Abaqus Analysis Guide

What's New

R2022x FD01 (FP.2205)

R2022x GA

Analysis Procedures

Introduction

Solving Analysis Problems

Abaqus/Standard Analysis

Abaqus/Explicit Analysis

Multiphysics Analyses

Defining an Analysis

Defining an Analysis

General Analysis Steps Versus Linear Perturbation Steps

Multiple Steps

Defining Time Varying Prescribed Conditions

Incrementation

Severe Discontinuities in Abaqus/Standard

Matrix Storage and Solution Scheme in Abaqus/Standard

Precision Level of the Abaqus/Explicit Executable

General and Perturbation Procedures

General Analysis Steps

Linear Perturbation Analysis Steps

Multiple Load Case Analysis

Load Cases

Using Multiple Load Cases

Defining Load Cases

Procedures

Boundary Conditions

Loads

Predefined Fields

Elements

Output

Limitations

Input File Template

Multiple Nonlinear Load Case Analysis

Nonlinear Load Cases

Using Multiple Nonlinear Load Cases

Defining Nonlinear Load Cases

Execution of Nonlinear Load Cases

Procedures

Specifying the Base State

Results Output Format

Support for Element and Contact Pair Removal

Reducing Output File Size

Input File Template

Direct Linear Equation Solver

The Sparse Solver

Iterative Linear Equation Solver

Iterative Solver Basics

Deciding to Use the Iterative Solver

Static Stress/Displacement Analysis

About Static Stress Analysis Procedures

Static Stress Analysis

Time Period

Linear Static Analysis

Nonlinear Static Analysis

Steady-State Frictional Sliding

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

Quasi-Static Analysis

Incrementation

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

Direct Cyclic Analysis

Introduction

Direct Cyclic Analysis

Controlling the Solution Accuracy

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Limitations

Input File Template

Eigenvalue Buckling Prediction

General Eigenvalue Buckling

The Eigenvalue Problem

Understanding Negative Eigenvalues

Including Large Geometry Changes in a Buckling Analysis

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

Unstable Collapse and Postbuckling Analysis

Unstable Response

The Riks Method

Ending a Riks Analysis Step

Bifurcation

Obtaining a Solution at a Particular Load or Displacement Value

Restrictions

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

Linear Elastic Fatigue Crack Growth Analysis

Define a Fatigue Crack Growth Analysis

Discrete Crack Propagation along an Arbitrary Path with the Extended Finite Element Method

Progressive Delamination Growth along a Predefined Path at Interfaces

Controlling Element Fracture

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Limitations

Input File Template

References

Low-Cycle Fatigue Analysis Using the Direct Cyclic Approach

Approaches to Low-Cycle Fatigue Analysis

Progressive Damage and Damage Extrapolation in Bulk Ductile Material Based on Continuum Damage Mechanics Approach

Discrete Crack Propagation along an Arbitrary Path Based on the Principles of Linear Elastic Fracture Mechanics with the Extended Finite Element Method

Progressive Delamination Growth along a Pre-Defined Path at Interfaces

Controlling the Solution Accuracy

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Limitations

Input File Template

References

Dynamic Stress/Displacement Analysis

About Dynamic Analysis Procedures

Implicit Versus Explicit Dynamics

Direct-Solution Versus Modal Superposition Procedures

Using the SIM Architecture for Modal Superposition Dynamic Analyses

Reaction Force Calculations in Mode-Based Dynamic Analyses

Nonphysical Material Properties in Dynamic Analyses

Damping in Dynamic Analysis

Acoustic Contribution Factors in Mode-Based and Subspace-Based Steady-State Dynamic Analyses

Implicit Dynamic Analysis Using Direct Integration

General Dynamic Analysis

The “Subspace Projection” Method

Material Damping

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

References

Explicit Dynamic Analysis

Explicit Dynamic Procedure

Central-Difference Time Integration with Implicit Corrections

Nodal Mass and Inertia

Stability

Dilatational Wave Speed

Time Incrementation

Advantages of the Explicit Method

Computational Cost

Bulk Viscosity

Material Damping

Obtaining Diagnostic Information about Critical Elements

Obtaining Diagnostic Information about the Deformation Speed

Monitoring Output Variables for Extreme Values

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

Direct-Solution Steady-State Dynamic Analysis

Introduction

The Bias Parameter

The Frequency Scale Factor

Damping

Contact Conditions with Sliding Friction

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input file template

Natural Frequency Extraction

Eigenvalue Extraction

Selecting the Eigenvalue Extraction Method

Structural-Acoustic Coupling

Frequency Shift

Normalization

Residual Modes

Evaluating Frequency-Dependent Material Properties

Generating a Flexible Body

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

Complex Eigenvalue Extraction

Complex Eigenvalue Extraction

Contact Conditions with Sliding Friction

Damping

Prescribing Motion, Transport Velocity, and Acoustic Flow Velocity

Stiffness Projection Performance

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

Transient Modal Dynamic Analysis

Modal Dynamic Analysis

Selecting the Modes and Specifying Damping

Initial conditions

Boundary conditions

Loads

Predefined fields

Material options

Elements

Output

Input file template

Mode-Based Steady-State Dynamic Analysis

Introduction

The Bias Parameter

The Frequency Scale Factor

Selecting the Modes and Specifying Damping

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

Subspace-Based Steady-State Dynamic Analysis

Introduction

The Bias Parameter

The Frequency Scale Factor

Damping

Contact Conditions with Sliding Friction

Selecting the Modes on Which to Project

Selecting the Subspace Projection Frequency

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

Response Spectrum Analysis

Response Spectrum Analysis

Specifying a Spectrum

Estimating the Peak Values of the Modal Responses

Combining the Individual Peak Responses

Separation of Modal Responses into Periodic and Rigid Responses

Selecting the Modes and Specifying Damping

Using the Missing Mass Method

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

References

Random Response Analysis

Random Response Analysis

Defining the Frequency Functions

Defining the Correlation

Selecting the Modes and Specifying Damping

Initial conditions

Boundary conditions

Loads

Predefined fields

Material options

Elements

Output

Input file template

Steady-State Transport Analysis

Steady-State Transport Analysis

Defining the Model

Defining Reference Frame Motions

Contact Conditions

Incrementation

Convergence in a Steady-State Transport Analysis

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Limitations

Input File Template

Heat Transfer and Thermal-Stress Analysis

About Heat Transfer Analysis Procedures

Uncoupled Heat Transfer Analysis

Heat Transfer Analysis in Abaqus/Standard

Initial conditions

Boundary conditions

Loads

Predefined fields

Material options

Elements

Output

Input file template

Fully Coupled Thermal-Stress Analysis

Fully Coupled Thermal-Stress Analysis

Fully Coupled Thermal-Stress Analysis in Abaqus/Standard

Fully Coupled Thermal-Stress Analysis in Abaqus/Explicit

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

Adiabatic Analysis

Adiabatic Analysis

Subsequent Thermal Diffusion Analysis in Abaqus/Standard

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

Electromagnetic Analysis

Electromagnetic Analysis Procedures

Electrostatic, Electrical Conduction, Magnetostatic, and Electromagnetic Analyses

Piezoelectric Analysis

Piezoelectric Response

Procedures Available for Piezoelectric Analysis

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Limitations

Input File Template

Coupled Thermal-Electrical Analysis

Coupled Thermal-Electrical Analysis

Governing Electric Field Equation

Specifying the Amount of Thermal Energy Generated due to Electrical Current

Steady-State Analysis

Transient Analysis

Fully Coupled Solution Schemes

Uncoupled Electric Conduction and Heat Transfer Analysis

Cavity Radiation

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

Fully Coupled Thermal-Electrical-Structural Analysis

Fully Coupled Thermal-Electrical-Structural Analysis

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

Eddy Current Analysis

Eddy Current Analysis

Governing Field Equations

Time-Harmonic Analysis

Transient Analysis

Ill-Conditioning in Eddy Current Analyses with Electrically Nonconductive Regions

Prescribed Conductor Motion

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

References

Magnetostatic Analysis

Magnetostatic Analysis

Governing Field Equations

Magnetostatic Analysis

Ill-Conditioning in Magnetostatic Analyses

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

Electrochemical Analysis

Coupled Thermal-Electrochemical Analysis

Typical Application

Coupled Thermal-Electrochemical Analysis

Governing Equations

Fully Coupled Solution Scheme

Steady-State Analysis

Transient Analysis

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

References

Fully Coupled Thermal-Electrochemical-Structural Analysis

Typical Application

Coupled Thermal-Electrochemical-Structural Analysis

Governing Equations

Fully Coupled Solution Scheme

Steady-State Analysis

Transient Analysis

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

References

Parameter Table Type Reference

ABQ_EChemPET_Arrhenius

Parameter Table Type Definition

Parameters

ABQ_EChemPET_CubicSplineC2

Parameter Table Type Definition

Parameters

ABQ_EChemPET_Electrode_Definition

Parameter Table Type Definition

Parameters

ABQ_EChemPET_Electrode_Particle_ButlerVolmer

Parameter Table Type Definition

Parameters

ABQ_EChemPET_Electrode_Particle_Layer_Diffusion

Parameter Table Type Definition

Parameters

ABQ_EChemPET_Electrode_Particle_Layer_Discretization

Parameter Table Type Definition

Parameters

ABQ_EChemPET_Electrode_Particle_Layers

Parameter Table Type Definition

Parameters

ABQ_EChemPET_Electrode_Particle_PowerLoss

Parameter Table Type Definition

Parameters

ABQ_EChemPET_Electrode_Particles

Parameter Table Type Definition

Parameters

ABQ_EChemPET_Electrode_PowerLoss

Parameter Table Type Definition

Parameters

ABQ_EChemPET_Electrode_Swelling

Parameter Table Type Definition

Parameters

ABQ_EChemPET_Electrolyte

Parameter Table Type Definition

Parameters

Property Table Type Reference

ABQ_EChemPET_Electrode_ElecCond_Tabular

Property Table Type Definition

Properties

Independent Variables

ABQ_EChemPET_Electrode_Particle_CurrXchgDens_Tabular

Property Table Type Definition

Properties

Independent Variables

ABQ_EChemPET_Electrode_Particle_dUdTEntropy_Tabular

Property Table Type Definition

Properties

Independent Variables

ABQ_EChemPET_Electrode_Particle_Layer_DsTabular

Property Table Type Definition

Properties

Independent Variables

ABQ_EChemPET_Electrode_Particle_Layer_OCPTabular

Property Table Type Definition

Properties

Independent Variables

ABQ_EChemPET_Electrode_Particle_Layer_SwellingTabular

Property Table Type Definition

Properties

Independent Variables

ABQ_EChemPET_Electrolyte_DiffTabular

Property Table Type Definition

Properties

Independent Variables

ABQ_EChemPET_Electrolyte_ElecCond_Tabular

Property Table Type Definition

Properties

Independent Variables

ABQ_EChemPET_Electrolyte_MolarActivityCoeff_fPM

Property Table Type Definition

Properties

Independent Variables

ABQ_EChemPET_Electrolyte_Transference

Property Table Type Definition

Properties

Independent Variables

ABQ_EChemPET_LogScale_Tabular

Property Table Type Definition

Properties

Independent Variables

Coupled Pore Fluid Flow and Stress Analysis

Coupled Pore Fluid Diffusion and Stress Analysis

Typical Applications

Flow through Porous Media

Coupled Flow and Heat Transfer through Porous Media

Total and Excess Pore Fluid Pressure

Steady-State Analysis

Transient Analysis

Optional Modeling of Coupled Heat Transfer

Units

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

References

Geostatic Stress State

Establishing Geostatic Equilibrium

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

Mass Diffusion Analysis

Governing Equations

Fick's Law

Units

Steady-State Analysis

Transient Analysis

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

References

Acoustic, Shock, and Coupled Acoustic-Structural Analysis

Procedures Available for Acoustic Analysis

Defining Translational or Rotational Underlying Flow Velocity in Abaqus/Standard

Updating the Acoustic Domain during a Large-Displacement Abaqus/Standard Analysis

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

Abaqus/Aqua Analysis

Procedures Available for Aqua Analysis

Defining an Abaqus/Aqua Problem

Defining the Fluid Properties

Defining a Steady Current

Defining Gravity Waves

Defining a Wind Velocity Profile

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

Annealing

The Annealing Process

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

One-Step Inverse Analysis

Introduction

Part Definition

Incrementation

Controlling the Solution Accuracy

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Constraints

Output

Limitations

Input File Template

References

Analysis Solution and Control

Solving Nonlinear Problems

The Solution of Nonlinear Problems

Convergence

Solution Method

Automatic Incrementation Control

Automatic Stabilization of Unstable Problems

Input File Template

Analysis Convergence Controls

About Convergence and Time Integration Criteria

Modifying the Default Solution Controls

Commonly Used Control Parameters

Terminology

Defining Tolerances for Field Equations

Controlling the Time Incrementation Scheme

Activating the “Line Search” Algorithm

Defining Tolerances for Constraint Equations

Controlling the Solution Accuracy in Direct Cyclic Analysis

Convergence Criteria for Nonlinear Problems

Field Equations

Controlling the Accuracy of the Solution

Controlling Iteration

Convergence of Strain Constraints in Hybrid Elements

Severe Discontinuity Iterations

Improving the Efficiency of the Solution by Using the Line Search Algorithm

Time Integration Accuracy in Transient Problems

Time Incrementation Parameters and Adjustment Criteria

Avoiding Small Changes to the Time Increment Size during Implicit Integration Procedures

Analysis Techniques

About Analysis Techniques

Analysis Continuation Techniques

Modeling Abstractions

Special-Purpose Techniques

Adaptivity Techniques

Eulerian Analysis

Particle Methods

Sequentially Coupled Multiphysics Analyses

Co-Simulation

Extending Abaqus Analysis Functionality

Design Sensitivity Analysis

Parametric Studies

Availability of Analysis Techniques

Analysis Continuation Techniques

Restarting an Analysis

Writing Restart Files

Restarting an Analysis

Simultaneously Reading and Writing a Restart File

Continuation of Output upon Restart

Restart Compatibility

Importing and Transferring Results

About Transferring Results between Abaqus Analyses

Saving the Analysis Results

Specifying the Transfer of Model Data and Results

Limitations for Import from Multiple Previous Analyses

Transferring Results between Abaqus/Explicit and Abaqus/Standard

Specifying New Data in an Import Analysis

Procedures

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Constraints

Interactions

Output

Limitations

Input File Template

Transferring Results from One Abaqus/Standard Analysis to Another

Comparison with the Restart Capability

Specifying New Data in an Import Analysis

Procedures

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Constraints

Interactions

Output

Limitations

Input File Template

Transferring Results from One Abaqus/Explicit Analysis to Another

Comparison with the Restart Capability

Specifying New Data in an Import Analysis

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Constraints

Interactions

Output

Limitations

Input File Template

Modeling Abstractions

Substructures

Using Substructures

Substructures

Substructure Size

Valid Procedures

Including Substructures in a Model

Ordering of the Substructure Nodes on the Usage Level

Defining the Substructure's Properties

Defining Kinematic Constraints and Transformations

Performing Parametric Studies on the Substructure Stiffness Matrix

Applying Loads to a Substructure

Obtaining Output of the Solution for All of the Substructure Degrees of Freedom

Obtaining Output of Results within a Substructure

Substructure Compatibility

Input File Template

Generating Substructures

Generating a Substructure

Alternative Method for Naming a Substructure

Substructure Database

Recovery within a Substructure

Evaluating Frequency-Dependent Material Properties

Defining the Retained Nodal Degrees of Freedom

Defining the Generalized Degrees of Freedom

Substructure Size

Preloading a Substructure

Generating a Reduced Stiffness Matrix for a Substructure

Generating a Reduced Mass Matrix for a Substructure

Generating a Reduced Viscous Damping Matrix for a Substructure

Generating a Reduced Structural Damping Matrix for a Substructure

Generating Substructures with Unsymmetric Reduced Damping Matrices

Defining Substructure Load Cases for Subsequent Loading in an Analysis

Substructure Eigenvalue Problem

Checking Generated Substructure Matrices

Generating a Flexible Body

Writing the Recovery Matrix, Reduced Stiffness Matrix, Mass Matrix, Load Case Vectors, and Gravity Vectors to a File

Generating Frequency-Based Substructures

Generating Frequency-Based Substructures in a Single Analysis

Generating Frequency-Based Substructures Using the Restart Capability

Example: Generating Frequency-Based Substructures Using the Restart Capability

Limitations

Submodeling

About Submodeling

Terminology

Submodeling Techniques

Node-Based Submodeling

Surface-Based Submodeling

Performing a Submodeling Analysis

Specifying the Global Elements Used to Drive the Submodel

Minimizing File Sizes

Frequency of Output

Material options

Elements

Output

Node-Based Submodeling

Performing a Node-Based Submodeling Analysis

Saving the Results from the Global Model

Specifying the Driven Nodes in the Submodel

Defining the Driven Variables in the Submodel

Special Considerations

Procedures

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

Surface-Based Submodeling

Performing a Surface-Based Submodeling Analysis

Saving the Results from the Global Model

Specifying the Driven Surfaces in the Submodel

Defining the Driven Surface Tractions in the Submodel

Guidelines for Obtaining Adequate Solution Accuracy

Special Considerations

Procedures

Loads

Output

Input File Template

Matrices

Using Matrices

What Is a Matrix in Abaqus/Standard?

Including Matrices in a Model

Defining the Stiffness, Mass, and Damping with Matrices Included in a Model

Using Matrices in Nonlinear Analyses

Using Matrices in Linear Perturbation Analyses

Constraints and Transformations

Initial Conditions

Boundary Conditions

Loads

Output

Limitations

Input File Template

Generating Structural Matrices

Matrix Generation

Export

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

Generating Thermal Matrices

Introduction

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Limitations

Input File Template

Symmetric Model Generation, Results Transfer, and Analysis of Cyclic Symmetry Models

Symmetric Model Generation

Model Generation

Revolving an Axisymmetric Cross-Section

Revolving a Three-Dimensional Sector to Create a Periodic Model

Reflecting a Partial Three-Dimensional Model

Transferring Results from a Symmetric Mesh or a Partial Three-Dimensional Mesh to a Full Three-Dimensional Mesh

Transferring the Solution from a Symmetric Mesh or a Partial Three-Dimensional Mesh to a Full Three-Dimensional Mesh

Identifying the Restart Files

Verifying the New Model

Orientation System

Coordinate System at Nodes

Limitations

Initial Conditions

Boundary Conditions

Loads

Material Options

Elements

Output

Analysis of Models That Exhibit Cyclic Symmetry

Introduction

Defining a Cyclic Symmetric Model

Obtaining All Eigenfrequencies of a Cyclic Symmetric Structure

Selecting the Cyclic Symmetry Modes

Comparison of the Cyclic Symmetry Analysis Technique and MPC Type CYCLSYM

Limitations

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

Periodic Media Analysis

Introduction

Constructing a Periodic Media Model

Activating a Periodic Media

Modeling Tips

Initial Conditions

Boundary Conditions

Loads

Material Options

Limitations

Input File Template

Meshed Beam Cross-Sections

Introduction

Modeling Approach

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

Modeling Discontinuities as an Enriched Feature Using the Extended Finite Element Method

Modeling Approach

Defining an Enriched Feature and Its Properties

Applying Cohesive Material Concepts to XFEM-Based Cohesive Behavior

Applying the VCCT Technique to the XFEM-Based LEFM Approach

Applying Distributed Pressure Loads and Heat Fluxes to Cracked Element Surfaces

Specifying the Initial Location of an Enriched Feature

Activating and Deactivating the Enriched Feature

Contour Integral

Procedures

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Limitations

Input File Template

References

Special-Purpose Techniques

Inertia Relief

Typical Applications

Basic Formulation

Inertia Relief Loading Directions

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Limitations

Input File Template

Element and Contact Pair Removal and Reactivation

Removing Elements

Reactivating Stress/Displacement Elements

Reactivating Other Element Types

Removing and Reactivating Contact Pairs

Removing and Reactivating Contact Elements

Modeling Issues

Removing or Reactivating Elements and Contact Pairs in a Restart Analysis

Procedures

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

Progressive Element Activation

Progressive Element Activation

Procedures

Initial conditions

Boundary conditions

Loads

Elements

Output

Introducing a Geometric Imperfection into a Model

General Postbuckling Analysis

Introducing Geometric Imperfections

Imperfection Sensitivity

Input File Template

Fracture Mechanics

About Fracture Mechanics

Contour Integral Evaluation

Contour Integral Evaluation

J-Integral

Ct-Integral

Stress Intensity Factors

T-Stress

Defining the Data Required for a Contour Integral with the Conventional Finite Element Method

Defining the Data Required for a Contour Integral with XFEM

Symmetry with the Conventional Finite Element Method

Constructing a Fracture Mechanics Mesh for Small-Strain Analysis with the Conventional Finite Element Method

Constructing a Fracture Mechanics Mesh for Finite-Strain Analysis with the Conventional Finite Element Method

Using Constraints with the Conventional Finite Element Method

Procedures

Loads

Material Options

Elements

Output

References

Crack Propagation Analysis

Defining Initially Bonded Crack Surfaces in Abaqus/Standard

Activating the Crack Propagation Capability in Abaqus/Standard

Defining and Activating Crack Propagation in Abaqus/Explicit

Specifying a Fracture Criterion

Specifying How a Debonding Force Is Released after a Fracture Criterion Is Met in Abaqus/Standard

Procedures

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

References

Surface-Based Fluid Modeling

About Surface-Based Fluid Cavities

Introduction

Discretizing the Fluid Cavity

Fluid Cavity Behavior

Modeling Flow into or out of a Cavity

Modeling Multiple Chambers

Defining the Fluid Inertia in a Dynamic Procedure

Modeling Contact Involving the Cavity Boundary

Interpreting Negative Eigenvalue Messages

Procedures

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Output

Limitations

Input File Template

Fluid Cavity Definition

Defining the Fluid Cavity

Defining the Fluid Cavity Behavior

Defining the Ambient Pressure for a Fluid Cavity

Defining the Ambient Temperature for a Fluid Cavity

Hydraulic Fluids

Pneumatic Fluids

A Mixture of Ideal Gases

Averaged Properties for Multiple Fluid Cavities

References

Fluid Exchange Definition

Defining Fluid Exchange

Defining the Fluid Exchange Property

Activating the Fluid Exchange Definition in Abaqus/Explicit

Specifying Mass Flux in Abaqus/Standard

References

Inflator Definition

Defining an Inflator

Defining the Inflator Property

Activating the Inflator Definition

References

Mass Scaling

Introduction

Introducing Mass Scaling into a Model

Global and Local Mass Scaling

Mass Scaling at the Beginning of the Step

Mass Scaling throughout the Step

Different Mass Scaling at the Beginning and during the Step

Mass Scaling in a Multiple Step Analysis or an Abaqus/Explicit to Abaqus/Explicit Import Analysis

When Mass Scaling Is or Is Not Used

Automatic Mass Scaling for Analysis of Bulk Metal Rolling

Output

Selective Subcycling

Introduction

Defining Subcycling Zones

Accuracy of Results

Output and Mass Scaling

Input File Template

Steady-State Detection

Introduction

Steady-State Detection Criteria Sampling

Steady-State Detection Norm Definitions

Requesting Steady-State Detection during an Analysis

Materials

Procedures

Elements

Output

Input File Template

CZone Analysis

Introduction

CZone Methodology

Overview of Model Set-Up Aspects of CZone

CZone Crush Stress

Contact Limitations for CZone for Abaqus

Complex Intersections and Domain Decomposition in CZone for Abaqus

Crush State Evolution

Influence of Noncrushing Failure Mechanisms on Crush Initialization

Testing Crush Behavior

Output

Example Crushing Simulations

Verification Tests

Input file template

Additive Manufacturing Process Simulation

About Additive Manufacturing Process Simulation

About Additive Manufacturing

Toolpath-Mesh Intersection Module

Thermomechanical Simulation

Eigenstrain-Based Simulation

Special-Purpose Techniques for Additive Manufacturing

Postprocessing Simulation and In-Service Performance Validation

References

Toolpath-Mesh Intersection Module

Toolpath-Mesh Intersection Toolpath Representations

Point Toolpath-Mesh Intersection

Infinite Line Toolpath-Mesh Intersection

Box Toolpath-Mesh Intersection

Using the Subsegment Approach

Using the Subelement Approach

Scan Pattern–Mesh Intersection

Activating and Using the Toolpath-Mesh Intersection Module

Supported Elements

Simulating Controlled Deposition of Raw Materials

Simulating Laser-Induced Heating

Additive Manufacturing Process Simulation Workflow

Thermomechanical Simulation of Additive Manufacturing Processes

Thermomechanical Simulation of Additive Manufacturing Processes

Progressive Element Activation in Thermomechanical Simulation

Progressive Cooling via Convection and Radiation

Progressive Heating by a Moving Heat Source

Controlling the Scale of the Simulation and the Solution Fidelity

Resolving Convergence Difficulties

Input File Template

Eigenstrain-Based Simulation of Additive Manufacturing Processes

About Eigenstrain

Eigenstrain-Based Simulation of Additive Manufacturing Processes

Progressive Element Activation and Eigenstrains Application

Resolving Convergence Difficulties

Input File Template

Special-Purpose Techniques for Additive Manufacturing

Thermomechanical Analysis of Powder Bed–Type Additive Manufacturing Processes Using the Trajectory-Based Method

Specifying Progressive Element Activation

Specifying a Concentrated Moving Heat Source

Specifying a Moving Heat Source with a Goldak Distribution

Specifying a Moving Heat Source with a Uniform Distribution

Specifying Free Surface Radiation and Convective Heat Transfer

Thermomechanical Analysis of Powder Bed–Type Additive Manufacturing Processes Using the Pattern-Based Method

Specifying Progressive Element Activation and Scan Pattern Parameters

Specifying a Heat Source

Specifying Free Surface Radiation and Convective Heat Transfer

Visualization of a Scan Pattern

Thermomechanical Analysis of FDM- and LDED-Type Additive Manufacturing Processes

Specifying Progressive Element Activation

Specifying Progressive Element Activation for a Material Bead with Variable Size and Orientation

Specifying a Moving Heat Source

Specifying Free Surface Radiation and Convective Heat Transfer

Eigenstrain-Based Simulation of Powder Bed–Type Additive Manufacturing Processes

Specifying Element Activation and Eigenstrain Using the Pattern-Based Method

Visualization of a Scan Pattern

Specifying Element Activation and Eigenstrain Using the Trajectory-Based Method

Machining and Material Removal Process

Specifying Progressive Element Activation for Material Removal

Parameter Table Type Reference

ABQ_AM_BladeInterference

Parameter Table Type Definition

Parameters

ABQ_AM_EigenStrain_Activation_Advanced

Parameter Table Type Definition

Parameters

ABQ_AM_EigenStrain_Define

Parameter Table Type Definition

Parameters

ABQ_AM_EigenStrain_Method

Parameter Table Type Definition

Parameters

ABQ_AM_EigenStrain_PatternBased_Activation

Parameter Table Type Definition

Parameters

ABQ_AM_EigenStrain_PatternBased_Advanced

Parameter Table Type Definition

Parameters

ABQ_AM_EigenStrain_PatternBased_Define

Parameter Table Type Definition

Parameters

ABQ_AM_EigenStrain_PatternBased_ScanStrategies

Parameter Table Type Definition

Parameters

ABQ_AM_EigenStrain_PatternBased_ScanStrategy_Define

Parameter Table Type Definition

Parameters

ABQ_AM_EigenStrain_TrajectoryBased_Activation

Parameter Table Type Definition

Parameters

ABQ_AM_EigenStrain_TrajectoryBased_Rule_Define

Parameter Table Type Definition

Parameters

ABQ_AM_EigenStrain_TrajectoryBased_Rules

Parameter Table Type Definition

Parameters

ABQ_AM_MaterialDeposition

Parameter Table Type Definition

Parameters

ABQ_AM_MaterialDeposition_5AxisStrategy

Parameter Table Type Definition

Parameters

ABQ_AM_MaterialDeposition_Advanced

Parameter Table Type Definition

Parameters

ABQ_AM_MaterialDeposition_Bead

Parameter Table Type Definition

Parameters

ABQ_AM_MaterialDeposition_Bead_Orientation

Parameter Table Type Definition

Parameters

ABQ_AM_MaterialDeposition_VariableBeadSize

Parameter Table Type Definition

Parameters

ABQ_AM_MaterialRemoval

Parameter Table Type Definition

Parameters

ABQ_AM_MaterialRemoval_5AxisStrategy

Parameter Table Type Definition

Parameters

ABQ_AM_MaterialRemoval_Advanced

Parameter Table Type Definition

Parameters

ABQ_AM_MaterialRemoval_Bead

Parameter Table Type Definition

Parameters

ABQ_AM_MaterialRemoval_Bead_Orientation

Parameter Table Type Definition

Parameters

ABQ_AM_MaterialRemoval_VariableBeadSize

Parameter Table Type Definition

Parameters

ABQ_AM_MovingHeatSource

Parameter Table Type Definition

Parameters

ABQ_AM_MovingHeatSource_5AxisStrategy

Parameter Table Type Definition

Parameters

ABQ_AM_MovingHeatSource_Advanced

Parameter Table Type Definition

Parameters

ABQ_AM_MovingHeatSource_Goldak

Parameter Table Type Definition

Parameters

ABQ_AM_MovingHeatSource_Uniform

Parameter Table Type Definition

Parameters

ABQ_AM_MovingHeatSource_VariableBeadSize

Parameter Table Type Definition

Parameters

ABQ_AM_ThermoMech_Activation_Advanced

Parameter Table Type Definition

Parameters

ABQ_AM_ThermoMech_PatternBased_Activation

Parameter Table Type Definition

Parameters

ABQ_AM_ThermoMech_PatternBased_Advanced

Parameter Table Type Definition

Parameters

ABQ_AM_ThermoMech_PatternBased_Define

Parameter Table Type Definition

Parameters

ABQ_AM_ThermoMech_PatternBased_ScanStrategies

Parameter Table Type Definition

Parameters

ABQ_AM_ThermoMech_PatternBased_ScanStrategy_Define

Parameter Table Type Definition

Parameters

ABQ_AM_ThermoMech_PatternParameters

Parameter Table Type Definition

Parameters

ABQ_AM_ThermoMech_ScanParameter_Define

Parameter Table Type Definition

Parameters

Event Series and Property Table Type Reference

ABQ_AM_AbsorptionCoeff

Property Table Type Definition

Properties

ABQ_AM_HeatSourceTrajectory_RuleID

Event Series Type Definition

Fields

ABQ_AM_MaterialDeposition

Event Series Type Definition

Fields

ABQ_AM_MaterialDeposition_5AxisStrategy_VariableCrossSection

Event Series Type Definition

Fields

ABQ_AM_MovingHeatSource_5AxisStrategy_VariableCrossSection

Event Series Type Definition

Fields

ABQ_AM_PowerMagnitude

Event Series Type Definition

Fields

Adaptivity Techniques

About Adaptivity Techniques

Selecting an Adaptivity Technique

Ale Adaptive Meshing

About ALE Adaptive Meshing

Features of ALE Adaptive Meshing

Activating ALE Adaptive Meshing

Uses for ALE Adaptive Meshing

Comparison of ALE Adaptive Meshing in Abaqus/Explicit and Abaqus/Standard

Illustrative Examples

Defining ALE Adaptive Mesh Domains in Abaqus/Explicit

Defining an ALE Adaptive Mesh Domain

ALE Adaptive Mesh Boundary Regions

Geometric Features

Mesh Constraints

Initial Conditions

Defining Surfaces on ALE Adaptive Mesh Boundaries

Distributed Loads

Distributed Surface Fluxes and Thermal Conditions

Concentrated Loads

Concentrated Fluxes and Thermal Conditions

Boundary Conditions

Overlapping Boundary Regions

Predefined Fields

Materials

Elements

Multi-Point Constraints and Equations

Procedures

User Subroutines

Output

Input File Template

ALE Adaptive Meshing and Remapping in Abaqus/Explicit

Meshing

Remapping

Controlling the Frequency of ALE Adaptive Meshing

Controlling the Intensity of ALE Adaptive Meshing

The Computational Cost of ALE Adaptive Meshing

Guidelines for Controlling ALE Adaptive Meshing Frequency and Intensity

Mesh Smoothing Methods

Solution-Dependent Meshing Based on Concave Boundary Curvature

Smoothing a Distorted Mesh at the Beginning of a Step

Meshing on Boundary Regions

Advecting Solution Variables to the New Mesh

Advection Methods for Element Variables

Momentum Advection

References

Modeling Techniques for Eulerian Adaptive Mesh Domains in Abaqus/Explicit

ALE Adaptive Mesh Constraints on Eulerian Boundaries

Defining Inflow Eulerian Boundaries

Defining Outflow Eulerian Boundaries

Defining Eulerian Boundary Regions That Act as Both Inflow and Outflow Boundaries

Lagrangian Versus Sliding Boundary Regions on Eulerian Domains

Output and Diagnostics for ALE Adaptive Meshing in Abaqus/Explicit

Verifying the Model

Interpreting Results

Tracking Nodal or Element Variables at Material Points

Monitoring the Progress of ALE Adaptive Meshing

Defining ALE Adaptive Mesh Domains in Abaqus/Standard

Defining an ALE Adaptive Mesh Domain

ALE Adaptive Mesh Regions

Geometric Features

Mesh Constraints

Contact

Initial Conditions

Loads

Boundary Conditions

Predefined Fields

Material Options

Elements

Procedures

Limitations

Input File Template

ALE Adaptive Meshing and Remapping in Abaqus/Standard

The ALE Adaptive Mesh Sweeping Algorithm

The ALE Adaptive Mesh Advection Algorithm

Output

References

Mesh-to-Mesh Solution Mapping

When to Remesh

Remeshing Criterion

Generating a New Mesh

Specifying the Solution to Be Interpolated onto the New Mesh

Solution Mapping Algorithm

Procedures

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

Eulerian Analysis Techniques

Eulerian Analysis

Applications

Eulerian Volume Fraction

Material Interfaces

Eulerian Section Definition

Eulerian Mesh Deformation

Eulerian Material Advection

Initial Conditions

Boundary Conditions

Loads

Material Options

Elements

Constraints

Interactions

Output

Limitations

Input File Template

References

Defining Eulerian Boundaries

Defining the Eulerian Boundary

Defining the Inflow Condition

Defining the Outflow Condition

Applying Fixed Boundary Conditions in the Normal Direction

Using Eulerian Boundaries in Restart Analyses

Eulerian Mesh Motion

Activating Mesh Motion

Computing Mesh Motion

Defining the Target Object

Constraining Eulerian Mesh Motion

Ignoring Fragments of Eulerian Material

Limitations

Defining Adaptive Mesh Refinement in the Eulerian Domain

Adaptive Mesh Refinement

Activating Adaptive Mesh Refinement

Activating the Enhanced Contact Formulation

Setting the Refinement Limit

Setting the Refinement Level

Deactivating Coarsening

Defining Refinement Criteria

Contact

Limitations

Particle Methods

Discrete Element Method

Introduction

Applications

Strategies for Creating and Initializing a DEM Model

Strategy for Reducing Solution Noise

Time Incrementation Considerations for Non-Hertzian Contact

Automatic Time Incrementation for Hertzian Contact

Initial Conditions

Boundary Conditions

Loads

Elements

Constraints

Interactions

Output

Limitations

Input File Template

References

Continuum Particle Analyses

Smoothed Particle Hydrodynamics

Introduction

Applications

Artificial Viscosity

SPH Tensile Instability Control

SPH Particle Generator

SPH Particle Outlet

Initial Conditions

Boundary Conditions

Loads

Material Options

Elements

Constraints

Interactions

Output

Limitations

Input File Template

References

Finite Element Conversion to SPH Particles

Activating the Conversion to SPH Particles Functionality

Generating Particles per Parent Element

Generating Particles Based on a Uniform Background Grid

Automatically Generated Sets and Surfaces

Initial Conditions

Boundary Conditions

Loads

Material Options

Elements

Constraints

Interactions

Output

Limitations

Input File Template

Particle Generator

Introduction

Applications

Defining a Particle Generator

Local Coordinate System for Inlet Faces

Assigning Properties to Particles

Particle Size Rejection

Mass Balance for Continuous Generation

Inlet Blocking

Automatic Halting of Particle Generator

Initial Conditions

Boundary Conditions

Loads

Elements

Constraints

Interactions

Output

Limitations

Input File Template

Lumped Kinetic Molecular Method

Introduction

Applications

Model Set-Up

Interactions

Output

Limitations

Input File Template

Sequentially Coupled Multiphysics Analyses

General Capability for Importing External Fields

Introduction to Importing External Fields

Specifying the Output Database File to Be Read

Importing an External Field to Define Distributions

Importing an External Field to Adjust Nodal Coordinates

Importing an External Field to Define Initial Conditions

Importing an External Field to Define History-Dependent Fields

Saving Fields in a Previous Analysis

Identifying the Target and Source Fields

Importing Field Variables and Temperature as a Field Variable

Importing Fields at a Specified Step and Increment

Importing Fields at a Specified Time

Importing Fields over a Specified Time Range

Resolving Different Physics Time Scales

Applying Field Mapper Controls

Applying Field Operations

Limitations

Predefined Fields for Sequential Coupling

Saving Temperatures, Normalized Concentrations, and Electric Potentials for Predefined Fields in Subsequent Analyses

Transferring Temperatures as Temperature Fields

Transferring Temperatures, Normalized Concentrations, and Electric Potentials from the Output Database to Predefined Fields

Transferring Pore Fluid Pressure to a Predefined Field

Initial conditions

Boundary conditions

Loads

Predefined fields

Material Options

Elements

Output

Input File Template

Sequentially Coupled Thermal-Stress Analysis

Saving the Nodal Temperatures

Transferring the Heat Transfer Results to the Stress Analysis

Initial Conditions

Boundary Conditions

Loads

Predefined Fields

Material Options

Elements

Output

Input File Template

Sequentially Coupled Injection Molding to Stress Analysis

Introduction to Injection Molding

Saving Fiber Orientation, Temperature, and Stress for Predefined Fields in Subsequent Stress Analyses

Transferring Fiber Orientations as Distributions

Transferring Temperature as Predefined Conditions

Transferring Stress as Predefined Conditions

Initial conditions

Boundary conditions

Loads

Predefined fields

Material options

Elements

Output

Input file template

Predefined Loads for Sequential Coupling

Saving Joule Heat Dissipation or Magnetic Body Force Intensity for Use in Subsequent Analyses

Converting Results for Subsequent Use

Transferring Nodal Loads from the Output Database to Concentrated Loads

Input File Template

Co-Simulation

About Co-Simulation

Features of the Abaqus Co-Simulation Technique

Interaction between Domains Modeled with Different Analysis Programs

Strength of Physics Coupling

References

Preparing an Abaqus Analysis for Co-Simulation

Identifying an Abaqus Step for Co-Simulation Analysis

Identifying the Analysis Program Communicating with Abaqus during the Co-Simulation

Identifying the Co-Simulation Interface Region

Identifying the Fields Exchanged across a Co-Simulation Interface

Defining the Coupling and Rendezvousing Scheme

Using the SIMULIA Co-Simulation Engine Configuration File

Coupling and Rendezvousing Schemes for Elaborated Configuration Files

Model Dimension and Coordinate Systems

Unit System

Restarting a Co-Simulation

Limitations

Co-Simulation between Abaqus Solvers

Structural-to-Structural Co-Simulation

Coupling in Abaqus/Standard and Abaqus/Explicit Co-Simulation

Identifying the Co-Simulation Interface Region

Enhanced Subcycling Method for Interface Calculations

Original Subcycling Method for Interface Calculations

Lockstep Method for Interface Calculations

Creating a Configuration File

Executing the Coupled Analysis

Limitations

Electromagnetic-to-Structural and Electromagnetic-to-Thermal Co-Simulation

Identifying the Abaqus Step for the Co-Simulation Analysis

Identifying the Co-Simulation Interface Region

Identifying the Fields Exchanged across a Co-Simulation Interface

Defining the Rendezvousing Scheme

Executing the Coupled Analysis

Limitations

Executing a Co-Simulation

Executing a Co-Simulation from the Command Line

Considerations for Using the timeout Parameter

System-Level Modeling between Logical and Physical Interactions

Applications

Preparing an Abaqus Model for a Logical-to-Physical Co-Simulation

Mapping Signal Names between Abaqus and Fmus

Executing the Coupled Analysis

User Subroutines and Utilities

About User Subroutines and Utilities

Including User Subroutines in a Model

Managing External Databases in Abaqus and Exchanging Information with Other Software

Writing a User Subroutine

Models Defined in Terms of an Assembly of Part Instances

Solution-Dependent State Variables

Element Solution-Dependent Variables

Alphanumeric Data

Precision in Abaqus/Explicit

Vectorization in Abaqus/Explicit

Parallelization

User Subroutine Calls

Utility Routines

Table Collections, Parameter Tables, and Property Tables

Introduction

Table Collection Definition

Parameter Table Definition

Property Table Definition

Defining Tables within a Material Definition

Interpolation of Property Table Data

Regularizing Property Table Data in Abaqus/Explicit

Event Series

Introduction

Event Series Definition

Reading Event Series Data from a SIM Database File

Reading Event Series Data from an Alternate Input File

Positioning of Event Series Data

Design Sensitivity Analysis

Design Sensitivity Analysis Overview

Direct Design Sensitivity Analysis

Design Sensitivity Analysis

Activating DSA

Specifying Design Parameters

Specifying Responses

Specifying Design Gradients of Design-Dependent Input Data

History Dependence and Formulation Type in a Multi-Increment Analysis

DSA in Linear Perturbation Steps

Determination of Design Parameter Perturbation Sizes

Accuracy of the DSA Solution

Design Dependence and Supported Features

Contact Interactions

Restarting a Design Sensitivity Analysis

Procedures

Material Options

Elements

Output

Input File Template

Adjoint Design Sensitivity Analysis

Adjoint Sensitivity Method for Transient Dynamics Using Abaqus/Standard

Activating Adjoint Sensitivity Analysis

Specifying Design Variables

Specifying Design Responses in a Static or an Eigenfrequency Analysis

Specifying Design Responses in a Transient Dynamic Analysis

Material Options

Output

Limitations

Input File Template

Parametric Studies

Scripting Parametric Studies

Introduction

Organization of Parametric Studies

Defining the Design Space

Sampling and Combining Parameter Values to Create Sets of Design Points

Generation and Execution of the Designs of a Parametric Study

Parametric Study Results

Execution of Parametric Studies

Visualization of Parametric Study Results

Scripting Commands

Syntax of Scripting Commands

Python Language Rules

Accessing the Data of a Parametric Study

References

Parametric Studies: Commands

aStudy.combine()

Command

Tokens

Additional Data for CROSS, MESH, and TUPLE

Additional Data for PRINT

aStudy.constrain()

Command

Required Data

aStudy.define()

Command

Tokens

Additional Data for CONTINUOUS

Additional Data for DISCRETE

Additional Data for PRINT

aStudy.execute()

Command

Tokens

Optional Data

Additional Data for DISTRIBUTED

aStudy.gather()

Command

Required Data

Optional Data

Optional and Mutually Exclusive Data

Additional Data for Element Integration Point Variables

Additional Data for Element Section Variables

Additional Data for Whole Element Variables

Additional Data for Partial Model (Element Set) or Whole Model Variables

Additional Data for Nodal Variables

Additional Data for Modal Variables

Additional Data for Contact Surface Variables

Additional Data for Cavity Radiation Surface Variables

Additional Data for Section File Output

aStudy.generate()

Command

Required Data

aStudy.output()

Command

Optional Data

Optional and Mutually Exclusive Data

aStudy=ParStudy()

Command

Required Data

Optional Data

aStudy.report()

Command

Tokens

Required data

Optional data

Additional Data for FILE and XYPLOT

aStudy.sample()

Command

Tokens

Additional Data for INTERVAL

Additional Data for NUMBER

Additional Data for PRINT

Additional Data for REFERENCE

Additional Data for VALUES