Geometrically nonlinear static problems can become unstable for a variety of reasons. Instability may occur in contact problems, either because of chattering or because contact intended to prevent rigid body motions is not established initially. Localized instabilities can also occur; they can be either geometrical, such as local buckling, or material, such as material softening.
This problem models the thermal forming of a metal sheet; the shape of the die may make it difficult to place the undeformed sheet exactly in initial contact, in which case the initial rigid body motion prevention algorithm is useful. Metal forming problems are characterized by relatively simply shaped parts being deformed by relatively complex-shaped dies. The initial placement of the workpiece on a die or the initial placement of a second die may not be a trivial geometrical exercise for an engineer modeling the forming process. Abaqus accepts initial penetrations in contact pairs and instantaneously tries to resolve them; as long as the geometry allows for this to happen without excessive deformation, the misplacement of the workpiece usually does not cause problems. On the other hand, if the workpiece is initially placed away from the dies, serious convergence problems may arise. Unless there are enough boundary conditions applied or a stabilization method is used, singular finite element systems of equations result because one or more of the bodies has free rigid body motions. This typically arises when the deformation is applied through loads instead of boundary conditions. Contact stabilization can be helpful for avoiding convergence problems while contact is established without significantly influencing the results of interest (see Automatic Stabilization of Rigid Body Motions in Contact Problems).
This example looks at the thermal forming of an aluminum sheet. The deformation is produced by applying pressure and gravity loads to push the sheet against a sculptured die. The deformation is initially elastic. Through heating, the yield stress of the material is lowered until permanent plastic deformations are produced. Subsequently, the assembly is cooled and the pressure loads are removed, leaving a formed part with some springback. Although the sheet is initially flat, the geometrical nature of the die makes it difficult to determine the exact location of the sheet when it is placed on the die. Therefore, an initial gap between the two bodies is modeled, as shown in Figure 1.