fix any problems that are
identified on the NewCompiler baseline branch, which is now also tagged Trunk.

12. Re-open the vault by removing the access control statement that denied
checkins (and remember access reset).

Starting Work on the New Baseline (Team Members)

Team members who were not working on the policy branch must now create work areas
for the policy branch, which is now the new Trunk baseline. Developers should leave
the previous Trunk work areas intact and create new work areas for future development.
DesignSync supports re-using work areas (setselector -recursive to change the
persistent selector list, then populate with a new configuration), but doing so introduces
risks such as losing files that were never checked into a branch, or checking into the
wrong branch. If disk space is a concern, consider archiving (compressed tar files or
tape backups) and deleting old work areas.

Team members who were working on the policy branch should change their persistent
selector list from NewCompiler to Trunk:

dss> setselector -recursive Trunk .

This operation does not re-use a work area, but reflects the fact that the branch
associated with the current work area is now identified as Trunk.

Related Topics

Parallel (Multi-Branch) Development

ENOVIA Synchronicity Command Reference: setselector

ENOVIA Synchronicity Command Reference: populate

ENOVIA Synchronicity Command Reference: retire

DesignSync Data Manager User's Guide

781

Autobranching: Exploring "What If" Scenarios

Autobranching allows individuals or small teams to try out new ideas in the context of
the work in progress without impacting the baseline development. This informal
approach to branching places the responsibility for branching and merging on individual
team members instead of the project manager who is responsible for formal branching
activities. Unlike formal project branching, where all the objects in a project are
branched at the same time, autobranching creates branches only for objects that
change.

Autobranching is most effective when the number of people working on the branch, the
number of project files affected, and the duration of the effort are small. The larger the
effort, the more likely it would benefit from formal branching.

DesignSync implements autobranching using the Auto(<tag>) selector. See Selector
Formats for details.

Assume that you and a few other team members have an idea for a bug fix for
"Yproject" that you are not sure will work out. Your main development branch is Rel2.1
(a release branch), and you will test your bug fix using an autobranch called DevFix.

1. You (and each team member working on DevFix) create a DevFix work area:

dss> scd /home/goss/Projects/Yproject

dss> mkfolder DevFix

dss> scd DevFix

dss> setvault sync://myhost.mycom.com/Projects/Yproject .

dss> setselector Auto(DevFix),Rel2.1:Latest .

To set the persistent selector list, you could have used the
@Auto(DevFix),Rel2.1:Latest syntax to the setvault command as a
shortcut for the setselector command.

The Auto(DevFix) selector indicates that you are autobranching to the DevFix
branch. The second selector in the persistent selector list, Rel2.1:Latest,
indicates that Rel2.1 is your baseline branch from which DevFix branches are
created as needed.

2. Populate the work area:

dss> populate -get -recursive

Reference

782

DesignSync fetches Latest versions of files with a DevFix branch (probably none
at this point, unless one of your DevFix team members already autobranched an
object), then fetches from Rel2.1.

3. You and your team members perform check-out, check-in, populate, and other
operations as you normally would. Because of autobranching:

• DesignSync automatically creates a DevFix branch when you check in or
check out with a lock an object that does not have a DevFix branch.

• For fetch operations DesignSync first tries to fetch from the DevFix branch
and failing that fetches from Rel2.1.

You and the DevFix team are effectively working on two branches with one
branch serving as the baseline while your new development takes place on the
autobranch . Because only you and the other team members working on this
experimental fix have work areas that reference the DevFix branch other team
members working on Rel2.1 do not see the DevFix development.

4. There may be times when the DevFix team is making changes to the same files
that are being modified on the baseline. If the changes on the baseline are
needed on DevFix, you can merge from Rel2.1. For example, to pick up changes
to reg8.vhd and reg16.vhd:

dss> co -merge -overlay Rel2.1:Latest reg8.vhd reg16.vhd

As with any merge, you may need to resolve merge conflicts, and then you can
check in the merged version to the DevFix branch:

dss> ci -comment "Merged changes done on Rel2.1" reg8.vhd
reg16.vhd

5. Eventually, DevFix development needs to be merged back to the baseline,
unless the fix was unsuccessful, in which case this merge step is skipped. To
merge the DevFix branch back to the Rel2.1 baseline, a designated user would
go to a fully populated Rel2.1 work area (the persistent selector list set to
Rel2.1:Latest, not Auto(DevFix),Rel2.1:Latest), then merge:

dss> scd /home/goss/Projects/Yproject/Rel2.1

dss> url selector .

Rel2.1:Latest

dss> populate -get -recursive

dss> populate -merge -overlay DevFix:Latest -recursive

DesignSync Data Manager User's Guide

783

Resolve any merge conflicts, and then the merged files can be checked into
Rel2.1:

dss> ci -comment "Merged from DevFix" -recursive .

The checkin fails for any object that was introduced on the autobranch because
the object does not exist on the baseline branch. For these objects, you need to
create the branch and then check in. For example, if test.asm and test.mem
were introduced on DevFix:

dss> mkbranch Rel2.1 test.asm test.mem

dss> ci -comment "Introduced on DevFix" test.asm test.mem

6. At this point, the autobranch development was a success and the branch was
merged back to the baseline, or the autobranch development was not successful.
Either way, it is time to abandon the branch -- future development takes place on
the baseline branch (Rel2.1). You can optionally retire the DevFix branch to
prevent accidental checkins to that branch:

dss> retire -branch DevFix *

Note that the retire command does not have a recursive option, so you must
execute this command in every folder in the hierarchy, or create a script to
traverse the hierarchy for you.

DesignSync supports reusing work areas (setselector -recursive to change the
persistent selector list, then populate with a new configuration), so in the autobranch
scenario, the same work area could have been used before, during, and after the
DevFix development. However, reusing work areas introduces risks such as losing files
that were never checked into a branch, or checking into the wrong branch.

Tip: Define a work area for each development branch. If disk space is a concern,
consider archiving (compressed tar files or tape backups) and deleting old work areas.

Related Topics

Parallel (Multi-Branch) Development

ENOVIA Synchronicity Command Reference: setvault

ENOVIA Synchronicity Command Reference: retire

ENOVIA Synchronicity Command Reference: setselector

ENOVIA Synchronicity Command Reference: populate

Reference

784

Working with Legacy Modules

How DesignSync Handles Legacy Modules

Starting with the DesignSync Developer Suite version 5.0, the structure of modules was
enhanced to provide greater functionality and speed. However, to use the new
functionality,, legacy modules from previous versions of DesignSync require an
upgrade.

Note: If you cannot update to take advantage of the benefits of the new modules
structure, you may use the "hcm legacy module mode" which provides the ability to
modify as well as view and reference legacy modules. For more information, see the
ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide.

To take advantage of the new module functionality, all 4.x data must be upgraded with
the upgrade command.

Because there is an upgrade required to access the new functionality, you might find
yourself working in an environment that requires you to use both new modules and
legacy modules during the transition period. To allow users to continue to be productive
during the upgrade process from the DesignSync 4.x architecture to the DesignSync 5.0
architecture, users can use a 4.x client to modify legacy modules, or if you have Legacy
Module Mode enabled, you can use the current DesignSync version.

Important: If you are using Legacy Module mode and modern modules, you cannot
modify them in the same workspaces. Users must have separate workspace for editing
work. This is discussed more fully in ENOVIA Synchronicity DesignSync Data Manager
HCM User's Guide. The rest of this topic assumes that you are not using legacy module
mode.

There are some restrictions in the DesignSync client that control how you can use
legacy modules. How DesignSync handles legacy modules in a mixed 4.x/5.0 server
and client installation is shown in the graphic below:

DesignSync Data Manager User's Guide

785

Note: A user of a 5.x client can not write to a legacy module. The module can only be
populated in a read-only mode.

Related Topics

ENOVIA Synchronicity Command Reference Help: upgrade

ENOVIA Synchronicity DesignSync Data Manager HCM User's Guide.

Upgrading Legacy Modules

Reference

786

In this version of DesignSync, you can create modules to manage your design data.
Legacy modules, or those modules created with the mkmod command in DesignSync
versions prior to 5.0, are read-only from this DesignSync client. To take advantage of
the functionality of new modules, and use your legacy modules in interactive mode, you
can upgrade your legacy modules using the upgrade command.

Legacy modules can be upgraded on an as-needed basis. Modules that have not been
upgraded are still available to users in read only mode.

Legacy modules use configurations to associate versions of objects together into a
collective "module" unit. These configurations are described in the
sync_project.txt file under the legacy module’s vault folder. The upgrade
command uses this sync_project.txt file as a guide for upgrading the legacy
module’s configurations into the new module. Other branch or selector configurations
might be defined in additional sync_project.txt files within the legacy module vault
hierarchy.

Important: Before you upgrade a legacy module, you must check in any modifications
and release any locks.

The command allows you to specify the name of the new module as well as a category
path. For example, if your legacy module is located on the server at some level below
the /Projects area on the server, you may use the –category option in conjunction with
the –name option on the upgrade command to define the same directory structure as
your original project vault.

For example, if the URL of the original legacy module is:

sync://granite:2647/Projects/Memory/ROM

Then you may use the following upgrade command line:

hcm upgrade sync://granite:2647/Projects/Memory/ROM –category
NewMemory –name ROM1

The URL of the upgraded module object would be:

sync://granite:2647/Modules/NewMemory/ROM1

Custom access controls are not upgraded along with the module. If custom access
controls are desired for the new module, they can be added either before or after the
module is upgraded. After an upgrade completes, the server's administrator is notified
by email that the module was upgraded, and the custom access controls were not
carried forward to the new module.

DesignSync Data Manager User's Guide

787

Access controls restricting access to the legacy module are added by the upgrade
process, while it is in progress, to prevent modifications to the legacy module. The
legacy module access controls remain in place after the upgrade has completed to
prevent accidental upgrades to the legacy module.

Notes:

• All ProjectSync notes associated with the legacy module and its configurations
are also associated with the new module after the upgrade is complete.
However, any email subscriptions associated with elements from the legacy
module vault hierarchy are not modified and must be added manually by the
users. If DesignSync is configured to create a RevisionControl note for upgrade,
and email notifications is enabled, the upgrade process sends an email to all
users currently subscribed to activity on the legacy module vault folder informing
them of the vault’s upgrade to a module. The users should then update their
subscriptions.

• It is also important to note that this upgrade occurs on the server only. Any
existing workspaces will continue to point to the existing legacy module
configuration. The new module resulting from the upgrade will need to be
populated into a new workspace.

An upgrade log is created on the server to allow the user to track the progress of the
upgrade. This log remains after the upgrade is complete and can be viewed at the
following URL:

http://<host>:<port>/syncserver/upgrade/upgrade_<category>_<nam
e>.html

Notes:

• All slashes in the <category> field will be replaced with underscores.
• If server customizations have been imported to a different server after a module

upgrade, the upgrade log may not appear at the URL provided for monitoring the
upgrade. If the URL is not found, you may still access the upgrade log from the
ModuleUpgrade sub-directory. For more information on the ModuleUpgrade sub-
directory, see the upgrade command documentation in the ENOVIA
Synchronicity Command Reference.

Types of Objects Created During the hcm upgrade Command

The following types of objects are created as a result of performing an upgrade on a
legacy module.

Module:

A module with the specified name and category path.

Reference

788

Module branches:

• A default module branch is created and is assigned an immutable module branch
tag of “Trunk”.

• If any release configurations are defined for the legacy module, a module branch
is created from module version 1.1 and a mutable module branch tag named
“Releases” is added to that branch. This branch will contain each release
configuration (as a module version) defined for the legacy module.

• A module branch is created from module version 1.1 for every branch
configuration and selector configuration. The configuration name is added to the
module branch as a mutable module branch tag. The first module version is
created on the module branch and the member versions that are part of the
configuration are added to the module version.

Module versions:

• Module version 1.1 is created to include all members matching the “Trunk:Latest”
selector. If no files resolve to this selector, the module version is empty. If a
Trunk configuration is defined to be mapped to a different selector, the upgrade
process issues a warning noting that the Trunk branch will contain the members
matching the Trunk:Latest selector and not the selector defined in the
sync_project.txt file.

• Each module branch is created with an initial module version comprised of
member versions that were part of the legacy module configuration.

• A new module version is created on the “Releases” branch for each release
configuration with all member versions that are part of that release. The module
versions will be created in chronological order by release.

Module branch tags:

For each configuration that is exactly equal to the Latest on the legacy module’s branch,
a mutable module branch tag with the same name is added to the module branch
created for the configuration.

For example, if your legacy module’s sync_project.txt file contains the entry
“CONFIG Silver Main:Latest”, a module branch named “Silver” is created and the
mutable module branch tag “Main” is added to the branch, as long as a Main
configuration is not also defined.

Module version tags:

• An immutable module version tag is created for every release configuration,
using the release name as the tag name, and added to the module version that
was created for the release configuration.

• A mutable module version tag is created for every legacy module alias
configuration, using the alias name as the tag name and adding the tag to the
module version (previously created for the release configuration) to which the
alias refers.

DesignSync Data Manager User's Guide

789

• For each configuration that is exactly equal to a version tag, a mutable module
version tag with the same name will be added to the first module version on the
branch that was created for the configuration.

For example, if your legacy module’s sync_project.txt file contains the entry
“CONFIG Gold Alpha”, a module branch named “Gold” is created and the
mutable module version tag named “Alpha” is added to the first module version
on the “Gold” branch.

Hierarchical References:

• Legacy module hrefs are associated with a configuration of a legacy module.
During the upgrade, the configurations will be converted to either a module
branch (for branch and selector configurations) or a module version (for release
or alias configurations). The legacy module href is converted to a new module
href and added to the module branch (the first module version on the branch) or
to the module version that was created for this configuration.

• The href will refer to another legacy module, a DesignSync vault folder or an IP
Gear deliverable.

By default, or If the –maphrefs command option was specified, the upgrade attempts
to determine whether the target of the href has already been upgraded to a new
module. If so, the href will point to the new module rather than the legacy module with
the new module’s branch selector or module version selector recorded as the dynamic
hrefmode value and the new module version’s number recorded as the static hrefmode
value.

An href can only be mapped if the target’s configuration was converted to a module
branch or module version. For example, if a target configuration was not defined in the
legacy module’s sync_project.txt file, the target configuration is not transferred to the
new module since the mapping process does not have a branch or version in which to
place this href. An error is issued during the mapping process and the upgrade
terminates without creating the new module.

If you want the mapping errors treated as warnings instead, use the -nomaperror option
to transfer the original href. Mapping errors are issued if a href’s target was upgraded
but the new module does not exist, if there is no matching branch or version for the
href’s target configuration, or if the href target’s server is not accessible.

Tip: If you plan on upgrading an entire legacy module hierarchy, you should do so in a
bottom-up fashion, performing the top-module upgrade last, so the hrefs map to the
newly upgraded modules.

After the upgrade is complete, you may migrate any of the tags that did not get
transferred to the new module with the migratetag command. Any existing selector
list, except date selectors, can be specified with migratetag to create a new module

Reference

790

branch later. The supported selectors, such as version tags, or branch selector can
also be combined to create a new module branch.

Please refer to the upgrade or migratetag command topics in the ENOVIA
Synchronicity Command Reference for more detailed information.

An Example of Upgrading a Legacy Module

The following scenario illustrates the procedure for upgrading an existing legacy module
to a module.

1. Amy, the designer of an ALU design, ALU, is managing her design through the
use of a legacy module, which now needs to be upgraded to use the new module
structure available in DesignSync 5.0.

The legacy module, ALU, located at sync://granite:2647/Projects/ALU has the
following structure in its associated sync_project.txt file:

NAME ALU
DESCRIPTION HCM module
OWNER amy
COMPONENT FALSE
CONFIG Platinum Trunk amy *
CONFIG_DESC HCM configuration
CONFIG First_Release_Of_Platinum First_Release_Of_Platinum-
1165686270--R amy *
CONFIG_DESC HCM release
CONFIG alias_of_platinum First_Release_Of_Platinum-
1165686270--R amy *
CONFIG_DESC HCM alias

The legacy module also contains one hierarchical reference to a DesignSync vault
folder on the Platinum configuration to:

sync://granite:2647/Projects/Development/vault1

2. Amy contacts her project manager, who upgrades this legacy module by as
follows:

dss> hcm upgrade sync://granite:2647/Projects/ALU –name ALU

As a result of the upgrade, a new module is created at the following location:

sync://granite:2647/Modules/ALU

The new module has the following contents:

DesignSync Data Manager User's Guide

791

• Module branch 1, tagged “Trunk”. This module branch contains one module
version, 1.1.

• Module branch 1.1.1, tagged “Releases”. This module branch contains one
module version, 1.1.1.1 tagged with “First_Release_Of_Platinum” and
“alias_of_platinum”.

• Module branch 1.1.2, tagged “Platinum”. This module branch contains one
module version, 1.1.2.1. This module version contains a hierarchical reference
named “vault1” with a reference target of:

sync://granite:2647/Projects/Development/vault1

Related Topics

ENOVIA Synchronicity Command Reference: upgrade

ENOVIA Synchronicity Command Reference: hcm migratetag

Upgrading DesignSync Vaults

In DesignSync 5.0, you can create modules to manage your design data. To use these
new capabilities with existing DesignSync data, you must upgrade your existing
DesignSync vault hierarchies to modules with the upgrade command.

Important: Before you upgrade a legacy module, you must check in any modifications
and release any locks.

The upgrade command uses the sync_project.txt file as a guide for upgrading
the relevant configurations into the new module.

Note: If a design configuration exists for your vault directory but has not been defined
in ProjectSync’s sync_project.txt file, the design configuration is not propagated to
the new module. You should verify that the configurations you want to upgrade have an
entry in this file. To add new design configurations to ProjectSync’s
sync_project.txt, either hand edit the file or use ProjectSync’s Configuration panel.

The command allows you to specify the name of the new module as well as a category
path. For example, if the vault directory you want to upgrade is located on the server at
some level below the /Projects area on the server, you may use the –category option
in conjunction with the –name option on the upgrade command to define the same
directory structure as your original project vault.

For example, if the original project is:

sync://granite:2647/Projects/ProjectA/one/two/ROM

Then you may use the following upgrade command line:

Reference

792

upgrade sync://granite:2647/Projects/ProjectA/one/two/ROM –
category ProjectA/one/two –name ROM

The URL of the upgraded module object would be:

sync://granite:2647/Modules/ProjectA/one/two/ROM

Custom access controls are not upgraded along with the DesignSync vault hierarchy. If
custom access controls are desired for the new module, they can be added either
before or after the module is upgraded. After an upgrade completes, the server's
administrator is notified by email that the vault hierarchy was upgraded, and the custom
access controls were not carried forward to the new module.

The original vaults and data remain unchanged and unaffected by the hcm upgrade
procedure. However, during the upgrade, access controls restricting write access to the
DesignSync vault hierarchy are added to prevent modifications to the original vaults.
The access controls on the original vaults remain in place after the upgrade has
completed to prevent accidental updates to the original vaults.

Notes:

• All ProjectSync notes associated with the vault directories will also be associated
with the new module after the upgrade is complete. However, email subscriptions
on the vault are not modified and must be upgraded manually by the users.
Users currently subscribed to activity on the vault will receive an email informing
them of the vault’s upgrade to a module and the need to update their
subscriptions. The upgrade process informs this subset of users by email.

• All ProjectSync notes associated with an object in the original vault hierarchy are
also associated with the new module after the upgrade is complete. However,
any email subscriptions associated with the original vault hierarchy are not
modified and must be added manually by the users. If DesignSync is configured
to create a RevisionControl note for upgrade, and email notifications is enabled,
the upgrade process sends an email to all users currently subscribed to activity
on the vault folder informing them of the vault’s upgrade to a module. The users
should then update their subscriptions.

• This upgrade occurs on the server only. Any existing workspaces will continue to
point to the existing DesignSync vault. The new module resulting from the
upgrade needs to be populated into a new workspace.

An upgrade log is made available on the server to allow the user to track the progress of
the upgrade. This log remains after the upgrade is complete and is located at:

http://<host>:<port>/syncserver/upgrade/
upgrade_<category>_<name>.html

Notes:

DesignSync Data Manager User's Guide

793

• All slashes in the <category> field will be replaced with underscores.
• If server customizations have been imported to a different server after a module

upgrade, the upgrade log may not appear at the URL provided for monitoring the
upgrade. If the URL is not found, you may still access the upgrade log from the
ModuleUpgrade sub-directory. For more information on the ModuleUpgrade sub-
directory, see the ENOVIA Synchronicity Command Reference: upgrade help.

The following types of objects are created as a result of performing an upgrade on a
DesignSync vault directory:

Module:

A module with the specified name and category path.

Module branches:

• A default module branch is created and is assigned an immutable module branch
tag of “Trunk”.

• For each configuration, a module branch is created from module version 1.1 and
tagged with the configuration name as a mutable module branch tag.

Module versions:

• Module version 1.1 is created to include all members matching the “Trunk:Latest”
selector. If no files resolve to this selector, the module version will be empty. If a
Trunk configuration is defined to be mapped to a different selector, the upgrade
process issues a warning noting that the Trunk branch will contain the members
matching the Trunk:Latest selector and not the selector defined in the
sync_project.txt file.

• • Each module branch is created with an initial module version, comprised of
member versions that were part of the configuration.

Module branch tags:

In addition to the mutable module branch tag that is created for each configuration
name, other branch tags are created as follows. For each configuration that is exactly
equal to the Latest on the vault’s branch, a mutable module branch tag with the same
name is added to the module branch created for the configuration.

For example, if your sync_project.txt file contains the entry “CONFIG Silver
Main:Latest”, a module branch named “Silver” is created and the mutable module
branch tag “Main” is added to the branch.

Module version tags:

For each configuration that is exactly equal to a version tag on a vault’s version, a
mutable module version tag with the same name will be added to the first module
version on the branch that was created for the configuration.

Reference

794

For example, if your sync_project.txt file contains the entry “CONFIG Gold Alpha”,
a module branch named “Gold” is created and the mutable module version tag named
“Alpha” is added to the first module version on the “Gold” branch.

Hierarchical References:

If your vault hierarchy contains a sync_project.txt file with REFERENCE
statements that point to another vault directory, these REFERENCEs are created in the
module as hierarchical references.

By default, or If the –maphrefs command option was specified, the upgrade attempts to
determine whether the target of the href has already been upgraded to a new module. If
so, the href will point to the new module rather than the original target with the new
module’s branch selector or module version selector recorded as the dynamic hrefmode
value and the new module version’s number recorded as the static hrefmode value.

An href can only be mapped if the target’s configuration was converted to a module
branch or module version. For example, if a target configuration was not defined in a
sync_project.txt file in the original vault hierarchy, the target configuration is not
transferred to the new module since the mapping process does not have a branch or
version in which to place this href. An error is issued during the mapping process and
the upgrade terminates without creating the new module.

If you want the mapping errors treated as warnings instead, use the -nomaperror option
to transfer the original href. Mapping errors are issued if a href’s target was upgraded
but the new module does not exist, if there is no matching branch or version for the
href’s target configuration or if the href target’s server is not accessible.

Tip: If you plan on upgrading an entire design hierarchy, a vault hierarchy and any
referenced vault hierarchies, you should do so in a bottom-up fashion, so that the
REFERENCEs will map to the newly upgraded module.

After the upgrade is complete, you may migrate any of the tags that did not get
transferred to the new module with the migratetag command. Any existing selector
list, except date selectors, can be specified with migratetag to create a new module
branch later. The supported selectors, such as version tags, or branch selector can also
be combined to create a new module branch.

See the upgrade or migratetag command topics in the ENOVIA Synchronicity
Command Reference for more detailed information.

An Example of Upgrading a DesignSync Vault

The following scenario illustrates how an existing simple vault directory (a vault directory
structure with no vault REFERENCEs) is upgraded to a module.

DesignSync Data Manager User's Guide

795

1. Amy, the designer of an ALU design, alu8, has previously placed a design under
revision control.

dss> setvault sync://granite:2647/Projects/alu8 /home/amy/Projects/myalu8
dss> ci -recursive -new -keep -comment "8-bit ALU" /home/amy/Projects/myalu8
dss> tag -recursive baseline /home/amy/Projects/myalu8
dss> mkbranch -recursive Golden -version Trunk
 sync://granite:2647/Projects/alu8

2. Amy contacts her project manager, who creates a new project with an associated
sync_project.txt file on the ProjectSync server. Joe also creates a new configuration for
the project representing the “Golden” branch.

The sync_project.txt file on the server contains the following information for this project:

NAME alu8
DESCRIPTION Project alu8
OWNER amy
COMPONENT FALSE
CONFIG Golden Golden:Latest amy *
CONFIG_DESC Golden

3. Amy then continues to work on her design on the “Golden” branch. At this point,
Amy feels that her design might be better managed using a module.
4. Amy contacts her project manager, who upgrades her vault directory to a
module.

dss> hcm upgrade sync://granite:2647/Projects/alu8 –name
ALU8

As a result of the upgrade, a new module is created at the following location:

sync://granite:2647/Modules/ALU8

The new module contains two branches, Trunk and Golden, and module versions
are created appropriately.

Related Topics

ENOVIA Synchronicity Command Reference: upgrade

ENOVIA Synchronicity Command Reference: migratetag

Managing Legacy Configurations and REFERENCEs

Managing Non-HCM Configurations

Reference

796

What Is a Design Configuration?

A typical design is made up of many files. Each file can be worked on by an individual
designer or several designers. At some point in time, all the files arrive at a stage where
they work successfully together. For example, suppose that a design is made up of files
A, B, and C. Version 1.4 of file A, version 1.2 of file B, and version 1.3 of file C work
successfully together. These versions make up a "design configuration." To keep a
record of this configuration, you can label them with an identifying tag -- "runnable1", for
example.

If you or some other designer or group wishes to check out this configuration, you can
perform the checkout using the tag. This one operation checks out all the file versions
belonging to the configuration. You do not have to remember that you need version 1.4
of file A, version 1.2 of file B, and so on.

Note: This is a similar paradigm to the modules-based SITaR methodology. The
Design Configuration Methodology mimics the native SITaR functionality in a non-
modules based environment.

Related Topics

Overview of SITaR Workflow

Creating a Design Configuration

Tracking Development with Design Configurations

Creating Releases

Fixed Tags and Movable Tags

Creating a Design Configuration

DesignSync Data Manager User's Guide

797

To create a design configuration, first select the items (files or folders) you want to have
in the configuration, then click the Tag button on the toolbar.

Related Topics

Tagging Versions and Branches

ENOVIA Synchronicity Command Reference: tag

Tracking Development with Design Configurations

You can think of design configurations as snapshots along the path of development.
Whenever development reaches a stable state, you take a snapshot of it by creating a
design configuration. Each configuration should be identified by a name that makes
sense. For example, when the design first reaches a runnable state, the design team
can create a design configuration tagged "runnable1". Later, when development
reaches a stage ready for verification, the team can create a design configuration
tagged "current_verification" and hand it off to the verification team. The verification
engineers then check out the configuration and run verification procedures on it.

Notice in the figure below that the files making up the chip design vary in their version
numbers; file C has had many more revisions than file B. Thus, configuration tags are
necessary to specify which versions work together to form a functional chip.

Mapping Configurations for Design Reuse

Designers can import modules from other design projects into their designs by mapping
design configurations. In this way, designers can reuse modules from other projects.

Reference

798

Teams can develop modules independently, releasing modules on a schedule
independent of the overall chip release schedule.

To map configurations, team members create a REFERENCE that maps a module to
an implementation of the module using ProjectSync (in a sync_project.txt file). See
Using Vault REFERENCEs for Design Reuse for a design example.

Note: When mapped configurations are configured in a mirroring environment, your
mirrors should be set to always update, regardless of whether the specific configuration
in the mirror is updated. For more information, see DesignSync Data Manager
Administrator's Guide: Check tags for mirror update.

Related Topics

Using Vault REFERENCEs for Design Reuse

Creating Releases

You create a release by creating a design configuration.

For internal releases, label the design configuration with tags such as "runnable1",
"ready_for_simulation", "Bronze", "Silver", and so on. The tags should be meaningful.
For example, "ready_for_simulation" can be a tag for a configuration that the design
team wants to hand over to the simulation team. Note that tag names cannot contain
spaces or periods (.).

When development and testing are complete, "Gold" is a typical tag for the configuration
that represents the releasable product.

A file version can have more than one tag, since it can be a member of different
configurations.

Using Tags

There are design configurations that you want to keep throughout the development
process. For example, you may have a configuration that you are keeping as a possible
starting point for a different line of development in the future. This tag is considered a
"fixed" tag. The objects marked by the fixed tag move out of circulation. You do not use
the fixed tag again in the project. You can designate a fixed tag as "immutable" when
you create the tag. Immutable tags can never be moved. If you designate the tag as
"mutable," it can be moved by a user with appropriate access rights, even though it is
logically designated as a fixed tag.

On the other hand, there may be configurations that you use only temporarily -- for
example, a configuration you use to show customers what a product looks like at the
current state of development. Such a tag might be "currentDemo". A week later, you are
no longer interested in that configuration, because you have achieved a more advanced

DesignSync Data Manager User's Guide

799

configuration to use for the demo. In such a case, you would tag the more recent design
configuration with the already-used "currentDemo" tag. In effect, you have thrown away
the older design configuration information (even though those versions still exist). The
tag is considered a "movable" one.

The logical tag types fixed or movable are used to describe ways in which you can use
design configuration tags, but contain no special attributes to identify them. The
responsibility of maintaining them properly rests on the design team. The physical tag
types, immutable, and mutable force a more strict level of control by designating
whether the tag can be moved.

Related Topics

Tagging Versions and Branches

ENOVIA Synchronicity Command Reference: tag

Using Vault REFERENCEs for Design Reuse

Using Vault REFERENCEs for Design Reuse

DesignSync eases development of a chip that relies on

• Reused modules from other projects, or
• Modules developed independently of the chip

Designers can release modules on one schedule, while the chip that uses them follows
an entirely different release schedule.

The following scenario illustrates how a module is distributed and used by team
members. The design projects are stored in server-side vault folders on a SyncServer.
Team members use vault REFERENCEs to import modules from other design projects
into their own designs. A REFERENCE is a pointer you create in a ProjectSync project
(in a sync_project.txt file) to map configurations.

Note: This design reuse flow shows how module clients and producers can share
design modules. If your design team uses vault REFERENCEs to share modules, your
team needs to have a consistent methodology governing how clients and producers
create and share information about design configurations.

This flow assumes a basic understanding of the DesignSync configuration management
tasks; see Using DesignSync: An Overview to gain this understanding.

1. Amy, the designer of an ALU design, alu8, places the design under revision
control:

Reference

800

dss> setvault sync://granite:2647/Projects/alu8
/home/amy/Projects/myalu8

dss> ci -recursive -new -keep -comment "8-bit ALU"
/home/amy/Projects/myalu8

2. Amy iteratively modifies and tests her design until she is satisfied that she has a
clean version. She creates a "baseline" configuration:

dss> tag -recursive baseline /home/amy/Projects/myalu8

3. Amy informs her team coordinator that she has a stable version of her alu8
tagged "baseline" for her team members to import into their designs.

4. Joe is the team coordinator who is creating an area that will later become the
beta release of the Asic_zr2 project. Joe places the Asic_zr2 project under
revision control and applies the "beta" configuration tag:

dss> setvault sync://marble:2647/Projects/Asic_zr2
/home/joe/Asic_zr2

dss> ci -recursive -new -keep -comment "rev2 of zr proj"
/home/joe/Asic_zr2

dss> tag -recursive beta /home/joe/Asic_zr2

5. The Asic_zr2 uses the alu8 module Amy is designing, as well as other modules
being designed by other team members. In order to use these modules, Joe will
create REFERENCEs within subfolders of his Asic_zr2 project to point to these
modules. Joe uses ProjectSync to create a project and its associated
sync_project.txt file referencing Amy's module. The sync_project.txt file
contains a REFERENCE to Amy's alu8 module and a CONFIG mapping
statement to ensure that team members import the correct version of the alu8.
Joe could also create the sync_project.txt file using a text editor.

Note: These steps require write access to the SyncServer vault. Usually the
owner of the SyncServer process performs these steps.

a. Within his Asic_zr2 project on his marble:2647 SyncServer, Joe creates a
placeholder folder that will contain a REFERENCE to Amy's alu8 project .

$ mkdir
<SYNC_DIR>/../syncdata/marble/2647/server_vault/Projec
ts/

Asic_zr2/alu

DesignSync Data Manager User's Guide

801

The path to the vault folder shown here is a typical UNIX path to a vault
folder. A vault folder path on a default Windows installation has a different
structure, for example C:\syncdata\server_vault\Projects\Asic_zr2\alu.

Note: If Joe were creating the sync_project.txt file by hand, he would
create the file in this folder.

b. Joe creates a top-level ProjectSync project and its associated sync_project.txt
file for the Asic_zr2 project:

Joe selects the Project Create menu item in the left panel of the
ProjectSync window and enters the following settings:

Project Name: Asic_zr2

Description: The new version of the Asic_zr chip.

Owner: Joe Michaels

Purpose: O This project will contain files under revision control.

Vault Path: <Leave blank; Vault Path defaults to the project's vault.>

Initial Configuration: <Leave blank.>

c. Joe creates a ProjectSync project within the alu folder of the Asic_zr2 project.
This step creates a sync_project.txt file containing the REFERENCE to Amy's alu8:

Joe again selects the Project Create menu and enters the following
settings:

Project Name: Asic_zr2/alu

Description: References the alu8 developed by Amy

Owner: Joe Michaels

Purpose: O This project will contain files under revision control.

Vault Path: sync://granite:2647/Projects/alu8

Initial Configuration: beta

Note: See the ProjectSync documentation for step-by-step instructions on
creating projects.

Reference

802

Joe selects the Create Project button at the bottom of the ProjectSync
Create New Project window. The Create Project Configuration window
appears.

d. Next, Joe maps the "beta" configuration used in his Asic_zr2 project to the
"baseline" configuration tag name Amy has applied internally to her alu8 design, using
these settings:

Project Name: Asic_zr2/alu

Configuration Name: beta

Configuration Description: Baseline version of alu8

Owner: Joe Michaels

Vault Tag: baseline

Team Members: <Joe selects Amy Jones, Paul Winslow, Zachary
Jackson, and Dana Conti from the list of Available Users.>

Joe creates the configuration by selecting the Create Configuration
button at the bottom of the ProjectSync Create Project Configuration
window.

ProjectSync generates the following sync_project.txt file in the
<SYNC_DIR>/../syncdata/ marble/2647/server_vault/Projects/Asic_zr2/alu
folder:

 NAME alu
 REFERENCE sync://granite:2647/Projects/alu8
 DESCRIPTION References the alu8 developed by Amy
 OWNER joe
 COMPONENT FALSE
 CONFIG beta baseline joe amy paulw zach dana joe
 CONFIG_DESC Baseline version of alu8

The CONFIG entry in the sync_project.txt file maps the "beta"
configuration -- the configuration name used by the Asic_zr2 project that
will import Amy's alu8 -- to the "baseline" tag. The COMPONENT FALSE
entry refers to the Purpose field in the ProjectSync Create New Project
window. This entry indicates that the project will be used to manage files
under revision control and not merely as a tool for organizing ProjectSync
notes. See the ProjectSync documentation for more information.

DesignSync Data Manager User's Guide

803

To add additional CONFIG mapping statements, Joe can select the
Configuration menu item in the left panel of the ProjectSync window or
hand-edit the sync_project.txt file.

6. After the sync_project.txt file is in place, Joe or any other team member on the
Asic_zr2 project can populate to get the Asic_zr2 design, including the alu8
module's files:

dss> populate -recursive -get -version beta -dir
/home/joe/Asic_zr2

Joe has already made the vault association using the setvault command in an
earlier step. When DesignSync encounters the Projects/Asic_zr2/alu vault folder
during the populate operation, it reads the sync_project.txt file. The
sync_project.txt file directs it to populate with the "baseline" version of the alu8
files from the sync://granite:2647/Projects/alu8 vault folder.

Mapping a Configuration to a Selector List

DesignSync also allows mapping of a configuration to more than one selector. To map a
configuration name to a selector list, Joe can use ProjectSync to create a configuration
specifying A as the Configuration Name and gold,silver,bronze as the Vault Tag. For
example:

CONFIG A gold,silver,bronze

Note: Selector names should be separated by commas, with no white space between
names.

Then Joe can populate his work area with configuration A, for example:

dssc> scd /home/joe/Asic_rz2

dssc> setselector A

dssc> populate -get -recursive

DesignSync sets the persistent selector for the Asic_zr2 folder to gold,silver,bronze.
When Joe checks in a file, DesignSync resolves the gold selector to a version and
checks in that version. If the gold selector in the list does not resolve to a version, then
DesignSync looks at the next selector in the list.

Related Topics

What Is a Design Configuration?

Reference

804

Mapping Configurations for Design Reuse

REFERENCEs and Revision Control Commands

REFERENCE Chaining

REFERENCEs and Revision Control Commands

The following details about how DesignSync revision control commands handle
REFERENCEs will help your design team use REFERENCEs in sync_project.txt
files to import modules. For an overview of how your team can use REFERENCEs to
import modules, see Using Vault REFERENCEs for Design Reuse.

REFERENCEs and the populate Command

When you populate a configuration-mapped folder (either directly or through a recursive
populate operation) and the selector you specify is mapped, DesignSync sets the
persistent selector list for that folder to the mapped value.

In the example in Using Vault REFERENCEs for Design Reuse, the alu folder's
persistent selector list is set to "baseline" even though the configuration specified during
the populate operation is "beta". Storing the mapped configuration is a performance
optimization. If a change is made to the configuration mapping -- for example, if the beta
tag for the alu design is changed to map to "newbaseline" instead of "baseline" -- you
must re-populate the work area using the non-mapped configuration (beta). Re-
populating updates the persistent selector list for the alu folder from "baseline" to
"newbaseline".

REFERENCEs and the tag Command

How DesignSync Applies a Tag to a Configuration-Mapped Folder

When you apply a tag recursively to a configuration that has been mapped using a
REFERENCE, DesignSync compares the version specified for the tag operation to the
configuration defined in the REFERENCE.

Note: You specify a version by using the -version option of the tag command or the
Version Selector field of the DesignSync Tag dialog. If no version is specified for the
tag operation used, DesignSync uses the selector for the folder.

If the configuration name matches the version specified for the tag operation,
DesignSync:

• Skips the referenced folder in its tagging operation and displays a message
about the skip. By skipping referenced vaults, the tagging operation respects
module boundaries so that only module owners can tag modules.

DesignSync Data Manager User's Guide

805

• Creates a CONFIG statement to the REFERENCE in sync_project.txt of
the mapped vault folder.

The newly created CONFIG statement maps the configuration named by the tag
command to the resolved configuration of the referenced vault. The new
CONFIG statement in effect, adds a new "tag" to the referenced vault. It also
allows DesignSync to skip the tagging of referenced vaults but retain the
referenced vault for subsequent populate commands.

For example, given the configuration mapping example in Using Vault REFERENCEs
for Design Reuse, a team member, Zach, wants to create an "alpha" configuration of
the entire Asic_zr2 project. He sets the selector to the beta configuration, populates his
work area with that configuration, checks in his changes, and then recursively tags his
entire Asic_zr2 project work area as "alpha":

dssc> scd Asic_zr2
dssc> setvault sync://marble:2647/Projects/Asic_zr2
dssc> setselector beta .
dssc> populate -recursive -get
dssc> co -lock -comment "adding power-up state vector"
top/decoder/decoder.v
dssc> ci -keep -comment "added power-up state vector"
/home/zach/Asci_zr2/top/decoder/decoder.v
dssc> tag -rec alpha .

When the recursive tag command reaches the referenced alu module, DesignSync:

• Checks the folder's sync_project.txt file. In our example, this file contains
the configuration statement:

CONFIG beta baseline joe amy paulw zach dana joe

• Since the configuration name (beta) matches the version specified for the tag,
DesignSync skips the referenced folder in its tagging operation and displays a
message about the skip. For example:

Tagging: Asic_zr2/alu : Skipping (Added Config "alpha"
mapping to "baseline")

• Adds the following line to the REFERENCE in the sync_project.txt file for
the vault folder. The REFERENCE for the example now contains:

NAME: ALU
REFERENCE syn://granite:2647/Projects/alu8
DESCRIPTION References the alu8 developed by Amy
OWNER joe

Reference

806

COMPONENT FALSE
CONFIG beta baseline joe amy paulw zach dana joe
CONFIG_DESC Baseline version of alu8
CONFIG alpha baseline zach *

When Zach populates the alpha version of his Asic_zr2 project, he picks up Amy's
baseline alu8 files.

If the configuration name in the REFERENCE does not match the version specified for
the tag operation, DesignSync descends into the mapped vault folder and applies the
tag to the files there.

If the configuration name matches the version specified for the tag operation but that
configuration name maps to a dynamic tag (for example, CONFIG beta Trunk zach
*), DesignSync descends into the mapped vault folder and applies the tag to the files
there.

If the REFERENCE configuration that maps to the referenced vault's configuration does
not exist, DesignSync does not generate the new CONFIG statement. For example, the
REFERENCE in the alu folder contains the following CONFIG statement:

CONFIG beta baseline joe amy paulw zach dana joe

If the beta configuration does not exist, no tagging is required.

If the tag command does not include the -version option, the newly added
REFERENCE maps the Trunk configuration to the configuration of the referenced vault,
in this case:

CONFIG Trunk baseline zach *

How DesignSync Deletes a Tag from a Configuration-Mapped Folder

If the tag specified for deletion matches the configuration name in the
sync_project.txt file of a mapped vault folder, DesignSync deletes the CONFIG
statement. For example, suppose Zach decides to delete the alpha configuration he
created (in our example):

dssc> tag -delete alpha -recursive .

When the tag delete operation encounters the configuration-mapped vault folder, (alu),
DesignSync compares the alpha tag to the configuration name(s) in the REFERENCE
and finds that they match. DesignSync deletes the CONFIG statement:

CONFIG alpha baseline zach *

DesignSync Data Manager User's Guide

807

leaving the original configuration definition:

CONFIG beta baseline joe amy paulw zach dana joe

If no alpha configuration is defined, DesignSync descends into the alu folder and
removes the alpha tag from the files there.

How DesignSync Replaces a Tag on a Configuration-Mapped Folder

When a tag replacement operation reaches a vault folder that is mapped to another
configuration (with a CONFIG statement), DesignSync:

• Compares the tag specified for replacement with the configuration names defined
in CONFIG statements in the sync_project.txt file for the mapped folder.

• If the names match, DesignSync replaces the existing CONFIG statement with a
new one that maps the configuration name to the new configuration tag.

To continue the example of the Asic_zr2 project, suppose Amy, the alu designer,
updates her design files. She then checks them in to the alu8 vault folder and tags them
newbaseline. The Asic_rz2 project leader (Joe) wants the to include Amy's latest files in
alu folder for the project. He modifies the sync_project.txt file for the alu folder to
change the CONFIG statement to map to the "newbaseline" configuration tag instead of
"baseline".

The CONFIG statement now includes:

CONFIG beta newbaseline joe amy paulw zach dana joe
CONFIG alpha baseline zach *

Suppose that Zach wants the alpha configuration for the alu design to map to Amy's
latest files (tagged "newbaseline") as well. Zach sets the selector for his work area to
"beta" and populates the work area, which fetches the beta configuration. He then
replaces the alpha tag:

dssc> tag -recursive -replace alpha .

When the tag delete operation encounters the configuration-mapped vault folder, (alu),
DesignSync determines that the alpha tag matches the alpha configuration name in the
CONFIG statement of the sync_project.txt file. DesignSync replaces the old
configuration definition:

CONFIG alpha baseline zach *

with the new alpha configuration definition:

CONFIG alpha newbaseline zach *

Reference

808

Related Topics

Using Vault REFERENCEs for Design Reuse

REFERENCE Chaining

REFERENCE Chaining

Team members use vault REFERENCEs to import modules from other design projects
into their own designs. A REFERENCE is a pointer you create in a ProjectSync project
(in a sync_project.txt file) to map configurations.

Note: REFERENCEs are not supported if your revision control commands use selector
lists.

If a REFERENCE points to another project that also has a REFERENCE in its
sync_project.txt file, DesignSync follows that REFERENCE, and so on until an actual
vault is located. This is called REFERENCE chaining. The maximum number of
REFERENCEs that DesignSync follows is 10.

DesignSync attempts to limit the number of times it traverses a REFERENCE chain to
once per operation sequence (for example, checking in or out an entire design
hierarchy). However, the greater the number of REFERENCEs in the chain, the greater the
performance degradation.

Using REFERENCE Chaining to Move a Vault Folder

To change the location of a vault folder, you can chain REFERENCEs:

1. Move the vault.

See Moving Vaults for instructions.

2. Leave a REFERENCE pointing to the new vault location.
3. At some later date, remove the REFERENCE.

Until that time, users accessing the old location will be making an extra server hop to
access the vault.

Collections

Collections Overview

Collections are groups of files that together define a design object. For example, a
schematic may consist of dozens or even hundreds of files within any number of folders.

DesignSync Data Manager User's Guide

809

You operate on the design object as a single entity while letting your design tools
manage the object at the file level.

Within DesignSync, a collection is a single revision-controllable object; you do not
perform revision-control operations directly on individual collection files. When you
check out a collection object, DesignSync checks out each file contained in the
collection. If you then edit one of the files, you check back in the collection object, not
just the changed file. This creates a new version of the collection object and each of the
collection members. DesignSync recognizes that only one file in the collection has been
modified and stores only the required change information.

DesignSync supports the following collection types:

• Cadence Design Systems cell view collection, as part of DesignSync's general
support for Cadence design libraries. See Cadence Design Objects Overview for
more information.

• Synopsys Custom Compiler cell view collection, as part of DesignSync's general
support for Synopsys design libraries. For more information, see the ENOVIA
Synchronicity DesignSync Data Manager for Custom Designer User's Guide.

• Custom generic collection, a collection object defined by a Custom Type
Package (CTP). See Custom Type Package Collections Overview for more
information.

Displaying Collections

After your DesignSync administrator or project leader has enabled DesignSync to
recognize a collection type, you can use DesignSync to display information about the
collection and its members.

As with any other object type, you can use DesignSync List View to display information
about the collection object, including revision control information. To get the same
information from a command shell, use the ls command.

Displaying a Collection's Members

From List View:

1. From List View, select the collection object.
2. Select File => Properties => Collection.

You cannot edit the listing to add or remove members. What determines the members
of a collection depends on the type of collection object. For example, a function
available from the Cadence software determines the members of a Cadence view and a
Custom Type Package (CTP) determines the members of a custom collection.

Note:

Reference

810

• To have DesignSync recompute what files are members of the collection, click
Update Members. For example, if you have made changes to the contents of
your collection, you can click Update Members to see a list of current members.

• If DesignSync cannot determine the members of the collection object, an error
message is displayed at the top of the member list. An error is also displayed
when you use the ls command to display a collection.

From a DesignSync command shell:

Use the url members command and specify the collection object.

Identifying the Collection to which a Member Object Belongs

From List View:

1. From List View, select the member object.
2. Select File => Properties => Collection Member.

From a command shell:

1. Change directory to the folder containing the member object.
2. Use the DesignSync ls command with its -report OX option. Using this option

displays each object's object type and owner (the collection to which the object
belongs).

Related Topics

Cadence Design Objects Overview

ENOVIA Synchronicity Command Reference: ls

ENOVIA Synchronicity Command Reference: url members

Custom Type Package Collection Overview

Cadence Collections

Cadence Design Objects Overview

Note:

Cadence library/cell/cell view recognition is not supported on Windows platforms.

Many Cadence Design Systems (CDS) tools operate on design data that is organized
as libraries, cells, and cell views.

DesignSync Data Manager User's Guide

811

• A library is a collection of design objects, called cells. For example, you might
have IC libraries from different vendors from which you build your design. On
your file system, a library is a folder that contains technology files and a folder for
each cell in the library.

• A cell is an individual building block of a chip or system. For example, a TTL
library might have cells called AND2, AND3, and NOR2. A cell has one or more
cell views that are different representations of the cell. On your file system, a cell
is a folder under the library folder.

• A cell view is a specific representation of a cell. For example, a NAND2 cell may
have four cell views: Verilog description, symbol, schematic, and layout. On your
file system, a cell view is a folder containing several files that together define the
cell view.

DesignSync chooses the files that make up a Cadence cell view collection based on the
type of the cell view, as specified in the Cadence data registry file. To display collection
members from List View, select the cell view folder. DesignSync displays the folder's
contents and identifies members in the Type column.

DesignSync 4.x clients can work with Cadence cell view data that was created by
DesignSync 5.0+ clients in compatibility mode. When the DesignSync 5.0+ client is in
this mode, the cell view folder contains a housekeeping file called
.<view>.sync.cds.syncmd, as well as the cell view files used in the design.

The .<view>.sync.cds.syncmd file is used by DesignSync 4.x clients to manage the
collection object. DesignSync 5.0+ clients do not use this file, so compatibility mode
creates the housekeeping file in order for DesignSync 4.x clients to correctly recognize
the DesignSync 5.0+ created views.

The following example shows the contents of the layout view of the cell called mux2 on
a DesignSync client when DesignSync is in compatibility mode:

Note: If the Cadence-supplied function cannot determine the collection members, a
CAI: error message is displayed at the top of the member list. The same error is
displayed when you use the DesignSync ls command to display a collection. See How
DesignSync Recognizes Cadence Data for details.

Reference

812

You never operate directly on the files that comprise a cell view; your design tools
manage the files. DesignSync manages Cadence cell views as collection objects --
groups of files managed as a single revision-controlled object. By default, DesignSync
does not perform revision control on any files in a cell view folder that are not members
of a Cadence collection. You can, however, explicitly select non-member files for
revision control (see Managing Non-Collection Objects).

In addition to DesignSync's support for Cadence design objects, ENOVIA
Synchronicity's DesignSync® DFII product integrates many of DesignSync's design
management capabilities directly into Cadence's Design Framework II (DFII)
environment. See DesignSync Data Manager DFII User's Guide for more information.

Note: Do not use the DesignSync reference state when working with Cadence
data unless it is a locked reference (which you can use when regenerating design
data). Cadence object recognition in DesignSync and DesignSync DFII will not
work properly when files are in the reference state.

Related Topics

Enabling Cadence Object Recognition

How DesignSync Recognizes Cadence Data

How DesignSync Manages Cadence Objects

DesignSync DFII Help: DesignSync DFII Design Management Overview

Enabling Cadence Object Recognition

Support for Cadence objects is enabled when you configure DesignSync DFII during the
installation of DesignSync software.

To enable (or disable) recognition after installation, use the Third Party Integration panel
of the SyncAdmin tool. Note: A COP (Cadence Object Processing) license must be
installed in order to use DesignSync to manage these objects. See The License File for
an example.

Related Topics

Cadence Design Objects Overview

SyncAdmin Help: Third Party Integration Options

How DesignSync Recognizes Cadence Data

DesignSync Data Manager User's Guide

813

DesignSync uses a combination of methods to determine if a folder (directory) is a
Cadence library. Once a library is recognized, any folder within the library is a cell, and
any folder within the cell is potentially a cell view. DesignSync then uses Cadence-
supplied routines to determine the co-managed set of files that constitute a cell view.

DesignSync determines if a folder is a library as follows:

1. DesignSync constructs a list of libraries defined in cds.lib files. If a folder
matches a library definition in this list, then the folder is a library.

DesignSync calls Cadence-supplied routines (from the Cadence CAI library) to
locate cds.lib files in your Cadence search path. DesignSync then augments
that list with cds.lib files found in the search path defined using the addcdslib
command.

Note:

The directory from which a tool is invoked is included in the Cadence search
path. Therefore, you should invoke DesignSync from the same directory as
you invoke your Cadence DFII applications to ensure that the same libraries
are recognized.

2. If a folder has a cdsinfo.tag file containing an uncommented CDSLIBRARY
property, then DesignSync recognizes the folder as a Cadence library.

Note:

o DesignSync uses this method of library recognition only when cds.lib-
based recognition fails to identify a folder as a library.

o The CDSLIBRARY property is only valid within a library-level
cdsinfo.tag file and is not inherited from any other cdsinfo.tag
found in the Cadence search path.

o A physical copy of cdsinfo.tag must remain in the folder for library
recognition to function properly. Therefore, any of the following situations
could cause Cadence object recognition to fail:
- You perform an operation that removes cdsinfo.tag, such as
populating with the force option a configuration that does not include
cdsinfo.tag.
- You associate a vault with a folder below the library level in your design
hierarchy. DesignSync does not recognize the cell views as part of your
Cadence library because the cdsinfo.tag file is at the library level,
above where the vault is set.
- You check Cadence design objects into a vault that is mirrored before
checking in the cdsinfo.tag file. The cell views are not recognized in
the mirror directory.

Reference

814

- You specify the reference or locked reference state while performing a
revision-control operation on cdsinfo.tag. Note that the DesignSync
populate command never leaves cdsinfo.tag in the reference or
locked reference state.

Because DesignSync relies on Cadence routines to identify Cadence libraries and to
determine a cell view's co-managed set of files, you must have the Cadence
executables directories in your PATH environment variable (so that DesignSync can
locate the cds_root executable). For example, you might have the following lines in
your .cshrc file:

The Cadence tools installation is /usr/cds
setenv PATH /usr/cds/tools/bin:/usr/cds/tools/dfII/bin:${PATH}

Any errors reported by the Cadence data registry (for example, if you have errors in
your cds.lib file) are reported to DesignSync as CAI errors. These errors appear
either in the operating-system shell from which you invoked DesignSync or in your
DesignSync window, depending on when the error was encountered.

Related Topics

Cadence Design Objects Overview

How DesignSync Manages Cadence Objects

ENOVIA Synchronicity Command Reference: addcdslib

DesignSync DFII Help: DesignSync DFII Design Management Overview

How DesignSync Manages Cadence Objects

In most ways, DesignSync treats Cadence objects like any other object under revision
control. However, DesignSync depicts Cadence libraries and their contents with
Cadence-specific icons and terminology:

• When you click on a directory containing a Cadence library in the Tree View, the
List View shows the library folder icon and the library name. Cadence Library is
listed as the Type.

• When you click on a library name in the Tree View, the List View shows the files
in the library, cell folder icons, and the cell names. Cadence Cell is listed as the
Type of the cell folders.

• When you click on a cell name in the Tree View, the List View shows the cell
view icon and the collection-object name assigned to the cell view folder. The
Type column shows Cadence View for the collection object.

DesignSync Data Manager User's Guide

815

Because DesignSync regards each cell view as a single revision-controllable object,
DesignSync assigns a collection-object name to each cell view and its contents.
DesignSync uses the collection-object name to manage the cell view folder and its
contents. This name takes the form <name>.sync.cds, where <name> corresponds to
the name of the cell view folder.

The following illustration shows how DesignSync displays the contents of the cell mux2
in the Cadence library master in the List View.

Note: If the cell view icon is a red X instead of the CDS symbol, then the data registry
did not run properly. See How DesignSync Recognizes Cadence Data for details.

Operating on Cadence Data

You can use the DesignSync graphical interface to operate on Cadence data. For
instance, to check out or check in view objects. If you specify a collection member as
the object to be operated on, DesignSync skips the object and warns that the object is
not versionable. If DesignSync attempts to operate on a collection member specified
implicitly (through the use of wildcards or a recursive operation), DesignSync silently
skips the object. You can change this behavior by using the SyncAdmin Map operations
on collection members to owner setting. If you select this setting and DesignSync
attempts to operate on a collection member during a revision control operation,
DesignSync determines the member's owner collection and operates on the collection
as a whole.

Related Topics

Cadence Design Objects Overview

Managing Non-Collection Objects

DesignSync does not perform recursive operations on objects in a cell view folder that
are not members of a Cadence collection. However, you can view these non-member
objects and perform other operations on them using DesignSync.

Reference

816

For example, if you specify a recursive check out of a cell, DesignSync checks out the
view objects but does not traverse into the cell view folders and check out non-member
files. However, you can use DesignSync to navigate into the cell view folder and check
out non-collection members that it contains. You also can list non-member files in cell
view folders, delete them, get their properties, and so on. This behavior is similar to
Library Manager's approach to also-managed files.

You can change this behavior using a setting in your registry. If you want your revision-
control operations to traverse into cell view folders and act on non-collection members
by default, edit your registry file as described in DesignSync Data Manager
Administrator's Guide: Vendor Objects Registry Settings.

Related Topics

Cadence Design Objects Overview

Collections Overview

DesignSync Data Manager Administrator's Guide: Registry Settings for Vendor
Objects

Custom Type Package Collections

Custom Type Package Collections Overview

The Custom Type System (CTS) is a programming interface used to customize
DesignSync to manage your unique design data. Using this interface, you can define a
Custom Type Package (CTP), which is a generic collection or a group of data files that
you want DesignSync to treat as an abstract object. Then you can use DesignSync to
check in, check out, and tag this abstract object, called a custom generic collection, as a
single object. DesignSync safeguards your data by preventing users from checking in
the constituent parts of the custom collection. Instead, users have to operate on the
collection as a whole.

Note:

Do not use the DesignSync reference state when working with custom generic
collections.

Enabling CTP Object Recognition

To enable DesignSync to recognize a CTP collection object, you install the CTP within
the DesignSync custom hierarchy. When users invoke a DesignSync client, the
DesignSync Custom Type System registers the CTP so that revision control operations
recognize the collection types defined in your CTP. For more information, see Installing
Custom Type Packages in the Custom Type System Programming Guide.

DesignSync Data Manager User's Guide

817

How DesignSync Recognizes CTP Data

DesignSync recognizes CTP data when you install the CTP within the DesignSync
custom hierarchy. After installation, when users invoke a DesignSync client, the
DesignSync Custom Type System registers the CTP so that revision control operations
recognize the collection types defined in your CTP.

DesignSync displays the following information about custom collection objects:

• CTP custom collection objects have names follow the form:
<object>.sgc.<collectiontype>, for example, symbol.sgc.mytool. The .sgc
extension indicates the object is a custom generic object. If an icon for the
custom collection object type has been defined in the CTP type catalog, List View
displays the icon.

• Each object of a custom type has its object type displayed in the Type column of
both List View and the output of the ls -report OX command. If an icon for the
custom collection object type has been defined in the CTP type catalog, List View
displays the icon.

Here is an example display in DesignSync List View:

If DesignSync detects a problem with an installed CTP, DesignSync prevents the check-
in of the CTP data objects. In this case, DesignSync displays an error message
indicating why the check-in operation failed. If you encounter this type of error when
attempting to check in CTP data, contact your CTP developer. For more information on
CTP data recognition, see DesignSync Recognition of Custom Type Packages in he
DesignSync Custom Type System Programming Guide.

Reference

818

Integration with ENOVIA Program Central

Using the ENOVIA Semiconductor Accelerator for DesignSync
Central

ENOVIA Semiconductor Accelerator for Team Collaboration is a complete revision
management solution. It provides issue tracking and product life cycle management
capabilities for the DesignSync data using ENOVIA Live Collaboration.

The DSFA architecture contained within Team Collaboration enables communication
between DesignSync and ENOVIA Live Collaboration allowing virtual teams to share
PLM documents or DesignSync data across the platforms, and providing management
reports and collaborative discussion threads that link to DesignSync data.

If you have been using ProjectSync, you can convert your ProjectSync notes into Team
Collaboration issues and discussions. For more information, see the ENOVIA
DesignSync Central Migration Toolkit Guide.

Using the ENOVIA Semiconductor Accelerator for IP Management

DesignSync Central is a complete IP management solution. It provides linked IP
management from the IP stored in DesignSync to the IP management infrastructure in
ENOVIA Library Central.

The DSFA architecture contained within IP Management enables two-way
communication between DesignSync and ENOVIA Live Collaboration allowing trackable
design reuse, and cross-team collaboration.

If you have been using IP Gear, you can convert your IP into ENOVIA Semiconductor
Accelerator for IP Management IP. For more information, see the ENOVIA
Synchronicity IP Management Migration Toolkit Guide.

819

User Interface

Performing GUI operations

Selecting Objects

There are several ways to select objects, such as files or folders:

• Graphically

In the DesignSync window, select an object by left-clicking on it. To select a
group of objects, hold down the Ctrl key and left-click the individual objects. To
select a range of objects, left-click on the object at the beginning of the range,
then hold down the Shift key and left-click on the object at the end of the range.

• Command line

Most commands that operate on objects require you to specify the objects. In
some cases the objects do not have to be specified -- for example, in the
following recursive checkin, which checks in all files in the myasic directory and
in any directories under it:

ci -recursive /users/joe/myasic

You can also create DesignSync select lists to operate on objects. See the
ENOVIA Synchronicity Command Reference Help: select command for more
information.

Going to a Location

There are two different methods to specify a location:

1. Selecting Go from the menu.
2. Entering the folder's path or URL in the Location Bar.

Go Menu Option

To go directly to a folder, select Go =>Go to Location from the menu. In the Go to
Location dialog box, enter the folder's path or URL in the location field. Click Browse
Local to navigate to a file or folder on your local machine.

View and select previously visited locations from the location history by clicking the pull-
down arrow to the right of the text field.

Location Bar Option

User Interface

820

To go directly to a folder (client-side or server-side), enter the folder's path or URL in the
Location Bar. You can also view and select previously visited locations from the location
history by clicking the pull-down arrow to the right of the text field.

DesignSync updates the Location Bar as you navigate using the Tree View or List View.
However, these locations are not stored in the location history unless you press Enter
while a location is displayed in the Location Bar.

DesignSync does not update the Location Bar when you navigate from the Command
Bar using the scd (or cd) command. The Location Bar is always synchronized with the
Tree and List Views, and navigating from the Command Bar does not update the Tree
and List Views.

Related Topics

Go Menu

ENOVIA Synchronicity Command Reference: scd

ENOVIA Synchronicity Command Reference: cd)

Navigating the Tree View

The Tree view provides two views for working with modules that reside on your local
client system:

• The familiar Folder Explorer.
• The Module Explorer, located in the Modules Roots folder that is displayed when My

Computer is expanded.

Navigate between these two views by clicking a module (or an item in the module's
directory structure) to highlight it and indicating the target view from the Go menu.

Module location
Tree view

Command Resulting Location in Tree View

Folder Explorer
Go to Module
Explorer

Module instance within a module root
directory.

Module Explorer Go to Folder Explorer The module base directory that
contains the module instance.

If more than one module satisfies the navigation command, the Select Module Context
dialog box displays with a drop down list of possible target modules.

DesignSync Data Manager User's Guide

821

Related Topics

Module Explorer

Tree View Pane

List View Pane

Adding, Editing, and Organizing Bookmarks

Adding a Bookmark

To bookmark an object:

• Select the object and then select Bookmarks =>Add Bookmark.
• Select the object and then click Ctrl+B

With either of these methods, your current location is added to the bookmark list. The
object's bookmark is represented by a folder with a bookmark on it. The bookmark
persists between invocations of DesignSync.

Editing and Organizing Bookmarks

To edit or organize your bookmarks, select from the Main menu, Bookmarks =>Edit
Bookmarks. This displays the Edit Bookmarks dialog box.

User Interface

822

To change the order of your bookmarks, select one or more bookmarks and then drag
them to their new position.

To modify a bookmark, highlight a bookmark and click the right mouse button. This
displays a context menu with the following choices:

• Visit takes you to the bookmark's location. You can also visit a bookmark by
double clicking on it.

• New Bookmark creates a new bookmark. It then displays the bookmark
properties dialog box so you can define the bookmark.

• New Folder creates a new folder for bookmarks. It then displays the bookmark
properties dialog box so you can define the folder.

• Rename allows you to change the name of the bookmark or folder. You can also
rename a bookmark or folder by selecting it and pressing F2. Note that renaming
a bookmark changes its name, but not its location.

• Delete deletes the selected bookmarks or folders. You can also delete
bookmarks and folders by pressing the Delete key.

• Properties displays the bookmark properties dialog box, so you can change the
bookmark's or folder's properties.

Related Topics

Adding a Vault to Bookmarks

DesignSync Data Manager User's Guide

823

Defining and Modifying Bookmark Properties

You can modify the properties of a bookmark or bookmark folder with the bookmark
properties dialog box.

This dialog box allows you to set the following properties:

• The name of a bookmark or folder is the text that appears in the bookmark
menu.

• The location of a bookmark is the location that the bookmark goes to when you
select it from the bookmark menu. Bookmark folders do not have a location.

• The description of a bookmark appears in the status bar when you move your
mouse over the bookmark's menu choice.

• The creation date is the date that the bookmark or folder was created.
Bookmarks created in earlier versions of DesignSync do not have a creation
date. You cannot modify the creation date.

• The last visited date is the last date that the bookmark was visited by selecting it
from the bookmark menu. Bookmark folders do not have a last visited date; you
cannot modify the last visited date.

For example, you might create a bookmark with the following properties:

Name ALU75 Workspace

Location file://home/aurora/Projects/ALU75/src

Description Workspace for the ALU75 project.

Searching for Text

User Interface

824

You can search the Data Sheet, HTML or text report output for any text that you
choose. These include:

• diff results
• report results
• annotate results
• custom tools that generate text reports

Select Edit => Find... or right-click in the region to search and select Find... from the
context menu. This displays the Find dialog box:

Find text Enter the text to find. You can also click on the pull-down menu to choose
from previously searched text.

Match case Select if you want to find text only with the exact case specified. If not
selected, the search is case insensitive by default.

Whole word match only Select if you want to only find text that matches an entire
word. If not selected, which is the default, matching text that is embedded within a word
is returned.

Direction Select whether to search forward or backward from the current cursor
position.

Click OK to initiate the search.

To search for the next occurrence of the last text searched for, select Edit => Find
Next, or right-click in the region to search and select Find Next from the context menu.

Reviewing History

The history dialog box allows you to review the history of previously visited locations. To
display the history dialog box, select Go => History.

DesignSync Data Manager User's Guide

825

The history dialog box displays a table of all locations visited over the last 30 days, and
the date and time at which each was last visited. You can sort the table by location or by
time by clicking on the table header.

You can select entries in the history table by clicking on them. Use Ctrl and Shift to
select multiple entries in the table.

To operate on the locations listed in the history table, right click the mouse button. This
displays a context menu with the following entries:

• Visit takes you the selected location. You can also visit a location by double
clicking on it.

• Add Bookmark creates a bookmark for the selection location.
• Delete deletes the selected location from the history list. You can also delete a

location by pressing the Delete key.
• Clear History removes all entries from the display.
• History Properties displays the Customize History dialog box.

To close the history dialog box, click Close.

Using Data Sheets

A DesignSync data sheet displays information about a selected object such as a file,
folder, version, or vault. To display a data sheet, select an object, then do one of the
following:

• Select File=>Data sheet.
• Select Data Sheet from the right mouse button's drop-down menu.
• Click the Data Sheet toolbar button.
• Press F4.

DesignSync displays the information in a new window in the View Pane.

The information that is displayed by a data sheet depends on the object you selected.
For example, the data sheet for a file in your working folder contains information such
as lock status, modification status, version number, associated tags, attached notes,
and the ongoing log (see the description of Revision Log for details on the ongoing log).
For more information on using and navigating data sheets, see ENOVIA Synchronicity
ProjectSync User's Guide: Displaying Data Sheets.

Related Topics

ENOVIA Synchronicity Command Reference: datasheet Command

User Interface

826

ENOVIA Synchronicity Command Reference: vhistory command

ENOVIA Synchronicity ProjectSync User's Guide: Displaying Data Sheets

Revision Control Properties

Setting the Verbosity of the Output Window

Many revision control operations, particularly those that can operate recursively over an
entire directory hierarchy, can generate a large amount of output in the output window.
Changing the verbosity setting can make it easier to locate the important messages in
the output.

Each command that allows controlling of the verbosity command has a report option on
the dialog box used to run the command.

If logging is turned on, the log file contains all output regardless of the verbosity mode
being used.

Viewing the Results of an Operation

While a revision control operation is performed, the results of the operation are
displayed in the main DesignSync window. There are three places in the window where
you can find information about the progress of the operation: the Output Window, the
Result column of the list view, and the summary bar.

Result Column

As soon as an operation begins, the result column appears in the list view. As objects
are operated on, the results appear in the appropriate rows of the list column.

For files and collections, the result column contains a message containing the result of
the operation on that particular object. The column also displays one of the following
icons:

The operation succeeded on this object

The operation failed on this object.

This object was skipped

For folders, the result column summarizes the results of the objects it contains. For
example, if 5 objects within the folder were operated on successfully, the result column
contains the message "5 succeeded."

DesignSync Data Manager User's Guide

827

The result column for a folder also contains one or more icons indicating the results of
the objects it contains. For example, if all of the objects in a folder succeeded, the
success icon is displayed; if some succeeded and others were skipped, it contains both
the success and skip icons.

To see exactly what happened to each object in a folder, double-click on the folder in
the list view to expand it, and examine the result column of those objects.

Summary Bar

The summary bar appears in between the Output Window and the Command Bar. It
provides a summary of the operation as it progresses.

The summary bar provides a total of all objects that have succeeded, failed, and been
skipped.

For some operations, it is possible to determine how many objects will be operated on
before the operation takes place. In this case, the summary bar provides a percent
complete indication. If a total cannot be determined in advance, the summary bar
provides a total count of objects operated on.

It is not possible to determine a total in advance for the following operations:

• The populate command
• The tag command
• Any operations entered into the command bar that use the -recursive flag.

Clearing the Results

When you are done examining the results of an operation, you may clear the results by
pressing the Clear Results button on the summary bar, or by selecting the Revision
Control => Clear Results menu choice.

When the results are cleared, the Result Column and the Summary Bar disappear.

To clear the operation's output, right-click in the Output Window to display its context
menu. Select Clear Output to clear the Output Window.

Common Interface Topics

Comment Field

Enter notes for this operation here.

• Check-out comments are added to the Revision Log, which is used as part of the
future check-in comments.

User Interface

828

• Check-in comments are appended to any comments you have in your Revision
Log (File=>Properties). Check-in comments become part of the version history.

Depending on the DesignSync methodology your team adopts, your project
leader may require that every check-in have a comment of a given length. If there
is a minimum comment length defined with SyncAdmin, a tool-tip window will
display in the lower-right portion of the Comment field. The tool tip will show you
how many characters you have entered and the minimum character length of the
comment. When you reach the minimum length, the tool tip will close.

Note: This does not display a tip for minimum comments length defined with
Access Controls.

• Tag and Branch comments, which are only available for module data, become
part of the version history.

• Comments specified when creating a new module are reported by the showmods
command as explained in the showmods command description: Understanding
the Output, and displayed in the List View when viewing modules on a server.

• Comments support mutibyte characters (UTF-8 compliant) both within the
DesignSync GUI interface and submitted within comment files.

Right click in the Comments field to display the context menu.

Click on the fields in the following illustration for information.

From here, you can choose to cut, copy, paste, or select all of your text.

Previous Comments

DesignSync Data Manager User's Guide

829

Choose from comments you entered for previous check-in and check-out operations. If
there are no previous comments, then the Previous Comments choice is present but
unavailable. A maximum of 10 previous comments are stored, after which older
comments drop off the list. Only comments consisting of fewer than 2000 characters are
stored. The first 50 characters of a comment are shown in the Previous Comments list
for selection.

Upon selecting a previous comment, the text from the selected previous comment is
entered into the Comment box.

Use Editor

Open the default editor to prepare your comments. When you save and exit from your
editor, your comments will be added to the Comment field. Quitting from your editor
without saving leaves the Comment field empty.

Related Topics

Displaying Version History

ENOVIA Synchronicity Command Reference Help: showmods

Exclude Field

Enter here the kinds of files or directories you want to exclude from the operation.
Wildcards are allowed. Separate items with commas. For example, to exclude all log
files from the operation, you would specify *.log .

Click on the button to the right of the Exclude text field to bring up a list of common
exclude patterns (tmp,*.o,*.obj,*.bak,*~,*.log,*.db). Selecting a pattern will
append the pattern to the current contents of the Exclude text field.

Do not specify paths in your arguments to Exclude . Before operating on each object
(such as during a recursive operation), DesignSync compares the object's leaf name
(path stripped off) to the items in the Exclude field to see if there is a match. Because
the object's path is not considered, it will not match any item in the exclude list specified
with a path. For example, if you specify bin/*.exe in the Exclude field, you will not
successfully exclude bin/test.exe or any other *.exe file. You need to instead
specify *.exe (or test.exe if you want to exclude only test.exe). This means, however,
that you cannot exclude a specific instance of a file or folder -- you exclude all matching
files and folders.

User Interface

830

For details of how the Exclude value is used by a particular command, see the -
exclude option description for the command invoked by the graphical interface.

See the SyncAdmin Help: Exclude Lists topic for information about global exclude lists.

Filter Field

Apply the specified expression, to identify the exact subset of objects on which the
command will operate. Specify comma-separated object expressions, where an object
expression takes the form:

[+|-]<path_expression>

where:

• +/- indicates whether a particular object expression indicates items to be
included or excluded. The default is "-" , excluding items based on the
<path_expression>

• <path_expression> is an extended glob expression that specifies object
paths. An extended glob expression is a standard glob-style expression, but
extended to allow the use of the "..." syntax to mean "match any number of
directory levels".

For example, the expression top/.../lib/*.v matches any *.v file in a directory
path that starts with top, then has any number of levels (zero or more), ending in a lib
sub-directory.

Note: A glob expression of * for a <path_expression> is not always the same as
.../* . For an exclude (-* or *), the * would match the folders in the top level
directory, and therefore everything down the hierarchy. But for an include (+*), the *
would only match the top level directories, and not match the lower level items, causing
the lower level items to remain excluded.

Path expression matches are performed against the relative path of the objects from the
starting point of the command.

If a match is performed against a full sync: URL, then a "..." value will match the
sync://<host>:<port> at the start of the URL. For example, .../Chip matches
sync://<host>:<port>/Modules/Chip.

Ordinarily, a command starts with everything included. But if the first entry in the Filter
field is an include (+<path_expression>), then it is assumed that the intention is to
start with everything excluded, as if the expression had started with -.../* . This
makes it simple to write expressions that only include some items.

DesignSync Data Manager User's Guide

831

Notes:

• The Exclude field is applied in addition to the Filter field.
• When Populating Your Work Area, see Setting Persistent Populate Filters for

how Populate uses the Filter field.
• The filter command is available for all modules-based operations, but may not

apply to all non-module based operations.

Force Overwrite of Local Modifications Option

By default, DesignSync does not overwrite locally modified files. Use this option to force
DesignSync to overwrite locally modified files. Your locally modified copies of files will
be replaced according to the fetch mode selected. For example, unlocked copies, or
links to cached files.

Href Filter Field

Apply the specified expression to filter out the hierarchical references followed, when
operating on a module recursively. Specify comma-separated object expressions,
where an object expression can take one of following forms:

• Simple href filter: <href_expression>
• Hierarchical href filter:

[/]<Module_expression>[/<Module_expression>...]<href_expression>

where the <module_expression> is a module or href name.

where the <href_expression> is a simple glob expression.

A simple href filter is a simple leaf name or the name of the href (specified when the
hierarchical reference was added); you cannot specify a path. DesignSync matches the
specified href filter against hrefs anywhere in the hierarchy. Thus, DesignSync
excludes all hrefs of this leaf name; you cannot exclude a unique instance of the href.

A hierarchical href filter specifies a path and a leaf submodule or hrefname, for example
JRE/BIN excludes the BIN submodule only if it is in beneath JRE in the hierarchy.

Note: You can use wildcards with both types of hreffilter, however, if a wildcard is used
as the lone character in hierarchial href, it only matches a single level, for example:
"JRE/*/BIN" would match a hierarchy like "JRE/SUB/BIN" but would not match
"JRE/BIN" or "JRE/SUB/SUB2/BIN".

You can specify both forms of hreffilter within the same operation, however when doing
a populate, you can only specify a hierarchical hreffilter for an initial populate. When
applying a hierarchical hreffilter, you must specify the Recursive option.

User Interface

832

Tip: If you need to add or change hierarchical hreffilters for an existing workspace, use
either the Setting Persistent Populate Views and Filters or the setfilter command.

For more information on understanding hreffiltering and hierarchical href filtering, see
Href and Hierarchical Href Filtering.

Notes:

• This field is only available when operating on module data.
• When Populating Your Work Area, see Setting Persistent Populate Filters for

how Populate uses the Href filter field.

Keys Field

You can control keyword substitution by selecting one of the following options from the
Keyword Substitution drop-down menu:

• Update values and keep keys expands keyword values and retains the
keywords in the file (default option). For example: $Revision 1.4 $

• Update values and remove keys expands keyword values but removes keys
from the file. This option is not recommended when you check out files for
editing. If you edit and then check in the files, future keyword updates are
impossible, because the value without the keyword is interpreted as regular text.
For example, 1.4.

• Remove values and keep keys keeps the keywords but removes keyword
values. This option is useful if you want to ignore differences in keyword
expansion, such as when you are comparing two different versions of a file. For
example, $Revision: 1.9 $

• Do not update keeps exactly the same keywords and values as were present at
checkin.

By default, revision control keywords in your ASCII (but not binary) files are expanded
during a checkout or populate operation. You can also expand keywords in local copies
of files that you leave in your working directory during a checkin.

If you perform this operation using a mirror or cache directory, keywords are
automatically expanded in the file that remains in the cache or mirror directory and the
keyword itself remains in the file -- as if the Update values and keep keys option were
used.

Related Topics

Revision Control Keywords Overview

Local Versions Field

DesignSync Data Manager User's Guide

833

Note: This option only affects objects of a collection defined by the Custom Type
Package (CTP). This option does not affect objects that are not part of a collection or
collections that do not have local versions.

When it fetches an object, the populate operation first removes from your workspace
any local version that is unmodified. (To remove a local version containing modified
data, specify Force overwrite of local modifications.) Then the populate operation
fetches the object from the vault (with the local version number it had at the time of
checkin).

The Local Versions option specifies the action that the populate operation takes with
modified local versions in your workspace (other than the current, or highest numbered,
local version). (DesignSync considers a local version to be modified if it contains
modified members or if it is not the local version originally fetched from the vault when
the collection object was checked out or populated to your workspace.)

Specify the Local Versions option with one of the following values:

• Save local versions. If your workspace contains a local version other than the
local version being fetched, the populate operation saves the local version for
later retrieval. For more information on retrieving local versions that were saved,
see the ENOVIA Synchronicity Command Reference: localversion restore
command.

• Delete local versions. If your workspace contains a local version other than the
local version being fetched, the populate operation deletes the local version from
your workspace.

• Fail if local versions exist. If your workspace contains an object with a local
version number equal to or higher than the local version being fetched, the
populate operation fails. This is the default action. A DesignSync administrator
can change this default setting. For more information, see SyncAdmin Help:
Command Defaults.

Note: If your workspace contains an object with local version numbers lower than
the local version being fetched and if these local versions are not in the
DesignSync vault, the populate operation saves them. This behavior occurs even
when you specify Fail if local versions exist.

Module Context Field

This field is only available when a module folder is being operated on. Specifying a
module context enables the operation to be run on a workspace folder that is below
multiple modules, or on a sub-folder of a module on a server.

When viewing the module folder in the Folder Explorer, the default module context
value is shown as an empty string. You can type the server URL of a module, or select
an existing client module to restrict the scope of the operation. You can also select from

User Interface

834

among the module instances for the folder being operated on, which are listed
alphabetically in the pull-down. If more than one folder is being operated on, you can
only select from the available module instances (you cannot type in a value).

For dialog boxes in which a Browse... button appears next the Module context field,
you can use the Browse... button to navigate to and select a module on a server.

When viewing the module folder in the Module Explorer, the module context value is the
selected folder's parent module. If the selected object is the base folder itself, then that
is the module context value.

When performing a checkin operation with the Allow Checkin of New items option
selected, the module context default value is <Auto-Detect> which indicates that
DesignSync uses smart module detection to determine the target module for the new
module member. For more information, see Understanding Smart Module Detection.

Module Views Field

This field is only active when a module is being operated on. You can type the name of
the module view or query the server for a list of defined views.

The Module Views field is active:

• during the initial populate of a module in the workspace.
• when you are changing the persistent view or filter for a module in a workspace.

To query the server for a list of module views, click the down arrow to bring up the Get
views... option. You can then select a view from the list.

To clear view set on a workspace, you can type None or select it from the list.

You can select multiple views by separating the view names with a comma. (For
example, DOC, RTL)

Notes:

• When you query the server for module view information, the system displays a "Getting
module views" screen. You can stop the process by clicking the Stop button during the
query.

• If there are multiple module views with the same name in a module hierarchy, the list
will only display a single unique view name; the first view definition reached as the
query traverses the hierarchy from the selected object (child) up the hierarchical tree.

• When doing a Compare operation (Reports | Compare), the Module Views field is only
active when a selector is provided.

DesignSync Data Manager User's Guide

835

Populate Log

 Because populate operations can be long and complex, you may want to specify a log
file to contain only the output of the populate command to store for later reference This
is particularly useful in cases where you perform a complex populate operation, such as
merging a set of module changes from a different branch into workspace.

The log file name can be specified as one of the populate options or saved as a default
value in the DesignSync GUI.

If the specified log file exists, the populate output automatically appends to the end of it,
preserving earlier populate information.

Example of populate log

 Logging populate command output to: /home/rsmith/popmerge.log

Beginning populate operation at Thu Jul 19 03:05:46 PM EDT
2007...

Populating objects in Module ROM%1
Base Directory /home/rsmith/MyModules/rom
Without href recursion

Fetching contents from selector 'Silver:', module version
'1.6.1.2'

Merging with Version: 1.6.1.2
Common Ancestor is Version: 1.6

==
=======
Step 1: Identifying items to be merged and conflict situations
==
=======

/romMain.c : No merge required.
/rom.v : No merge required.
/rom.c : No merge required.
/romSub.c : No merge required.
/doc/rom.doc : No merge required.

User Interface

836

==
=======
Step 2: Transfering data for any items to be fetched into the
workspace
==
=======

No files to fetch.

==
=======
Step 3: Merging file contents as required into the workspace
==
=======

Beginning Check out operation...

Checking out: rom/rom.doc : Success - Version
1.1.1.1 has replaced version 1.1.

Checkout operation finished.
==
=======
Step 4: Updating files fetched into the workspace
==
=======

ROM%1 : Version of module in workspace not updated (Due to
overlay operation).

==
=======
Step 5: Comparing hrefs for the workspace version and merge
version:
==
=======
No hrefs present in workspace version
No hrefs present in merge version

Finished populate of Module ROM%1 with base directory
 /home/rsmith/MyModules/rom

Finished populate operation.

DesignSync Data Manager User's Guide

837

Related Topics

Populating Your Work Area

Recursion Option

For a DesignSync folder, recursively operate on its contents. The set of objects
operated on may be reduced by use of the Exclude field. By default, only the contents of
the selected folder are operated on.

For a module, follow any hierarchical references and recursively operate on their
contents. The set of objects operated on may be reduced by use of the Exclude field,
the Filter field and/or the Href filter field. By default, only the contents of the selected
module are operated on.

For a module folder, recursively operate on its contents. The Module context field
determines the set of objects operated on. The set of objects operated on may be
further reduced by use of the Exclude field and the Filter field. By default, only the
contents of the selected folder are operated on.

Retain Timestamp Field

Use this option if you want to retain the "last modified" time of when the file version was
checked into the vault.

This option is meaningful only when working with physical copies, as is the case when
you specify the Unlocked copies or Locked copies options. DesignSync automatically
uses this "keep last modified time" behavior when linking to files in a mirror or cache
directory; files in the mirror/cache retain their original timestamps. However, links in your
work area to the cache/mirror have timestamps of when the links were created. If you
specify the References to versions or the Locked references options, no object is
created in your work area, so there is no timestamp information at all.

Note: If an object is checked into to the vault and the setting of the Retain Timestamp
option is the only difference between the version in the vault and your local copy,
DesignSync does not include the object in checkout operations.

DesignSync operations follow the SyncAdmin registry setting for Retain last-
modification timestamps. By default, this setting is not enabled; therefore, the timestamp
of the local object is the time of the check-in, check-out, or cancel operation. To change
the default setting, your Synchronicity administrator can use the SyncAdmin tool. For
information, see SyncAdmin Help: Command Defaults.

Suggested Branches, Versions, and Tags

User Interface

838

Dialog boxes that ask you to specify a version, branch, or tag provide a pull-down menu
of suggested entries. These entries include:

• Any tags specified by the Project Leader through the Sync Administration
application. See SyncAdmin Help: Tag Options.

• Standard selectors, such as Trunk and Latest, and special specifiers, such as
Date(). These only appear when appropriate.

• Up to three options that query the server and add the results to the selection list:
• Get branches queries the server for a list of all branches of the selected

object.
• Get versions/tags queries the server for a list of all versions or tags of the

selected object. This option only appears when appropriate and when a
single object is selected.

• Get selectors gets a list of all selectors appropriate for the current
directory. This only works correctly if the current directory, or its
associated vault, has the form sync://host:port/Projects/projectname/....
And if projectname is a ProjectSync project that has configurations
defined.

Note: When you query the server for branches, versions, tags, or selector information,
the system displays a "Getting vault information" screen. You can stop the process by
clicking the Stop button during the query.

Trigger arguments

Trigger arguments are passed to any triggers that have been set up for the operation.
Consult your project leader for information about any triggers that are in use and how
they use arguments.

Command Invocation

The DesignSync command that will be invoked by the graphical interface is shown at
the bottom of the dialog box. As fields are selected in the dialog box, the command
options corresponding to each field in the dialog box are added or removed from the
command invocation.

See the ENOVIA Synchronicity Command Reference for definitions of command
options. The description of a command notes if the command is subject to access
control.

Note: The command line defaults system only pertains to the command line interface.
Underlying commands that are automatically invoked by the DesignSync graphical
interface do not use the command line defaults system.

Command Buttons

DesignSync Data Manager User's Guide

839

Button Description
Save Settings Click this button to save the option settings that you have

selected. The saved settings are displayed the next time you
bring up the dialog box, and the settings persist from one
DesignSync invocation to the next.

Most saved settings apply only to future invocations of the
same operation. However, some saved settings, such as for
Exclude Filter and Key Substitution, apply to all operations
that support the options. You typically want to apply some
options consistently across all commands. For example, if you
exclude *.log files during checkins, you likely want to exclude
*.log files for all operations.

OK When you click on the OK button, your settings are executed
and the dialog closes.

Cancel

When you click on the Cancel button, the dialog closes without
executing any of the settings in the dialog.

Help This button invokes help information for the dialog. You can
also invoke help by pressing F1 at any time.

Get Tags/Versions
The Get Tags/Versions dialog allows you retrieve from the vault the available tags and
versions applied to the object.

User Interface

840

To display available tags and versions:

1. From the Get tags/versions for this branch field, select the branch for which
you want to display tags or versions. You can choose the current branch, all
branches, or branches that are defined in the vault (for example, Trunk).

2. Select an option to specify whether you want display tags, versions, or both tags
and versions.

3. Click OK. DesignSync displays a list of available tags and versions in the
pulldown menu of the Version field.

Note: The tags displayed by the Get Tags/Versions dialog are "tags of interest" for the
selected object(s). Tags of interest include any module snapshot tags and any tags set
to display by the AlwaysShowTags registry key. For more information on defining tags
to display in the registry, see ENOVIA Synchronicity DesignSync Data Manager
Administrator's Guide: Modules Registry Settings.

Select a path
If you are moving a module member and use the Browse button to select the new path
name, the Select a Path dialog box appears.

To select a path with the Select a path dialog box:

1. Navigate through the folder until you get to the path you want.
2. Click OK. The new path for the module member appears in the New path field of

the Move module members dialog box.

DesignSync Data Manager User's Guide

841

Select Module Context
The Select Module Context dialog displays when an object needs a module context
assigned to it. This usually happens when the objects can be associated with more than
one module, for example, when adding an object to a module in a workspace that
contains more than one module.

You may see this menu when performing any of the following tasks:

• Adding objects to a module
• Viewing a module's data hierarchy
• Navigating to the module vault on the server

Click on the fields in the following illustration for information.

Module Context

Select from the available module instances. The choices are listed in alphabetical order.
 Only the listed module instances can be applied to the selected objects.

When you are performing an operation that creates a new module object, such as
Checkin with the Allow check in of new items option or Add, you have an additional
default option of <Auto-detect> which uses the DesignSync smart module detection to
determine the target module for the objects. For more information on using smart
module detection, see Understanding Smart Module Detection.

Related Topics

Adding a Member to a Module

Checking in Design Data

Displaying Module Hierarchy

Go Menu

User Interface

842

Select Module Instance
The Select Module Instance dialog displays when you have more than one possible
instance of a module you want to see. This usually happens when there is more than
one module instance version in the module base directory.

Click on the fields in the following illustration for information.

Module Instance

Select the desired 'module instance from the drop-down list.

Related Topics

Module Explorer

Select Parent Module
The Select Parent Module dialog displays when navigating within the workspace to a
parent module results in more than one parent module candidate.

You may see this menu when working in the workspace with hierarchical module
structures featuring multiple modules populated in the same module root.

Click on the fields in the following illustration for information.

Module's Parent

Select the desired parent module from the drop-down list.

DesignSync Data Manager User's Guide

843

Related Topics

Module Explorer

Go Menu

Select Vault URL Browser
Facilitates entering a vault URL by using the vault associated with a public project (as
defined by your project leader) or an entry in your site or local SyncServer lists. You
can expand the listed project or server folders to select subfolders if desired.

Filter Interesting Dialog
Using the Filter interesting objects option allows you to control which objects are
displayed when using the Vault Browser with the Show Interesting mode selected.
Checking any option removes a version from the Vault Browser display if they do not
meet any other inclusion criteria.

Note: Versions or branches excluded by selecting filter conditions are shown if there is
a visible sub-graph rooted at that version or branch.

The filter interesting dialog changes depending on what type of object you have
selected in the vault browser. The following illustrations shows file-based vaults,
modules vaults, and module member vaults.

Click on the fields in the following illustrations for information.

User Interface

844

Untagged Versions

Check to remove any versions that are not explicitly tagged from the vault browser
display.

Version not created by me

Check to remove any versions that were not created by the user who is running the
vault browser.

Snapshot branches

Check to remove any versions that are on a snapshot branch. This is applicable only to
module and module member versions.

Member not changed

Check to remove any versions that are unmodified. This is only applicable to module
member versions.

Related Topics

Vault Browser Tools

DesignSync Data Manager User's Guide

845

Select a Member Descendant
Within the Vault Browser, you can navigate to one of module versions containing
descendents of the selected member version. If there is more than one descendent for
a member, DesignSync displays a dialog box for choosing a descendent being
displayed:

Member Descendant

Select the desired member descendant from the drop-down list.

Related Topics

Vault Browser Actions

847

Index
A

Annotate 333

actions 335

highlighting results 337

Auto-Merging 189

locally added files 429

locally modified files 430

non-latest 432

removed from module 431

renamed in module 433

with other renamed files in module
434

B

Bookmarks

adding 821

adding a vault 51

deleting 821

editing 821, 823

organizing 821

properties 823

Branch 651

autobranching 766

container 364, 374

creating 124, 766

feature or subproject 769

modules 216

operations 767

parallel development 764

policy 775

sub-module 364, 374

tagging 127

unlocking 136

C

Cache

file cache 733, 735

module cache 735

versus mirrors 733

Cadence Objects 810

enabling recognition 812

managing 814

recognizing 812

Check In 108

comments 36, 827

files 108

848

object state 36

Checkout 100

canceling 105

files 100

potential 293

Collection 808

custom type package (CTP) 816

displaying 809

managing non-collection objects 815

member properties 644

properties 643

Command

aliases 719

buttons 838

invocation 838

line defaults system 728

line editing 714

Comparing Objects 314, 319

Configurations 796

creating 796

mapping 797

selecting 29

Custom Type Package (CTP) 816

DesignSync recognition 817

D

Data Sheets 825

Date Format 760

Deleting 252

DesignSync 1

architecture 633

command shell 391

command-line shells 710

configuring 720

GUI 379, 662

introduction 2

list view pane 695

output window 699

special keystroke operations 691

symbols and icons 664

tree view pane 693

URLs 648

Diff

advanced 274

graphical diff utility 288

output 280

revised diff format 285

DesignSync Data Manager User's Guide

849

simple operations 273

dss 700, 710

compared to other shells 711

invoking 712

running scripts 731

dssc 700, 710

compared to other shells 711

invoking 712

running scripts 731

E

Edit

command line 714

menu 673

sub-module 356

Edit-in-place

overview 233

Enterprise Development

displaying 313

External Modules 228

URL syntax 645

F

Field

excluding 829

filter 830

href filter 831

keys 832

local versions 832

module context 833

module views 834

retain timestamp 837

File

checking in 108

checking out 100

creating 241

deleting 253

excluding 35

moving and renaming 242

populating 53, 79

retiring 267

selecting 819

Filter

display filters 331

module data 196

persistent populate filters 74

Folders

creating 250

850

deleting 255

moving and renaming 252

versioning 215

G

General Properties 638

Go Menu 677

GUI 662

H

Help

contacting ENOVIA 6

menu 691

Hierarchical References

adding to module 409, 411

creating 158

deleting 165

filter field 831

Hierarchy

specifying location 45

History 824

L

Legacy Modules

handling 784

upgrading 785

Library

cadence 810

Location

bar 685, 819

Locking

module 204

module data 166

work style 739, 741

Login 19

M

Merge Edge 11

Merging 6, 738

conflict editor 13

conflicts 7, 742

module data 219

modules 224

three-way merge 9

two-way merge 9

work style 739, 763

Metadata 653

Mirrors 655, 736

administering 661

architecture of the system 659

DesignSync Data Manager User's Guide

851

permissions 72

specifying 31

using 69, 657

versus caches 733

Module 181

adding content to 121, 155, 242

branching 216

creating 152

deleting 170

displaying status 306

external modules

adding an href to 228

instance names in the workspace 73,
97, 149, 167

locking 204

members

moving 245, 840

removing 163, 270

tagging 230

merging 219, 224

recursion 200

resolving structure conflicts 176

rolling back 168

where used 309

Module Cache 735

deleting module cache link 174

displaying 301

using 238

Module Context

defining and enabling 370

field 833

locating 363

selecting 841

Module Hierarchy 206

creating 409, 411

populating 40

Module Views 192

O

Objects

comparing 273, 274

modified 293

retiring 267

selecting 819

states 30, 95, 634

types 636

unmanaged 293

852

P

Parallel Development

overview 764

Persistent Selectors 749

Populate 53, 79

results 826

snapshots 230

Projects 21

properties 23

public 23

setting up a work area 21

Properties

collection member 644

collections 643

displaying project 23

general 638

module objects 640

revision control 639

tag 642

version 642

viewing and setting 637

R

REFERENCE

chaining 808

REFERENCEs and revision control
commands 804

Registry Files 720

Releases

creating 798

Revision Control 4

keywords 143

using 144

menu 680

properties 639

S

Scripts

creating 730

DesignSync 728

OS shell scripts 728

running 731, 732

Selectors 746

dynamic 746, 751

formats 751

selector lists 748

specifying 29

static 746, 751

SITaR Designer 355

DesignSync Data Manager User's Guide

853

branching a sub-module 358

creating a SITaR sub-module 371

creating a workspace 355

editing a sub-module 356

submitting a sub-module for
integration 357

synchronizing with the baseline 356,
357

SITaR Integrator 359

branching 364, 374

creating a SITaR container module
369

creating a SITaR sub-module 371

creating an initial baseline release
372

creating workspace 360

integrating 362

integration workspace 359

locating submissions 361

releasing a baseline 364

selecting sub-modules 361

testing release candidates 362

workflow overview 360

SITaR Overview

branching 377

designer role 355

integrator role 359

module structure 375

SITaR environment variables 365

workflow 374

stcl 700

compared to other shells 711

invoking 712

running scripts 728, 731

stclc 700

compared to other shells 711

invoking 712

running scripts 731

Swap 233

SyncAdmin 720

syncd 711

SyncServer 634

authentication 19

T

Tag

branches 127

fixed and movable 798

properties 642

854

retrieving from the vault 839

snapshots 230

using 798

versions 127

Triggers

arguments 838

U

URL 648

syntax 645

User Authentication 19

V

Vault Browser 340

actions 344

finding objects 350

selecting URL 843

tools 346

Vaults 651

adding to bookmarks 51

browsing for a file or project 51

changing for a hierarchy of files 73

deleting 261

location 45

permissions 726

upgrading 791

vault data 295, 298

viewing contents 51

Versions 651

deleting 264

history 325

properties 642

selecting 744

suggested 837

tagging 127

viewing in the vault 51

View

field 834

persistent view 39, 74

view panel 309

W

Where Used 309

Work Area

controlling access 721

moving 723

permissions 726

populating 53, 79

Workspace

DesignSync Data Manager User's Guide

855

recreating developer's workspace 363

selecting a workspace 28, 34, 40

selecting workspace files for new
modules 43

setting a root 73, 167

	Overview
	Overview
	ENOVIA Synchronicity DesignSync® Data Manager Capability
	Using ENOVIA Synchronicity DesignSync Data Manager User's Guide Documentation
	Before Reading this Guide

	Getting Started with DesignSync
	Setting Up Your Work Area
	Method 1: Use the DesignSync GUI to manually set up your work area.
	Method 2: Use a DesignSync shell to manually set up your work area.
	Method 3: Use the Workspace Wizard to set up your work area.
	Method 4: Set up your work area by joining a project.

	Modifying Data
	Staying Informed of Project Changes

	What is Revision Control?
	Related Topics

	Contacting ENOVIA
	Introduction to Merging
	What Is Merging?
	Related Topics

	Merge Conflicts
	Resolving Merge Conflicts
	Related Topics

	Two-Way Merge
	Related Topics

	Three-Way Merge
	Choosing the Right Base Version
	Related Topics

	Merge Edges
	Related Topics

	Merge Conflict Editor
	Using the Merge Conflict Editor
	Merge Conflict Editor Tools
	Save the View
	Undo Block
	Cut
	Copy
	Paste
	Choose Left
	Choose Right
	Choose Left Above Right
	Choose Right Above Left
	Choose All Left
	Choose All Right
	Next Conflict
	Previous Conflict
	Find
	Find Next
	Toggle Line Numbers
	Toggle Bottom Panel
	Toggle Scrollbars Sync
	Full Screen
	Related Topics

	Setting up a Project or Module Workspace
	Accessing a SyncServer with User Authentication
	Related Topics

	Setting Up a Work Area for a Project
	Related Topics

	Joining a Project Using a Wizard
	What Is a Project?
	Related Topics

	Defining a Public Project
	Related Topics

	Displaying Project Properties
	Related Topics

	Browsing a Project Vault
	Related Topics

	Workspace Wizard
	Workspace Wizard Overview
	Using the Workspace Wizard
	Related Topics

	Joining an existing project
	Specify the Vault of the Existing Project
	Select Workspace for an Existing Project
	Specify Selector or Configuration
	Specify the Object State of Populated Items
	Specify Mirror
	Workspace Wizard Confirmation

	Creating a new project
	Specify a Vault for a New Project
	Select Workspace for a New Project
	Specify Files to Exclude
	Specify the Object State of Items Checked In
	Specify a Check-In Comment
	Workspace Wizard Confirmation

	Working with an existing module
	Select a Module
	Select a Workspace for the Module
	Fetch the Module Hierarchy
	Workspace Wizard Confirmation

	Creating a new module
	Specify Information about the New Module
	Select Workspace Files for the New Module
	Workspace Wizard Confirmation

	Joining a Project Step-by-Step
	Specifying the Vault Location for a Design Hierarchy
	When working with modules and module objects
	Client Vaults and Server Vaults
	Notes
	To associate a vault with your design hierarchy:
	Field and Option Descriptions
	Related Topics

	Adding a Vault to Bookmarks
	Verifying That a Vault Has Been Set on a Folder
	Related Topics

	Browse the Vault for a File or Project
	Viewing the Contents of a Vault
	Related Topics

	Populating Your Work Area
	Populate Field Descriptions
	Extra command options
	Related Topics

	Using a Mirror
	Setting Up Your Workspace
	Changing the Mirror Directory Associated with Your Workspace
	Disassociating Your Workspace from a Mirror Directory
	Using the -mirror Option to Commands
	Related Topics

	Setting Permissions for the Mirror
	Related Topics

	Changing the Vault for a Design Hierarchy
	Related Topics

	Setting a Workspace Root
	To set a workspace root:
	Related Topics

	Setting Persistent Populate Views and Filters
	Field Descriptions
	Animated Examples
	Related Topics

	Join an existing project:
	Create a new project:
	Work with an existing module:
	Create a new module:
	Using DesignSync
	Populating Your Work Area
	Populate Field Descriptions
	Extra command options
	Related Topics

	Changing the State of Objects in Your Work Area
	Related Topics

	Specifying Module Objects for Operations
	Module Instance Name
	Addressing a Module Object in the Workspace
	Example

	Addressing Hierarchical References in the Workspace

	Checking Out Design Data
	Check Out Field Descriptions
	Related Topics

	Canceling a Checkout
	Cancel Checkout Field Descriptions
	Related Topics

	Checking In Design Data
	Check In Field Descriptions
	Related Topics

	Adding a Member to a Module
	Related Topics

	Creating Branches
	Make Branch Field Descriptions
	Related Topics

	Tagging Versions and Branches
	Tag Naming Conventions
	Tagging Module Snapshots
	DesignSync Objects for Tag
	Tag Field Descriptions
	Related Topics

	Unlocking Server Data
	Unlock Field Descriptions
	Related Topics

	Working with Exclude Files
	Exclude File Processing
	Exclude File Formatting
	Related Topics

	Adding/Removing Exclusions
	Creating and Maintaining Exclusion Files
	Add Exclusion Using DesignSync Commands
	Remove Exclusion Using DesignSync Commands
	Related Topics

	Viewing Exclusions
	Related Topics

	Using Revision Control Keywords
	Revision Control Keywords Overview
	Related Topics

	Using Revision Control Keywords
	Related Topics

	Working with Modules
	Specifying Module Objects for Operations
	Module Instance Name
	Addressing a Module Object in the Workspace
	Example

	Addressing Hierarchical References in the Workspace

	Creating a Module
	Related Topics

	Creating a New Version of a Module
	Adding a Member to a Module
	Related Topics

	Creating a Hierarchical Reference
	Field Descriptions
	Related Topics

	Removing a Member from a Module
	Related Topics

	Deleting a Hierarchical Reference
	Related Topics

	Locking Module Data
	Field Descriptions
	Animated Examples

	Setting a Workspace Root
	To set a workspace root:
	Related Topics

	Rolling Back a Module
	Related Topics

	Deleting a Module
	To delete a module:
	Field and Option Descriptions
	Related Topics

	Deleting a Module Cache Link
	Delete Field Descriptions
	Related Topics

	Resolving Module Structure Conflicts
	Related Topics

	Overlaying Module Data
	How hrefs are handled
	Examples
	Object present on branch and workspace, with the same natural path
	Object present on branch and workspace, with different natural paths
	Object present on branch but not in workspace version

	Related Topics

	Synchronizing Enterprise Developments
	Running the Synchronize command
	See Also

	Reference
	What Is a Module?
	Atomic Checkin and Recovery
	Related Topics

	Data Management of Modules
	Related Topics

	Operating on Module Data
	Animated Examples
	Related Topics

	Auto-Merging
	Examples
	Latest version 1.5 of the module contains a new version of file1. You modified file2 and file3.
	Module version 1.5 contains a new version of file2. Module version 1.6 contains a new version of file3. You modified file1 and file2.
	Module version 1.5 contains the new file file4. You created and added file4.
	Module version 1.5 renamed file1 to file4. You modified file2.
	Module version 1.5 renamed file1 to file4. You modified file1.
	Module version 1.5 does not contain file1. You modified file1.

	Related Topics

	Understanding Module Views
	Modules Views in a Module Hierarchy
	Related Topics

	Filtering Module Data
	Animated Examples
	Related Topics

	Module Recursion
	Module-Centric Operations
	Folder-Centric Operations
	Animated Examples
	Related Topics

	Module Locking
	Animated Examples
	Related Topics

	Module Hierarchy
	Understanding how href modes and module recursion build your data hierarchy
	Understanding Href Mode Traversal
	Populating recursively with“–hrefmode normal”
	Populating with “-hrefmode static”
	Populating with “-hrefmode dynamic”
	An Alternate Method of Module Hierarchy Traversal
	Animated Examples

	Hrefs and Hierarchical Href Filtering
	Simple Href Filtering
	Hierarchical Href Filtering
	Related Topics

	Folder Versioning
	Animated Examples
	Related Topics

	Module Branching
	Animated Examples
	Related Topics

	Merging Module Data
	Module Merge Edges
	Unique Identifiers
	Module Structural Changes
	Merge Types and Forms
	Merging of file contents
	Merging of structural changes

	In-Branch Merging
	Examples

	Cross-Branch Merging
	Related Topics

	Module Merging
	Auto-Merging
	In-Branch Merging
	Cross-Branch Overlaying
	Cross-Branch Merging
	Related Topics

	External Modules
	Using external modules in a design hierarchy
	Creating External Modules
	Viewing the Contents and Status of External Modules
	Related topics

	Module Member Tags
	Populating Module Member Tagged Versions
	Related Topics

	Edit-In-Place Methodology
	populate of a swapped sub-module
	ci of a swapped sub-module
	Related Topics

	Understanding Smart Module Detection
	Identifying the module target
	Related Topics

	Conflict Handling
	Module Structure Conflict Handling
	Module Member Conflict Handling
	Related Topics

	Module Version Updating
	Related Topics

	Using a Module Cache
	Related topics

	Working with Files and Directories
	Creating Files
	New File Field Descriptions
	Related Topics

	Moving and Renaming Files
	Related Topics

	Adding a Member to a Module
	Related Topics

	Moving a module member
	Some notes on moving folders
	Moving module folders on the server
	Moving module folders in the workspace
	To move a module member:
	Related Topics

	Using the Moving Modules Members dialog box
	Renaming a module member
	Renaming folders on the server
	Renaming folders in the workspace
	To rename a member from a module:
	Related Topics

	Creating Folders
	New Folder Field Descriptions
	Related Topics

	Moving and Renaming Folders
	Related Topics

	Removing Objects
	Deleting Design Data
	Related topics

	Deleting Files
	Delete Field Descriptions
	Related Topics

	Deleting Folders
	Delete Field Descriptions
	Related Topics

	Deleting Server Folders
	Delete Field Descriptions
	Related Topics

	Deleting Vaults
	Delete Field Descriptions
	Related Topics

	Deleting Versions from a Vault
	To delete vault versions using the DesignSync graphical interface:
	Delete Field Descriptions
	Related Topics

	Retiring Design Data
	Retire Field Descriptions
	Related Topics

	Removing a Member from a Module
	Related Topics

	Comparing Files
	Common Diff Operations
	Related Topics

	Advanced Diff Options
	Version-Extended Naming
	Field Descriptions
	Related Topics

	Reading Diff Results
	Display diff-annotated file (revised format)
	Display only the diffs (standard format)
	Display only the diffs (unified format)
	Display only the diffs (syncdiff format)
	Display diff-annotated file
	Display Output in GUI
	Related Topics

	Revised Diff Format
	Using Revised Diff Format
	Line Numbers First Version
	Line Numbers Second Version
	Change type
	Diff results

	Revised Diff Format Actions
	Next Diff
	Previous Diff
	Next Conflict
	Previous Conflict
	Find

	Related Topics

	Graphical Diff Utility
	Using Graphical Diff format
	Graphical Diff Format Tools
	Next Diff
	Previous Diff
	Next Conflict
	Previous Conflict
	Find
	Find Next
	Toggle Line Numbers
	Toggle Bottom Panel
	Toggle Scrollbars Sync
	Full Screen
	Related Topics

	Displaying Information
	Showing Potential Checkouts
	Related Topics

	Identifying Changed Objects
	Modified
	Needs Update
	Needs Merge
	In Conflict
	Unmanaged
	Related Topics

	Displaying Contents of Vault Data
	Contents Field Descriptions
	Related Topics

	Displaying Contents of Vault Data
	Contents Field Descriptions
	Related Topics

	Displaying a Module Cache
	To show the contents of a module cache:

	Displaying Module Hierarchy
	To display module hierarchy
	Results
	Related Topics

	Displaying Module Status
	To show the status of a module:

	Displaying Module Views
	Displaying Module Where Used
	Running the Where Used command
	Understanding the Where Used command output
	Where Used Actions
	Vault browser object context menu

	Displaying Enterprise Objects
	Compare the Contents of Two Areas
	Compare Workspaces/Selectors Field Descriptions
	Related Topics

	Compare the Contents of Two Areas
	Compare Workspaces/Selectors Field Descriptions
	Related Topics

	Displaying Version History
	Version History Field Descriptions
	Related Topics

	Controlling the Display of Module Information
	Displaying module versions
	Using Display Filters
	Display Filter Field Descriptions
	Related Topics

	Exploring Modules
	Annotate Tool
	Using Annotate
	Related Topics

	Annotate Actions
	Annotate Actions
	Related Topics

	Highlighting the Annotate results

	Vault Browser Tool
	Vault Browser Overview
	Objects Viewable in the Vault Browser
	The Vault Browser window
	Object SyncURL
	Branch object
	Version object
	Initial object version
	Selected object
	Related Topics

	Vault Browser Actions
	Vault browser object context menu
	Related Topics

	Vault Browser Tools
	Related Topics

	Filter Interesting Dialog
	Related Topics

	Finding Objects in the Vault Browser
	Find what text
	Match case
	Find tag
	Find author
	Find Numeric Name
	Apply to member branches or versions
	Related Topics

	Working in SITaR
	Using SITaR as a SITaR Designer
	The Designer Role
	Related Topics

	Creating a Workspace
	Related Topics

	Editing a Sub-Module
	Related Topics

	Synchronizing a Module with the Baseline
	Related Topics

	Submitting a Sub-Module for Integration
	Related Topics

	Synchronizing all Sub-Modules with the Baseline
	Related Topics

	Branching a Sub-Module
	Related Topics

	Using SITaR as a SITaR Integrator
	The Integrator Role
	The Integration Workspace
	Creating an Integration Workspace
	Related Topics

	Workflow for Updating the Container Module
	Related Topics

	Locating Submitted Modules for Integration
	Related Topics

	Selecting Sub-Modules for Integration
	Related Topics

	Integrating Selected Changes into the Container Module
	Related Topics

	Testing the Integration Version of the Container Module
	Locating a Context Module Version
	Recreating the Developer's Workspace
	Releasing a New Baseline
	Related Topics

	Branching a Container or Sub-Module
	Related Topics

	Configuring SITaR
	SITaR Environment Variables
	Related Topics

	Sample SITaR Environment Variable File
	Related Topics

	Creating a SITaR Container Module
	Related Topics

	Defining and Enabling Module Context
	Creating a SITaR Sub-Module
	Examples of using the sitr mkmod command
	Related Topics

	Creating an Initial Baseline Release
	Example of creating a baseline configuration:
	Related Topics

	Branching a Container or Sub-Module
	Related Topics

	Reference
	Overview of SITaR Workflow
	Designer and Integration Workspaces
	Related Topics

	SITaR Module Structure
	Designing and Implementing Your Module Structure
	Related Topics

	Branching in SITaR
	Related Topics

	Techniques
	Getting Started with the GUI
	Using the DesignSync GUI
	Assumed Environment:
	Creating a Work Area
	Task 1: Associate your local directory with the SyncServer folder and check in files.

	Creating a Work Area
	Task 1: Create and populate your work area folder

	Creating File Versions
	Task 2: Checking out a file for editing
	To check out a file with a lock:
	To check out with a lock all files in a folder and all of its subfolders:

	Task 3: Checking in a file
	To check in a folder of files:

	Task 4: Releasing a lock
	To cancel a checkout (and release the lock) on a file:

	Configuration/Release Management
	Task 5: Creating a design configuration/release
	Before you tag:
	To tag one or more files:
	To tag all file versions in a folder and all its subfolders within your work area:

	Task 6: Creating a work area based on a configuration/release
	To create a work area based on a configuration:

	Working with Files in Your DesignSync Work Area

	Getting Started with the Command Shell
	Using the DesignSync Command Shell
	Assumed Environment
	Creating a Work Area - Putting Files Under Revision Control
	Task 1: Associate your work area directory with the vault (SyncServer folder).
	To associate your work area with a SyncServer folder:

	Task 2: Check in your files.
	To check in of all files in the alu8 folder and all of its subfolders:

	Creating a Work Area - Joining a Project Already Under Revision Control
	Task 1: Associate your work area folder with a SyncServer folder.
	To associate your work area with a SyncServer folder:

	Task 2: Populate the work area with project data
	To populate your work area with copies of the data and files in the vault:

	Creating File Versions
	Task 3: Checking out a file for editing
	To check out a file with a lock:
	To check out with a lock all files in one folder:
	To check out with a lock all files in a folder and all of its subfolders:

	Task 4: Checking in a file
	To check in a file:
	To check in all files in a folder and all of its subfolders (a "blanket" checkin):

	Task 5: Releasing a lock
	To cancel a checkout (and release the lock) on a file:

	Configuration/Release Management
	Task 6: Creating a design configuration/release
	Before you tag:
	To tag all file versions in a folder and all its subfolders within your work area:

	Task 7: Creating a work area based on a configuration/release
	To create a work area based on a configuration:

	Working with Files in Your DesignSync Work Area

	Tutorials
	Creating Modules and Module Data
	Module Hierarchy: Module Structure
	Creating Module Hierarchy: Overview
	Creating Module Hierarchy: Create the Module
	Creating Module Hierarchy: Add Files and Check In
	Creating Module Hierarchy: Add an HREF to a Module in the Workspace
	Creating Module Hierarchy: Populate with Dynamic HREF Mode
	Creating Module Hierarchy: Add an HREF to a Module not in the Workspace
	Creating a Peer Structure Module Hierarchy

	Updating Module Hierarchy
	Modifying Module Hierarchy: Overview
	Modifying Module Hierarchy: New "Gold" Version of ALU Created
	Modifying Module Hierarchy: Chip Team Uses New ALU Version
	Modifying Module Hierarchy: CPU Team Reverts to Earlier ALU Version
	Moving a File
	Moving a Folder

	Operating with Module Data
	Operating on a Module
	Operating on a Module's Contents
	Filtering
	Persistent Populate Filter
	Folder-Centric Operations
	Module-Centric Operations on a Module
	Module-Centric Operations on a Subfolder
	Module-Centric Operations on an HREF
	Locking a Module Branch
	Locking Module Content
	Branching a Module

	Merging and Modules
	Auto-Merging Locally Added Files
	Auto-Merging Locally Modified Files
	Auto-Merging Locally Modified Files Removed from the Module
	Auto-Merging Non-Latest Locally Modified Files
	Auto-Merging Locally Modified Files Renamed in the Module
	Auto-Merging Locally Modified Files with Other Files Renamed in the Module
	In-Branch Merging of Locally Added Files
	In-Branch Merging of Locally Modified Files

	Step-by-Step Use Cases
	Creating Modules and Module Data
	Module Hierarchy: Module Structure
	Step 1: Module Structure
	Step 2: Module Structure
	Step 3: Module Structure
	Step 4: Module Structure

	Creating Module Hierarchy: Create the Module
	Step 1: Create the Module
	Step 2: Create the Module
	Step 3: Create the Module
	Step 4: Create the Module
	Step 5: Create the Module
	Step 6: Create the Module
	Step 7: Create the Module
	Step 8: Create the Module
	Step 9: Create the Module

	Creating Module Hierarchy: Add Files and Check In
	Step 1: Add Files and Check In
	Step 2: Add Files and Check In
	Step 3: Add Files and Check In
	Step 4: Add Files and Check In
	Step 5: Add Files and Check In
	Step 6: Add Files and Check In
	Step 7: Add Files and Check In
	Step 8: Add Files and Check In
	Step 9: Add Files and Check In

	Creating Module Hierarchy: Add an HREF to a Module in the Workspace
	Step 1: Add an HREF to a Module in the Workspace
	Step 2: Add an HREF to a Module in the Workspace
	Step 3: Add an HREF to a Module in the Workspace
	Step 4: Add an HREF to a Module in the Workspace
	Step 5: Add an HREF to a Module in the Workspace
	Step 6: Add an HREF to a Module in the Workspace
	Step 7: Add an HREF to a Module in the Workspace
	Step 8: Add an HREF to a Module in the Workspace

	Creating Module Hierarchy: Populate with Dynamic HREF Mode
	Step 1: Populate with Dynamic HREF Mode
	Step 2: Populate with Dynamic HREF Mode
	Step 3: Populate with Dynamic HREF Mode
	Step 4: Populate with Dynamic HREF Mode
	Step 5: Populate with Dynamic HREF Mode
	Step 6: Populate with Dynamic HREF Mode
	Step 7: Populate with Dynamic HREF Mode

	Creating Module Hierarchy: Add an HREF to a Module not in the Workspace
	Step 1: Add an HREF to a Module not in the Workspace
	Step 2: Add an HREF to a Module not in the Workspace
	Step 3: Add an HREF to a Module not in the Workspace
	Step 4: Add an HREF to a Module not in the Workspace
	Step 5: Add an HREF to a Module not in the Workspace

	Creating a Peer Structure Module Hierarchy
	Step 1: Creating a Peer Structure Module Hierarchy
	Step 2: Creating a Peer Structure Module Hierarchy
	Step 3: Creating a Peer Structure Module Hierarchy
	Step 4: Creating a Peer Structure Module Hierarchy
	Step 5: Creating a Peer Structure Module Hierarchy

	Updating Module Hierarchy
	Modifying Module Hierarchy: New "Gold" Version of ALU Created
	Step 1: New "Gold" Version of ALU Created
	Step 2: New "Gold" Version of ALU Created
	Step 3: New "Gold" Version of ALU Created
	Step 4: New "Gold" Version of ALU Created
	Step 5: New "Gold" Version of ALU Created

	Modifying Module Hierarchy: Chip Team Uses New ALU Version
	Step 1: Chip Team Uses New ALU Version
	Step 2: Chip Team Uses New ALU Version
	Step 3: Chip Team Uses New ALU Version
	Step 4: Chip Team Uses New ALU Version
	Step 5: Chip Team Uses New ALU Version
	Step 6: Chip Team Uses New ALU Version
	Step 7: Chip Team Uses New ALU Version
	Step 8: Chip Team Uses New ALU Version
	Step 9: Chip Team Uses New ALU Version

	Modifying Module Hierarchy: CPU Team Reverts to Earlier ALU Version
	Step 1: CPU Team Reverts to Earlier ALU Version
	Step 2: CPU Team Reverts to Earlier ALU Version
	Step 3: CPU Team Reverts to Earlier ALU Version
	Step 4: CPU Team Reverts to Earlier ALU Version
	Step 5: CPU Team Reverts to Earlier ALU Version
	Step 6: CPU Team Reverts to Earlier ALU Version

	Moving a File
	Step 1: Moving a File
	Step 2: Moving a File
	Step 3: Moving a File
	Step 4: Moving a File
	Step 5: Moving a File
	Step 6: Moving a File

	Moving a Folder
	Step 1: Moving a Folder
	Step 2: Moving a Folder
	Step 3: Moving a Folder
	Step 4: Moving a Folder
	Step 5: Moving a Folder
	Step 6: Moving a Folder

	Operating with Module Data
	Operating on a Module
	Step 1: Operating on a Module
	Step 2: Operating on a Module
	Step 3: Operating on a Module
	Step 4: Operating on a Module
	Step 5: Operating on a Module
	Step 6: Operating on a Module
	Step 7: Operating on a Module
	Step 8: Operating on a Module

	Operating on a Module's Contents
	Step 1: Operating on a Module's Contents
	Step 2: Operating on a Module's Contents
	Step 3: Operating on a Module's Contents
	Step 4: Operating on a Module's Contents
	Step 5: Operating on a Module's Contents
	Step 6: Operating on a Module's Contents
	Step 7: Operating on a Module's Contents

	Filtering
	Step 1: Filtering
	Step 2: Filtering
	Step 3: Filtering
	Step 4: Filtering
	Step 5: Filtering
	Step 6: Filtering
	Step 7: Filtering
	Step 8: Filtering
	Step 9: Filtering
	Step 10: Filtering
	Step 11: Filtering
	Step 12: Filtering

	Persistent Populate Filter
	Step 1: Persistent Populate Filter
	Step 2: Persistent Populate Filter
	Step 3: Persistent Populate Filter
	Step 4: Persistent Populate Filter
	Step 5: Persistent Populate Filter
	Step 6: Persistent Populate Filter
	Step 7: Persistent Populate Filter

	Folder-Centric Operations
	Step 1: Folder-Centric Operations
	Step 2: Folder-Centric Operations
	Step 3: Folder-Centric Operations
	Step 4: Folder-Centric Operations
	Step 5: Folder-Centric Operations

	Module-Centric Operations on a Module
	Step 1: Module-Centric Operations on a Module
	Step 2: Module-Centric Operations on a Module
	Step 3: Module-Centric Operations on a Module

	Module-Centric Operations on a Subfolder
	Step 1: Module-Centric Operations on a Subfolder
	Step 2: Module-Centric Operations on a Subfolder
	Step 3: Module Centric Operations on a Subfolder
	Step 4: Module-Centric Operations on a Subfolder
	Step 5: Module-Centric Operations on a Subfolder

	Module-Centric Operations on an HREF
	Step 1: Module-Centric Operations on an HREF
	Step 2: Module-Centric Operations on an HREF
	Step 3: Module-Centric Operations on an HREF
	Step 4: Module-Centric Operations on an HREF
	Step 5: Module-Centric Operations on an HREF

	Locking a Module Branch
	Step 1: Locking a Module Branch
	Step 2: Locking a Module Branch
	Step 3: Locking a Module Branch
	Step 4: Locking a Module Branch
	Step 5: Locking a Module Branch
	Step 6: Locking a Module Branch
	Step 7: Locking a Module Branch

	Locking Module Content
	Step 1: Locking Module Content
	Step 2: Locking Module Content
	Step 3: Locking Module Content
	Step 4: Locking Module Content
	Step 5: Locking Module Content
	Step 6: Locking Module Content
	Step 7: Locking Module Content
	Step 8: Locking Module Content
	Step 9: Locking Module Content
	Step 10: Locking Module Content
	Step 11: Locking Module Content
	Step 12: Locking Module Content

	Branching a Module
	Step 1: Branching a Module
	Step 2: Branching a Module
	Step 3: Branching a Module
	Step 4: Branching a Module
	Step 5: Branching a Module
	Step 6: Branching a Module

	Merging and Modules
	Auto-Merging Locally Added Files
	Step 1: Auto-Merging Locally Added Files
	Step 2: Auto-Merging Locally Added Files
	Step 3: Auto-Merging Locally Added Files
	Step 4: Auto-Merging Locally Added Files

	Auto-Merging Locally Modified Files
	Step 1: Auto-Merging Locally Modified Files
	Step 2: Auto-Merging Locally Modified Files
	Step 3: Auto-Merging Locally Modified Files
	Step 4: Auto-Merging Locally Modified Files
	Step 5: Auto-Merging Locally Modified Files
	Step 6: Auto-Merging Locally Modified Files

	Auto-Merging Locally Modified Files Removed from the Module
	Step 1: Auto-Merging Locally Modified Files Removed from the Module
	Step 2: Auto-Merging Locally Modified Files Removed from the Module
	Step 3: Auto-Merging Locally Modified Files Removed from the Module
	Step 4: Auto-Merging Locally Modified Files Removed from the Module
	Step 5: Auto-Merging Locally Modified Files Removed from the Module

	Auto-Merging Non-Latest Locally Modified Files
	Step 1: Auto-Merging Non-Latest Locally Modified Files
	Step 2: Auto-Merging Non-Latest Locally Modified Files
	Step 3: Auto-Merging Non-Latest Locally Modified Files
	Step 4: Auto-Merging Non-Latest Locally Modified Files

	Auto-Merging Locally Modified Files Renamed in the Module
	Step 1: Auto-Merging Locally Modified Files Renamed in the Module
	Step 2: Auto-Merging Locally Modified Files Renamed in the Module
	Step 3: Auto-Merging Locally Modified Files Renamed in the Module
	Step 4: Auto-Merging Locally Modified Files Renamed in the Module

	Auto-Merging Locally Modified Files with Other Files Renamed in the Module
	Step 1: Auto-Merging Locally Modified Files with Other Files Renamed in the Module
	Step 2: Auto-Merging Locally Modified Files with Other Files Renamed in the Module
	Step 3: Auto-Merging Locally Modified Files with Other Files Renamed in the Module
	Step 4: Auto-Merging Locally Modified Files with Other Files Renamed in the Module

	In-Branch Merging of Locally Added Files
	Step 1: In-Branch Merging of Locally Added Files
	Step 2: In-Branch Merging of Locally Added Files
	Step 3: In-Branch Merging of Locally Added Files
	Step 4: In-Branch Merging of Locally Added Files
	Step 5: In-Branch Merging of Locally Added Files
	Step 6: In-Branch Merging of Locally Added Files

	In-Branch Merging of Locally Modified Files
	Step 1: In-Branch Merging of Locally Modified Files
	Step 2: In-Branch Merging of Locally Modified Files
	Step 3: In-Branch Merging of Locally Modified Files
	Step 4: In-Branch Merging of Locally Modified Files
	Step 5: In-Branch Merging of Locally Modified Files
	Step 6: In-Branch Merging of Locally Modified Files

	Reference
	Understanding the DesignSync Architecture
	DesignSync Architecture
	Related Topics

	What Is a SyncServer?
	Related Topics

	Object States
	Saving the Setting of an Object's State
	Related Topics

	Object Types
	Object Properties
	Viewing and Setting Properties
	General Properties
	Related Topics

	Revision Control Properties
	Related Topics

	Module Objects Properties
	Related Topics

	Version Properties
	Related Topics

	Tags Properties
	Related Topics

	Collection Properties
	Collection Properties Field Descriptions
	Members
	Update Members
	Related Topics

	Collection Member Properties
	Related Topics

	URL Syntax
	Reserved Characters
	Reserved File Extensions

	DesignSync URLs
	Related Topics

	Revision Control Status Values
	Related Topics

	Vaults, Versions, and Branches
	Related Topics

	Introduction to Data Replication
	Related topics

	Metadata Overview
	Local metadata
	Related Topics

	Mirrors
	Mirroring Overview
	Mirror Attributes
	Restrictions
	Related Topics

	Using a Mirror
	Setting Up Your Workspace
	Changing the Mirror Directory Associated with Your Workspace
	Disassociating Your Workspace from a Mirror Directory
	Using the -mirror Option to Commands
	Related Topics

	Architecture of the Mirror System
	Administering Mirrors
	Related Topics

	Understanding the GUI Interface
	Using the Classic DesignSync GUI
	Using the Workspace Structure Browser
	DesignSync Symbols and Icons
	Informational Symbols
	Object Icons
	Revision Control Object Icons
	Lock Symbols
	State Overlay Symbols

	Toolbars and Menus
	Using Toolbars
	Main Menu Toolbar
	Module Toolbar
	Related Topics

	Context Toolbar
	File Menu
	Edit Menu
	View Menu
	Related Topic

	Go Menu
	Bookmarks Menu
	Related Topic

	Revision Control Menu
	Modules Menu
	Workspace Structure Menu
	Context Menu
	Location Bar
	File Name and Path Name Completion
	Related Topics

	Tools Menu
	Help Menu
	Related Topic

	Special keystroke operations

	Classic Windows and Panes
	View Pane
	Related Topics

	Modules Explorer
	Related Topics

	Tree View Pane
	Related Topics

	List View Pane
	Related Topics

	Output Window
	Results Display
	Command Shell Window
	Command Line Completion
	Related Topics

	Status Bar
	Related Topics

	Workspace Structure Browser Windows and Views
	Workspace Navigator
	Workspace Navigator View Descriptions
	Workspace Navigator View
	Filter

	Related Topics

	Workspace Navigator View Actions
	Related Topics

	Module Hierarchy View
	Module Hierarchy View Descriptions
	Module Hierarchy View
	Filter

	Related Topics

	Module Hierarchy View Actions
	Related Topics

	Properties View
	Related Topics

	Design Assistant View
	Related Topics

	DesignSync Shells
	DesignSync Command Line Shells
	Related Topics

	Comparing the DesignSync Shells
	Related Topics

	Invoking a DesignSync Shell
	Related Topics

	Command Line Editing
	Key Bindings
	Command and Filename Completion
	Examples of Command, Option, and Filename Completion

	Command History
	Command History Search
	Related Topics

	Working with Command Aliases
	Related Topics

	Configuring the DesignSync Interface
	Configuring DesignSync
	Related Topics

	Controlling Access to Your Local Work Area
	Related Topics

	Setting Up a Shared Work Area
	To set up a shared work area where locks can be applied on an individual basis:
	To set up a shared work area where locks are shared:
	Related Topics

	Moving a Work Area
	The Role of setvault in Moving a Work Area
	Moving a Work Area Yet Preserving Its Vault Association
	Moving a Work Area and Creating New Project Data
	Related Topics

	UNIX Permissions of Work Areas and Vaults
	How your umask Affects Local Permissions
	How Shared Workspaces Affect Local File Permissions
	How the Default Fetch Preference Affects Fetched Copies
	How UNIX Permissions on Vault Files are Managed
	How Cache and Mirror UNIX Permissions Affect Local File Permissions

	Command Line Defaults System
	Related Topic

	Working with Scripts
	DesignSync Scripts
	Using DesignSync Commands in OS Shell Scripts
	Related Topics

	Creating DesignSync Scripts
	Related Topics

	Running Scripts
	Related Topics

	Running a Script at Startup
	Related Topics

	Improving Efficiency Using Caches and Mirrors
	Mirrors Versus Caches
	What is a File Cache?
	Related Topics

	Why Use a File Cache?
	Related Topics

	What is a Module Cache?
	Related topics

	Mirroring Overview
	Mirror Attributes
	Restrictions
	Related Topics

	Locking, Branching, and Merging
	What Is Merging?
	Related Topics

	Locking and Merging Work Styles
	Locking and Merging Work Styles
	Related Topics

	Using the Locking Work Style
	Related Topics

	Merge Conflicts
	Resolving Merge Conflicts
	Related Topics

	Selecting Versions and Branches
	Selecting Versions and Branches
	Related Topics

	What Are Selectors?
	Static Selectors Versus Dynamic Selectors
	How Branch and Version Selectors Are Resolved
	Related Topics

	What Are Selector Lists?
	Related Topics

	What Are Persistent Selector Lists
	Related Topics

	Selector Formats
	Using Latest and Date() Selectors
	Related Topics

	Date Formats
	Related Topics

	Parallel (Multi-Branch) Development
	Using the Merging Work Style
	Related Topics

	Parallel (Multi-Branch) Development
	Related Topics

	Methods for Creating Branches
	Related Topics

	Other Branch Operations
	Related Topics

	Example Branching Scenarios
	Feature or Subproject Branches
	Policy Branches
	Autobranching: Exploring "What If" Scenarios

	Working with Legacy Modules
	How DesignSync Handles Legacy Modules
	Related Topics

	Upgrading Legacy Modules
	Types of Objects Created During the hcm upgrade Command
	Module:
	Module branches:
	Module versions:
	Module branch tags:
	Module version tags:
	Hierarchical References:
	An Example of Upgrading a Legacy Module
	Related Topics

	Upgrading DesignSync Vaults
	Module:
	Module branches:
	Module versions:
	Module branch tags:
	Module version tags:
	Hierarchical References:
	An Example of Upgrading a DesignSync Vault
	Related Topics

	Managing Legacy Configurations and REFERENCEs
	Managing Non-HCM Configurations
	What Is a Design Configuration?
	Creating a Design Configuration
	Tracking Development with Design Configurations
	Mapping Configurations for Design Reuse
	Creating Releases
	Using Tags

	Using Vault REFERENCEs for Design Reuse
	Using Vault REFERENCEs for Design Reuse
	REFERENCEs and Revision Control Commands
	REFERENCEs and the populate Command
	REFERENCEs and the tag Command

	REFERENCE Chaining

	Collections
	Collections Overview
	Displaying Collections
	Displaying a Collection's Members
	Identifying the Collection to which a Member Object Belongs
	Related Topics

	Cadence Collections
	Cadence Design Objects Overview
	Related Topics

	Enabling Cadence Object Recognition
	Related Topics

	How DesignSync Recognizes Cadence Data
	Related Topics

	How DesignSync Manages Cadence Objects
	Operating on Cadence Data
	Related Topics

	Managing Non-Collection Objects
	Related Topics

	Custom Type Package Collections
	Custom Type Package Collections Overview
	Enabling CTP Object Recognition

	How DesignSync Recognizes CTP Data

	Integration with ENOVIA Program Central
	Using the ENOVIA Semiconductor Accelerator for DesignSync Central
	Using the ENOVIA Semiconductor Accelerator for IP Management

	User Interface
	Performing GUI operations
	Selecting Objects
	Going to a Location
	Go Menu Option
	Location Bar Option
	Related Topics

	Navigating the Tree View
	Related Topics

	Adding, Editing, and Organizing Bookmarks
	Adding a Bookmark
	Editing and Organizing Bookmarks
	Related Topics

	Defining and Modifying Bookmark Properties
	Searching for Text
	Reviewing History
	Using Data Sheets
	Related Topics

	Setting the Verbosity of the Output Window
	Viewing the Results of an Operation

	Common Interface Topics
	Comment Field
	Related Topics

	Exclude Field
	Filter Field
	Force Overwrite of Local Modifications Option
	Href Filter Field
	Keys Field
	Related Topics

	Local Versions Field
	Module Context Field
	Module Views Field
	Populate Log
	Example of populate log
	Related Topics

	Recursion Option
	Retain Timestamp Field
	Suggested Branches, Versions, and Tags
	Trigger arguments
	Command Invocation
	Command Buttons

	Get Tags/Versions
	Select a path
	Select Module Context
	Related Topics

	Select Module Instance
	Related Topics

	Select Parent Module
	Related Topics

	Select Vault URL Browser
	Filter Interesting Dialog
	Related Topics

	Select a Member Descendant
	Member Descendant
	Related Topics

	Index

